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Designing materials to control biologyas intense focus of biomaterials and regenerative medicine research. Disg@retidesigning

materials with appropriate biological compatibility or active controletiSand tissues is being increasingly undertaken using high

throughput synthesis and assessment methods. We report a relatively sinpolerdrfill machine-learning method of generating models
10 that link microscopic or molecular properties of polymers or other materials to theib@leffects. We illustrate the potential of

these methods by developing the first robust, predictive, quantitatidegurely computational models of adhesion of human embryonic

stem cell embryoid bodies (hER) the surfaces of 496-member polymers.

1. Introduction optimization of new materials fro many types of existing data.

. . They can identify which physical, process, and chemical
Culture of multlpotent cc_alls such as haemgtopmetlg stem cell roperties of polymers and other materials will have the greatest

15 (HSCs) and induced pluripotent stem cells is a major researtihn ence on cell and tissue response. They can also reduce the

focus in regenerative medicine. Present methods to culture them . . . .
so dimensionality of complex synthesis and processing procedures

and expand their population rely upon animal-derived product%y identifying the subset of these parameters that have little effect

now increasingly under scrutinMuch research effort is focused . . . : )
o : ) on biological outcomes and may be |gn@d/lach|ne learning
on designing chemically defined, serum-free, feeder-free . . L
methods are simple to apply, broad in application, and

20 synthetic substrates and media to support robust self-renewal (B(articularly well suited to data from high throughput

pluripotent cellsChanges in cellular properties such as adhes'osgtaxperimen

morphology, motility, gene expression and differentiation areRecentIy Yang et reported the first relationship between

influenced by surface properties of the materials on which Ce”ssurface chemistry and structuéa polymer microarray and the

have_l_aeen_cultured. Important surfgce properties that h."?‘Ve beea?dhesion of partially differentiated stem setiuman embryonic
2s identified _include surface chemlﬂ surface wettabllltE]

. - = . stem cell embryoid bodies (hEB). The large library of materials
topographﬂand elastic moduIAddltlonaIIy, it is clear that win the microarray was characterized experimentaby

proteins adsorbed onto material surfaces strongly influence t?"\?vettability surface topography, surface chemistry, and
b|o|og|c_al responses to the_ surf@ngh throughput_methods indentation elastic modulus properties. These studies employed
employing large polymer libraries and rapid screening methOd?ﬂgh-throughput synthesis and characterization methods to

30 can play an important role in discovery of materials for culture .
d . f st (Els High th hout ‘ explore the polymer property space supporting stem cell growth.
and expansion of stem Celis. Hig roughput surtace es They identified materials that, with a fibronectin pre-treatment,

charactterlsf'litlt(_)n hgs bcetenbdeyelop?n ?gﬁwuz@e tstruc;rt]ure- could support hEB adhesiofhe adhesion of human stem cells is
property relafionships fo be investiga orking 10getner, .itical for cellular activites such as proliferation and

these techniques allow a much larger part of materials IOrOpertQ{iifferentiation. Multivariate analysis of time of flight secondary

35 space to be explored than has been possible in the past. prevcleorn mass spectrometry (ToF-SIMS) data was used to identify

asthe dimensionality of materlals property space is too Iarg.e%o elationships between surface chemistry and cell attac@ent.
be explored by even high throughput methods, computation ang et used these TOF-SIMS data and other
modelling p.rowdes a.n effective means of Ieverag|_ng the Ilmlt?dexperimentally-derived polymer properties to generate a model of
and expensive experimental data into a larger portion of materlalﬁEB adhesion. This approatts since been applied to other cell

40 property space. . . -
characteristics such as pluri oteEBy.Ther methodolo
Consequently, high throughput synthesis and Charaderizatl%rﬁrovided a general paradigra fof the combinatorial develoggment
0

technologies are -complementary to comp.utat.lonal moc_jellm sznthetic substrates for stem cell culture that has recently been
tools that analyse large data sets and provide interpretation an ) . . .

