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Abstract

The work in this thesis is focused on the study of neuroinflammation with molecular magnetic

resonance imaging (MRI) methods. Neuroinflammation is a response of the central nervous sys-

tem to pathological insult and it is present in many neurological disorders, such as Alzheimer’s

disease. Being able to image neuroinflammation non-invasively with MRI techniques would

have an important clinical value for diagnosis and assessment of therapy effectiveness. The

aim of this work is to develop and validate an MR biomarker of neuroinflammation using MR

Spectroscopy (MRS) and chemical exchange saturation transfer imaging (CEST). First, intra-

venous administration of lipopolysaccharide (LPS) is used as a mild inflammatory stimulus in

wild type mice and in a mouse model of Alzheimer’s disease (AD). Elevated levels of the os-

molyte myo-inositol, measured with MRS and microglia activation are found in AD mice after

LPS administration. Due to the inherent low spatial resolution of MRS, a CEST MRI method is

developed next. A myo-inositol CEST protocol is optimised, using Matlab simulations based on

the Bloch-McConnell equations for a three pool model, in order to maximize the contrast and to

estimate the amount of signal that can be expected in vivo. In vitro and in vivo tests are presented

and a fast CEST sequence is developed, while the experimental difficulties and limitations of the

technique are discussed. A CEST protocol is finally applied to evaluate the metabolite response

to an LPS inflammatory challenge using MRS and histology as validation. A correlation is de-

scribed between CEST and MRS myo-inositol levels, as well as between CEST and microglia

concentration (Iba1 immunostaining), which highlight the potential of CEST as a non-invasive

in vivo neuroinflammatory biomarker.
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Introduction

The aim of this thesis is to develop and validate an MR biomarker of neuroinflammation in a

mouse model of Alzheimer’s disease, using MR Spectroscopy (MRS) and chemical exchange

saturation transfer imaging. Neuroinflammation is a response of the central nervous system to a

pathological insult and it plays an important role in a wide range of neurological disorders, such

as neurodegenerative diseases (Alzheimer’s disease, Huntington’s disease or amyotrophic lateral

sclerosis) and inflammatory disorders like multiple sclerosis and stroke. Molecular imaging is

the discipline dealing with the characterization, measurement and visualization of the biological

pathways at the cellular/molecular level. Being able to image neuroinflammation non-invasively

with molecular magnetic resonance (MR) techniques would provide clinicians with an invalu-

able tool for early diagnosis of these disorders, assessment of progress disease and of therapy

effectiveness.

In vivo MR Spectroscopy is a robust tool, which can be applied to measure key metabolites of

neuroinflammation, but suffers from poor spatial resolution in order to gain an understanding of

such a dynamic process. Not affected by this limitation, chemical exchange saturation transfer

is a molecular MRI contrast mechanism, which benefits from ultra high magnetic fields and can

provide metabolite specific contrast in the form of high resolution images.

The main challenges to attain these objectives are finding the right quantitative molecular biomarker,

having a robust neuroinflammatory model with which to test the hypothesis and finally, the de-

velopment and validation of a reproducible in vivo CEST protocol. The aim of this work was

therefore to establish a robust in vivo CEST protocol and then apply this method in the context

of neuroinflammation. For that, a neuroinflammatory stimulus will be used, together with a

control method (MRS) and validation (histology), to find out where the contrast is coming from.

Chapter 1 introduces basic NMR concepts, starting from the quantum mechanics of nuclear

magnetization and a description of macroscopic NMR theory and techniques. Building on these

basic principles, magnetic resonance spectroscopy (MRS) and chemical exchange saturation

transfer (CEST), which are the main techniques used in this work, are then discussed in detail.

Chapter 2 presents the concept of neuroinflammation and the processes involved, followed by a
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review of the state of-the-art of molecular imaging methods for monitoring neuroinflammation,

which identifies the need for novel non-invasive quantitative molecular biomarkers.

Chapter 3 describes the detection of the early metabolic response to a mild inflammatory stimu-

lus (lipopolysaccharide administration, LPS) with MR Spectroscopy. In a pilot study, the inten-

sity and time course of the response was evaluated, in a series of in vivo experiments. Then, a

full study, including wild type mice and an Alzheimer’s disease (AD) mouse model, where the

neuroinflammatory response is expected to be amplified, together with histological techniques

for validation. The aim of this chapter is to evaluate metabolite changes with a established tech-

nique such as MRS and a particular focus on the glial marker myo-inositol, considered as a good

candidate for an in vivo non-invasive neuroinflammatory biomarker.

Chapter 4 starts with a review of theoretical aspects of CEST. The rest of the chapter describes

the work performed in order to optimise a CEST experiment: first, computer simulations based

on a two or three compartment exchange are presented and compared with in vitro data from

phantoms containing CEST metabolites. This chapter is focused on optimising CEST parame-

ters, in order to maximize the contrast for in vivo experiments and to gain a better understanding

of the CEST process and the associated practical problems.

Chapter 5 builds on the CEST optimization work from chapter 4 to develop an optimised in vivo

chemical exchange saturation transfer protocol at 9.4 T. The computer simulations from chapter

4 are used for optimising the in vivo CEST contrast. Fast MRI readout techniques are evaluated

for robustness and reproducibility to acquire CEST images, and the animal setup is optimised

to minimise motion and B0 inhomogeneities. Finally, following from chapter 3, a 9.4 T in vivo

CEST study is presented, investigating the response to a mild inflammatory stimulus (LPS) of

AD mice and controls, with MRS and histology for validation.

Chapter 6 summarizes the main findings obtained in this work, the limitations of the exper-

iments, potential clinical applications/translation and discusses possible future steps for the

project.
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CHAPTER 1

Nuclear magnetic resonance review

1.1 Introduction

Nuclear Magnetic Resonance (NMR) is the study of the magnetic properties of the nuclei, first

described by Bloch and Purcell in 1946. By measuring the electromagnetic energy absorption

of a nucleus when placed in an external static magnetic field, information about its internal

structure and quantum properties can be revealed. The non-invasive nature of the method makes

it ideally suitable for studying the structure of living tissues, with techniques such as in vivo

magnetic resonance spectroscopy (MRS) and in vivo magnetic resonance imaging (MRI) [1].

This chapter introduces the basic NMR principles. The quantum mechanics of nuclear magneti-

zation are briefly considered (1.2.1), followed by a description of macroscopic NMR theory and

techniques. Magnetic resonance spectroscopy (MRS) is discussed in detail in section 1.3, con-

tinuing with a short introduction to magnetic resonance imaging (MRI, 1.4) and a more detailed

review of chemical exchange saturation transfer (CEST, 1.5).

1.2 Nuclear magnetic resonance, NMR

1.2.1 Nucleus in a static magnetic field

Orbital angular momentum Any object with a rotational motion around an specific point has

a property called angular momentum, a conserved vector defined ~L =~r ×~p =~r ×m~v.

Therefore, electrons spinning around a nucleus will have a non zero angular momentum,

whose amplitude and direction are quantized in the quantum mechanical description:

L = (h/2π)
√

l(l +1) (1.2.1)
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ẑ component:

Lz = (h/2π)ml (1.2.2)

with ml being a set of 2l + 1 values, between −l and +l. Therefore, a particle with a

orbital angular momentum l can have any of these 2l +1 sublevels, which are degenerate

(have the same energy) in the absence of an external electromagnetic field.

If we now consider an atom from a classical point of view, the electrons rotating around

the nucleus create a current, which gives raise to a magnetic field and therefore has a

magnetic moment. Both orbital magnetic moment and orbital angular momentum are

related by the gyromagnetic ratio γl , which is specific for each nucleus [2].

Spin angular momentum Spin is an intrinsic property of the elementary particles. As a type

of angular momentum, its quantum mechanical description is as follows

s =
√

s(s+1)h (1.2.3)

sz = msh (1.2.4)

with ms being a set of 2s+1 values, between −s and +s (sublevels). Spin is also related

to a spin magnetic moment by the gyromagnetic ratio γs.

Total angular momentum The general quantum mechanical form of the coupling of both spin

and orbital angular momentum for an elementary particle is:

j =
√

j( j+1)h; j = l+/− s (1.2.5)

jz = m jh (1.2.6)

again with m j being a set of 2 j+ 1 values (sublevels), between − j and + j. An angular

momentum has an associate magnetic moment~µ, in this case~µ j = γ~I

Total angular momentum of a nucleus: nuclear spin Nuclei are often considered as single

entities with total angular momentum ~I (also misleadingly called nuclear spin), taking

into account the total angular momentum of all the protons and neutrons forming the

nucleus. This is the expression of the related magnetic moment ~µ , ~µ = γ~I, making it

clear that as nuclear spin is quantized, so is the magnetic moment. Moreover, if a nucleus

has a zero nuclear spin, its magnetic moment is also zero, thus not presenting any of the

properties outlined next.

Now an external static magnetic field, ~B0, is introduced in the picture. In the absence of

an external electromagnetic field the 2I +1 nuclear spin states have the same energy, but

when one is introduced the degeneracy is lifted. This phenomenon is called the Zeeman

effect.

EZ =−~µ× ~B0 (1.2.7)
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By taking ~B0 as a constant magnetic field in the~z direction, that is, ~B0 = B0k̂, the expres-

sion 1.2.7 becomes:

EZ =−µzB0 =−γmI~B0 (1.2.8)

All of these energy states are within the ground state of a nucleus and the energetic differ-

ences among them are much smaller than the one between the ground state and the first

excited state. The energy gap between two Zeeman states (assuming I is 1/2) is:

∆EZ =−(
1
2

γ~B0 +
1
2

γ~B0) = γ~B0 (1.2.9)

In order to observe a transition from one level to the other, the amount of energy ∆EZ

would have to be supplied to the nucleus. This can be achieved with electromagnetic ra-

diation of the appropriate frequency, called the Larmor frequency or resonance frequency,

ωL :

γ~B0 = ~ω (1.2.10)

ωL = γB0 (1.2.11)

If the external electromagnetic field introduced is very strong (orders of magnitude higher

than the ones produced in NMR), the effect it produces is called the Paschen-Back effect,

widely studied in astrophysics [3]. The term "very strong field" is relative, since the field

strength required depends on the particular energetic transition being considered. A strong

field is one that induces Zeeman splitting comparable with or greater than the multiplet

splitting of energy levels. In this limiting case, the spin and orbital angular momenta align

independently with ~B0, a total angular momentum ~J is not defined and the splitting of the

energy levels follows different selection rules.

1.2.2 Precession

When an external static magnetic field, ~B0, is applied to a nucleus, its magnetic moment experi-

ences a torque~τ trying to align it to the main magnetic field ~B0.

~τ =~µ× ~B0 (1.2.12)

From the definition of torque,

~τ =
d~I

dt
(1.2.13)

and since~µ = γ~I, then
d~µ

dt
= γ~µ× ~B0 (1.2.14)

Assuming that ~B0 is a constant magnetic field in the z direction, ~B0 = B0k̂, the magnetic moment

of a nucleus in presence of an external static magnetic field precesses around the~z axis with a

4



CHAPTER 1: NUCLEAR MAGNETIC RESONANCE REVIEW

quantized angle, a fixed amplitude and a fixed frequency depending on the magnitude of ~B0, the

Larmor frequency.

ωL =−γB0 (1.2.15)

The Larmor frequency is also the one corresponding to the energy increment between the differ-

ent Zeeman levels of a specific isotope. In order to determine its value (and consequently iden-

tify the nucleus being studied), an oscillating electromagnetic field, i.e.. ~B1(t) = B1maxcos(wLt),

can be applied to the nucleus. In NMR, they are frequently called radiofrequency fields, as they

oscillate in the same frequency range as the radio waves (MHz).

1.2.3 Bloch equations

When there is not a single nucleus but a macroscopic sample, it is useful to consider the total

magnetic moment of the sample, the magnetization

~M =
N

∑
i=1

µi (1.2.16)

which is initially assumed to be pointing towards the z axis.

~M = M0ẑ (1.2.17)

The introductions of the static magnetic field ~B0 and the oscillating electromagnetic field ~B1 will

induce changes in both the magnitude and direction of ~M. Bloch equations are the macroscopic

equivalent of equation 1.2.14:
d ~M

dt
= γ(~M × ~B(t)) (1.2.18)

where

~B(t) = ~B0 + ~B1(t)

~M = M0ẑ

~B0 = B0ẑ

~B1 = (B1x,B1y,0)



























⇒
d ~M

dt
= γ
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∣

∣

∣
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∣
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An easy way of simplifying these equations consists of the introduction of a rotating frame

of reference, rotating around the z axis with the Larmor frequency. Consequently, ~M is only

affected by ~B0 and equation 1.2.18 is reduced to:

d ~M

dt
= γ(~M× ~B1(t)) (1.2.19)

The axis of the rotating frame of reference are represented by x’, y’ and z.
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1.2.4 Excitation

Excitation results from applying a radiofrequency pulse ~B1 to the system, producing a precession

of the magnetization ~M around the axis of ~B1. This can be illustrated using the Bloch equations.

If the RF field is applied in the x’ direction, then:

d ~M

dt
=









0 0 0

0 0 γB1x′

0 γB1x′ 0

















M′
x

M′
y

Mz









=









0

γB1x′Mz

−γB1x′M′
y









(1.2.20)

d2M′
y

dt2 = γB1x′
dMz

dt
=−γ2B1x′2M′

yM′
y = Asin(γB1x′t)+Bcos(γB1x′t) (1.2.21)

where A and B are complex constants depending on boundary conditions. If M′
y = M′

y(0) and

Mz = Mz(0) when t=0, then A = Mz(0) and B = M′
y(0). Also as ~B = ~B1x′, γB1x′ = w. Therefore:

~M′
x(t) = M′

x(0) ~M′
y(t) = Mz(0)sin(wt)+M′

y(0)cos(wt)

~Mz(t) = Mz(0)cos(wt)−M′
y(0)sin(wt)

}

(1.2.22)

and in matrix form








M′
x

M′
y

Mz









=









1 0 0

0 cos(wt) sin(wt)

0 −sin(wt) cos(wt)

















M′
x(0)

M′
y(0)

Mz(0)









(1.2.23)

or








M′
x

M′
y

Mz









= R









M′
x(0)

M′
y(0)

Mz(0)









(1.2.24)

The matrix R corresponds to the rotation around the x axis.

1.2.5 Relaxation

During the excitation process, the sample absorbs electromagnetic energy and its magnetization

rotates towards the xy plane, called the transverse plane (while the plane parallel to ~B0 and
~M(0) is known as the longitudinal plane). The rotation angle θ = ωt depends on the duration

and frequency of the ~B1 pulse, and once ~B1 is turned off, ~M returns to its original state, a process

called relaxation. That change in ~M is the responsible for the NMR signal as it induces an

electromotive force (oscillating at the Larmor frequency) in a detector coil, which registers the

signal. Once ~M has returned to its initial position along the z axis, the NMR signal ends. This

signal is called free induction decay (fid).

Relaxation involves two different processes: On one hand, after switching off ~B1 the individual

spins in the sample gradually release the energy absorbed during the excitation and return to
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the less energetic state (parallel to the static magnetic field). This is called longitudinal relax-

ation, as the longitudinal component of the magnetization (Mz) is the one undergoing a change,

recovering up to its initial value ~M0, in an exponential manner ruled by time constant T1:

d ~Mz(t)

dt
=−

~Mz(t)− ~M0

T1
(1.2.25)

On the other hand, the spins in the sample precess in the transverse plane after excitation, ini-

tially with the same phase (coherence) which is lost with time due to mutual interactions (some

of them start precessing faster and others slower) in what is known as transverse relaxation (be-

ing the so called transverse components of the magnetization vector M′
x and M′

y). Transverse

relaxation is an exponential decay, governed by the time constant T2.

d ~MT (t)

dt
=−

~MT (t)

T2
(1.2.26)

Another factor causing transverse relaxation is the imperfect homogeneity of ~B0 and its effect

on the different spins. When both phenomena are taken into consideration, the time constant is

then T2∗.

Longitudinal relaxation and transverse relaxation can be expressed as part of the Bloch equation.

Their effects on the different magnetization vector components are illustrated in Figure 1.1:

d ~M

dt
= γ









0 0 −B1y′

0 0 B1x′

B1y′ −B1x′ 0

















M′
x

M′
y

Mz









+









− 1
T2

0 0

0 − 1
T2

0

0 0 − 1
T1

















M′
x

M′
y

Mz









+









0

0
M0
T1









(1.2.27)
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Figure 1.1: Relaxation effects and magnetization vector components: A) Mx decay over

time, due to transverse relaxation (T2). B) My decay with time, due to transverse

relaxation (T2) C) Mz recovery with time, due to longitudinal relaxation (T1) D)

Mx and My decay exponentially with the same time constant (T2) E)

√

Mx
2 +My

2

decay with time due to transverse relaxation (T2). This magnitude corresponds to

the signal measured in a NMR experiment. T1 of 600 ms, T2 = 100 ms

1.2.6 Echo formation

A spin echo results from the refocusing of the magnetization of excited spins by another elec-

tromagnetic pulse (of ideally 180◦). The reason for using such a refocusing pulse in an NMR

experiment is that it is much easier to measure the signal of the echo than to measure the free

induction decay (fid). Another advantage of this technique is that it provides some shielding

against ~B0 inhomogeneity due to the refocusing pulse (transverse relaxation is therefore T2 de-

pendent, with T2* effects removed).
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Figure 1.2: Echo formation, from [4]:

A) In the rotating plane, the net magnetization (red arrow) is aligned parallel to

the main magnetic field B0, lying along the z axis. B) A 90 ◦ excitation pulse

flips the magnetization to the transverse plane xy (perfect pulses are assumed). C)

After the 90 ◦ excitation pulse, the newcomer spins in the transverse plane start to

dephase, due to B0 local inhomogeneities, thus losing coherence and complicating

a measure of the signal just then (fast decay). D) A 180 ◦ pulse is applied, which

effectively corrects for the dephasing of the spins which will recover coherence

and consequently produce the strongest signal (an echo) at twice the time between

both pulses, usually called echo time (TE, E) to F)) .
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1.2.7 Fourier transformation

The Fourier transform is a mathematical operation that extracts the frequency spectrum of a

signal. Therefore, an oscillating signal at only one frequency will have a Fourier transform with

one single peak at that frequency 1; if it is a composite signal made up by several oscillations

at different frequencies, the Fourier Transform will be a mathematical representation of that

spectrum [5]. The operation going from the time domain (original signal) to the frequency

domain (resulting frequency spectrum) is called Fourier Transform (FT) and the opposite one,

Inverse Fourier Transform (IFT) [6].

FT [g(t)] = G(k) =

∞∫

0

g(t)e−2πikt dt IFT [G(k)] = g(t) =

∞∫

−∞

G(k)e+2πikt dk (1.2.28)

Equation 1.2.28 refers to the continuous FT and IFT, but in an NMR experiment the signal is

sampled at discrete times resulting in a sum of multiple delta functions, with an algorithm called

FFT (fast Fourier Transform [7]).

1.3 Magnetic resonance spectroscopy (MRS)

NMR spectroscopy is a non-invasive technique that uses nuclear magnetic resonance to charac-

terize the internal structure of matter. NMR sensitivity depends on the gyromagnetic ratio and

the external magnetic field (see equation 1.2.11). The gyromagnetic ratio γ is specific for each

nuclei and it sets 1H NMR spectroscopy as the most common MRS technique, since 1H has

the second highest γ (being tritium the first) and with added advantages such as its high abun-

dance. Other spectroscopy techniques include nuclei such as 13C(carbon 13), 31P(phosphorus

31), 19F(fluorine 19), 23Na(sodium 23) or 39K(potassium 39) [8].

1.3.1 Chemical shift

One important concept towards investigating the structure of a molecule is that of the chemical

shift, which accounts for the different resonant frequencies the same nucleus can have depending

on its position in a molecule. This phenomenon is caused by a varying degree of electronic

shielding of the nuclei depending on its chemical environment. By applying a Fourier transform

to the NMR signal of a sample, its frequency spectrum can be obtained.

1The symmetry property dictates that for real-valued time functions, the Fourier transform is conjugate symmet-

ric, F( -ω) = F*(ω) and hence, only the transform of positive ω values is needed for such a function. Therefore,

a periodic function like sin(x), will contain transformed peaks in not one, but two places (positive and negative

frequency components).
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Chemical shifts are usually not measured in Hz, since this would depend on the scanner field

strength B0. Instead they are expressed as the distance to a reference frequency in ppm (parts

per million). The chemical shift of the singlet tetramethylsilaneis (TMS) is the accepted internal

standard for calibrating chemical shift for 1H MRS. TMS is assigned as 0 ppm and all other

chemical shifts are determined relative to it.

1.3.2 J coupling

NMR sensitivity depends on the gyromagnetic ratio and the external magnetic field (equation

1.2.11). Hence, it can be improved by increasing the magnetic field ~B0 (high-resolution NMR

spectra). As a consequence, the peaks can be seen to be split into smaller ones, caused by

the phenomenon called scalar or J-coupling, an interaction between a nuclear spin indirectly

influencing one another through hyperfine interactions with local electrons. J coupling is field

independent and it provides information on the structure of molecules, allowing compound iden-

tification. Dipolar couplings, where two nuclear spins directly influence each other are prevalent

in liquids, but cancel out due to rapid molecular tumblings.

1.3.3 Single volume localization and chemical shift displacement artifact

In an 1H MRS experiment, the signal comes from all protons in the sample. For an in vitro

experiment with a uniform sample this is not a problem, but in an in vivo experiment the situation

is different: without the use of volume localization, tissue and magnetic field heterogeneity will

produce a non specific and broad signal.

Once a region of interest (ROI) is established, volume localization removes unwanted signals

coming from outside the ROI, therefore creating a more meaningful metabolite signature for the

region studied. Also, it produces narrower spectral lines, with more uniform excitation, since

B0 and B1 homogeneity improve when reducing the ROI.

The most common localization methods use a frequency selective radio-frequency (RF) pulse

in the presence of a magnetic field gradient to choose a voxel. Adding a magnetic field gradient

~G yields:

B(~r) = B0 +~r~G (1.3.1)

ω(~r) = γB(~r) = γB0 + γ~r~G (1.3.2)

where γ is the gyromagnetic ratio and ω the frequency. Assuming ~G is a gradient applied in the

~x direction,

ω(x) = γB0 + γxGx = ω0 + γxGx (1.3.3)
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and looking at the position x,

x =
ω(x)−ω0

γGx

(1.3.4)

This results in a chemical shift displacement or spatial displacement between species with dif-

ferent chemical shifts. Chemical shift (∆ω) is the resonant frequency of a particular nucleus

compared with the water frequency, it depends on the gyromagnetic ratio, the main magnetic

field and more importantly, on the chemical environment of the nucleus.

∆x =
∆ω

γGx

(1.3.5)

From this equation, it is apparent that the chemical shift displacement increases with high fields

for an equal gradient strength. For example, the chemical shift water-lipids at 4 T is around 580

Hz, while at 9.4 T is 1360 Hz. This could mean a displacement of around one mm in a 2x2x2

mm voxel (PRESS sequence, 7 T). Therefore, tissue heterogeneity must be taken into account

for example to avoid lipid contamination in a voxel in the brain from lipids from outside the

skull.

1.3.4 Shimming

High magnetic field homogeneity is required to clearly discriminate between close metabolic

resonances in a MRS spectrum. Shim coils generate currents that can minimise the inhomo-

geneity of the main magnetic field ~B0 for a sample. A linear expansion of spherical harmonic

functions is used to describe the distribution of the magnetic field ~B0, with the typical shim coil

setup allowing to correct up to the second order:

~B0 =
∞

∑
n=0

n

∑
m=0

Cnm(
r

a
)

n

Pnm(cosθ)[m(φ−ψnm)] (1.3.6)

where a is the average bore radius, r the sample position, and Cnm and ψnm are constants. Shim-

ming is performed either manually or using automated methods:

Manual shim requires manually altering the currents in each shim coil until the desired homo-

geneity is achieved, which can be a challenging task for in vivo applications.

Automatic shimming methods:

Magnetic field map based shimming After defining the region of interest to be optimised, the

coefficients of the linear expansion of spherical harmonics for the ~B0 distribution in that

region are calculated and the shims are adjusted accordingly. The ~B0 distribution is ob-

tained from a gradient echo based field map.

Projection based shimming The ~B0 distribution is portrayed by measuring the field along a

limited number of linear projections. Methods like FASTMAP (fast automatic shimming
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technique by mapping along projections) are quick and efficient for regions of interest

with a simple geometry.

1.3.5 Water suppression

Water is the most abundant tissue molecule containing protons, resonating at around 4.7 ppm.

In vivo, due to the low concentration of all the other proton-containing metabolites compared

with free water, the water peak dominates the spectrum and water suppression is necessary to

accurately detect the rest of metabolites. There are a range of protocols to achieve a specific

suppression of the water resonance in a spectrum; the two most common are:

CHESS Chemical shift selective water suppression (CHESS) consists of a RF selective satu-

ration pulse on the water frequency followed by a magnetic field gradient dephasing all

the coherences in the water protons, prior to excitation. This is usually repeated a few

times, due to imperfect suppression caused by B0 and B1 inhomogeneities. This protocol

does not disturb the magnetization in the area of interest, though it requires a fast readout

sequence afterwards, since the magnetization of the suppressed water will recover with

T1.

VAPOR Variable pulse powers and optimized relaxation delays (VAPOR) combines the CHESS

approach with T1 water suppression (using optimised delays between the pulses that ex-

ploit the T1 differences between the water and other metabolites) and it is mostly used for

in vivo applications.

1.3.6 MRS sequences: PRESS, STEAM, LASER

PRESS Point Resolved Spectroscopy (PRESS) is a double spin echo technique, with two 180◦

refocusing pulses after a single 90◦ excitation pulse (all slice-selective). Sequence details

are shown in Figure 1.3. Crusher gradients around the 180◦ refocusing pulses ensure the

dephasing of the signal from outside the desired volume.

STEAM Stimulated Echo Acquisition Mode (STEAM) uses three 90◦ pulses, Figure 1.4 (in-

stead of 90◦ 180◦ 180◦ for PRESS).

Advantages of STEAM are the short echo times that can be achieved (a few ms, allowing

for more metabolites visualization), but it has a lower SNR than PRESS, since half of the

signal is lost in the creation of the stimulated echo (the second 90◦ pulse only flips half

of the transverse magnetization to the longitudinal axis, the other half being dephased by

crushers).
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Figure 1.3: PRESS pulse sequence, from de Graaf [8]: The 90◦ pulse flips the spins to the

xy plane and the first 180◦ pulse creates an echo at time 2t1. After a t2 delay, a

second 180◦ pulse refocuses the signal again, creating an echo at 2t1 + 2t2, the TE

of the sequence. The signal from the final echo is coming from the intersection of

the three planes selected by the three pulses, thus defining a volume.

LASER Localization by Adiabatic Selective Refocusing (LASER) uses adiabatic excitation

and refocusing pulses. The advantage of this method is that it is insensitive to B1 varia-

tions (adiabatic) and produces defined excitation profiles at high fields (also minimizing

chemical shift displacement), since refocusing adiabatic pulses have a much higher band-

width compared to the pulses used in PRESS or STEAM [9]. A disadvantage is the longer

TE required, due to the many pulses used for refocusing.

14



CHAPTER 1: NUCLEAR MAGNETIC RESONANCE REVIEW

Figure 1.4: STEAM pulse sequence, from de Graaf [8]: This kind of sequences generates

four spin echoes: from the first pulse and the second (at TE), from the first pulse

and the third (at T E + 2TM), from the second and the third (at T E
2 + 2TM), from

all three (at 2TM, equivalent to the PRESS echo) and one stimulated echo (at

TE +TM). This final echo is the one STEAM uses, and therefore all the others

are suppressed via gradient crushers.
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Figure 1.5: LASER pulse sequence, from de Graaf [8]: A non-selective adiabatic pulse (B1

insensitive rotation composite pulse, BIR-4) performs the excitation of the whole

sample, followed by three pairs of adiabatic full passage (AFP) refocusing pulses,

defining the volume of interest. Signals from outside are removed with crusher

gradients around the AFP pulses.

1.3.7 Postprocessing

Eddy current correction Faraday’s law of induction establishes that changing magnetic fields

induce electric currents in conductors. Rapidly switching the gradients in a localised

MRS sequence creates eddy currents, which produces asymmetric resonances in an MRS

spectrum. A simple way of removing residual eddy currents is by acquiring a reference

scan without water suppression with the same parameters, and later using it to correct the

suppressed spectrum. This is equivalent to performing a first order phase correction in the

dataset.

Phase correction and frequency alignment The signal to noise (SN) of an MRS spectrum can

be improved by increasing the number of averages, although there is a trade-off between

SN and acquisition time. Individually acquiring spectra in small groups can be useful

when there are movement artifacts over a long in vivo experiment, since macroscopic

motion can lead to a loss in signal due to phase cancellations in the spectra summation,

which can be avoided by prior individual phase correction.

In a similar fashion, individual/small groups frequency alignment will produce narrower

spectral widths and reduce artifacts in the final spectrum in the presence of motion or

frequency drift.
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1.3.8 Metabolite quantification

In a 1H MRS spectrum, there is an overlap between the MRS peaks of the metabolites.

Therefore, even if a metabolite concentration is directly proportional to the total area un-

der its peak(s), it is often difficult to discern the individual peaks. MRS metabolite quan-

tification can be achieved with the LCmodel [10]. This software performs an automatic

fit of an in vivo spectrum based on a model of linear combinations of in vitro individual

metabolites (the basis file, containing simulations or real spectra taken with the same se-

quence and magnetic field strength). The analysis provides metabolite concentrations and

their uncertainties, in the form of estimated standard deviations (Cramér-Rao bounds). A

free software alternative is TARQUIN (Totally Automatic Robust Quantitation in NMR

[11]).

Metabolite concentrations are usually expressed through ratios to another peak in the

MRS spectrum, conventionally total creatine or choline, since these are assumed to be

generally stable in in vivo tissue. In order to get absolute values, in units such as mil-

limoles per kilogram wet weight, there are several strategies:

External reference A phantom of known properties can be positioned inside the coil,

together with the subject and a reference spectrum is acquired, to establish a direct

comparison.

Replacement method This method consists of replacing the subject with a phantom sim-

ulating the same characteristics and then take a calibration measurement using the

same parameters (matching the previous coil load).

Water signal reference The water signal can be used as an internal reference, by taking

a spectrum without water suppression as a reference, with the rest of the parameters

identical.

In most cases, T1 and T2 values are required, together with postprocessing corrections

[12], involving segmentation of the grey/white matter areas in each voxel and accounting

for partial volume effects arising from different amounts of specific tissue types in the

voxel, such as cerebrospinal fluid [13].

