
Parry, Gareth P. (2016) Discrete structures in continuum 
descriptions of defective crystals. Philosophical 
Transactions of the Royal Society A: Mathematical, 
Physical & Engineering Sciences, 374 . ISSN 1471-2962 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/30995/1/PhilTransPreprint.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33575245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


DISCRETE STRUCTURES IN CONTINUUM DESCRIPTIONS

OF DEFECTIVE CRYSTALS

G. P. PARRY

Abstract. I discuss various mathematical constructions that combine to-
gether to provide a natural setting for discrete and continuum geometric
models of defective crystals. In particular I provide a quite general list
of ‘plastic strain variables’, which quantifies inelastic behaviour, and ex-
hibit rigorous connections between discrete and continuous mathematical
structures associated with crystalline materials that have a correspond-
ingly general constitutive specification.

1. Introduction

The geometrical context of the work is a kinematical model of defective
crystals that Davini proposed in 1986, [1]. In that model a crystal state Σ, in
R3, is given by the prescription of three smooth linearly independent ‘lattice
vector’ fields l1(·), l2(·), l3(·) defined at each point of some region Ω ⊆ R3.

He interpreted these vector fields as averages, ‘over regions with diameters
large compared to spacing between atoms’, [2], of quantities obtained from
a (discrete) microscopic configuration of atoms or other structural elements.
Thus the lattice vector fields were to vary on a scale finer than that commonly
associated with continuum mechanics, coarser than interatomic. This separa-
tion of scales was motivation for the presumption that, in general changes of
crystal state, these vector fields may evolve independently of the macroscopic
deformation of continuum mechanics, even though the particular changes of
state where the macroscopic deformation does determine the changes in those
fields are highlighted, conceptually, and given a special status in the subse-
quent analysis (c.f. the definition of elastic deformation of lattice vector fields,
(2.2) below).

His intention was that the vector fields ‘were to represent in some average
sense properties of the lattice including occasional defects that may occur at
the atomistic level ’, [2].

A further important feature of this model was that only the fields of lattice
vectors, and certain of their derivatives, were required for constitutive purposes
− for example, continuum energy densities were to be determined by such
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fields, so that this finite set of fields was deemed to be sufficiently indicative for
continuum purposes of the relevant discrete microscopic configuration of atoms
(say). This implies, in particular, that only the ‘current ’set of vector fields
is required, to determine constitutive functions, and there is no associated
‘reference’or ‘intermediate ’configuration, a priori.

With these assumptions, which are reminiscent of early molecular theories
of elasticity, [3], [4], it became necessary to correlate features of the model
with notions that are found useful in later theories of continuous distributions
of dislocations, [5], [6], and in engineering plasticity theories [7, 8]. This was
done by investigating and emphasizing the roles that the Burgers vectors,
the dislocation density and torsion tensors, and rigorous versions of elastic-
plastic decomposition, play in the analysis of Davini’s kinematical model. In
fact, there is one central question in that analysis which leads directly to the
importance of the above notions − it is very simply stated: if two crystal
states are given, that is if two sets of vector fields (defined over different
regions of R3) are given, then how does one decide if there is a macroscopic
deformation, mapping one region to the other, which also maps one set of
fields to the other. To discuss this question, it was necessary to consider
quantities of higher order (in the derivatives of the lattice vector fields) than
the Burgers vector, dislocation density tensor, etc., though it was shown that
only a finite number of such objects were necessary for the results obtained −
these quantities are certain directional derivatives of the dislocation density
tensor.

In summary, the model has many points of contact with other continuum
models of materials which allow inelastic behaviour, the central geometrical
object (a set of vector fields) is rather simple, at first glance, and decompo-
sitions of changes of crystal states into elastic and inelastic parts are derived
results, based on the geometry of the vector fields (rather than constitutive
hypotheses).Thus the model has many advantages, but:

(1) The process of averaging, by which smooth vector fields are derived
from a discrete microscopic configuration with ‘occasional defects ’, is
not made precise in [1],[2], nor in any related work that I know of;

(2) The higher order quantities which are important in order to make con-
nections with, for example, the (ad hoc) elastic-plastic decompositions
of plasticity theory, have had no compelling geometrical interpreta-
tion, to date, by way of contrast with the Burgers vector, dislocation
density tensor, etc.

I address these two limitations in this paper. To be precise regarding (i),
though, I do not propose any particular averaging process, nor make any
presumption regarding the density or distribution of defects, rather I consider
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a ‘converse ’approach − that is, I ask if any discrete set of points is ‘naturally
’associated with a given set of lattice vector fields. In fact the question has
to be more specific than this, if there is to be any mathematical resolution of
the issue, and it is made specific by constraining the vector fields in a manner
that I outline towards the end of this introduction.

The final result, regarding (i), is that there is indeed a set of points associ-
ated with any set of vector fields so constrained, and that such sets of points
have a regularity that derives from a continuous (Lie) group structure. Also,
the dimension of the group (i.e. the number of real parameters required to
specify a general group element) depends on the number of ‘higher order quan-
tities ’, c.f. (ii), involved in defining the set of vector fields. Thus, for example,
when the vector fields are constant in R3, so that the dislocation density tensor
is zero, the relevant continuous group corresponds to translation in R3 and the
corresponding set of points is a perfect lattice. When the vector fields are such
that only the dislocation density tensor is required, for the purposes sketched
in (ii), the relevant continuous group is three dimensional (but not a group
of translations) and the corresponding set of points is not generally a perfect
lattice (it may be a collection of perfect lattices, for example). When higher
order quantities are required , for the purposes of (ii), the relevant continuous
group has dimension strictly greater than three, and points in R3 are obtained
by projection (to R3) of a corresponding ‘regular ’higher dimensional set of
points. So, one constructs a hierarchy of continuous and discrete structures
for each set of vector fields satisfying the constraints.

This result, which is based on a theorem [9] whose relevance in this context
was highlighted by Elzanowski and Preston in [10], allows one to interpret the
geometrical information that is implicit when a list of constitutive variables of
a certain general type is prescribed: suppose that values of the dislocation den-
sity tensor and a finite number of its directional derivatives are prescribed, and
that these values are consistent with a set of lattice vector fields constrained as
above. Then there is a related continuous group structure whose dimension is
determined by the order of that set of derivatives of the vector fields, together
with an associated ‘regular ’(possibly discrete) set of points. Thus the ‘local
’(continuous) structure determined by point values of the dislocation density
tensor and some of its derivatives is a certain Lie group.