. . . i _—extended to developing materials with reduced bacterial pathogen
prediction of new, improved materials. Robust machine leammgattachme

smethods can extract useful information on  design and We investigated whether advanced machine-learning methods

This journal is © The Royal Society of Chemistry [year] [journal], [year], [vol], 00-00 | 1



coupled with efficient mathematical descriptions of molecular
properties could model and predict hEB adhesion to this large
library of polymers. Our aim was to determine how well we could
predict experimental hEB adhesiof the polymer library using

s computational descriptors alone, not using any experimental data
such as contact angle, TOF-SIMS spectra, or mechanical
properties. Purely computational methods of modelling high
throughput materials datwill clearly accelerate new materials )
discovery by reducing the need for additional experimental input

10 measurements to characterize the microscopic, bulk, or surfacFigure 1. Structure of the neural networks. The immales receive the

chemistry properties of large materials libraries. 60 molecular descriptors, the hidden layer (2-3 nodes) doethputation,
and the output node generates the predicted respanseledhEB
adhesion or roughness).

output

hidden

2. Experimental
The logarithm of the properties being modelled was used, as is
We employed partially differentiated hEB cells rather than gar propert ng was U I

i tiated h b ic st lis (hES) cells b usual practice in these types of machine learning models. The
undifferentiated human embryonic stem cells ( ) cells ecaléssgomplexity of the neural network models was controlled using

' fulllyt( d'SS?]CE'gted f|1|ES cells te;ci tof Lljlndergo cell gea:h duhr,'lngBayesian regularization that employed either a Gaussian prior
piating. cells are substantially more robust, w Ie(BRANNGF’@| or a sparsity-inducing Laplacian prior

malltlntalc;m?g ;I%h dlfferegtlatlgg dpgtegtlal. ZIETBEBS were (BRANNLP)-] The maximum of the Bayesian evidence for the
cuttured for ays, as described in yang S WEr€  model was used to stop training of the neural network. Both

subsequently trypsinized and cultured on fibroneckin) (ore- i neural network methods effectively prune the number of weights

20 cz:dltl_onedp plaolymer arrays for 16 hhr(;s tt?thte:ésth?_lr émt'a.lthin the network to a number that is substantially smaller than the
adnesion. Folymer arrays were wasned wi » IXEE Wty mber of weights in a fully connected network. This reduced

Accustain (Sigma) solution for 30 min, permeabilized with 1% . . ) .
ber of ht lled th ber of effect hts, and
Triton X-100 in PBS for 10 min, and then stained with Cyto 24 .num er of WeIgh's 1 called fhe number of etiective Weigh's, an

Invit tor 1 h. Th " hed with PBS ds one of the reasons why Bayesian regularized neural networks
(Invitrogen) for 1 h. The arrays were gently washed wi ancre relatively immune to overfitting. The BRANNLP neural

szeloqlsed water to remove buffer salts and air dried beforenetwork also prunes less relevant descriptors from the model,
imaging by laser-scanning cytometry, and cell number

quantification depending on the sparsity setting chosen. Details of the three

modelling algorithms have been published previqusfyl No
The polymer library was synthesized and characterized as g a4 P P

previously describecby Yang et z{El It consisted of 496 outliers were removed from the models.
30 polymers synthesized by mixing 22 monomers at various ratios
for which hEB adhesion on the surface had been measured.
Surface contact angle, elastic modulus of the polymers in theé.1 Stem cell embryoid body adhesion models

library, and the surface roughness were measured, and surfa%e modelled the adhesion of hEBs to the entire 496-member
chemistry parameters were characterized using ToF-SIMS. Thes olymer library in several waysWe used linear modelling

% exop;erllrphental mTtﬁas;JLeErgentstEacli.bbeen ulsed by F\{(ang at al. ethods with increasing levels of sparsity model the EB
made ¢ zgrod | °  thi ct))n | e. ! lrary potyrr:ﬁrsé. ov\lleve(;, WE adhesion in order to identify the molecular features most relevant
generated models of this biological property that employed only, ,q biological activity of the polymers. Optimally sparse

molecular descriptors that could be calculated from the monomer . . .
: : models have the greatest ability to predict the properties of new
structures (no experimental measurements required).

. . o . polymers. We also used nonlinear modelling methods to generate
40 For computational modelling we partitioned the data set into a . - . .

. . models for EB adhesion to determine whether interactions
training and test set. The training set was used to generate grbe

del d tained 80% of the data (397 ool 5 etween the relevant molecular features, or nonlinear
mo es and containe 6 of the data ( poymers). ?elationships between these features and the adhesion were
remaining 20% of the data (99 polymers) constituted a .