When the usual approach is not enough to detect a particular metabolite of interest due

to low concentration or strong overlapping, spectral editing can be used, meaning that

special sequences are designed aiming to record only the target and eliminate the other

metabolites from the spectrum (commonly used for GABA, glutamine, lactate [12]).
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1.4 Magnetic resonance imaging (MRI)

MRS provides information about the composition of a sample and the structure of the molecules

contained in it, but it lacks information about the spatial distribution of those molecules. In

order to obtain spatial resolution, the magnetic resonance imaging (MRI) approach consists of

having the external magnetic field vary with the position in the sample. This spatial dependence,

which is automatically translated to the Larmor frequency (see equation 1.2.11) and therefore

to specific nuclei is achieved with the use of magnetic field gradients, resulting in the formation

of an image [14, 15].

Magnetic field gradients break the uniformity of the external magnetic field ~B0 making its

strength vary over space: ~B(r).
~B(r) = ~B0 +~r~G (1.4.1)

with ~G taking the form (for example) of a linear magnetic field gradient, that is, ~B changing

linearly with position~r,

~G =
d~B

d~r
−→

Gx =
dBx

dx

Gy =
dBy

dy

Gz =
dBz

dz



























(1.4.2)

The introduction of magnetic field gradients provide an alternative to the spin echo sequence. A

gradient echo sequence is faster than spin echo due to the absence of the refocusing pulse and

the fact that the flip angle of the excitation pulse is usually less than 90 degrees, so it requires

less time to recover, ready for the next excitation. Instead of refocusing pulses, gradients pro-

duce the echo, dephasing and rephasing the spins. It is more susceptible to artifacts caused by

inhomogeneities and magnetic susceptibility variations than spin echo sequences.

There are a number of properties of spins which can lead to contrast in MRI images. The

most basic are:

Relaxation As has been said in section 1.2.5, relaxation consists of two different processes.

Longitudinal relaxation refers to the longitudinal component of the magnetization Mz

recovering up to its initial value M0, following equation 1.2.25, whose solution is

Mz(t) = M0(1− e
−t
T1 ) (1.4.3)

Transverse relaxation is the loss of transverse magnetization caused by the loss of coher-

ence of the spins (equation 1.2.26) in a exponential decay

Mxy(t) = M0e
−t
T2 (1.4.4)
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The constants governing the recovery of the longitudinal magnetization T1 and the decay

of the transversal magnetization T2 can be used as a source of contrast for MRI, since they

are properties of the tissue being imaged.

One way of getting T1 contrast in an image is using a simple inversion recovery pulse

sequence: a 180◦ pulse followed by a spin echo acquisition. During the period following

the first 180◦ pulse (called inversion time, TI), all the spins with different T1 recover at

different rates, as can be seen in the simulation in Figure 1.6. In there, Mz1 and Mz2

(longitudinal magnetizations of nuclei with T 11 and T 12 respectively) start to differ at

the beginning during TI and will end up having different contrast in the final image if the

repetition time (TR) is chosen appropriately.
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Figure 1.6: Simulation of T1 contrast Inversion recovery sequence, two nuclei. T 11 = 300

ms,T12 = 150 ms, TI = 30 ms, TE = 70 ms. In blue, Mx of compounds 1 and 2

and in black, My of compounds 1 and 2. In red, Mz components, while the NMR

signal (modulus of transverse magnetization) is represented in green and fuchsia

colour. The difference between these last two lines provides the T1 contrast.

A simulation of a T2 weighted experiment can be seen in Figure 1.7, using a spin echo

signal.

Proton density Proton density imaging is the modality where the contrast in an image depends

on the number of protons per voxel, which again it is different between diverse tissue

types. If proton density is the contrast being sought, T1 and T2 contrast should be min-

imised, by chosen a long TR (protons fully relaxed) and a short TE value (minimal signal

decay before acquisition).
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Figure 1.7: Simulation of T2 contrast Spin echo sequence, two nuclei. T21 = 100 ms,T22 =

200 ms, TE = 150 ms. In blue, Mx of compounds 1 and 2 and in black, My of

compounds 1 and 2. In red, Mz components, while the NMR signal (modulus of

transverse magnetization) is represented in green and fuchsia colour. The differ-

ence between these last two lines provides the T2 contrast.

1.5 Chemical exchange saturation transfer (CEST) review: tech-

niques and applications

Ward et al. [16] were the first to indirectly observe a low-concentration labile metabolite using

magnetic resonance imaging (MRI) through the exchange of its protons with those of the sol-

vent water in a solution. They did so by applying a frequency selective saturation pulse to the

labile protons and measuring the signal loss being transferred to the water, naming the process

Chemical Exchange Saturation Transfer (CEST).

Figure 1.8: CEST exchange rates diagram: kba represents the exchange rate constant be-

tween pool B (solute, bound protons) and pool A (solvent, free protons), while kab

represents the back exchange.

Chemical exchange has been studied in many different nuclei: 1H , 31P,19F , 13C, 129Xe, however
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most of the CEST literature focuses on the chemical exchange of protons, i.e.

AH +B ⇔ A+BH (1.5.1)

where A is pure water and B a metabolite containing groups with exchangeable protons (such

as hydroxyl, amine, amide and imino groups). Chemical exchange is the origin of the CEST

contrast and depends on parameters such as the exchange rate between water and labile protons

(kex), the difference in their Larmor frequencies, the populations of the exchangeable protons,

water T1, T2 and magnetic field strength [17].

This contrast can be transferred to MR in different ways, although saturation transfer was the

first used and still dominates the CEST literature (even being part of the nomenclature).

1.5.1 Physical principles of the saturation transfer process

In a system consisting of a free water pool (pool A) and a metabolite pool with exchanging

protons (the bound water pool, pool B), both pools have an inherent magnetization. The mag-

netization vector, or total magnetic moment of a sample is defined as:

~M =
N

∑
i=1

µi (1.5.2)

where~µi represents the magnetic moment of nucleus i and N is the number of nuclei.

In the absence of any magnetic field all the spins are randomly orientated and the net magneti-

zation will be zero. But when the 1H protons are subjected to an external magnetic field (~B0),

their spins align either parallel or antiparallel to the field. Since the parallel alignment is the

lowest energy state of the two, it will be filled with a higher probability, following Boltzmann’s

Law and therefore creating a net magnetization ~M parallel to ~B0. This situation can be observed

in the left part of Figure 1.9 (from Sherry and Woods [18]), for both the bound and the free

protons, assuming that ~B0 is parallel to the z axis.

If an electromagnetic RF pulse ~B1 is applied to pool B (|~B1| << |~B0|) providing the spins with

enough energy as to equilibrate the population of both energy levels, ~M becomes zero like in the

absence of any magnetic field. This is called called saturation of pool B, and it is illustrated in

the center of Figure 1.9.

Protons are exchanged all the time in this system at a rate k (exchange rate of the reaction:

kab, from the solvent to the solute, and kba, from the solute to the solvent, see Figure 1.8), and

now that both pools have a different magnetization they produce a visible effect: the saturated

protons from pool B travel to pool A, which gradually becomes saturated, and the non-saturated

protons from pool A go to pool B to be saturated and continue the cycle. Consequently, the

water magnetization and therefore the MRI signal becomes attenuated, as in the right part of
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Figure 1.9: CEST contrast, from Sherry and Woods [18]

A) Most of the spins forming the magnetization of pool A (free protons) and pool

B (solute protons) are aligned parallel to the main magnetic field (z axis). B) An

electromagnetic RF pulse applied to pool B gives enough energy to equilibrate the

spin levels (saturation). C) The saturation of pool B is transferred to pool A by

chemical exchange, producing an attenuation of the water signal proportional to

pool B concentration.

Figure 1.9.

A complete saturation of the bound pool is difficult to achieve for saturation times shorter than

five times T1, specially with fast exchange rates and so a partial saturation is obtained instead in

most cases [19].

Other alternative possibilities for exchange transfer involve the use of label-transfer modules

(LTM) for inversion, dephasing or frequency encoding (FLEX method [20]).

1.5.2 CEST, MT and NOE

Chemical exchange saturation transfer is considered to be part of magnetization transfer (MT),

which has several different pathways, shown in Table 1.1.

Dipolar-dipolar interactions can be also called “conventional MT”, and have been known since

as early as 1978 [21]. They arise from the presence of a macromolecular pool, which is not

detected in a normal MRI experiment due to the short T2 (around 10 µs) of its tightly bound

protons, but can affect the magnetization of the free water pool through exchange processes. As

can be seen in Figure 1.10, the absorption lineshape of the macromolecular protons is of the

order of kHz, so any off-resonance RF pulse acting in that range will saturate these protons,

which is why it is impossible to entirely separate CEST and conventional MT contrast [22] with

this method.

Traditionally, the conventional MT effects were assumed to be symmetric around the water
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Name Description

Chemical exchange, CEST Chemical exchange between exchangeable pro-

tons (-OH, -NH2, -NH, -COOH, -SH...)

Dipolar coupling or Conventional MT Interactions between:

-Immobile protons from the macromolecule solid

phase.

-Bound protons on the hydrated molecular sur-

face.

-Free water protons.

Table 1.1: Magnetization transfer pathways

Figure 1.10: Conventional magnetization transfer, from Henkelman et al. [23]

Left Magnetization transfer between tightly bound protons (macromolecular

pool) and free protons in the surface layer (liquid pool). Right Broad absorption

lineshape of macromolecular protons, around 1-50 kHz, which will get saturated

by any RF CEST pulse applied at those frequencies.
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peak in the Z spectrum, hence making CEST the only source of asymmetry in it, calculated just

by subtracting both sides of the Z spectrum (analysis first made in 1998, by Guivel-Scharen

et al. [24]). However, older [25] and recent [26] findings showed that MT effects are in fact

asymmetric, or symmetric but shifted with respect to the water peak [27].

The Nuclear Overhauser Effect (NOE) is the transfer of nuclear spin polarization from one

nuclear spin population to another via dipole-dipole cross-relaxation. Overhauser predicted in

1953 the enhancement of nuclear spin polarization in metals upon saturation of the electron

spins [28], and the nuclear equivalent was described by Solomon in 1956 [29].

CEST studies at ultra-high magnetic fields have reported additional upfield magnetization trans-

fer effects at about 0-5 ppm in the proton spectrum or -5 to 0 ppm in the Z spectrum. These

effects have been attributed to NOE enhancements from aliphatic and olefinic protons. If signals

originating from non-exchangeable protons appear in a CEST experiment, this suggests the ex-

istence of a transfer mechanism to water. However, the nature of the mechanism producing the

observed NOE upfield, and how it affects the quantification of CEST contrast is still not clear

[30]. Ling et al., Jin et al. attributed it to direct through-space dipolar transfer [31, 32], while

van Zijl and Yadav proposed a relay mechanism via exchangeable protons [19].

1.5.3 CEST sequences: prepulses and readouts

A typical basic setup for a CEST experiment is shown in Figure 1.11: the offset irradiation par-

tially saturating the exchanging protons of a metabolite ("presaturation module"), followed by

an "imaging module", to look at the effect suffered by the main water peak due to the chemical

exchange of the saturated protons. There are two main types of presaturation modules:

Continuous wave prepulse : The simplest and easiest to optimise, it consists of a long (a

few seconds) low-powered rectangular off-resonance pulse with a constant pulse power.

Right before the imaging module, a crusher gradient spoils the residual transverse mag-

netization, so as to avoid any unwanted echoes appearing during the imaging module.

The CEST experiments using this approach are called CW-CEST. They can entail a high

power deposition (high specific absorption rate, SAR), which makes them unsuitable for

most clinical MRI scanners. The term CW refers to the use of one RF channel dedicated

to the continuous RF pulse and another one to the imaging module [34], but it is often

used to describe an approximation, or pseudo-CW approach. In this setup, a single RF

channel is available and the rectangular long prepulse is turned off right before the imag-

ing module, which should be as short as possible to avoid losing too much CEST contrast

(which decays with T1).

Train of shaped prepulses : Repeated off resonance shaped pulses with high power but short
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Figure 1.11: CEST presaturation schemes, from Sun et al. [33]

Top CW CEST: Long low-powered hard pulse (seconds) Bottom Pulsed CEST:

train of high-powered short shaped pulses (milliseconds each) separated by even

shorter delays.

width, spaced by shorter intervals can build up and maintain a saturation steady state,

in what is called a pulsed CEST experiment (see Figure 1.11, from Sun et al. [33]). As

before, random crusher gradients after each prepulse spoil the residual transverse magne-

tization, to avoid echoes due to transverse coherence [34]. The average ~B1 power can be

higher than in the CW-CEST case (less SAR), but ω1 is no longer constant and new pa-

rameters have to be considered when optimising the sequence, such as the duration of the

prepulses, the shape and the delay between them. Standard pulse shapes are Gaussian (the

most used [33–36]), Hanning-windowed Gaussian [22], sinc-gauss [37] or Fermi [38].

If the presaturation pulse were to be applied before every line of k space, a full CEST experiment

would be quite long, therefore fast imaging readouts are predominant for CEST studies in order

to improve temporal resolution. Sequences such as EPI [39–42], RARE [43, 44], FLASH [45]

or FISP [46–49] are commonly used.

1.5.4 Representing the CEST contrast

Metabolites can be identified through their CEST effect, normally represented in a Z spectrum,

which is a graph that shows the dependence between the intensity of the water signal and the

frequency ω of the ~B1 field. Assuming a two pool system (water and a single CEST species),

the water signal (normalised to the one observed without saturation) is measured throughout a

range of ~B1 frequencies, therefore having an almost constant value over the entire spectrum with

a big inflexion at the water frequency (set by default at 0 ppm), and a smaller one at the CEST

metabolite frequency, see Figure 1.12 (from Sherry and Woods [18]).
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Zspectrum =
Msat

M0
(1.5.3)

Figure 1.12: Example of an in vitro Z spectrum, barbituric acid, from Sherry and Woods

[18]

The water frequency is at 0 ppm and the barbituric acid exchanging protons res-

onate at about 5 ppm. There are no other contributions in this phantom.

CEST techniques require the condition of slow exchange regime, or slow to intermediate regime

in order to selectively saturate the solute protons [19]:

kba ≤ ∆ω (1.5.4)

where kba is the exchange rate from the bound protons to the free water and ∆ω is the chemical

shift (∆ω = ωwater −ωbound protons) [50]. Therefore, CEST benefits from high fields: the fre-

quency separation is increased and there is a reduced interference of direct water saturation.

The in vivo Z spectrum contains many more features: direct saturation or spillover is still

present at 0 ppm (its shape determined by B1, T1 and T2 relaxations), while the broad MT res-

onance determines the baseline, amine and amide CEST effects can be found at 2 ppm and 3.5

ppm respectively [52], accompanied by visible Nuclear Overhauser Effects (NOE) mediated

effects in the aliphatic range (see Figure 1.13). Several molecules containing hydroxyl groups

have CEST effects in the 0-1.5 ppm region [31, 43, 53, 54], but they are not separate peaks from

the water, which makes them harder to identify.
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Figure 1.13: Example of an in vivo Z spectrum, rat cortex, from Jin and Kim [51]

The water frequency is at 0 ppm. There are visible amine and amide CEST con-

tributions at 2 ppm (red arrow) and 3.5 ppm (black arrow) respectively, together

with NOE mediated effects (green arrow) and a broad MT asymmetric effect.
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1.5.4.1 MTRasym

In order to avoid spillover, which may dilute the CEST effect, an asymmetry analysis is often

applied [19], taken from the Magnetization Transfer literature:

CEST effect = MTRasym(∆ω) = MT R(∆ω)−MTR(−∆ω) =
Msat(−∆ω)

M0
−

Msat(∆ω)

M0
(1.5.5)

An assumption of the MTRasym metric is that the conventional magnetization transfer effects

are also symmetric around the water peak, which is just an approximation. Other metrics and

analysis methods have been recently developed to overcome the limitations of the traditional

MTRasym, while novel acquisition techniques exist to separate MT from CEST, but are outside

of the scope of this review (SAFARI [55], uMT [56], FLEX [20], LOVARS [57], CERT [58,

59]).

1.5.4.2 Other metrics and analysis methods

Inverse metric Eliminates spillover and macromolecular magnetization transfer effects (un-

wanted T2 and MT contributions) making it more CEST specific, but it requires the system

to have reached steady state or near steady state. [60, 61].

MTRRex(∆ω) =
1

MTR(∆ω)
−

1
MT R(−∆ω)

(1.5.6)

Model based analysis: multiple Lorentz pool fitting First proposed by Zaiss et al. [62], it is

a fast and semi-quantitative analysis method that decomposes the CEST spectrum into a

sum of Lorentzian shapes (with parameters such as amplitude A, width ω and frequency

offset ∆, see equation 1.5.7). The number of Lorentzian pools can vary according to

the application [63], but they often represent amide, amine, aliphatic peaks, MT, direct

saturation or if applicable, paramagnetic CEST compounds [47]. This method, based on

the weak saturation pulse approximation (more details in section 4.2.2), relies on enough

SNR and sampling points [62].

signal(∆) = 1−
n

∑
i=1

Ai = (1+(
∆−∆oi

0.5∗ωi

)2)−1 (1.5.7)

Model based analysis: MT Conventional magnetization transfer effects (MT) can be included

in the the Bloch equations via a 3-pool model: water pool, bound pool, macromolecular

pool, just by adding more coupled equations [64], similar to the situation when there

is more than one CEST agent [65], more details in section 4.2.3. An assumption made

in this case is the null proton exchange between bound pool and macromolecular pool

(negligible compared to exchange with water, because of the small concentrations of those
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two pools). Using this kind of model for fitting a CEST experiment -which as has been

said before, is always inherently also an MT experiment-, is an involved but more robust

alternative to the use of the asymmetry analysis (equation (1.5.5) [22]). The number of

pools for these analysis methods generally depends on the application, in approximation

of an ideal n-pool model.

Model based analysis: APTR* Similarly, this approach relies on a three pool model fitting of

CEST data, using the modified Bloch equations for chemical exchange, with pools for

water, amide and asymmetric MT effects (MT +NOE). However, the objective of this

method is to obtain a so called pure APT contrast (APTR*), which can be isolated from

the other effects offering more robust results than the traditional MTRasym metric [66].

1.5.5 CEST applications

Figure 1.14: Published Pubmed CEST papers, 2000-2014. The search included the terms

"CEST" and "Chemical exchange saturation transfer".

The CEST body of work has been constantly growing since the field started about fifteen years

ago (Figure 1.14), with new agents, techniques and applications. A CEST contrast agent is a

substance used to enhance the contrast of specific molecules in the body in CEST MRI imaging

and can be endogenous (from inside the organism) or exogenous (from outside the organism).

CEST agents are also often classified in three groups: diamagnetic CEST agents (diaCEST),

paramagnetic exogenous CEST agents (paraCEST) and hyperpolarized CEST (hyperCEST).

HyperCEST [67–84] uses xenon (hyperpolarised to increase detectability) as the solvent instead

of water and cryptophane cages to create the chemical shift.
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DiaCEST and paraCEST agents have very different frequency offsets referred to the water peak

(0 ppm): a range of 0-7 ppm for diaCEST compounds and from -800 ppm to +800 ppm for

paraCEST, which allows for imaging of faster exchanging species with more selective irradia-

tion (see reviews in [85–87]).

As CEST contrast agents, endogenous diamagnetic substances have important advantages. They

are non-invasive and readily available in the organism, but can be affected by low specificity

and SNR. In table 1.2 several amide, amine and hydroxyl CEST metabolites are listed, together

with reported in vivo applications (clinical and preclinical). Even though chemical shifts vary

depending on the proton site in a molecule, an unequivocal assignation of CEST peaks in the Z

spectrum to metabolites in vivo is normally not possible, due to many overlapping contributions.

However, knowledge of the CEST contributors in a specific tissue and their properties (exchange

rates, chemical shifts, T1, T2), can be used to establish a correlation between apparent CEST

effects and metabolites [52].

Endogenous

CEST

groups

In vivo CEST metabolite reports In vivo applications

Amines

-NH2

(2 ppm)

Creatine (CreCEST, 1.9 ppm) [88–91]

Amine proton exchange (APEX, 2.5 ppm)

[32, 92]

Glutamate (GluCEST, 3 ppm) [93–98]

Muscle energetics

Ischaemia

Neuropsychiatric disorders

Amides

-NH

(3.5 ppm)

Amide proton transfer (APT)

[26, 33, 59, 61, 66, 99–118]

Glycosaminoglycans NH (3.5 ppm)

(gagCEST) [31]

Cancer, stroke

Hydroxyls

-OH

(0.6-1.5 ppm)

Glycogen (GlycoCEST) [54]

Glycosaminoglycans OH (1-2 ppm)

(gagCEST) [31, 119–122]

myo-inositol (MICEST, 0.6 ppm) [53, 123]

Glucose (GlucoCEST) [43, 124, 125]

Glycogen metabolism

Osteoarthritis

Neurological disorders

Cancer metabolism

Table 1.2: Endogenous CEST

The CEST effect is mainly determined by the exchange rate and the concentration of the la-

bile protons relative to those of the water protons. Therefore, amide proton transfer (APT) is

by far the most studied endogenous CEST contrast, due to the very low exchange rate (around

30 Hz) and relatively high concentration, which permits imaging at clinical fields (3 T). One
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of the applications makes use of the sensitivity to pH changes (the exchange rate k of a CEST

metabolite is a function of temperature, pH and buffer properties of the solution [126]), to eval-

uate ischemic tissue [26, 66, 99, 108, 117], while others map the amide proton content in order

to identify tumours [105, 110, 113, 116], even grading them [118]. However, APT contrast is

affected by MT asymmetry and other contributions, which need to be isolated and understood

[61, 114].

On the other end, hydroxyl groups can have from 500 Hz to more than 10000 Hz exchange rate,

and they also suffer from small chemical shifts (0-1.5 ppm), which requires the use of high field

scanners (>7 T or equal) to try to meet the slow to intermediate regime condition. Moreover,

direct water saturation effects reduce their CEST sensitivity, and limit the saturation power that

can be applied. Even so, molecules containing hydroxyl groups have been imaged with CEST

MRI:

Glycosaminoglycans CEST imaging in cartilage (gagCEST) has the potential to be a biomarker

of osteoarthritis [31, 119–122, 127–133]. In vivo imaging of glucose (glucoCEST) has been

used to identify and characterise tumours, which have an upregulated glucose metabolism [43,

124, 125]. Finally, myo-inositol CEST (MICEST) has been proposed as a glial marker, with a

study in a mouse model of Alzheimer’s disease showing higher MICEST contrast than controls

[123].

Amine groups have also been described as endogenous CEST contrast: for example the CEST

effect of neurotransmitter glutamate has been studied in preclinical stroke models (pH effect),

Alzheimer’s disease mouse model [94], normal human brain [93, 95] and spinal chord [96].

NOE mediated signal can be detected in the aliphatic range in the Z spectrum, and although

often considered a confounder for CEST effects (APT), it can provide complementary contrast

and information, with an identical acquisition process [31, 59, 61, 111, 114, 134–138].

1.5.6 Postprocessing

B0 inhomogeneity

The asymmetry analysis performed to remove the effects of direct water saturation (equa-

tion (1.5.5)) requires knowledge of the water frequency in every voxel. This information

can be obtained in different ways: one possibility is to extract it from the Z spectrum,

by interpolation of the signal close to 0 ppm and then to look for the offset of maximum

saturation. This type of analysis will be compromised when there is too much asymmetry
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near the water peak (due to closely resonating CEST metabolites) or if the peak is too

broad (strong RF power) [139].

Another possibility is the acquisition of an independent measurement of B0, such as the

acquisition of a gradient echo phase map to obtain a B0 map [140] and use it to correct

the CEST map. However, this method only provides a relative measure of the center

frequency in a voxel. Also, a map acquired in this way would have to be co-registered if

the sequence used is not identical.

To avoid these problems, there is the water saturation shift referencing (WASSR) [141]

method: WASSR consists of the correction of B0 inhomogeneities using a pure direct sat-

uration image. Such an image is acquired using minimal B1 prepulse power and duration,

in order to minimise any CEST or MT contributions to the contrast. Thus, an absolute

value for the frequency shift (the deviation from a conventional absolute water frequency,

0 ppm) is obtained for every voxel. A maximum symmetry algorithm is normally used,

but there are other alternatives such as Lorentzian fitting [142]. Afterwards, the CEST

image is corrected on a voxel-by-voxel basis. The WASSR sampling requires less offsets

than a Z spectrum (around 16), but it still takes longer than a conventional B0 map. One

advantage, however, is its higher specificity to the related CEST experiment, since both

CEST and WASSR images are taken using the same protocol [141]. A situation where

WASSR performs well is when there is an overlap between the CEST and the water peaks,

causing an asymmetric broadening at the center of the Z spectrum, which complicates the

direct determination of the water frequency resonance.

Improving the CEST contrast

After obtaining a B0/WASSR map, the Z spectrum is interpolated and shifted to center

it around 0 ppm. Interpolation methods can be a simple spline method, or a polynomial

fitting [101]. Algorithms can be applied to smooth noisy Z spectra [143] and the voxels

with low SNR can be filtered out [45, 144] to avoid interpolation errors. Integral maps

[145], combining information from a range of frequencies, can be calculated after B0

correction in order to improve SNR, compared with the CEST map at a single frequency.

Finally, alternative procedures such as multiple pool Lorentzian fitting or model based

fitting can be applied instead of MTRasym (see section 1.5.4.2).

1.5.7 Advantages and disadvantages of CEST

CEST allows the observation of very low concentrated metabolites (mM range), even in some

cases, metabolites which are not observed in the correspondent NMR spectrum [54] under physi-

ological conditions. Therefore, it overcomes the lack in sensitivity of traditional MRI compared
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with PET or optical methods [19]. Moreover, diaCEST uses endogenous diamagnetic sub-

stances to obtain MRI contrast, thus avoiding the inherent toxicity of many paramagnetic ex-

ogenous agents [146]. CEST contrast can also be switched on and off and no expensive specific

equipment is required. Finally, the CEST contrast benefits from higher fields: the separation of

exchangeable protons from water (∆w) is proportional to the magnetic field strength. A larger

∆w will allow the use of CEST agents with faster exchange rates and still adhere to the slow

to moderate exchange rate regime (∆w ≥ kba). Moreover, longer T1 relaxation times at higher

fields will slow down the recovery from saturation, ensuring a larger contrast [139].

CEST images can be prone to artifacts, since they are vulnerable to B0 and B1 artifacts, espe-

cially at high fields. However, the main disadvantage of CEST over other molecular imaging

techniques is the complexity of identifying the source of signal in vivo: for diaCEST many

metabolites have overlapping signals in the 0-4 ppm range, with further contributions from tra-

ditional MT, NOE and spillover effects, which require careful interpretation and analysis.
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CHAPTER 2

Molecular imaging methods for

neuroinflammation review

2.1 Introduction

This chapter introduces the pathological process of neuroinflammation and highlights its clini-

cal importance in neurological disorders. The current available imaging methods are reviewed

and their advantages and shortcomings discussed. The chapter is divided in two main parts:

in section 2.2 neuroinflammation and the processes involved are presented, while section 2.3

contains an overview of the in vivo molecular imaging methods and its applications related to

monitoring neuroinflammation, with special emphasis in magnetic resonance methods (section

2.4).

The aim of this chapter is to examine the need for new non-invasive biomarkers for neuroin-

flammation.

2.2 Neuroinflammation

Neuroinflammation is the cascade of events that constitutes the chronic response of the central

nervous system (CNS) to a pathological insult [147], involving factors such as activation of

microglia and astroglia, in addition to expression of proinflammatory cytokines and chemokines.

If the initial inflammatory response (acute inflammation) fails to identify and suppress the source

of the problem, a chronic process may begin with further damage [148].

Neuroinflammation plays an important role in a wide range of disorders: neurodegenerative

diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease or amyotrophic lateral

sclerosis [147]), stroke and inflammatory disorders such as multiple sclerosis, by contributing to

processes of neuronal dysfunction, injury and loss, therefore conducing to disease progression.
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However, its role is still poorly understood, due to the many other underlying processes taking

place.

Imaging neuroinflammation using a quantitative molecular biomarker would have a strong clin-

ical relevance for earlier detection and treatment monitoring [149].

2.2.1 Cytokines

Cytokines are small proteins that are relevant in cell signalling, as they can affect the behaviour

of other cells. Pro-inflammatory cytokines such as interleukin (IL)-1 and tumour necrosis

factor alpha (TNF-α) promote systemic inflammation. They initiate the cascade of inflam-

matory mediators by targeting the endothelium, promoting chemokine (small cytokines) re-

lease. There is a balance established between pro-inflammatory and anti-inflammatory cy-

tokines. Anti-inflammatory cytokines block or suppress the activity of proinflammatory cy-

tokines and chemokines. Examples include IL-4, IL-10, IL-13, and transforming growth factor

TGF-β [150].

2.2.2 Cellular markers

One of the recognized signs of neuroinflammation is microglia activation [151]. Microglia, a

type of glial cell (10% to 20% of glial cells in the human brain) are the resident macrophages

of the CNS and have two different phenotypes: in their resting state, during which microglial

cells have a highly ramified form, with long branches and a small cellular body, they constantly

sample their surroundings watching for changes in the environment (bacteria, virus, damaged

or anomalous structures, etc) and performing cleanup duties. Microglia undergo activation as a

response to an anomalous situation [153], leading to multiplication, recruitment to the site of in-

jury, morphological changes and release of a range of substances: pro-inflammatory neurotoxic

mediators and anti-inflammatory compounds (TNFα, IL-6 and IL-1β). Morphologically, they

adopt a more macrophage-like form, with thicker processes and a denser core. Activated mi-

croglia can at the same time have a neurotoxic behaviour (removing the damaged cells, secreting

pro-inflammatory signals) and neuroprotective role (tissue repair and regeneration), promoting

the reconstruction of the cerebral tissue [154]. This dual nature leads to tissue damage related

to microglia activation, which together with the limited regenerative ability of the CNS makes

an uncontrolled neuroinflammation response a dangerous event [155].

The microglia phenotype is regulated by soluble factors and cellular interactions. Microglia re-

sponds to stimulus such as blood brain barrier disruption (exposure to fibrinogen mechanism),

neurotransmitter alterations (for example glutamate excess, either resulting from increased re-

lease from neurons or reduced clearance from astrocytes), damaged cells (with presence of
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Figure 2.1: Microglia activation, model of morphological changes, from [152]

From left to right: Microglia undergoes activation from a resting state, with a small

cell soma and numerous thin branched processes, to an activated form (with thicker

and shorter branches, plus denser cellular bodies.

extracellular ATP) or loss of neuronal input (peripheral nerve injury) [156].