So it should be possible, in due course, to construct an ‘atlas ’of discrete
structures of this type − then, given a microscopic configuration of structural
elements in some dynamically stable amorphous solid, for example, one might
identify the particular chart(s) in that atlas that correspond to the observed
configuration, and so determine a list of constitutive variables appropriate for
the continuum mechanical modelling of such materials. This is the sense in
which the present approach is converse to Davini’s original suggestion. Also
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the scheme fits with the mechanics of complex materials, to the extent that
there is a local microstructure at each material point (at each material point
there is a Lie group , and possibly discrete set of group elements, determined
by point values of the constitutive variables).

Regarding point (ii) and the specific constraints on the set of vector fields
mentioned above, it is shown below (c.f.(2.19)) that there a connection be-
tween the directional derivatives of the dislocation density tensor and quan-
tities obtained by iteration of the Burgers vector construction. The specific
constraints on the vector fields, needed in order to justify the remarks of the
last two paragraphs, loosely stated, are that only a finite number of itera-
tions of the Burgers vector construction are required in order that iterations
of all orders be determined. By virtue of connections such as (1.19) below,
the constraint can be recast in terms of directional derivatives of the dislo-
cation density tensor, giving that directional derivatives of all orders are to
be determined by lower order terms in a certain way. Finally, regarding (ii),
since (1.19) generalizes to give connections between higher order directional
derivatives of the dislocation density tensor and successive iterations of the
Burgers vector construction, we have the required geometrical interpretation
of the higher order terms.

In the next section I outline the nature of the mathematical apparatus that
is required in order to justify the above remarks, before giving more detail in
the later sections.
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2. Outline

Let {la(·)} denote the set of three linearly independent fields l1(·), l2(·), l3(·),
so that the crystal state Σ is defined by

Σ ≡ {{la(·)} ; Ω} . (2.1)

An elastic deformation of Σ is a smooth invertible mapping u : Ω → u(Ω) ⊆
R3, such that the fields {la(·)} are transformed to fields {l̃a(·)} defined on
u(Ω), where

l̃a (u(x)) ≡ ∇u(x)la(x), a = 1, 2, 3, x ∈ Ω. (2.2)

The crystal state
Σ̃ ≡ {{l̃a(·)}; Ω̃}. (2.3)

is said to be elastically related to Σ when (2.2) holds and Ω̃ = u(Ω), and vice
versa via u−1(·).

Mathematical quantities calculated from the lattice vector fields and their
derivatives of any order which are both (i) additive over disjoint subregions
of Ω, and (ii) invariant under elastic deformation, are said to be ‘measures of
defectiveness’. These quantities are represented by
integrals over curves, surfaces and volumes, by virtue of the additivity re-
quirement, and corresponding densities include the Burgers vectors and the
dislocation density tensor. Note that I shall refer to corresponding scalar
densities as ‘elastic invariants’ — each component of the dislocation density
(defined below) is an elastic invariant, but the Burgers vectors are not, for
example. The dislocation density ‘tensor’ (so-called) consists of nine elastic
invariants Sab, a, b = 1, 2, 3 defined as follows:

S = (Sab) ≡
(
∇∧ da · db

n

)
, (2.4)

where the smooth linearly independent fields d1(·),d2(·),d3(·) are dual to the
lattice vector fields;

la(x) · db(x) = δab, la(x)⊗ da(x) = identity, x ∈ Ω, (2.5)

where δab is the Kronecker delta, and n(·) is defined by

n ≡ d1 · d2 ∧ d3. (2.6)

Each of the quantities (∇∧ da)(·) is referred to as a ‘Burgers vector’ field.
Now the following observation is central to the discussion: if ϑ(·) is any

elastic invariant, so are (la ·∇ϑ)(·), a = 1, 2, 3. Thus, all directional derivatives
of S, of any order, are also elastic invariants, so that there is an infinite number
of such objects.
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The particular elastic invariants

S, la · ∇S, (2.7)

will be of fundamental significance, subsequently.
The first theme to be discussed in the paper is the following: give a finite

functional basis for the set of elastic invariants, and a similar basis for the
measures of defectiveness. (I’ll be precise about what is meant by a functional
basis later). These tasks were addressed in [11, 12, 13, 14] , and I note that
some of the results relevant to the first task can be read in terms of, and
understood by means of, Cartan’s theory of equivalence of vector fields, as set
out by Olver in [15].

The second theme (there are five in all) relates to the fact that two distinct
crystal states may not be elastically related to one another even if they have
identical measures of defectiveness. I say that, as in [11, 12], two crystal states
are related by (implicitly non-trivial) neutral deformation in that case, and
remark that the corresponding changes of state can be interpreted in terms
of rearrangements of vector fields, or ‘slip’. The equations that determine
whether or not a crystal state Σ (c.f. (2.1)) allows neutral deformation are
partial differential equations for lattice vector fields

{
l′a(·)

}
in a crystal state

also defined on Ω ⊆ R3,
Σ′ ≡

{{
l′a(·)

}
,Ω
}
. (2.8)

One solution of these partial differential equations is {la(·)}, neutral deforma-
tions exist if there is a solution

{
l′a(·)

}
6= {la(·)}.

The interpretation of neutral deformations as slip, [11, 12], suggests that
states which allow neutral deformation are important from the point of view
of the theory of plasticity, or engineering theories of inelastic behaviour, and
so I confine attention throughout to such states. This permits us, it turns
out, to focus on a list of elastic invariants that includes only some of the
lower order elements from the general functional basis for the set of all elastic
invariants. Also this restriction gives more information about the lattice vector
fields than would otherwise be the case, of course, and it makes the subsequent
mathematics more tractable. Note that the restriction does not play a direct
role in Cartan’s view of the geometry, nor in continuum theories of continuous
distributions of dislocations, though the phenomenological theories do give slip
a fundamental ad hoc status (if that is not a contradiction in terms).