. ) ortant. We generated models of EB adhesion that employed
independent test set used to estimate how well the models coul(;;]p g ploy

dict dat ¢ dt te th del. Th litti ly calculated molecular descriptors for the polymer
4s|tore_ .'C az ?otuset ° genehr_ae q i mo _e. K € spl lnlg ?components. The quality of prediction of the EB adhesion
raining and fest Sels was achieved by using k-means ClUSigy o ataq by both linear and nonlinear models was relatively
analysis. We generated 68 molecular descriptors (mathematica].

objects that capture the molecular properties of polymers) using The linear hEB adhesion model (MLR) predicted the training

= . -
Dragon v. 5and Adriana v. @software. Descriptors were set with an 7 value of 0.68 (i.e. the model accounted for 68% of

% chosen to be Ch.emically.interpretable and a large number of MOIfe variance in the data), and a standard error of estimation (SEE)
complex potetnt(;al d_escrlptolifs Ivvelr_e not used. The Q.StER mogo?lgf 0.163 logEB (predicted hEB binding within a factor of +1.5)
were generaled using mulliple finear regression WIth Sparstyppiq mogel successfully predicted the hEB adhesion on polymers

|mp(;)s|ed by datr;1 explectatlon maltantlzatllt() n zi_ltgrj]o:r@ﬂ\l onllnearb i? the test set with arf value of 0.66, and a standard error of
MOCEIS used three fayer neural NEtworks wi € same hum er% ediction (SEP) of 0.145 logEB. The similarity between the

s input nodes as descriptors used, a variable but small number aining and test set results suggests the model is robust and not

hidden layer nodes, and ?‘S'“g"’t output node cqrrespondmg tcioy})(?/erﬁtted. These results were similar to those for a partial least
property (e.g. hEB adhesion) being modelled (Figure 1)

. Results and discussion
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25 25

squares (PLS) model of hEB adhesion that used experimental
ToF-SIMS peaks as descriptors reported by Yang'Eihey
reported a training sef walue of 0.74 and test sétaf 0.62 for

their model (training and test partitioning were different to our
study). No standard errors were reported.

The two nonlinear Bayesian neural network models were
substantially better than the linear model at predicting training
and test sets. The quality of both neural network models was
similar to each other. The Bayesian neural network using a *,; i e : %= T 3 A 2 2s
10 Gaussian prior (BRANNGP) with two nodes in hidden layer Measured |og hE® adhesion

predicted the hEB adhesion of the training set polymers with an IFigure 2. Predictions of the log hEB adhesion on thgnpers for the

value of 0.81 (i.e. the model explained 81% of the variationdn th training (left) and test (right) sets for the nonlinBayesian (BRANNLP

data), and an SEE=0.108 logEB (the model could predict the g7€ural net model.

binding to within a factor of £1.3). The model predicted HiB The two neural network models had substantially higher
1 adhesion for test set polymers with érya!ue of 0.80, and an  pregictive power than the PLS models using experimentally

SEP of 0.107 logEB (predicted EB binding within a factor of yetermined parameters reported by Yang et al. This suggests that

£1.3). This model had 28 effective weights in the neural networkitere is some nonlinearity in the relationships between polymer

considerably fewer than the number of polymers in the traininGsrycture and hEB adhesion, or that some of the descriptors used
set and similar to the number of monomers from which thejieract with each other in the models. The similarity between the
20 library was generated. The Bayesian neural network with SParsfaining and test set statistics also strongly suggests that all

Laplacian prior (BRANNLP) also employed two nodes in the no4els are quite robust with no overtraining or overfitting

hidden layer. It predicted hEB adhesion for training set p°|ymer50ccurring. Earlier PLS models of hEB adhesion reported by Yang

with an ¢ value of 0.80, and an SEE=0.113 logEB (predicted EB ¢ a[Flindicated that hEB adhesion correlated with ions identified
binding within a factor of +1.3). This model predicted hEB j, the ToF-SIMS experiments corresponding to the following
2s adhesionof test set polymers with very similar fidelitp the o \ymer environments: hydrocarbons, esters, cyclic structures,