Other CNS intrinsic and blood-borne cells are also involved in the neuroinflammatory process:

Pro-inflammatory cytokines segregated by activated microglia (such as TNF-α) can promote

generation of new oligodendrocytes [157], impair the integrity of the brain blood barrier (BBB)

or signal directly to astrocytes, lymphocytes and macrophages to regulate their function [158].

Neuronal activity can also be indirectly affected by these interactions. If alterations in the BBB

take place during the neuroinflammatory process, this can lead to infiltration in the CNS of T

cells, B cells, macrophages and leukocytes.

Another type of glial cells, NG2-positive oligodendrocyte progenitor cells (NG2-OPCs) can

proliferate and migrate towards an injury [159], or replace lost oligodendrocytes in inflamma-

tory situations [160]. Also present in the CNS, neural stem cells can generate different cell types

which will join in the neuroinflammatory response [161]. In the context of severe damage, en-

dothelia and endothelial progenitors [162], together with fibroblast-related cells [163] contribute

to tissue replacement. Leukocytes functions include phagocytosis, debris removal [164] and can

even be directly involved in tissue repair [165].

The heterogeneity of the participating agents and varied responses have led to a new termi-

nology. "Reactive gliosis" refers to microglia, astroglia and NG2-OPCs. This term is used in

substitution of the previously defined "resting" and "activated" states. Glial cells in the healthy

CNS are not resting, but continually monitoring the local microenvironment, involved in a con-

stant dynamic surveillance (microglia) or in synapse interactions (astrocytes). On the other

hand, "activated" seems to imply a sort of binary switch, that goes against the reality of the

existence of multiple glial responses to different anomalous stimulus (see Figure 2.2), which are
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varied in quality and intensity [166].

Figure 2.2: Multicellular and multimolecular regulation of reactive gliosis, from Burda

and Sofroniew [166]: Reactive gliosis can be induced and regulated by a wide

range of molecular signals, coming from varied CNS intrinsic and extrinsic

sources.

The gold-standard method to study microglia and other cells involved in the neuroinflammatory

response is immunohistochemistry.

2.2.3 Immunohistochemistry

Immunohistochemistry (IHC) is a method that can detect antigens in cells of a biological tissue

making use of the specific binding antibody-antigen. Antibodies (Ab, or immunoglobulin, Ig)

are glycoproteins whose function is to identify and label foreign substances in the body. They

do so by reacting to a unique part of the target or antigen (from ANTIbody GENerator), and

binding to it.

Antibodies suitable for neuroinflammatory processes in a biological tissue used in this work are:

Iba1 Ionized calcium-binding adapter molecule: Specifically expressed in microglia cells in the

brain, its expression is upregulated during activation, although it binds to both activated

and non activated states. An example can be seen in Figure 2.3 [167], where a mouse

has received a systemic injection of LPS. A clear difference can be observed between the

activated microglia on the right and the resting one in the controls (left).

More specific antibodies for activated microglia are, for example, CD68 (marker of ac-

tive phagocytosis) and CD11b, a marker for activation/recruitment of both microglia and

macrophages [168].
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Figure 2.3: Iba1 immunostaining of three different regions of a mouse brain [167]: sub-

stantia nigra (SN) on top, hippocampus in the middle and cortex at the bottom

row. The right column tissues have received a systemic injection of LPS, and the

left column are the equivalent controls. Higher concentration of microglial cells,

which have also shortened their ramifications and grown thicker bodies (signs of

activation) can be seen on the right column, especially in the hippocampus region.
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GFAP Glial fibrillary acidic protein: Expressed by several CNS cells, in particular, astrocytes.

High abundance of GFAP stained astrocytes suggests presence of astrogliosis or reactive

astrocytes [169].

Immunohistochemistry has been historically important to identify the agents involved in neu-

roinflammation, especially microglia, providing insights into functional and structural charac-

teristics [153]. Therefore, although an invasive technique, histochemistry is the gold standard

for validation of new techniques, but only provides a static picture of the complex neuroinflam-

matory process, without any dynamic information of the reactions taking place.

2.2.4 Innate and adaptive immune system in neuroinflammation

The innate or non-specific immune system comprises the cells and mechanisms that provide

generic and immediate defence against infection. In neuroinflammation, microglia are the res-

ident innate immune cells, responsible for the early response towards an anomalous stimulus,

active in the recruitment of immune cells to sites of infection, via cytokine release [170]. Other

innate immune cells from outside the CNS can also be involved, with phagocytic cells such as

macrophages and neutrophils infiltrating the CNS when the BBB integrity is impaired.

The adaptive or acquired immune system is the responsible for creating immunological mem-

ory after an initial response to a specific pathogen, leading to an enhanced response to future

encounters with the same pathogen. Antigens, defined in section 2.2.3, are substances that elicit

the adaptive immune response, which is carried out by lymphocytes. Microglia can regulate

both the innate and adaptive system, indirectly facilitating the entry in the CNS of T and B cells

[171].

2.2.5 Myo-inositol as a molecular marker of neuroinflammation

The osmolyte myo-inositol is considered a putative glial marker since it is primarily present

in glial cells. It has been proposed as a marker for microglial activation [172, 173], with two

possible mechanisms: first, since myo-inositol is found in a much higher concentration in glial

cells than neurons, during activation, the proliferation and migration of microglia in a specific

area will have as a result the increase the myo-inositol content in the region. A second argument

considers the fact that myo-inositol functions as an osmolyte maintaining glial cell volumes.

Since activated glia have enlarged cell volumes, they tend to have elevated levels of myo-inositol

[174]. However, the physiological mechanism has not been properly described and evidence is

usually centered about myo-inositol levels increasing in several neuroinflammatory disorders

(see section 2.3.2.1).
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2.2.6 Lipopolysaccharide administration as a neuroinflammatory stimulus

Lipopolysaccharide (LPS) is a bacterial endotoxin. Once in the brain, it binds to the Toll-like

receptor 4 (TLR4), predominantly expressed in microglia in the CNS, as an agonist [175], stim-

ulating cytokines (IL-1β and TNFα) and chemokines release and inducing neuroinflammation,

with microglia and astrocyte activation. LPS administration, either central or peripheral, is con-

sidered a neuroinflammatory model and has been widely used as a neuroinflammatory stimulus

[176]. There are several mechanisms postulated as to how peripheral LPS induces its effects on

the brain. One of the most common is that it does it directly, by crossing the brain blood bar-

rier (BBB) [177], but other authors support different indirect processes: stimulation of afferent

nerves [178], release of particles with BBB crossing capabilities [179], acting at circumventric-

ular organs [180] or altering BBB permeabilities and functions [181]. A study by Banks and

Robinson concluded that brain uptake of circulating LPS was very limited and therefore, most

effects of peripherally administered LPS were likely mediated through LPS receptors located

outside the BBB [182].

LPS effects have been studied with different readouts: behavioural (reduced locomotor activity

and food burrowing [183, 184]), TSPO PET [185–188], optical [189, 190] and MRI: super-

paramagnetic iron oxide cell tracking [191, 192] and MRS (see detailed review in 3.2), often

accompanied by histological verification (reactive gliosis).

2.3 In vivo molecular imaging methods review

Molecular imaging is the discipline dealing with the characterization, measurement and visu-

alization of the biological pathways at the cellular/molecular level. It has been outlined as the

“noninvasive, quantitative, and repetitive imaging of targeted macromolecules and biological

processes in living organisms” [193]. In contrast with anatomical imaging (which shows the

consequences of the molecular changes), molecular imaging can provide information of a dis-

ease onset, allowing earlier detection and treatment monitoring [194].

2.3.1 Nuclear imaging: Positron emission tomography, PET

PET is a nuclear imaging technique requiring a radioactive isotope (tracer) with a short half-life

able to bind specifically to the biomolecular target. Once the tracer is introduced in the body

and enough time for binding has passed, the imaging process begins:

the radioactive isotope undergoes positive beta decay, releasing a positron. The positron travels

through the tissue, its kinetic energy decreasing until annihilation occurs (usually, no more

than 1 mm away from the tracer/biomolecule compound). Annihilation is the interaction of
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an electron and a positron resulting in their destruction and in the emission of two gamma rays

(at exactly 180◦ from the centre of mass frame). This phenomenon is the one detected by the

PET scanner, which is typically made of a torus of scintillators. These scintillators together

with photomultipliers (PMTs) or avalanche photodiodes detect and amplify the gamma rays.

Any pair arriving at two opposite scintillators within a predetermined time window may be

called coincident and will trigger the recording of an event. From a large number of events, the

original distribution of the tracers (and consequently, of the biomolecules) can be reconstructed

using mathematical models, providing an image.

In neuroimaging, the tracer is introduced intravenously and needs to be able to cross (at least

partially) the brain blood barrier (BBB).

Figure 2.4: PET process, from http://www.cellsighttech.com/technology/pet.html

Inside a PET scanner, a radionuclide injected in a system undergoes positive beta

decay, releasing a positron, which then finds an electron resulting in the annihila-

tion of both. Two gamma rays at exactly 180◦ from the centre of mass frame are

emitted in opposing directions and are recorded by the PET scanner detectors.

2.3.1.1 Applications of PET in imaging neuroinflammation

The following binding targets provide relevant information in the context of neuroinflammation:

Translocator protein, TSPO

The peripheral benzodiazepine receptor (PBR), known as the translocator protein 18-kDA

(TSPO) can be found mostly in the outer membrane of the mitocondria, and its expression

in microglia, macrophages, lymphocytes, neutrophiles and astrocytes increases during in-

flammation [195]. Therefore it is considered as an in vivo marker of neuroinflammation

[196] and it has been used extensively in humans. The most common PET tracer for
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TSPO is the isoquinoline carboxamide PK 11195, 11C labelled. Clinical research appli-

cations include Alzheimer’s disease, were a correlation was found between 11CPK 11195

binding and cognitive scores [197], and increased binding in AD patients vs controls in

certain brain areas [198]. Similarly, increased binding has also been observed in FTLD

(frontotemporal lobar degeneration, [199]). Studies with 11CPK 11195 in Parkinson dis-

ease report conflicting evidence about the existence of a correlation with disease severity

[200–202]. In multiple sclerosis patients, a study by Banati et al. [203] shows that 11CPK

11195 PET can delineate areas affected by disease activity, while Thiel et al. [204] reports

a correlation with clinical outcome in stroke.

Other viable tracers are 11C PBR28, 18F FEAC, 18F-DPA-714 (a review of the alternatives

can be found here [205]), while novel ones are continuously being developed and tested,

see Figure 2.5 [188].

Figure 2.5: Comparison of two PET tracers binding for TSPO in a rat brain, from [188]

LPS intracerebral administration (10 µg) induced neuroinflammation on the left

hand side of the brain. Left: 11C-PK11195 Right:18F-GE-180

Type 2 Cannabinoid Receptor (CB2R)

The type 2 cannabinoid receptor (CB2R) is part of the human endocannabinoid system,

participating in central and peripheral inflammatory processes. In particular, it is upregu-

lated by activated microglia, and appropriately labelled ligands can be used to image its

distribution using PET, such as 11C-A-836339 [187] (preclinical study, lipopolysaccharide

neuroinflammatory stimulus injected mice showed an increased uptake in all brain areas)

and 11C-NE40 [206] (clinical feasibility study, novel tracer tested in healthy subjects for

the first time, to investigate biodistribution and radiation dosimetry).

Inflammatory cytokines, COX-2

Cyclooxygenase (COX) is a integral membrane glycoprotein. The isoform COX-2 is

rapidly expressed in several cell types in inflammatory conditions [207], and preclinical

PET studies have been performed by binding it to ligands such as 11Crofecoxib [208] with

inconsistent results.
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Glucose metabolism

There is evidence [209] of increased glycolysis in various immune cells participating in

the inflammatory response. This can be assessed with the tracer 18FFDG. However, in a

neurodegenerative state, glycolysis is reduced [210],[211],[212], limiting the application

of this technique for neuroinflammation [149].

Leukocyte infiltration

Alterations in the BBB often take place during the neuroinflammatory process, leading to

possible infiltration of plasma components or leukocytes into the CNS. Leukocytes can

be labelled by incubation with tracer compounds, followed by in vivo delivery for later

PET detection once they cross the BBB during inflammation (clinical evidence from mul-

tiple sclerosis, ischemic and haemorrhagic stroke and Alzheimer’s disease [149]). Con-

founders may arise due to labelling leakage during the process and unspecific accumula-

tion in the brain [213]. This effect can also be imaged by measuring perfusion across the

BBB. Nevertheless, according to [214], BBB disruption is not always permanent and can

be transient in some areas, thus not correlating with functional effects, which limits its

use as a neuroinflammatory marker.

2.3.1.2 Advantages and disadvantages of PET

The main advantages of PET are its high sensitivity, far superior to MRI or CT: even small

amounts of the tracer can be detected with PET [149] and its specificity, with many available

tracers binding to particular targets. However, depending on the tracer used, poor signal to noise

ratio images can occur due to low tracer-receptor binding affinity, non-specific binding or, for

neuroimaging, low brain uptake (in many cases, the tracer can bind to molecules outside of

the brain [215]). Another issue is the fact that, due to the positron having travelled a certain

distance from its creation (emission site) to its annihilation (detection site), PET resolution is

inherently worse than magnetic resonance imaging or computed tomography [149]. But the

main disadvantage of PET is the ionizing radiation required: the dose a patient receives has

to be carefully watched and repeated PET scannings result in increased risk [216], making it

less suitable for longitudinal studies. Moreover, the use of ionizing radiation implies complying

with extensive safety regulations and the radioisotope production process time constraints: due

to their short lives (11C:20.4 min, 18F :109.8 min), they need to be produced near the facilities in

cyclotrons right before any procedure [2].

For neuroinflammation, translocator protein (TSPO) PET is currently considered as the most

reliable marker and tracer 11C PK 11195 features predominantly in the literature. However, this

tracer has disadvantages such as a low SNR, the short half life of 11C and the absence of a stan-

dardized quantitative imaging analysis method: there is not a robust kinetic model to aid in the
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image interpretation, coupled with the difficulty of finding a reference, an area of the brain with

no tracer binding [205]. Because of these reasons, other alternative tracers are currently being

studied, less prone to these errors.

2.3.2 Magnetic Resonance Spectroscopy

MR spectroscopy (MRS) is a non-invasive technique that uses nuclear magnetic resonance to

characterize the internal structure of matter. Although not an imaging technique, it can be

used to monitor neuroinflammation in a predetermined area. A description of the MRS signal,

sequences and techniques can be found in chapter 1.

Figure 2.6: Mouse brain 1H NMR spectrum at 9.4 T,, adapted from Braakman et al. [217]

Metabolite levels that can be observed include: glutamate (Glu), glutamine (Gln),

N-Acetyl Aspartate (NAA), myo-inositol (mI), total creatine (tCr), total choline

(tCho), taurine (Tau), GABA, glutathione (GSH), N-acetylaspartylglutamate

(NAAG).

2.3.2.1 Applications of MRS in monitoring neuroinflammation

1H and 31P MRS have both been used for neuroinflammatory applications. 31P MRS provides

information about energy metabolites (phosphocreatine, ATP), while 1H MRS (covering most

of the clinical literature) provides the levels of several metabolites related to glial and neuronal

density. Important metabolites that can be measured with MRS are:

N-Acetyl Aspartate, NAA: Since it is only found in the nervous system (almost exclusively

in neurons), NAA is considered to be a marker of neuronal density/dysfunction [173],
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but it is not directly related to neuroinflammation. Activated microglia can release neu-

rotoxic inflammatory mediators, which can provoke a reduction in the NAA peak [174].

Examples include an observed decrease of NAA in several brain areas in patients suffer-

ing Alzheimer’s disease [218, 219], multiple sclerosis [220], HIV [221] and Hepatitis C

[222]. In an MRS spectrum the main NAA resonance corresponds to the peak at 2.01

ppm.

Figure 2.7: Myo-inositol molecule, from de Graaf [8]

Myo-inositol has six NMR protons, producing four groups of MRS resonances

Myo-Inositol, Ins: Myo-inositol has six NMR protons, producing four groups of resonances: a

doublet of doublets at 3.52 ppm, and three triplets (at 3.61 ppm, 3.27 ppm and 4.05 ppm).

It has been proposed as a marker for microglial activation [172, 173]. The arguments

revolve around the fact that myo-inositol is present in a much higher concentration in

glial cells than neurons and they proliferate when activated, leading to an increase in myo-

inositol levels. Also, since myo-inositol is an osmolyte maintaining glial cell volumes and

activated glia have enlarged volumes, they would have elevated levels of myo-inositol

[174].

Clinical examples of increased myo-inositol levels can be found in multiple sclerosis

[223], HIV [224], Hepatitis C [222], Down’s syndrome [225] and Alzheimer’s disease

(AD) [218]. This has been interpreted as a sign of gliosis [226], from microglial or astro-

cytic activation, but ultimately, the mechanism behind these alterations is unclear [227].

Myo-inositol changes have been shown to presage the onset of cognitive decline in condi-

tions with a neuroinflammatory component [228–231]. For example, elevations of myo-

inositol levels in Alzheimer’s disease have been shown to precede a decrease in NAA

levels (sign of neuronal loss or dysfunction) and a full clinical manifestation of the dis-

ease [226].

A study by Marjanska et al. reports an increase in myo-inositol levels with age in a pre-

45



CHAPTER 2: MOLECULAR IMAGING METHODS FOR NEUROINFLAMMATION REVIEW

clinical mouse model of Alzheimer’s disease (APP-PS1), which is absent in wild-type

controls [232], see Figure 2.8. This increase, at around 20 months of age, is attributed to

microglial activation in those animals, which may accelerate at that age.

Figure 2.8: Myo-inositol increase with age in a mouse model of Alzheimer’s disease (APP-

PS1) from Marjanska et al. [232].

On the y axis, the ratios of myo-inositol to total creatine levels, which are used

as a reference, while the x axis represents the age of the mice (up to 904 days).

The black squares datapoints belong to the transgenic APP-PS1 animals, with the

white squares as controls. The solid lines between datapoints represent repeated

measurements on the same animals. There is a myo-inositol increase with age in

the AD mice, not observed in the controls.

Glutamate, Glu: Glutamate is the primary neurotransmitter involved in excitotoxicity and di-

rect precursor of GABA. It is compartmentalised in pre/post synaptic terminals, astro-

cytes, and found with minimal concentrations in the extracellular space. A loss of ho-

moeostatic regulation caused by neuroinflammation can lead to increased availability of

extracellular glutamate (enhanced astrocytic and activated microglia release [233]). Sev-

eral in vitro studies support this, showing increased glutamate production in activated

microglial cells [234, 235]. Furthermore, reduced levels of intracellular glutamate may

also reflect decreased reuptake of glutamate from the extracellular space by activated glia

(decreased glutamatergic metabolism [236]).

An excessive concentration of extracellular glutamate can cause cell death, which in turn

manifests as cognitive impairment. Alterations in glutamate levels produced by changes

in glutamatergic regulation are characteristic of many neurodegenerative diseases [237],

such as Alzheimer’s disease, where reduced MRS ratios have been found in the hippocam-

pus and Parkinson’s disease, with reduced levels in the sustantia nigra [174].

As a molecule, glutamate has a complex NMR signal spread over many resonances (see
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Figure 2.9), which at low magnetic fields is indistinguishable from the metabolite glu-

tamine (Gln). Therefore, the sum of both (referred as Glx) is often quantified in MRS

instead.

Figure 2.9: Glutamate molecule, from de Graaf [8]

Glutamate has two methylene groups and one methine group, strongly coupled,

giving raise to a complex NMR signal, with many low intensity resonances.

Total choline, tCho and total Creatine, tCr: Choline is a marker for cell membrane metabolism

and cellular turnover [174]. Its main single resonance at 3.22 ppm is often called total

choline and it has contributions from free choline, glycerophosphorylcholine (GPC) and

phosphorylcholine (PC) [8]. The peaks at 3.0 ppm and 3.93 ppm correspond to creatine

and phosphocreatine (normally referred as total creatine), and are related to the levels of

cellular energy metabolites.

However, both choline and creatine can be found in higher concentrations in glial cells

than in neurons [172], which may create confusion when interpreting metabolite ratios

data in neuroinflammation [12].

γ-Aminobutyric acid, GABA: Main inhibitory neurotransmitter in the CNS, with six NMR

protons creating two triplets (3.01 ppm and 2.28 ppm) and a quintet (1.89 ppm). Due to its

low abundance (about 1 mM in the human brain) and the overlap of all its resonances with

higher concentrated metabolites in the MRS spectrum, its measurement usually requires

specialized editing techniques (by isolating its signal from the rest of the spectrum) [238].

Elevated GABA levels have been found in Parkinson’s disease patients [239].

The main advantage of MRS over many molecular imaging techniques is the non-invasive nature

of the method, together with a robust and clinically accessible technique, as well as the existence

of standardized analysis protocols and dedicated software. It can assess in vivo levels of relevant

metabolites for neuroinflammation such as myo-inositol or glutamate, which often correlate

47



CHAPTER 2: MOLECULAR IMAGING METHODS FOR NEUROINFLAMMATION REVIEW

well with clinical variables and neurological disease progression, providing a useful target for

monitoring treatment effects [174].

However, special care must be taken for quantification in the context of neuroinflammation. As

has been mentioned before, metabolite concentrations are usually expressed through ratios to

total creatine or choline, with the assumption that the concentration of that metabolite remains

constant (age, condition,etc.). But both choline and creatine are found in higher concentrations

in glial cells than in neurons and consequently, they may be elevated in a neuroinflammatory

context [172].

Nevertheless, the main disadvantage of MRS when monitoring neuroinflammation is the com-

plex and dynamic nature of the phenomenon, which require a much higher spatial resolution

than MRS can offer, in order to gain a thorough understanding [240], even if this can be im-

proved with the use of multivoxel spectroscopy (MRSI) [241]. Time resolution can also be a

hurdle, since obtaining a reasonable signal-to-noise ratio (SNR) in a MRS spectrum requires

many averages (or bigger voxels, at the expense of spatial resolution), due to the inherent low

sensitivity of MR and the very low concentrations of the metabolites of interest in comparison

with the water peak (around 100000 times difference [174]). As an example, the parameters

used in later chapters for in vivo preclinical MRS (mouse brain) required a minimum voxel size

of 2x2x2 mm and 512 averages, with an experimental time of around 21 minutes per spectrum

(SNR=18).

2.3.3 Optical imaging

Optical imaging refers to imaging techniques using visible, ultraviolet, and infrared light. The

source of contrast can be bioluminescence, fluorescence, absorption or reflectance.

2.3.3.1 In vivo applications of optical imaging in neuroinflammation

Fluorescence imaging In fluorescence imaging, an external light of appropriate wavelength

excites a target fluorescent molecule, which then releases light of a lower energy (longer

wavelength) [242]. An example of target molecule is be the green fluorescent protein

(GFP), first isolated from a jellyfish by Martin Chalfie, Osamu Shimomura, and Roger Y.

Tsien, who were awarded the 2008 Nobel Prize in Chemistry for their discovery.

This protein has to be attached to the target of interest by DNA engineering, which il-

lustrates the complexity of in vivo fluorescence microscopy. An example of an in vivo

application for imaging neuroinflammation is the study by Davalos et al. [243], showing

the dynamics of the response of microglial cells (labelled with GFP) to a traumatic brain

injury [243], see Figure 2.10.
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But if the imaging depth is to be more than a few mm, near infrared fluorescence (NIRF)

Figure 2.10: In vivo fluorescence imaging in a mouse cortex, from Davalos et al. [243].

A)Baseline B) to F) Microglia moving towards injury site, with proliferation and

activation, images taken from 6 min to 2 hours 45 min after the lesion (created by

a two-photon laser).

has to be used: the absorption coefficient of tissue is much lower in the near infrared

region (700-900 nm) and therefore, light can penetrate more deeply, to depths of several

centimetres. In vivo application examples are lymphocyte infiltration in experimental au-

toimmune encephalomyelitis (EAE, most common animal model for multiple sclerosis)

rats [244] or detecting neuroinflammation after cerebral ischaemia [245].

Bioluminescence imaging BLI exploits the ability of several non-mammalian organisms to

biochemically generate light. An example of this is the firefly: the catalysis of the sub-

stract luciferin by the enzyme luciferase in the presence of oxygen, magnesium and ATP

releases visible photons. In order to use this natural phenomenon as an imaging tool,

genetic engineering (to produce the expression of luciferase genes) is performed on the

relevant cells, which are later injected together with the necessary substract and observed.

The emission of light is measured quantitatively with a highly sensitive charge-coupled

device (CCD) camera, and can be linked to the presence of a promoter of a specific gene

[246].

In vivo applications for neuroinflammation are restricted to small animals. They include

the use of transgenic mice with a GFAP promoter as condition for the light emission pro-

cess in several disorders, such as cerebral ischaemia [247], experimental autoimmune en-

cephalomyelitis [248] and intracranial kainic acid injection [249]; other promoters (TLR2,

in cerebral ischaemia [250]) or visualization of bone marrow cells differentiating into mi-

croglia after infiltration, following intrahippocampal LPS injection [190].
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2.3.3.2 Advantages and disadvantages of optical imaging

The main advantage of optical imaging is its high sensitivity (potentially around picomolar

[242]), combined with a very low background signal. Other assets are the use of non-ionizing

radiation and relatively inexpensive equipment. Specific limitations of in vivo fluorescence

imaging are the lack of penetration depth in biological tissues (caused by light absorption and

scattering which decreases with increasing wavelength). Although NIRF allows for deeper pen-

etrations (several cm), this only enables imaging of subcortical structures in humans. Biolumi-

nescence imaging benefits from the absence of a external light source, but the requirement of

luciferase genes and substrate insertions in the subjects cells or whole body clearly restricts its

in vivo use to animal models.

2.4 Magnetic resonance imaging of neuroinflammation

Magnetic resonance imaging (MRI) has inherent advantages such as the absence of ionizing

radiation or the capability of producing high spatial resolution three dimensional images in

comparison with nuclear, optical imaging, which makes it ideal for clinical applications [251].

It is however, less sensitive, since the signal is proportional to the population difference of the

spins of 1H/19F , etc. in two different energy levels, which is very small. A range of MRI

techniques are currently being explored for imaging neuroinflammation:

2.4.1 Structural

Structural readouts such as atrophy, vascular malformation or accumulation of extracellular wa-

ter (edema) can be obtained with MRI [252]. In particular, measuring the brain volume has

diagnostic value in neurodegenerative diseases (multiple sclerosis, see review in [253]), since

brain atrophy is a sign of neuronal loss. However, by this point, irreversible damage has already

occurred in the brain and the disease process is well advanced [153]. Moreover, brain atrophy

is not directly related to neuroinflammation.

2.4.2 Superparamagnetic iron oxide nanoparticles

These particles are formed by an iron oxide core (magnetite FE3O4 or maghemite γFE2O3) and

a variable coating. Their terminology is based on the size of the whole particle: superparam-

agnetic iron oxide nanoparticles (SPIO, 50-180 nm), ultrasmall superparamagnetic iron oxide

nanoparticles (USPIO, 10-50 nm, the most common) or very small superparamagnetic iron ox-

ide nanoparticles (VUSPIO, less than 10 nm). Once they are present in a tissue, they can shorten
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T1 (hyperintense T1 weighted images) and T2 (hypointense T2 weighted images) to a greater ex-

tent than gadolinium (and with a longer circulating half-life [254]).

Applications for imaging neuroinflammation include for example, tracking macrophage infiltra-

tion in the brain in experimental autoimmune encephalomyelitis (EAE) models 1.

In a study by Chin et al., circulating macrophages become labelled before entering the brain

due to systemically administrated USPIO [256]. Another application is the observation of EAE

lesions with higher sensitivity than gadolinium enhanced MRI [214, 257] (see Figure 2.11) or

studying tumour morphology with labelled activated microglia [258]. Monitoring macrophage

infiltration with iron oxide particles seems to provide complementary information to measuring

BBB integrity with gadolinium and a few preliminary human studies have already used this

technique [259]. Limitations of this approach are unspecific labelling [240] and toxicity con-

cerns. The former can be improved with the extraction of the cells, followed by accurate in vitro

labelling and their posterior reinjection, as opposed to the labelling process taking place in the

circulatory system. Confounders such as blood pool effects and bleedings should be taken into

account, as they can also produce negative MRI contrast [260].

A more important limitation is that macrophage infiltration is not present in all neuroinflam-

matory processes, especially not at the onset, since it requires a weakened BBB and does not

provide information on the behaviour of the CNS intrinsic immune agents, such as microglia.

1Experimental autoimmune encephalomyelitis (EAE) is an animal model of brain inflammation. Inflammatory

demyelinating disease of the CNS, mostly used with rodents and considered as an animal model of multiple sclerosis

(MS), EAE is characterized by T-cell and monocyte infiltration in the CNS, associated with local inflammation.

There are two main approaches to induce EAE: the first is based on direct immunization with autoantigen (active

EAE). Sensitization to myelin antigens in EAE usually requires an adjuvant (agent that can potentiate an immune

reaction). Adjuvants can be synthetic materials or bacterial components with the capacity of activating the innate

immune system via pattern recognition receptors, for example CFA (Complete Freund’s Adjuvant), Pertussis toxin,

Muramyl dipeptide, Lysoleeithin or LPS. The second approach to induction involves the transfer of activated T cells,

specific for myelin-associated autoantigens of the CNS (passive EAE) [255].
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Figure 2.11: USPIO contrast, from Rausch et al. [214].

T2 and T1 images (first two columns), compared with MT images (third column)

and Gd MRI enhancement (fourth column), in the cortex of a EAE mouse model

(top row) and controls (bottom row).

2.4.3 Manganese enhanced MRI, MEMRI

Manganese (Mn2+) provides positive MRI contrast in T1 weighted images (T1 shortening).

Mn2+ acts as a Ca2+ agonist in biological systems and is taken up in neurons and glial cells,

highlighting areas of intense neuronal activity under normal brain conditions [261]. Only a few

studies have proposed MEMRI applications related to neuroinflammation: Wideroe et al. found

a morphological correlation between MEMRI enhancement and microglia activation brain ar-

eas in rat ischaemia ([262], see Figure 2.12). A similar relation has been reported in cathepsin

D-deficient mice [263]. In a recent study, Bade et al. found that inflammation stimulates Mn2+

uptake by neurons [264] (mouse model, LPS intracerebral injection).

Excessive exposure to Mn2+ leads to central nervous system toxicity, which needs to be taken

into account for MEMRI. As for neuroinflammatory applications, MEMRI has specificity limi-

tations, since it is very difficult to distinguish between gliosis and neuronal death/injury, which

is not directly related to neuroinflammation [262, 264].