Next I regress a little and return to ask what it means for a list of elastic
invariants to be a functional basis, in general and in the case where crystal
states allow neutral deformation, so that one aspect of the significance of (2.7)
is evident. First it is clear, since we are working in R3, that there can be at
most three independent elastic invariants
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(for if there is a set of three invariants ν1, ν2, ν3 such that the corresponding
three gradients form a set of linearly independent vectors at each point x of Ω,
then one can invert to write x = x(ν1, ν2, ν3), and so use those three invariants
as a system of coordinates with which to specify the dependence of any other
invariant on position in R3). Any such set of three elastic invariants must be
included in the set of all directional derivatives of S up to and including second
order. This does not imply that ν1, ν2, ν3 is a functional basis of the set of
all elastic invariants, though, for one cannot calculate invariants of any higher
order explicitly, given ν1, ν2, ν3. However it is enough (in order to provide a
functional basis for all invariants) to add the set of third order invariants to
those of lower order. For if (any) third order invariant I is known, then by
the above remarks it can be written in the form I = I(ν1, ν2, ν3), and then

la · ∇I =
∂I

∂νi
(la · ∇νi), a = 1, 2, 3, (2.9)

using the summation convention. Since la · ∇νi is an invariant of order 3 at
most, a, i = 1, 2, 3, it can be written as a (known) function of ν1, ν2, ν3, and
since I = I(ν1, ν2, ν3) is known, so is ∂I

∂νi
, i = 1, 2, 3. All fourth order invariants

have the form la · ∇I, and so all fourth order invariants are also known, from
(2.9). Iterating, one can find all invariants, of arbitrary order, explicitly. This
implies that

the set of all directional derivatives of S of order ≤ 3, (2.10)

is a functional basis of the set of all elastic invariants (‘plastic strain’ variables),
in the sense that all other elastic invariants may be found if these particular
invariants are prescribed in a domain Ω ⊆ R3.

In the case of crystal states that allow neutral deformations, it turns out
that, if there is a non-constant elastic invariant, ν say, then all other invariants
may be expressed in terms of ν. This invariant ν may be taken as some element
of (Sab) without loss of generality, and in the case that all first order invariants
are known in terms of ν, all higher order invariants may be found explicitly.
Thus

the set of all directional derivatives of S of order ≤ 1, (2.11)

is a functional basis of the set of all elastic invariants, in this case, c.f. (2.7).
In the case that

all elements of S, (2.12)

are constant in Ω, all the other elastic invariants are zero.
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Thus the list (2.7) is a functional basis of the set of all elastic invariants, in
the case that the crystal state allows neutral deformation.

Note that the invariants of (2.7) are not arbitrary — they are subject to
two constraints deriving from the identities

0 = ∇ · (∇∧ da) = ∇ · (nSablb), 0 = ∇∧ (∇ν) = ∇∧ {(la · ∇ν)da} . (2.13)

These constraints are the only constraints on those variables — this will be
dealt with in section 5.

In section 5, I turn to the third theme, which is the connection between
the continuum description of the crystal and the theory of Lie groups. The
connection is approached, first of all, by noting from [13, 14] that the Lie
brackets of pairs of lattice vector fields, defined by

L1 ≡ [l2, l3] ≡ (l3 · ∇)l2 − (l2 · ∇)l3, (2.14)

for example, are connected to the dislocation density tensor by:

Sab = Lb.da, or Sabla = Lb, a, b = 1, 2, 3. (2.15)

In the simplest case, where S = (Sab) is constant in Ω, these nine constants
are related to the structure constants Cijk of a three dimensional Lie algebra
g via

εjklSij = Cikl, i, k, l = 1, 2, 3, (2.16)

where εijk are components of the permutation symbol. Also, there is a set
of vector fields (again denoted) {la(·)} defined on the corresponding three
dimensional Lie group G, with composition function χ : G × G → G, that
satisfies (2.4) above and also

la (χ(x,y)) = ∇1χ(x,y)la(x), a = 1, 2, 3, x,y ∈ G, (2.17)

where ∇1χ(·, ·) denotes the gradient of χ with respect to its first argument.
According to (2.17), the vector fields {la(·)} are right invariant with respect
to group multiplication (i.e. by y ∈ G on the right).

One should not dismiss (2.17) as a mathematical nicety for it represents
the answer to a long standing question in the theory of defects, which is how
crystals ‘fit together’ when there are defects present. Equation (2.17) tells
us that, in the case S = constant (so that there is a uniform distribution of
defects, in some sense), there is an explicit self-similarity of the lattice vector
fields — (2.17) states that, for any given y, there is an elastic deformation
x→ χ(x,y) which maps lattice vector fields in a neighbourhood of (any) x0

to lattice vector fields in a corresponding neighbourhood of χ(x0,y) (and
since G is a group, the point χ(x0,y) may be considered arbitrary, by choice
of y).

DRAFT DRAFT DRAFT
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That is, (2.17) is (2.2) with u(x) ≡ χ(x,y), and Σ = Σ̃. In brief, ‘Σ is
elastically related to itself, locally’.

In the sequel, we shall arrive at a result analogous to (2.17) in the case that
S is not constant.

I take the point of view that the construction that leads to (2.17), in the case
that S is constant in Ω, relates to a continuum where the list of constitutive
variables includes a dependence on S, but that there is no dependence on {la ·
∇S}, nor any higher order directional derivatives of S, i.e. the appropriate list
of plastic strain variables is (2.12). The following remarks are a generalization
of this perspective, to include higher order directional derivatives of S. First,
though, in order to progress, one has to recast these higher order directional
derivatives into a more algebraic form, and this reformulation is one of the
main ideas in the paper.

So what is the appropriate mathematical structure in the case that the
constitutive variables include the ‘plastic strain’ variables in (2.11) - then S is
non constant because la · ∇S 6= 0, a = 1, 2, 3, in general? To begin to get at
the connection, note first that, from the definition (2.14) of the Lie bracket,

[φla, lb] = φ[la, lb] + (lb · ∇φ)la, a, b = 1, 2, 3, (2.18)

which holds for all functions φ : R3 → R but in particular when φ is a function
of the directional derivatives of S of any order. Putting φ = Sac and using
(2.15)2 we have

[Lc, lb] = Sac[la, lb] + (lb · ∇Sac)la, b, c = 1, 2, 3. (2.19)

Recall that L1 = [l2, l3], etc., so the left side of (2.19) consists of terms such as
[[l1, l2], l3] — I’ll call terms of that form ‘nested’ Lie brackets of order 3, [l2, l3]
a ‘nested’ Lie bracket of order 2, and for semantic convenience l1 a ‘nested’
Lie bracket of order 1. With this jargon in place, (2.15)2, gives the nested Lie
brackets of order 2 in terms of those order 1, (2.19) gives those of order 3 in
terms of those of orders 1 and 2. In particular, (2.19) is a relation between
nested Lie brackets of orders 3, 2, 1 and the coefficients in that relation are
elastic invariants that appear in the list (2.11), or (2.7). Also, (2.15)1 gives S
in terms of the nested brackets of order 1, 2, (2.19) can be rearranged to give
{la · ∇S} in terms of nested brackets of orders ≤ 3.