BRANNGP model with anrof 0.82, and an SEP of 0.101 logEB tertiary amines, propylene glycol, tertiary bI)The most

(predicted EB binding within a factor of +1.3) (Figure ZNiS  gjevant descriptors used in our models are in very good

model used twenty-three molecular descriptors. The BRANNLP;greement with these conclusions. The logP octanoliwater and

method automatically prunes out the least relevant molecula,aier solubility, (XlogP, logS) and hydrocarbon indicator
30 descr?ptors and network weights. The majority of molecular, g iaple (nCs, nCrs, nCar, nR=Cp, nR=Cs) descriptors are
descriptors were pruned from the model. The twenty-three moSfiescrining molecular surface chemistry properties similar to those
relevant descriptors used in the model are summarized in Table }¢ ihe hydrocarbon ToF-SIMS peaks. The descriptor for the
together with a description of the type of information thesgnymper of esters ("(RCOOR) contains information similar to that
descriptors encode. of ions assigned in the ToF-SIMS to esters from the monomer
structures that correlated with hEB adhesion. The cyclic
structures ToF-SIMS peak is mimicked to some extent by the

15 - AT

3}

Predicted log hEB adhesion
Predicted log hEB adhesion
in

.

Measured log hEB adhesion

35 Table 1. Description of parameters used in the hEB adhesioel

Parameter Description . . . .

HAcc_N Number of H-bond acceptors on nitrogen molegular complexity (Complexity, F_QC_:ompIexny)_, radius of
XlogP Log octanol/water partition coefficient es gyration (Rgyr), and molecular sphericity (Aspheric molecular)
Dipole Molecular dipole moment descriptors. Finally the tertiary amine and propylene glycol ToF-
LogS Log aqueous solubility SIMS peaks contain similar information on hydrogen bonding
NRotBond Number of rotatable bonds . .

NViolationsRo5 Number ofLipinski’s rule of 5 violations interactions to that of the_ number of hydrpgen bond acceptors on
NStereo Number of tetrahedral stereo centres nitrogen (HAcc_N) and dipole moment (Dipole).

Complexity Molecular complexity parameter 70 As the polymers were pretreated with Fn, it was possible that it
SgC;mpleXIty Sg‘cﬂu?gpéifggon is the presence of this protein that modulates the hEB adhesion,
Aspheric Molecular asphericity rather t_han the polymers diregtly. Therefore, We.calculated the
nCs Number of secondary C(sp3) correlation between Fn adhesion to the polymer library and that
nCrs Number of ring secondary C(sp3) of hEB. Surprisingly, the correlation was only 0.05, with the
nCar Number of aromatic C(sp2) 75 correlation between the log transformed values modelled below
nR=Cp Number of terminal primary C(sp2) . . . . .

nR=Cs Number of aliphatic secondary C(sp2) bgmg slightly higher at.0.18. This poor correlaho_n beMeen Fn
NRCOOR Number of esters (aliphatic) binding and hEB adhesion suggests that the relationship between
C-004 Number of atom-centred fragmei@&, surface chemistry and properties and hEB adhesion is quite
C-006 Number of atom-centred fragme/gis,RX complex. Recent work by Szott and Horbett indicates that it is
C-015 Number of atom-centred fragments =CH . .

C-026 Number of atom-centred fragments ®X--R g protein conformation, not the amount that modulates cell
H-047 Number of H attached to C1(sp3)/CO(sp2) adhesioElPolymers in the library are therefore influencing hEB
0-059 Number of aliphatic ether atom-centred fragm adhesion indirectly via their effect on Fn conformation. The

modelling of Fn adhesion to this polymer library will be reported
elsewhere.
ss  To understand how the calculated descriptors could substitute

This journal is © The Royal Society of Chemistry [year]
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for experimentally measured properties in modelling hEB
adhesion on polymer surfaces, we additionally generated
machine-learning models of surface roughness that also

employed calculated molecular descriptors solely Table 2. Summary of surface roughness model statistics