Figure 2.12: MEMRI enhancement in a rat pup suffering from ischaemia, from [262]

Left: MEMRI image. Right: Activated microglia (histology, CD68)

52



CHAPTER 2: MOLECULAR IMAGING METHODS FOR NEUROINFLAMMATION REVIEW

2.4.4 Fluorine MRI

The natural, stable, fluorine isotope 19F is MR active, with a resonance frequency which is 94%

that of the 1H . It has a magnetic sensitivity similar to the 1H nucleus (83%). The main advantage

of 19F MRI is its high specificity, due to the lack of background signal in the organism. There

is no endogenous fluorine and therefore, all the signal in a 19F MRI experiment comes from the

fluorine injected beforehand in the form of an MRI contrast agent, which however also leads to

long experiment times and low signal to noise ratio in the images (low 19F concentration). To

satisfy the need for a high concentration of 19F nuclei, perfluorocarbons (PFCs) are often used

as contrast agents: these are molecules with a similar structure to organic compounds, with all

the hydrogen atoms replaced by fluorine [265].

Inflammation has been visualized using the uptake of PFCs (systemic intravenous injection) by

macrophages in the peripheral and central nervous system [260, 266] for example in a model of

focal cerebral ischaemia [267]. Another study has employed 19F nanoparticles and a specifically

designed probe to overcome low SNR issues [268].

Figure 2.13: PFCs infiltration over time in a ischemic region (macrophages), mouse brain,

from Flogel et al. [267].

Top:1H MRI images over time (7 to 19 days after iv PFCs administration). Bot-

tom: Correspondent 19F MRI images, which show the macrophage infiltration.

2.4.5 CEST

Chemical exchange saturation transfer (CEST) is another molecular MRI contrast mechanism,

described in detail in chapter 1. Endogenous CEST compounds include hydroxyl (OH), amine

(NH2) and amide groups (NH). Furthermore, this contrast can be manipulated during the same

acquisition. Compared to MRS, the CEST contrast is much higher for many metabolites, due to

the amplification of the signal that takes place through many exchanges in the saturation process

[139]. These properties make CEST very different from other magnetic resonance modalities,
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in terms of specificity and sensitivity, being ideally suitable for molecular imaging. However,

very few studies have explored the possibility of imaging in vivo neuroinflammatory biomarkers

with CEST:

Liu et al. reported CEST measurements 24 hours after intratumoral LPS injections (1 mg/kg, n=4

mice), with no significant differences found in the CEST readout a day after drug administration

compared to baseline. The small sample size is related to the fact that the LPS group was just

a control to exclude inflammation effects and not the main objective of the study, which was

to characterise the infection of tumour-homing bacteria in bacteriolytic cancer therapy using

endogenous CEST contrast [269].

Haris et al. has proposed CEST imaging of myo-inositol, MICEST [53] (six OH groups per

molecule), as a novel contrast method for glial cells proliferation/activation [123]. Myo-inositol

MICEST mapping was performed in a mouse model of Alzheimer’s disease (n=5, APP-PS1

mice, see Figure 2.14) and age matched wild type (WT) controls. A 50% higher MICEST

contrast was found in AD mice, choosing a region of interest devoid of cerebral spinal fluid).

Moreover, higher intensity of GFAP immunostaining was observed in the AD animals compared

to controls and MRS data suggested an increase in myo-inositol levels in AD mice, although

no direct correlation with MICEST could be established. Finally, it is important to mention

that these significant CEST differences between groups (AD and WT) have been described

only for 20 month old AD mice, the age of all the animals in the study. Cognitive deficits in

spatial learning and memory have been reported in this transgenic mouse model at 7 months,

with massive amyloid-β (Aβ) load, disrupted cytoarchitecture and significant neuron loss in the

dental gyrus at 17 months [270].

Figure 2.14: MICEST maps, from Haris et al. [123].

Right: brain from a 20 month old AD mouse model (APP-PS1, 50% higher

contrast). Left: Age matched control.

This group has also reported glutamate measurements using CEST (GluCEST [93]), in the same

animals [94], Figure 2.15. The 20 month old AD mice showed a reduction in GluCEST con-

trast (around 30%) in all brain areas compared with WT controls, while a significant posi-

tive correlation was found between GluCEST contrast and glutamate MRS levels (R2 = 0.913).

The glutamate changes are however not attributed specifically to neuroinflammation, with only
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Alzheimer’s disease biochemical changes being mentioned in the discussion.

Figure 2.15: GluCEST maps, from Haris et al. [94].

Right: brain from a 20 month old AD mouse model (APP-PS1, 30% reduced

contrast). Left: Age matched control.

A more recently published study, also involving 20 month old mice, reported a decrease of

gluCEST contrast in an animal model of tauopathy (tau transgenic mice with the P301S mu-

tation, PS19) [271]. Glutamate and NAA levels determined with PRESS MRS were lower in

the hippocampus of tau mice compared with controls. Reduced gluCEST contrast in the cornu

ammonis (CA) of the hippocampus and the thalamus were correlated with histological measure-

ments of pathological tau severity, neuron loss and synapse loss. Glutamate changes are again

attributed to neurodegeneration and not neuroinflammation.

Increased GlucoCEST accompanied by reduced APT CEST contrast has been recently reported

in a mouse model of Alzheimer’s disease (rTg4510 mouse), with the same goal of evaluating

the degree of neurodegeneration. The in vivo glucose uptake was evaluated over time following

an intraperitoneal injection of 1 g/kg glucose and was found to be higher in rTg4510 mice

compared with controls [272].

Finally, another group has recently reported a 18% GluCEST decrease in a model of selective

astrocyte activation (overexpression of the cytokine ciliary neurotrophic factor, CNTF). Lentivi-

ral vector injections (lenti-CNTF) were administered in alternating brain hemispheres for n =

4 rats. The area characterised by GluCEST contrast closely matched the region of astrocyte

activation as measured by immunostaining (Vimentin), see Figure 2.16. LASER MRS results

showed an increase in myo-inositol (61%) and total choline (33%), accompanied by a decrease

in glutamine (-14%), total NAA (-19%), taurine (-9%) and glutamate (-18%) [273].

Technical difficulties of CEST include the overlapping of many metabolites in the CEST sig-

nal, the influence of B0 and B1 inhomogeneities on the resulting images and the very different

models, implementation, postprocessing and analysis strategies that are often used. Some of

the CEST studies reported here are not focused on neuroinflammation specifically, but rather

on neurodegeneration. However, they are reported for completeness, since the two processes

coexist in disorders such as Alzheimer’s disease.
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Figure 2.16: GluCEST and immunostaining maps, from Carrillo-de Sauvage et al. [273].

Left: GluCEST map (3 ppm) showing a lower gluCEST contrast on the right

hemisphere, which has been injected with lenti-CNTF. Right: Histology slice:

the region stained with vimentin + reactive astrocytes matches the marked area in

the gluCEST map.

2.4.6 Discussion

MRI has many advantages over other molecular imaging techniques. It can produce 3D output

without the risks associated to ionizing radiation (PET) and with a higher spatial resolution than

MRS. Moreover, unlike optical imaging, it is widely used in clinical and preclinical settings.

For all these reasons, MRI is the chosen technique to carry out the work in this project, with the

objective of developing a quantitative molecular biomarker of neuroinflammation.

Out of all the magnetic resonance techniques mentioned before, MRS and CEST have the advan-

tage of being non-invasive, with the possibility of obtaining biomolecular information without

the need of external contrast agents. 1H MRS can measure potential neuroinflammatory rele-

vant metabolites such as myo-inositol, glutamate, choline and creatine, while myo-inositol and

glutamate CEST have been recently developed. The metabolite myo-inositol emerges as a good

candidate for the role of non-invasive neuroinflammatory biomarker, related to microglia acti-

vation and with a range of clinical and preclinical MRS studies in the literature. Moreover, the

spatial resolution limitations associated with MRS can be overcome with CEST. Glutamate is

another promising biomarker, related to astrocyte activation, which can also be measured with

both MRS and CEST.

However, the only in vivo myo-inositol CEST study published so far evaluates a mouse model

of Alzheimer’s disease at a late stage of development (20 months), when the disease is very

advanced and the animals are in a poor state of health. Instead, our aim is to study the early

inflammatory response, to try to gain an understanding of the onset of the neuroinflammatory

process, which will be very useful for an early diagnosis of neurological disorders. We want to

study the metabolite changes (with an emphasis in myo-inositol and glutamate) that are involved
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at the beginning of the neuroinflammatory cascade, the timeline of these changes and how they

relate to microglia and astrocyte activation.
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CHAPTER 3

Metabolic response to a LPS challenge

in a model of Alzheimer’s disease, a

MR Spectroscopy study

3.1 Introduction

The overall aim of this chapter is to develop and validate an MR biomarker of neuroinflamma-

tion with MR Spectroscopy (MRS) and histology. We want to study the early inflammatory re-

sponse to a mild inflammatory stimulus (systemic administration of lipopolysaccharides, LPS,

introduced in section 2.2.6) in wild type mice and in a mouse model of Alzheimer’s disease

(AD). The metabolic response to this stimulus will help to understand the early neuroinflam-

matory processes involved in neurological disorders such as Alzheimer’s disease, a concept of

capital clinical relevance from a diagnostic point of view.

MR Spectroscopy (MRS) is the monitoring readout, with a capacity to evaluate in vivo changes

in several key metabolites, such as the glial marker myo-inositol. This osmolyte has been pro-

posed as a marker for microglial activation [172, 173], but the physiological mechanism is not

entirely defined (see 2.2.5). Instead, evidence relates mostly to increased myo-inositol levels

reported in several neuroinflammatory disorders (clinical studies of Alzheimer’s disease [218]

and preclinical mouse models [232]).

After a brief review of the MRS studies containing LPS as a neuroinflammatory stimulus pub-

lished so far (3.2), an MRS pilot study is first presented, to evaluate the intensity and time course

of the metabolic response to LPS in wild type mice (3.4). Finally, (in section 3.5), a full study

with n=44 mice is introduced, adding histology as validation and including both WT and AD

mice genotypes, to assess the influence of a preexistent chronic condition on the neuroinflam-

matory response.
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3.2 MRS studies with LPS as a neuroinflammatory stimulus

Metabolic changes after LPS induced neuroinflammation have been studied with MRS in mi-

croglial cell cultures. El Ghazi found an increase in glutamate (67%) and lactate (45%) after

24 hrs exposure to LPS (1 µg/mL) [234]. Lactate, the end product of glycolysis under hypoxic

conditions, is normally considered as a potentially toxic metabolic waste product. A few in vivo

MRS animal studies have also been performed:

Martin-Recuero et al. reported in a conference paper for the first time in vivo MRS measure-

ments in wild type mice after an intraperitoneal (ip) LPS injection (5 mg/kg). They found

changes in metabolites taurine (Tau), total choline (tCho), glutamate plus glutamine (Glu+Gln)

and lactate (Lac), with the first three increasing immediately after injection in the hippocampus

region. Another measurement, taken 24 hours later, revealed a significant decrease in Tau and

tCho compared to baseline, plus a recovery of the Glu+Gln levels. Three days after injection,

they observed an increase in Lac levels (associated to neurotoxicity), accompanied by another

increase in tCho levels and a recovery of taurine. The early metabolic changes detected with

MRS are attributed to altered osmolyte and phospholipid metabolism, caused by the LPS in-

duced neuroinflammation. MRI measurements were also taken, with T2 and MT maps showing

an increase three days after the LPS administration [274].

Moshkin et al. injected two different ip LPS doses: 50 µg/kg and 500 µg/kg in ICR (imprinting

control region) mice. MRS was performed in a voxel in the hippocampus three hours after the

LPS administration, with no significant effects for the smaller dose and a increase in N-Acetyl

Aspartate (NAA), total choline (tCho) and GABA for the higher dose. The focus of this study

was to study the metabolic changes caused by a deficiency of available energy to the brain cells,

caused by LPS or 2-deoxy-d-glucose (2DG) [275].

Lodygensky et al. performed an intracerebral LPS injection in the corpus callosum of rats (1

mg/kg) and took MRS measurements 24 hours later. Their results show an increase in lactate

(toxicity) and macromolecules, accompanied by an intense microglial activation (evaluated with

histology, CD68) due to neuroinflammation [276].

The baseline state of the animal can also be relevant: according to Cunningham et al., in the

presence of a chronic disease (such as Alzheimer’s disease) microglia are "primed" and will

have a bigger response to LPS, producing a stronger inflammatory reaction [184]. But if the

LPS dose administered is too high, a condition known as sickness syndrome can be induced,

producing symptoms such as anorexia, fever, and lethargy [277], being counterproductive to

study any differential effects deriving from initially primed microglia.

These studies provide a picture of the complexity of the processes involved, with the metabolic

changes being dose and time dependent. There are no myo-inositol changes reported in any of
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these three studies, but at least one of them reports microglia activation. This raises questions

over how the mechanism of myo-inositol as a glial marker works, both in intensity and time

frames. For example, potential interesting questions are if myo-inositol is a marker of microglia

activation, then how many glial cells are required to produce an MRS visible change in myo-

inositol, in which state of activation should those cells be and at what time during the process

does the metabolic changes occur.

3.3 The double transgenic amyloid APPswe/PS1dE9 model

The animals used in this study are APPswe/PS1dE9 mice. Double transgenic, they express two

different transgenes: the human gene APP695 containing the Swedish mutation K594N/M595L

(Amyloid Precursor Protein, APPswe) and presenilin 1 without exon 9 (PS1dE9) [278].

These mutations lead to a progressive, age-related Aβ neuropathology with amyloid plaques

and elevated levels of Aβ [278], which are linked to familial forms of Alzheimer’s disease

(AD) [279]. The mice develop behavioral phenotypic and pathological features which make

them useful as an AD model, such as Aβ plaques (as early as 4 months [280]), surrounded by

activated microglia and astrocytes and significant memory deficits at 6 months compared with

wild type controls [281].

3.4 Pilot study

3.4.1 Objectives

The aim of this pilot study is to evaluate the early metabolic response to a mild inflamma-

tory stimulus, systemic administration of lipopolysaccharides (LPS), in wild type animals with

MR Spectroscopy (MRS). The hypothesis is that MRS metabolic changes and in particular,

myo-inositol, will reflect LPS induced transient neuroinflammation in the brain, compared with

controls. The chosen LPS dose, 100 µg/kg is lower than all of the previously reported to induce

significant changes in in vivo animal MRS studies. However, it has been proven to have behav-

ioral effects, such as differences in open-field activity and food burrowing, avoiding sickness

syndrome [183]. We are looking to establish a time course for the effects of LPS injection with

different MRS time point recordings: immediately after injection, 3-6 hours later and 24 hours

later.
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3.4.2 Methods

3.4.2.1 Animals

All procedures were approved as required under the UK Animals (Scientific Procedures) Act

1986.

9 male spare mice (B6D2F1) were used in this experiment, with an average weight of 43 g ± 2

g. They had been group housed (2-6 per cage) in specific pathogen free (SPF) conditions, with

a 12:12 h light-dark cycle, controlled temperature and humidity conditions, plus free access to

food and water. The animals had undergone no previous procedures and appeared to be healthy.

3.4.2.2 Study design

Animals were randomly divided in two treatment groups: control (phosphate buffered saline ,

PBS, Sigma Aldrich, n=6 mice, five of them reused for the drug group a month later) and drug

(lipopolysaccharide, LPS, 100 µg/kg, n=3 (+ 5) mice). They were also separated in different

time point measurement groups, as in table 3.1.

n=9 mice total 0-4hrs 3-6hours 24hrs

Treatment: LPS 6 1 1

Treatment: PBS 4 1 1

Table 3.1: Study design: experimental groups classified according to treatment (drug/control)

and time point of the measurement (in hours after treatment).

The MRS acquisition was performed in the hippocampus. This is one of the most microglial

densely populated areas in the mouse brain [282], therefore expected to be more susceptible to

LPS effects. Due to its size (2x2x2 mm), the voxel was also covering part of the thalamus, a

situation which provided better shim values than if it was covering part of the cortex.

3.4.2.3 Protocol

A first MR spectroscopy scan (total acquisition time 21 min) was acquired to establish a baseline

of brain metabolite levels. Then, approximately one hour later, each animal received an iv

administration of either LPS (100 µg/kg) or PBS, delivered over an intravenous catheter attached

to a tail vein and connected to a syringe pump, while remaining inside the MRI scanner (t =

0h). To track the metabolic response, MRS spectra were acquired for four hours after drug

administration. After the last scan, animals were returned to their cages and a food burrowing

test was carried out until 40 hours after injection.
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Burrowing is a species-typical task and prior training is not needed. The animals have free

access to food and water in their cages, plus an additional food filled glass container inside the

cage, which is weighted before and after the test. Burrowing as a behavioral test has been shown

to be very sensitive to low-dose endotoxin exposure [283].

Figure 3.1: Lipopolysaccharide (LPS) MRS pilot experiment protocol.

t=-1h: induction of anaesthesia, arrangement into the MRI scanner, MRS baseline.

t=0h: iv administration of the drug/control. t=0-4h: MRS acquisitions. t=4-40h:

Mice recover in their cages, food burrowing test.

3.4.2.4 MRS acquisition and analysis

MR spectroscopy was performed in a horizontal 7 T Bruker system (ParaVision 5.1), using a

Point-Resolved Spin echo Sequence (PRESS) sequence: TR/TE = 2500/13 ms, 512 averages,

total acquisition time 21 min, 8 dummy scans, 2048 data points, spectral width 4006 Hz. More

details about the MR protocol, together with anaesthesia induction and monitoring can be found

in the Methods section of the full study (3.5.2).

MRS data was analysed using LCmodel [10] with a simulated PRESS basis file provided by

Provencher, with the experimental sequence parameters, without any data postprocessing other

than eddy current correction. Inclusion criteria for individual spectra involved rejecting linewidths

bigger than 15 Hz. Metabolites consistently within Cramér-Rao bounds < 10% were included

in further analysis, i.e. glutamate (Glu), myo-Inositol (Ins), N-acetyl-aspartate (NAA), taurine

(Tau), total choline (tCho), total creatine, Glx (Glu + Gln). The quantification of the metabo-

lites was expressed as a ratio to the sum of selected metabolites [284], method which will be

discussed further in the following full study. The ratios are expressed as percentages from base-

line. The data was separated in groups according to mice treatment, and averages and standard

errors were calculated.

MRS data was tested for normality distribution (normal probability plot) and then analysed with

a 2-way ANOVA repeated measures mixed model approach using In Vivo Stat software [285],

with drug (LPS/control) as a treatment factor, the different time measurements as the repeated

factor and baseline levels as covariate. The data was tested for statistically significant differences

overall and within groups (5% level). These statistics are hindered by the small sample size and

they just aim to illustrate in more detail the pilot data.
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3.4.3 Results: time course and MRS response to the LPS challenge

Out of the six animals which received the LPS drug, four had a increase in myo-inositol levels of

around 20% (metabolite which has been associated with neuroinflammatory processes [218]),

three hours after the injection (no effects at 6 hours or 24 hours). The other two had a indistin-

guishable response from the controls. This first group of animals has been called "responders"

in graph 3.2, while the others are labeled "non responders". A trend for decrease in total choline

levels (non significant) over time follows LPS injection, with the first group having a stronger

decrease (Figure 3.2B).

Taurine levels showed a significant decrease with time independent of treatment (Figure 3.2C),

while the rest of metabolites did not show any significant changes. The food burrowing test did

not produce any significant differences between treatments, even when responders/non respon-

ders categories were considered.

3.4.4 Discussion

The fact that only 4 out of the 6 LPS animals showed a clear response to the drug might relate

to the low LPS dose used or to the unknown degree of neuroinflammation experienced by the

mice. The chosen LPS dose, 100 µg/kg has been proven to have behavioral effects, such as

differences in open-field activity and food burrowing [183], but histological verification of the

degree of inflammation in these animals is desirable for validation and will be incorporated in

a subsequent full study. The decrease of taurine levels with time, independent from treatment

was an unexpected result from the pilot and will have to wait confirmation from the full study.
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Figure 3.2: Pilot LPS MRS study.

A: percentage change from baseline of myo-inositol MRS ratios over time. The

LPS treated animals were divided in two groups: responders (black), with a sig-

nificant increase at 3 and 4 hours over the other group (non responders, blue).

The control mice, PBS treated, are in green. B: percentage change from baseline

of total choline MRS ratios over time, with the same group division. There is

a non significant trend for decrease after the LPS injection, more accentuated in

the responders group. C: percentage change from baseline of taurine MRS ratios

over time (mice divided according to myo-inositol response). Taurine levels show

a significant decrease with time independent of treatment. D: percentage change

from baseline of total creatine MRS ratios over time, with the same group division.

There is no change in the creatine levels for any treatment group, which validates

its possible use as a reference.
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3.5 Metabolic response to a neuroinflammatory challenge in a model

of Alzheimer’s disease, a MR Spectroscopy study

3.5.1 Objectives

The aim of this full study is to develop and validate an MR biomarker of neuroinflammation, by

monitoring with MR Spectroscopy (MRS) the early metabolic response to a mild inflammatory

stimulus: systemic administration of LPS.

Building on the pilot study, we hypothesize that MRS metabolic changes and more specifically

an increase in myo-inositol levels will reflect LPS induced transient neuroinflammation in the

brain. Additionally, we aim to test if the metabolic changes will be more pronounced in animals

with a pre-existing chronic brain disorder (mouse model of Alzheimer’s disease, AD), compared

with controls.

The second objective is the validation of the MRS results using immunohistochemistry to evalu-

ate the degree of microglia activation and reactive astrogliosis as markers of neuroinflammation,

which was one of the questions arising from the pilot study results. The ionized calcium-binding

adapter molecule (Iba1), expressed in the microglia cells in the brain, is upregulated during ac-

tivation and the glial fibrillary acidic protein (GFAP) is used to stain reactive astrocytes [169]

(more details can be found in section 2.2.3). Our hypothesis is that there is a relationship be-

tween myo-inositol MRS changes and microglial activation as seen by histology, with differ-

ences between treatment groups and/or mice types.

3.5.2 Methods

3.5.2.1 Animals

All procedures were approved as required under the UK Animals (Scientific Procedures) Act

1986.

44 male mice were used in this experiment, with an average weight of 37 g ± 6 g and an age

of 9.2 ± 4 months. Drug and test naive, with no previous procedures, they had been group

housed (2-6 per cage) in specific pathogen free (SPF) conditions, with a 12:12 h light-dark

cycle, controlled temperature and humidity conditions, plus free access to food and water. As

for genotype background, 22 are AD transgenic mice (APPSwe/PS1dE9), 13 are wild type (WT)

littermates of the AD and 9 WT C57.
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3.5.2.2 Study design

Animals were randomly divided in four groups, with two genotypes: AD transgenic (APPSwe-

PS1dE9, n=22 mice) and age-matched wild type controls (WT, n=22 mice) and two different

drug treatments: lipopolysaccharide (LPS, 100 µg/kg, n=23 mice) and phosphate buffered saline

(PBS, Sigma Aldrich, as control, n=21 mice). The four groups composition can be seen in

table 3.2. The chosen sample size is based on a power calculation estimating a 20% myo-

inositol increase after LPS (coming from the "responders" mice result from the pilot study, see

3.4). Assuming that the significance level is set at 5% and the sample size is 10, the power of

the experiment to detect a biologically relevant 20% change from control is 99% (calculation

derived from software In vivo Stat [285]). The total number of animals was then chosen to be

n=44, assuming an expecting drop out of around 10 %.

n = 44 mice AD WT

Treatment: LPS 12 11

Treatment: PBS 10 11

Table 3.2: Study design; experimental groups. 44 male mice in total, with an average age of

9.2 ± 4 months

The brain region chosen for MRS acquisition was again the hippocampus, due to its high mi-

croglial content [282], as well as being one of the most susceptible brain areas to Alzheimer’s

disease progression [174]. The voxel is also covering part of the thalamus, due to its size (2x2x2

mm) and to avoid the cortical area, more difficult to shim.

3.5.2.3 Protocol

All experimenters were blind to group allocation (genotype or treatment). The first n=5 exper-

iments were performed by me, and the remaining n=39 were performed by Dr Marie-Christine

Pardon and Dr Henryk Faas. After animals were anaesthetised and positioned in the imaging

system, an iv catheter connected to a syringe pump was introduced in a tail vein, for drug admin-

istration inside the scanner. Two MR spectroscopy scans (total acquisition time 42 min) were

acquired to establish a baseline of brain metabolite levels. Then, one hour after the first scan,

each animal received an iv administration of either lipopolysaccharide (LPS, 100 µg/kg), dis-

solved in saline solution, or phosphate buffered saline (PBS), delivered through the iv line while

remaining inside the MRI scanner. To track the metabolic response, a spectrum was acquired

every hour for four hours after drug administration. After the last scan the mice were sacrificed

(cervical dislocation) and their brains extracted for histological analysis. The total experiment

time was around five hours and a half.
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Figure 3.3: Lipopolysaccharide (LPS) MRS experiment protocol.

t=-1h: induction of anaesthesia, arrangement into the MRI scanner, MRS base-

lines. t=0h: iv administration of the drug/control. t=0-4h: MRS acquisitions, four

timepoints.

3.5.2.4 Anaesthesia and monitoring

Mice were anaesthetised with a mixture of oxygen and isoflurane (Isocare, 3% for induction and

1-2% for maintenance). The animals were taken out of the cages, their body weight recorded

and then induction was performed inside a plastic box resting on a homeothermic blanket control

unit (Harvard Apparatus) outside of the scanner. Immediately after, they were positioned on the

custom made scanner holder, tooth bar and ear bars minimizing movement, and the anaesthetic

being delivered with a nose cone. Body temperature was monitored using a rectal temperature

probe, and in order to keep it stable (around 36.5-37.5 ◦C), warm water was being constantly

pumped through the holder, whose temperature could thus be regulated. The respiration rate

was also recorded, using a pressure pad in the chest connected to a small animal unit (SA

Instruments, typical respiration rate under anaesthesia: 90-120 breaths/min). An iv catheter

connected to a syringe pump was introduced in a tail vein, for drug administration inside the

scanner. Eye gel (Lubrithal) was applied in both eyes to avoid desiccation.

3.5.2.5 MRS acquisition

MR recordings were performed with a horizontal 7 T Bruker system (ParaVision 5.1). A volume

coil (72 mm outer diameter) was used for excitation and a quadrature mouse brain surface coil

for signal detection (Bruker, Karlsruhe, Germany). After tuning and matching, the frequency

was adjusted and a global power calibration of the 90◦ pulse was performed. Three slices in

coronal, sagittal, and axial orientations, were acquired with a fast low angle gradient method

(FLASH) to check the mouse position and for planning the more detailed subsequent anatomi-

cal scans. Any visible position or excessive movement issues were corrected at this stage. For

voxel placing, anatomical scans were acquired using a RARE sequence in coronal, sagittal and

axial orientation (RARE factor 8, TE 11.8 ms, TR 5 s, matrix size 256 x 256, Field of view

FOV 15x20 cm, number of slices 30 slices, slice thickness 0.5 mm). A single voxel of 2x2x2

mm was centered on the right hippocampus and thalamus (see Figure 3.4), this size was chosen
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during previous experiments because it provides enough signal to noise for quantification and

specificity.

Figure 3.4: Representative MRS voxel:

A representative voxel used for this study, encompassing right hippocampus and

thalamus, as seen during the planning stage using a RARE axial image.

Shimming was done first through a global shim (MAPSHIM, Bruker) followed by a local shim

of the MRS voxel using FASTMAP. Shim quality was evaluated before every MRS acquisition

by measuring the full width half maximum (FWHM) using a PRESS sequence without water

suppression, and shims were adjusted if necessary.

Finally, in vivo MR spectroscopy was performed using a Point-Resolved Spin echo Sequence

(PRESS) sequence: TR/TE = 2500/13 ms, 512 averages, total acquisition time 21 min, 8 dummy

scans, 2048 data points, spectral width 4006 Hz. This short echo time was used to maximise

the number of metabolites obtained. The water signal (VAPOR, 200 Hz bandwidth) and outer

volume were suppressed for improved signal quality. A reference scan without water suppres-

sion was also acquired for subsequent eddy current correction, the total acquisition time for one

spectrum being 21 minutes and 40 seconds.

To minimise frequency drift, the field-frequency lock was selected (it corrects the main field drift

during localized proton MRS). Postprocessing (eddy current correction) was done automatically

in Topspin, where the spectra could be visualized right after the acquisition was finished to check

for any possible artifacts.

3.5.2.6 Histology

Histology procedures were performed by Alessandra Agostini and others. Mice were humanely

killed using an approved (Schedule 1) method (neck dislocation) at approximately four hours

after injection, and the brains extracted. Brains were post-fixed in 4% perfluroaldehyde (PFA)

and refrigerated for a minimum of 48 hours, then dehydrated by an ascending alcohol series and

embedded in paraffin. The paraffin blocks were cut into coronal microtome sections (thickness

7 µm) and those corresponding to a coronal plane around 2 mm posterior to Bregma were drawn

up on microscope slides.

These slides were then deparaffined, rehydrated and incubated in citrate buffer, before the stain-

ing procedure. Primary antibodies Iba1 and GFAP were used for microglia and astrocytes,
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respectively. After an appropriate counterstaining procedure, the slides were dehydrated by ex-

posure to various alcohol solutions and to finish, they were slipcovered, avoiding any bubble

formation. 20x images were taken with a NanoZoomer 2.0-RS C10730 digital slide scanner

(Hamamatsu Photonics K.K. Systems, Japan).

3.5.2.7 Analysis

Analysis of MR spectra and preparation and image analysis of histological slides were carried

out blinded to genotype or treatment. MRS analysis was performed by me, while histological

data was analysed by Felicity Easton [286].

LCmodel fitting parameters and metabolite quantification references

MRS data was analysed using LCmodel [10] with a simulated PRESS basis file provided by

Provencher (sp@lcmodel.CA), with the experimental sequence parameters, without any data

postprocessing other than eddy current correction. 17 metabolites are represented in the basis

set: alanine (Ala), aspartate (Asp), creatine (Cr), phosphocreatine (PCr), γ-aminobutyric acid

(GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glycerophosphorylcholine (GPC),

phosphorylcholine (PCh), glutathione (GSH), myo-inositol (Ins), lactate (Lac), n-acetyl aspar-

tate (NAA), n-acetyl aspartatyl glutamate (NAAG), scyllo-inositol (Scyllo) and taurine (Tau).

