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Abstract

There is a trend in the power industry for high temperature components (such as steam

pipe work) to be operated in an increasingly arduous fashion. This would involve the

use of elevated steam temperatures/pressures and a greater frequency of start up/shut

down cycles. Such generation strategies are being adopted due to the need for thermally

efficient power supply that can match fluctuating market demands. If these generation

strategies are to be implemented safely it is critical that careful analysis of the system

components is conducted in order to ensure that premature failure does not occur. The

advanced material models and techniques that are used in academia to simulate these

components are often out of reach of the engineers working in industry.

The present work describes the development of an analysis “toolbox” that takes

several advanced material models (which can accommodate complex loading conditions)

and applies them in numerical (finite element analysis, FEA) and approximate life

estimation methods. The toolbox comprises several modules, each of which relates

to a specific aspect of component analysis. In this thesis, the fundamental procedures

behind these modules are developed in novel ways in addition to the development of

the toolbox as a whole. The toolbox modules may be roughly divided into the definition

of a component’s material, geometry and loading condition, followed by some form of

analysis procedure and a report of the key results.

A material’s behaviour is commonly determined from mechanical tests. For in

service components, scoop sampling is an exciting new method to extract small amounts

of material which may then be tested using several novel small specimen techniques.

An investigation has been conduced in the present work that verifies the safety of

this method and allows the localised stress behaviour around an excavation to be

estimated. Material constants in material behaviour models are usually determined

by fitting the outputs of the model to experimental data in an optimisation procedure.

A great deal of work has been completed on this topic using the complex Chaboche

unified visco-plasticity model. This has led to the formation of the combined parallel

optimisation strategy and the development of data cleaning for the determination of

material constants in any model.

Due to the high temperature conditions power plant components operate in, creep

is a major concern. Several damage material models have been compared which can

represent failure due to creep. Generally, these models can be divided into power law
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and hyperbolic sine functions. Through a comparative investigation using multiple

component geometries, it has been found that the hyperbolic sine function creep law

gives lower predictions of failure time than the power law models at realistic stress

levels. Hyperbolic sine function failure lives were also more representative of reality.

It is therefore critical when performing component analysis to consider the form of a

material model as well as the loading range its material constants are applicable to. The

Chaboche unified visco-plasticity model has also been discussed. Using this model,

both hardening due to the accumulation of plastic strain and viscous effects (such as

creep stress relaxation) may be described. Models like this will play an important role

in the analysis of high temperature components as they experience fluctuations in both

load and temperature.

Although it appears simple, the geometry of a high temperature pipe bend in a

power plant is actually complex due to the manufacturing process employed (a straight

pipe section is heated through induction coils and bent using a fixed radius arm). The

pipe’s wall thickness not only varies circumferentially around the pipe’s cross section

but also around the bend itself. Through the analysis of industrial data (collected

by ultrasonic measurement of components during outage inspections) several novel

geometry factors have been developed that quantify this dimension variation. A new

method to analyse such pipe bends has also been created that interpolates the stress

states between two dimensional (2D) models that represent the cross section of a pipe

bend at several key locations.

Once a geometry, loading condition and material has been defined, an analysis

procedure may be employed in order to assess the condition of the component. As creep

is a key concern under high temperature conditions, most of the analysis procedures

discussed in the present work are focused on the prediction of peak rupture stresses (σ̂R)

which may be used to estimate failure lives due to creep. Several approximate (errors are

typically less than 5%) parametric relationships have been developed that allow peak

rupture stresses to be determined based on, for example, pipe bend geometry factors. In

addition, to aid in bespoke FEA analyses, a collection of routines with a graphical user

interface (GUI) have been created that can write input files for a commercial FEA code

(ABAQUS), run the job and post process the results. This can save a great amount of user

effort when attempting to analyse components. Finally, an original neural network (that

uses a partially connected, multiple input node architecture) has been proposed that

predicts σ̂R in pipe bends operating under steady-state creep conditions. Both internal

pressure and system loads have been incorporated as inputs for this neural network.

This has required the definition of several new load factors that describe the system

loads acting on a component.

Recommendations for future developments based on this research have also been

given. Future developments may look to include fatigue effects in parametric equations,

as well as considering the effect of varying loading conditions (possibly through a
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damage fraction approach). The Chaboche model (or similar unified model) may be

modified to include temperature dependency and damage effects (allowing for a wider

application to component analysis). The effect of geometry variation may be included

in the neural network, again extending its applicability, and stresses due to temperature

distributions in the piping components may be incorporated (at present, these have not

been considered, however system loads may be thermally driven).

The work presented in this thesis addresses a complete analysis procedure, from

collecting material information from a component through scoop sampling, to determin-

ing material constants for this material by an optimisation procedure and analysing the

component using either numerical or approximate methods. Although pipe bends have

been considered for the significant part of this work due to the relatively small amount

of research reported in literature, similar methodologies may be applied to other power

plant components of interest, such as welds, steam headers or branch pipes.
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Nomenclature

To aid the reader’s understanding a nomenclature of commonly used symbols and

abbreviations is presented here. In several cases, particularly with reference to material

model coefficients, the definition of a symbol is context dependent. Symbol definitions

are given in the text to avoid confusion and have been divided into subject areas to

make context recognition easier over the wide range of research fields considered in this

thesis. Note that, in general, symbols in a bold typeface are vectors or tensors.

Symbols

General

A, As Area (Normal, Shear)

b Burger’s Vector

E Young’s Modulus

F, F, Fs Force (Vector, Normal, Shear)

fk Surface Element

G Shear Modulus

i, j, k Indices

K Bulk Modulus

L, L0, L f , ∆L Length (Instantaneous, Initial, Final, Change in)

S, Sij Deviatoric Stress (Tensor, Component)

u, ui Displacement (Vector, Component)

V Volume

γ Shear Strain

∆ Volumetric Strain

δij Kronecker Delta

ǫ, ǫij Engineering Strain (Tensor, Component)

ε, ε ij True Strain (Tensor, Component)

εe Elastic Strain Component

εp, εp ij, εp Plastic Strain (Tensor, Component, Uniaxial)

φ, φ0 Lateral Dimension (Instantaneous, Initial)

dλ Plastic Multiplier
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ν Poisson’s Ratio

σ, σij Stress (Tensor, Component)

σ1, σ2, σ3 Principal Stresses (Maximum, Intermediate, Minimum)

σEQ Equivalent (von Mises) Stress

σm Hydrostatic (Mean) Stress

σUTS Ultimate Tensile Strength

σY Yield Stress

τ Shear Stress

Creep Material Models

A, B Dyson Model Strain Rate Material Constants

A, n, m Norton’s Model Material Constants (Multiplier, Stress Exponent, Time

Exponent)

A, n, m Kachanov Model Strain Rate Material Constants

A, n, c, B′, n′ Liu-Murakami Model Strain Rate Material Constants

a, b, c, d, e, ta, Ta Orr’s Equation Coefficients

B, q2, p Liu-Murakami Model Damage Rate Material Constants

B, χ, φ Kachanov Model Damage Rate Material Constants

D, N, v Dyson Model Cavitation Damage Rate Material Constants

H Strain Hardening Internal Variable (Dyson Model)

h, H′ Dyson Model Strain Hardening Rate Material Constants

Kc Dyson Model Precipitate Coarsening Damage Rate Material Constants

Qc Activation Energy

R Universal Gas Constant

T, Tm Temperature (Operating, Melting)

t, t f Time (Instant, Failure)

t̄ Fictitious Time (Liu-Murakami Model)

t
exp
f i ith Experimental Creep Time to Failure

t
pre
f i (x) ith Creep Time to Failure Predicted by the Constant set x

α Multiaxial Material Constant (Kachanov and Liu-Murakami Models)

ε0 Initial/Instantaneous Strain

εc, εc ij, εc Creep Strain (Tensor, Component, Uniaxial)

ε̇c, ε̇c ij, ε̇c min Creep Strain Rate (Tensor, Component, Minimum Uniaxial)

εc EQ Equivalent (von Mises) Creep Strain

εc f Failure Creep Strain in a Uniaxial Creep Test

εc p Creep Strain at the end of the Primary Creep Region in a Uniaxial Test

ε
exp
j jth Experimental Creep Strain

ε
pre
j (x) jth Creep Strain Predicted by the Constant set x

σAPP Applied Stress

σR Rupture Stress
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φ Precipitate Coarsening Damage Internal Variable (Dyson Model)

ω Creep Damage (Kachanov and Liu-Murakami Models)

ω2 Cavitation Damage Internal Variable (Dyson Model)

Chaboche Unified Visco Plasticity Model

ai, Ci Armstrong-Frederick Coefficients (ith Back Stress Component)

b, Q, H Drag Stress Material Constants

f Yield Function

k Initial Yield Surface Size

N Loading Cycle Number

p Accumulated Plastic Strain

R Drag Stress

Z, n Viscous Stress Material Constants

εv Viscous Strain Component

εT Total Strain
∆σ

2
Stress Range

∆σ
exp
i

2
Stress Range from Cyclic Experiments used to Optimise the Chaboche

Model Constant Set x

∆σ(x)
pre
i

2
Stress Range Predicted by the Chaboche Model (Using the Constant

Set x)

σ0, n0 Ramberg-Osgood Law Material Constants

σ
exp
i Stress from Cyclic Experiments used to Optimise the Chaboche Model

Constant Set x

σ(x)
pre
i Stress Predicted by the Chaboche Model (Using the Constant Set x)

σ
exp
RELAX i Relaxation Stress (During Strain Hold Loading) from Cyclic Experi-

ments used to Optimise the Chaboche Model Constant Set x

σ(x)
pre
RELAX i Relaxation Stress (During Strain Hold Loading) Predicted by the

Chaboche Model (Using the Constant Set x)

χ Back Stress Tensor

χ′, χ′
ij Deviatoric Back Stress (Tensor, Component)

χi ith Uniaxial Back Stress Component

Component Modelling and Analysis

A, B, C, D, E, F,

G, H, I

Fitting Coefficients (Parametric Equations)

DO External Pipe Diameter
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Ex Extrados Factor

eIn/Ex Wall Thickness Variation (BS EN 13480)

h Scoop Sample Cut Depth

In Intrados Factor

IZ Second Moment of Area about the Z Axis

k Loading Factor

MZ Bending Moment about the Z Axis

Pi Internal Pressure

RM Mean Bend Radius

RO, RI Pipe Cross Section Radii (Outer, Inner)

Rx, Ry, Rz Rotational Displacement System Load Factors

r Radial Position

Th Wall Thickness

ThAV Average Wall Thickness

ThEx Extrados Wall Thickness

ThIn Intrados Wall Thickness

ThNOM Nominal Wall Thickness

t f o Reference Time to Failure

Ur, UZ, Uθ Displacement Components (Radial, Axial, Hoop)

Ux, Uy, Uz Displacement Components (X, Y, Z)

X, Y, Z Displacement System Load Factors

θ Pipe Bend Circumferential Position Angle

σAPP Applied Stress

σAX Closed End Axial Pressure

σAX A Additional Axial Stress

σAX MAX Maximum Allowable Axial Stress

σAX T Total Axial Stress

σMDH Mean Diameter Hoop Stress

σ̂R Peak Steady State Rupture Stress

σr Radial Stress

σSS Steady-State Creep Stress

σz Axial Stress

σθ Circumferential Stress

ϕ Pipe Bend Angle

ω̂ Peak Damage

Optimisation and Neural Networks

E(x) Error Function in an Optimisation Algorithm

∇E(x), ∇2E(x),

J(x)

Gradient, Hessian and Jacobian Matrices in an Optimisation Al-

gorithms
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EXPi ith Experimental Value

Fi(x) ith Objective Function

Mi Number of Data Points Considered by the ith Objective Function

max
∣

∣

∣A
exp
ij

∣

∣

∣ Maximum Experimental Value of the jth Type

PREDi ith Predicted Value

r2 Coefficient of Determination

Wi ith Weight for a Neuron in a Neural Network

wj Weighting Value for the jth Objective Function

X, Xi Inputs to a Neural Network (Vector, Component)

x Vector of Parameters to be Optimised

Y Local (Neuron) Output in a Neural Network

Ŷ Output from a Neural Network

θ Bias for a Neuron in a Neural Network

σEXP Standard Deviation of Experimental Results

Abbreviations

2D Two Dimensional

3D Three Dimensional

AC Alternating Current

ANN Artificial Neural Network

BC Boundary Condition

BCC Body Centre Cubic

BPNN Back Propagated Neural Network

BS British Standard

CAE Computer Aided Engineering

CDM Continuum Damage Mechanics

CP Combined Parallel Optimisation

CPH Close Packed Hexagonal

DC Direct Current

ECCC European Creep Collaborative Committee

FCC Face Centre Cubic

FEA Finite Element Analysis

GL Geometric Linear

GNL Geometric Non-Linearity

GUI Graphical User Interface

HAZ Heat Affected Zone

LVDT Linear Variable Differential Transformer

NDT Non-Destructive Testing

NN Neural Network
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RBF Radial Basis Function

RF Radio Frequency

S Series Optimisation

SEM Scanning Electron Microscopy

SP Separated Parallel Optimisation

SPCT Small Punch Creep Test

TMF Thermo-Mechanical Fatigue
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Chapter 1

Introduction

1.1 Background

The operating conditions of high temperature power plant components are complex.

Often, systems will be cycled from full load, high temperature conditions to periods of

inactivity (depending on market demands for power generation). Cycles will commonly

not be periodic in nature. Furthermore, components within the system may be replaced

as part of retrofit activities, giving rise to a range of materials with different deformation

properties being used across the plant. Discontinuities are also present in piping runs

in the form of weldments or bend sections. While necessary due to the space envelope

constraints, material and geometric discontinuities are often regions of localised material

degradation, potentially leading to failure. The above effects will only be exacerbated

by the present trend in the power industry for existing plant to be operated at higher

temperatures for longer periods and with a higher stop/start frequency. Clearly, if these

more arduous generation patterns are to be adopted safely, careful analysis of what is

already an intricate and detailed structure is critical.

While several design codes are available to practising engineers (such as, in the

UK, PD5500 and the R5/R6 procedures) they are often over conservative and greatly

simplify the analysis problem. While this is completely justified for these codes (their

scope is often so large that close scrutiny would make them difficult to implement), the

concern for the safety of components under new operating patterns remains. Power

station operators will conduct regular inspections (known as outages, often taking place

every 4 years). These may include material characterisation and ranking studies on “at

risk” components or the inspection of specific components for any signs of degradation

(such as surface micro-cracking through replica testing) or dimension change. This

wealth of information is often archived and could be exploited fully with the use of

more advanced analysis techniques.
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1.2 Objectives

The objectives of the present research fall into four main categories. Firstly, the develop-

ment of a piece of software acting as an analysis “toolbox”. This will give a methodology

for engineers to implement more advanced analysis techniques. Furthermore, the pres-

ence of bespoke piece of analysis software encourages inspection information to be

collated between various departments. Secondly, advanced material models, capable of

being used to predict a component’s response under the complex loading conditions

described above, will be compared and developed. In particular, methods to determine

material constants for these models from experimental data will be analysed. Thirdly,

novel material characterisation techniques that could be applied to high temperature

power plant will be considered. Both advanced material models and novel character-

isation techniques can be implemented in the analysis toolbox described previously.

Finally, by way of examples, the procedures developed and compared in the previous

three objectives will be applied to steam pipe bends. Weldments and pipe bends are the

two most common discontinuities encountered in piping systems. While welds have

received much research attention, bends, particularly exhibiting manufacture induced

dimensional variation, have not been analysed to the same degree. Investigations in

pipe bends will provide both novel information on these components as well as a vehicle

to demonstrate the use of the analysis toolbox.

1.3 Thesis Layout

A literature review is presented at the beginning of this thesis (chapter 2) that details

the present understanding of high temperature material behaviour and power plant

component analysis. This will provide the reader with a background so the novelty of

the research can be appreciated.

The research presented in this thesis is divided into three main sections, each dealing

with the development of a different aspect of the analysis toolbox (material, geometry

and loading/analysis).

The analysis of a component will depend on the determination of material properties

for a suitably complex material model. This determination procedure will often require

some form of optimisation, where initial estimates of material constant values are “fine

tuned” so that the output of the material model matches the results of experiments

as close as possible (note that the fitting quality may be limited due to, for example,

experimental scatter in the optimisation data). Chapter 3 discusses several developments

for the effective implementation of an optimisation procedure, particularly when a single

set of material constants should be able to predict the results of multiple experiments.

The optimisation procedure is developed for the Chaboche unified visco-plasticity

model. The inclusion of this model in chapter 3 is also significant as a model similar to

it will most likely be used in the future to predict the behaviour of high temperature
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components which are cycled, and will therefore experience hardening due to plastic

strain accumulation as well as creep effects. Operators may well want to determine

material parameters for specific components as these can vary substantially between

heats of material and due to different service histories. In such cases, novel small

specimen techniques may be used to analyse a component’s material (removal of a full

size specimen would potentially compromise structural integrity). Scoop sampling is a

method to remove small amounts of material from the surface of a component, however

little research has been done to analyse the stress state in the vicinity of the scoop

excavation. An investigation to this end is carried out in chapter 5 for high temperature

pipe sections (deforming due to creep) that are subjected to internal pressure and

system loading. Given that creep is a significant concern for materials operating at high

temperatures, a comparison of several creep damage models is presented in chapter 4.

Particular attention is paid to the differences in predicted failure times for a stress range

lower than that used to determine a model’s material constants. This is particularly

relevant to component analysis, as it is common for accelerated high stress tests to

be used to estimate material constants which are then applied to realistic low stress

problems.

Pipe bend sections have not received as much attention as weld sections in research

literature. Both however are discontinuities in the steam pipe system of a power plant

and potential locations of failure. Pipe bend sections have been analysed in great detail

in the present work (notably chapter 6) to demonstrate the applicability of the analysis

methodology and to generate novel characterisation and analysis techniques for these

specific components. Although the geometry of a pipe bend may seem simplistic, the

manufacturing process used to create bends leads to variations in the wall thickness and

cross section around the pipe bend. A method has been developed to characterise these

dimension variations using industry data. In addition, a novel modelling procedure has

been presented that allows for the estimation of the stress state in a three dimensional

(3D) pipe FEA model from two dimensional (2D) cross section models.

Once a geometry, material and load condition have been defined for a component

(such as a pipe bend section), some form of analysis is required in order to determine the

stress state in the component and the potential for a reduction in remnant life. Several

approximate parametric equations have been developed based on finite element analysis

(FEA) studies that allow users to estimate peak rupture stresses for specific loading

conditions. To extend the analysis capability of the methodology, a neural network (NN)

has also been created that can estimate peak rupture stresses in a pipe bend due to the

application of a complex system load condition. Subroutines have also been written that

allow users to produce, run, and post process FEA models of power plant components.

Several of the creep damage models discussed in chapter 4 have been incorporated into

this feature. This work is detailed in chapter 7.

The foundation for an advanced analysis methodology has been established in this
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thesis. Advances have been made in several key areas of the methodology and novel

characterisation/analysis techniques have been developed. The developed methodology

can be extended further (for example, to include alternative component types such as

steam headers) in future research, which is summarised in chapter 8.
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Chapter 2

Literature Review

2.1 Introduction

The analysis of high temperature components used for power generation requires an

understanding of several key areas in engineering science. Materials will deform due to

complex loading patterns with varying operating temperatures and applied forces. As a

result, controlling deformation mechanisms will potentially change, compete or interact

over a component’s life. Prolonged exposure will often cause a structural change to the

material, ultimately resulting in the degradation of the material, loss of load carrying

capability and failure. Clearly, the application of advanced analysis methods requires

the knowledge of materials, solid mechanics and characterisation methods. Additionally,

to make any procedures developed relevant to practising engineers, an appreciation

of the codes and methods currently adopted by industry is necessary. The following

chapter discusses the present standing of these topics so that the novelty of the work

included in this thesis may be appreciated.

2.2 The Structure of Materials and Deformation/Failure

Mechanisms

2.2.1 Material Structure and the Solidification of Metals

Matter, in any state, is the formation of atoms that are bonded together. As atoms are

brought into proximity with each other, bonding forces develop between the atoms.

The distance between atoms is dependent on their relative species and is due to the

equilibrium between the general attractive force between atoms and the repulsive

force experienced at small distances. This inter atomic spacing and the type of bond

formed has a direct influence on the structure of the material, and therefore its physical

properties. The behaviour of a material will depend on its structure and how this

structure changes with exposure to various external factors1.
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Although the understanding of ceramics and plastics has been greatly enhanced in

recent years and their use is common in many areas, metals are still the predominant

engineering material and will be for the foreseeable future. This is especially true in the

design of high temperature components for power industry, where cost (for manufacture,

instillation and maintenance) and resistance to deformation are the driving factors. For

this reason, only metallic materials will be considered in the current review.

Metals are characterised by metallic bonds (as opposed to ionic or covalent primary

bonds), whereby valence electrons are no longer localised to a particular atom, but

rather form an “electron gas” which randomly circulates between atoms. Most metals

used by engineers for component design are polycrystalline. A crystal is a periodic and

repeating three dimensional assembly of atoms (this is distinct from an amorphous solid

where no repeating order is observable2). This was originally described by von Laue

in 19123 by observing the diffraction of x-rays in metallic crystals. In polycrystalline

materials, several crystals (or grains as they are more commonly known) nucleate and

grow during a metal’s solidification. For metals, three main assemblies are considered

(see figure 2.1), namely the face centred cubic (FCC), body centred cubic (BCC) and the

close packed hexagonal (CPH)1,4. These structures dictate the location of lattice points,

which should not be confused with the centre of an atom. Lattice points will indicate

the location of a base (this may be a combination of several atoms of different species).
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(a) (b)

(c)

Figure 2.1: Common lattice patterns for metals. Structures shown are (a) the body
centred cubic (BCC), (b) the face centred cubic (FCC) and (c) the close packed hexagonal
(CPH) arrangements1.

Solidification of molten metals is a key stage in the formation of a material’s structure

and physical properties of the material will be strongly dependent on this process. As

the temperature of a melt is reduced the latent heat of solidification is released as

thermal energy. In the disordered liquid metal, small crystals will nucleate at random

points. Due to the remainder of the melt still being at a relatively high temperature, the

smaller of these nucleation crystals will be destroyed. Only nucleation crystals above a

critical size will survive and grow (the addition of atoms to the crystals at the expense

of the melt). This homogeneous (random) nucleation is not commonly experienced in

foundries however. Heterogeneous nucleation, where suspended impurities or foreign

particles in the melt act as nucleation points, is more common for larger industrial melts.

Heterogeneous nucleation results in smaller grains due to there generally being a greater

number of nucleation points. It is very common in crystal development for growth to

be preferential in certain directions (depending on the lattice structure). This causes

crystals to develop in tree like “branches” called dendrites4. These dendrite structures

will in turn grow by transferring latent heat into the surrounding melt (new dendrite

limbs are therefore not formed in the immediate vicinity of one another, giving a regular

dendrite shape). Eventually, the crystals will impinge on one another and, if a supply
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of melt is unavailable, voids at the grain boundaries will be present. There is usually

a misorientation between the atoms in adjacent grains (see figure 2.2). High (greater

than 10◦) angles of misorientation may be the result of the fine grain structure due to

heterogeneous nucleation. These high angle grains will have high energy levels are

likely to melt first should the metal be reheated. Lower angle (5◦ − 10◦) misalignments

can be caused by convection currents in the melt disturbing the dendrite structures1.

Grain Boundary

Lattice Orientation

Figure 2.2: Illustration of grain boundaries showing lattice misalignment1.

2.2.2 Defects, Deformation and Fracture

It has been identified already that most metals used for high temperature applications

are polycrystalline. The presence of grain boundaries can be viewed as an imperfection

in the structure as it leads to heterogeneous behaviour on the microscopic scale (however

the randomised orientation of grain boundaries suggests homogeneous behaviour on the

macroscopic level). Similar larger scale discontinuities in the material are cracks or the

inclusion of gas bubbles and foreign matter. Although these defects tend to be the result

of material processing it is important to recognise that defects are also present within the

crystals themselves1. The deformation kinetics and characteristics of a material will be

strongly dependent on both the formation of grains and the structure (including defects)

of the crystals1. The inclusion of a defect in a material’s structure may not result in an

adverse effect, depending on the intended application of the material. Generally, defects

in the crystal structure may be considered as one of four categories: point, line, planar

(or wall5) and volume defects1,4. The most relevant defects (namely point, dislocation

and void defects) will be briefly described, however it is worth pointing out that in

many deformation situations a material’s physical behaviour will be due to the complex

interaction between several types of defects5.

Although point defects are commonly small and their distortion effects are heavily

localised in the lattice structure; vacancies, interstitial and substitutional atoms may play
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a significant role due to their control of various other processes, such as the diffusion of

atoms in the lattice or the motion of dislocations4. A vacancy is an empty space in the

lattice structure where an atom would normally be expected (see figure 2.3). Similarly,

an interstitial atom occurs when an atom is displaced from its normal location into an

interstitial site (between normal locations, see figure 2.3). While interstitial atoms may

be located at a multitude of potential locations within the structure and their analysis is

therefore complex2; vacancies are generally much simpler to appreciate (it is simply the

lack of a atom in a lattice location that may affect the placement of atoms around the

vacancy) and play an important role in the motion of dislocations.

Vacancies tend to be created at certain locations within the crystal structure (when a

sufficient amount of energy is available to break an atom’s normal bonds, displace it,

and reform the bonds at an interstitial location5). These preferred locations are known

as vacancy sources and include the free surfaces of a crystal, a grain boundary or the half

plane of atoms in an edge dislocation (discussed later in this section1). The production

of vacancy in a material operating in high temperature conditions is an attempt to

return the material back to an equilibrium condition1. When a heat source is removed,

vacancies will tend to migrate to the vacancy source locations to be annihilated (these

locations are now deemed vacancy sinks), again returning the material to equilibrium.

It is worth noting that vacancies may be “frozen in” a material if the temperature is too

low (meaning that there is not enough energy or time for vacancies to migrate) or if the

material is rapidly cooled (“quenched”). More detail on the creation/annihilation of

vacancies, particularly at edge dislocations, is given later in this section.

Substitution atoms are impurities (atoms of a different specie) that become part of the

crystal structure. This may be due to remnants or previous melt in a foundry’s crucible

or a secondary metal that has been added intentionally as an alloying element. Substitu-

tional atoms may be physically larger or smaller than “regular” atoms and will affect

many physical properties of a material (for example, the doping of semiconductors to

affect a material’s electrical resistivity5). From a mechanical perspective, substitutional

atoms may affect a material by solid solution or precipitate hardening5.

Solid solution hardening is similar to the substitutional atom shown in figure 2.3,

whereby an atom of a different specie takes the place of a regular atom. This is at least

the case for a metallic substitutional atom in a metallic matrix (where both atoms are

of a similar size2). Interstitial substitution may also occur if a significantly smaller

substitution atom takes a location between lattice points2. These substitutional atoms

will create “friction” that limits the migration of, say, dislocations. The solid solution

structure may be developed further through precipitate hardening.

Precipitate hardening (or ageing) involves the production of a secondary “impurity”

phase within the material that is soluble at high temperatures but exhibits decreasing

solubility with decreasing temperature3. Generally, a solid material will be heat treated

at an elevated temperature in order for a structure to develop with a homogeneous

9



spread of the impurity atoms. The material is then quenched, freezing this structure in

place. An ageing process occurs (possibly during component operation) at a temperature

lower than the heat treatment temperature, allowing the secondary phase particles to

coalesce (forming “islands” of the impurity in the material matrix), as well as aiding in

the removal of any frozen in vacancies. The secondary phase will impede the motion of

defects such as dislocations and will significantly alter the characteristics of the material.

Interstitial Atom

Vacancy

Substitutional Smaller Atom

Substitutional Larger Atom

Figure 2.3: Illustration of point defects, such as vacancy, substitutional and interstitial
atom defects in a material structure1.

A crystal will typically not only include point defects but also a line of discontinuities

running through the grain. These are known as dislocations and occur when a full plane

of atoms in the lattice structure cannot form, therefore a “half plane” is wedged between

two other lattice planes. Dislocations are critical for deformation processes as they

allow a crystal structure to alter under the application of a load without destroying

the crystal structure. The presence of dislocations is the main reason for the large

discrepancy between Frenkel’s theoretical approximation (published in 1926) of the slip

of a crystal (whereby a plane on atoms acts as a rigid body, predicting that a crystal

should be difficult to deform) and the observed reality (where crystal planes may slip

on a localised or “half plane” scale)1.

Dislocations may occur in many directions but can be resolved into two components,

namely edge (see figure 2.4(a)) and screw components (see figure 2.4(b)). The difference

between these dislocation types can be explained by considering the direction of the slip

movement (known as the Burgers vector, characterised by b in figure 2.4) with respect

to the dislocation line. If the Burgers vector is perpendicular to the dislocation line the

component is an edge dislocation and if the Burgers vector is parallel it is a screw type

dislocation1,2.
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b

⊥
(a)

b

(b)

Figure 2.4: Dislocation structural defects, showing (a) an edge type and (b) a screw type.

The motion of dislocations (both individually and interacting with other dislocations)

is a fundamental aspect of plastic deformation5. Attention will be paid to the glide or

slip of an edge dislocation, however similar ideas may be translated to the case of a

screw dislocation. Atoms away from the dislocation are generally in their minimum

energy position (the lattice is relatively undisturbed from the defect free case), however

the distortion caused by dislocation means that even small movements will allow the

half plane to shift and line up with a corresponding half plane below the slip line (note

here the extra half plane is assumed to be above the slip line, therefore the dislocation

is said to be positive1). This can occur even under the application of relatively small

shear loads. Of course, this leaves a half plane of atoms that are no longer aligned,

therefore the dislocation has moved an atomic spacing3. When the half plane reaches a

free surface a slip step of size b (the Burgers vector) is created. This dislocation motion is

illustrated in figure 2.5. Note that prior to glide (figure 2.5 (a)) the half plane is between

the atom planes 3 and 4 and after glide (figure 2.5 (b)) the half plane of atoms is between

planes 4 and 5.
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41 753 62

Half Plane

Slip Plane

Shear Stress

⊥

(a)

41 753 62
(b)

Figure 2.5: Movement of an edge dislocation by glide, showing (a) the lattice prior to
the application of a shear stress and (b) after glide has occurred1.

While the above description of the motion of a dislocation is valid for motion in the

direction of a slip plane there are occasions when the half plane meets some obstruction,

such as a secondary phase region or vacancy. To overcome this obstacle the dislocation

will climb, resulting in a change in the number of atoms in the half plane (either a

reduction or increase, depending on the obstacle encountered)1. It has been mentioned

before that edge dislocations may act as vacancy sources or sinks. This is achieved

through climb (shown in figure 2.6). A vacancy may be annihilated for example by a

dislocation’s half plane loosing an atom to fill the vacancy during motion (figure 2.6

(a)). Alternatively, a vacancy may be created if a dislocation’s half plane gains an atom

(figure 2.6 (b)).
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⊥

V

⊥

(a)

V

⊥

(b)

Figure 2.6: The climb of a dislocation (signified by ⊥) to (a) annihilate a vacancy
(signified by V, the dislocation acts as a vacancy sink) and (b) to create a vacancy (the
dislocation acts as a vacancy source)1.

Dislocations will commonly exist in annealed (heat treated) metals in low density

networks. When a material is deformed by an increasing load these dislocations will

multiply causing plastic (irrecoverable) deformation6. The increased dislocation density

means that dislocation motion is increasingly difficult, resulting in the hardening of the

material and a resistance to deformation. Some high temperature processes will enable

recovery, where by diffusion through the crystal lattice or dislocation climb (see figure 2.6

(b)) annihilates a dislocation by emitting a vacancy and makes subsequent motion

easier7. Dislocation entanglement and recovery are important physical mechanisms in

the deformation of high temperature components.

The formation of voids (open areas in the material) is a noted feature in the failure

(and fracture) of ductile materials1. These defects are required to nucleate as cavities

(holes), grow and finally coalesce by localised necking in the intervoid ligaments8 for

the characteristic fibrous ductile failure (see figure 2.7 for an example of a ductile failure

surface for a P91 steel tested at an elevated temperature) to be achieved9. Ductile

fracture (which is the concern of this review due to the scope of the present work)

is characterised by a slow moving crack in a specimen accumulating large amounts

of plastic deformation6. This is in stark contrast to brittle failure, where little plastic

deformation is observed and crack growth is often quick, leaving a smooth failure

surface10. The presence of voids can be used as an indication of damage (a reduction

in the ability of a material to carry a load) and, as a consequence of nucleation (there

is a redistribution of stress and strain after de-bonding), a reduction in the hardening

capability of the material9. The nucleation of a cavity can be achieved by several
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mechanisms depending on the dominant deformation mechanism. In creep conditions

(described in section 2.3.3) for example, cavities may nucleate by the following:

• The relative sliding of grain boundaries leading to cavities at compressive/tensile

ledges and grain boundary triple-points (W type voids, see figure 2.8)11.

• The condensation of vacancies in high stress regions such as grain boundaries (R

type voids, see figure 2.8)11.

• Dislocation “pile up” (known as the Zener-Stroh12–14 mechanism), whereby dis-

locations stack up at an obstacle such as a grain boundary or secondary phase

interface. The high amounts of energy released when dislocations coalesce gener-

ally results in the formation of a Zener-Stroh crack.

• Any of the above mechanisms acting in conjunction with a particle obstacle.

Creep cavities may then grow due to plastic straining, causing the diffusion of

material (at low stresses) or the motion of dislocations11. If voids are distributed along

grain boundaries, crack growth may be constrained by the creep of the rest of the

material. High concentrations of voids along the grain boundaries could potentially lead

to the unconstrained growth of an intergranular crack15 (following the shape of grain

boundaries and leaving a faceted failure surface, see figure 2.9), when the remaining

ligaments of material cannot support the applied load and coalescence of voids occurs

quickly11.

Figure 2.7: A scanning electron microscopy (SEM) image of the failed surface of a P91
steel loaded in tension at 600°C. Note the rough and fibrous failure surface and the
voids that have not coalesced beneath the failure surface.
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R Type Void

W Type Void

Figure 2.8: R and W type intergranular cavitations.

The fracture of a metal loaded cyclically (fatigue loading) is distinctly different to

that of a material loaded monotonically and is mainly dependent on the nucleation

of fatigue cracks3,16. These cracks may initiate at microscopic defects, such as particle

inclusions in the material structure or processing induced voids6, however a mechanism

also exists for fatigue crack initiation in a defect free sample. Dislocation glide will cause

staircase like structures at the surface of a material. Under cyclic loading, these structures

become notch like17. The material around these notched areas will be damaged due

to dislocation motion and micro-cracks initiate in these areas. Cracks will propagate

in a transgranular direction (across grains, see figure 2.9) even if the initiated crack is

intergranular16. The direction of crack propagation was originally described by Forsyth

and is typically in the direction of the maximum shear stress. This initial crack growth

can represent 40-99% of the fatigue life. Secondary crack growth is generally quick and

occurs in the direction of maximum tensile stress (due to the remaining un-cracked

specimen section being unable to support the applied load)16.

GrainBoundary

IntergranularCrack

TransgranularCrack

Figure 2.9: An illustration of intergranular and transgranular cracking.
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2.3 Deformation Mechanisms

2.3.1 Elasticity and Concepts of Stress and Strain

When a body is loaded, it will initially deform in a fashion which is said to be elastic.

This involves the stretching of inter atomic bonds and is recoverable. Providing that the

yield stress of the material is not exceeded and loads are not cycled to a high amount

or at a high frequency, an elastically deformed body will return to its original shape

and size when a load is removed. Elasticity is said to be instantaneous as there is no

time dependence to observed deformations. Before a detailed account of elasticity in

materials can be given, it is necessary to define the fundamental quantities of interest in

solid mechanics, namely stress and strain.

Fundamentally, normal strain may be considered a ratio of the change in dimensions

of an element of material to a length value18. Engineering strain (ǫ, also known as

average strain) normalises a change in length (∆L) to the initial length of the element

(L0), see figure 2.10 and equation (2.1). For large deformation problems it is inconvenient

to refer a change in length to the initial “gauge” length of an element. Normalising the

change to an instantaneous dimension value (L) is commonly more useful and defines

true strain (ε, see equation (2.2)). A true strain increment dε is found by dividing an

instantaneous change in length (dL) by the instantaneous length of the element (L). The

actual value of ε is found by integrating this incremental expression between limits

(where L0 is the initial length of the element and L f is the final length), as shown in

equation (2.2). For small deformations, ǫ and ε are identical.

ǫ =
∆L

L0
(2.1)

ε =
∫ L f

L0

dL

L
= ln

L f

L0
(2.2)

When a material is extended in one longitudinal direction it will contract in the other

perpendicular lateral directions. Similarly, a compressive displacement will result in

an increase in the lateral thickness of the element. In figure 2.10, the lateral strain is

given by equation (2.3), where φ and φ0 are instantaneous and initial lateral dimension

values, respectively. S. D. Poisson19 discovered that in the elastic region of deformation,

ǫlong (the longitudinal strain) and ǫlat (the lateral strain) could be related by the constant

ν (Poisson’s ratio, see equation (2.4)). This constant can take any value in the range

0 ≤ ν ≤ 0.5. A theoretical material may have no lateral deformation when it is axially

loaded, giving the lower limit of ν = 0. The upper limit of ν (0.5) is enforced by the

definition of the bulk modulus (discussed later in section 2.3.1). No volume change

will occur during plastic yielding, therefore ν = 0.5 is assumed for plastic deformation

(discussed later in section 2.3.2).

Deformation may not only result in a change in dimension but also a change in the
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angle between two lines that were initially perpendicular. This is known as shear strain

(γ), described by equation (2.5). Figure 2.11 shows the shear strain for a 2D square

element of side length h. It is displaced by the force Fs a distance of a, resulting in a

parallelogram deformed element.

ǫlat =
φ0 − φ

φ0
(2.3)

ν = − ǫlat

ǫlong
(2.4)

γ ≈ tan θ =
a

h
(2.5)

Stress is a measure of force per unit area. Using SI units, it is defined in terms of

Newtons (N) per meter squared (m2), or more commonly known as Pascals (Pa). As

with strain, stress may act in a normal or shear direction, see figures 2.10 and 2.11,

respectively. A force F may be applied in a direction that is perpendicular to an area A,

giving rise to the normal stress σ (defined by equation (2.6)). For a shear stress τ, a force

(Fs) is applied parallel to a surface (of area As), see equation (2.7).

σ =
F

A
(2.6)

τ =
Fs

As
(2.7)
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De f ormation

F

L0

∆L A

F

φ0 φ

L

Figure 2.10: A cylindrical element undergoing deformation due to the application of a
normal load.

θ

a

h

Fs

As

Figure 2.11: The shear loading of a rectangular element3.

Often, it is necessary to define the stresses and strains which act on a body in multiple

directions. This is done through the use of tensors, which will be derived for strain and

stress in the following sections.

The Strain Tensor

A body is said to be deformed if there has been some change in its shape or volume due

to the application of a load. A body will deform to some extent with the application of

any load. In general, every point in a body experiences some translation in space when

18



the body is deformed. Consider a point in a body defined by the Cartesian coordinates

x = x1, y = x2 and z = x3. After the deformation, the same point has the coordinates

x = x́1, y = x́2 and z = x́3. The displacement vector (u) of the point may be given

by equation (2.8) in the direction i, where i = 1, 2, 3. Clearly, x́ is a function of x, and

therefore u is also a function of x.

ui = xi − x́i (2.8)

Suppose that two points in the body are now considered. The scalar distance

between these two points before and after deformation (dl and dĺ) would be given by

the difference in the point vectors dx and dx́, respectively (see equation (2.9)).

dl =
√

(

dx2
1 + dx2

2 + dx2
3

)

dĺ =
√

(

dx́2
1 + dx́2

2 + dx́2
3

)

(2.9)

The deformed vector dx́ is a function of dx, therefore dĺ2 = ∑
3
i=1 (dxi + dui)

2. The

deformation gradient in the direction i (dui) is found by summing the contributions

to ui in the directions x1, x2 and x3, i.e. dui = ∑
3
j=1
(

δui/δxj

)

dxj. Equation (2.10) is

found by substituting this into the expression for dĺ2 and expanding. Note that when

using Einstein notation, a summation (∑) is implied when an index is used twice in the

same term20. Equation (2.10) may therefore be written in a more compact form (see

equation (2.11)).

dĺ2 =
3

∑
i=1

(

dx2
i +

3

∑
j=1

(

2
δui

δuj
dxidxj +

3

∑
k=1

δui

δxj

δui

δxk
dxjdxk

))

(2.10)

dĺ2 = dl2 + 2
δui

δxj
dxidxj +

δui

δxj

δui

δxk
dxjdxk (2.11)

The second term in equation (2.11) is summed over two dimensions (i and j), is

symmetric and may be written in the form shown in equation (2.12). Equation (2.11)

may be written as equation (2.13) if this substitution is made, where uij is given by

equation (2.14). The tensor uij represents a normalised change in length (i.e. the change

in an element length) and is known as the strain tensor. It is more commonly given by

the symbol ε ij.

(

δui

δxj
+

δuj

δxi

)

dxidxj (2.12)

dĺ2 = dl2 + 2uijdxidxj (2.13)

uij = ε ij =
1
2

(

δui

δxj
+

δuj

δxi
+

δuk

δxi

δuk

δxj

)

(2.14)
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In most engineering situations, displacements are small in comparison to a com-

ponent’s dimensions, meaning the last term in equation (2.14) becomes small and is

negligible. The strain tensor can therefore be written as equation (2.15). The fully

expanded strain matrix may also be seen in equation (2.15). A generalised co-ordinate

system has been used here (directions 1, 2 and 3), however it may be transposed to any

system notation (such as x, y, z). Note that the shear strain components of the tensor ε

are those where i 6= j, equivalent to γ in section 2.3.1. For shear strains, deformation is

said to act on the ith plane in the jth direction. A co-ordinate system may be chosen for

the strain tensor such that all shear components are zero. In this case, only the diagonal

components (ε11, ε22 and ε33) have the potential to be non-zero. These are known as the

principal strains (acting in the principal directions 1, 2 and 3).

ε =
1
2

(

δui

δxj
+

δuj

δxi

)

=

∣

∣

∣

∣

∣

∣

∣

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

∣

∣

∣

∣

∣

∣

∣

(2.15)

The Stress Tensor

Consider the forces acting on the deformed body described in figures 2.10 and 2.11. The

presence of external loads (forces or temperature changes that would cause deformation)

acting on the body to deform it will mean that the atoms in the body cease to be in

a state of thermal equilibrium. Internal forces are generated in order to restore this

equilibrium21. The pressures caused by these internal forces applied over finite areas

are called stresses.

Forces may be split into two categories. Body forces act on a volume or mass

(examples of these are gravitational or electromagnetic effects), whereas surface forces

act over an area (for example, pressure). The total force applied to a body may therefore

be given by the volume integral (over the volume dV) of the vector F (the force per unit

volume) shown in equation (2.16). In order for continuity to be maintained, the forces

on an element of material can be considered to be applied on that elements surfaces

by the neighbouring elements. In short, the required resultant force may be given as a

surface integral21.

∫

FdV (2.16)

Each component of F may be integrated over a volume in the ith direction by
∫

FidV.

In the same way that the integral of a scalar over an arbitrary volume can be transformed

into a surface integral if the scalar is the divergence of a vector, a vector integrated over

a volume may be transformed into a surface integral if the vector is the divergence of a

second order tensor (see equation (2.17), where σik is a second order tensor known as the

stress tensor). A resultant force component may therefore be written as equation (2.18),

where the stress tensor σik is integrated over the surface element d fk
21.
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Fi =
3

∑
i=1

δσik

δxk
(2.17)

∫

FidV =
∮

σikd fk (2.18)

As discussed briefly in the introduction to section 2.3.1, stresses may be considered

to act in normal (perpendicular) or shear (tangential) directions. Components of stress

acting on a body are shown in figure 2.12, where a generalised co-ordinate system is

used (directions 1, 2 and 3). Note that the first of the indices in each stress component

will denote which surface the stress acts on and the second index defines the direction.

Elements of σik where i = k are therefore normal stresses. The stress tensor is expressed

by equation (2.19). A co-ordinate system may be chosen such that only the diagonal

components of the stress tensor are non-zero. Theses are known as principal stresses3.

The angular moment on the element shown in figure 2.12 should be equal to 0 for small

deformations (the body is in equilibrium). For this to be the case, shear stresses are

considered to act in complementary pairs, i.e. σij = σji when i 6= j. The stress tensor is

therefore diagonally symmetric with six independent real values.

σ =

∣

∣

∣

∣

∣

∣

∣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

∣

∣

∣

∣

∣

∣

∣

(2.19)

3

2

1

σ33

∆3

∆1

∆2

σ32
σ31

σ22

σ23

σ21

σ13

σ12
σ11

Figure 2.12: The resolved stresses acting on a cubic element3.
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The stress tensor itself may be divided into a hydrostatic (or mean) and deviatoric

tensors. Hydrostatic stresses represent the tensile or compressive state of a loaded body,

giving rise to a change in its volume. Deviatoric stresses represent the shear stress state

causing a distortion of the body (a change in its shape). The mean stress (σm) is given

by the average of the normal stresses (equation (2.20)). All non-diagonal components

of the hydrostatic stress tensor are zero and the diagonal components are equal to σm

(the hydrostatic stress tensor is isotropic). The deviatoric stress tensor (Sij) is found by

subtracting σm from the normal components of σ, as shown in equation (2.21). Note that

the symbol δij is known as the Kronecker delta and is defined by equation (2.22)3.

σm =
σ11 + σ22 + σ33

3
(2.20)

Sij = σij − σmδij (2.21)

δij =







1, if i = j.

0, if i 6= j.
(2.22)

Elasticity

Stresses and strains have been defined in the previous sections based purely on static

and geometric relationships, however they may be related to one another by a material

behaviour model. These material models are known as constitutive equations3. For

small displacements, deformations are recoverable (i.e. the body will return to its

original shape and size upon the removal of the load) and is said to be elastic. Larger

deformations may result in yielding of a material. This permanently alters the structure

of the material, meaning that after the load is removed there will be some residual (un-

recovered) deformation. This type of deformation is said to be plastic (see section 2.3.2).

For elastic deformations (which are dependent on the stretching of inter-atomic

bonds21), Hooke’s law (named in honour of its originator Robert Hooke22) may be

used to relate stress and strain. In a one dimensional case, a stress (σ) may be found

from a corresponding elastic strain (ε) by a material dependent constant (E). This

material constant is known as the modulus of elasticity or Young’s modulus (named

after Thomas Young who investigated this phenomenon extensively). The proportional

relationship between σ and ε is shown in equation (2.23). Young’s modulus can be

determined from tensile material tests. A material sample will initially deform with a

linear relationship between stress and strain (provided stresses are less than the yield

stress σY are considered). The gradient of this linear deformation is equal to E (see

figure 2.13).

σ = Eε (2.23)
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Figure 2.13: A typical elastic/plastic behaviour of a metallic material in stress/strain
space18.

Poisson’s ratio has been introduced earlier to relate strains in the normal and trans-

verse directions. Therefore, using the one-dimensional definition of Hooke’s law and

Poissons ratio, a generalised three dimensional version of Hooke’s law can be derived

(see equation (2.24)). This allows for the calculation of the elastic strain in one of the nor-

mal directions (1, 2 or 3) using the three stresses in the normal directions (or vice versa).

It is assumed here that the material is isotropic (the material has the same properties

in all directions) and homogeneous (there is no variation in material properties over

the body). While some degree of anisotropy and inhomogeneity is common in metallic

materials, these assumptions are often applied to analysis problems and are used in the

present work3.

ε11 =
1
E
[σ11 − ν (σ22 + σ33)]

ε22 =
1
E
[σ22 − ν (σ11 + σ33)]

ε33 =
1
E
[σ33 − ν (σ11 + σ22)]

(2.24)

An elastic shear strain can be related to a shear stress by the modulus of elasticity

in shear (G, determined from torsion tests3). The linear relationship between shear

stress and strain can be seen in equation (2.25). If an element under pure shear is

considered (i.e. the normal stresses are equal to 0) it can be shown (by orientating the

material element correctly) that the maximum and minimum principal stresses are ±σij

(where σij is the pure shear stress that was originally applied, therefore i 6= j), with

an intermediate principal stress equal to zero. Substituting these values into Hooke’s

law (equation (2.24)), the maximum strain is found to be equation (2.26). Through

rearrangement of this expression, a relationship between E, ν and G can be derived as
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shown in equation (2.27)18.

σ12 = Gε12

σ23 = Gε23

σ13 = Gε13

(2.25)

εmax =
σij

E
(1 + ν) =

ε ij

2
(2.26)

G =
E

2 (1 + ν)
(2.27)

Another important quantity that describes elastic deformation is the bulk modulus K.

If the principal strains in Hooke’s law are summed, the change in volume or volumetric

strain (∆, also known as the hydrostatic dilation), may be determined. K is a ratio

between the hydrostatic stress and the volumetric strain. Noting equation (2.28) and re-

calling the definition of σm (equation (2.20)), an expression for K can be derived in terms

of E and ν, see equation (2.29)3. Most metals have a Poisson’s ratio of approximately a

third, therefore K ≈ E. If a material experiences no volume change under hydrostatic

loading it will have a K value equal to infinity. A theoretical maximum for ν therefore

exists at 0.518.