So if the list of constitutive variables includes a dependence on S and la ·∇S,
but on no higher derivatives of S, then that list of variables can be recast in
terms of nested Lie brackets of order ≤ 3. To proceed, in this case, I follow [10],
and make an assumption: it is that the nested brackets of orders ≤ 2 provides
a basis for the nested brackets of order 3 — this amounts to a constraint on
the elastic invariants additional to those that derive from (2.13) (in fact it
implies that one of those two constraints is satisfied).
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The assumption implies that nested brackets of all orders are determined as
linear combinations of {la}, {La}, so we have a Lie algebra with basis included
in the set {{la}, {La}} — Elzanowski and Preston call this the lattice algebra
derived from the lattice vector fields, and note that [9] gives the existence of a
Lie group G (of dimension higher than the number of lattice vectors in the case
∇S 6= 0) with corresponding Lie algebra g homomorphic to the lattice algebra.
We shall see later how the lattice vector fields are related to objects in G. This
procedure gives the appropriate mathematical structure in the case that the
constitutive variables include those listed in (2.11), and the assumption is
readily generalized to include the case where the list of constitutive variables
includes higher order directional derivatives of S.

Note that if the third order brackets are known in terms of a linear (i.e.
constant coefficient) combination of lower order brackets, then in particular
one can also calculate the 4th order brackets in terms of a linear combination
of lower order brackets, etc.

The final two themes focus on discrete structures that are associated with
the continuum models above. In section 6 I deal with the case that S is con-
stant, where the constitutive variables are {la}, S or equivalently {la}, {La},
and where material points can be associated with a three dimensional Lie group
G. Using properties of right invariant fields, I motivate the assertion that the
relevant structures are discrete subgroups of G. (Note the analogous result in
the case S = 0 — the only discrete subgroups of R3, viewed as a Lie group
with addition as group operations, are the perfect lattices, [16]). I summarize
the procedure for a particular S and recall results which relate symmetries of
discrete subgroups D so obtained with symmetries of the ambient Lie group
G.

In section 7, I explore the case where ∇S 6= 0. To simplify matters a little,
I consider the case where the crystal state corresponds to the prescription of
just two lattice vector fields defined on a region Ω ⊆ R2, and I continue to
require that the crystal state allows neutral deformations. Recall that, in the
case ∇S 6= 0, the relevant Lie group is of a dimension greater that the number
of linearly independent lattice vector fields — I make a particular choice of
lattice vectors such that the lattice algebra has dimension 3, in fact I make a
choice such that the corresponding three dimensional Lie group is isomorphic
to a group used in section 6, whose discrete subgroups are described in that
section. I show how this ‘three dimensional’ discrete structure projects to the
lower dimensional ‘base’, R2, via a certain group action λ : G× R2 → R2.

Finally, I summarize the work and indicate how it may be extended and
improved.

DRAFT DRAFT DRAFT
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3. Measures of defectiveness, elastic invariants

In [11, 12, 13, 14], Davini, Parry and S̆ilhavý searched for ‘invariant in-
tegrals’ in the context of the above kinematical model of defective crystals.
These are circuit, closed surface or volume integrals (they are to mimic atom-
istic procedures: counting point defects in a given volume; counting edge
dislocations crossing a given surface, for example) with integrands depend-
ing on the lattice vector fields and their derivatives of any order (succinctly,
‘differential functions’) which are functionals independent of elastic deforma-
tion. They are the ‘measures of defectiveness’ referred to in the introduc-
tion. Thus if FΩ ({la(·)}) is any such functional, and fields {l̃a(·)} are de-

fined by (2.2), then FΩ̃({l̃a(·)}) = FΩ({la(·)}), with Ω̃ = u(Ω). This search
required discussion of the transformation properties, induced by (2.2), of
the various derivatives of the lattice vector fields, of course — for example,
det({l̃a}) = det(∇u) det({la}) together with the definition n = d1 · d2 ∧ d3

gives that
∫
V ndV =

∫
Ṽ≡u(V ) ñdṼ is an invariant integral (where det(·) denotes

the determinant and V ⊆ Ω). In fact,∫
V
ndV,

∫
V
SndV,

∫
C
da · dx are invariant integrals, (3.1)

where C is a circuit, by recalling the definition of the dual fields {da(·)} and
the dislocation density S, and by calculating relevant transformation proper-
ties. As mentioned above, if ν is any elastic invariant (i.e. scalar differential
function), then

{(la · ∇ν) (·)} is a set of elastic invariant fields. (3.2)

As stated, if S has a least one non constant component, then there is in
general an infinite number of elastic invariants, obtained from that particular
component of S by successive directional differentiation. This implies that
there is an infinite number of integral invariants too, because (for example)∫

C
νda · dx is an integral invariant if ν is any elastic invariant. (3.3)

It was shown in the above papers that there is a basis of integral invariants
in the sense that if densities corresponding to the basis integral invariants
are given, as fields in Ω, then the densities of all integral invariants can be
determined. The basis integral invariants are:∫

C
νda · dx,

∫
V
νn dV : ν ∈ {1, S, {(la · ∇S)}} . (3.4)
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4. Neutral deformations, the classifying manifold

It is a fundamental question, to ask if given two crystal states Σ = {{la(·)} ; Ω} , Σ∗ =
{{l∗a(·)} ; Ω∗} and a smooth mapping u with u(Ω) = Ω∗ such that the ba-
sis integral invariants (3.4) match in the two states (in the obvious sense),
whether or not Σ and Σ∗ are elastically related to one another. This ques-
tion can be reformulated by first mapping Σ∗ elastically, via u−1, to a state
Σ′ =

{{
l′a(·)

}
; Ω
}

— then the question reduces to asking whether or not the
partial differential equations

∇∧ da = ∇∧ d′a, n = n′, ν = ν ′, ∇ν ∧ da = ∇ν ∧ d′a, ν ∈ {S, {(la · ∇S)}} ,
(4.1)

have a unique solution for
{
l′a(·)

}
, given {la(·)} (use

∫
∂S da ·dx =

∫
S ∇∧da ·dS

to get (4.1)1, etc.). The answer to this question is negative, in general — there
are crystal states which are not elastically related to one another such that all
the invariant integrals match in the two states, for some choice of the mapping
u. A simple example of the non-uniqueness of solutions of (4.1) is given in
[12].