Figure 3.5: Basis file containing 17 metabolite resonances, PRESS sequence

Inclusion criteria for individual spectra involved rejecting linewidths bigger than 15 Hz (one

mouse was excluded because of this). Moreover, one of the animals dataset was rejected due to

the presence of a brain tumour and three mice were excluded due to an uneven baseline with too

many lipid signals, which suggested a misplacement of the voxel (see table 3.3).
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Two different sets of fitting parameters were used in the LCmodel software to try to get the best

possible fit to the data:

Default parameters These are the most generic parameters, called default control parameters:

The window of frequency-domain data that is normally analysed goes from 0.2 ppm to

4 ppm. The parameter NRATIO determines the number of soft constraints applied to

the concentration ratios values, with a default value of 12. In this case, because the data

is not human data, NRATIO=11 (there are no constraints applied to the taurine/creatine

ratio). The preliminary analysis for initial referencing and phasing uses a reduced set of

metabolites considered to be the landmarks of the spectrum. The default metabolites are

five (parameter NUSE1 =5), including NAA, creatine, glutamate, myo-inositol and GPC

(parameter CHUSE1 = "NAA", "Cr", "GPC", "Glu", "Ins").

New parameters The window of frequency-domain data now ranges from 0.5 ppm to 4.1 ppm.

This excludes some macromolecules and adds another myo-inositol resonance, close

to the water peak. NAA has been removed from the preliminary analysis metabolites:

NUSE1 = 4 and CHUSE1 = "Cr", "GPC", "Glu", "Ins". This has been done because NAA

was quite low for several datasets, which can compromise the the lineshape assumption

based on NAA. The knot spacing for the spline baseline fitting (parameter DKNTMN)

has been set to 5, in order to restrict the baseline and make it very flat. This will help

prevent possible reproducibility issues caused by large variations in baseline fits [287].

The convolution range (dependent on parameter RFWHM) has been extended (RFWHM

= 2.5 from default value 1.8), to obtain a more accurate lineshape estimation. Finally, ap-

propriate values for the zero and first order parameters were introduced as prior phasing

information to minimise running time.

Other changes that have also been considered are for example, removing all soft con-

straints (NRATIO=0), which did not make any significant difference in the results. Also,

metabolites GABA and GSH were tentatively removed from the analysis (NOMIT = 2,

CHOMIT = "GABA","GSH") to evaluate their influence on the myo-inositol fits. The

hypothesis was that maybe both were over-represented in the fits at the expense of myo-

inositol, but since that was not the case they were later put back in.

The two different sets of fitting parameters were compared by calculating the residual sum of

squares (or RSS). The residual sum of squares is a measure of the amount of error remaining

between the regression function (LCmodel fit, in red in Figures 3.6A,B) and the data (raw data,

in blue in Figures 3.6A,B). Even when the new set of parameters resulted in more reproducible

baselines, the default parameters give the lowest residual sum of squares considering both all

the frequency region (Figure 3.6C) and a more myo-inositol specific area, see Figure 3.6D. The
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chosen myo-inositol range is 3.5 ppm - 3.7 ppm, where the doublet of doublets and the triplet

resonances are and the overlap is minor. Therefore, the default LCmodel parameters have been

used to analyse the final MRS results in this study.

Figure 3.6: LCmodel fitting parameters comparison

A Representative MRS mouse spectrum, analysed with the LCmodel default pa-

rameters. Raw data in blue, baseline in black and fitted spectrum in red. B Same

spectrum analysed with the LCmodel new parameters. Notice the flat baseline

achieved with these parameters. C Average residual sum of squares of the whole

spectrum with the default parameters (blue) and new parameters (red). D Average

residual sum of squares of the area of the spectrum corresponding to main myo-

inositol resonances: 3.5 ppm - 3.7 ppm. Although this was not statistically sig-

nificant, the default LCmodel parameters give the lowest residual sum of squares

(RSS) both globally and in a more myo-inositol specific frequency range of the

spectrum.

Metabolites consistently within Cramér-Rao bounds < 10% were included in further analysis,

i.e. glutamate (Glu), myo-Inositol (Ins), N-acetyl-aspartate (NAA), taurine (Tau), total choline

(tCho), total creatine, Glx (Glu + Gln). The output values of the LCmodel were then imported

to Matlab using a custom made analysis tool (Figure 3.7).

The quantification of the metabolites can be expressed in three ways, using three different ref-

erences: the water concentration (value taken from the water reference scan, without water

suppression), the total creatine concentration (using the metabolite total creatine as a reference)
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Figure 3.7: MRS tool

This Matlab program imported all the necessary data from LCmodel into Matlab,

reading the output files "table", "coord" and "h2o".

or a sum of selected metabolites, by choosing a number of metabolites together as reference

[284], as it is a common practice in metabolomics [288]. These metabolites would be the most

accurately fitted by the LCmodel, in this case total creatine, total choline, taurine, myo-inositol,

NAA and the sum of glutamate and glutamine (Glx). The three references were compared in

Figure 3.8: The water content was calculated by importing the water reference file (h2o) from

LCmodel into Matlab, extracting the water spectrum, applying automatic phasing corrections

and calculating the area under the peak. This process was performed for all six timepoints per

animal and the water content is represented in a box plot in Figure 3.8A. The sum of selected

metabolites (tCr+tCho+Glx+Ins+Tau+NAA) equivalent distribution over time can be found in

Figure 3.8B and the total creatine content in Figure 3.8C. Finally, the reproducibility of the

three references is compared in 3.8D, with a bar graph containing the mean standard deviation

(expressed as %) of the three methods: 1.5% water content, 3.1% sum of selected metabolites

and 3.6% total creatine. In this case, the water content comes out as the best candidate for refer-

encing. However, an experimental mistake during the acquisition of the data has caused the loss

of the water reference scans for six animals, which means that the sum of selected metabolites

has been the chosen method for normalizing the MRS data in this study.

The MRS ratios have been expressed as percentages from baseline (calculated as the average

of the two baseline data points). The data was separated in groups according to mice type and

treatment and averages and standard error of the mean were calculated.
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Figure 3.8: MRS metabolite quantification: reference comparison

A: Absolute water content over time. B: Sum of selected metabolites

(tCr+tCho+Glx+Ins+Tau+NAA) content over time. C: Total creatine content over

time. D: Average standard deviation (expressed as %) of the three references. The

reference with the less spread is the water content, followed by the sum of selected

metabolites and the total creatine.
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n=39 mice total AD WT

Treatment: LPS 11 10

Treatment: PBS 9 9

Table 3.3: Data included in MRS analysis

Histology analysis

Histological data was analysed by Felicity Easton, with full details in [286]. Here it follows a

summary of the processes involved:

The histology slides were visualized using NDP view 2 software, where region of interests

(ROIs) were selected at 30x zoom in the hippocampus: Cornu Ammonis (CA1, CA2, CA3),

Dentate Gyrus (DG), Molecular layer (MOL) and Thalamus (THAL). A semi-automatic thresh-

olding was initially performed using ImageJ, the percentage of stained area for every ROI cal-

culated. The results for every treatment group (WT-PBS, WT-LPS, AD-PBS, AD-LPS) were

presented, using the averages of all ROIs and individually per each ROI. GFAP staining corre-

lates with reactive astrocytes. However, Iba1 binds to both resting and activated microglia and

therefore, a more specific and original method was developed for Iba1 analysis: this method cal-

culates the relative percentage of soma to total cell size (being activated microglia characterized

by a bigger soma size, with no branches, opposed to the resting ramified state).

Statistical analysis

MRS statistical analysis was performed using In Vivo Stat [285] and Microsoft Excel 2013.

MRS data for a particular metabolite was analysed using a 3-way ANOVA (ANalysis Of VAri-

ance) repeated measures mixed model approach (In Vivo Stat), with drug (LPS/control) and

type (AD/WT) as treatment factors, the different time measurements as the repeated factor and

baseline levels of the metabolite as covariate. The data was tested beforehand for normality

distribution and statistically significant differences overall and within groups (5% level) were

detailed. This procedure was performed for myo-inositol, taurine, NAA, glutamate, glutamine,

total choline, total creatine, total NAA, GABA, MM09 + Lip 09 and Glu + Gln, in the same

dataset. For the histology analysis (done by Felicity Easton, details in [286]), SPSS 2.0 (IBM)

and Excel Data Analysis tool pack (Microsoft Excel 2013) were used, with the Mann Whitney-U

test for detecting group differences (data not normally distributed).
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3.5.3 Results

3.5.3.1 Metabolic response to the LPS challenge

There was a significant myo-inositol increase observed in LPS treated AD mice, in comparison

to the AD PBS group (p=0.034) or the wild type LPS group (p=0.030), see Figure 3.9.

Figure 3.9: Time course of the myo-inositol MRS levels

A: The myo-inositol levels of the LPS treated AD mice increase significantly at

four hours, compared with AD controls or with wild-type LPS treated animals

(which do not experiment significant changes in their myo-inositol levels com-

pared to the PBS WT). The myo-inositol levels are expressed in percentage change

relative to baseline. *p<0.05

As for the rest of metabolites, taurine shows a highly significant overall time effect (p<0.001),

together with an interaction treatment/time (p=0.049). Taurine levels decrease with time, a more

pronounced effect in AD mice (significant difference between LPS and controls at four hours,

p=0.012, Figure 3.10A). Also within the AD group, total creatine levels increase significantly

at four hours (p=0.011) with LPS (Figure 3.10B) and finally, NAA decreases significantly in

the first hour time point (p=0.046) in the AD-LPS group, compared with AD controls (Figure

3.10C).
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Figure 3.10: Time course of the taurine, total creatine and NAA MRS levels

A: The taurine levels of the LPS treated AD mice decrease significantly at four

hours, compared with controls, accompanied by a overall decrease with time in-

dependent of drug or genotype. B: Total creatine levels increase significantly

with LPS at four hours in AD mice, compared with controls. C: The NAA levels

of the LPS treated AD mice decrease significantly at the first hour, compared with

AD controls.

Taurine, total creatine and NAA MRS levels of WT mice do not show significant

changes with the drug. *p<0.05
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3.5.3.2 Immunohistochemistry results: Iba1 and GFAP staining

The histology results are taken from [286]. The microglial marker Iba1, expressed as average

percentage of area stained is higher in LPS treated animals compared with PBS (not distin-

guishing between genotypes, figure 3.11A). However, when the Iba1 results take into account

the soma size as a percentage of total cell pixel count (more specific to activated microglia,

which have enlarged soma), the LPS treated animals are again significantly higher, but this time

the staining also shows an increase in the AD LPS group compared with WT LPS (figure 3.11B).

Finally, the GFAP staining (mean percentage of area stained) differentiates between genotypes

(significant increase in AD animals) independent of the drug (figure 3.11C).

Figure 3.11: From [286]: Analysis of Iba1 and GFAP expression relative to treatment

conditions for WT and AD mice.

A: Iba1, mean of percentage of area stained. WT-LPS and AD-LPS groups show

a significant increase in percentage area stained relative to corresponding PBS

groups. B: Iba1, soma size presented as a percentage of total cell pixel count.

The soma size as a percentage of total cell pixel count is representative of mor-

phological stage, with significant changes shown between WT-PBS and WT-LPS

and AD-PBS and AD-LPS as well as between WT-LPS and AD-LPS. C: GFAP,

mean of percentage of area stained. AD-PBS and AD-LPS groups show a sig-

nificant increase in percentage area stained relative to corresponding WT groups.

*p<0.05, **p<0.001.
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3.5.4 Discussion

Our hypothesis was that MRS metabolic changes and more specifically, an increment in myo-

inositol levels will reflect LPS induced transient neuroinflammation in the brain, which will be

increased in animals with a pre-existing chronic brain disorder (mouse model of Alzheimer’s

disease, AD), compared with controls. We found no significant increase overall in myo-inositol

levels with LPS for wild-type mice. However, the response in AD mice is indeed stronger,

with an increase in myo-inositol four hours after LPS administration (around 10 percent) and

this agrees with the hypothesis of microglia being primed in a state of chronic disease, such as

Alzheimer’s and being more susceptible to insult [289].

The myo-inositol MRS results are supported by histological Iba1 staining: the percentage of

stained area analysis reflects a significant increase in the LPS treatment group as compared

with the control group, for AD and wild type mice. Since the percentage of stained area high-

lights both activated and non activated microglia, the more specific measurement of ratios soma

size/total cell volume is also considered. Its values are also significantly increased in the LPS

treated mice, although differentially higher for AD (around a 100 % increase) than for wild type

mice (25 % increase), more in agreement with the myo-inositol MRS values. GFAP results

provide further confirmation of this genotype effect, with astrocytes for both AD-PBS and AD-

LPS treated groups having around a 60% increased erythrocyte reactivity compared to their WT

controls. However, there is no evidence of LPS induced astrogliosis in the model.

Additional metabolic changes include a significant increase in total creatine levels in the LPS

AD group compared with controls. Creatine can be found in higher concentrations in glial cells

than in neurons [172], which is one of the known pitfalls of using creatine levels as reference

in MRS neuroinflammatory studies [12]. This effect would be in agreement with the increased

myo-inositol levels observed in the same group.

There is also a significant decrease in taurine levels with time, stronger in LPS AD mice. Martin-

Recuero et al. also reports taurine changes over time in a similar in vivo MRS experiment after a

higher dose LPS administration, with taurine increasing after injection, then decreasing around

24 hours later and finally recovering. These changes are attributed to osmotic alterations [274],

since taurine is an osmoregulator. It can also exert neuroprotective actions in neural tissue [290],

playing an important role in inflammation associated with oxidative stress (taurine administra-

tion with LPS can protect the brain against LPS-induced lipid peroxidation and oxidative stress

[291]). This argument is difficult since myo-inositol is also an osmoregulator, but it does not

experience the same changes as taurine. Possible effects from the anaesthesia or another part of

the experimental setup cannot be excluded.

N-acetyl aspartate (NAA) levels (which are considered a marker of neuronal density/dysfunction,
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reduced in pathological conditions [173]) significantly decrease in the first hour time point after

LPS injection for AD mice, compared with AD controls. However, the high experimental stan-

dard error values of NAA measurements (maybe caused by the short echo time MRS PRESS,

which maximises macromolecule signals in the NAA frequency range), coupled with the rela-

tively high p value (0.046), raise some doubt over the interpretation of this result. Focusing on

statistical limitations of the study, the uneven sample sizes result of data exclusions and specially

the small numbers in general limit the reliability and sensitivity of the analysis. Small effects

could be present and hiding as non significant, helped by somewhat large statistical errors (with

a probable influence of anaesthesia effects). Moreover, some authors [292] are concerned with

the use of a single dataset for several statistical tests (or multiple hypothesis testing) creating a

risk of false positive results (type I errors). However, no adjustments for multiple tests (or Bon-

ferroni adjustments [293]) are applied to the significance level in this study, since type I errors

cannot decrease without inflating type II errors (false negatives) and as Perneger recommends,

simply describing what statistical tests have been done and why, and discussing the possible

interpretations of each result, helps to reach a reasonable conclusion without the help of Bonfer-

roni adjustments, which should not be used when assessing evidence about specific hypotheses

[294].

3.6 Conclusion

Myo-inositol changes, measured with MRS, reflect a mild neuroinflammatory transient state

in AD mice, induced by a low dose of LPS and are validated with histology results (Iba1 and

GFAP). This neuroinflammatory state is stronger in AD mice than in WT according to Iba1

measurements (soma size method), agreeing with the initial hypothesis of a primed microglial

state in the mice with a chronic disease condition [289] compared with wild types. A more

specific staining for activated microglia (CD68) could be used in the future to simplify the

histology interpretation. There are no significant MRS myo-inositol changes in WT mice, which

could be due to the low dose used, although none of the previous in vivo MRS LPS studies report

changes in myo-inositol in wild type mice [274–276] even at higher LPS doses.

Myo-inositol could be a good candidate for an in vivo non-invasive microglial activation biomarker,

through its measurement with MR Spectroscopy and could be potentially used to investigate the

onset of the neuroinflammatory processes in preclinical models of neurodegenerative diseases,

stroke or any other disorder with an inflammatory component, or test anti-inflammatory drugs,

in preclinical or clinical settings.

A disadvantage of this approach is the low spatial resolution of MRS to investigate myo-inositol

changes throughout the brain in a clinically feasible time, complicating the understanding of
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such a complex and dynamic phenomenon as neuroinflammation [240]. Therefore, alterna-

tive non-invasive MRI techniques would be desirable, such as the possibility of imaging myo-

inositol with chemical exchange saturation transfer, which was first applied to characterize ad-

vanced stages of AD in a mouse model by [123], and it is further explored in the next chapters

(chapter 4 and 5).
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Chemical exchange saturation

transfer: optimizing a CEST

experiment

4.1 Introduction

From the literature review in chapter 2 and the MRS study in chapter 3, glial marker myo-

inositol and glutamate emerge as suitable candidates for the global aim of developing an MRI

molecular biomarker for neuroinflammation. But myo-inositol contains six OH groups and

hydroxyl CEST resonances are affected by direct water saturation effects (because they are very

close to the water peak) and B0 inhomogeneities, especially at the high fields that are required

for its measurement. These experimental difficulties, together with the overlap of other similar

molecules in the CEST signal are the reason for the work performed in this chapter.

The aim of the CEST simulations is to optimise myo-inositol CEST parameters, in order to

maximize the contrast for future in vivo experiments and to estimate the amount of myo-inositol

CEST contrast that can be expected in the in vivo situation.

The aim of the in vitro experiments is to gain a better understanding of the CEST process and

practical problems associated and to test the accuracy of the simulations, before starting any in

vivo experiments.

Regarding the structure, section 4.2 contains a CEST simulations literature review (including

theory and techniques), while the rest of the chapter details the work performed to optimise a

myo-inositol CEST experiment, first with simulations (section 4.3) and then with in vitro data

(section 4.4).
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4.2 Simulating the CEST signal: a review

4.2.1 Bloch-McConnell equations: two pool model

Bloch equations (macroscopic equations describing the total magnetic moment of a sample, the

magnetization ~M =∑N
i=1 µi, in a NMR experiment, see section 1.2.3), can be modified to account

for chemical exchange by adding exchange terms (Bloch-McConnell equations [295]). In the

simplest case of a two pool model (pool A being bulk water and pool B the bound protons),

assuming that ~B1 is applied through the~y axis, they can be written as [65]:

dMxa

dt
=−(ωa −ω)Mya − k2aMxa +CbMzb

dMxb

dt
=−(ωb −ω)Myb − k2bMxb +CaMza

dMya

dt
=−(ωa −ω)Mxa − k2aMya +CbMyb −ω1Mza

dMyb

dt
=−(ωb −ω)Mxb − k2bMyb +CaMya −ω1Mzb

dMza

dt
=

M0a

T1a

− k1aMza +CbMzb +ω1Mya

dMxa

dt
=

M0b

T1b

− k1bMzb +CaMza +ω1Myb (4.2.1)

where

k1a =
1

T1a

+Ca ; k2a =
1

T2a

+Ca ; k1b =
1

T1b

+Cb ; k2b =
1

T2b

+Cb ;

Here, Ca(b) is the transition rate from the spins abandoning pool A(B), w1 = 2π~B1, ωa is the

resonance frequency of pool A, ωb is the resonance frequency of pool B, ω is any of frequencies

the RF pulse ~B1 is applied at, and T1(2)a(b) are the relaxation times T1 and T2 of the spins in pool

A and B respectively, without exchange. The group of equations (4.2.1) can be expressed in a

more compact matrix form (4.2.2):
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(4.2.2)
d ~M

dt
= A~M+~B

Many of these parameters can be measured: T1 and T2 (with no exchange), M0b (related to the

bound pool proton concentration [65]), ωb (by inspection of the Z spectrum) and finally the

exchange rate Cb. Cb can be calculated using this formula (assuming steady state [296]):

k =
CEST effectmax

1−CEST effectmax

1
t1a

(4.2.3)

The exchange rate depends on temperature, pH and buffer properties. Another possibility is

solving the Bloch-McConnell equations (see next section 4.2.2) and fitting to experimental data

[22, 65, 296] to get specific parameters (Cb , T1a , T1b , T2a , T2b, ωb, M0b).

4.2.2 Solving the Bloch-McConnell equations

There are many different ways of solving these equations. Useful approximations to simplify

them are for example assuming complete saturation of the spins in pool b. This is the strong

pulse approximation [297], which requires only two equations and is equal to having a very

strong RF pulse and no direct saturation of the water pool [65]. Another example is the weak

pulse approximation, with a very low RF pulse [102], generally applied when ω1 is small, mean-

ing that there is not going to be direct water saturation. This implies that (ωa −ω) = ∞ and the

effect of ω1 in the water pool is neglected leaving only four equations (the x and z magneti-

zations [102]). The strong and weak approximations can also be combined to create a more
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general solution [40].

Moreover, the assumption that the exchanging system has reached a steady state is often adopted,

in which case the following equation applies:

d ~M

dt
= 0 (4.2.4)

Here, the problem is reduced to solving a number of ordinary coupled equations, which can

be done, for example, using Cramer’s rule. One problem of this approach is that the solution

is only obtained for a specific time (the time where the system reaches steady state), with no

information provided about the evolution of the process, or about the state of the system at an

earlier stage.

When ω1 is constant (CW CEST), there is an analytical solution that does not require the as-

sumption of steady state [65, 298]:

~M = eAt ∗ (M0 +A−1~B)−A−1~B) (4.2.5)

Or in an easier form,
~M(t) = eCt ~M(0)

if equation (4.2.2) is rewritten as:
d ~M

dt
=C~M (4.2.6)

where the components of the vector ~M(0) are the initial values of the magnetization at t=0, and

eC is the exponential of matrix C. There are many ways of computing the exponential of a ma-

trix [299]: Woessner et al. used the expm1 built-in function from Matlab [65], while Murase

and Tanki used the eigenvectors method [298]. This fast method relies on the assumption that

ω1 is constant (CW CEST), but it can be extended to the pulsed CEST case using a discre-

tised approach [22, 36, 300], by dividing the train of shaped pulses in many hard segments and

propagating the previous solution through all of them.

Finally, a numerical integration can also be used (for example a fourth-order Runge-Kutta

method [301], like the built-in ode45 solver in Matlab). This method can be time consum-

ing, but it is the most rigorous and applies to all experiments (CW and Pulsed CEST), which

makes it useful for verification [298].

4.2.3 Bloch-McConnell equations: three pool model

Conventional magnetization transfer (MT) can be included in the the Bloch equations via a

3-pool model (water pool, bound pool, macromolecular pool), just by adding more coupled

equations, similar to the situation where there is more than one CEST agent [65]. An assumption
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made in this case is the null proton exchange between bound pool and macromolecular pool

(negligible compared to exchange with water, because of the small concentrations of those two

pools). Here are the resulting nine equations in matrix form:

d ~M

dt
= A~M+~B (4.2.7)

k1(2)a =
1

T1(2)a
+kab+kac ; k1(2)b =

1
T1(2)b

+kba ; k1(2)c =
1

T1(2)c
+kca ; X =−k1c−π∗(ω1)

2∗g

(4.2.8)

g represents the absorption pool for MT, which has been shown to be better described as super

Lorentzian in living tissues ([64, 302], see equations 4.2.9 and 4.2.10) and Gaussian in phantom

gels ([303], equation 4.2.11):

g(∆c,T2c) =

√

2
π

∫ π
2

0

T2c

3(cos θ)2 −1
exp(−2(

∆cT2c

3(cos θ)2 −1
)2)sin θdθ (4.2.9)

g(∆c,T2c) =

√

2
π

∫ 1

0

T2c

3(u)2 −1
exp(−2(

∆cT2c

3(u)2 −1
)2)du (4.2.10)

g(∆c,T2c) =

√

2
π

T2cexp(−(
∆cT2c

2
)2) (4.2.11)

The three pool model equations can be solved analogously as the two pool model ones.

4.2.4 Parameter optimization

The importance of performing CEST simulations arises from the need to optimise the CEST

presaturation sequence. The main parameters that the CEST effect depends on are: the RF pulse
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~B1 (number of prepulses, the duration and power/flip angle, delays, shape of the prepulses, etc.),

the CEST metabolites concentrations and the relaxation parameters (T1, T2) of the pools.

4.2.4.1 CW CEST

The CEST contrast for a specific concentration of a metabolite after a steady-state exchange

only depends on one parameter, the ~B1 power or average field, which have the same value, since

~B1 is constant in this case. There is a trade-off between saturation efficiency of the bound pool,

with the CEST effect increasing with ~B1 power and spillover effects or direct saturation of the

free water pool, since MTRasym decreases with ~B1 power. Therefore, there is an optimal power

to maximize the CEST effect (as can be seen in Figure 4.1), which can be proved mathematically

by solving the Bloch equations:
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Figure 4.1: Dependence of CW-CEST on B1 power.

Y axis represents the simulated CEST contrast (MT Rasym) in a CW CEST ex-

periment, while the x axis contains the B1 power values used, in T. This picture

illustrates the existence of an optimal B1 power. In this particular case, an opti-

mal value of 1.8 µT maximizes the CEST effect (trade off between saturation and

spillover effects). Parameters used in this simulation are: Main magnetic field =

7 T, T2 = 0.9 s, T1 = 2 s, pool A (water), pool B (myo-inositol, 0.6 ppm, 600 Hz

exchange rate), duration of the hard pulse = 5.6 s.

B1 for CW CEST, saturation of bound pool/direct water saturation

Direct water saturation refers to the process of pool A (bulk water) getting saturated as a direct

result of the offset RF prepulse and not due to the subsequent chemical exchange. To study its

magnitude, a simple case of an offset pulse on a single pool is considered. Using the Bloch

equations and assuming steady state (
dMx

dt
=

dMy

dt
=

dMz

dt
= 0),
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Mx

T2
=−(ωa −ω)My (4.2.12)

dMy

T2
=−(ωa −ω)Mx −ω1Mz (4.2.13)

dMz

T1
=

M0

T1
+ω1My (4.2.14)

Substituting Mx from equation (4.2.12) in equation (4.2.13) and the resulting My in (4.2.14),

yields:
Mz

M0
=

1

1+
w1

2T1T2

T2
2(ωo f f resonance −ω)2 +1

(4.2.15)

Here, the offset pulse is directed at ωo f f resonance, with a power B1 =
ω1
2π . In order to avoid any

direct water saturation,
Mz

M0
would have to be 1 and consequently, B1 = 0. But without an RF

pulse, there will be no saturation and no CEST contrast. Focusing now on the situation of the

bound protons, the equation describing their magnetization is very similar to (4.2.15), only that

for them, the RF pulse is on resonance, ωo f f resonance −ω = 0

Mz

M0
=

1
1+ω1

2T1T2
(4.2.16)

Here, the situation is the opposite, the bound protons should be as saturated as possible, so ide-

ally, expression (4.2.16) should be 0 and consequently B1 should be ∞. As it has been proved

that increasing B1 increases the saturation of the bound protons, the only way to avoid having

a large direct water saturation as a result of a powerful B1 would be using a metabolite with

a large chemical shift ωo f f resonance −ω, which is not possible when dealing with diamagnetic

substances.

Other factors for CW CEST

1. Bound pool proton concentration: There is a linear increase of the CEST effect with

the concentration of the bound protons, due to the existence of more protons exchanging

between water and target metabolites. However, this parameter cannot be altered when

the targets are endogenous metabolites in vivo. Also, this is only true up to a certain

concentration (back exchange effect [19]). The following equation applies:

kba

kab

=
M0a

M0b

(4.2.17)

where kba is the exchange rate from the bound proton pool to the free protons (water pool),

kab is the back exchange rate from the free protons to the bound protons, and M0a and
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M0b are the magnetizations of the bound proton pool and the free proton pool respectively

(which are directly proportional to their concentrations).

Phillip Zhe studied the effect of a four-fold increase in bound proton concentration on

the optimal B1 power, finding it negligible [304]. The number of exchangeable protons

in a molecule influence the CEST effect the same way as the concentration, the higher

number of exchanging protons a molecule has the lower concentration of said molecule

is required to achieve the same contrast [19].

2. Longitudinal and transverse relaxation: CEST effect is favoured by higher T1, since the

saturation takes longer to relax. This contributes to an enhanced CEST effect with a

higher ~B0 (since the longitudinal relaxation constant of the water increases with the main

magnetic field [305]). The CEST effect also increases with T2.

The optimal B1 is reduced with increasing T1, since the saturation has to compete with

a slower relaxation and it increases with longer T2 (sharper water peak causing less

spillover).

3. Chemical shift and chemical exchange rate:

The CEST effect is directly proportional to the offset frequency of the bound protons

(shown in equation (4.2.15)). Moreover, less influence of spillover at large offsets permits

stronger B1 powers.
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Figure 4.2: Optimal B1 powers for different offsets 1-7 ppm:

Optimal B1 power increases with chemical offset (less spillover effects). Param-

eters for this two pool model simulation: B0 = 9.4 T, T2 = 0.6 s, T1 = 3 s, 600 Hz

exchange rate)

Faster exchanging protons require stronger B1 powers to be saturated, while the condition

of slow regime, or slow to intermediate regime has to be fulfilled, see 1.5.4.
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Figure 4.3: CEST effect dependence on exchange rate for different B1 powers:

Slow exchanging protons give raise to higher CEST contrast, with small B1 pow-

ers. Parameters for this two pool model simulation: B0 = 9.4 T, T2 = 0.6 s, T1 = 3

s, chemical offset = 3 ppm

4.2.4.2 Pulsed CEST

Unlike CW CEST, the Pulsed CEST contrast for a specific concentration of a metabolite after a

steady-state exchange depends on several parameters, which are under experimental control:

1. Average irradiation power

Bavg power =

√

1
PT R

∫ PTR

0
B1

2 dt =

√

p2

dc

πθ

180 γ p1 PTR
(4.2.18)

[34] where:

PTR=Pulse train repetition time

p1 =
average amplitude

maximum amplitude
of the RF pulse

p2 =
average of the square of the amplitude

square of the maximum amplitude
of the RF pulse

2. Average irradiation field amplitude

Bavg f ield amplitude =

√

1
PT R

∫ PTR

0
B1 dt =

πθ

180 γ PTR
(4.2.19)

[34]
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These two values Bavg power and Bavg f ield amplitude are a single one in the CW scheme: the

RF field B1CW = Baverage field amplitude =
√

B2
average field amplitude, since there is no variation

over time.

3. Irradiation flip angle, θ

This value refers to the application of the pulse on-resonance.

Figure 4.4: Pulse Train parameters:

Pulse train of n=3 prepulses, of T duration (τP prepulse + τD delay).

4. Number of prepulses

Number of pulses in a pulse train (for example 3 in Figure 4.4)

5. Duration of the prepulses, τP

6. Duration of the delays, τD

7. Duty cycle

Duty cycle or dc is defined in general as the ratio of the time when a periodic system is

active to the total time. In the case of Figure 4.4, this can be expressed like: dc =
T

τP

8. Shape of the prepulses

They can be rectangular (Figure 4.4), Gaussian, sinc... (see 1.5.3).

Several studies [33, 34] affirm that the optimal CW RF power can be directly translated to

a pulsed scheme, providing a similar CEST contrast for exchange rates less than 50 Hz [36].