∆ =
1 − 2ν

E
(σ11 + σ22 + σ33) (2.28)

K =
E

3 (1 − 2ν)
(2.29)

2.3.2 Plasticity

If the yield stress of a material (σY) is exceeded during loading, inter atomic bonds will

be broken and reformed21,23. This causes a permanent change to the structure of the

material. If the load is removed, elastic deformation will be recovered however there

will be some un-recovered “plastic” deformation (as shown in figure 2.14). When the

load is removed after elastic/plastic deformation, the stress in the material element will

linearly approach zero with a gradient equal to the linear elastic deformation gradient

(Young’s modulus E, see figure 2.14)23.
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Figure 2.14: Representations of elastic/plastic behaviour and the effect of unloading
after plastic deformation23.

Several models have been proposed to approximate this behaviour, the simplest

being the elastic-perfectly-plastic model shown in figure 2.14 where no hardening

behaviour is assumed and prolonged elongation of the specimen accumulates plastic

strain with no increase in stress (defined mathematically by Melan24,25 and based on

the work of Prandtl25,26). Potentially large errors in plastic stresses and strains are

noticed however if these simple models are applied, therefore some form of hardening

is required. The modelling of hardening is often dependent on the concept of a yield

surface, which will now be introduced.

It is a relatively easy matter to estimate at what stress a material begins to yield

from a uniaxial tensile test by observing the point the stress versus strain curve begins

to become non-linear. In many situations however, loads will act in several directions

simultaneously. Generalised criteria are therefore required to estimate when multiaxial

yielding will occur. These are known as yield criteria. It is important to note that yielding

will occur due to shear loading as plasticity is controlled by the motion of dislocations

(recall the crystallographic slip described in section 2.2.2). As plasticity is a shearing

process, it will not be dependent on the hydrostatic stress σm (see the definition of the

deviatoric stress in equation (2.20)). As only hydrostatic stress alters a body’s volume,

plasticity can be regarded as a constant volume process23.

Two yield criteria are presented here which are applicable to ductile materials,

namely the Tresca and von Mises yield criteria, shown in figure 2.1527. The Tresca

criterion (also known as the maximum shear stress criterion) assumes that yielding will

occur when the maximum shear stress reaches a critical value (σY). In short, yielding

will occur if one of the conditions shown in equation (2.30) are met, where σ1, σ2 and

σ3 are the principal stresses. Alternatively, the von Mises criterion is determined by

assuming that yielding will occur when a maximum shear strain energy is exceeded,
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see equation (2.31)27. This work was based on the total strain energy components

proposed by Huber and the observation of Maxwell that plasticity is not dependent on

the hydrostatic component of this strain energy27. There is a great deal of experimental

evidence, collected by observing yielding under multiaxial conditions, that supports the

von Mises yield criterion, particularly in metals3,27.

Given that yielding is not dependent on the hydrostatic stress yield criterion, when

plotted in principal stress space (i.e. with axis directions σ1, σ2 and σ3), will be prismatic

with the hydrostatic axis (σ1 = σ2 = σ3) along its centre (see figure 2.15 (a)). A yield

surface may be considered if the prism is viewed down the hydrostatic axis, known

as the deviatoric plane (see figure 2.15 (b))28. It is common to view the yield criterion

on the deviatoric plane so that critical deviatoric components of stress can be easily

observed, along with any changes to the yield surfaces as a result of hardening .

|σ1 − σ2| > σY

|σ2 − σ3| > σY

|σ3 − σ1| > σY

(2.30)

σY =
1√
2

√

(σ11 − σ22)
2 + (σ22 − σ33)

2 + (σ33 − σ11)
2 + 6

(

σ2
12 + σ2

23 + σ2
31

)

(2.31)
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Figure 2.15: The Tresca and von Mises yield criteria in principal stress space, showing
(a) the yield prisms and (b) the yield surfaces viewed from a deviatoric (π) plane (the
hydrostatic axis points out of the page).

The effect of the hydrostatic stress on the yield criterion can be verified by considering

figure 2.16. The von Mises criterion is shown here for a body with an arbitrary stress B

applied (represented by the vector ~OB). It is clear that the vector ~OA is the hydrostatic

component of ~OB and ~AB is the deviatoric component. Note that every point on the

deviatoric plane has the same hydrostatic stress. If a second stress (D) is considered,

it is evident that ~AB = ~CD. In other words, although the stress D is greater than B,

no yielding has occurred as the deviatoric components of the stresses are the same in

both cases. To consider yielding, a single deviatoric plane is therefore required. This

reference plane is known as the π plane and has a zero hydrostatic stress (σm = 0, see

figure 2.15) (b)28.
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Figure 2.16: An illustration of the effect of hydrostatic stress on the von Mises yield
criterion28.

When a material hardens (note that harden is used as a general term and could

involve the physical softening of a material) the yield surface undergoes some form of

change. How this change is represented is dependent on the material model applied

and is defined by the yield function. Two distinct forms of yield surface alteration are

observed, the effects of which can be seen in principal stress space in figure 2.17. Given

some initial yield condition, isotropic hardening (figure 2.17 (a)) will cause the uniform

expansion of the yield surface29–31. Kinematic hardening on the other hand will not

affect the size of the yield surface but rather its orientation29–31, causing an offset in some

direction (figure 2.17 (b)). It has been remarked that in the initial stages of plasticity,

kinematic effects will be the dominant hardening mechanism, however isotropic effects

will become more pronounced under cyclic conditions (see section 2.3.4)32,33. The

models presented here for the description of hardening under a monotonic plastic

load are therefore largely concerned with describing the translation of a yield surface

(kinematic hardening).
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Figure 2.17: Types of yield surface alteration (hardening) due to the application of plastic
strain, showing (a) isotropic hardening and (b) kinematic hardening.

Considering the scenario where combined isotropic and kinematic hardening beha-

viour takes place, equation (2.32) can be derived for a limiting case32,34. Note that, so

long as f is less than or equal to zero, no hardening takes place and the deformation is

assumed to be elastic.

f = φ
(

σij − αij

)

− F (β)− k = 0 (2.32)

where αij represents a translation in the yield surface (due to kinematic hardening)

and β is a scalar quantity that defines the size of the yield surface (that may be altered

due to isotropic hardening). The quantity k represents the initial size of the yield

surface. The function φ determines a scalar equivalent for the difference between the

centre of the yield surface (defined by αij) and the applied stress (σij)35. Clearly, if αij

is equal to 0, pure isotropic hardening will be predicted, and if β remains constant,

pure kinematic work hardening is modelled32. In the short term, kinematic work

hardening is the more realistic as it accounts for the Baushinger effect (where a variation

in yield stress is observed when plastic loads are cycled) and anisotropy due to plastic

deformation32, however its predictive capability can be compromised if more complex

loading histories are considered. Prager suggested equation (2.33) for the yield surface

translation increment (dαij)36.

dαij = cdεp ij (2.33)

The translation increment is dependent on a material constant c, known as the

hardening modulus32, and the increment of plastic strain (dεp ij). The yield surface is

taken to translate in the direction on the outward unit normal to the yield surface32 (see

figure 2.18). Note this direction is distinctly different to the modification proposed by

Ziegler, where the yield surface translation increment is dependent on a multiplier (dµ)
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that is greater than zero and will move in the direction of a vector between the centre

of the yield surface and the stress point37, see equation (2.34). Note that a Tresca yield

criterion is used in figure 2.18 to highlight the difference between an increment normal

to the yield surface (known as the normality rule, as used in Prager’s model) and an

increment in the direction of the stress vector (as it is in Ziegler’s model).

dαij = dµ
(

σij − αij

)

(2.34)

σ1

σ2

αij

dαij Prager

dαij Ziegler

σij

Figure 2.18: An illustration of the differences in the Prager and Ziegler hardening models
when applied to a Tresca yield surface.

According to the classical normality rule (which has been shown to be a good

approximation of plasticity in metals), plastic strain increments will accumulate in the

direction of the normal to the yield surface3, and can be determined by equation (2.35)34.

The direction of the plastic strain increment (dεp) is given by
δ f

δσ
, with plastic strain

magnitudes dependent on the plastic multiplier (dλ).

dεp = dλ
δ f

δσ
(2.35)

For conformity to other models, the translation of the yield surface is redefined as the

kinematic stress tensor χ, or back stress as it is more commonly called (α = χ). Returning

attention to the Prager model and considering the normality rule, an expression for the

plastic strain increment can be derived. To reiterate with the new notation, the Prager

model for kinematic hardening can be expressed by equation (2.36)36.
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f = φ
(

σ − cεp

)

− k = 0

χ = cεp

∴ dχ = cdεp

(2.36)

By noting the limiting condition of (d f = f = 0), the plastic multiplier can be

determined from the normality rule34, shown in equation (2.37) (note the : operator is

the double dot product).

d f =
δ f

δσ
: dσ − δ f

δσ
: dχ =

δ f

δσ
: dσ − δ f

δσ
: cdεp = 0 (2.37)

Replacing the expression for plastic strain increment with that is defined by the

normality rule34, equation (2.38) can be found.

δ f

δσ
: dσ − δ f

δσ
:

δ f

δσ
dλc = 0

∴ dλc = H( f )

〈

δ f

δσ
: dσ

〉

c

(

δ f

δσ
:

δ f

δσ

)

(2.38)

Note the Heaviside step (H) function in equation (2.38) has a value of 0 if its argument

is negative and unity if the argument is greater than or equal to 0. Through the use of

this function, plastic strain is ensured to only accumulate when a 0 value of the yield

function is realised (i.e. there is no plastic flow in the elastic domain). The McCauley

brackets can be defined for an argument u by equation (2.39).

〈u〉 = uH(u) (2.39)

Prager’s model exhibits linearity in stress strain predictive behaviour, and as such

encounters problems when used in connection with complex loading patterns, particu-

larly when loading and subsequent unloading actions are applied along different stress

paths34. A Prager kinematic hardening behaviour law will predict, in the case of altern-

ating plastic strain, that steady-state behaviour will be realised after a single loading

cycle32. This is clearly at odds with experimentally observed results (see figure 2.19).
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σ

ε

Experimental

Prager

Figure 2.19: A comparison of Prager’s model and experimental data for a uniaxial
specimen under a reversed plastic load34.

Armstrong and Frederick proposed a non linear model that addressed this discrep-

ancy (see equation (2.40)). The yield surface increment will be normal to the yield

surface and contains both a linear term (
2
3

C1dεp ij which is similar to Prager’s model

shown in equation (2.33)) and a non linear feedback term38.

dχij =
2
3

C1dεp ij − C2χijdp (2.40)

2.3.3 Creep

While elastic and plastic deformations are instantaneous, some deformation mechanisms

are time dependent. At elevated temperatures metals, even when loaded below the

yield stress, can deform inelastically (that is to say, a deformation that is not recovered

upon the removal of the load). This mechanism is termed creep and is a major concern

for operators of high temperature components.

Creep is usually said to initiate at approximately 40% of the melting temperature

of a material (Tm)11,20. The most fundamental method in characterising this behaviour

is the constant temperature, constant stress (below the material’s yield stress) uniaxial

creep curve11,15,20, found by testing a specimen to rupture (failure). Generally, it is the

mathematical properties of this curve and the related physical phenomenon that allow

material constants to be derived for constitutive models, paying particular attention to

the local strain rates. A typical uniaxial creep curve, originally described by Andrade in

191039 is given in figure 2.20.

After an initial instantaneous recoverable (elastic) deformation (ε0), the uniaxial creep

curve can be considered to comprise of three distinct regions, with a different physical

mechanisms controlling creep strain evolution in each zone11,15,20. Primary creep is

characterised by a monotonic decrease in creep strain rate, shown in figure 2.20 as region
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I. This is caused by the hardening of the material11. Various hardening mechanisms

have been described in section 2.2.2, however the exact mechanism depends on the

particular operating environment of the material. During secondary or steady-state

creep (marked as I I in figure 2.20), the rate of strain hardening is balanced by the rate

of recovery, hence causing a constant minimum creep strain rate (ε̇c min). Tertiary creep

(region I I I in figure 2.20) represents the finial zone where creep strain increases to failure.

It is commonly associated with the formation of microscopic voids and cracks and thus

most damage accumulation takes place in this period20. Although it may be assumed

on first glance that the acceleration of strain rates in the tertiary creep region is due to

the localised necking of a specimen (the reduction in area in a constant load test would

give rise to an increase in stress), a tertiary region is still noted in tests where loads are

adjusted to keep the stress constant. The formation of creep voids would give rise to a

reduction in cross section area that is not related to a constant volume necking process,

hence a loss in load carrying capability and the tertiary region still being observed.

εc

t

I
I I

I I I
ε0

t f

Rupture

Figure 2.20: A typical constant temperature and load uniaxial creep curve, as identified
by Andrade, showing primary, secondary and tertiary creep regions11,20.

Creep behaviour has a strong dependency on stress (although it is not agreed that

creep occurs at all stresses, including very low stress cases). Generally, an increase in

stress results in a reduction in the time it takes for a specimen to fail (t f , see figure 2.21

(a)) and an increase in the amount of creep strain (εc) required for the specimen to

fail. Similarly, steady-state or minimum creep strain rates (ε̇c min) are reduced with a

reduction in stress (see figure 2.21 (b))20.
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t

σ1
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σ2

(a)

ε̇c

t

σ1

σ3

σ2ε̇c min σ=σ1

ε̇c min σ=σ2

ε̇c min σ=σ3

(b)

Figure 2.21: The effect of stress on uniaxial creep behaviour in constant temperature
specimens, showing (a) the effect on creep strain (εc) and (b) the effect on creep strain
rate (ε̇c). Note that σ1 > σ2 > σ3.

The physical mechanisms that control creep are greatly dependent on the operating

environment that the material is subjected to. The effects of both stress and temperature

were described by Ashby and co-workers40 through the development of the deform-

ation mechanism map. While the exact boundary locations in this map are material

dependent, some general comments may be made based on the example schematic

shown in figure 2.22. Note that in these diagrams stresses are commonly normalised

to the material’s shear modulus (G) and operating temperatures (T) are normalised to

the material’s melting temperature (Tm). A detailed explanation of several deforma-

tion mechanisms on an atomistic level is given in section 2.2.2. Above a certain stress

threshold, “instantaneous” plastic behaviour is assumed to take place through dislo-

cation glide. Below this threshold, creep occurs either by diffusion of matter or, as is

more common in industrial cases, by the motion of dislocations (see section 2.2.2)29.

Diffusion creep generally takes place a very low stresses and can be broadly described

for a polycrystalline material as the atomic diffusion of matter, directed by stress, acting

to elongate the material’s grains in the loading direction. Several mechanisms exist

for diffusion creep. For example, the Coble creep mechanism41 describes the diffusion

of matter or vacancies at the grain boundaries only. At higher temperatures, Naberro-

Herring42,43 creep may initiate, whereby matter and vacancies diffuse through the lattice.

A third mechanism, known as the Harper-Dorn42,43 mechanism has also been observed

in some cases and predicts the viscous flow of a metal at rates far greater than those

suggested by the Naberro-Herring mechanism.
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Figure 2.22: A simplified defamation mechanism map for creep behaviour, established
by Ashby3,40,44.

Primary creep strains may be described by equation (2.41)20, where A, n and m are

material dependent constants. This formulation may be used to highlight two different

approaches for cases where the applied stress changes during creep. Equation (2.41)

may be differentiated with respect to time (t) to give an expression for the creep strain

rate (ε̇c), see equation (2.42). This is the time hardening approach, which can be seen

graphically in figure 2.23 (a). When the creep stress changes, the metal’s creep strain

rate is assumed to be the same as the creep strain rate of a sample that has undergone

no variable stress creep deformation at the same time instant. In figure 2.23 (a), the

lines ~AA′ and ~BB′ would be equivalent. Equation (2.41) may be rearranged to give

equation (2.43). This term for time may be substituted into equation (2.42) to give

equation (2.44); an expression for the strain hardening approach (see figure 2.23 (b)).

Creep strain rates here are not compared at a time instant but rather at creep strain

values. Again, ~AA′ and ~BB′ would be equivalent20. In practice, strain hardening tends

to give a better prediction of short term “step up” or “step down” effects than the time

hardening mechanism. In some cases, an average of both approaches has been proven

to give the best predictions (this is known as combined hardening).

εc = Aσntm (2.41)

ε̇c = Amσntm−1 (2.42)
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t =
( εc

Aσn

)

1
m (2.43)

ε̇c = mA1/mσn/mε
(m−1)/m
c (2.44)

t

σ

σ1 → σ2

σ2

σ2 → σ1

t

t

σ1

εc
B

B′

A′

A

εc

B
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A′

A

σ1

σ2

σ1

σ2

(a)

t

σ

σ1 → σ2

σ2

σ2 → σ1

t

t

σ1

εc

B
B′

A′
A

εc
B

B′
A′A

σ1

σ2

σ1

σ2

(b)

Figure 2.23: Representations of (a) time hardening and (b) strain hardening behaviour
in variable stress creep deformations.

Several parametric procedures have also been applied to creep phenomenon. For ex-

ample, the Monkman-Grant45 relationship can be used relate the minimum creep strain

rate of a uniaxial creep test (ε̇c min) to the time to failure (t f ), as shown in equation (2.45),

where m and C are material constants.

C = log t f + m log ε̇c min (2.45)

Alternatively, the Larson-Miller parameter46 allows for the characterisation of creep

rupture times without defining load or stress. Generally, the Larson-Miller parameter

can be calculated using equation (2.46), where t f is the time to failure (in hours), T is

the temperature of the specimen (in Kelvin), C is a material constant and LMP is the

Larsson-Miller parameter.

LMP =
T
(

C + log t f

)

1000
(2.46)
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While parametric descriptions of creep are useful for determining overall trends

in data, constitutive material models (particularly those that can represent multiaxial

stress states) can be applied to component analysis problems in order to approximate

a response to a loading condition. Building on the work of Bailey47,48 and assuming

that high temperature creep takes place with a constant material volume49, Norton50

proposed equation (2.47) to represent the primary and secondary creep strain rates

observed in uniaxial creep tests. This was later generalised to the multiaxial case

by Odqvist51 using the flow rule (see equation (2.48)). Note that σEQ and Sij are the

von Mises equivalent stress (see equation (2.31)) and the deviatoric stress component,

respectively. The material constants A, n and m are known as the stress multiplier, stress

exponent and time exponent, respectively. This type of expression is known as a power

law due to the use of exponents. Temperature dependency may be estimated by the

implementation of an Arrhenius type function3 shown in equation (2.49), where Qc is

the material dependent creep activation energy, R is the universal gas constant and T is

the temperature11.

ε̇c = Aσntm (2.47)

ε̇c ij =
3
2

Aσn−1
EQ Sijt

m (2.48)

ε̇c = Aσntme
−

Qc

RT (2.49)

Due to the degenerative action of tertiary creep, the perdition of the full creep curve

often requires the concept of “damage” to be introduced. Models that incorporate dam-

age have been shown to be highly useful not only in the field of creep strain prediction

but also in creep crack growth problems52. The constitutive equations proposed by

Kachanov53 and later modified by Robotnov54,55 (for simplicity hereafter referred to

as the Kachanov model, expressed in equations (2.50) and (2.51)) provide a relatively

simple introduction to the field of creep damage evolution as a method of life estimation.

Multiaxial forms of the Kachanov model were later suggested by Leckie and Hayhurst56.

dεc ij

dt
= ε̇c ij =

3
2

A

(

σEQ

1 − ω

)n Sij

σEQ
tm (2.50)

dω

dt
= ω̇ = B

σ
χ
R

(1 − ω)φ
(2.51)

where εc ij, Sij, σEQ are the multiaxial creep strain component, deviatoric stress

component and the von Mises equivalent stress, respectively. The damage parameter, ω

(initially proposed by Kachanov53 but reconfigured to the form shown by Robotnov54),

represents the condition of the specimen, and can most readily be considered as a
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measurement of micro-cracks and micro-voids57–59. In the presented form, this damage

parameter will take the value of 0 for a virgin, undamaged material element and 1

for a completely failed element54. As shown above, the evolution of this parameter is

dependent on the rupture stress, σR , which is defined in equation (2.52).

σR = ασ1 + (1 − α)σEQ (2.52)

The triaxial material constant, α (which lies between 0 and 1), determines the value

of the rupture stress by quantifying the contributions from σ1 and σEQ, the maximum

principal stress and equivalent von Mises stress, respectively. The material constants

A, m and n control primary and secondary creep, and are similar to the Norton’s law

material constants, whereas the remaining constants (namely B, χ and φ) control failure

through an accelerating tertiary creep strain rate53.

As can be clearly seen in the constitutive equations (equations (2.50) and (2.51)), there

is an inverse dependency of (1 − ω) for the creep strain and damage rates. Therefore,

as the damage parameter ω approaches unity, the strain/damage rate will increase,

approaching infinity60,61. If this is taken to its logical conclusion in terms of FE analyses,

commercially available programs will limit the time steps taken as the rate quantities

increase, thus greatly increasing computing time (in effect, analyses will cease only when

some minimum limit on step duration is surpassed, not because the damage parameter

has achieved unity). This effect can be reduced by applying some limit to damage,

say 0.99, implying that should the damage values at the Gauss points of an element

reach such a high value the load carrying capability will be critically impaired for that

element and load will be shed onto lower damage sections and ligaments61. This process

however can make failure criterion subjective and, while not infinite, damage rates will

still be high as damage approaches the imposed limit, greatly increasing computing

time.

The Liu-Murakami creep damage model attempted to address the issue of high

strain/damage rates as the damage parameter approaches unity. It can be used to repres-

ent primary, steady-state and tertiary multiaxial creep, characterised by equations (2.53)

and (2.54)62.

ε̇c ij = cB́σń−1
EQ Sije

−ct̄ +
3
2

Aσn−1
EQ Sij exp

[

2(n + 1)

π
√

1 + (3/n)

(

σ1

σEQ

)2

ω3/2

]

(2.53)

ω̇ =
B [1 − e−q2 ]

q2
σ

p
Re(q2ω) (2.54)

where c, B́ and ń are material constants representing primary creep and A, n, q2

and p are material constants describing secondary and tertiary creep62. While t̄, the

so called fictitious time, can de ambiguous in nature, it is true that for constant stress
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conditions, t = t̄63. Due to its small contribution to total creep strain however, primary

creep is usually neglected by removing the addition term dependent on fictitious time

(equation (2.55)), hence giving a more simplified version of the Liu-Murakami strain

rate equations64.

ε̇c ij =
3
2

Aσn−1
EQ Sij exp

[

2(n + 1)

π
√

1 + (3/n)

(

σ1

σEQ

)2

ω3/2

]

(2.55)

The use of an exponential damage term in the Liu-Murakami model means that

damage rates at failure are far less than those observed in Kachanov’s model (an example

of this difference can be seen in figure 2.24). This greatly aids in reducing computing

time when attempting to perform damage analyses. Note that rupture stress, σR, takes

the same form as in the Kachanov model (equation (2.52)), with multiaxial behaviour

being represented again by the material constant α.

ω

1

t t f

Kachanov

Liu Murakami

Figure 2.24: A comparison of damage accumulation rates in the Kachanov and Liu-
Murakami creep damage models.

Unlike the Kachanov-Robotnov and Liu-Murakami models, Dyson’s model uses

a hyperbolic sine function (as opposed to a power law)65–67. Based on the model

proposed by Othman, Hayhurst and Dyson, this revised model attempted to address a

discrepancy observed between experimental and predicted failure times if minimum

strain rates are fitted to with good accuracy (or vice versa)65–67, and provides a method

of representing primary, secondary and tertiary creep regions through the use of several
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internal variables (see equations (2.56) to (2.59)).

ε̇c ij =
3
2

A

(

Sij

σEQ

)

sinh
(

Bσ(1 − H)

(1 − ω2)(1 − φ)

)

(2.56)

dH

dt
= Ḣ =

h

σEQ
εc EQ

(

1 − H

H́

)

(2.57)

dφ

dt
= φ̇ =

Kc

3
(1 − φ)4 (2.58)

dω2

dt
= ω̇2 = DNεc EQ

(

σ1

σEQ

)ν

(2.59)

In this model, a total of three state variables are employed. Note the variable N is

included to be equal to 1 in a tensile loading condition and 0 at all other times, thus

ensuring damage accumulates only in tensile loading. The parameter H represents

strain hardening during primary creep, and evolves from 0 at the beginning of loading

to a saturation value of H́ at the end of primary creep. This value is then maintained

throughout the rest of the creep life. The remaining state variables represent carbide

precipitate spacing, or ageing, (φ, taking some value in the range 0 < φ < 1) and

intergranular cavitation damage (ω2). It is worth noting that the failure value for this

second damage variable is dependent on the loading condition, taking a value of 1/3 in

uniaxial cases and 1 in multiaxial stress states. Multiaxial behaviour is not accounted

for by a rupture stress and instead by the quantity ν in the cavitation damage equation

(equation (2.59)). Note that this can take any positive value, and is not limited to a

range of 0 to 1 (as is the case for α)65–67. An equivalent creep strain, εc EQ, can be found

using the von Mises equation (equation (2.31)) and substituting stress values for strain

components. By using a sinh function (as opposed to a power law), Dyson’s model has

the potential to give a better estimation of creep behaviour over a wide stress range65.

This topic is discussed in greater detail in chapter 4.

An alternative material model was proposed by Evans and Wilshire and is known

as the θ projection method68. This has been used in many analysis problems, including

stochastic cases where small variations in material properties may be observed69–72.

The model can be described by equations (2.60) and (2.61). Note that σEQ and εc EQ

are the von Mises equivalent stress and strain, respectively, t is time, T is temperature.

The quantities θ1, θ2, θ3 and θ4 are defined by a total of 16 material constants, generally

signified by aij, where i = 1, 2, 3, 4 and j = 1, 2, 3, 4. This model has been shown to be

particularly adept at predicting full uniaxial creep strain curves and including stress and

temperature dependencies. In a damage model described by Evans and Evans, internal

variables representing hardening, damage and thermal softening were be related to the

quantities θ1, θ2, θ3 and θ4
72. Empirical relationships have been developed for uniaxial

and biaxial stress conditions that would potentially allow for the direct evaluation of
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the θ projection parameters. Despite this, extensive testing programs are still required to

estimate all material constants.

εc EQ = θ1 [1 − exp (−θ2t)] + θ3 [exp (−θ4t)− 1] (2.60)

ln θi = ai1 + ai2σEQ + ai3T + ai4σEQT (2.61)

2.3.4 Fatigue

Until now only monotonic loads have been considered, that is to say a load which

only increases (such as in a tensile plasticity test) or maintains a steady value (such

as in a creep test). In many cases however, loads will fluctuate and cycle through a

component’s life. The potential for plastic strain accumulation during this loading can

result in degradation of a material (i.e. a loss in load carrying capability) and ultimately

failure. This mechanism is known as fatigue (in particular, low cycle fatigue, which is

most relevant to the present work). It has been discussed already that this mechanism is

dependent on the initiation and propagation of transgranular cracks (see section 2.2.2).

Several material models will be presented in this section that can represent the complex

hardening behaviour that may be witnessed in fatigue load cases.

A typical fluctuating load (stress) that could cause fatigue in a material is presented

in figure 2.25. The critical parameters in this figure are defined in equation (2.62), namely

the stress range (∆σ), the stress amplitude (σa) and the mean stress (σmean). Additionally

the fatigue stress ratio (Rσ) is defined in equation (2.62).

σ

σmax

σmin

σmean

σa

∆σ

t
0

Figure 2.25: A stress waveform that may give rise to fatigue behaviour.
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∆σ = σmax − σmin

σa =
σmax + σmin

2

σmean =
∆σ

2

Rσ =
σmin

σmax

(2.62)

Building on the work of Albert73, Rankine74 and Hodgkinson75 in the 19th century,

Wohler16,76 established the well known S-N diagram and the concept of a fatigue limit.

Here, a fully reversed (σmean = 0, Rσ = −1) fatigue test is conducted for a particular

σa, with the number of cycles to failure (or crack initiation) recorded. This procedure

is repeated for an alternative σa value. An example S-N diagram is presented in fig-

ure 2.26. The relationship drawn from this diagram, which was verified experientially

by Bauschinger, is that a reduction in ∆σ leads to an increase in the number of cycles that

can be applied to the material before failure by fatigue occurs (N f )77. The endurance

limit for some materials suggests that, below a certain stress range, failure by fatigue

will either not occur or will require a very large number of cycles.

N f

∆σ

∆ε
∆εp

ε

σ

∆ε
∆εp

ε

σ
∆ε
∆εp

ε

σ

Figure 2.26: An example Wohler diagram76.

Mean stress has a significant effect on the number of cycles a component can with-

stand before failing due to fatigue, therefore several relationships have been established

between σa and σmean. Using these (or similar relationships), safe operating conditions

can be estimated for a component that may be susceptible to the fatigue mechanism.
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Graphical interpretations of three major relationships, namely the Gerber78, Goodman79

and Soderberg80 models, can be seen in figure 2.27. The controlling equations of the

Gerber, Goodman and Soderberg models are given in equations (2.63) to (2.65), respect-

ively, and are generally dependent on the quantity σa Rσ=−1. σa Rσ=−1 is a reference

stress amplitude and is equivalent to the fully reversed (σmin = −σmax) stress amplitude

that would result in the same fatigue life as the σa − σmean combination81. Alternative

methods were suggested by Smith-Watson-Topper82 and Walker83 using the maximum

stress (σmax) in a loading profile, shown in equations (2.66) and (2.67), respectively. Note

γ in Walker’s model is a fitting constant (when γ = 0.5 Walker’s model simplifies to

the Smith-Watson-Topper model). A fatigue life (N f ) may in turn be estimated using

Basquin’s relationship84, shown in equation (2.68), where σ́f and b are material depend-

ent fitting constants. A similar relationship to Basquin’s relationship was formulated by

Coffin and Masson85,86 in 1954 (see equation (2.69)) and relates a plastic strain range

∆εp (see figure 2.27) to the fatigue life (N f ) by the fitting constants έ f and c.

σa = σa Rσ=−1

(

1 −
(

σmean

σUTS

)2
)

(2.63)

σa = σa Rσ=−1

(

1 −
(

σmean

σUTS

))

(2.64)

σa = σa Rσ=−1

(

1 −
(

σmean

σY

))

(2.65)

σa Rσ=−1 =
√

σmaxσa

σa Rσ=−1 = σmax

√

1 − R

2

σa Rσ=−1 = σa

√

2
1 − R

(2.66)

σa Rσ=−1 = σ
1−γ
max σ

γ
a

σa Rσ=−1 = σmax

(

1 − R

2

)γ

σa Rσ=−1 = σa

(

2
1 − R

)1−γ

(2.67)

σa Rσ=−1 = σ́f

(

2N f

)b (2.68)

∆εp

2
= έ f

(

2N f

)c (2.69)
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Figure 2.27: Example constant life design models for fatigue loading problems.

A drawback to the parametric and empirical methods described thus far is the large

amount of experimental data that must be generated in order to define, say, the Wohler

diagram. As with creep, constitutive models have greater applicability in component

analysis problems, particularly in cases where load cycles are not uniform (for example,

load amplitudes may change during a component’s life). Building off the work of Prager

(see section 2.3.2), Mroz proposed the concept of “field of work hardening moduli”32.

Rather than a single effective plastic modulus being assumed (as with Prager’s model),

the hardening curve is approximated by several linear sections, each relating to a

different plastic modulus (see figure 2.28 (a)). Mathematically, this can be represented

in stress space by a collection of L circles (see figure 2.28 (b) and equation (2.70)), each

defined by a yield function in the form of equation (2.36)32.

f (0) = φ
(

σij − χ
(0)
ij

)

−
(

k(0)
)

= 0

f (1) = φ
(

σij − χ
(1)
ij

)

−
(

k(1)
)

= 0

...

f (L) = φ
(

σij − χ
(L)
ij

)

−
(

k(L)
)

= 0

(2.70)

Note that equation (2.71) is also true.

dλ0
δ f0

δσ
= dλ1

δ f1

δσ
= · · · dλL

δ fL

δσ
= 0 (2.71)

For an initially isotropic material, these surfaces are similar and share the same

origin32. Surfaces are assumed to be unable to intersect and instead, if contact is made,

multiple surfaces will consecutively connect with subsequent surfaces and move as one.

As the stress point traverses stress space, it will come into contact with the first yield
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surface ( f (0)) if the elastic domain limit is exceeded, indicating the onset of yielding

and thus altering the gradient of the stress strain plot (see figure 2.28 (a)) to the first

plastic modulus. This “active” surface will translate (by the amount d fm) along the

vector connecting stress point considered and the corresponding stress point on the

following surface. By using this condition, the outward normal on each surface will

coincide with one another when surfaces come into contact (see figure 2.28 (b)). Such a

translation can be shown mathematically using equation (2.72) (for surface m), based on

the formulation by Zeigler.

dχm = dµm (σm+1 − σ) (2.72)

Assuming only kinematic hardening and constant values for the initial size of the

yield surface (k), equation (2.73) can be derived from the consistency condition (which

prevents a stress point falling outside the active yield surface), allowing for derivation

of the multiplier in the kinematic hardening expression (again for surface m).

d fm =
δ fm

δσ
: dσ − δ fm

δσ
: dχ =

δ fm

δσ
: dσ − δ fm

δσ
: dµm (σm+1 − σ) = 0 (2.73)

dµm = H ( fm)

〈

δ fm

δσ
: dσ

〉

δ fm

δσ
: (σm+1 − σ)

= H ( fm)
〈n : dσ〉

n : (σm+1 − σ)
(2.74)

Note that equation (2.74) deviates from Mroz’s original presentation, as now the

Heaviside function (H) is incorporated to ensure yielding only occurs with a non-

negative yield function value. Plastic strain increments may in turn be given by equa-

tion (2.75).

dεp =
1
K

n(dσ · n)c (2.75)

where K represents the plastic modulus (constant within a particular yield surface

and akin to c in the Prager model) and n, which indicates the direction of the outward

normal in stress space (the normality rule).
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Figure 2.28: The Mroz multisurface model for the cyclic hardening of materials, showing
(a) the effect of varying hardening moduli to approximate an experimental hysteresis
loop and (b) the transition of Mroz’s circular yield surfaces due to a load applied in the
2 direction.

The Mroz model has several advantages over the more simplistic models, such as its

ability to predict the non-linear stress strain loops in a material’s response and to describe

the Bauschinger effect (where a reverse loaded material, that has previously yielded in

tension, will generally yield at a stress prior to the compressive yield strength of the

material)29. Under asymmetric loading conditions however, no ratchetting (where, in a

stress limit test, the mean strain increases with cycles, which may reach an approximately

steady value or continue to increase leading to failure29) is predicted due to a lack of

isotropic hardening in cyclic stable conditions34. A clear practical drawback in terms of

application however of the Mroz model is that, to describe the response of a material with

sufficient accuracy, large numbers of surfaces may be required, each surface requiring

the storage of a tensor (most commonly of six components, representing the centre

of each surface) and scalar variable (indicating a surface’s size)34. Potential solutions

to this problem were proposed by envisaging a two surface model, consisting of a

yielding surface and a bounding, limit surface. An example of such a formulation is

the Dafalias-Popov model87. In this form, the plastic modulus becomes a function (K̂,

equation (2.76)) of two distances in stress space (see figures 2.29 and 2.30)87.

K = K̂ (δ, δin) (2.76)

where δ represents the stress distance between the stress point and the limit87, and

is quantified by comparing the stress point on the yield surface to the corresponding

stress point on the bounding surface, shown in equation (2.77) (see figure 2.29).

δ =
[(

σ̄ij − σij

) (

σ̄ij − σij

)]1/2 (2.77)

The use of this distance allows a continuously variable plastic modulus87. The initial

value of this distance (i.e. the stress distance at the end of elastic deformation, the same
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magnitude as line ĀB in figure 2.30, indicating the onset of yielding), δin, will change at

each reversal but is constant during plastic flow87. Effectively, the yield surface takes the

role of the “active” surface in the Mroz model, while the bounding surface represents

the subsequent surface. Both the yield surface and the bounding surface will undergo

kinematic and isotropic hardening behaviour. This can be represented by the yield

functions shown in equations (2.78) and (2.79).

f = G (σ − χ)− k(λ) = 0 (2.78)

f̄ = Ḡ (σ̄ − χ̄)− k̄(λ) = 0 (2.79)

where barred variables denote those relating to the bounding surface. Note the

surfaces will be similar if G = Ḡ. The centre of the surface will be defined by χ as in

the previous models, with the size of the surfaces is governed by an internal variable

λ. As in the previously described Mroz model, when contact is made between the two

surfaces, their outward unit normals will be coincidental. Note every stress-strain curve

asymptotically approaches the bounding surface. The translation of the surfaces (the

increment of χ), which occurs for both surfaces simultaneously, is therefore controlled

by equations (2.80) and (2.81)34,87.

dχ =
Kα

K

〈n : ν〉
n : ν

ν = Kα
dλ

n : ν
ν (2.80)

dχ̄ = dχ − dµ (σ̄ − σ) (2.81)

where dµ and dλ are suitable multipliers. The direction of translation is governed

by a unit vector ν, given along the direction of dχ. Kα is a generalisation of a plastic

modulus Eα, found using equation (2.82).

dχ11 = Eαdεp 11 (2.82)

From the limiting condition for the yield surface (d f = 0), an expression for Kα can

be derived (equation (2.83))34.

Kα = K − 1
(

δ f

δσ
:

δ f

δσ

)1/2

δk

δλ
(2.83)

A similar modulus, Eβ, generalised by Kβ, also exists and is defined by equa-

tion (2.84).

dχ̄11 = Eβdεp 11 = dχ11 −
(

Eα − Eβdεp 11
)

(2.84)

In the case where the elastic domain’s size does not change Eα will equal the plastic
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modulus at a given point and, if parallel bounds are used in stress strain space (indicated

by a constant ĀB̄ magnitude), Eβ will be equal to the asymptotic value of the plastic

modulus. The plastic strain increment, found by using the flow rule, can be given by

equation (2.85).

dεp =
1
K
〈n : dσ〉 n (2.85)

The multiplier terms can be found by applying the limiting condition as before.

While the two surface model requirements for tensor storage are far less than for the

multisurface models, several difficulties can arise, largely due to the need to update

variables such as the tangent modulus K, which increases storage requirements and

can cause over estimated responses in complex multidimensional loading34. It is worth

pointing out that, if the surfaces are assumed to translate as they do in the Mroz model,

the translation increments can be described by equations (2.86) and (2.87).

dχ =
Kα

K

〈n : dσ〉
n : (σ̄ − σ)

(σ̄ − σ) (2.86)

dχ̄ =
Kβ

K

〈n : dσ〉
n : (σ̄ − σ)

(σ̄ − σ) (2.87)

σ1

σ2

0

χ̄

dσij

µij

nij

χ

dχ̄

dχ

δ

σ̄

Figure 2.29: Representation of the Dafalias-Popov model in stress space87.
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2.3.5 Deformation Mechanism Interaction

In the area of high temperature component analysis there are many occasions where

materials may operate in a high temperature environment and under a fluctuating load.

In these cases, both creep and fatigue mechanisms may act to deform a material. The

interaction between creep and fatigue is often considered through the application of

interaction diagrams (figure 2.31). Damage fractions due to creep (where an exposure

time t is referenced to t f , the failure time due to pure creep) and fatigue (where the

number of cycles a component experiences, N, is referenced to the number of cycles

to give failure by pure fatigue, N f ) are compared in these diagrams. An idealised

material assumes a linear relationship between these damage fractions, however real

materials tend to diverge from this behaviour88,89. An alternative to constructing an

interaction diagram is the strain partioning method90, however both of these methods

require extensive testing programs and are difficult to implement in real world analyses.

Alternatively, the two layer model was proposed by Kichenin91 (building on the work

of Sweeney and Ward) and has been applied with success by Figiel and Gunther92

and Leen et. al.93. Plastic and viscous effects are considered separately, however a

total strain (ε) is calculated using elastic (εe), plastic (εp) and viscous (εv) contributions

(see equation (2.88)). Inelastic contributions are controlled through a factor f (see

equation (2.89)), which lies in the range 0 ≥ f ≥ 1 and is dependent on two effective
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moduli representing viscous and plastic behaviour (Kv and Kp, respectively). Any

plasticity or creep material model may be used to define these moduli. While the two

layer model can give good predictions of a material’s behaviour in the short term,

significant changes in the material over extended loading periods may cause the user

defined f value to become inaccurate, thus compromising the model’s predictive ability.

A unified model is therefore the preferred option.

ε = εe + (1 − f )εp + f εv (2.88)

f =
Kv

Kp + Kv
(2.89)

N/N f

t/t f

Creep

Fatigue

0 1

1

Idealised Material

Actual Material

Figure 2.31: The interaction of creep and fatigue mechanisms88.

The Chaboche unified visco-plasticity model is presented here as a constitutive

equation that can represent the complex material hardening mechanisms observed

in fatigue tests as well as the relaxation of a stress due to the accumulation of creep

strain94,95. Several damage modifications to the Chaboche model have been proposed

to model the failure aspect of creep and fatigue interactions59,96–99, however these are

considered outside the scope of the present review.

The Chaboche model decomposes total strain (εT) into elastic and plastic compon-

ents (εT = εe + εp), and allows for the interpretation of both kinematic and isotropic

hardening through the use of appropriate internal variable tensors. Nonlinear kin-

ematic hardening is expressed through the use of several differential equations that

update the relevant kinematic variables. In this way, only one surface definition is

required (the yielding surface). For the Chaboche model, the yield function is defined

by equation (2.90)94,95.
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f = J (σ − χ)− R − k (2.90)

where the back stress (χ) designates the centre of a yield surface and the drag stress

(R) denotes the variation of its size (this can either act to increase or decrease the size of

the yield surface, see figure 2.32). Through the use of these quantities, kinematic and

isotropic hardening may be represented, respectively. The function J (σ − χ) allows for

the interpretation of a distance in stress space (the scalar equivalent in the deviatoric

space100), which for a von Mises material can be characterised by equation (2.91).

J (σ − χ) =

[

3
2

(

Sij − χ́ij

) (

Sij − χ́ij

)

]1/2

(2.91)

where Sij and χ́ij are the deviatoric components of σ and χ, respectively. To provide

a better approximation of the kinematic effects, the back stress can be decomposed

into several components (by way of example, two back stress components will be used

here)30. An Armstrong and Frederick type kinematic hardening law is used to define

the increment for each component, taking the form of equation (2.92)101.

dχi = Ci

(

aidεp − χidp
)

(2.92)

where Ci and ai are both material constants (ai defines the stationary value and Ci

dictates how quickly this value is achieved102,103). The accumulated plastic strain (p) is

a monotonic quantity and is the summation of the modulus of the plastic strain values,

described mathematically by equation (2.93).

dp =
∣

∣dεp

∣

∣ (2.93)

By decomposing the back stress into multiple components, transient and long term

behaviour may be accounted for, here with a1 and C1 describing initial non-linearity and

a2 and C2 describing asymptotic behaviour. The total back stress is given as a summation

of these components, therefore for N components, the total back stress (χ) is given by

equation (2.94).

χ =
N

∑
i=1

χi (2.94)

Variations in the scalar drag stress (R) will represent the effects of isotropic hardening

and, as such, will alter only the size of the yield surface. In the form originally presented

by Chaboche, only primary behaviour (either hardening or softening) is represented. The

drag stress will undergo some initial monotonic increment before reaching a stabilised

asymptotic value. This saturated value is signified by Q, with the rate at which this

stabilised value is reached being determined by b, see equation (2.95).
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dR = b (Q − R) dp (2.95)

Creep effects will be present when time or strain rate has an influence on inelastic

behaviour34. Time dependent behaviour can be introduced through the definition of a

viscous stress (σv), forming a component of total stress, summarised in equation (2.96).

σ = χ + (R + k + σv) sgn (σ − χ) (2.96)

where the function sgn(x) is specified by equation (2.97).

sgn(x) =











1 if x > 0

0 if x = 0

−1 if x < 0

(2.97)

The viscous stress takes the form of a power law (see equation (2.98)). Z and n are

viscous material coefficients.

σv = Zṗ1/n (2.98)

To find the plastic strain increment (dεp) the flow rule with a normality condition

is applied. To find the normal direction, the yield surface translation vector (S − χ́) is

normalised to produce a unit vector. The size of the yield surface is given by R + k,

however for the limiting condition of yield surface (when f = 0), equation (2.99) is also

true.

J (σ − χ) = R + k (2.99)

The flow rule can therefore be written as equation (2.100)34.

dεp

dt
=

3
2

dλ
S − χ́

J (σ − χ)
(2.100)

where dλ is the plastic multiplier, which is given by equation (2.101). The plastic

strain increment (dεp) may therefore be calculated from equation (2.102).

dλ =

[ 〈 f 〉
Z

]n

(2.101)

dεp =
3
2

〈

J (σ − χ)− R − k

Z

〉n
S − χ́

J (σ − χ)
dt (2.102)

Note that the definition of the brackets used in equation (2.102) is given in equa-

tion (2.103).

〈x〉 =
{

x if x ≥ 0

0 if x < 0
(2.103)

52



σ2

σ1
0

χ

dχ R + k

σ
n

ε

R + k

χ

σ

σ

Figure 2.32: The Chaboche unified visco-plasticity model, showing the translation of a
yield surface and the its effect on hardening behaviour in stress versus strain space.

2.4 Power Plant Components

A great deal has been said so far about common deformation mechanisms and analysis

methodologies for high temperature components. One industry that has numerous

examples of these components is the power industry, notably coal fired steam plant.

Steam will be generated in a boiler and transported to steam chests and turbines (divided

into high, intermediate and low pressure sections) via a pipework system. The turbine

drives a generator to produce electricity while the steam from the turbine outlet is

condensed and circulated. The piping system is required to navigate the power station

and, due to space envelope and manufacturing considerations, weldments and bends

are necessary inclusions. These features introduce geometric and material property

discontinuities in the pipe system and are potential sources of weakness. Of the failures

in pressurised pipe work recorded by the power industry, the majority have been

localised around regions such as weldments or bends104. The understanding of the

structural integrity of these pipework components is clearly paramount for the safe

operation of a power stations65,105,106. Additionally, the accurate quantification of

remaining life in a component is fundamental to maintenance and replacement strategies

and therefore the economic running of a power plant. Present methods of analysis are

often considered overly conservative as investigations of retired components have

shown that many do not display significant damage107.
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A main steam pipe system (that is to say, the principal supply line of steam from

the boiler to the steam chests) for a generation unit at full load may see steam at a

temperature of 550◦C and a pressure of 150 bar (15 MPa), although in Europe new

generation pulverised coal power plants will be designed for steam up to 700◦C and

300 bar105. These high temperature operating conditions indicate that creep failure is a

major concern for the power industry. Furthermore, plant will often be cycled in order

to match market demands and generate in an efficient manner. These start up and shut

down cycles will become more frequent in the future as generation strategies are refined.

Fatigue is therefore also a potential failure mechanism for these components, however it

has not been studied in the literature to the same degree as creep. It is worth pointing

out here that the loads imparted on a pipe system component (such as a weldment or

bend) are not limited to the internal pressure generated by the steam supply. System

loads in the structure due to thermal expansion or cold pull (whereby a pipe system is

plastically strained at room temperature in an attempt to reduce the effects of thermal

expansion) are also present108. Bearing in mind that a pipework system is often made

up of several bends and straight sections (see figure 2.33 for an example), these loading

patterns will be complex and strongly dependent on a particular power station’s layout.

The characterisation of creep for weldments in pipe systems has received significant

attention in literature from authors such as Hyde, Sun and Becker64,109 and Hayhurst110.

This has lead to the study of type IV creep cracking (a crack in the heat affected zone, or

HAZ, region of a weld, near the parent material) in pipe welds111 and an understanding

of the residual stresses due to the welding process112–114. Relatively little work has been

completed however for pipe bends, particularly for cases where there is manufacturing

induced geometry variation. Much of the present work will therefore focus on the creep

behaviour of pipe bends.
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To Turbine

Steam Flow

Figure 2.33: An example main steam pipe work system for a single unit in a coal fired
power station. This image was generated using the commercial pipe load analysis
software PSA5115.

The large radius pipe bends used in the power industry are commonly manufactured

by hot bending straight sections using a fixed radius arm and an induction heating

ring assembly116, see figure 2.34 (a). There are almost inevitable variations in the wall

thickness for all but the largest of bend radii. The tensile stresses at the outside of the

bend (the extrados) will cause a reduction in the wall thickness; whereas the compressive

stress at the inside surfaces of the bend (the intrados) will cause an increase in wall

thickness (see figure 2.34 (b))117,118. The degree of wall thickness variation (with respect

to some nominal value such as the uniform wall thickness of the straight pipe section)

will also differ around the pipe bend and may change due to service exposure. The

definition of bend geometry is made more complex through the tendency of bends to

become oval under a bending moment (the von Karman effect)119. Initial ovality in the

pipe bend cross section will occur during manufacturing by bending as the pipe flattens

in the vertical direction. Under internal pressure alone the pipe will attempt to inflate,

regaining a more circular cross section119,120. Under additional system loading and the

loading imposed by the pipe hanger support systems (both potentially causing torques

or closing bending moments), the ovality of the pipe cross section may become more

pronounced after a long term service at high temperature. Major pipe bend dimensions,
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namely the mean bend radius (RM), bend angle (ϕ) and internal/external pipe radius

(RI and RO, respectively), are defined in figure 2.34 (b).