One implication of (4.1) is critically important for subsequent discussion.
Suppose that (4.1) has a solution

{
l′a(·)

}
6= {la(·)} and that ν is a non-constant

element of S = (Sab(·)). Then by differentiating (4.1)3 ((4.1) holds for all
points in Ω), ∇ν = ∇ν ′, and so from (4.1)4, ∇ν ∧ (da − d′a) = 0, a = 1, 2, 3.
If ϑ is any of la · ∇S, a = 1, 2, 3, we have from (4.1)3 that ∇ϑ ∧ (da − d′a) =
0, a = 1, 2, 3. Since da(·) 6= d′a(·) for some a = 1, 2, 3, it follows that ϑ = ϑ(ν),
when (4.1) has non-unique solutions and S has a non-constant component.
Furthermore, since lb · ∇ϑ = (lb · ∇ν)dϑdν , it follows that all second order
directional derivatives of S are functions of ν, and by induction all directional
derivatives of S have the same property.

As stated earlier, I consider only crystal states Σ where (4.1) has non-unique
solutions for Σ′ — I say that Σ admits neutral deformations in that case. Then

either S = constant, or all elastic invariants are functions of one non-constant

component of S (denoted ν). (4.2)

I recall the interpretation of neutral deformations as slip (rearrangements of
lattice vector fields) in regions where the lattice vector fields are constant (see
[11, 12]) and see the importance of slip in theories of inelastic behaviour as
motivation to investigate the mathematical setting in some depth.

Now it is productive to consider some particular implications of equations
(4.1), specifically the equations there that relate to the elastic invariants only:

ν = ν ′, ν ∈ {S, {la · ∇S}} . (4.3)
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In the case that one component of S is non-constant, the elastic invariants
{S, {la · ∇S}} are precisely those that appear in (2.11) — they are a functional
basis for all elastic invariants. According to [11],[15], when (4.3) holds states Σ
and Σ′ are locally elastically related to one another (though not elastically
related to one another, in general): states Σ and Σ∗ = {{l∗a(·)} ; Ω∗} are locally
elastically related if for each x0 ∈ Ω, there exists a diffeomorphism ux0 defined
on a neighbourhood Nx0 of x0 in Ω, with ux0(Nx0) ⊂ Ω∗ such that

l∗a (ux0(x)) = ∇ux0(x)la(x), a = 1, 2, 3,x ∈ Nx0 ,x0 ∈ Ω. (4.4)

In the case where (4.3) holds, let x0,x
′
0 be any points such that ν(x0) =

ν ′(x′0), ν ∈ {S, {la · ∇S}}, (e.g., x0 = x′0 by (4.3)), then there exists a diffeo-
morphism ux0 with ux0(x0) = x′0 such that (4.4) holds with {l∗a(·)} replaced
by {l′a(·)}.

Now given a state Σ = {{la(·)}; Ω} admitting neutral deformations, with
all elastic invariants functions of one non-constant invariant ν, one can intro-
duce the one dimensional curve (in R9+27) which represents the values of the
invariants {S, {la · ∇S}}. So let

J ≡ {ν ∈ R : ν = ν(x), x ∈ Ω}, (4.5)

and define

C ≡
{
y ∈ R9+27;y = {S(ν), {(la · ∇S)(ν)}} , ν ∈ J

}
. (4.6)

In Olver’s terminology, the expression (4.6) represents the first order classify-
ing set associated with the crystal state Σ. Assuming that this set is sufficiently
well-behaved (all considerations in this paper are local, so this assumption is
harmless), I’ll call it (after Olver, again) the classifying manifold associated
with Σ.

So, if crystal states Σ,Σ′ are neutrally related (i.e. Σ′ 6= Σ solves (4.1),
with Σ given), then in particular the corresponding classifying manifolds are
identical, and Σ,Σ′ are locally elastically related to one another.

In the case that S is constant the above still applies, it is just that in this
case the classifying manifold is then the point (S,0) ∈ R9+27. One also has
the global statement (2.17), in addition to the result (4.4).
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5. Constitutive hypotheses, Lie groups

There are two constraints on the classifying manifold, that I derive below.
(In the case S = constant, these two constraints reduce to (5.1) below, which
is a form of the Jacobi identity). Given that caveat, the classifying manifold
(4.6) quantifies all possible distributions of elastic invariants deriving from a
crystal state that allows neutral deformations. One may consider a hierarchy
of special cases:

(i) If C = {0 ∈ R9+27}, then S is identically zero and the crystal state
consists of constant lattice vector fields, modulo elastic deformation.
So, one imagines that a material where the constitutive variables do
not include S or any of its directional derivatives is a material where
S = 0 — one may then select a ‘canonical’ state where the lattice
vector fields are constant from those elastically related to it;

(ii) At the next level of generality, if C =
{

(S,0) ∈ R9+27
}

with S ∈ R9,
and with S satisfying the equation

Sai(εijkSjk) = 0, a = 1, 2, 3, (5.1)

then I have indicated in the introduction that there is a Lie group G
with right invariant lattice vector fields {la(·)} satisfying (2.4). Any
elastic deformation of the corresponding crystal state gives lattice vec-
tor fields which are right invariant with respect to a group isomorphic
to G, with the same S. So one can imagine that a material where
the constitutive variables include a dependence on S (satisfying (5.1)),
but no dependence on higher derivatives of S, relates to crystal states
corresponding to a particular choice of Lie group, chosen from those
isomorphic to it. Any such crystal state has the self-similarity encap-
sulated by (2.17), at the continuum level;

(iii) In full generality (at least, for crystal states that allow neutral deforma-
tion), a list of constitutive variables that includes values of S, {la ·∇S}
at some point x0 ∈ Ω determines a point of C, but no nontrivial arc
of that curve. One needs to know in addition that the material is in a
configuration such that S is a function of a single variable (i.e. that S
is constant on surfaces ν = constant), with S and {la · ∇S} satisfying
the constraints below, if one is to think of the mathematical structures
of the crystal state in the manner that I outline next.

First I derive the constraints mentioned above:

(a) from nSablb = ∇ ∧ da one has ∇ · (nSablb) = 0, a = 1, 2, 3, and
manipulation gives
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Sai(εijkSjk) + lk · ∇Sak = 0, a = 1, 2, 3. (5.2)

One might call (5.2) (a form of) the generalized Jacobi identity. In the
case that S is constant, (5.2) reduces to (5.1);

(b) from ∇ν = (la ·∇ν)da one has ∇∧((la ·∇ν)da) = 0, and manipulation
gives

SabFa = εbacF
′
aFc, a = 1, 2, 3, (5.3)

where Fa ≡ la · ∇ν, a = 1, 2, 3, and F ′a ≡ dFa
dν , a = 1, 2, 3.