A smaller CEST contrast will result for faster exchanging species, due to a more inefficiently

bound pool saturation and the attenuation during the delays. Besides, the behaviour of the

optimal B1 value for pulsed CEST with frequency offset, bound pool proton concentration and

exchange rate seems to match the one of the optimal CW B1 power (see 4.2.4.1 and [34]). As

for the two parameters Bavg power and Bavg f ield amplitude , Sun et al. studied a linear regression

between optimal B1CW and Bavg amplitude [36], while Zu et al. affirmed that Bavg power is a “more
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Figure 4.5: Bavg power and Bavg f ield amplitude, from Zu et al. [34]

Experimental Bavg power (left) and Bavg f ield amplitude (right) that optimize the

pulsed-CEST contrast as a function of flip angle and duty cycle for a creatine

and agar phantom.

meaningful sequence metric” [34] than Bavg f ield amplitude , because it is mostly independent from

other two parameters, θ and dc (see Figure 4.5).

Furthermore, they checked empirically that the flip angle and duty cycle are also independent

of each other and Bavg power , that is, together they form an orthogonal base for the system.

This study results suggest that both dc and θ have optimal values, which are independent of

properties like concentration, chemical exchange rate and frequency offset at around 50% and

180◦ respectively.

An optimal flip angle has been found to be between 180◦ - 220◦ for Sun et al. (see Figure 4.6,

from [36]) in agreement with Zu et al. [34].

With respect to the shape of the prepulses, the only requirement is for their Fourier transform to

not have any amplitude close to the water frequency. Their profile is expected to vary smoothly

with time and to select appropriately the frequencies in the frequency domain (narrow). Looking

at the literature, Gaussian pulses are the ones used in most of the studies [33–36], Sun et al.

compared rectangular, Gaussian and sinc pulses with contrasting results: rectangular pulses

created a periodic oscillation in the Z spectrum due to the frequency profile of its FT (a sinc) ,

while the sinc pulses had the disadvantage of higher direct saturation effects compared with the

Gaussian pulses [36]. An independent study, from Schmitt et al., arrived at the same conclusion

[35].

Some studies have evaluated the influence of the pulse duration: Schmitt et al. examined the

full width at half minimum (FWHM) of the creatine Z spectra together with the maximum

CEST contrast [35]. Their results (Figure 4.7) show a decrease of FWHM with the period T of

the prepulses, with the maximum contrast being roughly constant. This broadening of the water

peak with shorter pulse duration is also mentioned by Sun et al., and can be explained in terms
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Figure 4.6: Optimal flip angle θ, from Sun et al. [36].

Left: Simulated Z spectra with flip angles of 90◦ , 180◦ , 360◦ and 540◦. Exchange

rate 50 Hz, chemical shift 1.9 ppm, and pulse duration 15 ms. Right: Optimal

simulated pulsed-CEST contrast found for flip angles about 180-220◦.

of direct saturation. In extreme cases, it can lead to spectral distortions.
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Figure 4.7: Pulse duration and FWHM of Z spectra, from Schmitt et al. [35].

An increase of pulse duration T (τP prepulse + τD delay) results in a decrease of

FWHM of Z spectra for maximum CEST effects. B0 = 3 T, pulsed CEST (total

duration of the saturation pulse train = 2 s), duty cycle = 50% and B1 = 1 mT, for

a 0.05 M creatine phantom at pH 7.4.
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4.3 Optimizing a CEST experiment: simulations

4.3.1 Introduction

Simulations are useful to optimise the presaturation parameters of a CEST sequence for a given

situation. My aim is to image neuroinflammation, focusing on two key metabolites, myo-inositol

and glutamate. The following simulations are focused on optimizing myo-inositol CEST, due to

the more complicated nature of the process, compared with imaging glutamate (which resonates

further away from the water peak). Moreover, myo-inositol has been revealed as the most rele-

vant biomarker for a mild neuroinflammatory situation, as described in previous results (chapter

3).

Hydroxyl resonances are situated very close to the water peak, and therefore their measurement

is made harder by the presence of direct water saturation effects, as well as inhomogeneities

of the main B0 field (even more so since a high B0 of the order of at least 7 T is required to

separate the exchangeable protons from water). Moreover, when studying a particular molecule

containing hydroxyl groups, the different competing effects of other similar molecules have to

be taken into consideration. Therefore, a careful optimization is crucial for maximizing the in

vivo myo-inositol contrast.

The main difference in the simulation parameters between the in vivo or in vitro situation is

the value of T2a, the transverse relaxation of the water pool. Living tissue has a T2 value of

around 0.045 s (0.0454 s in the hippocampus, 0.0406 s in the thalamus at 9.4 T [305]), while

a phantom made with pure water at the same field will have a T2 of 0.6 seconds. Haris et al.

studied the viability of imaging myo-inositol in vivo with phantoms containing distilled water

and a range of myo-inositol concentrations (a case where a long T2 value applies), as well as

phantoms containing agarose and myo-inositol (short T2) [53]. Several studies have exhaustively

modelled the CEST effect of amide protons [22, 33–36, 40, 104, 140, 300] and paraCEST agents

[64, 306]. My aim is to model the CEST effect of myo-inositol for a better understanding and

optimization of the in vivo signal. This will involve the study of several cases: long T2 (distilled

water + myo-inositol) and short T2 (agar gel + myo-inositol) in a two pool model and finally,

a three pool model including conventional MT effects. The parameters to be optimized are the

presaturation power and duration of the pulse (CW CEST) and the number of prepulses, their

power and duration for a pulsed CEST experiment. The ultimate goal is to clarify how much

myo-inositol contrast (CEST effect %) can be expected in the in vivo situation.
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B0 9.4 T (Agilent preclinical scanner)

T1a (for 9.4T) 3 s/2.8 s (water/agar phantom [140]/[34]), 2 s (mouse hippocampus [305])

T2a (for 9.4T) 0.6 s (water phantom), 0.045 s (mouse hippoc., agar phantom) [34, 305]

T1b (for 9.4T) 1 s [140], not relevant for modelling [65]

T2b (for 9.4T) 0.015 s [140], not relevant for modelling [65]

T1c (for 9.4T) 1 s [33, 140]

T2c (for 9.4T) 0.000015 s [34, 140]

Offset frequency b (myo-inositol) 0.6 ppm [53]

Offset frequency c (MT pool) 0 ppm (agar phantom), -2.34 ppm (brain) [307]

Concentration b (myo-inositol) 10 mM human hippocampus[308]

Concentration c (MT pool) 2.1%M0a [34]

Exchange rate b (myo-inositol) 600 Hz [53]

Exchange rate c (MT pool) 50 Hz [33]

Frequency sweep range +/-2 ppm

Table 4.1: Parameters to model my CEST experiment

95



CHAPTER 4: CHEMICAL EXCHANGE SATURATION TRANSFER: OPTIMIZING A CEST
EXPERIMENT

4.3.2 Optimizing a CW CEST experiment: Two pool model

The two pool model is the simplest CEST experiment: pool a, the free pool or water protons

and pool b, the bound exchanging protons, six in every myo-inositol molecule (six -OH groups

per myo-inositol molecule).

The CW CEST contrast for a specific metabolic concentration only depends on two parameters:

B1 power/average field (same value, since B1 is constant in this case) and the saturation time,

tsat . As for B1, there is a trade-off between saturation efficiency of the bound pool (CEST

effect increases with B1 power ) and spillover effects (direct saturation of the free water pool,

also increasing with B1 power, specially important in hydroxyl CEST). Therefore, there is an

optimal power to maximize the CEST effect [33, 40] which can be obtained by solving the Bloch

equations. For tsat , it is useful to map the approach of the z magnetization of the system (pool

a and pool b) to steady state and thus obtain a relevant time interval for the maximum CEST

effect.

4.3.2.1 Two pool model: long T2

Approach to steady state for long T2

Using the parameters above (T2 being 0.6 s) and a numerical integrator (ode45, Matlab 2013,

The Mathworks), a pulse of 1.7 µT is applied to a two pool model system. After solving the

six linear differential equations, the magnetization of the free and bound pools is plotted against

time and the result is the curve observed in Figures 4.8 and 4.9, the approach to steady state of

the system. The bound protons of pool b never get completely saturated with the B1 used in this

simulation, but the higher power required for a full saturation will also increase the direct water

saturation effects, thus reducing the CEST effect. This B1 power has been chosen to maximize

the CEST contrast, as will be seen shortly.
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Figure 4.8: Evolution of the magnetization of the myo-inositol protons during a B1 satura-

tion power of 1.7 µT. From the top, the three graphs represent the x,y (transverse

magnetization) and z (longitudinal magnetization) components. None of this vari-

ables produces a direct effect in the MRI signal, though the z component exchanges

magnetization with the water protons equivalent, the source of signal. The fast ex-

changing hydroxyl protons never get completely saturated, since the optimum B1

power they would require is not feasible, due to the large direct water saturation it

will cause, hiding the CEST effect at close ppm range.
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Figure 4.9: Evolution of the magnetization of the water protons during a B1 saturation

power of 1.7 µT. From the top, the three graphs represent the x,y (transverse mag-

netization) and z (longitudinal magnetization) components. The last one is the

source of MRI signal, getting saturated though chemical exchange with the bound

protons. The steady state is reached after more than 5 s of continuous saturation.
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Optimum CW B1 power and tsat for long T2

Figures 4.8 and 4.9 show the approach to steady state of the system, giving a value between 5

and 10 s for the duration of the saturation pulse. The optimum B1 for the tsat values in this range

have been calculated, and the pair B1/ tsatproviding the highest CEST contrast has been chosen

as the optimum. In Figure 4.10 and Figure 4.11, the Z spectrum and CEST effect have been

plotted for different 7 s long B1 powers, showing that the optimum value is 1.7 µT.
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Figure 4.10: Z spectra and MT Rasym dependence on B1 power, for a CW saturation of 7 s.

B1 power range: 0 to 3 µT.
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Figure 4.11: % CEST effect dependence on B1 power, for a CW saturation of 7 s. Like

in Figure 4.1, there is a trade off between saturation of the bound protons and

spillover effects, with the optimum B1 value being 1.7 µT.
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As for the tsat , Figure 4.12 shows the curve around the optimum value of 6.2 s. In order to avoid

getting into a local minimum, several iterations have been performed of this process, choosing

the parameters providing the highest CEST contrast.
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Figure 4.12: % CEST effect dependence on saturation duration, for a B1 power of 1.7 µT.

Although 6.2 s is the optimum value, the curve is quite flat around the maximum

(note the scale of the y axis), and therefore choosing a shorter saturation, such

as 4 s, will have hardly any impact on the CEST effect, while saving time in the

experiment.

CEST effect dependence on concentration for long T2

In Figure 4.13, the simulated CEST effect has been plotted against myo-inositol concentrations

of 0-50 mM. The simulations show that CEST effect depends linearly on the concentration

at low concentrations, while it becomes non-linear at high concentrations (due to the known

process of the back-exchange of saturated protons [309]).

99



CHAPTER 4: CHEMICAL EXCHANGE SATURATION TRANSFER: OPTIMIZING A CEST
EXPERIMENT

0 10 20 30 40 50
−10

0

10

20

30

40

Concentration (mM)

%
 C

E
S

T
 e

ffe
ct

Figure 4.13: CEST effect dependence on myo-inositol concentration: it increases linearly

at low concentrations, growing more slowly at higher concentrations. B1 = 1.7

µT, tsat= 4 s
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Conclusion

The optimum myo-inositol CEST parameters for a CW experiment using a two pool model with

a long T2 (ie: phantom made of water/saline and myo-inositol) are: tsat = 4 s and B1 = 1.7 µT,

while the expected maximum CEST effect for a 10 mM solution is around 11%.

4.3.2.2 Two pool model: short T2

Approach to steady state for short T2

Looking for a more relevant two pool model for the in vivo situation, I now consider a T2 of

0.045 s, which approximately matches the expected value for in vivo brain tissue [305].

Figure 4.14 show the approach to steady state of the system in this case. In comparison with

the long T2 case, the pool b protons achieve less saturation in the steady state, which is reached

quicker (2-4 s). An advantage of that will be the reduction in acquisition time of the optimum

CW experiment, and a disadvantage, the probable reduction in CEST contrast, which I will be

exploring from now on.

Figure 4.14: Evolution of the magnetization of the myo-inositol and water protons during

a B1 saturation power of 0.9 µT. From the top, the two graphs represent the z

(longitudinal magnetization) component of myo-inositol (bound pool) and water

(free pool). Since B1 is smaller than in the long T2 model, the hydroxyl protons

get even less saturated in this case. The bottom graph represents the source of

MRI signal, getting saturated though chemical exchange with the bound protons.

The steady state is reached faster than in the long T2 model, but the saturation is

smaller (short T2 model).

101



CHAPTER 4: CHEMICAL EXCHANGE SATURATION TRANSFER: OPTIMIZING A CEST
EXPERIMENT

Studying the optimum CW B1 power and tsat for short T2

Repeating the previous simulations with the new parameters (and a shorter steady state time),

I can calculate the optimum B1 power and tsat for this case from the graphs below (see Figure

4.15).

Figure 4.15: % CEST effect dependence on B1 power and saturation duration, for a CW

saturation of 1.8 s.

A: % CEST effect dependence on B1 power. Again, there is a trade off between

saturation of the bound protons and spillover effects, with the optimum B1 value

being 0.9 µT.

B:% CEST effect dependence on saturation duration. 1.8 s is the optimum value.

Studying the CEST effect dependence on concentration for short T2

As before, the simulated Z spectra and CEST effect has been plotted against myo-inositol con-

centrations of 0-50 mM (Figure 4.16). The CEST effect % is considerably smaller for all con-

centrations and the linear dependency lasts up to higher concentrations than in the long T2 case.
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Figure 4.16: CEST effect dependence on myo-inositol concentration: it increases linearly

at low concentrations, growing more slowly at higher concentrations. The thin

black line shows the linear behaviour at low concentrations. B1 = 0.9 µT, tsat =

1.8 s

Conclusion

The optimum myo-inositol CEST parameters for a CW experiment using a two pool model with

a short T2 (ie: phantom made of agarose and myo-inositol) are: tsat = 1.8 s and B1 = 0.9 µT,

while the expected maximum CEST effect for a 10 mM solution is around 2%. This value is

very small compared with the previous 11% expected for long T2 values, which showcases the

need for simulations in order to understand what to expect in the in vivo case, instead of relying

on in vitro data.

4.3.3 Optimizing a CW CEST experiment: Three pool model

The three pool model adds conventional magnetization transfer effects as a third pool, together

with the previous water pool and CEST proton pool. It is a more accurate representation of the

in vivo situation.

4.3.3.1 Agar phantom

To model the magnetization transfer pool, I first used the parameters of an agar gel phantom

(3%): Gaussian absorption line shape (4.2.11), centered at 0 ppm (no asymmetry), a T2 of 0.045

s and T1, 2.5 s
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The CEST effect has been plotted in Figure 4.17A for different B1 powers, resulting in an opti-

mum value of 0.9 µT [40], while the optimal saturation time is 1.7 s (4.17B) and the concentra-

tion dependence is derived from Figure 4.17C. The optimum values obtained with the three pool

model agar simulation are almost the same as the parameters from the short T2 two pool model,

which is a faster and easier method (six equations instead of nine) and would be adequate for

this case.
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Figure 4.17: 3 pool model, agar phantom

A:% CEST effect dependence on B1 power, for a CW saturation of 1.7 s. The

bound protons saturation/spillover effects equilibrium establishes the optimum

B1 value as 0.9 µT. B:% CEST effect dependence on saturation duration, for a

B1 power of 0.9 µT. 1.7 s is the optimum value. C:CEST effect dependence on

myo-inositol concentration for a 3 % agar phantom. B1 = 0.9 µT, tsat = 1.7 s.

The thin black line shows the linear behaviour at low concentrations.
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4.3.3.2 In vivo MT conditions

In an in vivo situation, the asymmetry of the magnetization transfer pool has to be taken into

account and a super Lorentzian absorption line shape (see equations 4.2.9 and 4.2.10) centered

at -2.34 ppm is more appropriate [307].

In Figure 4.18, the CEST contrast for a range of relevant myo-inositol concentrations (1-12

mM) is presented, showing that the in vivo effect will be around 3%. This value approximately

matches the myo-inositol in vitro data (agar phantoms) from Haris et al. [53].

Figure 4.18: CEST effect dependence on myo-inositol concentration for a three pool

model (with asymmetric contribution from MT). The thin black line show-

ing linear behaviour is indistinguishable from the blue line. B1 = 0.9 µT, tsat =

1.7 s

A hard pulse of 0.9 µT with 1.7 s duration maximizes again the CEST effect for this model

(the more closely related to in vivo conditions), in line with the short T2 two pool model results,

which has proven to be a very useful approximation for in vivo hydroxyl CEST optimization.

However, in vivo asymmetric magnetization transfer effects will have a significant effect on the

CEST contrast for frequency offsets larger than 1 ppm [310], where three pool model simula-

tions will still be relevant (see Figure 4.19).
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Figure 4.19: MT contribution to the CEST contrast: contrast (measured with MTRasym)

created by asymmetric magnetization transfer pool (6% of the concentration of

the free pool), in absence of any CEST exchanging metabolites. This effect is re-

sponsible for the negative baseline observed in many CEST studies after a certain

frequency. Parameters: B1 = 0.9 µT, tsat = 1.7 s

4.3.3.3 Myo-inositol CEST parameters in the literature

The first paper published on myo-inositol CEST [53] had a set of water phantoms at pH 7 with

different myo-inositol concentrations. In this paper it is mentioned that myo-inositol has a broad

peak "centered around 0.6 ppm" and the measured exchange rate is reported to be 600 Hz. The

method used to calculate the exchange rate in this study (following [296]) is an approximation,

since it is assuming absolute saturation of bound protons and no spillover effects. However, due

to the proximity of the myo-inositol pool to the water peak, a low powered saturation pulse has

to be used to specifically minimize the direct water saturation, which also causes an incomplete

saturation of the myo-inositol protons (as can be seen in the simulations, Figure 4.8). A fre-

quently used alternative to calculate the exchange rate is to perform a fitting of an in vitro Z

spectrum, but this is specially unreliable in this case, due to the absence of a clear distinctive

CEST peak, separated from the water (intermediate-to-fast exchange regime). Instead, we just

have an asymmetric broad peak, such as in Figure 4.10. Several sets of parameters can be a rea-

sonable fit to this kind of spectrum, complicating the extraction of a clear exchange rate value,

since the other parameters would have to be known within small margins, including the exact

chemical shift of the broad myo-inositol peak.

More recently, new CEST approaches other than the conventional saturation transfer experi-

ment have been developed. The FLEX [20] method modulates the water signal by encoding

the chemical shift of each proton pool. It has also just has been reported to be very sensitive to

chemical exchange based water line broadening, thus making it suitable for studying the param-

eters of intermediate-to-fast exchange regime protons [311]. Myo-inositol parameters have been
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estimated to be 1.1 ppm for the chemical offset and 1381 Hz for the exchange rate. These pa-

rameters roughly match those obtained from another non standard CEST approach, the spin lock

experiment, with a study by Jin and Kim in as early as 2012, predicting myo-inositol parameters

to be 0.93 ppm and 1250 Hz [51].

For my optimization procedure, the fact that the myo-inositol resonance frequency is probably

further apart from the water peak (around 1 ppm) entails less direct saturation and B0 artifacts.

The 0.5-1 ppm range is suitable for a CEST integral map (described in section 1.5.6) for myo-

inositol contrast. However, the exchange rate being faster than 600 Hz would make the myo-

inositol protons less saturated than what these simulations assumed. Together with the larger

offset, this makes the optimum B1 power for a maximum CEST contrast slightly higher than 0.9

µT. After redoing the simulations that value is 1.4 µT (for 0.93 ppm, 1250 Hz) or 1.6 µT (for 1.1

ppm, 1381 Hz), with a maximum CEST effect of around 3% (same as before).

4.3.4 Optimizing a Pulsed CEST experiment

A CW approach has been used for all in vivo CEST data (see chapter 5), with the presaturation

parameters taken from the CW simulations in the previous section. Nevertheless, most of the

early in vitro CEST data for this project was acquired with a pulsed CEST scheme (see section

4.4.1). The reason behind this is because the fast segmented gradient echo sequence that made

possible the use of a long hard pulse was not developed until the beginning of the first in vivo

experiments (as explained in 5.2), when acquiring a high resolution CEST image in a short

amount of time became a priority.

In the initial in vitro work, the use of a standard gradient echo sequence meant that the most

convenient CEST presaturation scheme was to apply a few short strong pulses before every line

of k space, with the saturation building up until the centre of k space was read and the contrast

acquired. Full details of the pulsed CEST protocol are in section 4.4.1: four 46 ms Gaussian

prepulses per line, with a peak B1 power of 3 µT. Since the matrix size was 64x64 and the

encoding linear, a total of 128 pulses were applied by the time the k space centre was acquired.

4.3.4.1 Gaussian pulse

In order to further characterize the Gaussian pulse, I am going to calculate the equivalent average

B1 power and average B1 field, as described by Zu et al. [34], using a discretised approach

[22, 36, 300] to simulate the pulsed CEST experiment. That is, dividing the train of shaped

pulses in many hard segments and propagating the CW analytical solution through all of them.

These formulas take into account the discretisation of the Gaussian pulse:
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Average B1 field

Average B1 field (AF) =
1
t

∫ t

0
B1 dt (4.3.1)

Separating the Gaussian pulse in discrete hard pulses yields:

Average B1 field (AF) =∑
i

(
1
D

B1(i)
D

N
) (4.3.2)

where N are the number of discrete segments (hard pulses) and D is the pulse duration (s).

Average B1 power

Average B1 power (AP) =

√

1
t

∫ t

0
(B1)2 dt (4.3.3)

Separating the Gaussian pulse in discrete hard pulses yields:

Average B1 power (AP) = ∑
i

(

√

1
D

B1(i)2 D

N
) (4.3.4)

where N is again the number of discrete segments (hard pulses) and D is the pulse duration (s).

Figure 4.20 shows the Gaussian pulse used in the pulsed CEST experiments, with the corre-

sponding B1 average power and field.
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Figure 4.20: Gaussian pulse for pulsed CEST experiments: 46 ms duration, with a peak B1

power of 3 µT (in blue colour). The red line represents the B1 average power,

1.64 µT and the black line, the B1 average field, 1.26 µT

4.3.4.2 Simulations

The parameters used in the simulation include a pulse train of 128 Gaussian pulses with a du-

ration of 46 ms each and no interdelay, a flip angle of 875 degrees, discretised with a minimum

of N = 64 points. The other parameters needed (i.e. relaxation rates, exchange rate, chemical

offset, etc) are the same as in the CW simulations, while the concentration of myo-inositol is

10 mM. More details of the imaging sequence are: TE = 4 ms, TR = 56.43 ms, flip angle = 20

degrees, FOV = 18x18 mm, slice thickness = 1 mm.

First, just to check the simulation accuracy, the discretised pulsed CEST approach is compared

with a numerical integration with equivalent parameters (ode45, Matlab, a time consuming but

rigorous approach). The results are in Figure 4.21, with good agreement between the two.

Tee et al. compare in their work three different simulations for amine protons (1.9 ppm, 50 Hz):

the discretised approach, a CW simulation with a hard pulse power equal to the average B1 field

and another with the average B1 power. He found that the average B1 power simplification was a

good match for the more computationally expensive discretised Z spectrum, and suggested that

it could be a valuable tool for Gaussian pulsed CEST studies and slow exchanging protons [300].

However, myo-inositol does not fit those requirements: the average B1 field is more adequate

as a hard pulse approximation of a Gaussian pulse train than the average B1 power (see Figure
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Figure 4.21: Numerical integration and discretised approach: comparison between numer-

ical integration of my Gaussian pulse train (ode45 in built Matlab function, green)

and discretised approach (blue), with a quite good overlap everywhere but at the

centre of the water peak.

4.22), although the approximation is worse than the amine protons case, which is reproduced in

Figure 4.23 together with the original from Tee et al..

In summary, the preferred pulsed CEST simulation method for myo-inositol is the discretised

approach. Pulsed CEST parameters used for in vitro myo-inositol CEST experiments produce a

contrast of around 9 % CEST effect for a myo-inositol concentration of 10 mM (assuming long

T2 pool), which is very similar to the maximum value for the same concentration obtained with

the optimized CW CEST myo-inositol simulation (in section 4.3.2.1).

4.3.5 Conclusion

The simulations have provided information about the expected CEST contrast in vitro and in

vivo, using different models with increasing complexity. The simplest case, a two pool model

with a long T2 (ie: phantom made of water and 10 mM myo-inositol) resulted in a maximum

CEST effect of around 11% (CW, tsat = 4 s and B1 = 1.7 µT). The equivalent pulsed CEST

experiment produced a contrast of around 9 %, using a train of 128 Gaussian prepulses (with 46

ms duration each, 875 degrees flip angle and 100% duty cycle).

Finally, a model closer to the in vivo situation was considered. A two pool model with a short T2

(ie: phantom made of agarose and 10 mM myo-inositol) yielded a reduced expected maximum

CEST effect of around 2% (CW, tsat = 1.8 s and B1 = 0.9 µT).
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Figure 4.22: Method comparison: comparison between the discretised approach (blue), a

CW simulation with a hard pulse power equal to the average B1 field (black) and

another with the average B1 power (red), all for myo-inositol protons (10 mM,

0.6 ppm, 600 Hz).

Figure 4.23: Method comparison:

Right: Simulation comparison of the discretised approach, a CW approximation

with a hard pulse power equal to the average B1 field and another with the average

B1 power for amine protons (1.9 ppm, 50 Hz), extracted from Tee et al. [300].

Left: replica using my Matlab code.
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4.4 Optimizing CEST through in vitro experiments

Introduction

Simulations have been useful to optimise the parameters of the CEST sequence and to esti-

mate the CEST contrast in a specific situation. Next, the theory will be experimentally tested

and confirmed. The aim of the in vitro experiments is to gain a better understanding of the

practical problems associated with a CEST experiment, to optimise the imaging protocol and

postprocessing, to replicate relevant experiments from the literature and to test the accuracy of

the simulations done in the previous section (4.3), before any in vivo experiments.

Here is an outline of the protocol for the in vitro experiments:

4.4.1 Protocol

Imaging has been performed on a 9.4 T preclinical scanner (Varian, Agilent Technologies),

using a volume transmitter coil and a two-channel surface receiver coil. Custom made Matlab

code (The Mathworks, 2010) has been used for postprocessing (details in chapter 5).

Shimming Shimming was performed using the FASTMAP protocol, with resulting linewidths

of around 6 Hz for individual phantoms.

CEST imaging The CEST imaging sequence used was gradient echo (TE=4 ms, TR=56.43 s,

flip angle=20◦, 1 mm slice thickness, 64x64 matrix size), with a pulsed CEST presatu-

ration module before every excitation: four Gaussian prepulses (46 ms, 3µT), at variable

offsets (between ±2 ppm for myo-inositol, and between ±5 ppm for glutamate or crea-

tine).

Reference image A separate gradient echo image without the prepulse module was taken as a

reference.

WASSR image Same as the CEST image, but with 0.1 µT Gaussian prepulses between ±1

ppm.

Postprocessing First, if necessary, the regions of interest (ROIs) are selected and extracted. The

image intensity is normalized using the reference and corrected for B0 inhomogeneities

using the WASSR method. Finally, the asymmetry curves are calculated as the signal

difference between the positive and negative offsets around the water peak.
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Figure 4.24: CEST image example: Raw image, WASSR map and corrected final CEST im-

age.

4.4.2 Varying metabolite concentration: influence on the CEST effect

Solutions of myo-inositol with increasing concentration (0-12 mM) in saline solution (PBS)

and 3% agar myo-inositol phantoms (50 and 100 mM) were prepared at pH 7, before imaging

on a 9.4 T MR imager (Varian, Agilent Technologies) using the previously described protocol

(4.4.1).

Agar has been used extensively in the literature as a macromolecular short T2 pool model [302,

303, 312]. After mixing deionized water and myo-inositol to the desired concentration and

adjusting the pH of the mixture, agar was added (Sigma Aldrich, 3%) and the solution was

heated to the boiling point in a water bath. Finally, the mixture was transferred to a plastic tube

and left to rest overnight.

Figure 4.25 shows the CEST effect for the saline myo-inositol solutions, together with the linear

relationship between metabolite concentration and CEST effect (experimental data and simula-

tions), while Figure 4.26 shows the CEST effect of the two agar myo-inositol phantoms and the

correspondent simulation results.

The saline solution results show a direct proportionality between CEST effect and myo-inositol

concentration. Moreover, the values obtained agree with the simulations and also with the liter-

ature: Haris et al. has performed a similar experiment (pH 7.4, myo-inositol solutions in PBS:

4, 6 and 10 mM), obtaining CEST effect values of about 4%, 6% and 8% respectively [53].

The agar phantom results are in good agreement with the three pool simulations (free water,

myo-inositol, MT). For the magnetization transfer pool, a Gaussian absorption line shape was

used to describe the agar phantom and a symmetric MT effect centered around 0 ppm was

assumed.
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Figure 4.25: CEST effect and metabolite concentration.

Left: CEST effect for all saline myo-inositol solutions (0-12 mM). Right: CEST

effect linear dependence on myo-inositol concentration, the red asterisks being

the experimental data and the solid line the myo-inositol pulsed CEST simulation.

Figure 4.26: CEST effect, agar phantom.

CEST effect and Z spectra are shown for two different myo-inositol concentra-

tions (50 mM, blue and 100 mM, in red), asterisks representing the experimen-

tal data points and the solid lines the myo-inositol CEST three pool simulation

values. The in vitro myo-inositol agar phantom results validate the three pool

simulations (free water, myo-inositol, MT).
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4.4.3 The complexities of the CEST signal at 0.6 ppm: overlap of different metabo-

lites

One of the questions that the in vivo application of CEST raises is specificity, or how many

metabolites contribute to the CEST signal obtained in a particular experiment. One of the aims

of this project being mapping myo-inositol in vivo, which resonates around 0.6 ppm in the Z

spectrum, it is important to evaluate which other metabolites give raise to a CEST effect at that

particular frequency, thus overlapping with the myo-inositol signal.

Phantoms containing metabolites in biologically relevant concentrations [8] have been prepared

in saline (PBS) at pH 7: myo-inositol (Ins, 10 mM), creatine (Cre, 6 mM), glutamate (Glu,

12 mM), glutamine (Gln, 5 mM), taurine (Tau, 6 mM), N-acetyl-aspartate (NAA, 9 mM) and

GABA (2 mM). Seven individual phantoms have been prepared, together with three mixed

phantoms: Ins-Glu, Ins-Cre, Ins-Glu-Cre.