Pipe Section

Induction Bend

Fixed Radius Bending Arm
(a)

RM

RO

RI

ϕ

Intrados

Extrados

Bend Axis

(b)

Figure 2.34: Images of power plant pipe bends, showing (a) the induction heating
bending process116 and (b) the major dimensions of a pipe bend and the definition of
the intrados/extrados (viewed in the bending plane and the pipe cross section).

2.4.1 Power Plant Pipe Analysis

Given the high pressures and temperatures of the steam that power plant pipework

must transport, it is of critical importance that a pipework system is safe and structurally

sound. Many novel monitoring systems have been developed for assessing the “fitness”

of power plant components. These include “on line” management systems that monitor

power station load characteristics (such as main steam temperature and pressure) and

estimate component degradation using generalised finite element models121,122. While

these advances have shown some success, established design codes and analysis pro-

cedures are still by far the most commonly used tools in industry for component fitness
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assessment, along with frequent inspection during outage periods123. In the UK, the

R5124,125 procedure is commonly used for high temperature assessment and the R6126

procedure for low temperature fracture assessment of power plant components. These

step by step methods usually involve decomposing a loading history into cycles. The

likelihood of failure by various mechanisms, such as plastic collapse, creep and fatigue,

is calculated by estimating damage accumulation and mechanisms interaction factors.

Sensitivity analysis may also be conducted to take account of variations in material

properties. Multiple design codes are also available for pressurised components, notably

in the U.K. PD5500127 for pressure vessels (this is similar to the American ASME VIII)

and BS EN 13480128 (succeeding BS 806129) for piping components specifically. Vari-

ations in the geometry of a component, loading and material properties are accounted

for through safety factors. Codes tend to give conservative estimates of life spans for

piping components due to wide range of potential applications/uncertainties and the

paramount need for safety. The present work looks to perform more accurate analyses

of piping components, therefore techniques that can analyse bespoke pipe sections are

considered here.

In the interest of simplicity, creep in straight pipe sections will be considered first.

For most situations in the power industry the well known thin walled assumption for

pipes is not valid due to the wall thickness values having a similar order of magnitude

to the outer diameter of a pipe18. Elastic solutions for the “thick walled” case have been

developed, where radial stress components (σr, see figure 2.35) are assumed to vary

through the wall thickness. A solution for the constant steady-state stresses (observed

in a structure during the secondary creep region, see section 2.3.3) was proposed by

Kraus130 based on these elastic solutions for an internal pressure loading (Pi). Con-

sidering an element in a thick walled cylinder (as shown in figure 2.35) and applying

Norton’s law (see equation (2.47)), the steady-state stress components in the radial (σr),

circumferential (σθ) and axial (σz) directions can be calculated, shown in equation (2.104).

Note equation (2.104) simplifies to the elastic solution if the stress exponent n is set to 1.

These solutions can be used to show the effect of stress redistribution in the transient

creep period to achieve a steady-state value, with peak creep circumferential stresses

located at the outside surface of a pipe section (see figure 2.36).











σr

σθ

σz











=
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(

RO

RI

)2/n

− 1

)








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


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


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




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


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


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





(2.104)
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Figure 2.35: The solution for a thick walled pipe section under steady-state creep, after
Kraus130.

RI RO

Creep

σθ

r

Elastic

Figure 2.36: A comparison of the elastic and steady-state creep circumferential stress
solutions for a thick walled pipe section130.

Although estimates of the elastic stresses in pipe bends loaded by an internal pressure

have been proposed by Hong et. al.131, closed form creep solutions are yet to be

developed. The analysis of pipe bends is made more complex by the geometry variation

experienced at these locations due to the manufacturing processes employed and the

complex load patterns imparted by the pipe system. FEA has been employed in several

publications to simulate the stress state of pipe bends (both with and without geometry

variation). For 3D pipe bend analysis, a large proportion of the published literature is

concerned with the determination of plastic collapse loads for pipe bends118,120,132–135.

Ovality in internally pressurised pipe bends has been considered by Yaghi et. al.104 and

Veerappan and Shanmugam118 through the use of FEA to develop parametric equations

to determine steady-state creep stresses and allowable internal pressures according to

design codes, receptively. No system loads were included in either of these works and a

constant oval cross section was assumed (i.e. for a particular circumferential position
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on the pipe cross section, a constant wall thickness is assumed for all bend positions).

Despite the limited relevance to advanced creep analyses, several common features are

noted from the published literature that can be used to construct pipe bend FEA models.

A FEA mesh of a full 90◦ pipe bend can be seen in figure 2.37. If system loads

are neglected a three dimensional (3D) quarter model can be used to represent the

complexity of a full pipe bend (see figure 2.37 (b))132,136. This is achieved through the

assumption of the planes of symmetry in the bending plane and at middle of the bend

section. Straight sections of the pipe may be attached to the end of the bend section which

should be long enough to ensure that the conditions at the straight/bend interface are

modelled correctly while not unnecessarily increasing computing time135,137. Normally,

it is difficult to specify a condition for this region that would reflect the realistic physical

response. An incorrect constraint would drastically affect the behaviour of the bend,

therefore it is more prudent to minimise the numerical effects of an unverified boundary

condition by separating it from the region of interest (i.e. the bend section)107. At the

free end of the straight section, all degrees of freedom may be constrained, effectively

representing a connection to a substantial “anchor” (such as a land boiler or steam

chest). In the straight pipe section, a uniform wall thickness is assumed. This is fair as

in reality a straight section will usually be welded to the bend section, therefore the only

dimension variation in the straight section is due to relatively small mill tolerances. Pipe

bend models may be simplified further by using an axi-symmetric two dimensional

(2D) approximation. Providing a constant cross section is defined around the bend

section, reasonable approximations of the stress state in the bend section (i.e. away from

bend/straight interface region) may be calculated104,138,139. An example 2D FEA pipe

bend mesh can be seen in figure 2.37 (c). Again, the use of rotational symmetry limits

the inclusion of geometry variation around the bend and the application of system loads

in this type of approximation139.
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Figure 2.37: Illustrations of FEA meshes for pipe bends, showing (a) a full 90◦ pipe bend
model, (b) a 3D quarter model approximation and (c) an axi-symmetric 2D approxima-
tion.

2.4.2 Power Plant Non Destructive Testing (NDT)

It is clear from the previous sections that some form monitoring of the condition of

power plant components would be greatly beneficial in planning a power station’s

operation. The results of these investigations can be used to validate design or condition

calculations, determine material properties for further analyses and provide information

to formulate component maintenance/replacement strategies. Condition monitoring

may take place during maintenance outages or during operation, depending on the type

of component considered and the investigation procedure employed. Non-destructive

testing (NDT) methods are designed so that there is no significant detrimental effect on

a component’s condition as a result of testing. Ultrasonic and acoustic pulses may be

used for example to determine the location of cavities in a material by noticing an “echo”

in reflected waves140–142. Both defects and component dimensions may be estimated by

timing the periods between echoes and noting that larger amplitudes will be noticed

at the internal and external surfaces. As the time it takes for a wave to propagate
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through a specimen is usually very short visualisation may be difficult, therefore a pulse

repetition frequency may be used. Echoes are measured numerous times per second to

give an apparent steady display. Void fractions or changes in component dimensions

may be used to infer any significant degradation that has taken place due to service

exposure. The growth of defects such as cracks may alternatively be measured in situ

using the potential drop method, where either a direct current (DC)143 or alternating

current (AC)144 electrical supply is placed across the surface of a component and the

presence/size of a defect is calculated by noting a voltage drop from a reference value.

A.C. supplies have an advantage over D.C. supplies in that Eddy currents are generated

in the centre of the material, forcing the currents to flow in a layer below the surface.

The depth of this surface or “skin” may be controlled by the supply frequency, allowing

for the depth of an internal defect to be estimated.

Several NDT methods are dependent on information determined from the surface

of a component. For example, hardness readings (which may be taken using bespoke

equipment) from the surface of in service components have been correlated to Larson-

Miller parameter (see equation (2.46)) values to approximate the remnant life of a

component operating in the creep regime145. Morris et. al. have also reported the

development of an in situ digital image correlation machine for determining localised

strain patterns on the surface of components146,147. A randomised speckled pattern is

applied to the surface of the component along with large reference nodes. The relative

motion between these points (determined by comparing before and after digital photos

and performing digital image correlation) is used to estimate surface strains, which in

turn can validate other analysis methods. Surface strains and the surface micro-structure

of a component can be determined using the replica technique148, where a negative of

the surface is taken using acetyl-cellulose tape. A positive replica can be “developed”

from this tape by electroplating it with, say, a thin layer of gold-palladium. This positive

replica can then be subjected to microscopy, potentially highlighting the initiation of

surface cracks or other defects.

An alternative to NDT is quasi non-destructive mechanical testing. Although small

amounts of material are removed from an in service component, the surface defect

that remains is deemed to have no significant effect on the future operation of the

component. Scoop sampling is a novel method employed to extract sample material

for the manufacture of small specimens from in service components (such as pipe work

or reactors)149,150. Several in-situ scoop sampling machines have been developed for

industrial use151,152, such as the one produced by Rolls-Royce151. A hemispherical

cutter is driven into the surface of the component, revolving about a feed axis (see

figure 2.38 (a), note a cutter diameter of 50mm is often used). This causes a small scoop

of material to be extracted, the depth of which can be controlled (see figure 2.38). In

some cases, multiple small specimens may be machined from this scoop of material.

Clearly therefore, a deeper cut will be more valuable for small specimen manufacture
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than a shallow sample. The depth of cut however is limited by concerns over structural

integrity (most notably the requirement to maintain a minimum design wall thickness).

The amount of material needed to be removed to manufacture full size conventional

specimens often compromises the structural integrity of a component, necessitating

extensive repair or even complete replacement. Several novel small specimen samples

have been proposed, examples of which are provided in figure 2.39 with some typical

major dimensions for scale. Due to the specimen design, only secondary creep material

properties can be determined from the impression153,154 (where an indenter is forced

into a sample and creep occurs in a compressive fashion, see figure 2.39 (b)) and small

ring155 (where a ring of material is stretched by two pins, see figure 2.39 (d)) tests. The

two bar specimen (see figure 2.39 (a)) is a novel design that is still under development,

however it has an advantage over the miniature tensile specimen proposed by EPRI156

(see figure 2.39 (c)) in that end grips do not need to be attached (which in many cases can

be difficult and may lead to load misalignment). Potentially, full creep curves could be

characterised for a material from either of these test methods. Fracture is also allowed

to occur in the small punch test (see figure 2.39 (e)), which may be used to determine

plastic or creep material properties157. In this test, a ceramic indenter is forced through

a thin disc of material, the deflections of which are recorded and converted by some

method into strain values. The interpretation procedure to correlate the results of the

small punch test is the subject of ongoing research, however the specimen’s simplistic

design and small size make it a potentially valuable test and analysis method.
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Cutting Axis

Feed Axis

(a)

∼ 3 − 4mm

∼ 20 − 40mm
(b)

(c)

Figure 2.38: Illustrations of (a) the Rolls Royce scoop sampling procedure151 and (b)
typical dimensions of a scoop sample. A photo, (c), of a scoop sample is also included.
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∼ 26mm

∼ 9mm

(a)

∼ 10mm

∼ 10mm

∼ 2.5mm

∼ 1mm

(b)

∼ 5 − 12mm

∼ 1 − 3mm

(c)

∼ 1mm

∼ 12mm

(d)

∼ 0.5mm

∼ 8mm

∼ 1mm

(e)

Figure 2.39: Examples of typical/novel small specimen samples, showing approximate
dimensions. (a) Two bar specimen158, (b) Impression specimen153,154, (c) Miniature
tensile specimen156, (d) Small ring specimen155 and (e) Small punch specimen157.
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2.5 Artificial Neural Networks

2.5.1 Relevance to the Present Work

Neural networks were first proposed by McCulloch and Pitts in 1943159 and have been

implemented in literature to determine patterns and trends in data where some correla-

tion exists but controlling functions are either unknown or too complex to implement. As

will be discussed in a later chapter, solutions for various problems (such as steady-state

creep stress distributions) related to pipe bends are due to the systematic application of

an internal pressure and system loads. Once trained, a neural network could be used as

an analysis tool for a practising engineer. Approximate techniques are a module in the

toolbox outline, and it is an objective in the present work that a neural network (NN)

can be developed for steady-state creep peak rupture stresses in pipe bends subjected

to internal pressure and system loads. If this is achieved, engineers could quickly and

easily determine an approximate reference solution for a component, which could in

turn be used to assess the risk for a reduction in remnant life for a particular operation

strategy.

Due to the constant nature of the loading conditions considered for pipe bends in the

present work (neural networks will be used to determine time independent steady-state

stress solutions for pipe bends), this review will be limited to back propagated (BP),

recurrent and radial basis function (RBF) architectures, as opposed to dynamic networks

which are used for time dependent patterns160.

2.5.2 Neural Network Fundamentals

Artificial Neural Networks (ANNs) are mathematical representations of biological

central nervous systems161. Biological neurons consist of a nucleus surrounded by

a membrane. Connections to other neurons are made through a network of fibrous

dendrites. The axon extends from the nucleus and transmits electrical signals to the

neurons. Signals are received through synapses located in the dendrites of the neuron

(see figure 2.40). When signals surpass a certain threshold level in the neuron it triggers

a constant magnitude and duration electrical signal through the axon160,161.
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Figure 2.40: A biological neural network160.

Fundamentally, an ANN neuron (see figure 2.41 (a)) takes a group of inputs (or

signals in a vector X), multiply them by weighting values (Wi) and pass them through

mathematical functions (S(Xi, Wi, θ)), giving rise to the effective input S. This function

is known as the propagation rule and, while many variants exist, the most simple

and applicable is the weighted summation rule in equation (2.105) (shown for a single

neuron fed by i inputs). External inputs (or biases, θ) may be used to distinguish certain

neurons in a network. The effective input is used in an activation function F(S) (akin

the natural neuron’s threshold) to determine the neuron’s output Y. In fully connected

networks, this will be passed on to subsequent neurons as an input (along with the

local outputs from other neurons on that layer.) The interaction between the inputs and

outputs of neurons is dictated by the network’s architecture.

Weights and biases (the network’s characteristic values) used in a particular network

are determined in a process called training. In effect, this is a form of optimisation and

similar methods (such as a least squares evaluation of the Gauss-Newton method162,

see section 2.6.3) may be used for this purpose. A set of inputs with known outputs

are collected and fed into the neural network. From a usually randomised starting

position, the training algorithm will iteratively alter the network’s characteristic values

to minimise the difference between approximated outputs from the network (Y) and

the corresponding true values. Typically, a validation sequence would also be required

for the approval of a network. In some cases, ANNs can “overfit” the training data set.

This means that while errors in the training set are small, predicted values outside the

training set (where clearly a predictive ANN has the greatest value) show very large

errors.

S =
n

∑
i=1

XiWi + θ (2.105)
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Figure 2.41: An individual ANN neuron160.

2.5.3 Activation Functions

Multiple neurons will be implemented in an ANN to determine the patterns in a data set.

Often, input arrays will comprise of different types of data, which should be considered

in alternative ways for efficient ANNs. For example, an output value (Y) may have a

linear dependence on some quantities in an input array X, but sinusoidal dependencies

on others. Multiple activation functions must therefore be considered for a good fitting

(note these will be dependent on a neuron’s effective inputs S, the activation function

being signified by F(S)).

Activation functions are often (but not limited to) non-decreasing functions. Limiting

functions are also generally used (these are directly analogous to the biological neuron’s

threshold). These can be hard-limiting functions (such as the sgn function, see figure 2.42

(a)) or softer transition functions (such as semi-linear or sigmoid dependencies, see

figure 2.42 (b) and (c))160. The most common function used is the sigmoid function

(see equation (2.106)), which approaches 1 for large positive values of S, has a value

of 0.5 when S = 0 and approaches 0 when the effective input is negative. Stochastic

activation functions may also be incorporated. In these cases, neuron outputs are not

determined directly from the effective inputs, but the sum of effective inputs determines

the probability that a certain neuron output value will be achieved.

F(S) =
1

1 + e−S
(2.106)
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F(S)

S
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Figure 2.42: Common non-decreasing activation functions: (a) the sgn hard-limiting
function, (b) a semi-linear limiting function and (c) a smoothly limiting sigmoid function.

In the present work, neural networks will be constructed using MATALB’s Neural

Network toolbox163. All three of the above activation functions are available within this

toolbox.

2.5.4 Neural Network Architectures and Training Procedures

For all but the simplest systems, fully connected ANNs will comprise of many layers

of neurons that are all linked together (see figure 2.43 (b)). Back propagated neural

networks (BPNNs) are simple examples of these feed forward networks. An array of

inputs X (length m) will form the input layer. These inputs are fed to the first “hidden”

layer of neurons (in figure 2.43 (b) length n). Each neuron is fed by all of the inputs

(weighted in some way, depending on the prorogation rule used) and the effective input

is determined by the neuron’s function S1j (1 ≤ j ≤ n). An output for that neuron

is determined from the effective input by the activation function. The outputs of the

neurons from this first hidden layer are fed as inputs into the neurons of the next hidden

layer. Commonly, local outputs from the last hidden layer of inputs are summed in an

output neuron, giving rise to the network’s output Ŷ 160. Y is therefore the local output

from a neuron and Ŷ is the global output from the neural network.
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X1
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Input Hidden Output

Figure 2.43: A 2 layer feed forward fully connected ANN161.

Training is completed for a neural network in order to determine the magnitude

of the weights and biases for each neuron. This is done for a sample training set of

data. BPNNs are part of the family of feed forward ANNs (these are the type that have

been described thus far). During calculations, data flows uni-directionally from the

input nodes to the output. For training purposes in BPNNs, errors (E) between the

outputs predicted for an ANN and the true training values are compared using the sum

of squares approach. Using a gradient descent optimisation method, the change to a

weight is determined by a multiplier term and the rate of change in E with respect to

the weight Wi. Optimisation routines are discussed in detail later in the present chapter

with regard to material constant optimisation. These same routines are also valid for

ANNs. It is worth noting that, if training is undertaken for a specific data set only, it

is termed supervised learning. Un-supervised learning results in weights and biases

being continuously updated as new information is made available. Supervised learning

is considered more relevant to the current project as the intended application demands

a deterministic capability without continually performing FEA calculations to generate

new data (see chapter 7).

∆Wi = −η
δE

δWi
(2.107)

Radial basis function (RBF) networks have the same data flow direction as BPNNs

(data flows uni-directionally from the input nodes to the output), however the architec-

tures and activation functions used differ greatly. BPNNs will usually contain several

hidden layers of neurons, whereas RBFs will always contain a single hidden layer of

neurons (in addition to the input and output layers). The RBF network accounts for

greater complexity in a pattern by adding neurons to this single hidden layer (see fig-

ure 2.44). The radial basis function itself is a function whose argument is referenced

to a “centre”, a common form of which is the Gaussian (bell shaped) function given

in first term of equation (2.108)161. Usually, linear terms are added to complement the

Gaussian transfer functions (dependent on the quantity bi in equation (2.108)). Each of
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the m inputs in X are fed into each of the n RBF neurons. A Gaussian RBF neuron has

two characteristic values associated with it: a centre ci and the quantity λi, dictating the

spread of the Gaussian bell curve. Unlike BPNNs using the summation propagation

rule, weights are applied after the activation function. A bias θ may be applied to the

output node, giving rise to the network’s output Ŷ. Values of ci and λi are found by

various specialist methods (such as the sub-sampling and K-means algorithms) to reflect

the natural clustering of the training data. Network training optimises weight values to

fit the training data. As RBFs tend to have fewer neurons than BPNNs, weight values

converge quickly, meaning that training and computation times are commonly greatly

reduced for complex systems.

Ŷ =
n

∑
i=1

(

Wie
(λ2

i (X−ci)
2)
)

+
m

∑
j=1

(

bjxj

)

+ θ (2.108)

X1

X2

Xm

∑ Ŷ

Input Hidden Output

W1

W2

Wn

θ

Figure 2.44: A RBF ANN structure161.

Examples shown so far have been for fully connected networks. This is not an

accurate representation of a biological neural network and tends to lead to significant

redundancy in the network (i.e. storage, computation and training requirements are

far greater for fully connected networks164). Customised networks can be developed

that connect only specified neurons, meaning that the network can be more efficient. It

is also worth noting that while only feed forward ANNs are described here, recurrent

topologies have been used in literature161, such as the Boltzmann and Hopfield networks.

In these cases, information does flow in one direction only but can cycle on a local basis,

potentially allowing for more complex functions to be analysed. These aspects are

considered outside the scope of the present work.
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2.6 Optimisation Methods

2.6.1 Relevance to the Present Work

A great deal of the present work focusses on the application of material models in

component simulations. To make the results of these simulations relevant, material

parameters for the models need to be accurately determined from experimental data. In

many cases, procedures to determine these material constants directly from the experi-

mental data demand the application of several assumptions, potentially impairing the

predictive capability of the material model. Optimisation procedures are often imple-

mented in order to “fine tune” material constants and restore the quality of fit (compared

to experimental data165). In the present work, optimisation strategies are developed

for a complex visco-plastic material model. This case requires a set of parameters to be

optimised (which is common), therefore simple one dimension optimisation procedures

are omitted from the present review. Focus will mainly be given to the gradient methods

as these are generally straight forward to apply and can provide good results (coeffi-

cients of determination are typically above 0.97 after optimisation)166. Alternatives such

as genetic or evolutionary algorithms166–169 and pattern search methods166 have been

applied to similar problems, although these methods tend to be computational intensive.

A brief overview of these methods is presented at the end of this section.

2.6.2 Multiple Dimension Optimisation Overview

Consider a function ( f ) that has several (n) real arguments that can be generally ex-

pressed as the vector x, such that equation (2.109) is true170.

x = (x1, x2, ...xn) = R
n (2.109)

Each argument in the function f is a degree of freedom (or dimension), therefore an

optimisation procedure using f will be deemed multidimensional.

Now consider the situation where the function f is to be fitted to a set of data points,

here signified by g. For a given x there may be an error (E) between the values predicted

by f and the true values given by g. One of the most common methods to represent

this error is the sum of squares approach162. For m values in g, the total error would be

given by equation (2.110). This expression is known as the objective function.

E(x) =
m

∑
i=1

(gi − f (x))2
i (2.110)

It is the goal of an optimisation procedure to minimise the error E by altering the

values of x (note E is a function of x). Often, due to physical constraints, limits may be

placed on x meaning that optimised value must fall between a lower bound LB and an

upper bound UB.
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In the present work, a material model would be represented by the function f ,

with its related material constants forming x. The data from experimental procedures

populates g. The optimisation method attempts to minimise the difference between the

predicted and experimental results by fine tuning the material constants.

2.6.3 Gradient Method Overview

The gradient optimisation method is an iterative approach. Several algorithms have

been proposed, however there are underlying concepts that first must be considered. A

set of real values can be used to define an starting point for x. This starting point shall

be called x0. The function E (the error function to be minimised) will decrease most

rapidly in the direction −∇E(x0)171, where the ∇ operator determines the gradient of

the function E at the point x0, as shown by equation (2.111)162.

∇E(x0) =

[

δE(x0)

δx1
...

δE(x0)

δxn

]T

(2.111)

where n is the dimension of x. An iterative step will therefore take a direction

of −∇E(x0). The first iteration, resulting in x1, can therefore be found using equa-

tion (2.112).

x1 = x0 + α0d(x0) (2.112)

where α0 is a step length scalar which can be found at each step by minimising

the scalar function φ, as shown in equation (2.113) (this is known as a line search).

The quantity d(x0) is a direction search vector and takes the general form shown in

equation (2.114), where M0 is a nxn matrix171. The exact form of d(x0) and M0 relates

to specific algorithms developed by numerous authors. Some examples of these are

discussed in section 2.6.4.

φ(α0) = E
(

x0 + α0d(x0)
)

(2.113)

d(x0) = −M0∇E
(

x0) (2.114)

Note that the above example shows the first iteration in a gradient optimisation

procedure. This procedure is repeated until some termination criteria are satisfied. This

will commonly involve satisfying some minimum value for the error, gradient or step

length values170.

2.6.4 Gradient Method Optimisation Algorithms

Several algorithms have been developed that utilise the concept of gradient based

optimisation. Perhaps the most simplest of these is the steepest descent algorithm. In

72



this case, the direction of descent equation (d(x0)) takes the form of equation (2.114) and

M0 is an identity matrix (I), shown by equation (2.115)171. Although this algorithm is

relatively simple to program, step sizes tend to be short and solutions may “zig-zag” in

the optimisation space, causing computation times to be elongated170.

I =













1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 · · · 0 1













(2.115)

A more direct approach is the Newton method where d(x0) is dependent on the

second partial derivative of E(x), known as the Hessian (∇2E(x), see equation (2.116)),

and is therefore deemed a second order method (as opposed to the first order steepest

descent method). The step direction is given by equation (2.117). This effectively uses

a quadratic expression to approximate the gradient at the point x0 and minimises it to

calculate the next iterative point x1. A potential pitfall of this method is the inability

of the algorithm to distinguish between points of minima and maxima. It is critical

therefore that a good initial condition is provided so that solutions do not diverge. To

aid in the understanding of Newton’s method, a one dimensional example is shown

in figure 2.45. It can be seen that from an initial estimate (x0) a revised estimate (x1)

of the value of x to minimise the function E(x) can be determined by minimising a

quadratic function based on the gradient at x0. As with the steepest descent method,

further iterations will be performed to refine the approximation of x.

∇2E(x) =























δ2E(x)

δx1
2

δ2E(x)

δx1
2δx2

2 · · · δ2E(x)

δx1
2δxn

2

δ2E(x)

δx1
2δx2

2
δ2E(x)

δx2
2 · · · δ2E(x)

δx2
2δxn

2

...
...

. . .
...

δ2E(x)

δx1
2δxn

2
δ2E(x)

δx2
2δxn

2 · · · δ2E(x)

δxn
2























(2.116)

d(x0) = −
[

∇2E(x)
]−1

[∇E(x)] (2.117)
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Figure 2.45: A one dimensional example of Newton’s method for the first iteration of an
optimisation procedure172.

The Gauss-Newton method holds an advantage over the Newton method for least

squares problems in that the Hessian matrix does not need to be calculated (which

can be computationally expensive) but is rather conveniently approximated using the

first order derivatives, see equation (2.118)173,174. The Hessian is approximated using

the Jacobian (signified by the operator J0 for the 0th iteration). The multiplication of

the Jacobian and its transpose (signified by the superscript T) provides a term which

is a dominant component of the Hessian and is therefore a good approximation of it,

particularly in the vicinity of the optimum value of x. As this method is in effect the same

as Newton’s method in terms of step size, the convergence rate of the Gauss-Newton

method is similar to that of Newton’s method.

Calculation of J0 (see equation (2.120)) is dependent on the error function E(x) being

made up of residual terms. A residual is the difference between a true value (gi) and the

value predicted by a function of x ( f (x)i), as shown in equation (2.119). The residuals

are stored as a column vector of length m, where m is the number of data points in the

set g. The Jacobian is calculated by taking the gradient of each of these residuals in turn,

as shown in equation (2.120) where the ∇ operator is defined by equation (2.111)173.

∇2E(x) ≈ JT
0 J0 (2.118)

m

∑
i=1

(gi − f (x))2
i =

m

∑
i=1

ri(x)2 (2.119)
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J0(x0) =

[

δE(x0)j

δxi

]

j=1,2,...,m
i=1,2,...,n

=













∇E(x0)1T

∇E(x0)2T

...

∇E(x0)mT













(2.120)

An additional improvement to the Newton method is available by application of

the Levenberg-Marquardt algorithm173,175,176. This is in effect an interpolation of the

steepest descent gradient method and the Gauss-Newton method, exploiting the latter’s

faster convergence rate in a more robust algorithm (solutions for the Gauss-Newton

method may diverge from the local minima for some optimisation topographies). Leven-

berg originally proposed equation (2.121) as an increment in an optimisation routine175.

A damping factor (λ) is introduced to determine the contributions of first order (i.e.

the steepest gradient descent method, signified by the identity matrix I) and second

order (i.e. the Gauss-Newton method, signified by the Hessian ∇2E(x0)) methods. A

reduction in the error function E(x) would suggest that a reduction in λ (usually in

factors of 10) would be prudent. This would mean that the Gauss-Newton method

would become more dominant and the better convergence rate of this method could

be exploited. An increase in E(x) requires an increase of λ to promote the use of the

steepest descent method to converge back into the local minima region173. Note that

the Hessian term (∇2E(x0)) may be replaced by the Jacobian approximation shown in

equation (2.118), however the full form is presented here.

x1 = x0 −
(

∇2E(x0) + λI
)−1 ∇E(x0) (2.121)

An improvement to Levenberg’s method was suggested by Marquardt in 1963,

giving rise to the increment method shown in equation (2.122)176. In this case the

identity matrix I has been replaced with the diagonal components of the Hessian matrix.

This alteration is particularly effective when λ is large and the iterate enters a low

gradient region in the solution space. As the steepest descent method is dominant (λ

is large) increments may be small with equation (2.121). The use of equation (2.122)

however scales the gradient values (∇E(x0)) based on the curvature of E(x), allowing

for larger steps to be taken.

x1 = x0 −
(

∇2E(x0) + λdiag[∇2E(x0)]
)−1 ∇E(x0) (2.122)

Historically the damping parameter λ in equation (2.122) was adjusted directly to

minimise the function E(x), however the concept of a “trust region” has provided an

automated approach for this problem. A “trust region” is created (commonly through

a Taylor series expansion173) in which it is expected a good approximation of E(x) is

possible. An iterative step is limited to this trust region, with both the direction and

length of the iteration being determined from the trust region. The size of the trust

75



region is re-evaluated for each iteration. λ is determined from the size of the trust region

and the iteration increment. This is distinctly different to the line search method shown

in equation (2.113) in which a good approximation of the whole of E(x) is assumed,

potential leading to an iteration overshooting a local minimum and diverging from the

optimum solution173.

2.6.5 Genetic and Pattern Search Optimisation

Genetic evolutionary algorithms (such as NSGA-II implemented in MATLAB169) involve

taking an initial population defined by the user (consisting of a group of individuals,

each consisting of a unique set of the variables to be optimised) and generating new

individuals from it by allowing for crossover and mutation167,177. Elitism may be

applied, meaning that only a predefined number of individuals are permitted to survive

to create the next generation. Such procedures hold an advantage over gradient methods

as derivatives need not be evaluated, however analysis can be lengthy and global

optimisation is not guaranteed167,177. Objective functions are required to allow for

quantitative comparison of the individuals and to rate their performance at fitting to the

experimental data. Analysis can be limited to a given number of generations to prevent

lengthy mathematical search for a purely theoretical minimum. Optimum solutions can

be suggested by higher population density zones in optimisation space after a given

number of generations171.

A pattern optimisation may alternatively be implemented178. From an initial condi-

tion, small aberrations in parameter values are introduced in the various dimensions.

The iteration step then takes the direction of the point that gives the minimum objective

function value. The limits of the variations in parameter values can then be reduced,

converging on the minimum objective function value179.

While both of the above methods have been applied to the determination of material

constants they are generally more computationally expensive than gradient methods.

It will be demonstrated in chapter 3 that the gradient method is suitable for material

constant fine tuning and can provide excellent fitting qualities.

2.7 Summary

This literature review has attempted to condense a tremendous amount of research and

investigation that has been conducted in a variety of fields and over several centuries.

While not all the information presented here is directly quoted in the rest of this thesis,

it has been the intention of the author to introduce potentially complex concepts in a

simple fashion by gradually building on fundamental ideas. Bearing this point in mind,

it is therefore useful to summarise how the literature has influenced and guided the

present research.

The main objective of the present work is to improve the accuracy of computa-
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tional analyses of high temperature power plant components. While several codes and

standards have been referenced, they generally simplify the problem which increases

uncertainty. Many sophisticated material models have been proposed to predict a

material’s behaviour for the complex loading conditions (i.e. creep, fatigue and visco-

plasticity) that may be encountered by these components. The analysis procedures used

to implement these models (such as FEA) are however commonly outside the reach of

practising engineers.

Continuum damage mechanics has been applied for the analysis of creep (for ex-

ample, through the Kachanov, Liu-Murakami and Dyson models), along with more

simplistic models such as Norton’s law. In the analysis of high temperature components

creep is a major concern, therefore these material models have been applied to power

plant components. Comments have been made on the suitability of these models and

potential approximate methods that can be employed in order to make analyses easier

to compute have been developed. In particular, relationships between Norton’s law and

continuum damage mechanics creep equations have been applied to novel and industry

relevant component analyses. Using these analyses, empirical relationships have been

developed that allow these more accurate methods to be easily implemented.

Visco-plastic behaviour can be described by the Chaboche model. The determination

of material constants for this (and other) models can be difficult and is often dependent

on some form of optimisation. In order to aid the future application of the Chaboche

model in high temperature analyses, optimisation procedures and strategies have been

developed. This work has established robust methods to determine material constants

from experimental data.

The analysis of components is complex due to the wide range of loads, materials and

geometry variations that may be present. Empirical relationships may be developed,

however forming these expressions is often laborious due to the potentially large num-

bers of variables involved. Furthermore, these relationships may not be able to be

revised when new information becomes available. Neural networks avoid these com-

plications by simplifying an expression into nodes (neurons). Weights and biases in

these networks may in turn be revised if new data is collected. This is clearly useful in

the field of power plant component analyses where solutions may be dependent on not

only a material but also several (system) loads. A neural network has therefore been

developed that can estimate peak steady-state creep rupture stresses (which, as will be

shown, are highly useful) for pipe bend sections subjected to system loads.
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Chapter 3

Optimisation Methods for the

Determination of the Chaboche

Unified Visco-Plasticity Model

Material Constants

3.1 Introduction

It may be inevitable in the design and analysis of most high temperature components

(such as power industry pipe work) that variations in load and/or temperature will

occur in normal operation. This presents complications in the prediction of the response

of such components due to potential hardening or softening effects caused by the

accumulation of plastic strain57,58. Furthermore, interactions between hardening (or

softening) behaviour and creep may be significant, particularly in high temperature

applications. The Chaboche unified visco-plasticity model is an example of a model

which, with the correct modifications, shows much promise for this application30,57,58.

Methods to approximate material constant values in the Chaboche model have been

well established100–103; however the need for optimisation of these parameters is vital

due to assumptions made in the initial estimation process30,31. This is a key step as the

determination of initial estimates requires several assumptions to be made. Experience

has shown, however, that several numerical problems may be encountered during an

optimisation procedure.

In the present chapter, the uniaxial form of the Chaboche model (derived from the

generalised multidimensional Chaboche model presented in section 2.3.5) is used to

predict the results of experiments performed on power plant materials (namely a P91

high chrome steel and a grade 316 stainless steel). After determining initial estimates

of the Chaboche material constants from experimental data, a Levenberg-Marquardt

gradient optimisation algorithm (see section 2.6) is implemented.
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In addition to identifying and addressing potential numerical problems in an optim-

isation procedure using experimental data, investigations into the effects of variations

in the initial conditions on optimised material constant values and the number of data

points selected for an optimisation procedure on computational times are made to aid in

the application of similar optimisation procedures. Several optimisation strategies have

also been developed and critiqued which can be used to determine a set of material

constants when multiple experimental data sources are available (yielding a single set

of optimised material parameters for a given material).

While the optimisation procedures discussed in this chapter are applied to the

Chaboche material model, similar strategies may be applied for the determination of

material constants for other constitutive laws (such as those used to model creep)180.

3.2 Experimental Procedure

In the present work two main loading profiles have been applied to samples made from

power plant materials. In both cases, uniaxial loading is considered for an isothermal

specimen. Load cycles are controlled by monitoring strain values in the specimen gauge

section (see figure 3.1) with stress values at specific time instants being recorded as the

output of the experiment. An overview of the experimental procedure is given here

along with the specific load profiles used, however it was developed at the University

of Nottingham by Saad181 and Hyde182. Please note that the P91 data presented in

this chapter was provided by a previous project (the work of Saad at the University of

Nottingham181). Experiments conducted on a 316 stainless steel have been completed

as part of this project.

An Instron 8862 thermo-mechanical fatigue (TMF) machine utilising radio frequency

(RF) induction heating was used to complete isothermal cyclic experiments (see fig-

ure 3.2). A sample is held between two grips which will load it according to the

waveform defined by the user. Strain values are measured in the gauge section of the

specimen using an extensometer and stress values are calculated based on the load cell

readings in the specimen grips and the specimen cross section area. RF induction heat-

ing relies on the generation of Eddy currents in metallic materials, allowing high and

consistent environment temperatures to be achieved in very short periods of time. These

factors make RF heating vastly superior to traditional furnace heating for the testing of

solid uniaxial specimens. Temperature calibration and the design of the induction coil is

performed using a calibration specimen. Thermocouples are spot welded to the gauge

section and shoulder of the specimen. Coils are then designed so that the deviation

from the desired temperature was not greater than ±10◦C in the gauge section. Ratios

between the temperatures recorded at the specimen shoulder and the gauge section are

also recorded. During an experiment, gauge section temperatures may be controlled

using a thermocouple at the shoulder of specimen. Locating control thermocouples at

the shoulder of a specimen avoids failure initiating at spot welds in the gauge section,

79



mitigating potential concerns over “forcing” a failure location in a specimen182.

Figure 3.1: A schematic of a solid uniaxial specimen used in cyclic testing181.

Figure 3.2: The Instron 8862 TMF machine, showing the RF induction heating coil,
specimen grips and extensometer for strain measurement182.
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Figure 3.3: An example calibration specimen used for the design of a RF induction
heating coil.

Isothermal strain loading waveforms used in the present work are divided into “saw

tooth” and “relaxation” (or “dwell”) types. For saw tooth loading profiles, loads are

uniformly oscillated between strain limits (here set to ±0.5% so that plasticity effects

can be observed in a loading cycle) with a fixed strain rate (see figure 3.4 (a)). This

is considered to be the simplest form of loading in this testing program due to the

greatly reduced dependence on creep mechanisms. Initial conditions for optimisation

procedures are often derived from these results due to the dominant hardening effects

observed. Additionally, relaxation testing has been completed using the same strain

limits and rates as applied as in the saw tooth loading experiments. A hold period (here

set to 2 minutes so that there is an appreciable relaxation in stress due to creep observed

in experiments) is introduced at the end of each tensile loading region (see figure 3.4

(b)). This gives rise to a period of creep dominant behaviour, acting to relax the stresses

in the specimen. This more complex behaviour can be used to demonstrate the wide

applicability of the Chaboche model and to estimate the creep behaviour for a material.

Typical experimental stress responses for the saw tooth and relaxation loading profiles

can be seen in figure 3.4 (c) and (d), respectively.
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(a) (b)

(c) (d)

Figure 3.4: Examples of typical (a) saw tooth strain loading profile, (b) relaxation strain
loading profile, (c) stress response due to saw tooth loading profile and (d) stress
response due to relaxation loading profile (shown for a P91 steel at 600°C).

Strain rates in the present work are 0.1%\s for experiments performed on the P91

steel and 0.003%\s for tests using a 316 stainless steel. These have been chosen to

allow cyclic tests to be completed in a reasonable amount of time while still ensuring

that the results show cyclic hardening effects. Hardening is often considered (for

strain controlled experiments at least) by observing the evolution of a material’s stress

amplitude (∆σ/2) with loading cycle (N) (see figure 3.5). The stress range will give a

general indication of the size of a yield surface and will provide information on whether

a material will harden or soften with cyclic loading. After a non-linear primary period,

during which a material may either harden or soften, a linear secondary region is

commonly observed. Materials will soften in the tertiary region as they approach failure.

As strain rate effects are not incorporated in the present work the choice of strain rate

is almost arbitrary (so long as ductile hardening behaviour is observed). Experimental

data presented in this chapter is used to verify any proposed optimisation procedures

and to demonstrate the wide range of material behaviours that the Chaboche model

can represent. The same optimisation procedures described in this present chapter are

applicable to many cyclic material experiments. Derived material constants may in turn

be used in component analysis simulations93,183.
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Failure

Figure 3.5: Potential material hardening behaviours in strain controlled cyclic exper-
iments, showing materials that harden (become more difficult to deform) and soften
(become easier to deform). Hardening behaviour is characterised by considering the
change in a stress amplitude (∆σ/2, dictated by the loading strain profile) with respect
to the load cycle (N).

3.3 The Uniaxial Chaboche Model

The Chaboche model in a multiaxial form was presented in section 2.3.5. The uni-

axial form of the Chaboche model is applied to several optimisation methodologies

in this chapter and for clarity is described here. A single yield function is defined

by equation (3.1)94,95. Note that the quantities σ and k represent the total stress and

a temperature dependent quantity related to the initial cyclic yield surface size94,95,

respectively. The constant k should not be confused with the tensile yield stress of a

material. In strain controlled experimental results, k is usually taken to be the stress at

which in-elastic behaviour is first observed in the first full tensile loading region of the

first cycle. While initial values of k may be similar to the tensile yield stress, optimised

values have been commonly found to be significantly less.

f = |σ − χ| − R − k ≦ 0 (3.1)

Only elastic behaviour will occur when the value of this function is less than or equal

to 0. The back stress (χ) designates the centre of a yield surface and the drag stress (R)

denotes the variation of its size (note this can either act to increase or decrease the size

of the yield surface)94,95. Through the use of these quantities, kinematic and isotropic

hardening may be represented, respectively. To provide a better approximation of the

kinematic effects, back stress can be decomposed into several components (note in the

present study, a two back stress component model was used30,31). An Armstrong and

Frederick type kinematic hardening law is used to define the increment for each back

stress component, taking the form of equation (3.2)101.
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dχi = Ci(aidεp − χidp) (3.2)

where ai and Ci are both material constants (ai defines the stationary value of the

back stress and Ci dictates how quickly this value is achieved with the increase in

plastic strain101). Additional back stress components can aid in the description of

non-linear kinematic hardening behaviour. Components will be dominant in certain

hardening regions and recessive in others. The use of multiple back stress components

is of particular importance when describing non-linear kinematic behaviour that cannot

be adequately represented by a single Armstrong-Frederick expression. Since the

present work attempts to identify a preferred optimisation methodology, two back

stress components have been adopted with the knowledge that the model’s ability to

predict experimental data may be improved by increasing the number of back stress

components. The accumulated plastic strain (p), on which most of the internal variables

are dependent, is a monotonic increasing quantity and is the summation of the modulus

of the plastic component of total strain (εp), described mathematically in equation (3.3)

(note that a dot denotes a rate quantity).

ṗ = Σ|ε̇p| (3.3)

By decomposing the back stress into multiple components, transient and long term

behaviour may be accounted for100, here with a1 and C1 dictating the evolution of χ1

(which describes initial kinematic non-linearity) and a2 and C2 dictating the evolution

of χ2 (describing asymptotic, stabilised behaviour), see figure 3.6. The total back stress

(χ) is given as a summation of these components; therefore for N components of back

stress, the total back stress (χ) is given by equation (3.4).

χ =
N=2

∑
i=1

χi (3.4)

The effects of isotropic hardening are represented by the scalar drag stress (R). As

such, R will alter only the size of the yield surface, see equation (3.5). Note that with the

drag stress equation in this form, only primary behaviour (either hardening or softening)

can be represented (see figure 3.7). The drag stress will undergo some initial monotonic

increase or reduction before reaching a stabilised asymptotic value101–103 (see figure 3.7).

This saturated value is signified by Q, with the rate at which the stabilised value is

reached being determined by the material constant b, see equation (3.5)102,103.

R = Q(1 − e−bp) (3.5)

Secondary linear effects can be represented through the addition of a linear term

(equation (3.6)) in the isotropic hardening law (equation (3.5)), utilising an extra material

constant (here designated H)184, preventing the saturation of the drag stress. The signs of
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the saturation constant Q and the secondary hardening rate constant H can be positive

or negative, depending on whether hardening or softening behaviour is observed,

respectively. Indeed, combinations of positive Q values and negative H values can be

implemented for materials that primarily harden but soften in the secondary region

(or vice-versa). In this way, combined isotropic hardening and softening behaviour is

accounted for.

R = Q(1 − e−bp) + Hp (3.6)

Creep effects will be present when time or strain rate have an influence on inelastic

behaviour. Time dependent creep behaviour can be introduced through the definition

of a viscous stress (σv), forming a component of total stress, summarised by equa-

tion (3.7)101, where the scalar components of stress act to increase or decrease the size of

the yield surface around its centre (defined by the quantity χ):

σ = χ + (R + k + σv)sgn(σ − χ) (3.7)

The viscous stress here is assumed to take the form of a power law94,95, such as

equation (3.8).

σv = Zṗ1/n (3.8)

where Z and n are viscous material coefficients. The uniaxial plastic strain increment

is given by equation (3.9). Note that, as this is the uniaxial form, σ and χ are both scalar

quantities (as opposed to tensors in the multiaxial form).

dεp =

〈 |σ − χ| − R − k

Z

〉n

sgn(σ − χ)dt (3.9)

ε

σ

χ1 Dominant Inelastic Region

χ2 Dominant Inelastic Region

Elastic Region

Figure 3.6: Evolution of back stress in stress strain space and illustration of dominant
components.
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Q

Figure 3.7: Evolution of drag stress in the original Chaboche model (shown for a material
undergoing primary hardening).

3.4 Determining Initial Estimates of the Chaboche Model

Material Constants

It is clear that the Chaboche model, even in its uniaxial form, contains complex interac-

tions between several competing mechanisms (such as kinematic, isotropic and viscous

effects). Determining the material constants for the Chaboche model from experimental

data is therefore difficult as this interaction will be reflected in material constant values.

A procedure was proposed by Tong et. al.101–103 and will be reviewed briefly here. A

more in depth examination of this procedure can be found in the work of Hyde182. In

the present work, this method has been adapted into a bespoke MATLAB program that

automates the procedure and greatly simplifies its implementation.

Cyclic tests will include an initial quarter cycle (known as the monotonic loading

section) that can be used to approximate the elastic (or Young’s) modulus E from the

linear region (see figure 3.8). The initial size of the yield surface (k) can be estimated

from the tensile part of the first full cycle, noting the stress at which the stress versus

strain behaviour first becomes non-linear.

σ

E

ε
k 1

Figure 3.8: The estimation of the Chaboche material constants E and k from the mono-
tonic loading section and first hysteresis loop of a cyclic test.

Material constants that dictate the evolution of the drag stress R, namely Q, b and H,
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can be estimated by assuming that all hardening in an experiment is isotropic. The long

term behaviour shown in figure 3.5 is commonly thought to be due to isotropic effects

and can be divided into primary (either hardening or softening behaviour), secondary

(either hardening, softening or steady-state behaviour) and tertiary (softening due to

failure) regions. Equation (3.6) describes primary and secondary behaviour through the

terms Q
(

1 − e−bp
)

and Hp, respectively. The accumulated plastic strain p is found by

summing plastic strain components (εp). For a half cycle (i.e. a tensile or compressive

loading) this may be calculated by subtracting the elastic component of strain (εe) from

the total strain (ε), see equation (3.10). εe is defined by the change in stress for the load

cycle (∆σ) and the estimated value of E.

εp = ε − εe = ε − ∆σ

E
(3.10)

R may be approximated by calculating the change in ∆σ between loading cycles. The

evolution of R due to p can then be quantified, as shown in figure 3.9 for a material that

cyclically softens. H may be estimated from the gradient of the secondary region and Q

from the value of R at the end of the primary region. Note if the term Hp is removed

from equation (3.6) (as shown in equation (3.5)), R will maintain the constant (saturated)

value Q after the primary hardening region. The constant b determines how quickly the

value Q is achieved. Equation (3.5) may be rearranged to give equation (3.11), allowing

b to be estimated by considering a point in figure 3.9 before the end of the primary

hardening region.

b =









ln
(

1 − R

Q

)

p









(3.11)

R

p

Q

0

1

H

Figure 3.9: An example evolution of R due to p (note the behaviour is typical of a
material that cyclically softens, such as the high chrome P91 steel).
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In the present work two back stress components (χ1 and χ2) are applied to describe

kinematic hardening. The material constants a1, C1 (which control the back stress χ1),

a2 and C2 (which control the back stress χ2) can be estimated from the monotonic

loading region by assuming all hardening is due to kinematic effects. The plastic

behaviour of this first quarter cycle is assumed to comprise of χ1 and χ2 dominant

regions, as shown in figure 3.6. It is assumed therefore that χ2 can be neglected for initial

hardening behaviour and χ1 can be neglected in the later stages of hardening. Note in

the monotonic loading region, p = εp. Equation (3.2) may be integrated with respect to

time to give equation (3.12), which in turn may be substituted into equation (3.7) to give

equation (3.13). In the later stages of hardening, it is assumed that a1
(

1 − e−C1εp
)

→ 0,

allowing equation (3.13) to be differentiated with respect to time and rearranged using

natural logarithms to give equation (3.14).