Note that (5.2) is an algebraic condition on the points of C, whereas (5.3) is
a set of ordinary differential equations to be satisfied along that curve. When
S is constant, (5.3) is trivially satisfied.

Second, according to [17], [18], (5.2) and (5.3) together are sufficient for the
local integrability of

nSablb = ∇∧ da, ∇ν = Fada, a = 1, 2, 3, (5.4)

for the fields {la(·)}, given S, Fa as functions of ν. Therefore (5.2) and (5.3) are
the only constraints on C, in general. But now I impose the extra condition
mentioned in the introduction — I require that the third order nested Lie
brackets be determined as linear combinations of the first {la} and second
{La} order ‘nested’ Lie brackets. If this relation is known, then nested Lie
brackets of all orders are determined as linear combinations of {la}, {La}, and
so in Elzanowski and Preston’s terminology [10] we have a lattice algebra of
finite dimension.

Using (2.13), (2.19), and the Jacobi identity in the form [la,La] = 0, one
finds that this assumption is equivalent to

Sai(εijkSjc) + lk · ∇Sac = fack(S), a, c, k = 1, 2, 3, (5.5)

where fack(·) is an affine function such that fakk(S) = 0. Equation (5.5) im-
plies that the quantities {Fa} in (5.3) are quadratic in S (because by (4.2)
one can choose indices a,c such that the second term in (5.5) is lk · ∇ν, which
is Fk), and it implies that (5.2) holds, in particular. Also (5.3) and (5.5) are
algebraic conditions on (point values of) elastic invariants up to and includ-
ing second order directional derivatives of S. Now one can progress without
studying (5.3), (5.5) in detail, for according to [10], [9], there exists which a
Lie group of transformations, of dimension > 3, (again denoted G) together
with a group action λ : G×R3 → R3 such that the corresponding Lie algebra
g is homomorphic to the given lattice algebra. In other words, there is a Lie
group G (of dimension greater that three) whose Lie algebra g is such that the
relation between the nested brackets of g is the same as the relation between
the nested Lie brackets of the vector fields discussed above.
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This is an abstract structure defined (modulo isomorphism) from the ’con-
crete’ lattice vector fields of the crystal state. It is the group action λ :
G × R3 → R3 that ties the higher dimensional Lie group to the crystal state
defined on Ω ⊆ R3.

So the task to be addressed in section 7 is the following: how to connect
a given crystal state with points of the classifying manifold satisfying (5.3),
(5.5) explicitly with quantities defined on G. (This is entirely analogous to
corresponding task in case (ii) above, where it turned out that the lattice
vector fields were right invariant with respect to the corresponding group,
modulo elastic deformation). I give some indications of how this is done in
Section 7, for the moment I note only that the group action gives a projection
from G to the lower dimensional manifold R3 (via λ(·,0) : G→ R3, say).
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6. Discrete subgroups of three dimensional Lie groups

I confine attention, in this section, to crystal states where the material points
x ∈ Ω may be represented as elements of a three dimensional Lie group G with
corresponding right invariant fields {la(·)} satisfying (2.17) and S = constant.
The simplest case is when S = 0, then ∇ ∧ da = 0, a = 1, 2, 3 and {da(·)} =
{∇τa(·)} = {τa,i(·)ei}, say, for some independent ‘potentials’ {τa(·)}. Using
τ (·)) ≡ (τ1(·), τ2(·), τ3(·)) as an elastic deformation, one transforms the crystal
state to obtain lattice vector fields constant in Ω (= {ea}). It now follows
from (2.17) that ∇1χ(x,y) = identity, so χ(x,y) = x + f(y) for some
f : R3 → R3. Since χ is a group composition function, χ(0,y) = y, and we
get finally that χ(x,y) = x+ y. So if S = 0 the group operation is addition
of points (group elements) in R3, modulo the elastic deformation defined by
the unknown potentials {τa(·)}. According to [16] the only discrete subgroups
of R3, seen as an additive group, are the perfect lattices, so the study of
symmetry of discrete structures associated with the continuum crystal state
where S = 0 becomes traditional crystallography.

What is the role of the discrete subgroups of G in the case of constant
S 6= 0, S satisfying (5.1)? It is envisaged at the outset that the integral lines
of the lattice vector fields give information about the location of ‘neighbour-
ing’ points/objects in some possibly discrete set that represents the micro-
scopic/mesoscopic structure of the crystal, when one point/object is given.
So, let us say that if there is a point of the structure at x(0) ∈ R3, there
are also points at x(1) and x(−1), where the curve {x = x(t); t ∈ R} is the
integral curve of la(·), a = 1, 2, 3:

ẋ(t) ≡ dx

dt
(t) = la(x(t)), a = 1, 2, 3. (6.1)

Now it pays to introduce some notation, via (6.2), (6.3), (6.4)2 below. Notice
that because la(·) is a right invariant field, it is determined by its value at
x = 0, by putting x = 0,χ(0,y) = y in (2.17). Then if p ∈ R3,p = pili(0)
say, and p(t) represents a point of the integral curve of the right invariant
field pili(x), with arbitrary initial point p(0), one may define the mapping
exp(tp) : G→ G by

(exp(tp)) (p(0)) = p(t), p(0) ∈ G ⊆ R3. (6.2)

Also introduce the group element etp via

etp ≡ (exp(tp)) (0). (6.3)

It is an important fact that
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(exp(tp)) (x) = χ(etp,x) ≡ etpx, etp,x ∈ G, (6.4)

where the juxtaposition of group elements, as in (6.4)2, is to represent group
multiplication. In other words, the process of exponentiation, defined via the
right invariant fields {la(·)} maps an element p of the Lie algebra to the group
G. Note that the bracket operation in the algebra can be defined in a familiar
way.

So one envisages that, when we are dealing with right invariant fields in a
Lie group G, that if there is a point of some representative structure at 0,
then there are also points at ela , and by iterating also at elbela , etc.. So the
relevant set of points is a subgroup of G.