Figures 4.27 and 4.28 show a subset of contributions to the CEST signal (0-5 ppm) at pH 7 as

would appear in a mouse brain.

Figure 4.27: Metabolites overlapping with the myo-inositol CEST signal I:

In vitro Z spectrum (left) and asymmetry spectrum (right) of individual and

mixed phantoms: myo-inositol (Ins, 10 mM, green), creatine (Cre, 6 mM,

dark blue), glutamate (Glu, 12 mM, red), myo-inositol/creatine (fuchsia), myo-

inositol/glutamate (light blue), myo-inositol/creatine/glutamate (yellow). Gluta-

mate and in a lesser extent creatine are examples of metabolites overlapping with

myo-inositol at physiological conditions.

In the light of the previous results, different metabolites will contribute to the CEST signal in

the 0-5 ppm range, and said contributions have to be examined and discussed in each case. Haris
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Figure 4.28: Metabolites overlapping with the myo-inositol CEST signal II:

In vitro CEST asymmetry spectrum of individual phantoms: myo-inositol (Ins,

10 mM, dark blue), glutamine (Gln, 5 mM, green), taurine (Tau, 6 mM, red),

N-acetyl-aspartate (NAA, 9 mM, light blue) and GABA (2 mM, fuchsia). These

brain metabolites do not overlap with myo-inositol at physiological conditions.

et al. affirms that in his myo-inositol mapping experiment all the contributions from other CEST

metabolites are negligible: he states that NAA does not have an observable CEST effect at the

physiological pH, and that others like Glu, Cre and GABA show overlapping when not using

his optimized sequence [53]. However, Lee et al. concludes that creatine and glutamate produce

sizeable contributions to myo-inositol CEST [56], in agreement with the data presented here and

with multiple reports of other CEST metabolites containing hydroxyl groups, such as glucose

[43]. All the different metabolite contributions (or pools) are directly or indirectly connected

and are exchanging magnetization and therefore, the signal observed in a saturation transfer

experiment is a nonlinear function of the properties of each pool involved [22]. Consequently,

definite relations effect-metabolite do not seem feasible (see 1.5.5), but correlations could be

established instead, by validating with other techniques or with a “before/after contrast“ type of

experiment. The main limitation in this kind of experiment is the scenario where more than one

metabolite is affected since changes in overlapping metabolites could interfere with each other,

complicating the interpretation of the CEST contrast.

4.4.4 Buffer solution influence for CEST phantom preparation

The CEST effect is mainly determined by the exchange rate and by the concentration of the

labile protons (relative to the water protons), while the exchange rate k of a CEST metabolite is
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a function of temperature, pH and buffer properties of the solution. The aim of this experiment

is to observe the differences between the use of water or phosphate buffered saline (PBS) in in

vitro CEST experiments. Solutions of 10 mM myo-inositol and 6 mM creatine were prepared in

PBS and water at pH 7, before imaging on a 9.4 T MR imager (Varian, Agilent Technologies).

The change in solvent produced different results for creatine and myo-inositol: while the CEST

effect was significantly suppressed for the creatine solution when prepared in water, it did not

vary for myo-inositol, although the centre of the peak was shifted for myo-inositol and remained

fixed for creatine (see Figure 4.29).

Figure 4.29: CEST effect and buffer solution properties:

CEST effect comparison of 6 mM creatine solutions in water (green) and PBS

(dark blue), plus 10 mM myo-inositol solutions in water (light blue) and PBS

(red). Different buffer properties raise different CEST effects.

Since the myo-inositol peak is quite broad, and its centre position may vary in different buffer

conditions, the integral method [145] could be used for measuring the CEST effect, since it

minimizes the errors due to the uncertainty in the position of the peak. Instead of calculating the

asymmetry comparing the signal coming from a single resonance frequency on both sides of the

water peak (’punctual’ approach), the integral approach consists of comparing the areas com-

prehending a range of frequencies instead, around the supposed CEST maximum and symmetric

to the water peak.

4.4.5 Conclusion

A robust in vitro CEST protocol has been developed, with a reference image, a CEST array

and a WASSR array, to compensate for B0 inhomogeneities. The MRI sequence for both the

CEST and WASSR arrays contains a pulsed CEST approach for presaturation, with a train of

128 Gaussian prepulses and a standard gradient echo readout. However, the time needed for a
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full experiment (more than 20 min) is not practical for in vivo CEST, which requires a faster

sequence, developed in chapter 5.

In vitro myo-inositol CEST images have been obtained with this CEST protocol. The in vitro

results validate the simulations and show the expected linear dependency between concentration

and CEST effect. Nevertheless, overlapping of different metabolites in the 0-5 ppm range does

not allow the unequivocal identification of myo-inositol in a in vivo CEST spectrum. Examples

of metabolites contributing to the myo-inositol in vivo CEST signal are creatine, glutamate and

others containing hydroxyl groups, such as glucose. Therefore, complementary techniques like

MRS should be used alongside CEST as validation, to try to establish the source of CEST

contrast in a specific challenge.
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CEST imaging of neuroinflammation

5.1 Introduction

Chemical exchange saturation transfer (CEST) is a molecular MRI contrast mechanism, in

which exchangeable protons are detected indirectly by their effect on the water signal after

an off resonance saturation. At higher magnetic fields, the chemical dispersion is larger, which

improves the detection and quantification of CEST protons resonating in the proximity of the

water peak, by reducing the competing effect of direct water saturation. However, increased

B0 inhomogeneities create artifacts in the Z spectra and CEST images, especially when using

gradient echo (GE) readouts, thus reducing the accuracy of the method. A particularly difficult

case are metabolites containing hydroxyl groups (OH): their proximity to the water peak makes

them more susceptible to both direct water saturation effects and B0 inhomogeneity artifacts.

The osmolyte myo-inositol, mainly present in glial cells, has been proposed as a marker for mi-

croglial activation (part of the neuroinflammatory process), with evidence comprising clinical

and preclinical MR Spectroscopy (MRS) studies alike (see section 2.3.2.1). Our own research

(chapter 3) shows an increase of myo-inositol MRS levels in a mouse model of Alzheimer’s

disease (AD) four hours after a systemic injection of lipopolysaccharides (LPS), which is con-

sidered a neuroinflammatory model (as described in section 2.2.6 and 2.2.6). This increase was

verified with histology (Iba1 staining).

Since myo-inositol also has a CEST effect due to its six hydroxyl groups, the overall objective

of this chapter is to evaluate the response to a neuroinflammatory stimulus using CEST, with

MRS and histology for verification, in both AD and control mice. CEST has the advantage of a

much higher spatial resolution over MRS. A previous study by Haris et al. performed a similar

experiment with myo-inositol CEST, MRS and histology, comparing 20-month old AD mice

with age matched controls and finding increased contrast in the first group [123]. However,

we want to study the early inflammatory response, by injecting in the right hippocampus a low
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dose of LPS (to avoid sickness syndrome [183]) to young AD mice and age matched controls (3

month old), since this could help to understand the onset of the neuroinflammatory process and

would be extremely useful from a diagnostic point of view. The rationale behind using an icv

injection instead of a systemic administration of LPS, as in the previous chapter, is to maximise

the observed effect in the hippocampus and to be able to use the contralateral side of the brain

as control.

This chapter is organized in two parts: the first part, 5.2, explores the challenges of imaging

at 9.4 T OH-containing metabolites such as myo-inositol with CEST in vivo, in the mouse

hippocampus. It continues the CEST optimization that was started in chapter 4, with simulations

(section 4.3) and in vitro work (section 4.4), with the aim of developing a robust in vivo mouse

brain CEST methodology at 9.4 T, studying its reproducibility in the 0-3 ppm region.

In the second part of the chapter, 5.3, an in vivo study is presented, focused on evaluating the

metabolite response to an LPS inflammatory challenge using CEST, MRS and histology.

5.2 CEST in vivo: challenges and optimization

In vivo CEST at 9.4 T (Agilent scanner, with software Vnmrj 4.0) requires a fast and robust

imaging sequence, together with an appropriate animal holder and careful shimming. The work

undertaken to address these issues is detailed in this section:

5.2.1 Animal holder design

A small volume coil (22 mm diameter) creates a more homogeneous magnetic field (good for

CEST) compared with the previously used head coil in chapter 3 (72 mm volume transmitter,

surface receiver), while keeping the sensitivity required for a mouse brain. For this coil a new

animal holder was needed, and several prototypes were designed and built using a 3D printer

(by Bryan Morris, Medical Engineering Unit Manager, University of Nottingham), followed by

testing. The main issues to overcome are:

Keeping the animal immobilized The small coil diameter (22 mm) and the distance between

the edge of the coil and the centre (around 18 mm, which required for part of the animal’s

body to be inside the coil for an optimal image of the area of interest), did not allow for

the use of ear bars, and they also imposed a limitation on the animal size (no more than

30 g weight). On the final model, the animal bites a mouth piece, inside of a nose cone,

with two extensible thin rectangular pieces coming up to the cheeks, to reduce breathing

artifacts on the images and shimming procedure.
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Figure 5.1: Head coil (left) and small volume coil (right), both from Rapid Biomedical.

Maintaining the animal temperature Two separate grids of plastic tubing with circulating

warm water were created for this purpose: underneath and over the animal body com-

ing out of the coil. A water bath allowed for temperature control of the water during the

scanning.

Scavenging the residual anaesthesia Several holes were made on the nose cone, around the

overture made for the mouth piece, so that the excess anaesthesia in there could be ab-

sorbed through a scavenger situated at the back of the scanner.

Avoiding shimming artifacts The use of metallic tools to further shape the holder after the

3D printing process caused some shimming artifacts during the testing procedure, which

required the creation of a new prototype without these tools.

Figure 5.2: Finished animal holder.
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5.2.2 CEST sequence development

5.2.2.1 Gradient echo

During the in vitro experiments in chapter 4, the CEST sequence consisted of a standard gradient

echo single slice readout with linear encoding (20◦ flip angle, TE = 4 ms, TR = 56.43 ms, FOV

= 18x18 mm), with four Gaussian prepulses of 46 ms each (3 µT) and 3 ms delay, applied before

every line of k space. The saturation for this sequence starts building up from the first line of

k-space until the centre is read, which provides the CEST contrast. Minimal programming was

required for this sequence; however, the time for a full CEST experiment (reference, CEST

array plus WASSR array) is around 22 min for a 128x128 matrix size.

5.2.2.2 Segmented gradient echo

Looking for higher time resolution for in vivo applications, another sequence was developed: a

segmented gradient echo single slice with centric encoding (15◦ flip angle, TE = 1.57 ms, TR =

3.15 ms, 8 dummy scans, FOV = 20x20 mm, 2 mm slice thickness) and a hard prepulse (1.6 s,

0.9 µT) before every segment (two normally used). These values were taken from the CW CEST

optimization in chapter 4. Elements of both gems and mprage were used for programming this

sequence and the timing of a full CEST experiment was reduced in this way to 10 min, with

a similar CEST contrast obtained. The image quality for both sequences, together with simple

diagrams can be found in Figure 5.3.
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Figure 5.3: Developing a faster CEST sequence:

This diagrams show how the CEST acquisition was shortened, from applying a

prepulse in every line of k space (left hand side, conventional gradient echo read-

out), to only applying the pulse twice for a full image (segmented gradient echo

with centric encoding). The image loses definition but not contrast (given by the

centre of k space).

5.2.2.3 CINE

After the changes in the pulse sequence had been programmed and tested, the software for the

Agilent 9.4 T scanner was updated to a new version, from Vnmrj 3.2 to Vnmrj 4.0, which has

several new pulse sequences. CINE, a fast gradient echo sequence is one of them, intended for

performing cardiac studies, with options like phase rewinding, RF spoiling, triggering and also

segmentation. A centric encoding was implemented for the CINE sequence, and the same CEST

prepulse incorporated so that it could be compared with the other one. Both gradient spoiling

and RF spoiling were chosen for CINE, alongside with similar TE, TR, number of segments

and flip angle parameters (15◦ flip angle, TE = 1.57 ms, TR = 3.15 ms, 8 dummy scans, FOV =

20x20 mm, 2 mm slice thickness, 2 segments).

5.2.2.4 Reproducibility

To compare the in vivo reproducibility of the two segmented gradient echo sequences, CEST

measurements (n=4 per each readout) were repeated on a wild type mouse under isoflurane

anaesthesia.

CEST experiments were performed on a Varian (Agilent Technologies) preclinical scanner 9.4

T with a transmit/receive volume coil. A continuous wave (CW) saturation scheme (1.6 s hard

pulse, 0.9 µT) applied at 31 offsets between ±3 ppm was followed by two different single slice

readout imaging modules (128x128 matrix size, 2 mm thickness): segmented gradient spoiled
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GE and segmented gradient and RF spoiled GE (CINE), both with centric encoding and 4 min

acquisition time. The CW prepulse for the WASSR acquisition was 0.5 s and 0.1 µT, with 35

offsets in ±1 ppm (5 min acquisition time, 9 min for a single experiment).

For the analysis, WASSR frequency shift maps were created using the maximum symmetry

algorithm, and the CEST spectra were shifted accordingly, before performing the asymmetry

analysis. Three types of CEST maps were obtained from the asymmetry spectra by integrating

different regions: 0.4-0.8 ppm (OH1), 1-1.5 ppm (OH2), 1.7-2.3 ppm (NH), Figure 5.4A. ROIs

were chosen in the right hippocampus and thalamus to study the variability of the spectra. Stan-

dard deviation (SD) maps were calculated for both readouts, and mean and maximum values

were obtained (Figure 5.4 B). Mean and SD were calculated for the Z spectra in the two ROIs

(see Figure 5.4C).

The CINE readout is the one showing better repeatability, with a lower SD for all three maps

(see Figure 5.4B). CEST data is more reproducible the further away from the water peak, with

SD(NH,1.7-2.3 ppm) < SD(OH2,1-1.5 ppm) < SD(OH1,0.4-0.8 ppm) for both sequences, as

expected since B0 shifts in the Z spectra affect more severely the closest area to the water peak

of the CEST asymmetry curve. Movement is one of the main factors affecting reproducibility.
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Figure 5.4: CEST sequence in vivo reproducibility: Single slice CEST data from a wild type

mouse (n=4 repeated measurements per readout).

A: CINE CEST integral map reproducibility in vivo. A) NH 1.7-2.3 ppm, B) OH2

1-1.5 ppm, C) OH1 0.4-0.8 ppm. Comparison of two segmented gradient echo

sequences, with B: standard deviation map values (%) and C: CEST asymmetry

spectra. CINE is the more robust readout and CEST data is more reproducible at

higher ppm, for both sequences.
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5.2.3 Shimming optimization

The field of view (FOV) of the CEST images comprises a 2 mm thick single slice centered in

the hippocampus. Several shimming protocols were tested to achieve a B0 as homogeneous

as possible across the brain in that slice, with special emphasis on the hippocampus. Once

the mouse was stable in the scanner, the shims were zeroed and a global gradient echo shim

(ge3dshim protocol from Vnmrj 4.0) was applied with 4 iterations. Then, a slab was chosen

in the shim planner, containing the desired CEST slice, for a further local shim with ge3dshim

for up to 4 iterations. If necessary, manual shim was applied after that. The quality of the

shim obtained was evaluated by the linewidth measure (between 20 and 35 Hz), in addition to a

WASSR image (0 ppm) to observe the water suppression.

The small size of the mouse brain together with high fields and movement complicates the task

of shimming [313], even more so in regions of tissue interface changes, such as the cortex and

the lower parts of the brain. These susceptibility artifacts caused inhomogeneities in the field

maps on those areas, which can compromise the quality of the CEST maps in frequencies close

to the water peak (0-1 ppm).

5.2.3.1 Agar caps

In order to reduce these artifacts, a 3% agarose gel [314] was given the shape of a half moon and

introduced in a tight fit between the top of the head and the volume coil, before the beginning

of the experiment. The caps were made fresh by mixing 20 mL of deionized water with 0.6 g

of agar in a small glass beaker. Microwaved until boiling (and put in a hot plate, to remove the

bubbles) they were poured into a plastic mould, made of a 2 cm diameter tube sliced in half

lengthwise. Once the gel started setting, a second narrower tube was pressed on the top, until

the gel was completely solid and could be removed without leaving any residual behind. Finally,

a small piece of 1 cm long was cut, with an approximate thickness of 2 mm.

5.2.4 Optimization summary

A new animal holder has been designed and tested for this project, fit for the 22 mm diameter

coil and offering proper support and restraint for the mice. Fundamentally, a faster CEST se-

quence has been developed, based on the CINE sequence (gradient and RF spoiled segmented

gradient echo), with centric encoding to capture the maximum CEST contrast and a running

time of 10 min for the whole experiment (reference, CEST array and WASSR array). This

sequence has proven quite robust, with a higher reproducibility than other alternatives (con-

ventional segmented gradient echo). Finally, the shimming procedure has been evaluated and

optimized, since it is one of the key steps to obtain an artifact free myo-inositol CEST image.
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Agar caps in between the top of the animal head and the volume coil have been introduced, to

reduce the susceptibility changes in areas of tissue interface changes.

Figure 5.5: Ex vivo shimming optimization, agar gel head cap

Left: Anatomical image, B0 map (WASSR), histogram showing the B0 map dis-

persion, 0.6 ppm CEST map and Z spectrum of hippocampus ROI, following shim-

ming procedures. Right: Same experiment after the placing of a 3% agarose gel

cap on top of the brain, inside the volume coil. Note how the B0 map homogeneity

has improved (less disperse values seen in the histograms), as has the loss of signal

in the cortex. Also the Z spectrum in the hippocampus has less artifacts close to

the water peak. The B0 map still shows inhomogeneities in the lower part of the

brain (ear canal interface).
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5.3 Detecting neuroinflammation with molecular MRI: a prelimi-

nary CEST study

5.3.1 Objectives

The aim of this study is to detect with chemical exchange saturation transfer (CEST) the early

metabolic response to a mild inflammatory stimulus (hippocampal administration of LPS), us-

ing the contralateral side as control. Building on from the MRS study, we hypothesize that LPS

induced transient neuroinflammation in the brain will increase myo-inositol levels, especially in

animals with a pre-existing chronic brain disorder (mouse model of Alzheimer’s disease, AD)

and that the myo-inositol change will produce a CEST contrast at 9.4 T. CEST imaging, in par-

ticular the detection of metabolites with a resonant frequency close to the water peak (such as

hydroxyls) benefits from high magnetic fields, due to the larger chemical dispersion.

The second objective is to validate the CEST contrast with MR Spectroscopy (MRS) and im-

munohistochemistry (Iba1), to assess the degree of neuroinflammation.

Haris et al. described an increase in myo-inositol CEST for 20-month old AD mice compared

with age matched controls [123], with MRS and histology (Iba1) for verification. In contrast,

this experiment aims to evaluate the early inflammatory response, to better understand the onset

of the process which underlines many neurological disorders.

5.3.2 Methods

5.3.2.1 Animals

All procedures were approved as required under the UK Animals (Scientific Procedures) Act

1986.

28 female mice were used in this experiment, with an average weight of 23.0±1.6g and average

age of 3± 0.5 months. Drug and test naive, with no previous procedures, they had been group

housed (2-6 per cage) in specific pathogen free (SPF) conditions, with a 12:12 h light-dark

cycle, controlled temperature and humidity conditions, plus free access to food and water. As

for genotype background, 13 are AD transgenic mice (APPSwe/PS1dE9) and 15 are wild type

(WT) littermates. Details on the Alzheimer’s disease mouse model can be found in chapter 3.

Protocol optimisation was performed with n=11 mice, while n=17 mice were used in a follow

up study.
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5.3.2.2 LPS CEST study design

Each animal received two unilateral intra-hippocampal injections of 2 µL each: LPS (5 ng/µL,

right hippocampus) and phosphate buffered solution as control (PBS, left hippocampus). The

brain region chosen for LPS injection was the hippocampus, due to its high microglial content

[282], as well as being one of the most susceptible brain areas to Alzheimer’s disease progres-

sion [174]. CEST and MRS measurements were acquired after LPS/PBS administration and

three hours later, the brains were extracted for immunohistochemistry to determine the degree

of neuroinflammation and microglial activation (Iba1). The experimenter was blind to group

allocation (genotype).

An initial pilot study (over a period of three months) consisted of 11 animals: 4 female AD

mice (APPSwe-PS1dE9) and 7 female wild type mice (WT). A second set of animals (n=17:

9 AD, 8 WT) were then used for a study (lasting one month), which started five months after

the beginning of the pilot experiments. This study was performed with the previously described

protocol, with the addition of a T2 map acquisition. The T2 map values were measured to discard

the effect of possible T2 changes caused by neuroinflammation in the CEST contrast. T2 maps

were acquired on a subgroup of 11 animals (5 AD, 6 WT).

The LPS solution was prepared fresh on the day of the first pilot experiment, with the last

experiment taking place six months later.

Figure 5.6: LPS CEST protocol:

Coordinates from Bregma of the LPS and PBS injection sites: -2.3 mm front-back,

+/-1.5 mm right-left (LPS on the right, PBS on the left), 2 mm depth.

5.3.2.3 Animal surgery, anaesthesia and monitoring

The animals were taken out of the cages, their body weight recorded and then anaesthesia induc-

tion was performed inside a plastic box resting on a homeothermic blanket control unit (Harvard
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Apparatus) outside of the scanner. Anaesthesia was performed with a mixture of oxygen and

isoflurane (Isocare, 3% for induction and 1-2% for maintenance).

The anaesthetised mouse was placed and secured with ear bars in a stereotactic frame in the

prone position, lying on top of a warm blanket. Anaesthesia was continuously administered

trough a nose cone. A 1 cm-long cut through the skin was made from between the eyes to

the back of the head, so that Bregma could be seen clearly. The localization of Bregma was

measured, and the coordinates for the injection points calculated. Those coordinates were: -

2.3 mm front-back, +/-1.5 mm right-left (LPS on the right, PBS on the left), 2 mm depth.

Two perforations were made in the cranium at those positions using a needle attached to the

stereotactic arm (Sterile Needle BD Microlance 3).

A 5 µL Neuros Syringe with a removable needle (33 gauge, Hamilton Company) was filled with

PBS and positioned in the stereotactic arm and 2 µL were injected in the coordinates to the left

of the central line. After that, the same procedure was repeated on the other side, with 2µL of

the LPS solution.

Following the surgery, the animals were positioned in the imaging system with a custom made

holder (details in section 5.2.1) designed to minimise motion and a circulating water system

for body temperature maintenance, monitored using a rectal temperature probe (around 36.5-

37.5 degrees Celsius). The respiration rate was also recorded, with a pressure pad in the chest

connected to a small animal unit (SA Instruments, typical respiration rate under anaesthesia:

90-120 breaths/min). Eye gel (Lubrithal) was applied in both eyes to avoid desiccation, and an

agar gel cap was placed on the animal head to improve shimming results.

5.3.2.4 MRI data acquisition and analysis

MR recordings were performed with a horizontal 9.4 T Agilent system (Vnmrj 4.0 software,

Palo Alto, California. A volume coil (22 mm diameter) was used for excitation and signal

detection (Rapid Biomedical). After tuning and matching, the frequency was adjusted and a

global power calibration of the 90◦ pulse was performed. A quick gradient echo image on the

three planes helped identify any position or excessive movement issues, so that the animal could

be repositioned if necessary. To identify the hippocampus and choose an appropriate slice,

additional anatomical scans were acquired using a fast spin echo sequence in coronal, sagittal

and axial orientation (RARE factor 8, TE 11.8 ms, TR 5 s, matrix size 256 x 256, field of view

FOV 15x20 cm, 30 slices, slice thickness 0.5 mm).
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CEST

Shimming for CEST was done using the automated procedure ge3dshim, and the linewidth

achieved throughout the brain in the slice to be imaged (2 mm thick) was around 20-35 Hz.

Manual shims were used when required (more information about shimming in section 5.2.3).

For a CEST experiment, a reference image, a CEST array and a WASSR array were acquired,

taking about 10 min in total, all with the same field of view, and with no frequency adjustment in

between. The CEST presaturation consisted of a 1.6 s hard pulse (0.9 µT) applied at 40 offsets

between ±4 ppm, followed by single slice segmented GE (CINE) readout (15◦ flip angle, TE

= 1.57 ms, TR = 3.15 ms, 8 dummy scans, FOV = 20x20 mm, 2 mm slice thickness), with a

Gaussian excitation pulse and centric encoding, as illustrated in the diagram in Figure 5.7. R

represents the number of repetitions (40 images), with S being the number of segments (2) and

N the phase encoding steps per segment (64, which makes a total of 128). The acquisition time

for the CEST array was 6 min.

Figure 5.7: Diagram of the CEST sequence.: The saturation consisted of a single hard pulse

(1.6 s,0.9 µT). After this pulse, a crusher gradient was applied to spoil the residual

transverse magnetization. Following the first saturation module, N=64 lines of k

space were acquired with a single slice gradient echo (CINE) imaging scheme.

Centric encoding, RF and gradient spoiling were used, with S being the number of

segments (2). This process was then repeated for R=40 CEST images (40 offsets

between ±4 ppm). 15◦ flip angle, TE = 1.57 ms, TR = 3.15 ms, 8 dummy scans,

FOV = 20x20 mm, 2 mm slice thickness.

The WASSR array (for B0 field correction) included a prepulse of 0.5 s and 0.1 µT, with 35

offsets in ±1 ppm with the same CINE readout (acquisition time 5 min). The reference image

was a single CINE acquisition with no prepulses.
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CEST analysis

For data analysis, the reference, CEST array and WASSR array images were imported into a

custom made CEST tool written in Matlab (see Figure 5.8 for the structure and authors).

Figure 5.8: Matlab CEST tool diagram, illustrating the analysis process. The analysis tool was

developed by Ryan Bendell [315] and optimised by Gaelle Ardito [316].

The images were thresholded and the CEST and WASSR spectra were interpolated using a

spline method. WASSR frequency shift maps were derived with the maximum symmetry algo-

rithm and CEST maps were corrected accordingly. Single frequency maps at 0.6 ppm and inte-

gral maps at 0.5-1 ppm were calculated. Two ROIs were drawn in both sides of the hippocampus

and Z spectra and MTRasym spectra from those areas were obtained. CEST MTRasym values
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are expressed as the average contrast in a region of interest drawn on a CEST map ± standard

error of the mean.

Figure 5.9: A representative anatomical image, showing two ROIs on both sides of the hip-

pocampus (drug and saline) and a representative Z spectrum from one ROI.

T2 map

T2 quantitative maps were obtained from a series of 16 spin echoes acquired after a single

excitation (multiple echo protocol). TE array values (in ms) were: 9, 18, 27, 36, 45, 54, 64,

73, 82, 91, 100, 109, 119, 128, 137 and 146. TR was 15 s, so that all spins could return to

equilibrium, and the acquisition time was 30 min. T2 maps were analysed using Matlab.

MRS

The sequence used for MRS was LASER (localization by adiabatic selective refocusing). This

method is insensitive to B1 variations, minimises artifacts for J-coupled resonances and produces

defined excitation profiles at high fields, since refocusing adiabatic pulses have much higher

bandwidth compared to the pulses used in PRESS or STEAM [9]. More details can be found

in section 1.3.6. The MRS voxel size was 2x2x2 mm, placed over the right or left side of the

hippocampus. Once the voxel was selected, the linewidth was measured and if it exceeded 17

Hz, FASTMAP was used for further shimming. The FASTMAP shim was performed in a larger

voxel to maximise SNR. LASER sequence parameters were: 24 ms TE, 2500 ms TR, 4006

Hz spectral width, 4096 real data points, 512 averages, 8 dummy scans. A VAPOR scheme
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(see section 1.3.5 for details) was used for the water suppression, the duration of the 90◦ pulse

(at60.n29) was 4000 µs and the duration of the 180◦ pulse was 2000 µs. Before the acquisition

of a spectrum, the 180◦ pulse was calibrated (starting from the automatic values coming from

the initial global calibration), to check that it was behaving as an adiabatic pulse (that is, that it

had reached its maximum power, and not started to drop). TE was reduced from its default value

by shortening the initial width of the 180◦ pulse and the duration of the gradient crushers. This

was done in order to obtain as many metabolite information in the spectrum as possible. The

final echo time was 24 ms, since a shorter TE produced an uneven baseline in vivo. However,

the minimum TE achievable with LASER is higher than with PRESS or STEAM, due to the six

localization pulses and twelve gradient crushers.

To minimise motion artifacts and frequency drift, the 512 averages were acquired in groups

of two, so that in postprocessing they could all be aligned and summed up (the water peak

was used as reference for the alignment). Finally, a reference scan without water suppression

was acquired together with the LASER spectrum, for subsequent eddy current correction. All

postprocessing (fid frequency and phase alignment, sum of the fids, eddy current correction)

was done in Vnmrj 4.0.

MRS analysis

MRS data was analysed using LCmodel [10] with a simulated PRESS basis set (provided by

Provencher) with TE = 0 ms, without any data postprocessing other than eddy current correc-

tion. As mentioned by Kaiser et al. although LASER localization cannot be performed at very

short echo times (due to the three pairs of refocusing pulses), J-coupled resonances yield signal

intensities and phases closer to short TE spectra (shown with simulations [9]). Another study, by

Oz and Tkac demonstrated close similarity of spectral patterns between LASER and ultra-short

TE spectra (human subjects [317]). Individual spectra with line widths larger than 15 Hz were

excluded.

Metabolites consistently within Cramér-Rao bounds < 10% were included in further analysis,

i.e. glutamate (Glu), myo-Inositol (Ins), N-acetyl-aspartate (NAA), taurine (Tau), total choline

(tCho), total creatine and Glx (Glu + Gln). Metabolite concentration was expressed as a ratio to

the sum of those selected metabolites. Expressing metabolites ratios to total creatine or to the

sum of selected metabolites give very similar results, with a smaller standard error in the second

case, which is how all data is presented. The ratios are expressed as percentage change from the

control side (mean ± standard error of the mean).
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Figure 5.10: A representative LASER spectrum

Top: LASER MRS spectrum, displayed in Vnmrj 4.0, with line broadening ap-

plied only for viewing purposes (apodization line broadening factor, lb = 10).

Bottom: LASER MRS spectrum, after LCmodel analysis. The raw data (no

postprocessing other than eddy current correction) is in blue, the calculated base-

line in black and the fitted spectrum in red. Notice how the raw data is much

noisier than above, due to the absence of exponential apodization. The relative

metabolite concentrations are calculated from the fitted data.
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5.3.2.5 Histology

Mice were humanely killed using an approved (Schedule 1) method (neck dislocation) at ap-

proximately three hours after injection, and the brains extracted. Brains were post-fixed in 4%

perfluroaldehyde (PFA) and refrigerated for a minimum of 48 hours, then dehydrated by an

ascending alcohol series and embedded in paraffin. The paraffin blocks were cut into coronal

microtome sections (thickness 7 µm) and those corresponding to a coronal plane around 2 mm

posterior to Bregma were drawn up on microscope slides.