χi = ai

(

1 − e−Ciεp

)

(3.12)

σ = a1

(

1 − e−C1εp

)

+ a2

(

1 − e−C2εp

)

+ R + k + σv (3.13)

ln
(

δσ

δεp
− δR

δεp

)

= −C2εp + ln (a2 + C2) (3.14)

Plotting ln
(

δσ

δεp
− δR

δεp

)

versus εp for the experimental data yields a linear trend

with a gradient approximately equal to −C2. The constant a2 can then be estimated

from the Y axis intercept of this line. Note a similar approach may be used to determine

a1 and C1 by considering only the initial plastic region. In any case, quantification of

the terms
δσ

δεp
and

δR

δεp
is required. As only the monotonic region is under considera-

tion to determine kinematic hardening material constants,
δR

δεp
may be determined by

differentiating equation (3.5) with respect to p, as shown in equation (3.15).

δR

δεp
= bQe−bεp (3.15)

The estimation of
δσ

δεp
is more complex. It can be shown that equation (3.16) is true

(where a dot above a quantity denotes a rate term with respect to time). ε̇ is known from

the experimental set-up procedure and ε̇p can be calculated using equation (3.17).

δσ

δεp
=

dσ

dε

1
˙εp

ε̇ (3.16)

ε̇p = ε̇

(

1 − 1
E

dσ

dε

)

(3.17)
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Equations (3.16) and (3.17) are both dependent on the term
dσ

dε
. Due to experimental

scatter this can be a difficult parameter to determine. A smoothing function, such

as the Ramberg-Osgood law185,186 (defined by equation (3.18), where σ0 and n0 are

constants), can be used, allowing equation (3.19) to be determined. This expression

can be substituted into equation (3.16) and, along with equation (3.15), can be used to

determine ln
(

δσ

δεp
− δR

δεp

)

and hence the kinematic hardening material constants.

εE

σ0
=

σ

σ0
+

(

σ

σ0

)n0

(3.18)

dσ

dε
=

σ0

σ0

E

(

1 + n0

(

σ

σ0

)n0−1
) (3.19)

Viscous stress material parameters (Z and n) can be estimated by fitting equation (3.8)

to the periods of creep dominated stress relaxation that are found in experiments that

use a dwell type loading waveform. Alternatively, viscous stress materials constants

may be taken from literature. Creep material models are commonly fitted to uniaxial

creep test data. The power law form of equation (3.8) allows a direct comparison to

other power law creep models, such as Norton’s law or the Kachanov damage model.

The determination of secondary material constants is discussed in section 4.2.2.

3.5 Optimisation Procedure Overview

3.5.1 Requirement

The need for optimisation procedures in determining material constant values that will

result in good fits to experimental data is vital when implementing the Chaboche model.

The requirement for optimisation stems from the assumptions made when estimating

initial values for the material constants, namely101:

• Initially, all hardening is assumed to be isotropic (the kinematic state variables are

assumed to be zero), allowing for the saturation value Q to be determined. The

remaining isotropic hardening parameter (b) is found by considering the variation

of ∆σ/2 with the accumulated plastic strain (p) before saturation.

• When estimating kinematic hardening constants, it is assumed (for the integration

of the related differential equations) that the viscous stress σv remains constant

(i.e. it is not a function of time).

• It is assumed that the contribution of χ1 is negligible in the latter stages of kin-

ematic hardening. The effects of χ2 may therefore be isolated and applied only to

the later stages of hardening.
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• Commonly, initial estimates of the visco-plastic material constants (Z and n) are

approximated by trial and error or taken from literature to provide a reasonable

fit to the stress relaxation regions.

3.5.2 General Overview and Weighting Functions

In the present work, optimisation iterations are evaluated against each other through

the least squares method. In total, three general objective function forms have been

developed to define the fitting quality of a predicted stress versus time profile to experi-

mental data in the case of strain controlled isothermal cyclic testing. By using multiple

objective functions, preference can be given to areas of great interest in the stress-time

profile (such as peak stress values) while overall fitting is still accounted for elsewhere.

Although fewer objective functions may be used, the presented combination emphasises

critical areas in the stress profile and thus allows material constants which were heavily

affected by the assumptions in section 3.5.1 to be determined (for example, the viscous

stress material constants Z and n). General stress fitting is accounted for in the first

objective function (equation (3.20)).

F1(x) =
M1

∑
i=1

(

σ(x)
pre
i − σ

exp
i

)2
(3.20)

where each experimental stress value (σexp
i ) is compared with the corresponding

predicted stress value (σ(x)
pre
i ). The quantity M1 is the total number of experimental

points considered in the optimisation. It is of particular importance that the optimisation

takes account of the hardening/softening behaviour of the material, as this represents

the evolution of the yield surface with cyclic loading. An objective function is therefore

created based on the comparison of experimental and predicted stress range values.

These can be found by taking the difference between the peak stresses (found at the

end of a tensile loading region) and the minimum stresses (realised at the end of

a compressive loading region) and dividing by two for each cycle in turn, for both

predicted (
∆σ(x)

pre
i

2
) and experimental (

∆σ
exp
i

2
) results (see equation (3.21)). M2 therefore

defines the total number of loading cycles considered in the optimisation.

F2(x) =
M2

∑
i=1

(

∆σ(x)
pre
i

2
− ∆σ

exp
i

2

)2

(3.21)

Finally, the stress relaxation (or strain hold) loading region is of interest as it rep-

resents a period of creep dominant behaviour in the model. Fitting in this region aids

in the determination of the viscous stress material constants (Z and n). Stress values

predicted in this section (σ(x)
pre
RELAX i) are compared to experimental values (σexp

RELAX i) in

an additional objective function (equation (3.22)). M3 defines the number of relaxation

data points considered in the optimisation.
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F3(x) =
M3

∑
i=1

(

σ(x)
pre
RELAX i − σ

exp
RELAX i

)2
(3.22)

For the jth objective function, a weighting value (wj) is applied, ensuring that contri-

butions from different data sources are kept comparable (equation (3.23)).

wj =
∑

N
1 Mj

Mj max
∣

∣

∣A
exp
ij

∣

∣

∣

(3.23)

where Mj indicates the number of data points for the jth objective function, N is the

total number of objective functions and max
∣

∣

∣
A

exp
ij

∣

∣

∣
is the maximum experimental value

from the data source associated with that objective function.

Note that the relaxation objective function (equation (3.22)) is of course omitted in op-

timisation procedures performed on saw tooth strain profile experimental data. Optim-

isation programs that consider saw tooth experimental data are therefore deemed two ob-

jective function procedures. Programs that take into account relaxation data are deemed

three objective function procedures. The above objective functions are implemented in

an optimisation procedure using MATLAB. The Chaboche differential equations are

evaluated using ODE45187 (using a Dormand-Prince 4/5th order Runge-Kutta pair),

with a gradient method based least squares optimisation (the Levenburg-Marquardt

algorithm, seesection 2.6.4) completed using the MATLAB function LSQNONLIN188.

3.6 Experimental Data Cleaning

3.6.1 Requirement

Experimental data will, unavoidably, include scatter. In the domain of cyclic hardening,

this may be due to fluctuations in temperature during the test or due to fluctuations

in strain rate. Also, inertial effects will cause the test machine to potentially slightly

overshoot the maximum or minimum limit strains. Due to the large amounts of data gen-

erated, it is of critical importance that as much of the handling process is as automated

as possible.

Different logic conditions may be employed, in turn, to determine the end of each of

the loading branches (i.e. tensile, compressive or relaxation load periods). Scatter can

however result in incorrect points being selected as the branch ends. Consider the case

where an experimental point midway in the relaxation region is erroneously selected

as the beginning of the compressive branch due to data scatter. From the program’s

perspective, a subsequent point would be expected to have a lower strain value due to

the reverse loading in the compressive branch, however this may well not be the case as

a result of the incorrect branch definition (the points being compared are actually both

in the relaxation branch, rather than at the beginning of the compressive branch). If a
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positive strain increment is calculated where a negative one is expected, the related time

increment (found through use of the test strain rate) would be negative, hence causing

the differential equation solver to fail.

It is proposed here that, as stress is the quantity used for the assessment of fitting

quality for a given set of material parameters, cleaning the strain profile to remove scatter

will not significantly alter the overall output, however it could make the automated

nature of the analysis and optimisation process more robust. The cleaning process takes

the form of re-defining the experimental strain profile in the strain hold branch (see

figure 3.10).

Figure 3.10: Example of the effect of cleaning on the strain profile (note the maximum
strain is held over hold period in cleaned data).

3.6.2 Effects Compared to Unclean Data

Given the manipulation of the experimental data, it is of paramount importance that

no corruption should take place that would otherwise cause unsatisfactory fitting

after optimisation. An investigation was therefore conducted on the comparative

performance between the use of cleaned and as-received experimental data using the

Chaboche model. Using isothermal (600◦C) experimental data for a P91 steel, with

a strain limit range of ±0.5%, a strain rate of 0.1%/s and a hold time of 2 minutes,

optimisation by the two different methods was performed. In the optimisation methods,

both cleaned and as-received data values were used to represent the first 49 loading

cycles. Additionally, to illustrate the benefit of the robustness the cleaning procedure

can offer, an optimisation procedure was conducted on a greater number of cycles (122)

of the cleaned data. Due to the scatter, this number of cycles could not be considered in

the original optimisation procedure for as-received data. Note that in all cases, the same

initial conditions were used (see table 3.1).

The prediction of the change in stress range during cyclic softening (or hardening)
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is of importance for industrial applications due to its relation to the change in yield

stress of the material (with progressive cycling). The prediction of the changes in stress

range for 49 cycles is presented in figure 3.11 (a), for all three optimisation scenarios.

All three optimisation methods give reasonably good approximations (coefficients of

determination are above 0.9) of the variations in stress range, whether scatter in the

experimental data is considered or not.

In addition to the stress range prediction, specific stress magnitude predictions

within cycles are also required. To illustrate this, the fitting of the penultimate cycle

is provided in figure 3.11 (b). It can be seen that, generally, all of the methods give

excellent estimation of the stresses generated during tensile, stress relaxation and com-

pressive loading branches. The operation of cleaning the data prior to optimisation has

not impaired the quality of the overall fit to experimental data. Cleaning will mean

automated analysis can be made more robust and will avoid unexpected errors due to

incorrect branch definition. For subsequent sections of this chapter, the data used will

have undergone cleaning first to remove scatter in the strain hold period. The material

constants that were obtained by utilising the different optimisation procedures are given

in table 3.1 and in general show only small variations. On average, the percentage

difference from the mean for each constant was approximately 8% (a maximum of 30%

was obtained for the values of a1 in the as-received case).

Although each of the material constant sets presented in table 3.1 describe the 49

cycles of P91 (600◦C) data, it is the conclusion of this investigation that using cleaned ex-

perimental data for an optimisation procedure can aid in avoiding numerical difficulties

and premature termination of the optimisation program. If a greater number of loading

cycles can be considered more of the hardening behaviour of a material can be included

and thus represented in the final set of material constants.
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(a)

(b)

Figure 3.11: A comparison of optimised material constants for P91 data at 600◦C. Op-
timisation procedures are performed for both “cleaned” and as-received data. Results
presented show (a) the stress range variation (indicating primary softening behaviour)
and (b) the stress values for the 49th cycle.
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Table 3.1: Optimised material constant values for the Chaboche model for P91 data at
600◦C using alternative data preparation methods.
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a1
(MPa) 52.20 73.30 54.60 40.00

C1
2060.00 1170.00 1080.00 1280.00

a2
(MPa) 67.30 49.50 39.90 44.30

C2
463.00 136.00 219.00 242.00

Z

(MPa.s1/n) 1750.00 463.00 501.00 477.00
n

2.70 9.58 9.70 11.20
b

1.00 4.23 7.03 4.87
Q

(MPa) -75.40 -57.90 -59.40 -65.80
k

(MPa) 85.0 0.51 0.48 0.49
E

(MPa) 1.39x105 1.60x105 1.44x105 1.33x105

3.7 Investigation into the Performance of the Optimisation

Program

3.7.1 Effects of Number of Data Points Chosen per Cycle

Due to the large number of data points generated during experiments, only a selected

number are considered during an optimisation procedure. By using a greater number

of selected experimental data points per cycle, it is expected that the fitting quality

of the cyclic stress and relaxation stress values could be marginally improved (given

that selected data is distributed evenly between the beginning and the end of the

loading branches). Note that in practice this improvement was not noticeable as in all

cases coefficients of determination were above 0.95. Increasing the number of points

selected will increase the number of times that differential equations are evaluated, thus
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increasing the required computational effort. Therefore, if optimisation procedures are

to be used in practice, an assessment of the minimum number of points that are required

for a reasonable fit to the data must be made.

An investigation using 49 cycles on P91 steel at 600◦C was conducted. The same

set of initial conditions were used in all cases. The number of points selected per cycle

were varied between each of the optimisation program runs. The number of points

selected in a specific branch type were made equal to the points selected in the other

branch types. Therefore, for example, in the case where 60 points were selected per

cycle, 20 points were used in the tensile branch, 20 in the stress relaxation branch and

20 in the compressive branch. This equality was enforced to ensure the same level of

detail was reflected in the different parts of the stress versus time profile. In all cases, the

optimisation procedure terminated when the objective function tolerance was satisfied,

suggesting that the sum of residuals (r2, a useful metric for general fitting quality) is

comparable in each of the individual cases. This criterion suggests that a local minimum

in optimisation space is possible.

The effect on processing time can be seen in figure 3.12 and a summary of the

effects that the different number of points selected has on optimised constant values is

presented in tables 3.2 and 3.3 (along with computation times). It is interesting to note

that in figure 3.12, while in general an increase in the number of points selected per cycle

gives rise to an increase in processing time (as expected), reducing the number of points

below approximately 24 points per cycle also has the effect of increasing processing time.

As the objective function is formulated by comparing the experimental and theoretical

values at these points, a reduction in the number of points considered translates to less

available information for the fitting quality to be evaluated (reduced constraint). It is

suspected therefore that, should the objective function tolerance criterion be taken as

the preferred termination criterion, a greater number of optimisation iterations may be

required in order to give a suitable reduction in the residual value, hence causing an

increase in the computing time.
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Figure 3.12: Processing time (minutes) versus number of points selected per branch
(based on an investigation using 49 cycles of data for experiments on a P91 steel at 600◦C).
Note that these results are based on program runs completed using an i7 processor and
are included for comparison only.
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Table 3.2: Summary of the optimised constants for different numbers of selected points
(60, 45 and 30) per cycle for P91 data at 600◦C.
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P
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s

a1
(MPa) 52.20 18.78 56.39 19.76

C1
2055.00 2792.82 1057.80 8396.84

a2
(MPa) 67.30 59.32 29.50 66.21

C2
463.00 645.30 250.72 672.44

Z

(MPa.s1/n) 1750.00 498.61 501.02 499.96
n

2.70 10.09 9.44 9.24
b

1.00 15.74 6.34 19.96
Q

(MPa) -75.40 -63.23 -57.76 -60.44
k

(MPa) 85.00 0.50 0.50 5.51
E

(MPa) 1.39x105 1.38x105 1.42x105 1.40x105

Time to Complete
Optimisation

(mins) 71.01 60.02 35.42
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Table 3.3: Summary of the optimised constants for different numbers of selected points
(24, 15 and 12) per cycle for P91 data at 600◦C.
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P
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a1
(MPa) 52.20 31.92 48.20 10.00

C1
2055.00 5385.78 615.09 13433.08

a2
(MPa) 67.30 66.34 20.79 50.40

C2
463.00 592.47 626.21 678.55

Z

(MPa.s1/n) 1750.00 500.51 499.95 499.93
n

2.70 8.36 8.92 9.15
b

1.00 6.85 3.44 4.24
Q

(MPa) -75.40 -51.66 -35.77 -35.19
k

(MPa) 85.00 0.50 1.74 1.08
E

(MPa) 1.39x105 1.47x105 1.44x105 1.30x105

Time to Complete
Optimisation

(mins) 30.01 32.34 39.61

3.7.2 Variation of Initial Conditions

The initial conditions used in the optimisation analyses can have a significant effect on

the convergence to the objective function minima. In high dimension cases (such as

the Chaboche model) it is difficult to visualise the full extent of the interplay between

the material constants (hence sensible initial estimates, based on experimental data,

are required). As such, an investigation into the effect of slight variations in initial

estimates of material constants would be time consuming to explore fully. For an

exhaustive analysis to be performed the variation of every material constant from some

base value would have to be accounted for, along with every permutation of these

variations. Conducting this analysis would, assuming 3 levels per constant, require

59049 optimisation procedures to be performed. Such an endeavour is considered

outside the scope of the present work, and therefore a more simplistic analysis of

the effect of material constants variations is presented. A percentage variation (20%)

was applied equally to all material constants, acting to either increase or decrease the
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initial value from a base set of initial conditions (initial condition set 1, see table 3.4).

Separate investigations were made as to the effect of increasing (initial condition set 2,

see table 3.4) or decreasing (initial condition set 3, see table 3.4) the material constants

by such a variation.

Data for 30 cycles for P91 steel at 600◦C was used with the same initial “base”

conditions as in section 3.7.1. A summary of the results of this study is presented in

table 3.4. An excellent level of agreement was found between constants optimised from

the different initial conditions, with an average percentage difference between the base

condition case (case 1) and the varied initial condition cases (case 2 for increased initial

conditions and case 3 for reduced initial conditions) of approximately 1.2% in both

scenarios. A peak percentage different of 13.5% was observed in the initial yield stress

(k) value for case 2. Table 3.5 summarises the percentage differences between optimised

material constant sets.

Table 3.4: Summary of optimised material constants based on different initial conditions
(using 30 cycles of data, 30 points per cycle for P91 data at 600◦C).
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a1
(MPa) 52.20 16.36 62.64 15.70 41.76 16.09

C1
2055.00 6613.08 2466.00 6539.96 1644.00 6509.37

a2
(MPa) 67.30 65.90 80.76 65.95 53.84 66.01

C2
463.00 732.56 555.60 733.73 370.40 735.70

Z

(MPa.s1/n) 1750.00 501.02 2100.00 499.88 1400.00 499.99
n

2.70 9.39 3.24 9.37 2.16 9.38
b

1.00 31.85 1.20 32.47 0.80 33.69
Q

(MPa) -75.40 -61.24 -90.48 -61.40 -60.32 -61.71
k

(MPa) 85.00 10.30 102.00 11.69 68.00 11.38
E

(MPa) 1.39x105 1.39x105 1.67x105 1.39x105 1.12x105 1.39x105
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Table 3.5: Percentage difference between “base” optimised constants (case 1) and varied
optimised constants (cases 2 and 3) (using 30 cycles of data, 30 points per cycle for P91
data at 600◦C).
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a1
(MPa) 4.03 1.65

C1
1.11 1.57

a2
(MPa) -0.08 -0.17

C2
-0.16 -0.43

Z

(MPa.s1/n) 0.024 0.002
n

0.21 0.11
b

-1.95 -5.78
Q

(MPa) -0.26 -0.77
k

(MPa) -13.50 -10.49
E

(MPa) 0.00 0.00

3.7.3 Summary of the Investigation into the Performance of the

Optimisation Program

The addition of a data cleaning procedure prior to optimisation greatly aids the pro-

cedure and makes automated data handling more robust and reliable (as the formation

of the objective function relies on accurate dissection of the stress versus time profile).

Stress relaxation, which occurs during strain hold periods, can be predicted with far

greater accuracy when material constants are optimised using cleaned data (compared

to material constants optimised using as-received data with experimental scatter). The

effect of cleaning on fitting has been assessed against as-received data to verify that

cleaning the experimental data has no detrimental effect on the fitting quality.

A reduction in the number of points selected per cycle has been shown to give
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a reduction in the length of time required for optimisation up to approximately 24

data points per cycle. The increase in data points necessitates a greater number of

times at which the differential equations need to be evaluated, thus requiring a more

lengthy computing time. Reducing the number of data points selected per cycle below

24 also gives rise to an increase in computing time. It is reasoned that this is due

to the difficulties with the reduced constraint when evaluating the objective function

(there is a reduced amount of information with which to calculate the objective function

values). A greater number of iterations is required to make a significant change in

the objective function value, such that a user defined tolerance is exceeded and the

optimisation procedure terminates. The optimised constants shown tables 3.2 and 3.3

exhibit a range of values, seemingly dependent on the number of data points selected

per cycle. Scatter in the experimental stress data could, when the selection procedure is

applied, lead to multiple (slightly different) optimum experimental stress versus time

profiles, depending on the specific points selected and rejected. Therefore constants

governing the hardening or softening behaviour (such as a1, C1, a2 and C2) could

show wide variance as a result of slightly different experimental hardening curves (the

tensile and compressive branches) being used for the optimisation, depending on the

experimental data points chosen. By comparison, viscous stress constants (Z and n)

show remarkable agreement considering the variations which occur in the other values,

possibly indicating that stress scatter in the stress relaxation branches (where creep is

the dominant mechanism) is far less than that in the hardening data. The selection

procedure implemented will always select stress values at the beginning and end of

the branches (for use in stress range fitting). At a glance therefore it would be expected

that isotropic hardening parameters (b and Q) would be consistent, regardless of the

number of points selected. In the long term hardening effects will be dominated by

isotropic behaviour, however initially kinematic effects also may play a key role34.

Isotropic material constant values will therefore be affected by the optimised values of

the kinematic material constants, suggesting the potential for variation in both.

Small uniform aberrations in initial material constant estimates were investigated,

as shown in table 3.4. The optimisation procedure developed (i.e., using cleaned exper-

imental data) converged on similar optimised material constant values, regardless of

the initial conditions used. Peak differences of 13.5% were observed for the material

constant k, however an average variation of 1% was found for the other Chaboche

material constants (see table 3.5). In cases where a large number of loading cycles are

considered, experience has shown that there is a limited dependence on the initial size of

the yield surface (signified by k) due to hardening effects (either isotropic or kinematic)

inducing larger changes in the yield surface.
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3.8 Multiple Data Source Optimisation Strategies

3.8.1 Requirement

Preliminary studies and previous experience has highlighted that, for experiments

performed using the same material being loaded under comparable strain ranges and

rates (i.e. in situations where a single set of material constants should be sufficient to

describe all test results), different sets of optimised material constants can be derived

from each of the experimental data sets (i.e. experiments performed using saw tooth

or relaxation loading profiles, see section 3.2). For the implementation of material

models like the Chaboche model in component analysis, it is vital that a single set of

material constants (i.e. one that is not dependent on experimental loading conditions

that are accounted for in the model) that is representative of the material behaviour is

derived. A general optimisation procedure has been developed to fine tune material

constants in the previous section30,31, however it is the intention here to further explore

the application of optimisation for the case where two different sets of test data that

should be described by the same set of material constants are available. Cao and Lin

suggested that the ideal optimisation procedure, when applied to multiple data curves,

should give equal opportunity for all experimental curves to be optimised against165.

With this in mind, the proposed optimisation strategies presented here involve some

form of information exchange between sub-optimisation procedures (performed on

both saw tooth and relaxation type experimental data). In this way, material constants

are optimised based on all available experimental data.

The inclusion of multiple sets of experimental data offers several possibilities re-

garding the determination of initial conditions. Hardening material constants can be

determined accurately using either saw tooth or relaxation experimental data. Due to

the reduced complexity in saw tooth tests (arising due to hardening mechanisms, as

opposed to creep, being dominant throughout the test), these tests are more readily

applicable to the initial material constant determination procedure31,102,103. Similarly,

creep constants may be estimated from the stress relaxation periods in the relaxation

tests, where creep is considered to be dominant in the strain hold region (at least, when

the testing temperature is sufficiently high enough to initiate creep). The rate at which a

material softens in the linear secondary region has been found to be consistent for both

experimental test types; therefore H (see equation (3.6)) can be reasonably estimated

from either set.

3.8.2 Methodologies

Separated Parallel Optimisation (SP)

Given that hardening material constants could be accurately derived from either data

set but creep constants may only be realistically determined from relaxation data, a
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method that would require only a single experimental set to be optimised against would

be of great interest. Potentially, only the tests with stress relaxation periods would need

to be performed, thus streamlining test programs and reducing the time expended for

optimisation. To highlight this effect, separated optimisation methodologies that use

different initial conditions have been performed simultaneously (see figure 3.13) for

different sets of experimental data. These separated procedures entail performing a 2

objective function optimisation process on saw tooth experimental data and a 3 objective

function process on the relaxation experimental data. There is no exchange of informa-

tion between the two optimisation procedures. A summary of the type of experimental

data used for the formulation of the objective functions for each experimental data type

is presented in figure 3.14.

(a)

(b)

Figure 3.13: Flowchart of the separate parallel optimisation procedure, compromising of
(a) a two objective function optimisation procedure using saw tooth experimental data
and (b) a three objective function optimisation procedure using relaxation experimental
data.
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(a) (b)

(c) (d)

(e)

Figure 3.14: Examples of the experimental data used to formulate the objective functions
for (a) stress range fitting in relaxation experimental data, (b) general stress fitting in
relaxation experimental data, (c) stress relaxation region fitting in relaxation data, (d)
stress range fitting in saw tooth experimental data and (e) general stress fitting in saw
tooth experimental data.

Series Optimisation (S)

In the series optimisation methodology (figure 3.15), initial material constant estimates

are determined from the relevant sections in each experimental data set, as described

previously (i.e. hardening material constants from saw tooth experimental data and

creep constants from relaxation data). An optimisation procedure is performed using

the saw tooth experimental data with a view to fine tuning hardening constants. A

subsequent optimisation procedure using the first optimised material constant set as
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an initial condition (constant set 1-S is equal to the initial conditions for the 3 objective

function optimisation process in figure 3.15) and the relaxation experimental data is

completed with a view to determining creep constant values. It is suspected that the

change in the hardening constants will be minimal between the constant set 1-S and

constant set 2-S (see figure 3.15). Both optimised material constant sets have been

evaluated and compared to both experiment data types to explore fitting quality. Note

constant set 1-S is equal to constant set 1-SP in figure 3.13; however constant set 2-S is

not necessarily equal to constant set 2-SP due to the different initial conditions used for

the same (3 objective function) optimisation procedure.

Figure 3.15: Flowchart of the series optimisation procedure.

Combined Parallel Optimisation (CP)

As an alternative to the above two methods (where each experimental data source

is considered independently), it is conceivable that a single optimisation procedure

could be performed that accounts for both experiment data groups, thus conducting

combined parallel optimisation (see figure 3.16). Given some initial conditions (that

may be derived in the most efficient way depending on the available data) a total of five

objective functions could be derived that effectively combine the two and three objective

function optimisation procedures in figures 3.13 and 3.15. Potentially, a single set of

material parameters could be derived that would accurately represent both saw tooth

and relaxation experimental data. Initial conditions could be derived from either saw

tooth or relaxation type experimental data for this optimisation strategy. In the present

work, both initial conditions are considered in the results section in order to determine

the preferred option.
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Figure 3.16: Flowchart of the combined parallel optimisation procedure (see figure 3.14
for objective function descriptions).

3.8.3 Results

In order to compare the optimisation strategies proposed each was used to optimise

a material constants for test performed on a P91 steel at 600◦C. Both saw tooth and

relaxation type loading profiles were applied. Strain limits were set to ±0.5%, with a 2

minute hold period at the end of each of the tensile loading regions (where applicable)

and a constant strain rate of 0.1%/s. Two sets of initial conditions were derived for

the optimisation procedures. Saw tooth and relaxation experimental data were used

to find hardening and creep material constants, respectively (deemed “Saw Tooth”

initial conditions, see table 3.6). Alternatively, a full set of initial conditions were

determined solely from relaxation tests (“Relaxation” initial conditions, see table 3.6). In

all optimisation routines the first 300 loading cycles from the experimental data sets were

taken into account. 10 experimental data points were selected for each loading region

(tensile, compressive or strain hold), giving 20 and 30 data points per loading cycle for

saw tooth and relaxation type data, respectively. This value was chosen to minimise

the amount of time required to complete the optimisation procedure, as identified in

section 3.7.1.

Optimisation Results

In the separated parallel optimisation procedure, optimisation programs based on the

formulation of 2 or 3 objective functions are performed on the relevant experimental

data sets. The 2 objective function optimisation is equivalent to the first step in the series

optimisation methodology shown in section 4.2.1, therefore the results (constant set 1-S)

are identical and are shown in table 3.7 as constant set 1-SP. Results of the 3 objective

function optimisation (constant set 2-SP) are also presented in table 3.7.

Using series optimisation, hardening material constants are fine-tuned from the

initial conditions derived from both saw tooth and relaxation experimental data using a

2 objective function optimisation procedure (considering the fitting to saw tooth data
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only). This gives rise to constant set 1-S (equivalent to 1-SP in table 3.7), which is used as

an initial condition in the 3 objective function optimisation that fine tunes creep material

constants, incorporating relaxation experimental data (constant set 2-S, see table 3.7 for

results). Hardening material constants should be common for both data sets as creep is

a dominant mechanism only in the stress relaxation loading regions, therefore it is to be

expected that constant set 2-S should represent both sets of experimental data well.

In combined parallel optimisation, a single procedure is undertaken that evaluates 5

objective functions, calling both sets of experimental data for comparison. Initial condi-

tions could be determined using both saw tooth and relaxation data or just relaxation

data (see table 3.7).
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Table 3.6: Summary of initial estimates for the Chaboche model for P91 at 600◦C, derived
using either relaxation or saw tooth data.
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(MPa) 85.18 92.91

C1
1360.66 1164.23

a2
(MPa) 95.81 104.03

C2
551.75 433.47

Z

(MPa.s1/n) 752.99 752.99
n

6.87 6.87
b

1.86 3.67
Q

(MPa) -70.64 -74.56
k

(MPa) 9.39 33.33
E

(MPa) 1.40x105 1.48x105

H
(MPa) -2.99 -3.16
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Table 3.7: Summary of the optimised values for the Chaboche model material constants
for P91 at 600◦C using different optimisation strategies.
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(MPa) 2.81 66.90 18.06 80.96 86.75

C1
2132.51 2516.18 538.24 1572.18 1422.08

a2
(MPa) 62.19 88.93 50.79 90.69 59.85

C2
644.01 506.55 586.93 519.50 671.78

Z

(MPa.s1/n) 1259.01 683.03 1004.19 697.45 674.11
n

4.11 5.01 3.16 5.44 5.00
b

5.41 1.18 34.65 4.64 2.92
Q

(MPa) -38.49 -84.06 -71.85 -77.78 -84.14
k

(MPa) 0.51 30.90 143.90 146.04 30.66
E

(MPa) 1.40x105 1.53x105 1.41x105 1.46x105 1.54x105

H
(MPa) -3.74 -2.83 -1.98 -3.06 -2.82

3.8.4 Comparative Plots

Saw Tooth Waveform Prediction

In order to assess the predictive capability of the Chaboche model using optimised

material constant sets, “plotting” programs were implemented. Strain limits and rates

110



from experimental data sets were used to define a loading profile with uniform time

and strain increments. The Chaboche model is used to calculate the evolution of the

state variables using this uniform profile; hence noise and scatter that are apparent in

the experimental data are not reproduced, making study of the resultant curves easier.

Comparison between this predictive curve and the original experimental data is still

valid as both are dependent on loading profiles generated using the same characteristic

parameters (such as strain limits values or strain rate). Through comparison of predicted

and experimental data, the coefficient of determination (r2) may be calculated for each

optimised material constant set (see table 3.8). These values provide a metric by which

to judge the fitting quality of a predictive model (compared to the experimental data)162.

Coefficients of determination are calculated from equation (3.24) for N data points,

where EXPi and PREDi are the ith experimental and predicted values, respectively, and

σEXP is the standard deviation of the experimental data. A perfect fitting (i.e. with

no error between experimental and fitted data points) would result in an r2 value

of 1. Note that, in the present work, all available experimental data was used to

determined r2 values (this differs from the optimisation process, where only a selected

number of experimental points were implemented in order to keep computation times

reasonable). Plots comparing predicted behaviour to the corresponding experimental

data are presented for stress range evolution and general cyclic stress fitting for the

middle (150th) cycle. For clarity, the profiles predicted by each constant set are separated

into multiple plots. Those predicted from initial conditions may be found in figure 3.17.

Profiles predicted from the results of separated parallel or series optimisation can be

seen in figure 3.18. Profiles predicted using the results of combined parallel optimisation

are given in figure 3.19.

r2 = 1 −
N

∑
i=1

(EXPi − PREDi)
2

Nσ2
EXP

(3.24)

Table 3.8: Summary of coefficients of determination for fitting to saw tooth experimental
data using different material constant sets.

r2

Saw tooth initial conditions 0.7630
Relaxation initial conditions 0.7215

1-SP (equal to 1-S) 0.9977
2-SP 0.9907
2-S 0.9958

1-CP - Saw tooth initial conditions 0.9765
1-CP - Relaxation initial conditions 0.9988
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(a)

(b)

Figure 3.17: Illustration of fitting quality for the saw tooth loading profile using initial
estimates of the material constants, showing (a) stress range evolution with cycle number
and (b) stress fitting for the middle (150th) cycle.
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(a)

(b)

Figure 3.18: Illustration of fitting quality for the saw tooth loading profile using op-
timised values of the material constants from series and separate parallel optimisation
procedures. Plots shown are (a) stress range evolution with cycle number and (b) stress
fitting for the middle (150th) cycle.
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(a)

(b)

Figure 3.19: Illustration of fitting quality for the saw tooth loading profile using optim-
ised values of the material constants from combined parallel optimisation procedures,
showing (a) stress range evolution with cycle number and (b) stress fitting for the middle
(150th) cycle.

Relaxation Waveform Prediction

Similar to section 6.1, coefficient of determination (r2) values are presented for each ma-

terial constant set based on relaxation experimental data (see table 3.9). To demonstrate

the relative fitting of the predicted profiles (based on different material constant sets),

plots comparing the predicted behaviour to the experimental data are presented for

stress range prediction and general cyclic stress fitting for the middle (150th) cycle. For

clarity, the predicted profiles are also separated into initial conditions, series and sep-

arated parallel optimisation results and combined parallel optimisation results groups

(see figures 3.20 to 3.22, respectively).
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Table 3.9: Summary of coefficients of determination for fitting to relaxation experimental
data using different material constant sets.

r2

Saw tooth initial conditions 0.7599
Relaxation initial conditions 0.6909

1-SP (equal to 1-S) 0.9310
2-SP 0.9853
2-S 0.9947

1-CP - Saw tooth initial conditions 0.9786
1-CP - Relaxation initial conditions 0.9994

(a)

(b)

Figure 3.20: Illustration of fitting quality for the relaxation loading profile using initial
estimates of the material constants, showing (a) stress range evolution with cycle number
and (b) stress fitting for the middle (150th) cycle.
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(a)

(b)

Figure 3.21: Illustration of fitting quality for the relaxation loading profile using op-
timised values of the material constants from series and separate parallel optimisation
procedures. Plots show (a) stress range evolution with cycle number and (b) stress
fitting for the middle (150th) cycle.
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(a)

(b)

Figure 3.22: Illustration of fitting quality for the relaxation loading profile using optim-
ised values of the material constants from combined parallel optimisation procedures,
showing (a) stress range evolution with cycle number and (b) stress fitting for the middle
(150th) cycle.

3.8.5 Summary of the Investigation into Multiple Data Source

Optimisation Strategies

A single set of material constants for the Chaboche visco-plasticity model should be

sufficient to describe multiple sets of experimental data if the tests were performed

under the same characteristic conditions (e.g. multiple isothermal tests at the same

temperature, similar strain rates and limit strain values). Several optimisation strategies

have been presented to meet this expectation. While the resultant material constant

sets from the optimisation procedures differ considerably, the general fitting quality

was greatly improved and was generally consistent (see tables 3.8 and 3.9 ) through
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optimisation (highlighting the complex interplay between material constants in the

Chaboche model). The first step in the practical application of a model is to determine a

single, representative set of material constants.

Optimisation procedures using the separated parallel strategy ran simultaneously

(but with no exchange of information between the two procedures). While constant

set 1-SP is slightly better (r2 equals 0.9977 compared to 0.9901 for constant set 2-SP) at

predicting saw tooth experimental data, constant set 2-SP is significantly more adept

at predicting relaxation experimental data (r2 equals 0.9853 compared to 0.9310 for

constant set 1-SP, see table 3.9). Such behaviour is to be expected as constant set 1-SP is

not the result of an optimisation based on experimental data containing stress relaxation

regions, therefore creep material constants cannot be fitted to a creep dominant region.

The separated nature of this methodology means that inevitably one of the optimised

material constant sets is redundant; therefore the experimental data related to this

redundant material constant set is not represented in the final solution. If multiple

experimental data sets are available, the maximum confidence in the final solution’s

ability to predict experimental data can be obtained by applying the highest level of

constraint to an optimisation procedure.

The series optimisation strategy (figure 3.15) effectively dissects sources of experi-

mental data on a mechanism basis. Completion times for this optimisation methodology

have been found to be relatively lengthy (approximately 8 hours compared to 5 hours

for the separate parallel optimisation procedures). More importantly however, the

subsequent consideration of relaxation data after the saw tooth optimisation procedure

could detract from the ability of the final result to predict the saw tooth experimental

response. Given slight experimental discrepancies between the hardening sections in

both experimental data sets, it is reasonable to assume that different optimum hardening

material constants (i.e. a1, C1, a2, C2, b and Q) will better predict these marginally differ-

ent stress profiles. As the relaxation experimental data is considered last, its hardening

loops are treated preferentially, altering the material constant values that predict the saw

tooth data well in order to predict the relaxation data. The fitting quality to saw tooth

experimental data is thus compromised. Such behaviour can be observed in table 3.8,

noting that the coefficient of determination value reduces marginally between constant

set 1-S (0.9977) and 2-S (0.9958). When predicting relaxation data, the additional optim-

isation procedure improves the fitting quality (the coefficient of determination value

is greater for constant set 2-S than 1-S see table 3.9). In order to give adequate and

equal consideration to both sources of experimental data, simultaneous (or parallel)

optimisation must be performed.

In the combined parallel optimisation strategy (figure 3.16), objective functions

are formed using both sets of experimental data simultaneously. Completion times

are generally significantly less for the combined parallel optimisation methodology

(approximately 3 hours) than for the alternatives suggested. It is suspected that this is
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due to the high level of constraint in this methodology. The formation of the objective

function is dependent on several sub-objective functions, therefore the gradient based

optimisation method used in LSQNONLIN has more information to determine the

direction of greatest decent. Minimum (either global or local) solutions can therefore be

obtained in a shorter time.

Initial estimates derived from either set of experimental data generally predict the

same hardening behaviour (see figure 3.17); despite slight differences in the related

material constant values. Although the creep constants Z and n are identical for the

two initial condition sets (having both been derived from relaxation data), a small

discrepancy can be observed between the stress relaxation curves predicted by the saw

tooth initial condition set and the relaxation initial condition set in figure 3.20. It should

be remembered that the stress relaxation region in the relaxation experimental data

does not represent a period of solely creep dependant behaviour. Isolation of material

constants based on controlling deformation mechanisms has not been possible in the

present work and should only be undertaken with extreme care.

All optimised material constant sets appear to predict saw tooth experimental data

well (see figures 3.18 and 3.19 and table 3.8). Constant set 1-SP (or 1-S) appears to give the

optimum solution for the prediction the results of saw tooth experiments (see table 3.8).

This is to be expected as the constant set is determined based solely on objective functions

formed from saw tooth experimental data. The lack of additional constraint from other

experimental data sources means that the fitting quality of this material constant set is

not impaired (when compared to saw tooth experimental data). Note that for constant

set 1-CP Relaxation (see table 3.8), the fitting quality is approximately the same as

for constant sets 2-SP and 2-S (approximately 0.99). Lower r2 values are observed for

constant sets 1-CP Saw Tooth. A potential explanation for this phenomenon is that the

combination of initial condition values derived from both saw tooth and relaxation

experimental data does not represent a unified material constant set. The division

of initial condition values based on a mechanism basis does not reflect the interplay

between hardening and creep effects present in the Chaboche model. These initial

conditions therefore may cause the optimisation to localise on non-optimum solutions,

impairing the fitting quality in some cases and resulting in a lower r2 value.

The comparative plotting results for the prediction of relaxation experimental data

are more complex, owing to the rejection of creep dominant regions for the optimisation

of some material constant sets (constant set 1-SP). The effects of not optimising using

experimental data with creep dominant regions can be illustrated by the relatively

poor prediction of stress relaxation using material constant set 1-SP (see figure 3.21 and

table 3.9). A marked improvement in creep response prediction can be seen for constant

set 2-S (i.e. after constant set 1-S has been optimised based on data with creep domin-

ant regions). Both combined parallel optimisation material constant sets estimate the

relaxation experimental data well, however the inclusion of congruent initial conditions
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(i.e. derived from one experimental data source; the relaxation experimental data) in

determining the constant set 1-CP Relaxation seems to provide a better approximation

of the stress range evolution, compared to constant sets 1-CP Saw Tooth.

Optimisation procedures may also result in the determination of physically unreal-

istic constants. Alternatively, a dependence may be observed between a particular

optimisation method and the solution. It should be noted that, particularly in the case

of the Chaboche model presented here, the highly multi-dimensional (i.e. numerous

parameters to be optimised) nature of the optimisation creates a complex topology. This

is exacerbated by the potential for strong dependencies between material constants. It is

therefore possible for gradient methods to converge on drastically different minima with

only slight difference in initial estimate. This point is particularly true in the context of

the present work, where prior optimisation procedures yield the initial estimates for

subsequent optimisations (see figure 3.15 for example). Solutions can be made more

reliable by using side constraints in the optimisation. Isotropic parameters in such as Q

and H can typically be determined with a great deal of certainty (the values of these

constants are not heavily affected by the assumptions in section 3.5.1 and optimised

values are typically within ±10% of the initial estimates). Tight upper and lower limits

can therefore be applied to these constants, while allowing the other material constants

to be fully optimised. Applying tight side constraints must be done with caution due to

potential parameter interactions. Additionally, the maximum level of constraint should

be enforced from experimental data. It is the conclusion of this work that all available

experimental data (even when it is from different sources/tests) should be used to

evaluate objective functions in the same optimisation iteration.

3.9 The Prediction of the Cyclic Hardening Behaviour of P91

and 316 Steel

3.9.1 Experimental data for a P91 steel and 316 Stainless Steel

In this chapter, several sub-investigations have been conducted in order to establish

a robust method for the determination of material constants of the Chaboche unified

visco-plasticity model. To demonstrate the high level of fitting quality that may be

achieved by implementing these procedures they have been applied to experimental

data for a high chrome steel (grade P91) and a stainless steel (grade 316), both of which

have been used in power plant. The chemical composition of these materials can be

seen in tables 3.10 and 3.11, respectively.
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Table 3.10: Chemical composition (wt %) of P91 steel.

Cr Mo Mn Si Ni V C Cu
8.49 0.978 0.43 0.37 0.32 0.2 0.11 0.07
Nb Co P W S Ti Al Fe
0.06 0.02 0.014 < 0.02 0.008 < 0.002 < 0.001 Balance

Table 3.11: Chemical composition (wt %) of 316 stainless steel.

Cr Ni Mo Mn Si Cu V Co
16.8 11.8 2.15 1.42 0.5 0.49 0.08 0.07

S C Nb W Al P Ti Fe
0.03 0.02 0.02 < 0.02 0.01 0.01 0.01 Balance

Strain limits were set to ±0.5%, with a 2 minute hold period at the end of each of the

tensile loading regions (where applicable) and a constant strain rate of 0.1%/s for P91

tests and 0.003%/s for 316 steels. P91 tests were conducted at 600◦C, 500◦C and 400◦C.

316 tests were conducted at 600◦C. 10 experimental data points were selected for each

loading region (tensile, compressive or strain hold), giving 20 and 30 data points per

loading cycle for saw tooth and relaxation type data, respectively. The number of cycles

considered in each optimisation routines was chosen so that primary and secondary

behaviour was considered. For P91, 400, 600 and 1000 cycles of data were included for

the 600◦C, 500◦C and 400◦C data, respectively. 600 cycles of data were considered for

the optimisation of the 316 data at 600◦C. Cyclic softening behaviour (represented by

a reduction in stress range with increased accumulated plastic strain) was observed

in both test types for P91 (see figures 3.23 to 3.25). Cyclic hardening behaviour was

observed for the 316 material (see figure 3.26). The inclusion of materials that cyclically

soften and harden illustrates the wide applicability of the Chaboche model and the

optimisation procedure developed. Initial conditions were derived from relaxation type

experimental data for the reasons given in section 3.8.5. A summary of these initial

conditions and the optimised values is given in tables 3.12 and 3.13 for P91 and 316,

respectively.
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(a)

(b)

Figure 3.23: The evolution of stress range (∆σ/2) for a P91 steel at 600◦C under (a)
relaxation and (b) saw tooth type loading profiles.
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(a)

(b)

Figure 3.24: The evolution of stress range (∆σ/2) for a P91 steel at 500◦C under (a)
relaxation and (b) saw tooth type loading profiles.
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(a)

(b)

Figure 3.25: The evolution of stress range (∆σ/2) for a P91 steel at 400◦C under (a)
relaxation and (b) saw tooth type loading profiles.
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(a)

(b)

Figure 3.26: The evolution of stress range (∆σ/2) for a 316 steel at 600◦C under (a)
relaxation and (b) saw tooth type loading profiles.
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Table 3.12: Summary of initial estimates and optimised values for the Chaboche model
material constants for a P91 steel at 600◦C, 500◦C and 400◦C.
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a1
(MPa) 33.62 58.2 59.86 66.27 23.63 33.71

C1
4758.44 11400.00 7347.50 2736.28 9026.53 7764.29

a2
(MPa) 30.21 51.20 59.11 74.59 30.63 72.19

C2
290.14 609.00 539.93 432.74 724.40 582.79

Z

(MPa.s1/n) 1019.72 844.12 492.77 370.79 455.71 382.93
n

6.51 3.43 16.54 6.56 42.57 18.94
b

3.80 1.50 1.50 1.53 0.74 0.78
Q

(MPa) -60.79 -62.21 -47.55 -47.98 -30.32 -33.35
k

(MPa) 91.05 91.19 98.44 96.04 98.44 77.35
E

(MPa) 1.44x105 1.41x105 1.78x105 1.62x105 1.83x105 1.75x105

H
(MPa) -4.06 -1.98 -2.55 -2.70 -1.52 -1.56
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Table 3.13: Summary of initial estimates and optimised values for the Chaboche model
material constants for a 316 steel at 600◦C.
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(MPa) 51.31 53.48

C1
931.29 1193.05

a2
(MPa) 55.83 48.40

C2
303.12 275.28

Z

(MPa.s1/n) 959.18 297.93
n

7.52 6.59
b

13.72 9.77
Q

(MPa) 67.77 60.01
k

(MPa) 47.81 79.54
E

(GPa) 1.28x105 1.36x105

H
(MPa) -0.07 -0.90

3.9.2 P91 Steel Results

3.9.3 P91 Steel at 600◦C

The results of a combined parallel optimisation using cleaned experiential data for a

P91 steel at 600◦C are presented below. The prediction of stress range (∆σ/2) versus

load cycle number N is presented for both saw tooth and relaxation type load profiles

in figures 3.27 and 3.31, respectively. Hysteresis loops for the 1st, 200th and 400th load

cycles are also presented to show the quality of fit for hardening curves. These plots are

provided for saw tooth (figures 3.28 to 3.30) and relaxation (figures 3.32 to 3.34) type

load profiles. Relaxation figures also include plots of stress relaxation regions for the
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same load cycles, verifying the prediction of creep dominated behaviour.

Figure 3.27: The prediction of the evolution of stress range (∆σ/2) for a P91 steel at
600◦C due to a saw tooth type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.

Figure 3.28: The prediction of the 1st hysteresis loop for a P91 steel at 600◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.
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Figure 3.29: The prediction of the 200th hysteresis loop for a P91 steel at 600◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.

Figure 3.30: The prediction of the 400th hysteresis loop for a P91 steel at 600◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.
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Figure 3.31: The prediction of the evolution of stress range (∆σ/2) for a P91 steel at
600◦C due to a relaxation type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.
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(a)

(b)

Figure 3.32: The prediction of (a) the 1st hysteresis loop and (b) the stress relaxation
region for the 1st loading cycle for a P91 steel at 600◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.33: The prediction of (a) the 200th hysteresis loop and (b) the stress relaxation
region for the 200th loading cycle for a P91 steel at 600◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.34: The prediction of (a) the 400th hysteresis loop and (b) the stress relaxation
region for the 400th loading cycle for a P91 steel at 600◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.

3.9.4 P91 Steel at 500◦C

The results of a combined parallel optimisation using cleaned experiential data for a

P91 steel at 500◦C are presented below. The prediction of stress range (∆σ/2) versus

load cycle number N is presented for both saw tooth and relaxation type load profile

in figures 3.35 and 3.39, respectively. Hysteresis loops for the 1st, 300th and 600th load

cycles are also presented to show the quality of fit for hardening curves. These plots are
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provided for saw tooth (figures 3.36 to 3.38) and relaxation (figures 3.40 to 3.42) type

load profiles. Relaxation figures also include plots of stress relaxation regions for the

same load cycles, verifying the prediction of creep dominated behaviour.