Now the ”crystallographic restriction” which produces the perfect lattices
of crystallography is the requirement that iteration of certain symmetry op-
erations produces a discrete set of points (i.e. a set of points with nonzero
minimum pairwise separation). We adopt the analogous requirement here,
that the set of subgroup elements (as points of R3) be discrete. This restric-
tion is a strong requirement, [19], [20], which restricts the value of S, the
composition function χ and the form of the Lie algebra g. In fact there are
just three classes of three dimensional Lie groups that have discrete subgroups,
according to [19], and I concentrate here on results available for just one of
those classes. So take

χ(x,y) ≡ x+ y + 1
2µp(p · x ∧ y), (6.5)

where it turns out that µ must be a rational number, and that the components
of p ∈ R3 can be taken to be relatively prime integers, if there are to exist
discrete subgroups D ⊂ G. One calculates that, with ea ≡ la(0),

la(x) = ea + 1
2µp(x ∧ p · ea), ex = x, a = 1, 2, 3, (6.6)

by the process give above, so that from (6.6)2 elements of the Lie algebra
can be identified with elements of the group. The structure constants are
Cijk = µεrjkpipr and so

[x,y] = µp(p · x ∧ y). (6.7)

Define the commutator of group elements (x,y) ≡ x−1y−1xy, where the
inverse group element x−1 is such that χ(x−1,x) = χ(x,x−1) = 0, so x−1 =
−x in this case. One finds that

(x,y) = [x,y]. (6.8)
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The commutator is a ‘finite’ version of the Burgers vectors (or Lie bracket,
more precisely) — (x,y) is the point reached by flow along the integral curve
defined by y, followed by that defined by x, and so on.

Now let D be any discrete subgroup of G. According to [21], one can choose
a set of generators of D, {c1, c2, c3}, such that

c3 = ϑp for some ϑ ∈ R, (c1, c2) = ck3, for some k ∈ Z. (6.9)

If follows that
(c1, c3) = (c2, c3) = 0. (6.10)

One can use these relations to show that any group element has the form

cα1 c
β
2c

γ
3 , α, β, γ ∈ Z. (6.11)

(G is not a commutative group, so (6.11) is a non-trivial fact. Recall, for
purposes of comparison, that an arbitrary point in a perfect lattice with basis
e1, e2, e3 has the form αe1 + βe2 + γe3, α, β, γ ∈ Z.)

So, in physical terms, this group corresponds to a uniformly distributed sys-
tem of screw dislocations with Burgers vector kc3 (since successive flows along
c2, c1, c

−1
2 , c−1

1 lead to ck3 = kc3). Note that the integer k can be determined
in terms of µ and p, see [22].

In crystallography, the set of changes of basis of a perfect lattice can be
regarded as a symmetry group (related to the cubic, tetragonal, etc, crystal
classes) — in the case at hand, the different choice of generators of D play a
similar role, see [23, 24]. For the nilpotent group G defined by (6.5) one has
also:

Theorem 6.1. [21] Let D be a discrete subgroup of G. Then every automor-
phism of D can be uniquely extended to an automorphism of G.

Remark 6.1. The automorphisms of D are bijections of the set of correspond-
ing group elements which preserve the group multiplication. The result says
that any such bijection can be extended to a smooth bijection of the elements
of the ambient group G, preserving group multiplication. It is an assertion
that D is ‘rigid’ in G, that the symmetries of the points of D determine sym-
metries of the continuum. In my view this is a fundamental result which gives
a rigorous connection between discrete and continuous models of the crystal
state.
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7. Discrete subgroups of higher dimensional Lie groups

In the case that S = constant, the lattice vector fields can be interpreted as
right invariant fields on a Lie group. We seek an analogous interpretation in the
case that ∇S 6= 0, where the classifying manifold is subject to the constraints
(5.3), (5.5), and there exists a Lie group of dimension strictly greater than
the number of lattice vector fields with Lie algebra homomorphic to the given
lattice algebra. I simplify, in this section, by assuming that the crystal state
consists of two lattice vector fields defined in Ω ⊂ R2, since the emphasis in
this paper is on ideas rather than detailed calculation. I also show how to
obtain discrete structures (not necessarily discrete subgroups of Lie groups)
in R2 which derive from the crystal state.

To fix ideas, I choose two specific lattice vector fields in Ω, with Ω such that
(x1, x2) ∈ Ω implies x1 > 0, to keep the calculations simple. So let

l1(x1, x2) = (1, 0), l2(x1, x2) = (0,−x1). (7.1)

Calculate and define
[l1, l2] = (0, 1) ≡ l3. (7.2)

Note that [l1, l2] cannot be expressed in terms of a constant coefficient com-
bination of l1, l2. and that [la, [lb, lc]] = 0, a, b, c = 1, 2. So we have a three

dimensional nilpotent lattice algebra. Let G̃ be a three dimensional Lie group
with composition χ̃ given by (with g ≡ (a, 1,m), ḡ ≡ (ā, 1̄, m̄) elements of

G̃):
χ̃(g, ḡ) = (a+ ā, l + l̄, m+ m̄+ lā). (7.3)

The group acts on R2 via the group action λ : G̃× R2 → R2 defined by

λ(g,x) = (x1 + a, x2 − l(x1 + a) +m), (7.4)

and one can check that

λ(g, λ(ḡ,x)) = λ(χ̃(g, ḡ),x), x ∈ R2. (7.5)

The right invariant fields ∇1χ̃(0, g)ea on G̃ are

l̃1 = (1, 0, l), l̃2 = (0, 1, 0), l̃3 = (0, 0, 1). (7.6)

One calculates that [̃l1, l̃2] = l̃3, and that the other Lie brackets are zero. So g̃,

the Lie algebra of G̃, is homomorphic to the given lattice algebra, confirming
the existence of a Lie group with this property as asserted in [9].

Now let ∇1λ = (λα,j), α = 1, 2, j = 1, 2, 3, denote the gradient of λ with
respect to its first argument, and similarly for ∇1χ̃ = (χ̃j,k), j, k = 1, 2, 3.
Differentiating (7.5) with respect to g, putting g = 0,x = 0, using χ̃(0, ḡ) = ḡ
and finally replacing ḡ by g one obtains:
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λα,j(g,0)χ̃j,k(0, g) = λα,k (0, λ(g,0)) . (7.7)

Now the right invariant fields on G̃ are ∇1χ̃(0, g)ea = (χ̃i,a). Define three
fields

{
l̄a(·)

}
on R2 by l̄a(x) = (λα,a(0,x)), a = 1, 2, 3,x ∈ R2. Then (7.7)

reads
∇u(g)̃la(g) = l̄a(u(g)), g ∈ G, (7.8)

if we define the ’projection’ u : G̃→ R2 by

u(g) = λ(g,0). (7.9)

The fields
{
l̄a(·)

}
are push-forwards to R2 of the right invariant fields on the

group — one might also say the right invariant fields are transformed by the
‘singular elastic deformation’ u : G̃→ R2 to the fields

{
l̄a(·)

}
. One calculates

that
l̄a(x) ≡ la(x), a = 1, 2, 3,x ∈ Ω. (7.10)

Thus one can interpret the given lattice vector fields, in Ω, as fields obtained by
‘singular’ elastic deformation of the right invariant fields on G̃. (The result is a
little artificial — in general one would need a further local elastic deformation
in order to recover the original fields). Also, note that the fields

{
l̄a(·)

}
are

defined on R2, a priori, so that an appropriate restriction of these fields is
implicit in (7.10).