5 Model r2train SEE rztest SEP Neffective
3.2 Surface Roughness models MLR 0.44 0.199 0.51 0.259 69
BRANNGP 0.66 0.134 0.63 0.212 47
Although the modelling and prediction of the adhesion of hEBs (3 nodes in hidden laye
on polymers was the primary focus of our work, we also BRANNLP 0.61 0.143 0.64 0.209 22

constructed models of the experimentally measured surfacd2 nodes in hidden laye

roughness because this appeared to impact on the adhesion of

hEBs. It was not intuitively obvious that surface roughness could The quality of the prediction of the BRANNGP models for

be modelled computationally, as this material property may hawdraining and test set is illustrated in Figure 3. The models have
more to do with sample preparation than the chemical structure ghodest although statistically significant predictivity in contrast to
monomers and polymers. However, it is likely that materialsthe lack of correlation of experimental ToF-SIMS data with the
properties will have some influence on polymer surfacePolymer roughness reported by Hook efPhiThis lack of
roughness. We have previously observed that certaircorrelation maybe due to artefacts in the estimation of the
combinations of monomer chemistries (e.g. mixed hydropholsicSurface roughness reported that were subsequently removed in the
and hydrophilic) produce specific nanotopographies with data modelled here.

associated changes in rougr‘@slﬂ some cases this results from
phase separation prior to polymerization.

The statistics of the prediction of the training and test sets were , :
similar to each other (Table 2), but compared to the hEB model,
the statistical quality of the surface roughness models was lower.
The moderate values for thevalue of the non-linear models for

1

o

1

o

15 15
2

(=]

05 0.5

Pr@i:ted log roughness
Predicted log roughness

AN o
2 the test sets in particular suggests that the models have someg | - .z / ,ﬁ:_‘: . ) :
degree of useful predictive power. Clearly other factors such as _i“' oo st
how the samples are prepared may indeed have a substantia
impact on the surface roughness, as might be intuitively expected. s 0 os 1 s s 0 os ! 15

Measured log roughness Measured log roughness

The best nonlinear models account for 60% of the variance in the o -

»data, the remainder we suggest is largely due to experimen; (0TS 3, o o urece foughnees e el v o
factors. There were twenty-two indices with nonzero weights in
the mpst parsimonious BRANNLP quel. These corresponded 9% Conclusions
descriptors for hydrophilic properties (number of H-bond
acceptors on nitrogen, dipole moment, number of primaryWe found that the stem cell hEB adhesion on polymeric surfaces

ss alcohols) and hydrophobic properties (numlr tetrahedral ~ could be modelled well by our approach using only calculated
stereo centres; ring complexity; first principal moment of ingrtia molecular descriptors. These models provide a compact summary
molecular asphericity; number of secondary sp3 carbon atom)f a large amount of numerical data, and some interpretation of
number of total quaternary carbon atoms; number of secondarthe role of surface chemistip hEB adhesion. These models
sp3 carbon atoms in a ring; number of substituted benzene carb@llow experimental data to be leveraged into a larger portion o

40 atoms; number of terminal primary sp2 carbon atoms; number ofmaterials property space by predicting polymers with improved
aliphatic secondary sp2 carbon atoms; number of aliphaticsethe properties. In addition, surface roughness can also be modelled
number of aromatic ethers; number of atom centred fragmemtsoderately well using molecular descriptors. This suggests that
CR4, CHRX, CHRX, =CHR, R—CX—R, aliphatic-O-aliphatic surface roughness, important for hEB adhesion, may have at least
and aliphatic-O-aliphatic/aromatic-O-arom#Re0-R/R-O- a partial molecular basis, most likely phase separation. Our

45 C=X). These descriptors were consistent with phase separatioanalysis and the descriptors that we use are amenable to
playing a role in surface topography. As surface roughness hasystematic ‘reverse engineering’ by predicting the properties of
previously been identified as an important factor in hEB larger virtual libraries of plausible polymer candidates and by
adhesion, the fact that it can be modelled numerically reagonablallowing chemical interpretation of the relevant polymer
well provides an explanation as to why we can model hEBmolecular descriptorsThese robust modelling methods that

so adhesion without requiring this measured polymer surfacerequire only computed materials descriptors are a valuable
property. complement to high throughput synthesis and characterization

The relative performance of the three methods in modelliagmethods. They will allow more of materials property space to be
roughness is summarized in Table 2. The MLR model performsaccessed than by experimental methods alone.
poorly compared to the neural network models.
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