Figure 3.35: The prediction of the evolution of stress range (∆σ/2) for a P91 steel at
500◦C due to a saw tooth type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.

Figure 3.36: The prediction of the 1st hysteresis loop for a P91 steel at 500◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.
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Figure 3.37: The prediction of the 300th hysteresis loop for a P91 steel at 500◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.

Figure 3.38: The prediction of the 600th hysteresis loop for a P91 steel at 500◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.
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Figure 3.39: The prediction of the evolution of stress range (∆σ/2) for a P91 steel at
500◦C due to a relaxation type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.
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(a)

(b)

Figure 3.40: The prediction of (a) the 1st hysteresis loop and (b) the stress relaxation
region for the 1st loading cycle for a P91 steel at 500◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.41: The prediction of (a) the 300th hysteresis loop and (b) the stress relaxation
region for the 300th loading cycle for a P91 steel at 500◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.42: The prediction of (a) the 600th hysteresis loop and (b) the stress relaxation
region for the 600th loading cycle for a P91 steel at 500◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.

3.9.5 P91 Steel at 400◦C

The results of a combined parallel optimisation using cleaned experiential data for a

P91 steel at 400◦C are presented below. The prediction of stress range (∆σ/2) versus

load cycle number N is presented for both saw tooth and relaxation type load profile

in figures 3.43 and 3.47, respectively. Hysteresis loops for the 1st, 500th and 1000th load

cycles are also presented to show the quality of fit for hardening curves. These plots are
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provided for saw tooth (figures 3.44 to 3.46) and relaxation (figures 3.48 to 3.50) type

load profiles. Relaxation figures also include plots of stress relaxation regions for the

same load cycles, verifying the prediction of creep dominated behaviour.

Figure 3.43: The prediction of the evolution of stress range (∆σ/2) for a P91 steel at
400◦C due to a saw tooth type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.

Figure 3.44: The prediction of the 1st hysteresis loop for a P91 steel at 400◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.
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Figure 3.45: The prediction of the 500th hysteresis loop for a P91 steel at 400◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.

Figure 3.46: The prediction of the 1000th hysteresis loop for a P91 steel at 400◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.
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Figure 3.47: The prediction of the evolution of stress range (∆σ/2) for a P91 steel at
400◦C due to a relaxation type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.
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(a)

(b)

Figure 3.48: The prediction of (a) the 1st hysteresis loop and (b) the stress relaxation
region for the 1st loading cycle for a P91 steel at 400◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.49: The prediction of (a) the 500th hysteresis loop and (b) the stress relaxation
region for the 500th loading cycle for a P91 steel at 400◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.50: The prediction of (a) the 1000th hysteresis loop and (b) the stress relaxation
region for the 1000th loading cycle for a P91 steel at 400◦C due to a relaxation type
loading profile, showing the behaviour predicted by the initial estimates of material
constants and the optimised values.

3.9.6 316 Stainless Steel Results

The results of a combined parallel optimisation using cleaned experiential data for a

316 steel at 600◦C are presented below. The prediction of stress range (∆σ/2) versus

load cycle number N is presented for both saw tooth and relaxation type load profile

in figures 3.51 and 3.55, respectively. Hysteresis loops for the 1st, 300th and 600th load

cycles are also presented to show the quality of fit for hardening curves. These plots are
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provided for saw tooth (figures 3.52 to 3.54) and relaxation (figures 3.56 to 3.58) type

load profiles. Relaxation figures also include plots of stress relaxation regions for the

same load cycles, verifying the prediction of creep dominated behaviour.

Figure 3.51: The prediction of the evolution of stress range (∆σ/2) for a 316 steel at
600◦C due to a saw tooth type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.

Figure 3.52: The prediction of the 1st hysteresis loop for a 316 steel at 600◦C due to a saw
tooth type loading profile, showing the behaviour predicted by the initial estimates of
material constants and the optimised values.
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Figure 3.53: The prediction of the 300th hysteresis loop for a 316 steel at 600◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.

Figure 3.54: The prediction of the 600th hysteresis loop for a 316 steel at 600◦C due to a
saw tooth type loading profile, showing the behaviour predicted by the initial estimates
of material constants and the optimised values.
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Figure 3.55: The prediction of the evolution of stress range (∆σ/2) for a 316 steel at
600◦C due to a relaxation type loading profile, showing the behaviour predicted by the
initial estimates of material constants and the optimised values.
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(a)

(b)

Figure 3.56: The prediction of (a) the 1st hysteresis loop and (b) the stress relaxation
region for the 1st loading cycle for a 316 steel at 600◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.57: The prediction of (a) the 300th hysteresis loop and (b) the stress relaxation
region for the 300th loading cycle for a 316 steel at 600◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.
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(a)

(b)

Figure 3.58: The prediction of (a) the 600th hysteresis loop and (b) the stress relaxation
region for the 600th loading cycle for a 316 steel at 600◦C due to a relaxation type loading
profile, showing the behaviour predicted by the initial estimates of material constants
and the optimised values.

3.10 Conclusions

The objective of this chapter was to develop a robust method to optimise the material

constants for the Chaboche unified visoc-plasticity model. This would allow future cyc-

lic analyses of high temperature components to be completed with confidence. Through

several investigations, a procedure that conducts combined parallel optimisation (util-

ising all available experimental data) on cleaned experimental data has been shown
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to be the most robust. This procedure enforces the suitable level of constraint on the

material constant optimisation, ensuring that a single set of representative material

constant values are achieved in a reasonable amount of time. Cleaning the data prior

to the optimisation reduces the likelihood of encountering numerical problems as a

result of inaccurate load cycle definition. In section 3.9 it has been shown that using this

optimisation strategy results in a significantly improved prediction of experimental data

(compared to predictions using the initial estimates of material constants). Generally,

cyclic hardening behaviour and periods of creep relaxation are predicted with excellent

accuracy, however several anomalies have been noted and will be addressed.

Commonly, stress relaxation in the first cycles (see figure 3.32 (b), for example) of data

is not accurately predicted. Stress relaxation prediction improves greatly for later cycles

however. Although the quality of fit in the first load cycle is not as relevant to practical

problems as predicting later load cycles (components are not likely to fail after one load

cycle), it is important to address the potential shortcomings of the presented Chaboche

model. The difficulties in predicting creep behaviour for cyclically loaded specimens

have been noted previously by Tong and Vermeulen100 and by Zhan and Tong102,103;

who suggested that the poor creep prediction may be due to neglecting static/time

recovery effects in the Chaboche model100. A modification (applied to the kinematic

hardening law) was suggested that appeared to address this deficiency101–103, however

this explanation does not suggest why creep behaviour is predicted with a greater

degree of accuracy in the later cycles. Potentially, the viscous stress term is sufficient

to describe the creep response for the hold period considered in these experiments,

however the material has undergone microstructural changes after cycling, therefore the

creep response for the first and last cycle cannot be explained by a single set of material

constants. A compromise is made in the optimisation procedure to accurately predict

the greatest number of stress relaxation branches as possible, thus sacrificing the quality

of the fit of the stress relaxation branches for the initial cycles. Future work will look to

address these discrepancies.

In some cases (such as P91 at 500◦C and the 316 data) a large discrepancy is observed

for the prediction of the stress range evolution with load cycle for the saw tooth type data

that is not seen in the same plot for relaxation type data (for example, see figures 3.51

and 3.55, respectively). The excellent fitting quality observed for stress range evolution in

the relaxation data and for the hardening cycles in general suggests that the optimisation

has been successful in determining the most representative material constant values for

the material at the specific temperature. Error sources in the experimental procedure

may however result in two sets of experimental data that cannot be predicted by a

single set of material constants. In addition to slight material composition variations

and fluctuations in the testing temperature and loading strain values, a source of error

that could contribute to discrepancies in stress fitting was proposed by Lin et al.189,190

and relates to the cyclic specimen design. It is assumed that the “uniaxial” specimens
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used in cyclic testing are subject to uniaxial stress and strain fields, however this may

not be the case. Ridges for the extensometer arms and blending radii at the top of the

specimen, together with a short specimen length (used to avoid buckling in reverse

loading) have been shown to cause constraint in the specimen which induces multiaxial

stress and strain fields189,190. Actual strain levels in some regions of the specimen may

be ±20% of the value inferred from the extensometer. This phenomenon would cause

localised hardening, distorting the stress readings as a result. Such effects may be more

pronounced in cases where necking and failure occurs closer to the extensometer ridges

and should be considered when analysing the fitting quality of results from optimisation

procedures.

A single testing condition was considered in the present work. The Chaboche

model implemented does not include strain rate, strain range or temperature effects,

therefore the material constants derived cannot be applied to other testing conditions

(although limited extrapolation may be possible in a range that does not change the

controlling deformation mechanism). Some success has been achieved in the past by

interpolating material constant values for different loading conditions (e.g. temperature);

however future work will look to expand the applicability of the Chaboche model. The

optimisation procedure detailed in the present work can then be implemented with

confidence in order to determine related material constants, allowing for more complex

and more accurate component analyses (such as full thermo-mechanical fatigue, TMF)

to be conducted.
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Chapter 4

A Comparative Assessment of

Several Creep Damage Models in

the Life Prediction of Power Plant

Components

4.1 Introduction

The accurate prediction of creep life is of great importance for the structural integrity

of many high temperature components (such as those used in power generation plant)

if safe, efficient and economic operation is to be achieved. Furthermore, in some

high temperature applications such as aero engine design, a limiting strain due to

design constraints may be present; indicating that predicted values of plastic and

creep strain would also be useful to the practising engineer. Continuum damage

mechanics (CDM) can be used in conjunction with FEA to provide a fundamental

step in modelling creep failure. Material constants used in these models however are

often derived from accelerated creep rupture test data, performed using higher stresses

and/or temperatures than would normally be experienced by real world components.

In this chapter, the results of a comparative assessment of extrapolated (i.e. outside

the original test stress range) failure times for several creep damage models are presented.

This study has been undertaken for uniaxial, notched bar, closed end straight pipe

section and idealised pipe bend geometries (note the pipe geometry was typical of that

used in power generation). Material constants for each model were determined using

creep rupture tests performed on a P91 based reference steel (BAR 257) under uniaxial

loading conditions and using notched bar samples to introduce multiaxial stress states.

The material models considered in the present chapter are the Kachanov53,55 and

Liu-Murakami62 power law models and the Dyson sinh model65,66. A review of the

multiaxial form of these models is given in section 2.3.3.
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4.2 Determination of Material Constants

Before the application of any material model, representative material constants must

be determined from experimental data. For creep damage models, isothermal uniaxial

constant load creep rupture tests (see figure 4.1 (a)) are completed for a range of creep

stresses in order to determine uniaxial material constants. Values for multiaxial material

constants (such as α in the Kachanov and Liu-Murakami models53,55,62) may be determ-

ined from notched bar tests (see figure 4.1 (b)) once the uniaxial constant values have

been found.

(a)

(b)

Figure 4.1: Schematics of (a) the uniaxial and (b) the notched bar specimens used for the
determination of material constants for creep models.

In practice, only initial estimates of the model’s material constants are determined

directly from experimental data. These initial estimates are then fine tuned using an

optimisation procedure; fitting the predicted behaviour of a material model to the

true experiential response. An overview of several optimisation algorithms is given

is section 2.6. Additionally, several key factors in applying an optimisation procedure

to experimental data have been addressed in chapter 3 for a material model that is

significantly more complex than the creep models described in the present chapter. The

optimisation procedures described in these two sections may be applied to any of the

creep models discussed in the present chapter.

An optimisation iteration (i.e. an instantaneous solution for the optimum set of

material constants) is based on the evaluation of an objective function. For the op-

timisation of creep material parameters the objective function may take the form of

equation (4.1), where M1 is the number of creep tests performed and M2 is the number

of data points for the ith creep curve. Experimental and predicted strain values (εexp
j
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and ε
pre
j (x), respectively, where x is a set of material constants) are compared for each

data point in each creep curve. Predicted and experimental times to failure (tpre
f i and t

exp
f i ,

respectively) are also compared by using the weighting value wi to ensure that times

and strains are are accounted for with similar magnitudes.

F(x) =
M1

∑
i=1







[

M2

∑
j=1

(

ε
pre
j (x)− ε

exp
j

)2
]

i

+ wi

∣

∣

∣
t

pre
f i (x)− t

exp
f i

∣

∣

∣

t
exp
f i







→ min (4.1)

4.2.1 Experimental Procedure

Creep testing has been completed using a Mayes ESM 250 tensile testing machine

(see figure 4.2). During a creep test a constant load is applied by a servo hydraulic

load actuator. Temperature uniformity was confirmed by monitoring thermocouples

that were attached at the top, middle and bottom of the 3 region Mayes 3kW furnace.

Variations in temperatures along gauge length were within ±1◦C and the temperatures

were held constant to within ±1◦C. Specimen elongation as a result of creep strain

is measured by through extensometer arms attached to ridges on the specimen and

a linear variable differential transformer (LVDT). A National Instruments USB-6210

data logging system was used to record the temperature and extensometer readings at

regular intervals.

(a) (b)

Figure 4.2: Photos of the Mayes ESM 250 tensile testing machine, showing (a) an over-
view of the experimental set-up and (b) a close up of the specimen with extensometer
arms and thermocouples attached.
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4.2.2 Initial Estimates of the Kachanov Damage Law Material Constants

Uniaxial equations for the creep strain rate (ε̇c) and damage rate (ω̇) can be derived

from the generalised multiaxial form of Kachanov’s model (equations (2.50) and (2.51),

respectively) by noting that, under uniaxial conditions, Sij = σEQ = σR = σ. The

uniaxial equations, which will be used to predict the results of uniaxial experiments in

order to determine material parameters, are given in equations (4.2) and (4.3) for ε̇c and

ω̇, respectively. Initial estimates of material parameters are determined by manipulating

these expressions for specialised conditions and correlating them to regions of the

experimental creep curves64,67,180.

ε̇c = A

(

σ

1 − ω

)n

tm (4.2)

ω̇ = B

(

σχ

(1 − ω)φ

)

tm (4.3)

Material constants that describe secondary creep (A and n) are determined by

considering the minimum creep strain rate (ε̇c min) from experiments for several creep

stresses. Assuming that damage only accumulates during tertiary creep and neglecting

primary creep effects (m = 0), equation (4.2) may be simplified to Norton’s law (ε̇c min =

Aσn, see equation (2.47)). A linear relationship may in turn be developed from this

expression, as shown in equation (4.4). Plotting log(σ) versus log(ε̇c min) therefore yields

a line with a gradient equal to n and an intercept of log A (see figure 4.3 for an example

of this plot for tests conducted on a P91 steel at 600◦C).

log (ε̇c min) = n log(σ) + log(A) (4.4)
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Figure 4.3: An example plot of log(σ) versus log(ε̇c min), showing a linear relationship
for a P91 steel at 600◦C (where stresses are reported in MPa and minimum creep strain
rates are given in %/s).

The estimation of material constants that describe tertiary creep behaviour is de-

pendent on the integration of equation (4.3). Equation (4.5) shows a general solution for

this integration with the upper limits t and ω (i.e. the specimen has a damage ω at time

t).

∫ ω

0
(1 − ω)φ dω =

∫ t

0
Bσχdt

[−(1 − ω)φ+1

φ + 1

]ω

0
= [Bσχt]t0

(4.5)

A special condition of equation (4.5) is the point of failure, when t = t f and ω = 115.

An expression for t f is given in equation (4.6). By making the substitution M = B(φ + 1)

and taking logarithms, the linear expression shown in equation (4.7) can be derived.

The line resulting from the plot log(σ) versus log
(

t f

)

therefore has the gradient −χ and

the intercept log
(

1
M

)

(an example of this plot can be seen in figure 4.4). By assuming

that φ ≈ χ, B may be determined from the definition of M.
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Figure 4.4: An example plot of log(σ) versus log
(

t f

)

, showing a linear relationship for
a P91 steel at 600◦C (where stresses are reported in MPa and times to failure are given
in hours).

t f =

(

1 + m

B(1 + φ)σχ

)

1
m + 1 ≈ 1

B(1 + φ)σχ
(4.6)

log
(

t f

)

= −χ log(σ) + log
(

1
M

)

(4.7)

If equation (4.5) is evaluated for the limits t and ω, an expression for damage at

the time t may be found (see equation (4.8)). This may in turn be substituted into an

integration of equation (4.2) (with the limits t and εc) to give an expression for εc at

time t (equation (4.9)). Solving this equation is useful in an optimisation procedure as it

avoids the computational expensive process of solving differential equations.

ω = 1 − [1 − B (φ + 1) σχt]

1
φ + 1 (4.8)

εc =
Aσ(n−χ)

B(n − φ − 1)









[

1 − B(1 + φ)σχt1+m

1 + m

]

φ + 1 − n

φ + 1 − 1









(4.9)

4.2.3 Initial Estimates of the Liu-Murakami Damage Law Material

Constants

A procedure similar to that used to determine the initial estimates of the Kachanov

material constants (see section 4.2.2) may be used to estimate the values of the Liu-
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Murakami model constants. Uniaxial forms of the strain rate and damage rate equations

for this model are given in equations (4.10) and (4.11), respectively61,62. Note that,

if damage is neglected, equation (4.10) simplifies to Norton’s law therefore the same

procedure used to determine A and n described in section 4.2.2 may be used here.

ε̇c = Aσn exp

[

2(n + 1)

π
√

1 + (3/n)
ω3/2

]

(4.10)

ω̇ =
B [1 − e−q2 ]

q2
σpe(q2ω) (4.11)

Considering the substitution shown in equation (4.12) (which for a particular creep

stress will be constant) the integral shown in equation (4.13) may be constructed from

equation (4.11).

Ω =
B [1 − e−q2 ]

q2
σp (4.12)

∫ 1

0
e−q2ωdω = Ω

∫ t f

0
dt (4.13)

Evaluating equation (4.13) yields an expression for time to failure (t f ), shown in

equation (4.14)61,62. A linear relationship may then be found by taking logarithms of this

expression (see equation (4.15)). Plotting log(σ) versus log(t f ) for the experimental data

therefore allows for the approximation of −p (from the plot’s gradient) and log
(

1
B

)

(from the plot’s intercept). Commonly, it is assumed that q2 ≈ p to determine the

remaining material constants.

t f =
1
Ω

1 − e−q2

q2
=

σ−p

B
(4.14)

log t f = −p log(σ) + log
(

1
B

)

(4.15)

It is worth pointing out that the uniaxial Liu-Murakami model may be expressed

by a single equation if the integral shown in equation (4.13) is modified to include the

upper limits t and ω. This yields an expression for the damage at time t (equation (4.16)),

which may be substituted into equation (4.10) to give equation (4.17).

ω =
ln (1 − Ωq2t)

q2
(4.16)

ε̇c = Aσn exp

[

2(n + 1)

π
√

1 + (3/n)

(

ln (1 − Ωq2t)

q2

)3/2
]

(4.17)
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4.2.4 Initial Estimates of the Dyson Damage Law Material Constants

Dyson’s sinh law uses several internal variables to predict a material’s creep behaviour,

as opposed to the single damage variable ω used in the Kachanov and Liu-Murakami

models. From the multiaxial form of Dyson’s equations (see equations (2.56) to (2.59)), a

uniaxial expression for the creep strain rate (ε̇c) can be derived (shown in equation (4.18)).

This is based on the evolution of a hardening variable (H, see equation (4.19)) that allows

for the description of primary creep and two damage variables that describe ageing (φ,

see equation (4.20)) and the formation of creep cavities (ω2, see equation (4.21)).

ε̇c = A sinh
{

Bσ(1 − H)

(1 − ω2)(1 − φ)

}

(4.18)

Ḣ =
h

σ
ε̇c

(

1 − H

H́

)

(4.19)

φ̇ =
Kc

3
(1 − φ)4 (4.20)

ω̇2 = DNε̇c (4.21)

Clearly, the sinh expression used for creep strain rate equation (see equation (4.18))

prevents it from being simplified to Norton’s power law (as has been done for the

Kachanov and Liu-Murakami models). Instead, to consider secondary creep, the satur-

ated condition of the hardening variable H must be determined (H = H́). Applying this

condition and removing damage terms from equation (4.18) allows equation (4.22) to be

derived for the minimum creep strain rate ε̇c min (note B́ = B(1 − H́)). By recalling the

definition of sinh in terms of exponentials (sinh(x) = (ex − e−x)/2), a linear expression

may be derived (see equation (4.23)) to determine the constants A and B́ from a plot of

σ versus ln(2ε̇c min).

ε̇c min = A sinh
(

Bσ(1 − H́)
)

= A sinh
(

B́σ
)

(4.22)

ln (2ε̇c min) = ln A + B́σ (4.23)

Integrating equation (4.19) with respect to H and t gives equation (4.24) (where εc p

is the creep strain at the end of primary creep). At the end of primary creep H → H́,

therefore values for the ratio
h

H́
may be estimated for each experimental curve by

assuming that
H

H́
≈ 0.9999. An average of the

h

H́
values that have been calculated may

then be assumed. Using the conditions defining
h

H́
and B́, equations (4.19) and (4.25)

are used to fit the primary creep regions and hence determine that values of h, H́ and B.
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h

H́
= −

(

σ

εc p

)

ln
(

1 − H

H́

)

(4.24)

ε̇c = A sinh {Bσ(1 − H)} (4.25)

Equation (4.20) can be integrated to give equation (4.26) which, when substituted into

a form of equation (4.18) that ignores the ω2, is used to give equation (4.27). Rearranging

the expression yields a linear function between (ln(2ε̇c/A))3 and t. The slope of the this

plot will be equal to
(

Bσ(1 − H́)
)3

Kc (note B and H́ have been calculated previously,

therefore Kc may be estimated). Commonly, initial estimates of the damage material

constant D in equation (4.21) are found by assuming D ≈ 0.3
εc f

, where εc f is the creep

failure strain as a percentage66.

(1 − φ) = (1 + Kct)−1/3 (4.26)

ε̇c = A sinh

{

Bσ(1 − H́)

(1 + Kct)−1/3

}

(4.27)

4.2.5 Multiaxial Material Constant Determination

Multiaxial material properties (α in the Kachanov and Liu-Murakami models and ν in

Dyson’s model) are determined by matching the time to failure predicted by a set of

material constants to an experimental value for a multiaxial loading case (note uniaxial

material constants are determined using the procedures described in the previous sec-

tions and a suitable optimisation method). The most simplistic example of a multiaxial

loading case is a notched bar.

Commonly, an experimental program will include at least two notched bar tests.

Candidate multiaxial material constant values are tested using FEA simulations of

a notched bar (a description of this model is given in section 4.3). These candidate

values are selected to span a range defined either by the logical constraints of a constant

(0 ≥ α ≥ 1) or a commonly observed range (0 ≥ ν ≥ 15). The times to failure predicted

by the FEA simulations are interpolated to the experimental values to give the multiaxial

constant value. A graphical representation of this procedure for the steel BAR 257 at

650◦C can be seen in figure 4.5.
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Figure 4.5: An example plot to show the determination of α by comparing failure times
from FEA simulations of a notched bar to experimental values, shown for the steel BAR
257 at 650◦C.

4.3 FEA Models

4.3.1 Notched Bar

After fitting to uniaxial data to find the majority of material constants, multiaxial material

constants must be found by comparing FEA results of notched bar tests (using a range of

multiaxial axial constant values) to experimental notched bar failure times. To perform

this, a mesh must be created of the semi-circular Bridgeman64 notched bar specimen

(see figure 4.6) used for experimental testing. The mesh has been refined at the notch

to better calculate the damage in this critical region and uses axi-symmetric reduced

integration quadratic elements (designated CAX8R in the commercial FEA package

ABAQUS191). Applied stresses (σAPP) were back calculated to ensure that the mean

axial stresses at the notch tip are the same as the mean stresses used in laboratory tests

and comparable to the stresses used in uniaxial testing.
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Z

r

σAPP

UZ = 0

Ur = 0

Figure 4.6: A notched bar FEA mesh (generated in ABAQUS191) used to determine
multiaxial material constants in creep damage models. The applied pressure σAPP is
varied to control notch tip stresses.

4.3.2 Idealised Straight Pipe Section (Closed End)

Assuming closed end conditions192 with no system loading (i.e. the only stresses

present are primary and due to internal pressure), a straight pipe section may be

greatly simplified to the mesh shown below in figure 4.7. The key pipe dimensions

are considered to be the outside pipe radius RO (175mm) and the inside radius RI

(115mm). Values were chosen to reflect in service power plant steam pipe dimensions.

To maintain accurate boundary conditions, an axial load (σAX) was applied to represent

the closed end with a constant displacement constraint. This load can be calculated

from equation (4.28)192.

σAX =
Pi

(

RO

RI

)2

− 1

(4.28)

where Pi is the internal pressure. The validity of the model was checked by com-

paring hoop stresses (σθ) found from analytical elastic and steady-state (i.e. after stress

redistribution) creep solutions (see equation (2.104)) and the results of FEA simulations

(using some arbitrary but practically viable value of the Norton’s law stress exponent

n, namely 4.5). A plot of this comparison can be seen in figure 4.8, and shows excel-

lent agreement between the different solution methods. Again, axi-symmetric reduced

integration quadratic elements were implemented (CAX8R in ABAQUS191).
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Figure 4.7: Example of a closed end straight pipe section mesh.

Figure 4.8: A comparison of analytical and FEA hoop stress (σθ) solutions for a closed
end straight pipe model under steady state creep (using a Norton’s law stress exponent
of n = 4.5) and elastic conditions. The pipe section is loaded by an internal pressure of
20 MPa and has the dimensions RI = 115 mm and RO = 175 mm.

4.3.3 Idealised Pipe Bend Section

Using the same pipe diameter and wall thickness as assumed for the straight pipe mesh,

an idealised pipe bend model was created (see figure 4.9). Here it is assumed that no

wall thinning and thickening (at the extrados and intrados respectively) is observed. It

is important to note that, in practice, this variation will inevitably take place as a result

of the pipe bend manufacturing process104,139,193. In addition to this, an initial ovality

in the pipe cross section may be present104,139,193. For simplicity, these variations have

been neglected. A discussion of these factors can be found in section 2.4.1.
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Taking these geometric assumptions into account and realising that they enforce two

planes of symmetry, the FEA problem can be greatly simplified by considering a quarter

model139. It has been demonstrated that, given a free end condition and considering

the symmetric plane cross section of the pipe (i.e. ϕ = 45◦), a two dimensional analysis

will show good agreement in both magnitude and location of maximum principal and

von Mises equivalent stresses (noting that these are usually the stresses on which creep

damage constitutive laws are dependent, see equation (2.52)) when compared with full

three dimensional analyses139. Therefore, to greatly reduce computing time, the pipe

bend has been approximated by a 2D axi-symmetric mesh, effectively portraying the

pipe bend as a torus. Past research has shown that damage is localised to the intrados193,

i.e. when θ = 0 (defined in figure 4.10). The mesh has therefore been refined in this area

to aid in confirming failure location (see figure 4.10). The same elements were used as

in the previous two meshes. Note that a bend radius, RM, of 2m was assumed (this is

a realistic value for industrial pipe bends). Research in the past has identified that the

change in geometry of the pipe dimensions due to large deformation assumptions (as

opposed to the near constant deformation assumptions usually implemented in FEA,

known as small deformation assumptions), known as geometric non-linearity (GNL)

will have an influence on stresses encountered in the pipe wall thickness after stress

redistribution104. This usually has the effect of reducing life expectancy of a component,

with strain and damage versus time curves generally having the same shape104 as

geometric linear (GL) simulations. The effect therefore is only to scale a failure time to a

reduced value, meaning its inclusion or omission will have no effect on relative model

performance. To keep computing time manageable, GNL has not been included in these

analyses.

RM
ϕ = 90◦

Figure 4.9: A three dimensional 90◦ pipe bend model.
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UZ = 0
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Pi UZ = 0

RI

Figure 4.10: Example of idealised pipe bend (“torus”) mesh.

4.4 Material Constant Values

4.4.1 BAR 257 Steel at 650◦C

Constant stress uniaxial bar tests and notched bar tests, all at 650◦C , were performed

over a range of nominal stresses. BAR 257 is the designation given to a pipe reference

material based on P9164,67,104. It is worth noting that this material has a far lower creep

rupture stress than a P91 material67 and was intended to be used as a reference material.

The composition of this material is provided in table 4.1.

Table 4.1: Chemical composition (wt %) of the BAR 257 reference steel.

C Mn Si N Cr
0.11 0.36 Si 0.048 8.74
Mo Ni Cu V Fe
0.98 0.12 0.08 0.21 Balance

For uniaxial tests five applied stresses were used, namely 100, 93, 87, 82 and 70MPa

(see figure 4.11), giving a maximum failure time of approximately 1010 hours and failure

strains (ε f ) in the order of 30 − 40% (results and information key to the determination of

material constants has been summarised in table 4.2). Notched bar creep rupture tests

were also completed to derive the multiaxial material constants, conducted at 93 and

82 MPa, giving failure times of 1037.2 hours and 2012.1 hours, respectively.
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Figure 4.11: Uniaxial creep rupture test results for BAR 257 at 650◦C.

Table 4.2: A summary of the results for uniaxial creep tests on BAR 257 at 650◦C.
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100 78.60 20.00 8.40x10−4 4.67 1.27
93 140.29 41.71 4.12x10−4 5.99 1.04
87 230.60 52.04 2.61x10−4 13.00 1.06
82 343.54 29.36 6.61x10−5 25.47 1.15
70 1010.40 37.50 2.05x10−5 34.47 0.71

The predicted creep strain curves for each model are presented below (figure 4.12

for Kachanov, figure 4.13 for Liu-Murakami and figure 4.14 (a) for Dyson’s model).

In the cases where primary creep has been isolated and fitted (i.e. the Dyson model),

individual plots for primary creep strain have also been included (see figure 4.14 (b)),

as this fitting can be difficult to observe over the full creep strain range. Care has been

taken when optimising material constants to ensure that not only are primary creep

strain values predicted but also that the strain hardening parameter (H, which controls

primary creep) saturates at its maximum value (H́) at the end of primary creep. By fitting
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the predicted response from the three models to the experimental data complete sets of

uniaxial material constants may be derived. Multiaxial material constants are derived

using the results of notched bar creep rupture tests. Full sets of material properties

for the material BAR 257 at 650◦C can be seen in tables 4.3 to 4.5 for the Kachanov,

Liu-Murakami and Dyson material models, respectively.

(a)

Figure 4.12: The prediction of BAR 257 (650◦C) uniaxial creep tests using the Kachanov
CDM model and the constants shown in table 4.3.

Table 4.3: A summary of the optimised material constants for BAR 257 at 650◦C for the
Kachanov creep damage model (where σ is given in terms of MPa, strains are given as
a percentage and time is given in hours).

A 1.09x10−20

B 3.54x10−17

n 8.46
χ 6.79
φ 7.35
m -4.75x10−4

α 0.22
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(a)

Figure 4.13: The prediction of BAR 257 (650◦C) uniaxial creep tests using the Liu-
Murakami CDM model and the constants shown in table 4.4.

Table 4.4: A summary of the optimised material constants for BAR 257 at 650◦C for the
Liu-Murakami creep damage model (where σ is given in terms of MPa, strains are given
as a percentage and time is given in hours).

A 1.09x10−20

B 7.85x10−17

n 8.46
p 7.10
q2 4.00
α 0.19
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(a)

(b)

Figure 4.14: The prediction of BAR 257 (650◦C) uniaxial creep tests using the Dyson
CDM model and the constants shown in table 4.5. Plots show the prediction of (a) the
full creep strain curve and (b) the primary creep region.

171



Table 4.5: A summary of the optimised material constants for BAR 257 at 650◦C for the
Dyson creep damage model (where σ is given in terms of MPa, strains are given as a
percentage and time is given in hours).

A 6.15x10−8

B 0.15
h 10100.00
H́ 0.34
D 2.00
Kc 5.00x10−4

ν 2.38

Using the LSQNONLIN MATLAB function, sets of material constants have been

determined for the Kachanov, Liu-Murakami and Dyson creep damage models based on

experimental data for the material BAR 257 at 650◦C. The optimisation procedure often

requires that a compromise is made between the fitting of individual creep curves (for

example see figure 4.13). As no preferential treatment is given to a particular creep curve,

it is reasoned that this compromise results in the most representative set of constants

for the material. The derived material constant sets are used in the extrapolated stress

simulations presented later in this chapter.

4.4.2 P91 Steel at 600◦C

Failure times calculated for the material BAR 257 in the present work are generally of a

relatively low order of magnitude (10,000 hours) at the lowest considered extrapolated

stress level (approximately 25 MPa, a reasonable approximation of stresses induced by

main steam pressure in power generation plant, see section 4.5.1). Actual components

have been observed to have lives that can stretch to several hundred thousand hours

when operating under more arduous, fluctuating conditions. This is explained by recall-

ing that BAR 257 was designed only as a reference material64, being made intentionally

weak, and is not used in the manufacture of any real world components. The only ex-

perimental data available at time of writing for BAR 257 were the uniaxial and notched

bar accelerated tests used to determine material constants, therefore it is not possible to

compare extrapolated failure times to “real world” values and make a recommendation

as to which CDM model to use in design and analysis problems. To address this and

to demonstrate the applicability of this work to practically used materials, a P91 steel

(composition given in table 4.6) at 600◦C under extrapolated uniaxial creep conditions

has been considered for the three models (Kachanov, Liu-Murakami and Dyson).
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Table 4.6: Chemical composition (wt %) of P91 steel.

Cr Mo Mn Si Ni V C Cu
8.49 0.978 0.43 0.37 0.32 0.2 0.11 0.07
Nb Co P W S Ti Al Fe
0.06 0.02 0.014 < 0.02 0.008 < 0.002 < 0.001 Balance

Uniaxial creep rupture tests have been completed for a P91 steel at 600◦C for a stress

range of 180 to 140MPa. A summary of these tests can be seen in table 4.7, with a plot of

the uniaxial creep curves in figure 4.15. Uniaxial material constants for the Kachanov,

Liu-Murakami and Dyson models have been derived using the procedures described in

section 4.2. Summaries of the optimised material constants and plots of the fitting to

experimental uniaxial creep strain curves are given in tables 4.8 to 4.10 and figures 4.16

to 4.18 for Kachanov, Liu-Murakami and Dyson models, respectively.

Table 4.7: A summary of the results for uniaxial creep tests on P91 at 600◦C.
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180 50 35.406 1.03x10−3 2.75 0.85
170 160 30.406 3.40x10−4 17.61 1.33
160 299 27.02 1.62x10−4 31.88 1.35
150 663 30.15 6.60x10−5 75.53 1.39
140 1454 29.23 2.40x10−5 87.04 1.18
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Figure 4.15: Uniaxial creep rupture test results for P91 at 600◦C.
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(a)

Figure 4.16: The prediction of P91 (600◦C) uniaxial creep tests using the Kachanov CDM
model and the constants shown in table 4.8.

Table 4.8: A summary of the optimised material constants for P91 at 600◦C for the
Kachanov creep damage model (where σ is given in terms of MPa, strains are given as
a percentage and time is given in hours).

A 1.00x10−34

B 1.12x10−28

n 13.69
χ 10.96
φ 18.00
m 0.00
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(a)

Figure 4.17: The prediction of P91 (600◦C) uniaxial creep tests using the Liu-Murakami
CDM model and the constants shown in table 4.9.

Table 4.9: A summary of the optimised material constants for P91 at 600◦C for the
Liu-Murakami creep damage model (where σ is given in terms of MPa, strains are given
as a percentage and time is given in hours).

A 1.00x10−34

B 2.12x10−27

n 13.69
p 10.95
q2 6.00
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(a)

(b)

Figure 4.18: The prediction of P91 (600◦C) uniaxial creep tests using the Dyson CDM
model and the constants shown in table 4.10. Plots show the prediction of (a) the full
creep strain curve and (b) the primary creep region.
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Table 4.10: A summary of the optimised material constants for P91 at 600◦C for the
Dyson creep damage model (where σ is given in terms of MPa, strains are given as a
percentage and time is given in hours).

A 3.44x10−9

B 0.10
h 13669.67
H́ 0.34
D 2.60
Kc 2.00x10−6

Using the LSQNONLIN MATLAB function, sets of material constants have been

determined for the Kachanov, Liu-Murakami and Dyson creep damage models based

on experimental data for the material P91 at 600◦C. The derived material constant sets

are used in the extrapolated stress simulations presented later in this chapter. Predicted

failure times for uniaxial specimens are also compared with ECCC long term creep tests

and results predicted by Orr’s parametric equation.

4.5 Reduced Stress Extrapolation

4.5.1 BAR 257 Extrapolation

Uniaxial Extrapolation

Taking two of the stresses used in the uniaxial testing of BAR 257 (see section 4.4.1) that

fall in the middle of the experimental stress range (93 and 83MPa) as starting points;

additional low stress simulations of a uniaxial specimen were performed (see table 4.11

for a summary). These stresses were chosen to reflect the behaviour of the model over an

extended stress range. A plot of the results of these reduced uniaxial stress simulations

is provided in figure 4.19, allowing for the general relative performance of the models

to be seen more easily.
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Table 4.11: A summary of reduced stress uniaxial FEA simulations for BAR 257 at 650◦C.
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93 140.39 140.20 140.29
82 343.64 343.55 343.54
50 9951.01 9822.24 4258.51
35 1.12x105 1.32x105 11494.49
25 1.10x106 1.44x106 24559.46

Figure 4.19: Low stress extrapolation of the Kachanov, Liu-Murakami and Dyson creep
damage models under uniaxial conditions for the material BAR 257 at 650◦C.

Notched Bar Extrapolation

As with the uniaxial specimen, reduced stress tests were completed for the notched bar

using a similar stress range (note applied stresses are not used but rather mean notch tip

stresses, shown in table 4.12). An example damage contour plot at failure (taken as being

the point when several Gauss point values reach the predefined maximum damage

parameter value) for the notched bar mesh is provided in figure 4.22. Peak damage

values are enforced to avoid the numerical difficulties encountered in some models as

the damage parameter approaches its theoretical maximum value (see section 2.3.3).
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For the Kachanov model, a peak damage value of 0.98 is applied, which by experience

has been shown to be suitable. Again the results of the reduced stress simulations are

shown graphically in figure 4.21, providing a simpler method of comparison.

Table 4.12: A summary of reduced stress notched bar FEA simulations for BAR 257 at
650◦C.
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82 2012.13 2012.14 2012.13
50 6.15x104 8.03x104 4.76x104

35 6.88x105 1.02x106 1.67x105

25 - - 4.13x105
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Figure 4.20: An example damage contour plot for notched bar mesh (Kachanov model
with 35MPa notch stress).

Figure 4.21: Low stress extrapolation of the Kachanov, Liu-Murakami and Dyson creep
damage models for a notched bar FEA mesh for the material BAR 257 at 650◦C.
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Straight Pipe Section Extrapolation

Using the mesh representing a straight pipe, discussed in section 4.3.2, simulations using

a range of stresses were performed (the results of which are summarised in table 4.13 and

figure 4.22). In the case of the pipe analyses, the mean diameter hoop stress (σMDH) was

used to gauge the considered stress range, and can be expressed as equation (4.29)193.

σMDH =
Pi (RO/RI + 1)
2 (RO/RI − 1)

(4.29)

Internal pressures therefore were chosen such that σMDH would be in a comparable

range to the stresses used in the uniaxial and notched bar analyses. Note additional

simulations were used to confirm the behaviour of the models, particularly the Dyson

model around the “knee” point. An example damage contour plot is given in figure 4.23.

Peak damage values were found to be on the outside surface of the pipe, concurring with

the location of maximum rupture stress after stress redistribution. For pipe simulations,

failure life is defined as all of an element’s Gauss points reaching the critical damage

value.

Table 4.13: A summary of reduced stress FEA simulations for an idealised straight pipe
section FEA mesh for BAR 257 at 650◦C.
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82 1174.94 1175.14 1174.65
60 9112.18 9519.47 9105.05
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30 - - 3.13x105
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Figure 4.22: Low stress extrapolation of the Kachanov, Liu-Murakami and Dyson creep
damage models for an idealised straight pipe section FEA mesh for the material BAR
257 at 650◦C.

Figure 4.23: An example damage contour plot for an idealised straight pipe mesh (Liu-
Murakami model with an internal pressure (Pi) giving rise to a mean diameter hoop
stress (σMDH) of 35MPa).

Idealised Pipe Bend Extrapolation

Using a similar internal pressure range to the straight pipe case (and hence σMDH range,

given that pipe dimensions are the same for the straight pipe and pipe bend meshes),

FEA analyses have been completed for a pipe bend mesh (an example damage contour

plot can be seen in figure 4.25). Failure locations were confirmed to be in agreement with

those presented in literature193 (i.e. at the mid wall position in the intrados). General

behaviour was similar to that displayed in the other geometries, shown in figure 4.25,

with the actual failure times presented in table 4.14.
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Table 4.14: A summary of reduced stress FEA simulations for an idealised pipe bend
FEA mesh for BAR 257 at 650◦C.
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82 874.35 882.85 815.25
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25 - - 4.43x105

Figure 4.24: An example damage contour plot for an idealised pipe bend mesh (Dyson
model, showing the dominant cavitation damage parameter ω2, with an internal pres-
sure (Pi) giving rise to a mean diameter hoop stress (σMDH) of 82 MPa).
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Figure 4.25: Low stress extrapolation of the Kachanov, Liu-Murakami and Dyson creep
damage models for an idealised pipe bend FEA mesh for the material BAR 257 at 650◦C.

4.5.2 P91 Steel Extrapolation

Orr developed a parametric equation64,194 (equation (4.30), referred to as Orr’s equation)

that allows for the failure lives (t f ) to be determined at a given stress and temperature

(T). This requires seven material constants to be derived (a, b, c, d, e, ta and Ta), the

values of which are based on extensive experimental testing over a range of stresses

and temperatures, which clearly demands high investment in terms of both finance

and time. Constants for this equation are therefore limited, however values for P91

have been derived and published in literature (see table 4.15)64. Using this method,

extrapolated failure times based directly on experimental testing at similar stress levels

and temperatures can be derived. This has been completed for P91 at 600◦C , the results

of which can be seen in table 4.16, along with extrapolated failure times predicted from

the three CDM models considered. Parametric equation results have been verified by

considering results taken from European Creep Collaborative Committee (ECCC) data

sheets for P91195, summarised in table 4.17. As with previous extrapolated results, the

relative performance of the models has been plotted (figure 4.26), however experimental

and parametric data is also included.

P (σ) = a + b [log (σ)] + c [log (σ)]2 + d [log (σ)]3 + · · ·

· · · e [log (σ)]4 =

[

log
(

t f

)

− log (ta)

T − Ta

]

(4.30)
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Table 4.15: A summary of material constants for P91 for Orr’s equation (see equa-
tion (4.30))64.

a -0.49382779
b 0.974988639
c -0.767101705
d 0.266840726
e -0.035136841

log ta 24.75553894
Ta 370

Table 4.16: A summary of reduced stress uniaxial simulations for P91 at 600◦C.
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160 750.99 299.54 299.54 299.66
150 1522.96 663.41 663.41 663.60
140 3093.96 1454.21 1454.21 1454.72
100 59687.68 56699.89 58568.51 28579.87
80 3.18x105 6.54x105 6.75x105 1.16x105

60 2.15x106 1.53x107 1.58x107 4.09x105

40 1.53x107 1.30x109 1.34x109 1.31x106

186



Table 4.17: A summary of ECCC uniaxial failure times for P91 at 600◦C195.
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Figure 4.26: A plot of the relative performance of several creep damage models at
reduced stresses (under a uniaxial condition) for a P91 steel at 600◦C with parametric
(Orr’s equation) and long term (ECCC data) experimental results. Note that the level
of agreement between the power law models is such that the Liu-Murakami results
overlay the Kachanov line.

4.6 Conclusions

As was alluded to in the introduction of this chapter, a main practical consideration

when deciding on the uses of a CDM model is how the model reacts as damage ap-

proaches unity (signifying failure). A dependency of 1/(1 − ω) exists in some material

models (where ω is some damage parameter) and as damage approaches the limit
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of 1 (indicating failure) damage rates will approach infinity. When such models are

implemented in FEA packages (for example ABAQUS through the use of specially

written CREEP user subroutines191), time step lengths will be significantly reduced to

limit the rate of change of the state dependent variables. This action drastically increases

computing time and output file size, potentially making even simple analyses difficult

to complete fully62,67. The usual solution for this problem is to limit damage to a high

value that is indicative of immanent failure due to load transfer on to ligaments with

lower damage, however this can make failure criterion subjective and possibly impre-

cise. It is interesting to note that in the Dyson model, the carbide precipitate coarsening

damage variable, φ, achieves a very low value (0.1) when failure occurs due to the

other damage variable, ω2, representing cavitation damage. This is in agreement with

published literature, which suggests that damage due to so called ageing is minimal66.

The evolution of the damage variable φ is dependent only on its initial value (i.e. there is

no relationship to the stress state of the specimen). High damage rates are not observed

at failure for either of the Dyson damage parameters.

In the case of an idealised pipe bend, where published examples exist, the considered

models all demonstrated a localised peak damage at the intrados of the bend (on the

plane of symmetry), approximately at half the wall thickness. Contour plots (figure 4.24)

also indicate lower damage regions either side of the peak damage region. This is

in perfect agreement with literature by Hyde et. al.67, for which a similar multiaxial

constant α value was used (0.3193, compared to ≈ 0.2 for BAR 257 in the present work)

for power law damage models such as the Kachanov and Liu-Murakami models. On the

subject of pipe analyses, it is worth noting that the mean diameter hoop stress (σMDH)

is not directly equivalent to the applied or notch tip stresses used in the uniaxial and

notched bar analyses, respectively. In the uniaxial case the rupture stress (which drives

damage accumulation) is equivalent to the applied stress. In the multiaxial notched bar

and pipe bend cases however the rupture stress depends on both the von Mises and

maximum principal stresses (both of which are dependent on specimen geometry and

loading). While there is a relation between peak rupture stress values and the notch

tip/mean diameter hoop stresses, it is not the same as that present for the uniaxial

condition. Care must be taken therefore if pipe results are to be compared directly to the

results of uniaxial/notched bar tests. The use of σMDH was intended only as a method

to ensure similar stress states were applied to the two pipe meshes. The effect of this

non-equivalence can be seen in the nominal stress versus rupture time plots for the

four considered conditions, noting in particular that the nominal stress at which the

Dyson model begins to diverge in the simpler geometries (uniaxial and notched bar,

figures 4.19 and 4.21 respectively) is far greater (approximately 80 MPa compared to

45 MPa) than for the pipe geometries (figures 4.22 and 4.25 for the straight pipe and

pipe bend sections, respectively). Confidence is given to the results of pipe analyses

by noting that rupture times for straight pipe sections are significantly longer than
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pipe bends at similar internal pressures (and hence σMDH), which has been previously

observed by Sun et. al.192 and is in agreement with industry observed failures (note very

few failures have been noticed on plain pipe section, with most failures being located

around discontinuities such as pipe bends or weldments193). Over all models and for

the stress range considered, the ratio of the pipe bend failure time to the straight pipe

failure time was approximately 0.8.

So severe is the discrepancy between predicted rupture lives for Dyson’s model and

the power law models that, in all but the simplest uniaxial case (where time marching

was used), producing failure analyses for the power law models at the lowest stresses

became too lengthy to practically achieve (time step lengths are limited to ensure

convergence in FEA solvers). For this reason, the lowest stress results are omitted

for power law models in comparative study summary tables. The linear relationship

between time to failure and stress for the power law models is verified with the supplied

results. The Dyson model value has been included to verify the general shape of the

failure time curve in the extended stress range. The divergence of Dyson’s model at

reduced stresses is dependent on the use of a hyperbolic sine function, rather than a

power law relationship67. Power law models will inherently make the assumption that

the stress exponent (often characterised by n), will remain constant65. While this is true

over a small stress range (in particular for ferritic steels and nickel-base super alloys),

some form of continuous alteration to the equivalent stress exponent term (designated

B in the Dyson model given in this chapter, see equation (2.56)), is required over an

extended stress range65. This is provided by the sinh relationship used in the Dyson

model. Comparing the Dyson rupture times to the Kachanov results (bearing in mind

that Liu-Murakami results are in good agreement with Kachanov results), it can be

seen that, at its most extreme (the uniaxial case), the Dyson failure life represents only

2.23% of the predicted Kachanov life, however this increases to 24.27% in the more

complex multiaxial stress state experienced in the notched bar. For pipe analyses at

the lowest nominal stress, Dyson rupture times drew closer to Kachanov failure times,

being 50.51% and 58.80% for the straight pipe and pipe bend simulations respectively.