Finally, in this section, the simplest way to construct a possibly discrete set
of points in R2 which represents the higher dimensional Lie group structure
of the crystal state seems to be the following: let D̃ be a discrete subgroup of
the higher dimensional group G̃ and project D to R2 via the singular elastic
deformation u : G̃→ R2. This gives

λ(D̃,0), (7.11)

which is the orbit of 0 ∈ R2 with respect to the group action, restricted to
D̃. In the particular example above we can use information about the discrete
subgroups D of the group G with composition function (6.5), in section 6: let
κ : R3 → R3 be the mapping

κ(a, l,m) = (a, l,m− 1
2al), κ

−1(p, q, r) = (p, q, r + 1
2pq). (7.12)

This mapping changes the composition function χ̃ to the composition function
(6.5) with µ = 1, p = e3, and the corresponding group has discrete subgroups
by the remark that follows (6.5). Cermelli and Parry, in[22], found the dis-
crete subgroups D with generators {eea} for this composition function (6.5).
Working through the details, it turns out that
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D̃ = κ−1(D) = Z3, λ(D̃,0) = Z2, (7.13)

so that in this case the ‘representative’ set of points in R2 has a lattice struc-
ture. The corresponding points in Ω are Z2 ∩ Ω. It appears that this lattice
structure is not to be expected in general, though. Indeed, one aim of the work
is to set out a constitutive framework more general than that which leads to
the perfect crystallographic structures — one would hope to include the qua-
sicrystals, for example, and the projections that appear above are certainly
reminiscent of some techniques in that area. Also, even if there is no evident
group structure in sets of points produced as above, one can find ‘continuum
mechanical type’ symmetries by calculating which different choices of values
of the constitutive variables produce the same representative set of points.
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8. Summary and future work

The purpose of this paper has been two-fold,

(i) to provide a means of quantifying inelastic behaviour in Davini’s con-
tinuum model of defective crystals, by constructing bases of invariant
integrals and elastic invariants;

(ii) to illustrate the construction of discrete structures naturally associated
with such continua in some non-trivial cases.

The study was facilitated by two assumptions:

(iii) the crystal states under consideration allow neutral deformations, i.e.
partial differential equations (4.1) have non-unique solutions for {l′a(·)}
given {la(·)}. This non-uniqueness can be characterized in terms of
the rearrangement of vector fields, or the ‘slip mechanism’ of plasticity
theory – so slip is given a place in the mathematical formulation which
is subordinate to the construction of the invariants, and this is strong
motivation for this assumption;

(iv) given three lattice vector fields one may calculate the corresponding
Lie brackets (or equivalently, the Burgers vector fields), and one may
iterate this procedure, so constructing nested Lie brackets of any or-
der. The second assumption is that this procedure produces a finite
dimensional Lie algebra of vector fields, called the ‘lattice algebra’ by
Elżanowski and Preston. There is then a corresponding Lie group,
generally of a finite dimension greater than the number of lattice vec-
tor fields. This is a pragmatic assumption, made in order to under-
stand what kind of mathematical structures relate to continua with
non-constant dislocation density.

The discussion focussed on the following items:

(v) the role of the classifying manifold as an all inclusive list of plastic
strain variables (elastic invariants). Since crystal states with the same
classifying manifold C are locally elastically related (in the sense that,
given points x0 ∈ Ω,x′0 ∈ Ω′ which correspond to the same point on
the classifying manifold, there are neighbourhoods of x0,x

′
0 such that

lattice vector fields {la(·)}, {l′a(·)} defined on those neighbourhoods are
elastically related), it follows that
(a) crystal states where C is a single point have the self-similarity

(2.17), loosely,
(b) neutrally related states are locally elastically related;

(vi) the constraints (5.2), (5.3) which apply to the classifying manifold (and
the third constraint (5.5) which applies if one adopts assumption (iv)).
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According to [17, 18] if the first two constraints on C hold, then
there is a set of lattice vector fields {la(·)} satisfying (5.4), locally, i.e.
no other constraints are necessary for that purpose;

(vii) the intimate connection between the continuum theory of defects and
the theory of Lie groups. In the case that the Lie group has dimension
3, canonical forms of corresponding discrete subgroups are known, and
symmetries of these groups have been calculated in [23, 24]. In the case
of a particular group of dimension greater than the number of lattice
vector fields, one way to find corresponding discrete structures is given
in section 7.

Short term objectives following on from this work include the following:

(viii) since the classifying manifold, subject to (5.2), (5.3), quantifies all con-
tinuous distributions of defects modulo local elastic deformation, one
might attempt to catalogue the lattice vector fields which solve (5.5),
modulo local elastic deformation. The task is more tractable if one
makes the additional assumption (iv), for then the general constraints
are simplified and the general theory of low-dimensional homogeneous
spaces becomes relevant, e.g. [25];

(ix) it becomes apparent that there are other quite natural ways to con-
struct discrete structures associated with fields with non-constant dis-
location density, if one considers the constraints in detail (i.e., the
method employed in section 7 is not the only one). It will be an im-
portant task to consider the symmetries of these structures (noting
that there is no associated group structure, in general);

(x) it should be possible to interpret the neutral deformations at the dis-
crete level and so judge whether or not those changes of state are dis-
sipative, e.g., by examining the consequences of the assumption that
they are not dissipative, as Fonseca and Parry did for perfect crystals
in [26].

In brief, this particular systematic approach to the geometry of defects in-
cludes many well-known useful concepts and introduces others less well-known
by connecting to different mathematical areas. Also it leads to the prospect of
a catalogue of quite general low-dimensional defective crystal structures, con-
tinuous and discrete, with all the modelling and material design possibilities
that the existence of such a catalogue entails.
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