As was mentioned in section 4.4.2, additional uniaxial extrapolation for a P91 ma-

terial at 600◦C was undertaken to investigate the relative performance of the models

with respect to actual experimental data at similar stress levels, as well as considering

failure times that are practically representative. The results of a parametric equation

(Orr’s equation64,194) and limited intermediate stress experimental data (ECCC data

sheets195) displayed a high level of agreement (see figure 4.26). Power law and sinh

function based models showed similar behaviours in an extrapolated stress range for

P91 to the behaviours observed for BAR 257 (figure 4.19). A plot of the comparative per-

formance of the different methods for predicting failure times can be seen in figure 4.26.

In the high stress range, i.e. the stresses used to determine material constants, all CDM

models showed slightly conservative time to failure predictions (approximately 150 to
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170 hours less) when compared to the parametric data at the same stress levels. Outside

of this region (particularly below 100 MPa) however the models will begin to diverge

in their predictions and the parametric data falls between the Dyson curve and power

law models (Kachanov and Liu-Murakami), leading to a large discrepancy between

predicted failure times. At the lowest stress considered (40 MPa), the Dyson failure

time represented only 0.1% of the Kachanov failure time, however it was 8.5% of the

parametric Orr failure time. In terms of absolute time, the discrepancy between the

Dyson and Orr failure time is approximately 14 million hours, which is substantially

less than 1.2 billion hour difference observed between the Orr’s equation result and the

power law model results. Note these failure times are not in any way representative

of observed life times for power plant components. The lack of additional system or

multiaxial loads and operation cycling means these analyses are greatly conservative.

The intention of the present work is only to compare the multiple CDM models available

and highlight the difference between the failure times predicted from these models when

applied stresses are different to the stress levels used to determine material constants.

It has been demonstrated that when CDM models are used to predict failure lives of

components experiencing stresses lower than those used in material constant determin-

ation experiments, models using different relationships (for example power law and

sinh functions) can give widely different failure times. With the absence of experimental

failure lives at these stress levels (which are often not practical to obtain), CDM models

provide a flexible way to predict these. It is important however, bearing in mind the

increasing need to anticipate failure using measured damage levels (most notably in the

power industry), to consider the divergent behaviour of the chosen model. A comprom-

ise must therefore be struck between the need for conservative results and the additional

time required to derive and optimise the additional material constants used in the more

complex models (for example, the Dyson model uses a total of 7 material constants,

whereas Liu-Murakami uses 6). In the interest of safe and conservative analysis and

based on the study of extrapolated P91 uniaxial failure times, it would be preferable to

use the Dyson model, or similar sinh based law, to predict component failure lives from

material constants which have been derived from tests performed at far higher stresses.
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Chapter 5

The Effects of Scoop Sampling on

the Creep Behaviour of Power Plant

Straight Pipe Sections

5.1 Introduction

Given the large range in properties that can exist in apparently identical materials (due to

for example chemical composition variations between heats, manufacturing processes or

service exposure), the accurate characterisation of a material on a local basis is important

for component life assessment136,196. A potential solution to this concern is to take scoop

samples from in service components. Novel small specimens can then be manufactured

and evaluated without requiring full component replacement or extensive repair (see

section 2.4.2). Most research attention in the field of small specimen testing has focused

on the interpretation of experimental outputs in order to convert these results to those

of conventional tests (for example, uniaxial creep tests). This is particularly true for

the small punch creep test (SPCT) method, which has the potential to produce data for

material failure characterisation. More established small specimen techniques, such as

the impression creep test, have been shown to have the ability to accurately determine

secondary creep material properties from small samples of material136.

If any possible detrimental effects of scoop sampling on the remnant life of sampled

components could be accurately evaluated, condition monitoring could be conducted

in a more efficient way throughout a component’s life. In addition to more established

techniques such as the replica method and ultrasonic inspection, small scoop samples

could be taken from critical components. Small specimen testing could then be im-

plemented to provide local and “up to date” material data for use in component life

analysis. Potentially, critical components could operate for longer with more confid-

ence. Condition monitoring methodologies are of great interest to the power generation

industry. Future operation trends are likely to require more severe loading gradients,
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inducing pronounced cyclic behaviour when attempting to match market demands.

With the higher confidence offered by condition monitoring (supplemented by small

specimen testing), these more profitable generation strategies could be adopted safely.

In this chapter, the effect of scoop sampling on power plant straight pipe components

under creep conditions is investigated. Sample depth is varied based on a commonly

used hemispherical cutter geometry. Steady-state creep rupture stresses are calculated

in the vicinity of the scoop sample using FEA sub-modelling procedures. Several system

loading situations are represented in order to highlight potential “at risk” loading

scenarios.

5.2 Modelling Methodology

5.2.1 Material Models

Elastic-creep analyses have been conducted using the FEA package ABAQUS191. Stresses

predicted by the analyses are below the typical yield stress for power plant steels, there-

fore the exclusion of any plastic analysis is valid. In low load cases, the constant strain

rate secondary creep region may represent the majority of a component’s life. By

achieving a steady-state condition, constant stresses found in two separate structures

are comparable, even if exposure times are not the same. In the present chapter, time

dependent strain rate behaviour is assumed to be negligible, therefore secondary creep

behaviour is represented by equation (5.1) (Norton’s Law, see section 2.3.3). In the

FEA analyses, the constants A and n are defined as 6.599x10−16MPa1/n.hr and 6.108,

respectively, for the material 1/2Cr1/2Mo1/4V at 640◦C139. These material constant

values are determined for stress values given in terms of MPa, time periods given in

hours and absolute strain values. This unit convention is applied throughout the present

chapter.

ε̇c ij =
3
2

Aσn−1
EQ Sij (5.1)

The constitutive continuum damage equations proposed by Kachanov53 and later

modified by Robotnov54 can be used to estimate the accumulation of creep damage in a

component, therefore predicting creep life (see equations (2.50) and (2.51)). The triaxial

stress state material constant, α (0 ≥ α ≥ 1), determines the value of the rupture stress,

σR (σR = ασ1 + (1 − α)σEQ), where σ1 is the maximum principal stress and σEQ is the

von Mises equivalent stress). It can be demonstrated that, by assuming that negligible

damage accumulation occurs prior to the tertiary creep region, Kachanov’s model

reduces to Norton’s law (equation (5.1), see section 4.2.2). Therefore if a steady-state

analysis is performed with Norton’s material law, a calculation of σR is still valid. As

damage accumulation is dependent on the rupture stress (σR), the position of a localised

peak rupture stress is an indication of the failure location in a creeping structure104.
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The peak value of the rupture stress in a structure under steady-state conditions is

designated by σ̂R. The damage differential equation (equation (2.51)) in Kachanov’s

modes can be integrated between limits to find an expression for time to failure (t f ,

see equation (4.6)). A reference (peak) rupture stress from a Norton’s law analysis can

be used in this expression (equation (5.2)), allowing the time to failure for a creeping

structure to be quickly estimated without the need for complex non-linear damage

analysis138,139,192. In the present work, an α value of 0.3 for the 1/2Cr1/2Mo1/4V pipe

steel at 640◦C has been used139.

t f =
1

B(1 + φ)σ̂χ
R

(5.2)

5.2.2 Power Plant Pipe Geometry and System Loading

Piping components used in power plant are modelled in the present work. Due to

the scoop sampling procedure removing material from the wall thickness of pipes, a

thick pipe section (an outer diameter DO of 360mm and a wall thickness Th of 60mm)

has been assumed for the initial investigation. Assuming a closed end condition, an

axial load (σAX) must be applied to replicate the constraint of an infinitely long pipe

section which is loaded by an internal pressure (Pi). This load may be calculated from

equation (4.28)192. Additional loads may also be imposed on a component by the piping

system, which can be characterised by a loading factor k (see equation (5.3)). This loading

factor can vary between 0, where no additional load is applied (equivalent to an internal

pressure loading under closed end conditions only), to 1, where the total axial stress

(due to the closed end condition and system loading) is equal to a maximum allowable

axial load (σAX MAX). In the present work, system loads are considered through the

application of an additional axial load or an in-plane bending moment. An additional

axial load (σAX A) may be imposed by either system loading condition, which may be

compared to σAX MAX to find the corresponding k value. For a loading condition, the

total axial load (σAX T) is given by equation (5.4).

k =
σAX A

(σAX MAX − σAX)
(5.3)

σAX T = σAX + σAX A (5.4)

From PD 5500127, the total axial loading on a pipe component is limited to the pipe’s

mean diameter hoop stress (σMDH, see equation (5.5)), therefore σAX MAX = σMDH. For

a bending moment (MZ), the additional axial load σAX A(r) is dependent on the radial

position r, see equation (5.6). The second moment of area (IZ) for a pipe is given by

equation (5.7). Assuming that no axial load should exceed σMDH when k = 1 and noting

that the maximum additional axial load due to the application of a bending moment

occurs at r = RO, equation (5.8) may be derived for the moment MZ. Scoop sample
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depths were assumed to vary between 1 and 5mm. Industrial scoop sample depths are

typically 3 − 4mm, therefore this range is reasonable. The hemispherical cutter diameter

was assumed to be 50mm, which is typical of a scoop sampler151. In the present chapter,

an internal pressure (Pi) of 20MPa was applied, giving rise to a closed end axial pressure

(σAX) equal to 16MPa. The maximum total axial load is therefore limited to 50MPa by

equation (5.5). The maximum bending moment is 124.97kNm. Note that both of these

conditions relate to a loading factor (k) of 1.

σMDH =

Pi

(

RO

RI
+ 1
)

2
(

RO

RI
− 1
) (5.5)

σAX A(r) =
MZr

IZ
(5.6)

IZ =
π

4

(

R4
O − R4

I

)

(5.7)

MZ =
π

8
kPi

[

(

RO

RI
+ 1
)2

− 2

]

R3
I

(RO/RI)

[

(

RO

RI

)2

+ 1

]

(5.8)

5.2.3 FEA Models

A sub-modelling technique has been used in the representation of a scoop sample region.

This keeps computation times manageable while allowing for fine mesh densities to

be implemented in the regions of interest (i.e. in the vicinity of the scoop sample

excavations). Planes of symmetry were enforced, allowing only quarter models of

the scoop sample site to be modelled (note the displacement boundary conditions,

restricting UX and UY, in figure 5.1). 3D FEA global and sub-models have been generated

using ABAQUS CAE (Computer Aided Engineering). All elements used are 20 node

(quadratic) hexahedral reduced integration (C3D20R in ABAQUS191).

An equation constraint191 was applied in cases where axial loads were implemented.

This was done in order to ensure the free ZX plane of the global model remains plane

during deformation, representing the constraint of the rest of the straight pipe. Bending

moments were applied about the X axis (hence in plane) in a direction to open the scoop

excavation (this represents the “worst case” bending moment orientation). Moments

were applied to the model using ABAQUS’s coupling constraint191.

Sub-models were created using the surface interaction approach191. Global model

simulations were completed first, allowing the displacement boundary conditions (that

vary with time) at the sub-model connecting faces to be determined (figure 5.1). Sub-

models, with refined meshes, were then analysed in order to determine the detailed

stress distribution around the excavation. Internal pressure and system loads were
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applied to the global model. After this analysis had been completed, time dependent

displacement conditions were taken from the global model and were used to control

the deformation of the sub-model at the interface. The deformation of the rest of the

sub-model was determined from these interface displacement conditions. Sub-model

regions were made sufficiently large in order to encapsulate all of the local effects of the

excavation. A 30mm cubic sub-model was found to be sufficient. An idealised scoop

sample has been modelled in the present work. The scoop excavation procedure will

often leave a rough surface finish in the sampled component. These grooves may cause

highly localised stress concentrations. These localised stress concentrations due to the

scoop excavation could then act as initiation points for surface cracks. When analysing

the results presented in this chapter, it should be remembered that it is assumed that no

surface defects were present prior to loading and such defects may reduce the remnant

life of the component.

Z

Y X

UX = 0
UY = 0

UY = CONSTANT
SUB-MODEL REGION

UX = 0

UX = 0

UY = 0

B.C. FROM GLOBAL MODEL

B.C. FROM GLOBAL MODEL

Figure 5.1: Illustrations of global and sub-models used in the analysis of scoop sample
sites in straight pipe sections. Boundary conditions and coupling constraints (used for
the application of bending system loads) are shown. A path is highlighted from the tip
of the scoop in the sub-model, which is used in some result plots.

The stress values in the vicinity of the scoop may be mesh dependent (due to the

stress concentration effect of the scoop excavation). It is therefore important that a

mesh sensitivity study is conducted to ensure that accurate solutions are obtained for

the chosen mesh density. The size of the cube shaped elements at the notch of the

sub-model were varied, with rupture (assuming α = 0.3), von Mises and maximum

principal stresses recorded at the scoop excavation tip (this is the peak stress location

and the area of most interest). Convergent behaviour can be seen in figure 5.2 for all

three stress components with reducing element size, therefore cube shaped elements

with dimensions of approximately 1mm have been applied in the vicinity of the scoop
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excavation in the sub-models.

Figure 5.2: Mesh sensitivity study results for a 5 mm deep scoop excavation sub-model
under internal pressure and maximum permissible bending moment loading.

5.3 Results

5.3.1 Typical Stress Distributions

In the majority of the loading scenarios simulated, similar behaviours were observed for

the steady-state stress variation in the through wall thickness direction (see figure 5.3).

Stress concentrations are significant at the excavation, with peak localised stresses

at the tip of the scoop. The inclusion of the scoop increases the multiaxial nature

of the stress state in the vicinity of the excavation and creates a stress concentration.

Equivalent von Mises stresses and maximum principal stresses are therefore greater near

the scoop. The effects of the stress concentration become less evident with increasing

distance into the wall thickness (see figure 5.1). At a certain distance into the wall

thickness, the sampled stress distribution is identical to that of the unsampled (plain

pipe) stress distribution. The application of system loads tends to increase the stress

concentration effect. Differences between local stresses around the scoop and typical

stress distributions in unsampled pipe sections are greater for cases where system loads

are applied. This is particularly true for cases where opening bending moments are

applied. These cause large tensile stresses on the upper surface of pipe section (where

the scoop excavation is located). From a component lifing perspective, it is important

that a comparison be drawn between the localised peak stress at the scoop excavation

and the stresses that would normally occur in a plain pipe component subjected to the
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same loads. If the peak stresses at the sample site are lower than the peak through

wall thickness stresses in the unsampled pipe (figure 5.3 (a) and (b)), it is reasonable to

assume that scoop sampling does not have a detrimental effect. The critical cut depth

is therefore the cut depth which induces stresses at the sample site greater than those

in the unsampled pipe. In the following result plots (figures 5.4 to 5.6, 5.8 and 5.9),

localised peak stresses (at the scoop excavation tip) are plotted against cut depth. These

can be easily compared to the peak stresses observed in a plain pipe (shown by the

“UNSAMPLED MODEL” line), highlighting potential “at risk” cases. All stresses are

normalised against the mean diameter hoop stress (σMDH) which does not vary with

scoop excavation depth (it is only dependent on the pipe section dimensions and internal

pressure loading). In all cases, a pipe section with an outer diameter (DO) of 360mm and

a wall thickness (Th) of 60mm has been used. Stress distributions will be dependent on

the chosen value of the multiaxial material constant (α, assumed to be 0.3 here). These

effects are discussed in detail in section 5.3.5.
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(a)

(b)

(c)

Figure 5.3: Typical variations of stress for a range of scoop sample depths. Behaviour is
shown for (a) von Mises, (b) rupture (α = 0.3) and (c) maximum principal stress.
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5.3.2 Internal Pressure Loading Only (Closed End Condition)

Steady-state creep FEA analyses were conducted on straight pipe sections loaded only

by an internal pressure (assuming closed end conditions). The equivalent von Mises

(σEQ), rupture (σR, assuming α = 0.3) and maximum principal stresses (σ1) at the scoop

excavation tip are plotted against cut depth in figure 5.4 (a)-(c), respectively.
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(a)

(b)

(c)

Figure 5.4: Results of FEA models (normalised to σMDH) loaded by internal pressure
only (assuming closed end condition), showing (a) von Mises stress (σEQ), (b) rupture
stress (σR, α = 0.3) and (c) maximum principal stress (σ1). Results are shown for a pipe
with an outer diameter (DO) of 360mm and a wall thickness (Th) of 60mm.
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5.3.3 Internal Pressure and Additional Axial System Loading

Additional axial loads were applied to replicate system loading imposed on the pipe

section. Two axial load magnitudes were applied in the tensile direction, namely the

maximum permissible by PD 5500 (giving rise to a total axial load of 50MPa) and

a midway axial load (giving rise to a total axial load of 33MPa). Using the loading

parameter k, these loading conditions relate to k values of 1 and 0.5, respectively. Again,

von Mises, rupture (α = 0.3) and maximum principal stresses were recorded at the scoop

excavation tip for a range of cut depths (see figures 5.5 and 5.5). The case where the

only axial load applied is to satisfy the closed end condition represents a minimum axial

load scenario (i.e. there is no additional axial load, therefore k = 0). Using the results in

figures 5.5 and 5.5, the effects of additional axial loading (based on the parameter k) can

be approximated (see figure 5.7).
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(a)

(b)

(c)

Figure 5.5: Results of FEA models (normalised to σMDH) loaded by internal pressure and
additional axial loading (total axial pressure equal to a maximum of 50 MPa, or k = 1),
showing (a) von Mises stress (σEQ), (b) rupture stress (σR, α = 0.3) and (c) maximum
principal stress (σ1). Results are shown for a pipe with an outer diameter (DO) of 360mm
and a wall thickness (Th) of 60mm.
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(a)

(b)

(c)

Figure 5.6: Results of FEA models (normalised to σMDH) loaded by internal pressure
and additional axial loading (total axial pressure equal to 33 MPa, or k = 0.5), showing
(a) von Mises stress (σEQ), (b) rupture stress (σR, α = 0.3) and (c) maximum principal
stress (σ1). Results are shown for a pipe with an outer diameter (DO) of 360mm and a
wall thickness (Th) of 60mm.
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Figure 5.7: The effect of axial loading on the scoop excavation tip rupture stresses (σR,
α = 0.3) of a straight pipe section (outer diameter DO of 360mm and a wall thickness
Th of 60mm.). Note all stresses are normalised against σMDH . Results for an unsampled
straight pipe section are included for comparison and to highlight possible ”at risk”
situations.

5.3.4 Internal Pressure and Bending System Loading

In plane bending moments were applied to the pipe section in the manner described in

section 5.2.3. An axial load was applied in order to satisfy the closed end condition. The

loading factor (k) in equation (5.8) was set to two values; 1, giving a maximum bending

moment of 124.97 kNm and 0.5, giving a bending moment of 62.48 kNm. Stresses at

the scoop excavation tip for a range of cut depths can be seen in figures 5.8 and 5.9,

respectively. When k = 0, no bending moment is applied. This is equivalent to the

model where only internal pressure loading is applied (section 5.3.2). A range of k

values has therefore been simulated and its effect on rupture stress (α = 0.3) can be

approximated (see figure 5.10).
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(a)

(b)

(c)

Figure 5.8: Results of FEA models (normalised to σMDH) loaded by internal pressure
and an in plane bending moment (k = 1), showing (a) von Mises stress (σEQ), (b) rupture
stress (σR, α = 0.3) and (c) maximum principal stress (σ1). Results are shown for a pipe
with an outer diameter (DO) of 360mm and a wall thickness (Th) of 60mm.
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(a)

(b)

(c)

Figure 5.9: Results of FEA models (normalised to σMDH) loaded by internal pressure and
an in plane bending moment (k = 0.5), showing (a) von Mises stress (σEQ), (b) rupture
stress (σR, α = 0.3) and (c) maximum principal stress (σ1). Results are shown for a pipe
with an outer diameter (DO) of 360mm and a wall thickness (Th) of 60mm.
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Figure 5.10: The effect of in plane bending moment loading on the scoop excavation tip
rupture stresses (σR, α = 0.3) of a straight pipe section (outer diameter DO of 360mm and
a wall thickness Th of 60mm). Note all stresses are normalised against σMDH. Results
for an unsampled straight pipe section are included for comparison and to highlight
possible “at risk” situations.

5.3.5 Effects of Tri-axial Material Constant (α) Values

A value of α has been assumed (0.3) for the calculation of rupture stress in the above

analyses. Rupture stresses for the limiting values of α (0 and 1) are equivalent to the

von Mises and maximum principal stresses, respectively. The dependency between

the multiaxial material constant (α) and the rupture stress in scoop excavation models

can therefore be estimated (for a given n value, namely 6.108) for each of the loading

conditions considered so far (see figure 5.11).
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(a) (b)

(c) (d)

(e)

Figure 5.11: The effect of triaxial material constant (α) value on rupture stress (σR).
Loading conditions shown are (a) internal pressure loading only assuming closed end
condition, (b) internal pressure loading with an additional axial system load, totalling
50MPa (k = 1), (c) internal pressure loading with an additional axial system load,
totalling 33MPa (k = 0.5), (d) internal pressure with an in plane bending moment, k = 1
and (e) internal pressure with an in plane bending moment, k = 0.5. Note all rupture
stresses are normalised against σMDH. Results for an unsampled straight pipe section
subjected to the same loading condition are included for comparison. Results are shown
for a pipe with an outer diameter (DO) of 360mm and a wall thickness (Th) of 60mm.
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5.3.6 Effect of Pipe Outer Diameter and Wall Thickness

In the previous sections, the stresses around a scoop excavation have been analysed for a

single pipe geometry (characterised by an outer diameter, DO, and a wall thickness, Th).

In reality, a range of pipe section dimensions may be implemented on a power plant

that are potential candidates for scoop sampling. In order to extend the applicability of

the present work, several alternative pipe geometries with scoop samples have been

simulated using the sub-modelling procedure.

In this study, four levels were defined for the outer pipe diameter DO (210mm,

260mm, 310mm and 360mm) and for the pipe wall thickness Th (40mm, 50mm, 60mm

and 70mm). Two cut depths (referred to as the parameter h in the parametric equa-

tion (5.9)) were also chosen, namely 2mm and 5mm. Global and sub-models were

created for each permutation of the above parameters, using the material constants

A = 6.599x10−16MPa1/n and n = 6.108 (note these are identical to the values used in

the previous analyses). Two loading conditions were also applied, namely the closed

end and maximum permissible axial load (i.e. total axial load is equivalent to σMDH)

conditions. Using the results for these two load cases as limits, the effects of a range of

system axial loads can be estimated. After completing the study described therefore,

for each loading condition, FEA steady-state results were available for a range of pipe

geometries (210mm ≥ DO ≥ 360mm and 40mm ≥ Th ≥ 70mm) with two different cut

depths (2mm and 5mm). Additionally, results from the previous analyses allowed for

the consideration of a range of cut depths (1mm ≥ h ≥ 5mm) for a fixed pipe geometry

(DO = 360mm and Th = 60mm).

Generally, pipe sections with identical h values and DO/Th ratios have similar rup-

ture stress values at the scoop excavation tip. Therefore, in an attempt to approximate

the steady-state rupture stress response of a sampled straight pipe section, a polyno-

mial expression (equation (5.9)) was developed, with the parameters h and DO/Th

acting as independent variables. The constants A − I are material and loading case

dependent, and were determined using a polynomial fitting procedure, implemented

in MATLAB187,188. These values can be seen in table 5.1, with a plot of the parametric

equation and FEA results shown in figure 5.12. Typically, the fitted surface defined by

equation (5.9) lead to coefficients of determination (r2, see section 3.8.5) greater than or

equal to 0.94. Stresses in plain pipes under steady-state conditions can be determined

using equation (2.104)130, and so “at risk” sampling conditions can be identified.
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Table 5.1: Fitting constants for the parametric equation (5.9), giving steady-state rupture
stresses (α = 0.3) at a scoop excavation tip (assuming the material constants A =
6.599x10−16MPa1/n and n = 6.108).
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A −3.9368x10−3 −1.6471x10−4

B 1.0158x10−1 4.0671x10−3

C −6.3298x10−2 4.3038x10−1

D 8.9586x10−1 4.6312x10−1

E −8.9664x10−1 −4.6490x10−1

F 2.4479 6.1983x10−1

G −1.4768 5.4876x10−1

H 1.5044 −5.1636x10−1

I −5.0899 1.1498
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(a)

Figure 5.12: Steady-state rupture stress surfaces predicted by the parametric equa-
tion (5.9). FEA results are included for comparison.

Using equation (5.9) and the constants given in table 5.1, steady-state rupture stresses

can be determined for a material with the stress exponent (n) equal to 6.108. In reality a

range of n values will be encountered for different materials under various operating

conditions196. A linear relationship has been established between the steady-state creep

stress at a point in a structure and 1/n by Calladine197 (see figure 5.13). Localised peak

rupture stresses will occur at the scoop excavation tip; therefore the linear relationship

is valid and can be applied for a range of stress exponent values. To interpret this linear

relationship for any n value, at least two data points will be required. A limit value for

the steady-state stress can be found by assuming n = 1, which is equivalent to the linear

elastic solution. Constants for equation (5.9) are provided in table 5.2 that predicted

linear elastic rupture stresses at the scoop excavation tip. By calculating steady-state

rupture stresses for the two reference n values (n = 6.108 and n = 1) and evaluating

Calladine’s linear relationship, an estimation of the steady-state rupture stress at a notch
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tip can be made for any n value.

σSS

0 1
(n = ∞) (n = 1)

1
n

Figure 5.13: Illustration of the linear effect of the inverse of the stress exponent (1/n) on
the steady-state creep stress (σSS), identified by Calladine197,198.

Table 5.2: Fitting constants for the parametric equation (5.9), giving linear elastic rupture
stresses (α = 0.3) at a scoop excavation tip (assuming the material constants E = 200GPa
and ν = 0.3).
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A −1.1124x10−3 3.2907x10−5

B 3.0901x10−2 −1.4179x10−3

C 2.7403x10−1 4.5524x10−1

D 5.9248x10−1 4.2252x10−1

E −6.0312x10−1 −4.3724x10−1

F 1.2981 5.0501x10−1

G −2.3963x10−1 7.5943x10−1

H 3.7362x10−1 −5.6899x10−1

I −2.6954 1.1318

To verify that the parametric equation and optimised fitting constants allow for

accurate estimation of localised rupture stresses, several sampling cases have been
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simulated that were not included in the original study. Geometries are typical of those

used in power plant and are located around the centre of the tested ranges of DO/Th

and h. These were applied to both the closed end and maximum allowable axial load

cases (see tables 5.3 and 5.4, respectively). Both steady-state and elastic rupture stresses

have been compared. Typically, errors are less that 1%, with a peak error of 2.79%. The

parametric equation is therefore deemed to be representative and applicable.

The predicted interpolation results (shown in tables 5.3 and 5.4) have been used in

conjunction with Calladine’s method to predict steady-state creep peak rupture stresses

for alternative n values (n does not equal the elastic value of 1 or the considered creep

value of 6.108). These are presented in table 5.5. A peak error of 5.69% is observed,

however the results for n values closer to the reference value (6.108) are generally

predicted with a greater degree of accuracy (less than 1%). Linear interpolation and

extrapolation between the surfaces predicted by equation (5.9) is therefore considered

to be viable.

Table 5.3: Comparison of predicted (from parametric equation (5.9)) and FEA localised
(at the scoop excavation tip) peak rupture stresses (α = 0.3) for a straight pipe section
acting under a closed end loading condition. Note that material constants are assumed
to be E = 200GPa, ν = 0.3, A = 6.599x10−16MPa1/n and n = 6.108.
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DO = 270mm
Th = 41mm
h = 2.6mm 1.0024 1.0497 0.9802 1.0511 2.21 0.13

DO = 320mm
Th = 61.5mm

h = 3.2mm 0.9819 0.9333 0.9902 0.9508 0.85 1.88
DO = 260mm
Th = 50mm

h = 3mm 0.9826 0.9326 0.9856 0.9367 0.31 0.44
DO = 300mm
Th = 65mm

h = 4mm 0.9775 0.8857 1.0016 0.9090 2.47 2.63
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Table 5.4: Comparison of predicted (from parametric equation (5.9)) and FEA localised
(at the scoop excavation tip) peak rupture stresses (α = 0.3) for a straight pipe section
acting under the maximum allowable axial load loading condition. Note that material
constants are assumed to be E = 200GPa, ν = 0.3, A = 6.599x10−16MPa1/n and
n = 6.108.
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DO = 270mm
Th = 41mm
h = 2.6mm 1.2239 1.5408 1.2581 1.5437 2.79 0.19

DO = 320mm
Th = 61.5mm

h = 3.2mm 1.2911 1.5571 1.2913 1.5693 0.02 0.78
DO = 260mm
Th = 50mm

h = 3mm 1.2886 1.5443 1.2870 1.5494 0.12 0.33
DO = 300mm
Th = 65mm

h = 4mm 1.3177 1.6056 1.3183 1.6217 0.05 1.00
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Table 5.5: Comparison of predicted (from parametric equation (5.9)) and FEA localised
(at the scoop excavation tip) steady-state peak rupture stresses (α = 0.3) for a range of
pipe geometries and Norton’s law stress exponent (n) values. Note that elastic material
constants are assumed to be E = 200GPa and ν = 0.3.
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DO = 270mm, Th = 41mm, h = 2.6mm,
n = 5, Closed End Condition 1.0426 0.9833 5.69

DO = 320mm, Th = 61.5mm, h = 3.2mm,
n = 7, Maximum Axial Load Condition 1.2807 1.2844 0.29

DO = 260mm, Th = 50mm, h = 3mm,
n = 3, Closed End Condition 0.9329 0.9757 4.59

DO = 300mm, Th = 65mm, h = 4mm,
n = 8, Maximum Axial Load Condition 1.2953 1.3043 0.69

5.4 Discussion

Scoop sampling from in service high temperature components is gaining popularity

as a method to retrieve material for the manufacture of novel small specimens. Small

specimen tests could be used to determine material constants for constitutive models

(if adequate interpretation techniques can be established) or alternatively to perform

ranking studies to identify degraded components. It is vital that scoop sampling itself

does not impair the structural integrity of the sampled component and thus limit future

operation. A thick walled main steam type pipe section (a potential candidate for

scoop sampling) has been considered in the present work (with an external diameter

of 360mm and a wall thickness of 60mm). Scoop excavations (of various depths) have

been approximated using FEA sub-modelling techniques. In addition to loading due to

internal pressure, system loads such as axial pressures and bending moments have also

been applied. Generalised parametric equations have been proposed and verified for a

range of pipe geometries and cut depths.

Examination of the “UNSAMPLED MODEL” curves in figure 5.3 highlights that

steady-state rupture stresses are approximately constant through the wall thickness of

the pipe if α = 0.3 (a typical value). This is distinctly different to the von Mises and

maximum principal stresses, where peak values may be observed at the external and
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internal surfaces (depending on the loads applied to the pipe section). It can be seen

from all of the results plots that stress profiles converge on this “UNSAMPLED MODEL”

plain pipe profile with increasing distance along the wall thickness. The effects of a

scoop excavation are therefore localised around the notch. The inclusion of a scoop

excavation causes a stress concentration at the tip of the notch (see figure 5.14), however

this concentrated stress may not exceed the magnitude of the maximum stress in the

unsampled model (see figure 5.3 (a)). In these situations, it is reasonable therefore to

expect that failure is controlled by the highly stressed region at, say, the inside surface of

the pipe (in the present work, this is considered a “safe” condition). These observations

are drawn from static loading analyses. Under cyclic loading conditions the effects of

the scoop excavation may be exacerbated, therefore this will be the focus of future work.

Under internal pressure loading only (closed end condition, see figure 5.4 (b)), almost

all scoop excavations appear to have peak localised rupture stresses that are greater than

the stresses normally encountered in an identically loaded plain pipe section (i.e., the

excavations are not considered safe). Shallow scoop samples (≈ 1mm deep) however

have been shown to be safe as even peak maximum principal stresses in the vicinity

of the scoop sample are less than those in the unsampled pipe. It can therefore be

concluded that, for most power plant materials at least, shallow scoop sampling in

thick walled straight pipework is safe provided that system loads are negligible in

the pipe section. After the application of an additional axial load however (50MPa

and 33MPa total axial loading, shown in figures 5.5 and 5.6, respectively), all scoop

samples exhibit failure dominant stress states. Bending moments were applied to the

pipe models in order to approximate an alternative system load (figures 5.8 and 5.9).

In general the effect of the application of a bending moment is the same as that of an

additional axial load, in so much as the rupture stress in the vicinity of the excavation

exceeds that of the plain pipe maximum rupture stress. The orientation of the bending

moment is such that a tensile stress is induced in the upper section of the pipe (i.e. the

scoop excavation is opened). When considering these above results it is important to

bear in mind that while the orientation of the bending loads is the “worst case”, the

load magnitudes are permissible by PD 5500 and it is therefore reasonable to consider

these loading conditions potentially occurring. An increase in the loading parameter

k generally reduces the critical cut depth (see figures 5.7 and 5.10), however bending

moment effects tend to be more severe due to the “opening” loading orientation.

By noting that the limits of the steady-state rupture stresses (i.e. when α = 0 or 1) are

the equivalent von Mises and maximum principal stresses, respectively, the effect of the

value of α can be estimated in the present work (figure 5.11). The general trend observed

is that, in all loading cases, an increase in the multiaxial material constant α leads to a

greater proportion of the scoop sampling situations being at risk (i.e. the critical depth of

scoop sample reduces with increasing α). This effect is due to the increasing dependence

on the maximum principal stress with an increasing α when calculating the rupture
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stress. With a scoop excavation feature acting as a stress concentration, maximum

principal stresses are typically far more sensitive to excavation depth variations than

von Mises stresses. In ductile failure conditions, a shear stress failure criterion may

be appropriate, hence the von Mises stress (octahedral shear stress criterion28, see

section 2.3.2) is controlling. In brittle situations, a maximum principal stress failure

criterion is more representative, hence the values of α for those materials would be tend

to 1. While most materials deform in a ductile fashion under power plant loading, it

is foreseeable that for some materials, such as the heat affected zone (HAZ) regions of

weldments, brittle deformation mechanisms may be present. Due to the small amount

of HAZ material and its critical importance in component analysis, this region is a

candidate for scoop sampling. Scoop sampling of HAZ regions must therefore be

conducted with great care due to their commonly brittle nature and the effects of the

scoop sample acting as a stress concentration.

Under system loading, the inclusion of a notch can cause a shift in the direction of the

maximum principal stress. Hoop direction maximum principal stresses are observed for

the closed end condition loading (figure 5.14 (a)), however these shift to axial direction

maximum principal stresses for cases with system loading (figure 5.14 (b), (c), (d) and

(e)). In the case of bending system loads, it has been observed that there is a transition

between an axial principal stress (induced by the bending system load) and, some way

into the wall thickness, a hoop principal stress (induced by the internal pressure loading).

Figure 5.14 (e) verifies that at the external surface of the pipe the maximum principal

stress is axial in direction. The stress concentration effects of the scoop excavation may

have more serious consequences if a defect (such as a crack) is present in the notch. It is

foreseeable that such defects could be initiated by the sample extraction process. High

stress regions in the excavation could cause the propagation of these cracks, particularly

in terms of maximum principal stresses which could potentially open the defect in mode

1 deformation28. The variation in maximum principal stress direction could potentially

lead to cracks in almost any direction propagating under transient system loading.

This effect would be exacerbated if loadings are cyclic (which is typical of power plant

components).

In order to highlight the effect of localised scoop excavation rupture stresses on

failure time of a pipe component, rupture times were calculated from the rupture

stresses for the φ = 360mm and t = 60mm study. This was done using equation (5.2) and

the material constants given in table 5.6. Results are presented in figure 5.15. Values of k

used are 0, 0.5 and 1. Predicted times to failure (t f ) have been normalised against the

predicted time to failure for an unsampled pipe component (t f o). “At risk” sampling

scenarios lead to t f /t f o ratios less than 1. Under additional axial loading (see figure 5.15

(a)), it can be seen that failure is not controlled at the scoop excavation tip for a 1mm

deep cut, therefore taking the scoop sample is considered to be “safe”. Conversely, a

5mm deep cut in a pipe with a maximum permissible axial load can lead to a failure time
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which is approximately 20% of the original components. Similar trends can be observed

for the bending moment loading cases (see figure 5.15 (b)); however critical cut depths

are far less. It should be noted that, when using the steady-state reference rupture stress

method, rupture is assumed to occur only in the element of material subjected to the

peak rupture stress. In situations other than simple uniaxial loading, this may relate to

the formation of a surface crack rather than full thickness cleavage.

Table 5.6: Kachanov law material constants for 1/2Cr1/2Mo1/4V at 640◦C139.

A n B χ φ m α

6.599x10−16 6.108 1.091x10−14 5.767 4.5 0.00 0.3
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(a) (b)

(c) (d)

(e)

Figure 5.14: Example FEA contour plots showing maximum principal stress for (a)
internal pressure loading only, assuming closed end condition, (b) internal pressure
loading with an additional axial system load, totalling 50MPa (k = 1), (c) internal
pressure loading with an additional axial system load, totalling 33MPa (k = 0.5), (d)
internal pressure with an in plane bending moment, k = 1 and (e) internal pressure
with an in plane bending moment, k = 0.5. Results are shown for a pipe with an outer
diameter of 360mm and a wall thickness of 60mm. A 3mm cut depth (h) has been applied.
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(a)

(b)

Figure 5.15: The effect of scoop sampling on predicted rupture times (t f ) for pipe
components. Note all rupture times are normalised against the rupture time for an
unsampled pipe component (t f o). Loading conditions considered are (a) additional axial
loading and (b) in-plane bending moment loading. Values greater than 1 are omitted, as
this does not represent scoop controlled failure of the component. Results are shown for
a pipe with an outer diameter of 360mm and a wall thickness of 60mm.
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5.5 Conclusions

Small specimen testing is an exciting field that has the potential to address the prac-

tical limitations of conventional full size specimen testing. One such advantage is the

ability to perform mechanical tests on material from in service components without

compromising structural integrity and future operation. Samples can be taken from

these in service components using novel in situ techniques such as the scoop sample

machine developed by Rolls-Royce151. To analyse the effects of scoop sampling on

the creep response of straight pipe sections, an investigation was carried out whereby

the depth of excavation was varied between 1mm and 5mm. The pipe sections were

loaded by an internal pressure and, in some cases, additional system (axial pressure

or in-plane bending moment) loading. An in depth investigation has been completed

for one pipe geometry (DO = 360mm and Th = 60mm) for a range of cut depths and

loading conditions. For two of the most applicable loading conditions (a closed end

condition and a maximum permissible additional axial load), a range of pipe geometries

were simulated in FEA and a parametric expression has been proposed to predict the

rupture stress at the excavation tip.

The application of internal pressure loading alone tends to lead to safe operating

conditions (i.e. failure of the component is controlled by the same stress state as the

unsampled pipe component) for shallow excavations (1mm). The application of system

loading, either by additional axial load or an opening bending moment, leads to a

reduction in the critical scoop sample depth (i.e. the depth at which the stress state

localised around the scoop exceeds the stress in the plain pipe section). Increasing

values of the multiaxial material constant (α) also reduces the critical scoop depth by

promoting an increased dependence on the maximum principal stress in rupture stress

calculations. Using the trends described and the parametric equation proposed the

scoop sample stress concentration effect can be estimated for a wide range of materials

and pipe geometries.

Straight pipe section will not be the only locations of scoop sampling and loads will

commonly not be steady. Transient periods will almost certainly be encountered as

generators attempt to match market trends to energy requirements. This potentially

induces cyclic hardening or low cycle fatigue in power plant components. Furthermore,

the behaviour of potentially weak discontinuities in pipe systems, such as weldments or

bends, will hold the greatest concern for practising engineers. Future work will therefore

focus on the effects of scoop sampling under these conditions. Additionally, it has been

noted that there is a similarity between the scoop type excavation and penny shaped

cracks. Future work will also therefore attempt to generalise the derived empirical

equation to include elliptical excavations.
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Chapter 6

Novel Characterisation and

Modelling Methods for Power Plant

Pipe Bends

6.1 Introduction

Pipe bends represent geometric discontinuities in the steam pipe systems of power

plants, therefore understanding the behaviour of these potential locations of weakness is

of great industrial importance for component inspection, design and analysis. Due to the

high operating temperatures encountered, the failure mechanism of creep is a justified

concern. Furthermore, while the geometry of pipe bends appears to be simplistic, the

manufacturing process employed results in variations to the critical dimensions of the

pipe bends. It is these variations in geometry that can cause potentially significant

differences in peak steady-state rupture stress magnitude (approximately 48% in some

of the cases considered in the present chapter). Commonly dimension variation is

either not incorporated into design calculations or is greatly simplified (see section 2.4),

therefore components are oversized with conservative life estimations107. A method is

therefore required that can characterise the complex dimension variation observed in

pipe bends so that comparative studies can be completed.

In the present chapter (through analysis of industrial data supplied by E.On UK),

several novel non-dimensional parameters have been established, allowing for (with

suitable constraint equations depending on the type of bends analysed) the approxima-

tion of the complexity of pipe bend geometry in only a few dimension factors. Using

these factors, systematic FEA studies may be completed (with these non-dimensional

parameters taking account of a range of geometry variation). Using this philosophy,

the stress states and failure lives of pipe bends of the same type (i.e. Hot Reheat or

Main Steam types) with similar, but not identical, dimensions may be estimated and

compared using approximations of the peak rupture stress function. By way of example,
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this procedure is applied to thick walled Main Steam and thinner walled Hot Reheat

type 90◦ pipe bend geometries under internal pressure loading only.

Fitting constants used in the non-dimensional parameter characteristic equations

(which will be pipe bend type dependent) may be determined from 3D FEA analyses.

It can be computationally expensive however to perform these analyses. A novel

interpolation method is presented at the end of this chapter which addresses this

problem. Several axi-symmetric 2D analyses are preformed that represent the cross

sections of a 3D pipe bend model with dimension variation at specific bend positions.

The overall stress state of the 3D pipe model (in particular, the peak rupture stress value

and location) can be estimated by interpolating between these 2D approximations.

6.2 Background

The degree of wall thickness variation (with respect to some nominal value such as

the uniform wall thickness of the straight pipe section) will differ around the pipe

bend. Despite this known variation in geometry, most work to date has focused on

idealised dimensions (for example, assuming a uniform thickness or constant cross

section around the bend section). While bespoke pipe bend FEA analysis may yield

a solution in which the user has some confidence, the investment of both time and

expertise in establishing such models often places this analysis option outside the reach

of practising engineers wishing to make some assessment on component structural

integrity. Alternatively, non-destructive testing105 may be used to evaluate the remnant

life of pipe work. However, this is also time consuming, demands specialist equipment

and requires prior knowledge of the approximate location of failure. Appropriate

FEA has clear advantages, but representative 3D modelling methodologies need to be

developed to ensure the consistency of results. Also, the results of the simulations need

to be presented in an easy to access and practically relevant form.

Given that pipe work used in power plant generally operates at high temperatures

and is subjected to an internal pressure, creep is of great concern and there is a clear

industrial demand for methods which can be used to estimate the residual creep life

in areas of potential weakness (such as pipe bends). Such procedures would enable

more effective inspection and replacement strategies. Due to the complex nature of

the loading of pipework systems (i.e. fluctuations in operating temperature, internal

pressure and system loading etc.), plant was often originally commissioned based on

conservative life estimates. Retired components therefore commonly have been found to

still be serviceable105,107. A greater understanding of creep life in areas of interest within

a pipe system could aid in operating the plant for extended periods with confidence.

Furthermore, as power generation companies attempt to maximise plant efficiency by

operating at higher steam temperatures and pressures, loading on these components

will become more arduous. Additionally, improved generation flexibility (implemented

in order to meet varying market demands) would impose greater transient loads on
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system components. A greater understanding and predictive capability of the creep

behaviour of critical plant components would allow these practices to be adopted safely.

For 3D pipe bend analysis, a large proportion of the published literature is concerned

with the determination of plastic collapse loads for pipe bends118,120,132,134,135. However,

relatively little work has been reported to date relating to the effects of the variation in

cross section dimensions around pipe bends on the reduction of the component’s creep

life. Usually, simplified creep analyses are performed, assuming rotational symmetry

and/or constant wall thickness139. Under these conditions and assuming that system

loading is negligible (i.e. internal pressure is the only loading) steady-state stresses in

a 2D axi-symmetric approximation are very close to those in the 90◦ pipe bend118,138.

Providing good estimations of stresses in power plant components is of critical im-

portance as the effects of inaccurate prediction of stress states can be severe in plant

integrity assessment procedures. The R5 procedure, for example, is widely applied

to the analysis of high temperature power plant structures125 and can accommodate

creep in its failure criterion199. It is dependent upon determining an elastic stress for

the structure which can be related to a reference stress (σREF)125. The danger posed by

various failure criteria (such as creep rupture or creep fatigue interaction) may then be

assessed. For elastic stresses to be estimated in complex structures however, detailed

FEA may be required. Accurate methods for characterising pipe bends (with cross sec-

tional dimension variations) in FEA packages are therefore in high demand. Parametric

studies used to characterise 90◦ pipe bends in the past have usually involved the use of

2D FEA approximations. Most notably, Yaghi et. al.104 developed parametric functions

for the determination of steady-state peak rupture stresses, based on five geometric

factors and two material constants.

In the present chapter, a simple Norton’s material behaviour model has been used to

represent a pipe bend material in FEA. Norton’s law describes the steady-state creep

region strain rate using a stress multiplier (A) and exponent (n). The stress exponent

value can give an indication to the controlling mechanism for creep deformation. Given

the relatively low stresses encountered in industrial pipe work systems, the majority of

life is usually spent in the secondary or steady-state creep region, after the initial period

of stress redistribution is experienced within the structure138,192. As creep stresses will

be constant in a geometrically linear structure during steady-state creep, comparative

assessments of pipe bends with different geometries can be performed. During the

steady-state region, rupture stresses (σR) may be evaluated and thus an approximation

of the failure location and failure life may be found (as discussed in section 5.2.1).

The rupture stress (σR) may be calculated using the material constant α. A value of

approximately 0.3 is often found to be applicable for CrMoV and P91 power plant steels

(section 5.2.1). As such, α = 0.3 has been used in most of the analyses included in

the present work. Using the steady-state peak rupture stress (σ̂R) within a structure

and integrating the Kachanov damage equation with respect to time, the life of a
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component may be estimated (see equation (5.2)). Typically, this approach leads to

slightly underestimated failure times compared with full damage analyses, representing

conservatism in the analysis138,139.

6.3 Variations in Pipe Bend Cross Section Dimensions

6.3.1 Pipe Bend Geometry

For power plant applications, pipe bends are generally manufactured from straight

pipe sections using an induction heating ring and a fixed radius arm driven on an

arc by a hydraulic ram116. Due to the tensile stress state along the outside arc of the

bend (the extrados, see figure 6.1 (a)), a reduction in the wall thickness will occur117,118.

Additionally, the compression along the inside arc (the intrados, see figure 6.1 (a))

generally results in an increase in wall thickness. Given the variation in bending stresses

which occur when the pipe is bent, the degree of divergence from the straight pipe wall

thickness in the intrados and extrados will not be consistent around the pipe bend. The

definition of bend geometry is made more complex through the tendency of bends to

become oval under a bending moment (the von Karman effect119). Initial ovality in the

pipe bend cross section will occur during bending as the pipe flattens in the vertical

direction. Under internal pressure alone during service, the pipe will attempt to inflate,

regaining a more circular cross section119,120. Under additional system loading and

the loading imposed by the pipe hanger support systems (both potentially causing

torques or closing bending moments), the ovality of the pipe cross section may become

more pronounced after a long term service at high temperature. The manufacturing

process will induce residual stresses in the pipe bend. Unlike weldments, for which heat

treatment methods exist (which act to relax residual stresses through creep112), it may

not be possible to heat treat pipe bends due to the sheer size of the components. Residual

stresses in welded pipes have been shown to relax quickly during service exposure in

creep conditions114, therefore similar behaviour is expected for pipe bends. As such,

the effects of residual stresses are not considered in the present study. As steady-state

peak rupture stresses are the main area of interest it is reasonable to assume that any

manufacturing residual stress will have relaxed away when a steady-state condition is

achieved and that residual stresses will not significantly affect the magnitudes of the

steady-state stresses.

The case of a 90◦ pipe bend is considered for most of the present chapter. Depending

on plant requirements and the flexibility of the pipe work system design, bend angles

of less than this value may be used. However, a 90◦ bend represents an upper limit for

most industrial applications. In the interest of representing the most arduous analytical

case therefore (i.e. with the greatest variation in dimension changes), 90◦ bends have

been used as a practical maximum.

New build plant (in the UK) is, at the time of writing, designed and built to BS EN
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13480128. Much of the plant currently in service was however commissioned prior to

2002, hence it adheres to the now superseded BS 806129. Using this earlier code, the

recommended minimum bend radii (the distance from the centreline of the pipe to

the centre point of the bend) for the pipes used in this study (with outside diameters

of approximately 350mm for Main Steam pipes and 490mm for Hot Reheat pipes, see

figure 6.1 (b)) can be found. This is typically in the region of 2m for both pipe bend

types129, agreeing with industrial suggestions. Clearly, a smaller bend radius results

in a tighter bend, giving rise to a greater difference between intrados, extrados and

average wall thicknesses around the pipe bend. As it is this divergence from the straight

pipe wall thickness that causes the potential for localised failure at the pipe bends, tight

bends will be the areas of most concern. Larger bend radii are used whenever possible

(i.e. where the size envelope or system layout does not necessitate tight bend radii) to

negate this concern. In order to demonstrate that this work is applicable to the most

extreme dimension conditions that are used in industry (and thus to make it relevant

to those who may apply it), a constant bend radius of 2m was used for all of the bends

modelled.
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Figure 6.1: Illustrations of (a) bend position angle (ϕ) and bend position and (b) circum-
ferential position angle (θ) of the pipe cross section.

6.3.2 Industrial Data and Trends

Non-destructive testing of in service pipe bends can take several forms. Changes in

the pipe diameter at critical locations or the degree of ovality, for example, can be

assessed through the use of calliper measurements or strain gauges over the structure,

allowing the physical dimensions to be recorded. Additionally, hardness or replica

analysis between components of the pipe bend may be conducted at key locations in

order to perform comparative analysis or establish potential behavioural trends across

the piping system. Ultrasonic or magnetic surveys may also be implemented in order

to determine wall thicknesses at key locations (such as the pipe bend intrados and

extrados for multiple bend position angles (ϕ), see figure 6.1 (a)) or to detect defects

and the initiation of cracks. Present research is assessing the viability of localised strain

measurement over critical areas (such as pipe bends or weldments) using speckle pattern
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analysis and automated image correlation105. Developments similar to this could be

used in the future to verify FEA modelling, refine lifing predictions or to back calculate

estimates of wall thickness variation. In any case, condition monitoring techniques are

well established in the power industry and much of the complex details in pipe bend

dimensions that have been discussed so far may well already be archived in routine

inspection reports. This data should be fully exploited in any new analysis techniques

for pipe bends before it is suggested that additional laborious component measurement

and characterisation be carried out. Such considerations will help encourage any new

developments to be adopted in the power industry. Bearing this criterion in mind, the

methodologies described in the present chapter have been developed using standard

survey data supplied by the power industry.

Two pipe bend types are considered in the present chapter, namely Main Steam

and Hot Reheat configurations. Typically, the Hot Reheat pipe bend type will have a

larger diameter but smaller wall thickness than the Main Steam type. In both cases,

inspection of the diameter measurements around the bend revealed little variation.

Furthermore, little evidence of ovality in the pipe cross section was present. Based on

these observations, initial ovality was neglected from the modelling procedure and

constant outer diameter 3D FEA models were created (DO is equal to 490mm and 356mm

for the Hot Reheat and Main Steam pipe sections, respectively). Examination of the

wall thickness variation with respect to circumferential position angle (θ) suggested that,

for a given bend position angle (ϕ), pipe cross sections were almost symmetric in the

bending plane (i.e. the wall thickness values found at the top and bottom of the pipe

cross section, positions 1 and 9 respectively in figure 6.1 (b), are approximately the same).

An example of this can be seen in figure 6.2, where the quantity Th is a circumferential

position’s wall thickness and ThAV is the average wall thickness value for the particular

pipe cross section. The “sinusoidal” tendency of this profile for each circumferential

position angle (θ) position suggests that a plane of symmetry exists in the bending plane.

Half of the pipe may therefore be modelled with confidence (given suitable boundary

conditions replicating the constraint of the rest of the pipe and bend). The variation in

wall thicknesses at circumferential positions 1 and 9 around the pipe bend are minimal

and in close agreement with the straight pipe values. This leads to the observation that

the bending process has a limited effect on the wall thickness at the top or bottom of

the bend cross section. Consistent wall thickness values for circumferential position 1

may therefore be applied at each of the bend positions without a great deviation from

plant data. Note that in the industrial pipe bend data provided to produce figure 6.2

included the results of NDT surveys on several pipe bends. Some surveys were more

extensive than others however, therefore assumed profiles have been taken from surveys

that measured wall thicknesses at 16 circumferential positions. Surveys that used 4

measurement points are included for comparison.

System loading is clearly specific to a given power station layout. For example,
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primary system stresses which are associated with the self-weight of the pipe work will

be dependent on hanger arrangement108. Additional system stresses may arise due

to thermal expansion; however the global system constraint will also cause a complex

application of these loads. The combination of these stress sources is very complex and

strongly depends on the constraint imposed by a specific pipe system. For simplicity,

system loads have been neglected from this study and pipe bends will be assumed to be

subjected to internal pressure only.

Figure 6.2: Example of the variation of normalised wall thickness with circumferential
position (see figure 6.1 (b)) at a specific bend position angle (ϕ).

6.3.3 Definition of Parameters for Empirical Stress Functions

Industrial data indicates several important trends which may be exploited to describe a

pipe bend geometry. For example, if the points of maximum variation from the straight

pipe wall thickness (i.e. the intrados (ThIn(ϕ)) and extrados (ThEX(ϕ)) wall thicknesses,

circumferential positions 13 and 5 respectively, see figure 6.1 (b)) at each bend position

(see figure 6.1 (a)) are normalised with respect to the average (or nominal) wall thickness

(ThNOM(ϕ)), plots similar to figure 6.3 may be produced. Note that all three parameters

are functions of the bend position angle (ϕ). The intrados and extrados factors (In(ϕ)

and Ex(ϕ), respectively) may therefore be defined by equation (6.1). It can be seen from

figure 6.3 that the variations in In(ϕ) and Ex(ϕ) along the bend appear to be related

(for example, an increase in In(ϕ) tends to result in a decrease in Ex(ϕ) at the same

bend position). It is a valid deduction therefore that volume transfer during the bending

process occurs almost in plane, giving rise to the constraint equation (6.2), defining

the relationship between In(ϕ) and Ex(ϕ). The values of the intrados and extrados

229



factors are generally not symmetric about the crown of the bend (bend position C in

figure 6.1). Symmetry is often assumed in this plane in the cases where 3D models are

produced120,132,135,200. Inspection of industrial data however indicates that this may

be unrealistic. Taking into account the fact that the fluctuations in the two factors are

far greater in bend positions A − C than C − E, it is proposed that a symmetry plane

at bend position C is suitable only if the geometry described by the factors at bend

positions A − C is applied to the model. In this way, the worst case (i.e. with greatest

variation) is modelled, returning a greater estimate of the peak rupture stress than if the

nearer uniform geometry of bend positions C − E were applied. It is worth pointing

out that, although 5 data points seems sparse for data fitting in figures 6.3 and 6.4,

this is representative of the frequency used in industry during routine non-destructive

evaluations. Ideally, a greater sampling frequency would be implemented on bends

which are a concern to operators. If the plane of symmetry at bend position C is adopted

in the manner described above, along with the plane of symmetry in the bending plane

described in figure 2.37, only a quarter of the pipe bend needs to be modelled in FEA.

Computing time both in terms of running the analysis and in initially producing the

component model can therefore be minimised. In the analyses performed in the present

chapter quarter models have been implemented; each case representing the greatest

variation in In(ϕ) and Ex(ϕ).

In(ϕ) =
ThIn(ϕ)

ThNOM(ϕ)

Ex(ϕ) =
ThEx(ϕ)

ThNOM(ϕ)

(6.1)

In(ϕ) ≈ 2 − Ex(ϕ) (6.2)

Turning attention to the variations in the average wall thickness (ThNOM(ϕ), see

figure 6.4) around the bend, similar trends may be observed as with In(ϕ) in figure 6.3.

Maximum fluctuations can be seen at bend positions A − C, which agrees with the

quarter model assumption.

Using the above, the wall thickness variation in a pipe bend may be dimensionally

characterised by 2 factors (In(ϕ = 0) and ThNOM(ϕ = 0)), the constraint equation (6.2)

(dictating that Ex(ϕ = 0) may be determined from In(ϕ = 0) or vice versa) and two

characteristic equations that describe how In(ϕ) and ThNOM(ϕ) vary with the bend

position angle. A range of pipe bends may be considered by defining practical limits

for In(ϕ = 0) and ThNOM(ϕ = 0) and then performing FEA simulations for every

permutation (assuming a suitable number of levels for the factors In(ϕ = 0) and

ThNOM(ϕ = 0)). Peak rupture stress surfaces can then be established for a particular

material (in this study defined by the stress exponent, n, see figure 6.5). Once these

surfaces have been established approximate parametric equations could be developed

to fit the surfaces, allowing for interpolation in the tested geometry and material ranges.
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By way of example, the characterisation and systematic study method described above

has been applied to industrial data for Main Steam and Hot Reheat type pipe bends.

Figure 6.3: Variations of In(ϕ) and Ex(ϕ) with bend position for a Main Steam type of
pipe bend geometry.

Figure 6.4: Variations of ThNOM(ϕ) with bend position for Main Steam type of pipe
bend geometry.
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α = CONSTANT

Dim 2Dim 1

σ̂R

n = n1

n = n2

Figure 6.5: Illustration of peak steady-state rupture stress (σ̂R) surfaces for two different
stress exponent values (n1 and n2). Note that the surfaces are dependent on the dimen-
sional factors (Dim 1 and Dim 2, equivalent to In(ϕ = 0) and ThNOM(ϕ = 0)) and that,
for a given set of surfaces, α is assumed constant.

6.4 Finite Element Modelling

6.5 Methodology

As justified in section 2.4.1, a 3D quarter model can be used to represent the complexity

of a pipe bend (an example mesh is presented in figure 6.6). Planes of symmetry were

assumed in the bending plane and at bend position C (see figure 6.1). Straight lengths

of pipe were attached to the end of the bend section in the model. These were made

long enough (18m, found through a sub-investigation) to ensure that the conditions at

the straight/bend interface were modelled correctly while not unnecessarily increasing

computing time137. Note that in figure 6.6 the straight section is truncated in order

to show the mesh density in the bend section with greater clarity. In the straight

pipe section, a uniform wall thickness is assumed. A full description of this model is

presented in section 2.4.1.

As the weld section is not within the scope of the present work, a 2m linear trans-

ition region is included in the model to provide an interface between the bend (with

variable cross section dimensions) and the straight (with uniform circular cross section

dimensions) without a step change in dimensions (which would represent a stress con-

centration). It is the intention of the present work to highlight the effects of dimensional

variation on the steady-state stress distribution of pipe bends. The inclusion of material
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and geometry discontinuities presented by a weldment will greatly complicate the

analyses and potentially distort the deformation characteristics of the bend. Excluding

the weld will not affect the characterisation method defined in the present work. A finer

mesh density was used in the transition region (see figure 6.6), reducing the possibility

of convergence errors between the finer bend mesh and the coarser straight mesh. A

sparse mesh is utilised in the straight pipe section in order to reduce the computational

time. A minimum of three elements were used over the wall thickness.

The internal pressure was applied as a distributed load on the inside surface of

the pipe and bend. The magnitude of the internal pressure was chosen to ensure

that the average mean diameter hoop stresses (σMDH) for both pipe bend types was

approximately 30MPa. This is well below the typical yield stress for commercial steels,

validating the use of the elastic-creep analyses performed (elastic steps are included

to ramp up the loads before the creep step). To model the constraint of the rest of the

pipe, the free end of the bend section is limited to deflections in the XY plane139 (see

figure 6.6) and the bend plane surface (the XZ plane in figure 6.6) is restricted not to

move in the Y direction. All elements are solid reduced integration quadratic hexahedral

type (C3D20R in ABAQUS132,191). Shell elements, although not as computationally time

consuming as solid elements, can exhibit large errors for thick sections134 therefore

their use is discouraged. Deformations are assumed to be small meaning that the cross

sectional stiffness properties will not change by a significant amount. Geometric non-

linearity (GNL) is, therefore, not used in the analyses132,193. This assumption has been

verified in the work of Hyde et. al.193. Discrepancies between geometric linear (GL)

and GNL analyses only become significant in the tertiary creep region (i.e. towards

failure). As the present work concerns itself with steady-state stress distributions, GNL

has been neglected in order to manage computational times. Final deflections are small

compared to the structure dimensions, therefore cross sectional properties are retained

and stiffness matrices do not need to be re-evaluated after each time step137.

X

Y

Z

Figure 6.6: Example of a 3D quarter model FEA mesh (truncated to remove straight pipe
section) for a Main Steam type of pipe bend.
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6.6 Systematic Study and Results

A least squares fitting procedures using a quadratic function was implemented in

order to determine the characteristic equations that describe the variation of In(ϕ) and

ThNOM(ϕ) with bend position angle. Examples of these characteristic equations for the

Main Steam and Hot Reheat pipe bend types are given in equations (6.3) and (6.4) and

equations (6.5) and (6.6), respectively. Note that the bend position angle, ϕ, is given in

terms of radians.

In(ϕ) = 0.1812ϕ2 − 0.1553ϕ + In(ϕ = 0) (6.3)

ThNOM(ϕ) = −2.533ϕ2 + 1.6154ϕ + ThNOM(ϕ = 0) (6.4)

In(ϕ) = 0.1649ϕ2 − 0.1172ϕ + In(ϕ = 0) (6.5)

ThNOM(ϕ) = 2.27ϕ2 − 4.12ϕ + ThNOM(ϕ = 0) (6.6)

Industrial data also yields upper and lower limits for the two factors. For the Main

Steam pipe geometry type, 1.033 ≤ In(ϕ = 0) ≤ 1.06 and 60mm ≤ ThNOM(ϕ =

0) ≤ 75mm. For the Hot Reheat type of pipe geometry, 1.021 ≤ In(ϕ = 0) ≤ 1.05

and 20mm ≤ ThNOM(ϕ = 0) ≤ 27.5mm. Four levels were chosen for each of the two

factors, giving rise to a total of 16 permutations for each pipe bend type. According

to Calladine197,198 (see figure 5.13), an approximate linear relationship may be noticed

between the peak stationary state stress and 1/n (inverse of the stress exponent material

constant from the Norton power law), providing that the peak stress point in the

structure does not vary with 1/n. To exploit this relationship later for the interpolation

of the stress function, several stress exponent (n in Norton’s Law) values were applied

to each geometry definition case.

In the interest of clarity, please note that the arguments of equations (6.4) and (6.6) are

not normalised to any reference value (i.e. ThNOM(ϕ) and ThNOM(ϕ = 0) are absolute

dimension values). Equations (6.3) to (6.6) were used to generate pipe bends for the

systematic study (i.e. for a range of absolute ThNOM(ϕ = 0) values and In(ϕ = 0)

intrados factor values).

A typical value of n for P91 (a commonly used power plant material) is 8.4667 and

hence this was used in the analyses. To extend the applicability of the work, values of

4 and 6 were also used as they fall in the practical range of n. The material parameter

n is not only dependent on the specific material composition but also temperature201.

Therefore, the n range used in the parametric equation allows for the interpretation of

many of the materials and operating conditions observed in power plants. Results of

this study can be seen in tables 6.1 and 6.2. Peak rupture stresses have been normalised
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with respect to the internal pressure. These steady-state creep stresses should have an

approximately linear relationship to the internal pressure loading (if internal pressure

is the only load applied, see equation (2.104)), therefore normalising the results in this

way provides a method for engineers to quickly determine peak rupture stresses for

a range of steam pressures. An example contour plot, showing the peak normalised

rupture stress for α = 0.3, is given in figure 6.7. In all cases, the peak values of the

steady-state rupture stresses occur in the bend section at the intrados (at a bend position

angle of approximately 24◦; corresponding to the point of greatest variation between

the intrados and extrados wall thicknesses).

Table 6.1: Normalised FEA results for Main Steam pipe bend type study.
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MS_1 60 1.033 0.967 2.31 2.96 3.69
MS_2 65 1.033 0.967 2.07 2.89 3.50
MS_3 70 1.033 0.967 1.87 2.78 3.24
MS_4 75 1.033 0.967 1.70 2.67 3.01
MS_5 60 1.04 0.96 2.29 3.01 3.78
MS_6 65 1.04 0.96 2.06 2.88 3.63
MS_7 70 1.04 0.96 1.86 2.77 3.21
MS_8 75 1.04 0.96 1.69 2.66 2.99
MS_9 60 1.05 0.95 2.27 2.99 3.75
MS_10 65 1.05 0.95 2.04 2.87 3.44
MS_11 70 1.05 0.95 1.84 2.77 3.19
MS_12 75 1.05 0.95 1.67 2.66 2.98
MS_13 60 1.06 0.94 2.26 3.01 3.76
MS_14 65 1.06 0.94 2.02 2.89 3.46
MS_15 70 1.06 0.94 1.83 2.78 3.22
MS_16 75 1.06 0.94 1.66 2.68 3.01
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Table 6.2: Normalised FEA results for Hot Reheat pipe bend type study.
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HR_1 20 1.021 0.979 14.93 22.87 25.46
HR_2 22.5 1.021 0.979 12.94 20.40 21.51
HR_3 25 1.021 0.979 11.38 17.41 18.50
HR_4 27.5 1.021 0.979 10.15 15.64 16.17
HR_5 20 1.03 0.97 14.80 20.83 25.22
HR_6 22.5 1.03 0.97 12.81 19.09 21.25
HR_7 25 1.03 0.97 11.27 17.25 18.28
HR_8 27.5 1.03 0.97 10.06 15.48 15.98
HR_9 20 1.04 0.96 14.66 20.70 24.86
HR_10 22.5 1.04 0.96 12.68 18.94 20.97
HR_11 25 1.04 0.96 11.16 17.08 18.04
HR_12 27.5 1.04 0.96 9.96 15.31 15.77
HR_13 20 1.05 0.95 14.51 20.58 24.54
HR_14 22.5 1.05 0.95 12.34 18.65 20.47
HR_15 25 1.05 0.95 11.05 16.91 17.81
HR_16 27.5 1.05 0.95 9.86 15.13 15.56
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σ̂R

Pi
= 2.96

Figure 6.7: Example contour plot showing peak normalised rupture stress for case MS_1
where n = 6 and α = 0.3. Note the peak stress is found at θ = 0◦ (the intrados) and
ϕ = 24◦.

6.7 Stress Functions

6.7.1 Fitting Procedure

Multiple potential forms of the parametric function to describe the rupture stress sur-

face were evaluated and compared through the use of a purpose written MATLAB

script. This uses the MATLAB optimisation toolbox (more specifically, the least squares

optimisation function LSQNONLIN202) to determine values for the coefficients used

in the parametric equations. Each form of the parametric equation was a function of

the two parameters (ThNOM(ϕ = 0) and In(ϕ = 0)) and contained multiple fitting

constants (which were to be determined through optimisation). After several iterations,

the parametric function shown in equation (6.7) was adopted. Note that A and B are the

fitting constants, which are valid for a specific peak steady-state rupture stress surface.

Using the steady-state ruptures stresses shown in tables 6.1 and 6.2 for Hot Reheat and

Main Steam pipe bends, values for A and B were determined based on each rupture

stress surface (see table 6.3, where r2 is the coefficient of determination and is defined

by equation (3.24)).

σ̂R = A cos
(

In(ϕ = 0)2 + ThNOM(ϕ = 0)2)+ B (6.7)
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Table 6.3: Fitted A and B value for use with equation (6.7) and coefficient of determina-
tion (r2) values for the tested n values.

Data Set A (MPa) B (MPa) r2

Main Steam n = 8.46 23.6832 46.5652 0.9976
Main Steam n = 6 8.6351 49.7642 0.9498
Main Steam n = 4 27.4350 70.7222 0.9619

Hot Reheat n = 8.46 28.1744 57.6642 0.9956
Hot Reheat n = 6 34.8817 80.6423 0.9383
Hot Reheat n = 4 54.9203 101.3772 0.9962

6.7.2 Empirical Steady-State Rupture Stress Function

Fitting coefficients (A and B) for the parametric equation (6.7) have been determined

for a range of n values for the two geometry types (Hot Reheat and Main Steam).

Using the n values and specific ThNOM(ϕ = 0) and In(ϕ = 0) values that lie in the

calculated range, stress surfaces defined by the parametric equation may be compared

to those obtained directly from FEA. Additionally the quality of the fitting (between

parametric and FE results) may also be established through inspection of the coefficient

of determinations (r2) for each stress surface (note that n is constant for a specific stress

surface)166. Generally, the fitting quality is good, indicated by the high coefficient of

determination values which were all greater than 0.93. A graphical comparison between

the FEA and parametric results can be seen in figures 6.8 and 6.9 for the Main Steam

and Hot Reheat pipe bend types, respectively.

Trends, based on the variation of the fitting constants (A and B) with the stress

exponent (n) value, could enable interpolation of results for any other n, In(ϕ = 0) and

ThNOM(ϕ = 0) values in the range. Such trends are presented in figures 6.10 and 6.11

for the Main Steam and Hot Reheat pipe bend types, respectively. Functions fitted to

these plots allow for A and B values to be approximated for any intermediate n value.

To explore the interpolation capability of the parametric equations, additional meshes

were created (with geometry factors falling in the centre of the tested geometry factor

ranges) and submitted for analysis. It is worth pointing out that, given the variation in

A in figure 6.10 (a) and the lack of a guarantee of converging on a global minimum in

the optimisation procedure, interpolation of fitting constant values may not be advisable

without a greater frequency of analyses (i.e. more tested n values). The brief examination

given here serves to demonstrate what may be achieved with a more limited amount of

data. Factors of In(ϕ = 0) equal to 1.045 and ThNOM(ϕ = 0) equal to 67.5 were used

for the Main Steam analyses and In(ϕ = 0) equal to 1.1875 and ThNOM(ϕ = 0) equal to

23.75 were used for the Hot Reheat analyses. Three stress exponent values were chosen,

two of which fell between the stress exponents tested (7 and 5, testing the interpolation

capability for variations in n) and one at a tested value (6, effectively demonstrating the

interpolation quality due to geometric changes alone). These conditions gave rise to a

total of six testing scenarios (three for each pipe bend type). Results based on FE and
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parametric equation analysis (with the percentage difference between the two) for the

three stress exponent values are presented in tables 6.4 to 6.6. Note that peak rupture

stresses are again normalised with respect to internal pressure.

Table 6.4: Results of interpolation study using both FEA and parametric equation
methods for n = 7 (peak stresses are normalised with respect to internal pressure).
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Table 6.5: Results of interpolation study using both FEA and parametric equation
methods for n = 6 (peak stresses are normalised with respect to internal pressure).
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Table 6.6: Results of interpolation study using both FEA and parametric equation
methods for n = 5 (peak stresses are normalised with respect to internal pressure).
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Figure 6.8: Peak rupture stress surfaces and associated parametric approximations for a
Main Steam type pipe bend.
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Figure 6.9: Peak rupture stress surfaces and associated parametric approximations for a
Hot Reheat type pipe bend.
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(a)

(b)

Figure 6.10: Variations of (a) the A coefficient value and (b) the B coefficient value, with
stress exponent (n), for a Main Steam type of pipe bend.
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(a)

(b)

Figure 6.11: Variations of (a) the A coefficient value and (b) the B coefficient value, with
stress exponent (n), for a Hot Reheat type of pipe bend.

6.7.3 Effect of α Value

As mentioned in the introduction, an α value of 0.3 was chosen for use to calculate σR

as it is a typical value for commercial steels used in power plant. In practice however,

users may wish to analyse pipe bends made from materials with alternative α values.

Also, whereas other material constants may be determined from uniaxial testing, the

determination of α requires multiaxial test data and FEA analysis192 (see section 4.2.5).

This can make α a difficult constant to determine, so users may wish to determine the

upper and lower limits of a peak rupture stress for a practical α value range. To extend

the scope of this research, a study into the effect of the α value on the predicted peak

rupture stress was conducted for several of the meshes from the systematic studies (see

tables 6.1 and 6.2). Models representing the limits of the geometry scales were chosen

(MS_4, MS_13, HR_4 and HR_13) and along with the extreme stress exponent values,
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(n = 4 and n = 8.46). By using the upper and lower limit values, it is expected that the

most extreme effects of varying α will be realised. The results of this study are presented

in table 6.7, with plots showing the relationship between σ̂R/Pi and α for the Main Steam

and Hot Reheat pipe bend types in figures 6.12 and 6.13, respectively.

Table 6.7: Variations of normalised steady state peak rupture stress (σ̂R/Pi) with α.

α 0 0.3 0.7 1
MS_4 n = 4 3.18 3.01 2.82 2.69

MS_4 n = 8.46 1.87 1.70 1.80 1.88
MS_13 n = 4 3.90 3.76 3.61 3.52

MS_13 n = 8.46 2.47 2.26 2.45 2.48
HR_4 n = 4 15.82 16.17 16.74 17.22

HR_4 n = 8.46 6.69 10.15 10.41 10.97
HR_13 n = 4 23.86 24.54 25.61 26.49

HR_13 n = 8.46 14.23 14.51 15.04 16.44

(a)

Figure 6.12: Variations of peak steady-state rupture stress with α for the Main Steam
type of pipe bend geometry.
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(a)

Figure 6.13: Variations of peak steady-state rupture stress with α for the Hot Reheat type
of pipe bend geometry.

6.8 A Novel Pipe Bend Modelling Method

6.8.1 Requirement

The inclusion of variable wall thicknesses in 3D FEA pipe bend models can be complex

and can require a great deal of time to create meshes manually. Additionally, 3D model

analysis will take considerably longer to run than more simplistic 2D analyses. The

more representative constraint imposed by the variable geometry case however allows

for more accurate predictions of the stress state in these critical regions, complementing

existing analysis methods. In the well-known R5 procedure for example, approximations

of the elastic stress state in the structure to be analysed are often required to make

preliminary evaluations of the likelihood of several failure mechanisms, such as creep

fatigue interaction or crack initiation and growth125,126,203. In this section, given a bend

centreline, 2D cross-sections are created that correspond to several planes of a 3D model.

By analysing the 2D models individually, an averaging procedure can be implemented

to allow for interpolation between the planes. In this way, the full 3D behaviour is

“mapped” by the multiple 2D results. This clearly assumes a limited dependence on

constraint between the considered planes but, if verified, this procedure would allow

complex 3D models of pipe bends to be approximated quickly using 2D results. A

description of the 2D axi-symmetric model can be seen in figure 4.10. Variable bend

angles (30◦, 60◦ and 90◦) have also been analysed in the present section, extending the
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work’s applicability.

6.8.2 Interpolation Method

Procedure

An interpolation procedure based on 2D axi-symmetric models is illustrated in fig-

ure 6.14. Planes are drawn through the 3D model at defined bend position angles (ϕ). In

the case of a 90◦ pipe bend, these bend position angles are equally spaced, at 0◦, 11.25◦,

22.5◦, 33.75◦ and 45◦ (planes Á − É, respectively, in figure 6.14). The cross sections

intercepted by these planes are then recreated in 2D models, with planar variations in

wall thickness values being represented in the 2D models. It is expected that, although

the overall constraint of the pipe bend is not represented accurately in the 2D models, an

approximation of the stress distribution can be achieved by interpolating over interme-

diate bend position angles between the 2D models. Note that all of the 2D meshes are

constructed to ensure that their centrelines coincide with the centreline in the 3D model.

The resolution (i.e. the spacing between planes used to construct the 2D meshes from

the 3D model) is not considered in the present chapter. 5 planes have been assumed to

be sufficient in order to describe the 3D pipe bend variation.

Á

B́

Ć

D́

É

Figure 6.14: Illustration of 2D to 3D interpolation procedure, showing the 5 cross section
locations (Á − É) represented by 2D axi-symmetric models.

Dimensions of analysed pipe bends

Characteristic equations have been derived for Main Steam and Hot Reheat pipe bend

types (shown in the previous sections). These take the general forms shown in equa-
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tions (6.8) and (6.9). The coefficients for these equations (a1, a2, b1 and b2) are determined

by observing trends in industrial data. In this sub-investigation, several pipe bends

will be considered, therefore geometry factors (In(ϕ = 0) and ThNOM(ϕ = 0), see

section 6.3.3) have been chosen so that the resultant dimensions would be in a realistic

range. Data on wall thickness variations at the pipe’s intrados and extrados is limited.

This data is used to determine the constants a1 and a2. Due to limited industrial data,

values for a1 and a2 are preserved from equations (6.3) and (6.5). Alternative average

wall thickness values (ThNOM(ϕ)) are however available, therefore alternative b1 and b2

values may be calculated. This has been done to highlight the wider applicability of the

characterisation method. A summary of the coefficients used to define the geometry

for each bend model can be found in table 6.8. In any case, pipe bend geometries are

realistic and exhibit dimension variation. Wall thicknesses (Th) for the Main Steam and

Hot Reheat pipes are approximately 60mm and 20mm, respectively. Outside diameters

(DO) for the Main Steam and Hot Reheat pipes are approximately 350mm and 490mm,

respectively. These approximate values have been assumed for any straight pipe section

attached to the bend region in the 3D models.

In(ϕ) = a1ϕ2 + a2ϕ + In(ϕ = 0) (6.8)

ThNOM(ϕ) = b1 ϕ2 + b2ϕ + ThNOM(ϕ = 0) (6.9)

Table 6.8: Summary of coefficients used to define the pipe bend geometry for the 2D
stress interpolation investigation.

Identifier a1 a2 b1 b2 In(ϕ = 0) ThNOM(ϕ = 0) (mm)
HR_A 0.1649 -0.1172 0.0956 -0.1735 1 20.42
HR_B 0.1649 -0.1172 0.0956 -0.1735 1 21
HR_C 0.1649 -0.1172 0.0956 -0.1735 1.375 20.42
MS_A 0.1812 -0.1553 0.3748 -0.3 1 61.98
MS_B 0.1812 -0.1553 -0.0375 0.0239 1 61.98

6.8.3 Results

Uniform Cross Section Pipe Bends

Before investigating the effects of the proposed interpolation procedure when applied

to detailed dimensioned pipe bends, it is important to verify that the idealized 2D axi-

symmetric approximation has the capability to represent a 3D pipe bend with a uniform

cross section. This was the original intention for the 2D approximation139. Analyses

where conducted using a Norton’s Law material model (A = 6.599x10−16MPa1/n.hr and

n = 6.108). Once a steady-state condition (i.e. after transient stress redistribution has

completed) was achieved, the rupture stress for the structure (either the 2D or 3D pipe
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bend model) could be calculated using σ̂R = ασ1 +(1− α)σEQ. A value of 0.3 was chosen

for α, the multiaxial material constant. This is typical of industrial steels used for power

generation. Although the 2D axi-symmetric approximation was originally intended

for use with 90◦ pipe bends (given that the bend/straight interface region makes up

a minimum amount of the bend section, thus reducing its influence on the rest of the

structure), comparisons have also been drawn to uniform pipe bends with 60◦ and 30◦

bend angles (see figures 6.15 and 6.16). Generally, the 2D axi-symmetric approximation

predicts the stresses in the 3D model very well. Typical percentage differences in the

middle section of the pipe bend are less than 1% (approximately 0.7% for the Main

Steam type and 0.6% for the Hot Reheat type). Nearer the bend/straight interface, a

discrepancy is observed (percentage differences are typically in the region of 2-3%). This

is due to the difference in constraint conditions in the 2D and 3D models. In the centre

region of the pipe bend, the uniform 2D model appears to estimate the 3D model well

irrespective of bend angle. For the thin walled pipe bend (Hot Reheat type), percentage

differences between the 2D and 3D method stress values increase with decreasing bend

angle (an average percentage difference of 0.36% is observed for the 90◦ bend but this

increases to 1.39% for the 30◦ bend). Percentage differences in the thick walled bend

(Main Steam type) are consistent, irrespective of bend angle (approximately 0.77%). In

any case, the difference between the stress fields predicted by the full 3D uniform pipe

bend analysis and the idealised 2D axi-symmetric approximation is minimal.
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(a)

(b)

(c)

Figure 6.15: Plots of normalized local peak rupture stresses versus bend angle positions
for (a) uniform 90◦ pipe bend, Main Steam type, (b) uniform 60◦ pipe bend, Main Steam
type, (c) uniform 30◦ pipe bend, Main Steam type.
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(a)

(b)

(c)

Figure 6.16: Plots of normalized local peak rupture stresses versus bend angle positions
for (a) uniform 90◦ pipe bend, Hot Reheat type, (b) uniform 60◦ pipe bend, Hot Reheat
type, (c) uniform 30◦ pipe bend, Hot Reheat type.
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Variable Cross Section Dimension 90◦ Pipe Bends

The interpolation procedure has been applied to several 90◦ pipe bends with variable

cross section geometry, representing the manufacturing induced dimension variation

observed in industrial components. Analyses were conducted using the same material

as the uniform study (A = 6.599x10−16MPa1/n.hr and n = 6.108). Plots of the peak

rupture stress (σ̂R, normalized to the internal pressure Pi) versus bend angle position are

presented in figures 6.17 and 6.18 for the 5 pipe bend geometries. Peak rupture stress

values for each of the 2D meshes are plotted against bend angle position (determined

by the orientation of the plane used to construct the 2D mesh from the 3D model, see

figure 6.14) under the data set “2D”. Polynomial fitting is applied to these results. An

interpolated maximum can then be found from the polynomial (data set “2D PEAK”).

Using the 3D model, a peak rupture stress can be determined with associated bend

position angle (data set “3D PEAK”). The planes used to create the 2D models can be

applied to the 3D mesh and local, planar peak rupture stresses can be found. These

localized peak rupture stresses can then be plotted verses bend angle position (data

set “3D”) and compared to the data set “2D”. By considering the four data sets, the

ability of the 2D axi-symmetric interpolation procedure to predict the peak and general

rupture stress state (both in terms of magnitude and position) of a 3D model can be

determined. An example of the contour plots, for both 3D and 2D meshes, used to verify

the interpolation procedure for rupture stress determination can be seen in figure 6.19

for the thin walled model HR_A. The ability of the interpolation procedure to predict the

stress state around the bend is verified for thick walled bends (MS_A) by comparison of

the von Mises stress contour plots shown in figure 6.20.
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(a)

(b)

(c)

Figure 6.17: Plots of normalized local peak rupture stresses versus bend angle positions
for the pipe bend models (a) HR_A, (b) HR_B, (c) HR_C.
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(a)

(b)

Figure 6.18: Plots of normalized local peak rupture stresses versus bend angle positions
for the pipe bend models (a) MS_A and (b) MS_B.
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Á

Ć

B́

D́ É

Figure 6.19: Example contour plots of normalized rupture stress the proposed 2D
interpolation procedure (shown for the geometry HR_A, α = 0.3, n = 6.108).

254



Extrados

Á

Intrados
(a)

Extrados

Ć

Intrados

(b)

Extrados

É

Intrados
(c)

Extrados

Á

Intrados
(d)

Ć

Extrados Intrados
(e)

É

Extrados Intrados
(f)

Figure 6.20: Equivalent von Mises stress (normalized to internal pressure) contour plots
for the model MS_A (α = 0.3, n = 6.108), taken at cross section planes defined in
figure 6.14. Both 3D ((a), (b) and (c)) and 2D ((d), (e) and (f)) meshes are shown.

Several design codes are used in industry to account for the dimension variation,

the relevant example used in the UK at present being BS EN 13480128. Tolerances for the

intrados and extrados wall thicknesses (eIn/Ex) are derived based on the allowable wall

thickness for a straight pipe section (e, see equation (6.10)). The correction of the straight

pipe wall thickness is based on the mean bend radius (RM) of the pipe bend and outside

diameter of the pipe (DO). Using the assumed straight pipe dimensions, tolerances

can be established for the two bend types considered in the present chapter. 3D and

2D meshes can then be generated that represent a design case for the two pipe bend

types considered. Clearly, equation (6.10) will not estimate any variation in intrados
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and extrados wall thickness with bend angle position. This is observed in industrial

data, as shown by equations (6.8) and (6.9). To generate FEA models from the design

data therefore, it is assumed that the tolerance values for the intrados and extrados wall

thicknesses (eIn/Ex) are applied around the pipe bend (i.e the wall thickness is consistent

at the intrados and extrados but neither of these values are equal to the wall thickness

in the straight pipe section). FEA conducted on the design case models (see figure 6.21)

highlights the potential importance of accurately determining the dimensions around a

pipe bend (as opposed to assuming design conditions). From the 3D models, it is clear

that peak ruptures stress positions are predicted at the bend/straight interface for the

design case. This is not always the case in the more realistic models. Rupture stress

values are the same order of magnitude; however percentage differences vary between

5% and 25% for the Hot Reheat type and 1% and 7% for the Main Steam Type. Using the

reference rupture stress method for life prediction138,139,192, it is noted that the reference

rupture stress is raised to the power χ (see equation (5.2)). Relatively small variations in

the reference rupture stress can therefore result in large differences in predicted failure

times. This study therefore highlights the importance of full dimension characterisation

of pipe bends when more accurate life estimations are required.

eIn/Ex = e
(RM/DO)∓ 0.25
(RM/DO)∓ 0.5

(6.10)
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(a)

(b)

Figure 6.21: Plots of normalized local peak rupture stresses versus bend angle position
for (a) Hot Reheat design bend and (b) Main Steam design bend.

Effect of Bend Angle

As mentioned previously a 90◦ pipe bend angle represents an upper limit for most

industrial applications, displaying the greatest degree of dimensional variation. 90◦

pipe bends are also the most common in power plants. Despite this, it is important

to verify that the method described above can be applied to bend angles less than

90◦. To investigate this effect, 30◦ and 60◦ bend angle hot reheat pipe bends were

considered. Characteristic equations were assumed that represent the variation of

ThNOM(ϕ = 0) and In(ϕ = 0) in the relevant bend angle range. For this study therefore,

the characteristic equations and geometry factors for the bends HR_A and MS_A are

maintained when creating any of the variable bend angle models. The geometry of a 30◦

model therefore is identical to the first 30◦’s of the 60◦ and 90◦ models. This assumption
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is required as there is no industrial data available at present for bend angles other than

90◦. Given the suspected planar transfer of material during the bending process, this

assumption is considered reasonable. The 5 planes used to construct the 2D models were

equally spaced in all 3D models regardless of bend angle. As before, quarter 3D models

were used. Plots of normalized rupture stress can be seen in figures 6.22 and 6.23. The

same naming convention used in the previous result plots is applied. As with previous

examples, the location and magnitude of the peak rupture stress in the complex 3D

model is generally well predicted by the 2D axi-symmetric method. Away from the

bend/straight interface region, the general stress state is also well approximated, with

percentage differences typically less than 1% for both bend types.
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(a)

(b)

(c)

Figure 6.22: Plots of normalized local peak rupture stress versus bend angle position
for the models (a) MS_A 90◦ pipe bend, (b) MS_A 60◦ pipe bend and (c) MS_A 30◦ pipe
bend.
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(a)

(b)

(c)

Figure 6.23: Plots of normalized local peak rupture stress versus bend angle position for
the models (a) HR_A 90◦ pipe bend, (b) HR_A 60◦ pipe bend and (c) HR_A 30◦ pipe
bend.
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Effect of Stress Exponent (n) Value

The dependence of a steady-state stress value in a structure on the material’s stress

exponent value (n) has been proposed previously by Calladine197. For a point in a

structure operating under steady-state creep, a linear relationship may be used between

stress and the inverse of the stress exponent (1/n). The stress exponent is therefore a

critical parameter in steady-state creep analysis. The ability of the 2D axi-symmetric

interpolation method to predict the response of a 3D model should be verified therefore

for a range of exponent values. The stress exponent will be dependent on material,

stress range and operating temperature. The same material may exhibit a great variance

in stress exponent values between heats196. Analysing a range of stress exponent values

therefore gives confidence for the interpolation method to be extended to alternative ma-

terials. Stress exponents of 4, 6, 8 and 10 were applied to the models HR_A (figure 6.24)

and MS_A (figure 6.25).

(a) (b)

(c) (d)

Figure 6.24: Comparison of rupture stresses predicted by 2D axi-symmetric and 3D
models for a Hot Reheat type pipe bend (HR_A), with stress exponent values of (a)
n = 4, (b) n = 6.108, (c) n = 8 and (d) n = 10.
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(a) (b)

(c) (d)

Figure 6.25: Comparison of rupture stresses predicted by 2D axi-symmetric and 3D
models for a Main Steam type pipe bend (MS_A), with stress exponent values of (a)
n = 4, (b) n = 6.108, (c) n = 8 and (d) n = 10.

Effect of Multiaxial Material Constant (α) Value

The contributions from the maximum principal stress and equivalent von Mises stress

in the rupture stress is controlled by the multiaxial material constant (α). It is foreseeable

therefore that the magnitude and location of the peak rupture stress could be influenced

by the value of α. Two geometries that have a peak rupture stress in the bend section

(as opposed to the bend/straight interface or the crown of the bend) for the previous

case (where α = 0.3) where analysed again using variable α values. Multiaxial material

constant values of 0, 0.3, 0.7 and 1 were applied to the models HR_A (figure 6.26) and

MS_A (figure 6.27).
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(a) (b)

(c) (d)

Figure 6.26: Comparison of rupture stresses predicted by 2D axi-symmetric and 3D
models for a Hot Reheat type pipe bend (HR_A), with multiaxial material constant
values of (a) α = 0, (b) α = 0.3, (c) α = 0.7 and (d) α = 1.
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(a) (b)

(c) (d)

Figure 6.27: Comparison of rupture stresses predicted by 2D axi-symmetric and 3D
models for a Main Steam type pipe bend (MS_A), with multiaxial material constant
values of (a) α = 0, (b) α = 0.3, (c) α = 0.7 and (d) α = 1.

6.9 Discussion and Conclusions

Pipe bends exhibit significant variations in cross section dimensions (predominately

induced during the manufacturing process). The wall thicknesses vary circumferentially

at specific bend position angles; the degree of variation is dependent upon the bend

angle. A parametric method has been developed which allows the complexity of a

specific type of pipe bend (such as a Main Steam pipe bend with a 2m bend radius)

to be represented by only two factors (In(ϕ = 0) and ThNOM(ϕ = 0)) and related

characteristic equations. Other pipe bends of a similar type may also be characterised

by these two factor values (i.e. using the same characteristic equations). For example, if

one Main Steam pipe bend was fully characterised (geometry factors and characteristic

equations), additional Main Steam pipe bends with a similar bend radii and outside

diameters (as exist in industry) may also be defined using the same characteristic

equations but with different factor (In(ϕ = 0) and ThNOM(ϕ = 0)) values. This

procedure has been used for a systematic study of the peak steady-state rupture stresses

in pipe bends under internal pressure loading only. Parametric equations were then
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established using the afore mentioned geometry factors (In(ϕ = 0) and ThNOM(ϕ = 0))

to predict peak rupture stress magnitudes for a wide range of practical geometries and

stress exponents (n). Although alternative parametric equation forms could be proposed

to better fit the rupture stress surfaces shown in figures 6.8 and 6.9 and a greater number

of levels could be considered for the factors In(ϕ = 0) and ThNOM(ϕ = 0) in future

systematic studies, the present chapter establishes the framework for the procedure.

Stress functions for Hot Reheat pipe bends (figure 6.9) are found to be generally

smoother than those for their Main Steam counterparts (figure 6.8). In general the

stress function predicts these smoother surfaces with a higher accuracy (as shown by the

relative coefficient of determination, r2, values in table 6.3 and in the interpolation study).

In all cases however coefficients of determination are very high indicating a good quality

of fit (the lowest value is actually noted for the Hot Reheat type pipe study when n = 5).

If parametric equations similar to the ones derived in this work are to be used in industry,

it is critical that interpolation between geometric factors (In(ϕ = 0) and ThNOM(ϕ = 0))

and between material parameters (n and α) should return accurate results. Even between

different heats of the same material, stress exponent values may double in magnitude196.

Clearly, surfaces for every stress exponent or geometry factor cannot be produced.

Given the approximately linear relation which exists between the stress at a point in

a structure and 1/n (identified by Calladine197), it is reasonable to expected that the

stress surfaces shown in figures 6.8 and 6.9 for different (approximately equally spaced)

stress exponent values would adhere to this linearity. However, for both Hot Reheat

and Main Steam type pipe bend meshes, the distance in function space between the

n = 8.46 and n = 6.108 surfaces is far greater than that between the n = 6.108 and

n = 4 surfaces. This greater distance results in the reduced accuracy which occurs when

stresses are predicted for n = 7 as opposed to n = 5 in the interpolation study (see

table 6.4). Furthermore, it is noted that the surfaces in both pipe bend types for n = 6.108

and n = 4 converge as the factor ThNOM(ϕ = 0) is reduced. The constraint imposed by

the varying pipe cross section dimensions around the pipe bend is complex. Variations

in n cause different stress fields to be realised in the pipe bend. Given that the peak

rupture stress is dependent on both the maximum principal stress (σ1) and equivalent

von Mises stress (σEQ), the variation in stress state may result in different peak rupture

stress locations. The approximate linear relationship proposed by Calladine is only

applicable to stresses at the same position, with the same α value. It is worth noting

that, while the percentage differences in table 6.4 for n = 7 are high (most notably for

the Main Steam pipe bend geometry), this is most likely due to the larger distance over

which the parametric constants are interpolated. The relationships shown in figures 6.10

and 6.11 are estimated based on only three stress surfaces (shown in figures 6.8 and 6.9).

The relationship in the high stress exponent (n) region could be improved with more

stress surfaces in this region, thereby increasing the resolution.

Work by Sun et. al. suggests that (for straight pipe lengths at least) the peak rupture
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stresses will increase with α. However, the degree with which it varies is dependent on

the ratio of the wall thickness to the outside diameter192. Thin walled pipes generally

experience greater changes in the steady-state peak rupture stress with variations in α

than thick wall examples do. Similar behaviour can be seen in figure 6.13 for the Hot

Reheat pipe bend type. Main Steam pipe peak rupture stresses however decrease with α

(see figure 6.12). It can also be seen that in both of these figures, non-linear relationships

are found to exist between α and the peak rupture stress for n = 8.46. Contributions

from the maximum principal stress (σ1) and from the equivalent von Mises stress (σEQ)

are controlled by the material constant α when calculating the rupture stress (σR). The

magnitude (and in the case of the maximum principal stress, the direction) of σ1 and

σEQ are controlled by the geometry of the structure being analysed. In the case of pipe

bends, Hot Reheat type geometries give rise to greater σ1 values than σEQ, resulting

in increased rupture stress values with increased α values. The opposite may be true

for Main Steam type pipe geometries. Furthermore, the expected linear relationship

between peak rupture stress and α is only valid at the same point in a structure. In

the FEA study used in section 6.7.3, variations were observed in the exact locations

of peak rupture stresses for different α values (particularly in high n value cases). As

such, the non-linear behaviour observed in figures 6.12 and 6.13 may be the result of a

combination of multiple linear relationships for different points within the structure.

The present work requires a great deal of time to be invested in producing and

analysing the detailed 3D meshes for the systematic study. A methodology has been

established for creating the meshes in a consistent manner using a specially design

program (see section 7.3), however it is important to note some of these modelling

assumptions. In particular, great care is required when defining the inside surface of the

pipe bend. Internal surfaces at specific cross sections, where wall thickness variations

exist, may be created in CAE packages by defining the intrados and extrados wall

thicknesses, along with the nominal thickness at the peak of the bend cross section

(circumferential position 1 in figure 6.1 (b)). These points could then be connected using

a spline, however if these three points alone are used a parabola will be produced,

giving rise to sharp corners at the intrados and extrados, (plane XZ in figure 6.6).

Clearly, this is incorrect and would lead to spurious stress concentrations. However,

these concentrations can be removed by specifying the nominal thickness again at the

circumferential position 9, thus giving 4 points to define the spline. In the quarter model,

information at circumferential position 9 has no relevance. Therefore, once the spline

is created it can be trimmed accordingly. While concentrations may still be present,

they will not be sharp tips in the plane of symmetry. Modelling procedures should

identify the correct number of points to be defined when creating the surfaces for a

pipe bend model. Supposing that only the values at circumferential positions 1, 5, 9,

13 (see figure 6.1 (b)) can be directly derived using the parameter method described in

this work, intermediate values (for example, at positions 3, 7, 11, 15) could be estimated
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using, say, a linear approximation between adjacent values. This would no doubt lead

to a smoother surface (with more points defined). However, care must be taken not to

over constrain the problem, which would cause divergence from reality.

The complications arising from the use of 3D models has been addressed by using a

novel 2D interpolation procedure. The cross section of the 3D model at specific bend

angle positions (ϕ, in figure 6.1 (a)) can be used to define a 2D axi-symmetric model.

Several different 2D models can then be created round the pipe bend. In this way,

complex dimensions variation that may be present in the intrados and extrados of a

pipe bend due to manufacturing or service can be represented with relative ease. Not

only are 2D models simpler to produce, they will generally take substantially less time

to complete than 3D counterparts (typically, 3D model completion times are 140 and 250

times greater than 2D models for thin walled and thick walled pipe bends, respectively).

Even when multiple 2D models are used (as in the above interpolation procedure),

completion times are usually noticeably shorter than a full 3D analysis. It can be seen

from the results in section 6.8.3 that, for the majority of cases, when a peak rupture

stress in a 3D pipe bend model occurs away from the bend/straight interface (due to

internal pressure loading only), the location and magnitude of the peak rupture stress

can be approximated using several 2D axi-symmetric models. Although the smaller

b1 and b2 values (see equation (6.9)) used for models in this section result in smaller

wall thickness variations than the models in section 6.6 (see table 6.8), significant stress

variations are still observed and geometries are representative of real industrial cases.

Errors are generally in the region of 1%. Furthermore, the general stress state across the

pipe bend can be well approximated.

Typically, the stress state at the bend/straight interface is not predicted as accurately

(compared to the other locations) by the 2D axi-symmetric interpolation method; see

figure 6.18 (b). Percentage differences in this region are usually 2%-5% for both thick wall

and thin wall pipe bends. Significant discrepancies in the prediction of the magnitude

of peak rupture stress at crown (centre) of bend are also noted; see figure 6.22 (c) and

figure 6.23 (c). Again, percentage differences are approximately 2%-5%. Both thin

walled and thick walled pipe bends exhibit this discrepancy in the magnitude of peak

rupture stress prediction. The location of peak rupture stress however is in general well

approximated in these situations (an exception being shown for the pipe bend HR_A in

figure 6.17 (a)). As the bend is pressurized, it will attempt to straighten119. This induces

a bending moment in the 3D model, effectively resulting in redistributed loading in the

bend section. The presence and effect of this induced bending moment will be partly

dependent on the precise geometry of the pipe bend. It is suspected that for certain pipe

bend dimensions, the stress state will be mainly dependent on the planar geometry. In

this case, the 2D interpolation method should provide a reasonable approximation of

the 3D model. Stress profiles predicted by the 2D models may map directly onto the

3D model (see figure 6.19). Alternatively, the constraint of the entire model may have a

267



significant effect. This could take the form of an induced bending moment in the bend

or a complex interaction between the planar deformations in the bend (potentially to

ensure continuity of volume). In these cases, the 2D models (which of course cannot

account for the interaction between planes) may not be sufficient to estimate the 3D

model.

In all cases in this chapter (both 2D and 3D models) peak rupture stresses were

localized around the intrados of the pipe bend (circumferential position 13, see figure 6.1

(b)). The results of this study therefore agree with literature104. Using this information

on circumferential failure position and the critical bend angle position from the 2D

interpolation method, non-destructive testing could be applied to in service components

in a precise way, increasing the likelihood of defect detection.

Several trends in the predicted rupture stresses have been noticed. A reduction in

bend angle for example is commonly followed by a reduction in peak rupture stress.

Variations in the stress exponent (n) or the multiaxial material constant (α) have little

to no effect on the accuracy of peak rupture stress location predictions. When thin

walled examples (the Hot Reheat type) are analysed, an increase in α often results in an

increase in the rupture stresses calculated (see figure 6.26). The opposite (a reduction

in computed rupture stresses for an increase in α) can be observed for the thick walled

Main Steam type pipe bends, see figure 6.27. Increases in the stress exponent (n) values

applied in the analyses commonly result in lower calculated rupture stresses for both

pipe bend types (see figures 6.24 and 6.25), in agreement with Calladine197,198.
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Chapter 7

The Development of a Power Plant

Pipe Bend Analysis Toolbox and

Neural Network

7.1 Introduction

The work presented thus far has been completed in order to provide a foundation

for the development of power plant component analysis toolbox. For example, in

chapters 5 and 6 steady-state peak rupture stresses were calculated for power plant

pipe sections (straight lengths with scoop excavations and pipe bends under internal

pressure loading). These steady-state rupture stresses can be used with CDM equations

(compared in chapter 4) to estimate component failure lives. In the present chapter, an

analysis methodology (or “toolbox”) is developed that combines these approximate

techniques. This establishes a framework for the advanced analysis methods employed

in academia to be implemented in industry. For example, FEA models of pipe bend

sections with dimension variation and complex system loading conditions are difficult to

define in computer aided engineering (CAE) packages. With a suitable routine however,

these meshes could be generated quickly and consistently. These models could then be

analysed without the user having to interact directly with commercial FEA packages

(such as ABAQUS). Results could then be post processed in order for the most relevant

outputs to be returned. All of the procedures described should be included in a graphical

user interface (GUI) to encourage their use.

A neural network is also developed and trained in the present chapter. The de-

scribed methodology includes two possible analysis streams for practising engineers.

In one stream, full FEA models may be created with bespoke loading conditions and

then analysed to determine complete stress states in creeping power plant components.

Although the GUI greatly simplifies the modelling procedure, completing FEA calcu-

lations may represent a significant time investment. An approximate analysis stream

269



is therefore also suggested. This would utilise the empirical equations developed in

several of the previous chapters. The neural network represents a potential generalised

method for estimating peak rupture stresses in pipe bend sections with complex system

loading patterns.

7.2 Overview of Methodology

The work described in this thesis has a common theme in that it all may be applied

to a general component analysis methodology. This methodology could provide a

formulaic approach for the analysis of components, making the analysis procedure

straight forward and establishing an entry point for novel analysis techniques to be

implemented into industry. A flowchart detailing the proposed methodology can be

seen in figure 7.1. For clarity, a brief explanation of each module’s role in component

analysis will be given here.

A primary input required from the user is the definition of a component’s geometry.

Pipe bend sections have received a great deal of attention in the present thesis due to

the relatively limited amount of research that has been dedicated to them, however in

principal any component type (such as branch pipe sections or steam headers) may

be incorporated. Material constants may be supplied directly from a user or, using

optimisation strategies similar to those discussed in chapter 3, they may be found from

experimental data. The automation of a robust and reliable optimisation procedure

allows representative material constants to be determined from potentially novel experi-

ments. If small specimen techniques (figure 2.39) could be implemented to determine

local material constants, scoop sampling would become increasingly prevalent, thus

highlighting the significance of the research conducted in chapter 5. Available material

constants and the type of loading conditions to be used will determine the most suitable

material model. For example, fatigue or cyclic loading conditions could potentially be

modelled using a Chaboche type material model, whereas a pure creep condition may

be approximated using CDM equations (such as Kachanov and Liu-Murakami models).

At this point, two alternative analysis strategies may be employed. Full FEA analysis

may be completed and results may be presented in their entirety (which would be of

interest to users wishing to have a detailed understanding of a component) or post

processed in order to determine quantities of interest (such as peak rupture stress, σ̂R).

Alternatively, if a full FEA simulation is not required, approximate methods (such as

empirically derived equations or neural networks) can be used to provide estimates of

quantities of interest in a short period of time.
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Figure 7.1: A flowchart detailing the proposed analysis methodology.

7.3 Graphical User Interface (GUI) Development

7.3.1 Requirement

Fundamentally, the incorporation of the analysis methodology into a GUI has been

undertaken to promote its use by practising engineers. It allows complex FEA models

to be generated quickly and consistently using data that would be collected in during

common outage inspections. The GUI may be compiled as a stand alone executionable

file, meaning that FEA input files can be generated by users that do not have access

to the FEA solver (promoting cooperation between power plant departments). There
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is however a secondary advantage to the GUI which is particular relevant to industry.

In power plants, data may be generated through investigations carried out by several

departments, which may be both internal and external to a particular site. Geometry

data for power plant components may be collected by one department whereas material

sampling and testing may be completed by another. In practice, this restricts how the

data is used and commonly limits its implementation. A GUI encourages the formation

of a central data base of component data. In this way, component analyses may be

conducted with the greatest amount of information available.

7.3.2 GUI Features

Several features have been incorporated into the GUI that address concerns within

industry and will therefore be summarised here. As mentioned previously, data relevant

to component analysis may be collected by several different departments in a power

plant. The GUI was therefore modularised as follows, with each module being accessed

through the GUI’s main menu (see figure 7.2):

• A component’s geometry is described in a geometry file. Note that not only are

the dimensions of a component detailed in this file but also the mesh (node and

element definitions) information, which may also be controlled by a user. The

degree of complexity of a mesh may also be defined. For example, in the presented

GUI for pipe bends, meshes may be generated for 2D and 3D pipe bend models

with or without manufacturing induced dimensions variation. An example may

be seen in figure 7.3.

• Material constants are stored in a material file. This clearly dictates the material

model to be used in an analysis (suitable error messages have been programmed

in order to prevent the incorrect application of material model). The material file

may be generated through a module in the GUI or by creating a text file using the

correct format.

• Loading conditions (the internal pressure and system loads applied to a pipe bend

section) are defined in a load file. When generated in the GUI (see figure 7.4),

FEA models are created that remove unused loads and apply relevant boundary

conditions.

• FEA input files and subroutines (used for analyses which implement more complex

material models) are generated in the GUI by defining geometry, material and load

files. As each file is generated separately, different combinations (for example, the

same geometry and material under different load conditions) may be considered

with the minimum amount of user effort.

• After the FEA simulation has been completed, post processing may be performed
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in the GUI to determine peak rupture stress magnitudes and locations (see fig-

ure 7.5).

Figure 7.2: The GUI main menu, showing the modular nature of the of the GUI.
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Figure 7.3: An example screen from the GUI that produces a geometry file for a 3D pipe
bend. In this case, pipe external diameters may be varied around the pipe bend, along
with variations in local wall thicknesses.

Figure 7.4: The GUI module to create load files. Several different system loads may be
applied. Load step durations and parameters used in FEA analyses may also be defined
here.
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Figure 7.5: The post processing GUI module that can be used to estimate peak rupture
stress locations and magnitudes in pipe bend models.

A great deal of geometry cases have been considered for the modelling of pipe

bend sections. To extend the scope of the GUI a weld geometry module has been

created (see figure 7.6). This allows a user to create an axi-symmetric approximation

of a pipe weldment. Both similar and dis-similar welds (i.e. welds with matching and

non-matching parent materials, respectively) may be modelled. Pipe welds are common

place in power plant systems and have been the subject of several research projects.

Indeed, weld sections will often be included to join pipe bend sections to straight lengths.

Using the GUI, bespoke FEA models may be constructed for component analysis or

fundamental research.
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Figure 7.6: An example GUI module to create axi-symmetric pipe weld geometry files.
Similar and dis-similar welds may be modelled and the user has control over over the
weld metal and HAZ geometry.

7.3.3 Example Pipe Bend Results

To demonstrate the use of the GUI two example pipe bend models have been pro-

duced. Both use geometry taken from an in service 90◦ Main Steam type pipe bend (see

section 6.2 for a description of pipe bend types). As the actual material properties of

the bend material are unknown, a BAR 257 material was assumed (material constants

for this material where determined in section 4.4.1 and can be found in table 4.3 for

a Kachanov damage model) as this is a weaker reference version of P91 (a common

power plant material), representing a degradation of material properties due to service

exposure. The examples presented here are illustrative and in practice any material

could be applied. A system loading condition was applied, designated B4-OP568 (this

condition is specified in tables 7.3 and 7.4). A description of the loading condition

convention applied in the present work may be found in section 7.4.3. The two FEA

models are distinct from one another as different material behaviour models have been

implemented in each. Norton’s power law model (figure 7.7) was implemented in order

to determine the steady-state stress state of the pipe bend and Kachanov’s CDM model

was used to investigate damage evolution in the same pipe bend (figure 7.8). It can be

seen from figure 7.7 that the peak steady-state rupture stress (σ̂R =37.20MPa) in this

pipe bend under the B4-OP568 loading condition is found at the outside surface of the

intrados. It is also noted that this peak stress region is located towards one end of the
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bend section. This is in good agreement with the peak damage location for the CDM

analysis (see figure 7.8), however the peak damage (ω̂) location is on the inside surface if

the pipe bend (possibly due to the redistribution of stress after an accumulation of creep

damage). A time to failure (t f ) may be calculated using the steady-state peak rupture

stress, equation (5.2) and the material constants given in table 4.3. For the model shown

in figure 7.7, t f was estimated to be 73340hrs, which is in reasonable agreement with

the time to failure predicted by the damage analysis (87300hrs). The example analyses

presented in this section therefore not only demonstrate the applicability of the GUI but

also verify the reference rupture stress lifing method for pipe bend sections (which has

been referenced extensively in chapters 5 and 6).

SIDE A

SIDE B
σ̂R

Figure 7.7: An example FEA contour plot showing steady state rupture stresses in a
pipe bend model with manufacture induced dimension variation. This simulation was
completed using a simple power law model (Norton’s law).
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SIDE A

SIDE B

SIDE A

SIDE B

ω̂

Figure 7.8: An example FEA contour plot of creep damage (ω) for a pipe bend model
with manufacture induced dimension variation. The same geometry, material and
loading conditions are used in this model and the model shown in figure 7.7. This
simulation was completed using a creep CDM model (Kachanov’s model).

7.4 Neural Network

7.4.1 Requirement

Pipe bend sections in power plants will be subjected to loads imposed by the piping

system (system loads) as well as an internal pressure. System loads will be dependent on

several factors, notably a piping system’s design and the load (i.e. steam pressure and

temperature) it is operating at. A system’s load will itself be cycled as generation output

is matched to market trends. Figure 7.9 shows that, over a one month period, a unit went

through multiple start up and shut down cycles with prolonged operation at full (≈
500MW) and partial generation load. It is noted that there is a strong correlation between
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a unit’s generated load (or power, in MW) and steam pressure and temperature. Given

the range of operating conditions that a pipe component may act in and remembering

that any modification to the piping system will also affect system loads, a procedure

is needed in order to quantify the effect of system loads. In the present chapter, it

is suggested that a neural network can be created which accommodates the complex

dependencies that system loads have on peak steady-state rupture stresses (σ̂R) in pipe

bend sections operating in creep conditions.
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(a)

(b)

(c)

Figure 7.9: Example load profiles from a coal fired power plant unit, showing variations
in (a) generated load (MW), (b) steam pressure in the unit’s steam chests (MPa) and (c)
superheated steam outlet temperatures (◦C).
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7.4.2 FEA Models

A neural network requires data so that it may be “trained” (whereby weights and biases

are optimised to fit a target data set). Additional data points may then be used to

verify the neural network’s predictive capabilities. As the focus of the neural network

here is steady-state peak rupture stresses, several FEA models of pipe bends under

various loading conditions must be generated. An example FEA mesh can be seen in

figure 7.10. In addition to an internal pressure load, system load induced displacements

(shown in red) and rotations (shown in blue) are applied to each end of the pipe bend

section (deemed “SIDE A” and “SIDE B”). As steady-state operation is the consideration

of the present work Norton’s power law (see equation (2.48)) has been applied to

model creep behaviour. A sub-investigation verified that GNL effects are negligible, as

suggested by Yaghi et. al.104. A mesh study determined that quadratic elements should

be implemented (C3D20R in ABAQUS191), with 5 elements across the wall thickness of

the pipe, 80 elements around its circumference and 45 around the bend section.

X

Y

Z

SIDE A

SIDE B

Figure 7.10: The load convention used when applying system loads to FEA pipe bend
models.

7.4.3 Loading Conditions

In practice, pipe sections are supported by hangers which allow (or prevent) displace-

ments in specific degrees of freedom. These hangers may be sprung loaded, allowing

forces to be measured at these positions. Hanger readings may then be used in specialist

software such as PSA5115 to estimate displacements at points in a piping system (such as

the beginning and end of a bend section). Multiple loading scenarios may be modelled

as the system displacements during, for example, sustained operation may be different

to those found during a “ramp-up” period. The load scenarios considered in the present

chapter are identified by the labels “SUS”, “RVFORCE”, “TH568”, “OP20”, “OP568”,

“RVOP568” and “OP_SUPPS”. The exact definition of each of these scenarios is not

strictly relevant to the present work as the objective is to create a generalised analysis

method. These labels are used to emphasise that a piping system may be subjected to a
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range of loading conditions and that each of the loading conditions have been calculated

for a real piping system.

Loading conditions (both internal pressure and system loads) are used as inputs

in the neural network. While each load could be entered to its own input node, this

could potentially lead to a very large neural network with 13 input nodes (one for each

system load at either end of the pipe section, see figure 7.10). It is proposed here that

an alternative input method may be used to reduce the number of input parameters

required, namely the difference between the corresponding system loads at either end of

the bend section. It is the relative motion between the two ends of the pipe that defines

the effect of a system load on the pipe section. For example, rotational displacements

around the Z axis at each end of the pipe section could cause the bend section to open

or close, but the effect can be represented by the difference between the two loads. With

this in mind, system load factors were determined for a range of load cases that were

calculated using PSA5 and a real world main steam piping system. Displacement load

factors in the x, y and z directions (factors X, Y and Z, respectively) for a variety of load

cases can be seen in figure 7.11, with corresponding rotational factors about the x, y and

z axes (factors Rx, Ry and Rz) shown in figure 7.12. It can be seen that there is a general

relationship between displacement system load factors (X, Y and Z) and rotational

system load factors (Rx, Ry and Rz), in so much as load cases types with relatively

high displacement system load factors (such as “TH568”, “OP20” and “OP_SUPPS”

types) also tend to have high rotational system load factors. System load cases have

been chosen so that a spectrum of displacement and rotation deflection combinations is

considered in the training and validation steps. The neural network should therefore

be equipped to predict peak rupture stresses for any load cases shown in the range of

system load factors displayed in figures 7.11 and 7.12. Displacement and rotational

system load factors used for training the neural network are summarised in tables 7.1

and 7.2, respectively. Validation inputs are given in tables 7.3 and 7.4.
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Figure 7.11: A comparison of several displacement loading conditions in the X, Y and Z
directions (see figure 7.10).

Figure 7.12: A comparison of several rotational loading conditions, given around the X,
Y and Z axes (Rx, Ry and Rz, respectively, see figure 7.10).
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Table 7.1: A summary of the displacement loading conditions used for the training of
the neural network.

Id
en

ti
fi

er

Pi (MPa) X (mm) Y (mm) Z (mm)
PRESS 16.49 0.00 0.00 0.00

A3-OP20 0.00 0.96 -0.68 -0.58
D5-OPSUPPS 16.49 -69.67 -19.72 13.28

C3-TH568 16.49 -11.94 14.68 -1.42
C3-HALF-TH568 8.25 -5.97 7.34 -0.71

B3-OP20 0.00 2.82 -0.92 -1.95
D5-OP20 0.00 35.26 40.80 -9.53
C5-TH568 16.49 44.72 -8.27 12.71
C1-TH568 16.49 -8.06 21.11 -3.64

D5-RVFORCE 16.49 -1.93x10−1 1.99x10−1 0.16
A2-HALF-RVFORCE 8.25 0.18 0.17 1.50x10−3

A2-RVFORCE 16.49 0.36 0.33 3.00x10−3

A4-OP568 16.49 -9.89 18.37 -1.11
B1-OP20 0.00 5.07 -6.08 -8.20

C1-RVOP568 16.49 -12.56 15.31 -6.63
D2-OP-SUPPS 16.49 -2.01 -26.12 -8.59

A4-HALF-OP568 8.25 -4.95 9.18 -0.56
D2-HALF-OP-SUPPS 8.25 -1.01 -13.06 -4.29

D1-TH568 16.49 -5.63 24.31 -9.73
D1-OP20 0.00 5.92 -6.93 7.17
D1-OP568 16.49 10.96 9.61 -2.53

D1-OP-SUPPS 16.49 -5.58 24.16 -7.63
TEST-P 15.00 0.00 0.00 0.00

C3-OP568 16.49 14.90 11.99 -1.19
C3-OP-SUPPS 16.49 -12.47 14.10 -1.76
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Table 7.2: A summary of the rotation loading conditions used for the training of the
neural network.

Id
en

ti
fi

er

Rx (RAD) Ry (RAD) Rz (RAD)
PRESS 0.00 0.00 0.00

A3-OP20 -7.85x10−4 -1.75x10−4 6.98x10−5

D5-OPSUPPS -7.47x10−3 -5.99x10−3 2.62x10−4

C3-TH568 -8.03x10−4 -1.05x10−4 1.61x10−3

C3-HALF-TH568 -4.01x10−4 -5.24x10−5 8.03x10−4

B3-OP20 -7.16x10−4 -1.75x10−4 1.99x10−3

D5-OP20 6.89x10−3 3.85x10−3 -3.49x10−4

C5-TH568 -7.65x10−3 -5.83x10−3 1.92x10−4

C1-TH568 -2.09x10−4 -3.32x10−4 2.97x10−4

D5-RVFORCE -7.70x10−6 1.59x10−5 0.00
A2-HALF-RVFORCE 0.00 -8.73x10−6 -3.49x10−5

A2-RVFORCE 0.00 -1.75x10−5 -6.98x10−5

A4-OP568 -8.73x10−5 1.40x10−4 1.05x10−4

B1-OP20 -1.22x10−4 1.40x10−4 -2.09x10−4

C1-RVOP568 -1.22x10−4 -1.92x10−4 6.46x10−4

D2-OP-SUPPS 1.05x10−4 8.73x10−5 1.27x10−3

A4-HALF-OP568 -4.36x10−5 6.98x10−5 5.24x10−5

D2-HALF-OP-SUPPS 5.24x10−5 4.36x10−5 6.37x10−4

D1-TH568 -1.75x10−4 -1.57x10−4 1.92x10−4

D1-OP20 1.22x10−4 2.97x10−4 -4.36x10−4

D1-OP568 -2.79x10−4 -1.40x10−4 7.16x10−4

D1-OP-SUPPS -1.22x10−4 -2.79x10−4 1.22x10−4

TEST-P 0.00 0.00 0.00
C3-OP568 -6.98x10−5 -3.49x10−5 -8.73x10−5

C3-OP-SUPPS -8.38x10−4 -5.24x10−5 1.06x10−3

285



Table 7.3: A summary of the displacement loading conditions used for the validation of
the neural network.

Id
en

ti
fi

er

Pi (MPa) X (mm) Y (mm) Z (mm)
A3-HALF-OP20 0.00 0.48 -0.34 -0.29

D5-HALF-OPSUPPS 8.25 -34.84 -9.86 6.64
A1-OP20 0.00 5.84 -7.22 -10.22

A5-OP568 16.49 18.55 -23.12 -3.09
B5-OP568 16.49 36.17 -34.81 -2.42

D4-OPSUPPS 16.49 -5.39 34.21 28.82
D3-OPSUPPS 16.49 -15.47 11.39 -0.17
A5-RVOP568 16.49 19.35 -23.50 -2.88
C4-RVOP568 16.49 -10.82 17.09 -1.02

B4-OP568 16.49 -11.17 16.74 0.57
B1-HALF-OP20 0.00 2.54 -3.04 -4.10
B4-HALF-OP568 8.25 -5.59 8.37 0.29

C1-HALF-RVOP568 8.25 -6.28 7.65 -3.31
D1-RVOP568 16.49 8.74 11.86 -0.85
C3-RVOP568 16.49 15.14 3.22 -0.77

C4-TH568 16.49 -4.31 32.99 28.80
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Table 7.4: A summary of the rotational loading conditions used for the validation of the
neural network.

Id
en

ti
fi

er

Rx (RAD) Ry (RAD) Rz (RAD)
A3-HALF-OP20 -3.93x10−4 -8.73x10−5 3.49x10−5

D5-HALF-OPSUPPS -3.74x10−3 -3.00x10−3 1.31x10−4

A1-OP20 -3.49x10−5 -1.57x10−4 -4.71x10−4

A5-OP568 4.97x10−4 8.03x10−4 -5.24x10−5

B5-OP568 5.63x10−5 1.13x10−4 0.00
D4-OPSUPPS -8.20x10−4 2.29x10−3 7.16x10−4

D3-OPSUPPS -9.42x10−4 -6.98x10−5 2.09x10−3

A5-RVOP568 5.97x10−4 1.08x10−3 -3.49x10−5

C4-RVOP568 1.05x10−4 -1.92x10−4 1.57x10−4

B4-OP568 5.24x10−5 1.92x10−4 5.24x10−5

B1-HALF-OP20 -6.11x10−5 6.98x10−5 -1.05x10−4

B4-HALF-OP568 2.62x10−5 9.60x10−5 2.62x10−5

C1-HALF-RVOP568 -6.11x10−5 -9.60x10−5 3.23x10−4

D1-RVOP568 -1.92x10−4 -3.49x10−5 6.46x10−4

C3-RVOP568 -1.05x10−4 -1.22x10−4 -1.22x10−4

C4-TH568 -8.90x10−4 2.62x10−3 1.03x10−3

7.4.4 Development and Validation of a Pipe Bend Neural Network

The concept of artificial neural networks has been introduced in section 2.5. Fundament-

ally, a neural network can be visualised as a modularised mathematical function. An

output, in this case σ̂R (see figure 7.13), is determined based on inputs (here representing

an internal pressure load Pi and system load induced displacements and rotations,

X, Y, Z and Rx, Ry, Rz, respectively). Prior to constructing the neural network, system

loads and internal pressures (defined in tables 7.1 and 7.2 and tables 7.3 and 7.4 for

training and validation, respectively) are used to construct FEA models for a given bend

geometry (note that in the present network only a single variable cross section pipe bend

geometry is considered). Peak steady-state rupture stresses (σ̂R) found from these simu-

lations may be compared to the output from the neural network. During the training of

the neural network, the results of this comparison are used to determine the weights

and biases (w and θ in figure 7.13, respectively) though an optimisation procedure. A

validation stage is used to guard against “over fitting”, whereby a network accurately

predicts the results for a training data set but exhibits poor approximations for data

sets not included in the training set. Note in the presented examples two materials

were considered, namely BAR 257 at 650◦C and a 1/2Cr1/2Mo1/4V steel at 640◦C. A

power law (Norton’s law, see equation (2.41)) was used to model the steady-state creep
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response of the materials. Material constants for this model were derived for BAR 257 in

section 4.4.1 (A = 1.09x10−20MPa1/n.hr and n = 8.46). Material constants for the CMV

steel (A = 6.599x10−16MPa1/n.hr and n = 6.108) were taken from literature139.

In the present chapter, a neural network architecture was constructed using MAT-

LAB’s neural network toolbox163. Determining the correct architecture (the combination

and order of specific neurons with different activation functions) for a particular applica-

tion is perhaps the most time consuming aspect of establishing a network. In the present

work, only two types of activation function have been used (the logarithmic sigmoid

function and the pure linear function163, see figure 7.13). Symbols used for each of these

functions in figure 7.13 may be seen in figure 7.14, along with a graphical representation

of the relationship between input and output for each function. The pure linear function

(see figure 7.14 (a)) can be considered to be an extension of the semi-linear limiting func-

tion shown in figure 2.42 (b). In short, there is a linear relationship between the input

and the output. The logarithmic sigmoid function creates positive outputs between 0

and 1 and is defined by equation (7.1)163 (see figure 7.14 (b)). Neurons are collected into

layers (each neuron in a layer has the same activation function but potentially different

weights and biases). In figure 7.13, layers are numbered in red and all layers comprise

of 6 neurons. Inputs are fed into each of a layer’s nodes and are modified by that node’s

weight and bias values (see figure 2.43 for an example with a vector input).

logsig(x) =
1

1 + e−x
(7.1)

Training of the network is accomplished using a gradient decent algorithm with

momentum back propagation (in MATLAB this is defined by the in-built function

TRAINDM163). The gradient descent optimisation method has been discussed in the

literature review of this thesis (see section 2.6.3) and is easily visualised. For a given set

of weights and biases (the parameters to be optimised), an error function can be defined

by comparing the outputs of the neural network to the known true values204. The

gradient of this error function is calculated and a direction is chosen to reduce the error.

This direction (coupled with a step size) defines a new set of weights and biases for the

network that will be analysed in the following optimisation procedure. If momentum

is introduced, equation (2.114) (which defines the steepest gradient decent approach)

becomes equation (7.2), where the term P0d(xn−1) is “momentum” (the previous change

in x multiplied by a momentum parameter P0). The introduction of a momentum term

prevents solutions localising on small fluctuations in the error surface (local minima)

and oscillating between similar values in certain topological regions (such as long

narrow valleys in the error surface)204. P0 is defined prior to training and lies in the

range 0 ≤ P0 < 1. In the presented network, a value of 0.9 was found to give a good

convergence rate in training, suggesting that the momentum term makes a significant

contribution in equation (7.2). Errors are calculated using the mean square error method,

which is similar to the sum of squares method (see equation (2.110)) except that the sum
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of error squared is divided by the total number of data points (or m in equation (2.110)).

d(xn) = −M0∇E (xn) + P0d(xn−1) (7.2)

Initial values for the weights and biases used in the network must be found before

the training procedure begins in order to provide a “starting point”. For the majority of

neuron layers, a zero initial value for the weights and biases was assumed (meaning that

these neurons are not active). During the training procedure, non-zero values are quickly

determined. For layers 1, 2 and 3 in figure 7.13 (which have neurons with logarithmic

sigmoid activation functions), the Nguyen-Widrow initialisation algorithm205 has been

implemented. Using this method, initial values for weights and biases take a random

value (generated between the limits -1 and 1). The factors β and norm (equations (7.3)

and (7.4), respectively) are then calculated and used to determine a revised weight and

bias (based on the randomised value, see equation (7.5))205. Note that in equations (7.3)

to (7.5), h is the number of hidden neurons for a particular layer, I is the total number of

inputs to that layer, wi is the ith weight (or bias as the two are initiated simultaneously)

determined by a random number generator and w′
i is the weight (or bias) wi that has

been adjusted by the Nguyen-Widrow algorithm. If the values of the weights and

biases were plotted on a histogram for a suitably large network, a distribution would be

observed with higher frequencies of weights and biases at certain values and very low

frequencies at the limits of the range. During training, the high frequency regions may

shift and redistribute, however by localising them to begin with a faster training rate is

observed than if a “hard” (uniform) or Gaussian distribution had been implemented.

After initialisation, the weights and biases may be optimised through training.

β = 0.7h1/I (7.3)

norm =

√

√

√

√

i=I

∑
i=0

w2
i (7.4)

w′
i =

βwi

norm
(7.5)

From experience, networks initialised with all zero values took substantially longer

to train and were susceptible to locking (the convergence of a solution to a local min-

imum that results in poor network performance). Networks with fully randomised

initial conditions were generally quicker to train, however convergence problems were

still observed. As the initial values of the weights and biases are random, the initial

condition of the network prior to training is different for each time a network is con-

structed. It was found that if a network began with a fully randomised set of initial

conditions there could be significant differences between the performance of the network

for repeated training procedures. The partial random initialisation used in the present
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network appears to give a good network performance (predictions made using the

network tend to be accurate) with consistent results between repeated training attempts.

The training procedure has a non-zero starting position in optimisation space as a result

of the randomised initialisation method used on some layers, however the weight and

bias optimisation is still initially constrained in certain degrees of freedom by the zero

initial values for some neuron layers.

A partially connected structure is used in the present network (see section 2.5).

Through experience, it has been found that a fully connected neural network (similar

to that shown in figure 2.43) required a great deal of computational effort to train. By

creating a partially connected network, specific weights and biases may be applied to

each input type (note that the internal pressure load Pi, the displacement loads X, Y and

Z and the rotational loads Rx, Ry and Rz are applied to the neural network in different

input nodes). This tends to lead to a better training rate (as changes to weights and

biases can be made to modify certain input types individually) and more representative

network outputs (as the output’s dependency on specific inputs can be isolated and

better represented).
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Figure 7.13: The developed partially connected neural network structure used to estim-
ate peak steady-state rupture stresses (σ̂R) in pipe bends loaded by an internal pressure
(Pi) and system loads (X, Y, Z, Rx, Ry and Rz).
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Figure 7.14: Symbols that represent the activation functions used in neuron layers in
figure 7.13 and graphical representations of these functions, showing (a) the pure linear
activation function and (b) the logarithmic sigmoid activation functions. Note that w
and θ are the weights and biases (respectively) that are optimised during training.

The network described in figure 7.13 has been trained using the results of FEA

simulations on a pipe bend for two steels (BAR 257 at 650◦C and a 1/2Cr1/2Mo1/4V

steel at 640◦C). As material dependencies are not included in the present form, the

network was trained separately for each material (each network has the same archi-

tecture but different optimised weight and bias values). A comparison of the true σ̂R

values (determined from the FEA) and the stresses predicted by the trained networks

can be seen for the two materials in figures 7.15 and 7.18 (raw data values are given

in tables 7.5 and 7.7). To ensure that the networks could predict stresses for a range of

load cases (and not only those used in the training data set), a validation data set was

implemented. For each material, a comparison of the true and predicted stresses for the

validation load cases (see tables 7.3 and 7.4) may be seen in figures 7.16 and 7.19 (results

are presented in tables 7.6 and 7.8). For clarity, the error between the true (FEA) and

neural network predicted peak steady-state rupture stresses are plotted for each load

case in the validation set in figures 7.17 and 7.20.
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Figure 7.15: A comparison of the true (FEA) and predicted (NN) peak rupture stresses
for a pipe bend made of BAR 257 steel at 650◦C. The results are for a training data set
(see tables 7.1 and 7.2) used in the development of a neural network.
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Figure 7.16: A comparison of the true (FEA) and predicted (NN) peak rupture stresses
for a pipe bend made of BAR 257 steel at 650◦C. The results are for a validation data set
(see tables 7.3 and 7.4) used in the development of a neural network.
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Figure 7.17: The errors between the true (FEA) and predicted (NN) peak rupture stresses
for a pipe bend made of BAR 257 steel at 650◦C. The results are for a validation data set
(see tables 7.3 and 7.4).
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Table 7.5: The results of a training procedure on a neural network, predicting peak
rupture stresses for a pipe bend made of BAR 257 steel at 650◦C. True (FEA) and
predicted (NN) stress values are shown and the error has been calculated.

Id
en

ti
fi

er

σ̂
R

(M
P

a)
-

FE
A

σ̂
R

(M
P

a)
-

N
N

E
rr

or
(%

)

PRESS 37.39 37.49 0.27
A3-OP20 29.60 29.59 0.00

D5-OPSUPPS 37.87 37.58 0.77
C3-TH568 37.65 37.61 0.11

C3-HALF-TH568 32.76 32.76 0.00
B3-OP20 29.60 29.60 0.00
D5-OP20 30.49 30.49 0.00
C5-TH568 37.82 37.59 0.62
C1-TH568 37.64 37.60 0.11

D5-RVFORCE 37.44 37.46 0.06
A2-HALF-RVFORCE 24.89 24.89 0.00

A2-RVFORCE 37.65 37.50 0.40
A4-OP568 37.09 37.60 1.36
B1-OP20 28.25 28.25 0.00

C1-RVOP568 37.66 37.61 0.15
D2-OP-SUPPS 37.13 37.58 1.20

A4-HALF-OP568 30.53 30.53 0.00
D2-HALF-OP-SUPPS 30.53 30.53 0.00

D1-TH568 37.65 37.59 0.14
D1-OP20 28.22 28.22 0.00
D1-OP568 37.65 37.59 0.14

D1-OP-SUPPS 37.64 37.59 0.11
TEST-P 30.26 30.26 0.00

C3-OP568 37.66 37.59 0.17
C3-OP-SUPPS 37.65 37.61 0.12

296



Table 7.6: The results of a validation procedure on a neural network, predicting peak
rupture stresses for a pipe bend made of BAR 257 steel at 650◦C. True (FEA) and
predicted (NN) stress values are shown and the error has been calculated.

Id
en

ti
fi

er

σ̂
R

(M
P

a)
-

FE
A

σ̂
R

(M
P

a)
-

N
N

E
rr

or
(%

)

A3-HALF-OP20 27.94 29.20 4.48
D5-HALF-OPSUPPS 32.13 30.72 4.37

A1-OP20 28.53 28.25 1.01
A5-OP568 37.74 37.52 0.58
B5-OP568 37.75 37.52 0.59

D4-OPSUPPS 37.38 37.58 0.52
D3-OPSUPPS 37.65 37.61 0.13
A5-RVOP568 37.75 37.52 0.59
C4-RVOP568 37.10 37.60 1.35

B4-OP568 37.10 37.60 1.36
B1-HALF-OP20 26.97 28.36 5.15
B4-HALF-OP568 30.56 31.70 3.73

C1-HALF-RVOP568 32.69 32.94 0.78
D1-RVOP568 37.65 37.55 0.26
C3-RVOP568 37.66 37.59 0.17

C4-TH568 37.38 37.56 0.50
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Figure 7.18: A comparison of the true (FEA) and predicted (NN) peak rupture stresses
for a pipe bend made of 1/2Cr1/2Mo1/4V steel at 640◦C. The results are for a training
data set (see tables 7.1 and 7.2) used in the development of a neural network.
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Figure 7.19: A comparison of the true (FEA) and predicted (NN) peak rupture stresses
for a pipe bend made of 1/2Cr1/2Mo1/4V steel at 640◦C. The results are for a validation
data set (see tables 7.3 and 7.4) used in the development of a neural network.

299



Figure 7.20: The errors between the true (FEA) and predicted (NN) peak rupture stresses
for a pipe bend made of 1/2Cr1/2Mo1/4V steel at 640◦C. The results are for a validation
data set (see tables 7.3 and 7.4).
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Table 7.7: The results of a training procedure on a neural network, predicting peak
rupture stresses for a pipe bend made of 1/2Cr1/2Mo1/4V steel at 640◦C. True (FEA)
and predicted (NN) stress values are shown and the error has been calculated.

Id
en

ti
fi

er

σ̂
R

(M
P

a)
-

FE
A

σ̂
R

(M
P

a)
-

N
N

E
rr

or
(%

)

PRESS 36.83 36.87 0.11
A3-OP20 17.68 17.22 2.56

D5-OPSUPPS 37.31 37.24 0.19
C3-TH568 37.14 37.21 0.19

C3-HALF-TH568 20.80 20.78 0.09
B3-OP20 17.66 17.51 0.86
D5-OP20 18.01 18.11 0.56
C5-TH568 37.30 37.12 0.47
C1-TH568 37.12 37.08 0.10

D5-RVFORCE 36.82 36.87 0.13
A2-HALF-RVFORCE 19.06 19.16 0.51

A2-RVFORCE 36.83 36.88 0.16
A4-OP568 37.10 37.17 0.20
B1-OP20 16.46 16.57 0.68

C1-RVOP568 37.15 37.22 0.20
D2-OP-SUPPS 37.01 37.12 0.32

A4-HALF-OP568 20.97 20.97 0.00
D2-HALF-OP-SUPPS 21.00 20.96 0.22

D1-TH568 37.11 37.06 0.12
D1-OP20 16.39 16.79 2.43
D1-OP568 37.14 37.06 0.22

D1-OP-SUPPS 37.10 37.06 0.11
TEST-P 29.86 29.86 0.01

C3-OP568 37.16 37.06 0.27
C3-OP-SUPPS 37.14 37.20 0.17
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Table 7.8: The results of a validation procedure on a neural network, predicting peak
rupture stresses for a pipe bend made of 1/2Cr1/2Mo1/4V steel at 640◦C. True (FEA)
and predicted (NN) stress values are shown and the error has been calculated.
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A

σ̂
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N
N

E
rr
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A3-HALF-OP20 16.82 17.24 2.48
D5-HALF-OPSUPPS 20.60 22.43 8.89

A1-OP20 16.49 16.57 0.50
A5-OP568 37.23 36.44 2.11
B5-OP568 37.23 36.44 2.13

D4-OPSUPPS 36.89 37.06 0.46
D3-OPSUPPS 37.16 37.15 0.03
A5-RVOP568 37.23 36.44 2.12
C4-RVOP568 37.11 37.21 0.26

B4-OP568 37.11 37.21 0.26
B1-HALF-OP20 16.18 16.91 4.49
B4-HALF-OP568 20.98 20.93 0.24

C1-HALF-RVOP568 20.81 21.28 2.29
D1-RVOP568 37.14 37.06 0.21
C3-RVOP568 37.16 37.09 0.19

C4-TH568 36.91 37.06 0.41

7.5 Conclusions

An analysis methodology has been presented in the current chapter for power plant com-

ponents. This methodology combines several of the aspects that have been discussed

and developed in the previous chapters. Such aspects include material constant determ-

ination (by optimising material constant values to experimental data) and approximate

component analysis techniques (such as parametric equations to characterise pipe bend

dimension variation). The implementation of the described methodology would pro-

mote information exchange between power plant departments (through a centralised

database feeding the methodology) and would encourage the more effective use of

collected data. Routines have also been written that allow FEA models to be created,

tested and analysed automatically from only a handful of user defined parameters. In

this way, bespoke FEA analyses may be conducted to support the methodology without

the user requiring a working knowledge of the finite element method. FEA should

not be treated as a “black box”, but the ease with which models may be created and

simulated allows users with the necessary background to spend their time processing

results rather than constructing models (which is commonly tedious). To summarise,

the methodology presented combines information on component’s material, geometry
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and the loading case which it experiences to construct and analyse FEA models. Results

may be processed in order to obtain a tangible metric (such as peak rupture stress σ̂R)

by which a particular scenario may be judged. This can be done using the parametric

methods described and developed in this thesis or by conducting bespoke FEA models.

As an additional approximate method, an analysis neural network (figure 7.13) has

been developed. Using this method for a particular pipe bend geometry and material,

σ̂R may be estimated based on the loading condition (internal pressure and system

loads). Two materials have been implemented in the present chapter (BAR 257 at 650◦C

and a 1/2Cr1/2Mo1/4V steel at 640◦C) to demonstrate that the network can be applied

for a range of materials. For both materials, stresses for the training data set (tables 7.1

and 7.2) were predicted well with average errors less that 0.5% (0.23% for BAR 257 and

0.44% for 1/2Cr1/2Mo1/4V). Stress distributions are plotted in figures 7.15 and 7.18.

Low errors in this data set are to be expected as the weights and biases used in the

network are optimised based on these results. The training procedure will commonly

terminate when an error limit has been achieved. To ensure that the network may be

used to predict results outside the training data set, a validation set (tables 7.3 and 7.4)

was also tested using the trained networks. Although discrepancies between predicted

and true stresses were higher for the validation than the training set, average errors

were still low at approximately 1.60% for both materials. Peak errors were noted at

4.48% for the A3-HALF-OP20 load case in the BAR 257 results and at 8.89% for the

D5-HALF-OPSUPPS in the 1/2Cr1/2Mo1/4V results. With the exception of the D5-

HALF-OPSUPPS case in the 1/2Cr1/2Mo1/4V data, all errors in the validation data

sets were below 5% for both materials (see figures 7.17 and 7.20). The network has been

verified to give accurate predictions of the peak rupture stress for a wide range of load

cases operating under steady-state creep conditions. As shown in section 7.3.3, peak

rupture stress values may be used in CDM equations in order to estimate failure lives of

the component (or the damage fraction due to a specific loading condition).

The presented network may be further developed in several ways in the future.

Before implementation, a wider validation set should be tested in order to increase

the confidence in the predictive capability of the network. The training set reported in

tables 7.1 and 7.2 appears to be sufficient to allow the network to predict the validation

load cases, however this may need to be revised to cover a wider range of system load

combinations (this would potentially improve the validation set fitting). A single pipe

bend geometry has been considered in the creation of the presented neural network.

This geometry included dimension variation (as discussed in section 6.3). Chapter 6 also

discusses how manufacturing induced geometry variation may be described by several

key factors. Potentially these factors could be fed into a network as additional inputs,

allowing the network to predict peak rupture stresses for a range of load cases and bend

geometries. Similar additional inputs could also be created for material parameters (for

example the constants A and n in Norton’s power law for creep, see equation (2.47)50).
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Stresses could then be determined for a range of materials without using Calladine’s

method197. Engineers will also most likely be interested in determining the location of σ̂R

as this will be an indication of a possible failure site. The failure location can be expressed

as a bend position angle and a circumferential position angle (see figure 6.1). Future

networks could have multiple output nodes to predict these quantities in addition

to the peak rupture stress value. This would most likely be geometry dependent,

therefore either one network would be trained per pipe bend or geometry factors would

be required as inputs to the network. For the multiple output network, alternative

training and validation data sets would of course be required. By adding additional

input and output nodes, it may be necessary to increase the number of neurons or

neuron layers, use different combinations of activation functions and implement an

alternative architecture. Although this would be a major component of the future

work, the presented research described in this chapter has demonstrated that a partially

connected network using linear and logarithmic sigmoid activation functions can predict

the dependency of system loads on peak steady-state rupture stress values.
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Chapter 8

Conclusions and Future Work

Although the research presented in this thesis has been conducted in several different

areas, it has had a common purpose. The loads that high temperature power plant

components experience will be both greater and cycled in a more arduous fashion in the

future. Components that are in service at present have been designed with large safety

factors, meaning that when they are retired there is often a great deal of remnant life

left. A component analysis methodology is required that can translate the advanced

material models and techniques used in academia to industry. The focus of this thesis

has been establishing a foundation for this methodology by producing a framework

(see section 7.2) and developing several important aspects of the methodology. It is

worth noting that, in addition to aiding in the analysis of components, constructing

a methodology similar to this would promote the formation of databases of plant

information with multiple departments collaborating. The analysis methodology would

maximise the effectiveness of this data which may be collected on site as part of routine

inspections.

Specific conclusions are drawn at the end of each chapter, however a brief summary

of the findings of the thesis will be given here. The main conclusion of the present work is

that a single component analysis suite (or methodology) is a possibility and will require

the development of new material models, methods to determine material dependent

parameters, geometry characterisation techniques and analysis methods. With these

advanced methods and the increased accuracy with which a material’s behaviour may

be approximated, high temperature components can be operated safely for longer and in

more arduous conditions. In addition to this statement, several conclusions in individual

research areas have been outlined:

• When a single set of material constants should be adequate to predict multiple

experiments, an optimisation procedure to determine these material parameters

should use cleaned experimental data (to avoid numerical instabilities) and object-

ive functions should be evaluated simultaneously for all experimental data sets

(combined parallel optimisation).
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• The Chaboche unified visco-plasticity model may be modified (in the drag stress

equation) to include secondary hardening effects. Using the correct optimisation

procedure, excellent qualities of fit may be achieved for cyclic experimental data

(with coefficients of determination in the region of 0.99).

• The choice of creep damage model should be carefully considered prior to its use.

If a power law model is used rather than a hyperbolic sine model and its material

constants are determined for a higher stress range than that of interest, potentially

larger discrepancies in estimated failure times can be observed, particularly in

multiaxial load cases.

• The stress concentration effect of a scoop sample in a piping component may

be approximated by a polynomial expression. This information may be used to

determine the likelihood of failure due to the scoop sampling activity.

• The geometry of pipe bend sections showing manufacturing induced dimension

variation may be accurately described by two characteristic equations and two

geometry factors. Peak rupture stresses in pipe bend sections may be related to

these factors by a polynomial expression.

• The stress state in a pressurised 3D pipe model with dimension variation can be

approximated by using multiple 2D models that defined the cross section of the

3D model at critical locations.

• A partially connected neural network can be created that will predict the peak

stress in a pipe bend section due to the application of system loads and an internal

pressure.

At the end of each research chapter, comments have been made as to how the

research in that particular area may develop in the future. In general, there are several

directions which the analysis methodology could develop. Firstly, the full methodology

should be incorporated into a user friendly GUI, similar to that used to construct FEA

models in section 7.3.2. This GUI (along with a suitable user manual) would encourage

the implementation of the advanced techniques that have been discussed. Additional

component types could also be considered in future development and implementation

of the methodology. Weld models have been included in the FEA model generation

routines in section 7.3.2, however additional general models, such as steam chests,

headers and branch pipe sections could also be produced and analysed.

In the majority of cases, steady-state peak rupture stresses have been used as a

metric to judge the potential for a reduction in remnant life for a geometry/loading

condition. It has often been assumed that these peak rupture stresses can give an

indication of failure location as damage accumulation in creep damage models is largely

controlled by this parameter. Indeed, in section 7.3.3, particularly in figures 7.7 and 7.8,

a steady-state rupture stress distribution for a pipe bend under system loads was a good
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approximation of the damage distribution in the same pipe. The time to failure predicted

by the rupture stress was also a reasonable approximation of the damage time to failure.

Additional research needs to be conducted to verify that peak rupture stresses may be

used in all cases to approximate the damage accumulation in a component operating

under creep conditions. Furthermore, due to the extrapolation discrepancies in power

law models for reduced stress cases (see chapter 4), a method to relate the steady-state

stresses in hyperbolic sine models to damage accumulation should be investigated.

Pipe bend geometry characterisation and analysis can be expanded in several areas.

Some classification of ovality such as the out of roundness factor used in BS 806129 could

be included in parametric equations for example. While little ovality was observed in the

industrial data in section 6.3.2, this may be due to the measurements being taken from

in service pipe work (an internal pressure will act to reduce ovality120). System loads

have been incorporated into a neural network, however their inclusion in a parametric

equation may be possible using the combined primary and secondary loading reference

stress used in the R6 procedure126, for example. Parametric equations and the neural

network may also be developed or modified to predict the location of the maximum

rupture stress. This can be used to predict the possible failure location and may provide

a starting point for inspections. Thermal loads inside the pipe bend sections have also

not been considered in the present work. While system loads analysed in section 7.4.3

may be driven by the thermal expansion and distortion of a piping system, additional

stresses in the pipe will be created by a temperature differential over the wall thickness.

Future work should look to incorporate these effects as they may prove significant in

the simulation of start up/shut down behaviour.

Material models that can accommodate the more complex (and realistic) fluctuations

in loading and operational temperature could be used to establish more accurate failure

time predictions. Typical start-up/shut down cycle profiles could be used to extrapolate

loading conditions for a specific pipe bend geometry (similar to resolving the loading

history in the R5 procedure125). Using a damage function in, say, the Chaboche model,

failure times could be estimated by determining the number of cycles which a compon-

ent could withstand before rupture. Methods to interpolate the behaviour predicted

by the Chaboche model for fluctuations in temperature should also be considered (at

present, only isothermal loading conditions are considered), as well as any loading rate

dependencies that may exist.
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