These slides were then deparaffined in xylene until cleaned, rehydrated with concentration-

decreasing ethanol solutions and boiled in 10 mM citrate buffer (pH 6, to improve the accessi-

bility of antibodies to tissue antigens), before the staining procedure. H2O2 was used to block

endogenous peroxidase and NGS (normal goat serum) to reduce non-specific background and

cross linking. For the staining, primary antibody Iba1 was used for microglia, followed by

secondary antibody (anti rabbit) for colour, ABC (in PBSt) for bond enhancement and DAB

(prepared in distilled water).

The counterstain involved submerging the slides in Harris Haematoxylin for 1 min, then a wash

of warm water, followed by a dip into lithium carbonate (Scott’s tap water) for 10-15 s and

another bath. The slides were then submerged in Eosin (1%) for a few seconds and after another

wash, they were dehydrated by exposure to various alcohol solutions (50%, 70%, 90% and

100%). Finally, they were dipped into xylene and slipcovered with a few drops of DPX, avoiding

any bubble formation. 20x images were taken with a NanoZoomer 2.0-RS C10730 digital slide

scanner (Hamamatsu Photonics K.K. Systems, Japan).

The histology slides were visualized using NDP view 2 software, where regions of interests

(ROIs) were selected at 15x zoom in the hippocampus, in the areas of injection (LPS and PBS).

A semi-automatic thresholding was performed using ImageJ and the percentage of stained area

for every ROI was calculated. The difference in the percentage of stained area between LPS and

PBS side was calculated per brain slide and averaged for every mouse (at least three slides per

mouse).

5.3.2.6 Data exclusions

N=28 female mice were used in total for this experiments: n=11 in the pilot and n=17 in the sub-

sequent study. N=5 mice died before the end of the experiment due to anaesthesia complications

and were excluded from the dataset.

N=8 CEST datasets had to be rejected due to insufficient quality: some of these images showed

too many motion artifacts in the scanner and could not be repositioned satisfactorily (so the full
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dataset could not be taken), while others had poor shimming (artifacts in B0 map being reflected

in the 0-1 ppm range CEST maps). Therefore, only n=15 (9 WT, 6 AD) CEST datasets were

included in the analysis in total: n=6 (5 WT, 1 AD) from the pilot and n=9 (4 WT, 5 AD) in the

following study.

N=12 Iba1 datasets were included in the histology analysis in total, while N=13 were included

in the MRS analysis.

5.3.3 Results

5.3.3.1 CEST imaging of neuroinflammation, pilot study

Iba1 staining reveals lipopolysaccharide-induced microglial activation

An example of an Iba1 stained brain slice presenting reactivity can be seen in Figure 5.11. All

mice from the pilot experiment showed a significant microglia activation, with a 50% average

increase in the LPS stained for Iba1 area compared with controls (see Figure 5.12A). This dif-

ference in contrast between the two sides was clearly visible, allowing an observer to predict the

area of LPS injection. Inside the groups, there are no genotype differences, most likely due to

low numbers.

Figure 5.11: Iba1 staining: Example of a Iba1 stained brain slice, with two areas chosen in

the CA1 (cornus ammonis 1) part of the right and left hemisphere hippocampus.

At the bottom of the figure, 20x detail of the selected areas. On the right side,

where the LPS drug was injected, the stained microglia show less ramifications

and much bigger cell bodies compared with the control side, both characteristics

of an activated state.
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Myo-inositol levels experience a significant increase in the area of LPS administration

The results showed a significant increase in the myo-inositol ratio values in the LPS side of

the hippocampus voxel compared with the control voxel (see Figure 5.12B). No other MRS

metabolites exhibited significant changes with the LPS neuroinflammatory stimulus and there

were no genotype differences (but there was only one AD mouse in the pilot).

Positive CEST contrast in the 0.5-1 ppm range on the LPS injection area

The images reflect visible CEST changes occurring in the 0-1 ppm region (arising from CEST

hydroxyl groups), manifesting as a positive contrast on the side of the brain corresponding to

the LPS injection. The average CEST effect in the 0.5-1 ppm range from the right hippocampus

ROI (LPS site) was significantly higher compared with the equivalent average signal from the

control side, see Figure 5.12C. Individual maps from all six mice included in the analysis can

be seen in Figure 5.13.

Figure 5.12: Pilot study results: A Microglia staining: All mice had a significant increase

(around 50%) in the percentage of area stained from the LPS injected side of

the hippocampus, compared to the control side. B Myo-inositol MRS levels:

Percentage change of the myo-inositol ratio from the LPS voxel to the control

voxel, measured by LASER MRS. There is a significant increase (around 9%) in

the percentage of LPS area stained compared to the control side. C CEST 0.5-1

ppm: There is an increase of the CEST effect where LPS was administered.

*p<0.05
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Figure 5.13: Individual data from the pilot study, CEST contrast with LPS (n=6).

Left: B0 maps. Right: Correspondent CEST 0.5-1 ppm maps. The LPS was

injected on the right hippocampus. An increase in CEST contrast can be seen

on the LPS injection side. All these animals are wild type, except for number 3

(AD).
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5.3.3.2 CEST imaging of neuroinflammation

No significant differences between LPS and control sides for all measurements

Iba1 staining did not present significant differences between both sides of the hippocampus (LPS

and control injection sites) or with genotype, see Figure 5.14A. The microglial cells presented

small cell bodies with long ramifications, characteristics of a resting state.

There were no significant differences in any metabolite levels measured with MRS, including

myo-inositol, either with genotype or area of treatment (Figure 5.14B).

The CEST results displayed no significant differences in any area of the spectrum, either with

genotype or region of treatment. Mice from this group (n=9, 4 WT, 5 AD) showed an equal

contrast or even a small decrease in the LPS side of the hippocampus, compared with the control

region, see Figure 5.14C. Individual maps from all mice included in the analysis can be seen in

Figure 5.15.

The injections (both LPS and PBS) produced a visible effect on the T2 maps, as seen in Figure

5.16A and B, although there was no significant difference between the two sides of the hip-

pocampus (LPS/PBS) in the T2 values extracted from the map (Figure 5.16C). However, taking

into account the mouse genotype, AD mice had significantly longer T2 values than WT mice in

the hippocampus: average T2WT = 41.10±0.09 ms vs average T2AD = 44.20±0.13 ms.

A comparison between the CEST, MRS and microglia staining results from the pilot and the

subsequent study can be found in Figure 5.17, including details of the MTRasym spectra.

Figure 5.14: Study results: A Microglia staining: The difference between the two sides of

the hippocampus (LPS and control) was negligible. B Myo-inositol MRS levels:

Percentage change of the myo-inositol ratio from the LPS voxel to the control

voxel, measured by LASER MRS. Negligible difference LPS/control side. C

CEST 0.5-1 ppm: There are no significant differences LPS/control in the CEST

contrast.
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Figure 5.15: Individual data from the study, no CEST effect of the drug (n=9).

Left: B0 maps. Right: Correspondent CEST 0.5-1 ppm maps. The LPS was

injected on the right hippocampus. There is no clear difference in CEST contrast

for any of these animals (4 WT and 5 AD).
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Figure 5.16: T2 results:

A: T2 map from a control mouse (no solutions injected). B: T2 map from one of

the mice from the experiment (LPS injected on the right hippocampus, PBS on

the left). Both injections are visible in the map. The colours represent T2 values in

ms. C: T2 values from regions of interest in the right hippocampus (LPS, red) and

left hippocampus (control, blue). The first two columns are WT mice (n=6), and

the last two belong to the AD mice (n=5). On average, AD mice have significantly

longer T2 values than WT mice: average T2W T = 41.10± 0.09 ms vs average

T2AD = 44.20± 0.13 ms. However, there is no significant difference between the

LPS and PBS sides of the hippocampus, which ensures that the CEST contrast is

not affected by T2.

**p<0.0001.
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Figure 5.17: Measurement comparison between two representative animals from the pi-

lot and the study (CEST, MRS, histology)

Left: MTRasym spectrum from a mouse from the pilot study (experiments per-

formed 0-3 months after LPS preparation), with an increase in LPS signal (red)

over control (black) in the 0-1 ppm range and the correspondent 0.5-1 ppm CEST

map. Below, Iba1 staining from left and right hippocampus from the same mouse

and at the bottom, myo-inositol MRS ratio percentage difference LPS/control.

The immunohistochemistry shows activation on the right side and the MRS lev-

els are higher in that side compared with the contralateral area. Right: MTRasym

spectrum from a mouse from the subsequent study (>5 months after LPS prepara-

tion), with similar signals coming from LPS and control ROIs and the correspon-

dent 0.5-1 ppm CEST map. Below, Iba1 staining from left and right hippocampus

from the same mouse and at the bottom, myo-inositol MRS ratio percentage dif-

ference LPS/control. There are no significant differences in the Iba1 staining or

MRS myo-inositol levels between the two sides of the hippocampus.
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5.3.3.3 The CEST contrast is correlated with MRS myo-inositol levels and Iba1 im-

munostaining.

There was a correlation (R2 = 0.67) between CEST (0.6 ppm maps) and myo-inositol levels

measured by MRS (ratio to sum of metabolites), see Figure 5.18A. Furthermore, a correlation

could also be established (R2 = 0.7) between CEST (0.6 ppm maps) and histology (Iba1 per-

centage of area stained), Figure 5.18B. Iba1 identifies all microglial cells, both activated and

not activated. However, an increase in microglia concentration is one of the characteristics

associated with the activation process.

Figure 5.18: CEST is correlated with MRS myo-inositol levels and Iba1 immunostaining.

A: X axis: Average CEST contrast (0.6 ppm map) from a region of interest over

the LPS injection site (right hippocampus). Y axis: MRS myo-inositol ratios

from the right hippocampus voxel. The linear correlation coefficient, R2, is 0.67.

B: Y axis: Percentage of area stained (Iba1) in the LPS injection area. X axis:

Average CEST contrast (0.6 ppm map) from a region of interest over the LPS

injection site. The linear correlation coefficient, R2, is 0.7.

Data from both the pilot and the following study are included in these graphs,

which suggest that CEST can reflect myo-inositol levels and microglia concen-

tration, associated with the activation process.
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5.3.4 Discussion

Building on the LPS MRS study results in chapter 3, the aim for this study was to evaluate if

an increase in myo-inositol levels following LPS administration would lead to an observable

CEST contrast, and if the CEST effect could be associated to myo-inositol (validation with

spectroscopy and Iba1 histology).

The mice in the pilot study (n=6) displayed a significantly increased CEST contrast in the 0.5-

1 ppm range (hydroxyl) compared with the control side. This was accompanied by signifi-

cantly elevated myo-inositol levels (measured with MRS) in a voxel over the LPS injection

area (right hippocampus), compared with the contralateral PBS region. Finally, these animals

showed microglial proliferation on the right side of the hippocampus, with Iba1 staining re-

vealing lipopolysaccharide-induced microglial activation. The percentage of area stained was

significantly higher compared with the control side (left side of the hippocampus).

These results could not be confirmed in a subsequent study (n=9 animals), in which the mice

showed no significant differences in CEST, histology or spectroscopy. Since the LPS solution

was prepared at the same time the pilot started, the mice from that group were injected up

to three months later (duration of the pilot) and in the case of the mice from the subsequent

study, from five to six months after the solution was mixed. The LPS solution was stored in the

freezer in plastic containers during those six months, and it is possible that some degradation has

occurred, with the drug binding to the plastic, that could explain the apparent lack of response

in the last group of animals.

There were no significant genotype differences in the LPS response for CEST, histology or

spectroscopy, a fact most likely related to the low number of animals in both groups (13 WT,

11 AD in total). T2 maps were acquired to assess whether a hypothetical T2 contrast due to

inflammation could be a contribution to the CEST effect (a longer T2 can increase the CEST

contrast and a shorter T2 reduce it, see chapter 4). There was no apparent effect of the LPS

drug in the T2 maps, except that the LPS drug might have been no longer active by then and T2

maps were not acquired during the pilot. There was however a difference in the T2 values in

the hippocampus between the transgenic AD mice and the wild types, with AD mice showing

slightly longer T2 values. This change in T2 contradicts the results from Falangola et al., who

found reduced T2 values in the hippocampus and cortex of young transgenic AD mice (PS/APP)

compared with age matched [318], and so it could be a type I error.

Motion artifacts were one the main experimental difficulties for this project. Due to the nature of

the animal setup (which did not allow for ear bars, see 5.2.1), the breathing of the animal was an

issue for several datasets, which had to be discarded, directly due to the effect it had on the CEST

images or indirectly, through the shimming process. Possible alternatives for improvement could
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be a different holder design/coil size, triggering during shimming/acquisition, or paralysing the

animal for the duration of the experiment (pancuronium bromide has been used for several

CEST studies [26, 319, 320]).

The use of a fast spin echo sequence (RARE) instead of a segmented gradient echo for CEST

could have reduced B0 inhomogeneity artifacts at 9.4 T. However, the linewidth achieved after

shimming was consistently under 30 Hz across the brain (in a 2 mm thickness slice) during

the ex vivo testing of the protocol, which indicates that movement is a bigger issue in order to

improve in vivo reproducibility.

By taking all the data points from the pilot and subsequent study, a correlation is established

(R2 = 0.67) between CEST at 0.6 ppm and MRS myo-inositol levels, accompanied by another

correlation between CEST at 0.6 ppm and Iba1 staining (R2 = 0.7), both in the area of LPS

administration (right hippocampus). Therefore, this CEST effect may be linked to myo-inositol

and microglia concentration. Indeed, MICEST [123] has been proposed as a novel contrast

method for glial cells proliferation, with increased MICEST contrast having been described in

20 month old transgenic AD mice compared with age matched controls, in addition to elevated

myo-inositol MRS levels and GFAP immunostaining, although correlations could not described

in this case. Astrocyte reactivity has also been studied with CEST in recently published study by

Carrillo-de Sauvage et al. [273]. In this case the signal at 3 ppm was associated to the metabolite

glutamate and verified with histology and MRS in a rat model (overexpression of the cytokine

ciliary neurotrophic factor CTNTF [321]).

5.3.5 Conclusion

A model of microglial activation, as used in this project, would be extremely useful towards

getting an understanding of the early stages of many neurological disorders, while CEST as

a biomarker or inflammation has a lot of potential due to its non-invasive nature, high spatial

resolution and clinical translation. Correlations have been established between the CEST con-

trast at 0.6 ppm and MRS myo-inositol levels/microglial concentration (Iba1). Nevertheless,

the complex CEST readout with many metabolites contributing to the signal and its sensitivity

to B0 inhomogeneity artifacts, in particular at high fields, which are required for myo-inositol,

complicate the robustness and reproducibility of the technique.
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Discussion and conclusion

6.1 Summary of main findings

The work undertaken in this thesis is focused on the study of neuroinflammation with molecular

MRI methods. Neuroinflammation is present in a vast array of neurological disorders, such

as neurodegeneration, where chronic inflammatory responses may play an important part in

the onset and progress of the disorders. Molecular MR methods used are magnetic resonance

spetroscopy (MRS) and chemical exchange saturation transfer (CEST).

The investigation of the neuroinflammatory response was carried out with lipopolysaccharide

(LPS) as an inflammatory stimulus. In order to find a quantitative molecular biomarker, a pilot

study was performed on wild type animals using serial MR Spectroscopy (MRS) and peripheral

LPS administration. The results showed a myo-inositol (considered a glial marker) increase in

a cohort of the animals, peaking at four hours after injection. Based on this pilot, a full MRS

study was carried out, including a mouse model of Alzheimer’s disease (AD) together with

wild type controls and histology as validation, to evaluate the degree of microglia (Iba1) and

astrocyte activation (GFAP). MRS myo-inositol changes indicated a mild neuroinflammatory

transient state in AD mice, induced by a low dose of LPS, as seen in the histology results. This

neuroinflammatory state is still present in the wild type, according to microglia staining, but it

is stronger in AD mice, which supports the existence of a primed microglial state in the mice

with a chronic disease condition compared with wild types.

Since MRS is limited by low spatial resolution, the aim of this thesis was to develop a molecular

MRI method to monitor neuroinflammation, chemical exchange saturation transfer (CEST). The

CEST signal was modelled in Matlab, using two and three compartment simulations developed

and optimized for myo-inositol contrast. A robust in vitro CEST protocol was established and

tested with the simulations, providing insights into the complex CEST signal, where several

metabolites (glucose, glutamate, creatine, etc) overlap with myo-inositol.
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Following the basis from the simulations, from where a set of optimal sequence parameters

was obtained, a reproducible in vivo CEST protocol with a running time of 10 minutes was

developed, suitable for preclinical experiments. CEST and MRS measurements were taken after

a LPS injection (10 ng) in the right hippocampus and a control PBS injection on the other side,

with histology as validation. A correlation was found between CEST at 0.6 ppm and MRS myo-

inositol levels, as well as between CEST and microglia concentration (Iba1 immunostaining).

6.2 APPswe/PS1dE9 as an AD animal model

Alzheimer’s disease (AD) neuropathology is characterised by the accumulation of amyloid-β

(Aβ) plaques and neurofibrillary tangles, together with widespread loss of synapses, inflamma-

tion and and neuronal death. Less than 1% of AD cases are caused by autosomal (not sex-linked)

dominant inheritance, known as early onset familial Alzheimer’s disease (onset before age 65).

However, the vast majority of the AD cases (sporadic AD) do not appear to have a certain

genetic cause, although environmental and genetic differences can act as risk factors [322].

In neurodegenerative diseases, such as AD, the concentration of microglial cells increases and

they adopt an activated state ("priming" process [289]). "Priming" makes microglia susceptible

to a secondary inflammatory stimulus, and is considered to exacerbate disease progression. Neu-

roinflammation in AD is not a passive system activated by plaques and neurofibrillar tangles, but

instead it contributes to pathogenesis as much as plaques and tangles do. Several genetic risk

factors in AD have been associated to microglial function, compromising phagocytic efficiency

and clearance of amyloid deposits as well as enhancing neuroinflammation. Glial activation, as

a pathological mechanism in AD, is a potential mechanistic biomarker for the development of

new treatments targeting neuroinflammation or a dysfunctional amyloid metabolism [323].

Intensive research over the years, centered on the genes and proteins involved in the pathology

has permitted the development of genetically altered mouse models. The neuropathology and

clinical phenotype are usually indistinguishable between early-onset familial and sporadic AD,

with the main difference being the earlier onset in the first type. Since the etiology of sporadic

AD is still unknown, the animal models developed are based on genetic mutations present in

familial AD. This can be justified by the fact that the course of the disease is quite similar after

the initial trigger for both cases [324].

APPswe/PS1dE9 mice express two different transgenes: the human gene APP695 containing

the Swedish mutation K594N/M595L (Amyloid Precursor Protein, APPswe) and presenilin 1

without exon 9 (PS1dE9) [278]. These mutations lead to a progressive, age-related Aβ neu-

ropathology with amyloid plaques and elevated levels of Aβ [278], which are linked to famil-

ial forms of Alzheimer’s disease (AD) [279]. The mice develop behavioural phenotypic and
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pathological features which make them useful as an AD model, such as Aβ plaques (as early

as 4 months [280]), surrounded by activated microglia and astrocytes and significant memory

deficits at 6 months compared with wild type controls [281].

One of the limitations of the animal model is related to age considerations. Microglial density

was not significantly increased in AD mice compared to wild types in the PBS side of the

hippocampus (control region) in the direct injection experiment, which can be a factor towards

explaining the lack of genotype differences in the results. The animals used were three months

old, and older animals could not be used due to restrictions on the animal size caused by the coil

diameter (22 mm).

6.3 Lipopolysaccharide as a neuroinflammatory model

Lipopolysaccharide (LPS) is a bacterial endotoxin. Inside the brain, LPS binds to the Toll-

like receptor 4 (TLR4), predominantly expressed by microglia in the CNS, as an agonist [175],

stimulating cytokines (IL-1β and TNFα) and chemokines expression and release and inducing

an acute neuroinflammatory response, with microglia and astrocyte activation. LPS adminis-

tration, central or peripheral, is considered a neuroinflammatory challenge and has been widely

used as a neuroinflammatory stimulus [176].

The main advantages of such a model is the possibility of inducing a transient inflammatory re-

sponse in a well-controlled experimental environment. However, the dose of LPS as well as the

source and route of the application are likely critical factors differently affecting the timing and

intensity of the effects. Moreover, from a clinical point of view, it has to be noted that LPS ad-

ministration creates a transient response with normalization of the cytokine levels within hours.

Therefore, it cannot be considered as a model of chronic inflammation, frequently encountered

in many neurological disorders. In particular, the levels of proinflammatory cytokines induced

in chronic disease are usually lower than those induced by LPS [325].

In the experiments presented in this work, the aim was to investigate the early metabolic effects

to a mild inflammatory stimulus, so the hurdles of the LPS model were related to finding an

appropriate dosage which would induce metabolic changes but did not produce sickness syn-

drome, as well as finding the time course to guide the measurements post-injection. The possible

anaesthesia/experimental setup effects that could be present together with the drug effects are

another possible limitation.
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6.4 Potential for future experimental work of this nature

Animal work allows for a mechanistic approach and it has the capability of defining critical

disease-related mechanisms. It can help to predict outcomes from pharmacological interven-

tions, with many treatments currently in clinical trial owing their origins to studies initially per-

formed in mice. In this case, glial activation is of great interest as a potentially key modifiable

pathological mechanism in AD and other neurodegenerative disorders.

Another advantage of working with mice are ethical considerations, since experiments of the

nature of the ones performed in this work would not be readily possible or ethical with human

patients (and would not produce the desired information with samples). In addition, animal

work permits an in depth study of a single process, while human diseases often contain mul-

tiple underlying conditions that complicate our understanding of the disorder. Nevertheless, it

should be mentioned that this advantage can also be a disadvantage, which can cause significant

translational issues between preclinical drug studies and human clinical trials [324].

6.5 Clinical potential of CEST and MRS in neuroinflammation

There is evidence suggesting that neuroinflammation has a causal role in Alzheimer’s disease,

with analysis of clinical manifestations that precede the dementia stage of AD, such as mild

cognitive impairment, supporting an early and crucial involvement of inflammation in disease

pathogenesis. The initial acute inflammatory response is thought to help clearance and restore

tissue homoeostasis. Triggers and aggravators stimulate prolonged exposure and immune acti-

vation, ultimately leading to chronic neuroinflammation. Perpetuation of microglia activation

and continuous exposure to proinflammatory cytokines induce functional and structural changes

that result in neuronal degeneration [323].

Microglia are key players in the neuroinflammatory response: changes in microglia are evident

in the post-mortem brains of AD patients and in AD animal models. Glial activation is of great

interest as a potentially key modifiable pathological mechanism in AD and other neurodegen-

erative disorders. Microglia activation (and potentially myo-inositol levels, measured through

MRS or CEST) could be used as predictive biomarkers for the development of new treatment

options targeting neuroinflammation or a dysfunctional amyloid metabolism. These biomarkers

could help identifying patients that are more likely to respond favourably to a given therapy, in

order to stratify different patient groups in terms of clinical response, so as to develop person-

alised, preventive or therapeutic strategies. For example, non-steroidal anti-inflammatory drugs

(NSAIDs) could be used to block incipient inflammation-driven AD pathogenesis at early stages

[323].
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6.6 Prospects and difficulties in the translation of this approach to

clinical use

Nuclear imaging methods such as positron emission tomography (PET) have a very high sensi-

tivity, but they are hindered by the use of radioactive isotopes and suboptimal spatial resolution.

Optical imaging is restricted in terms of clinical applications due to poor depth of penetration.

MRS has been extensively used for in vivo quantifications of concentrations of a large range

of metabolites, whose concentrations are high enough for MR detection. However, low spa-

tial resolution and long acquisition times make widespread clinical applications challenging.

On the other hand, MRI is a high resolution non-ionizing imaging technique, widely utilized

clinically. Molecular MRI imaging techniques have relied traditionally on exogenous contrast

agents (fluorine MRI, manganese enhanced MRI, superparamagnetic iron oxide nanoparticles)

and therefore, there is a need to develop non-invasive quantitative methods to measure in vivo

molecular changes.

Endogenous CEST MRI does not usually require any external agents and CEST imaging can

be performed using modifications of existing MRI pulse programs. Consequently, endogenous

CEST MRI has a great potential to reach clinical applications. However, many difficulties are

associated to any attempt to translate myo-inositol CEST into a clinical setting, which are de-

scribed here, together with more generic CEST difficulties:

6.6.1 Clinical translation of CEST

Endogenous CEST MRI applications are a promising non-invasive, non-ionizing tool for molec-

ular imaging. Several endogenous metabolites with exchangeable protons have recently been

identified and imaged in vivo and the feasibility of implementing these methods both in preclini-

cal models and in human studies has been demonstrated [37, 110]. These endogenous molecules

can be exploited as biomarkers for characterization of diseases such as cancer [125], neurolog-

ical diseases [93], stroke [66] or osteoarthritis [326]. Several obstacles need to be addressed

when translating a CEST protocol into the clinic:

6.6.1.1 SAR

Ideally, standard CEST should use prolonged irradiation (long enough so that the system can

reach steady-state). Long rectangular CW pulses are widely used in CEST imaging, but specific

absorption rate (SAR) concerns can make the CEST imaging clinical translation problematic.

The field strength of the saturation pulses (B1) will be limited, which will particularly affect

those exchanging groups with faster exchange rates. Scanner hardware constraints can also
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play a part in limiting maximum pulse durations (in contrast to the preclinical scanners, the RF

amplifiers from clinical scanners cannot produce irradiation with a high duty cycle).

There are several solutions to overcome these limitations: triggering and the type or size of

transmit coil can reduce the heat deposition [327], parallel MRI reduces the number of phase

encoding steps needed for image reconstruction (using redundant spatial encoding information

from arrays of surface coils) and can result in longer repetition times for the same total acquisi-

tion time, which will lower SAR (this will also produce a lower signal to noise ratio).

However, if long or strong enough CW pulses are not allowed for saturation, a train of strong and

short shaped prepulses is used instead, often called pulsed-CEST MRI. Parallel RF transmission

can get around hardware constraints [328]. Two amplifiers can be used in interleaved fashion to

create RF with a duty cycle close to 100%. Each of them is allowed to rest for a long enough

time between the pulses, without losing overall RF power. This way, a long, high duty cycle,

pulsed RF saturation train can be generated. The optimisation of a pulsed-CEST MRI sequence

is more involved than a CW CEST sequence, due to the many more parameters involved. The

full numerical solutions to the Bloch McConnell solutions can be used for optimisation and

several approximations can be applied to make it less computationally intensive [300].

6.6.1.2 Time (3D)

Most CEST applications use a single slice readout. This is because of the necessity for multiple

acquisitions at different saturation with long repetition times to allow for relaxation. Therefore,

single slice acquisition is the standard approach for pre-clinical studies, although it is not desir-

able for clinical translation. Development of fast, multi-slice or 3D CEST techniques is crucial

to clinical application translations.

In order to acquire volumetric CEST measurements, an RF saturation pulse (CW) or pulse train

(pulsed CEST) can be directly inserted in front of a full 3D or a multi-slice acquisition module.

However, CEST contrast decays over time with relaxation time T1, once the presaturation mod-

ule is finished. Post-processing corrections are needed to account for this effect, based on prior

knowledge of T1 and k-space trajectory [99].

Other alternatives have been studied to obtain fast multi-slice and three dimensional CEST:

One alternative is to apply steady state methods to build up CEST contrast throughout the 3D re-

gion. For example, a long initial saturation pulse can be used to create CEST contrast, followed

by repetitive short secondary saturation pulses immediately after the first image acquisition, so

as to maintain the steady state CEST contrast for multi-slice acquisition [329]. A different ap-

proach uses a repetitive module containing a short frequency-selective saturation pulse in front

of each slice selective pulse, followed by a fast imaging sequence with a short enough repetition
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time to allow a build-up in saturation contrast. As the TR of the gradient echo readout pulses is

much less than T1, this leads to a cumulative effect of saturation pulses for slowly exchanging

spins and it is therefore appropriate for an interleaved, multi-slice readout. [38].

The combination of parallel imaging hardware with 3D k-space sampling strategies can be used

to obtain 3D CEST images. Jones et al. has used a 3D gradient and spin echo (GRASE) readout,

combined with a multi-channel coil benefiting from parallel imaging techniques to achieve a z-

spectrum of the whole brain in less than 10 minutes [37]. The CEST contrast loss coming from

T1 relaxation was minimised independently of the number of slices, using a centric 3D k-space

acquisition scheme. The center of k-space, which determines the contrast, was acquired before

T1 relaxation would occur. The rest of the k-space data was collected at a later time.

These techniques rely on steady state CEST contrast and consequently, may not be optimal for

faster exchanging spins.

6.6.1.3 B0 and B1 correction

B0 correction is essential to obtain reliable and reproducible CEST images. The water satura-

tion shift referencing (WASSR) [141] method is the preferred technique for preclinical studies,

since it provides an absolute value for the frequency shift from water for every voxel and it

does not require corregistration with the CEST image. It is however a lengthier method than

a conventional B0 map, which can make it less desirable for time-restricted clinical protocols,

although the time difference can be made minimal [330]. B0 correction is of capital relevance

for diaCEST agents, with a resonance frequency close to the water peak (in particular, those

containing hydroxyl groups).

In addition to B0 inhomogeneities, B1 inhomogeneities can produce insufficient saturation of the

exchanging pool, especially in the translation of CEST technology to high field clinical scan-

ners. B1 field maps have been measured in a study by Singh et al. using a double angle method.

The maps were then used to correct the CEST asymmetry maps in the presence of severe B1 in-

homogeneity, using a calibration curve (empirical approach). However, accurate determination

of the calibration coefficients depends on the presaturation and acquisition parameters and the

type of tissue [331]. Parallel RF transmit can also be used to minimise B1 inhomogeneities and

thus improve the CEST contrast [332].

For diaCEST agents, B0 inhomogeneities play a more important role than B1 inhomogeneities,

assuming that B1 homogeneity is good enough for a relatively uniform saturation [140].
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6.6.2 Clinical translation of myo-inositol CEST

The myo-inositol molecule contains six hydroxyl groups. The proton exchange rate and reso-

nance frequency have been reported to be 600 Hz and 0.6 ppm (conventional saturation method),

1250 Hz and 0.93 ppm (spin-lock method) and 1381 Hz and 1.1 ppm (FLEX method), by Haris

et al., Jin and Kim and Yadav et al., in 2011, 2012 and 2014 respectively.

CEST techniques require the condition of slow exchange regime, or slow to intermediate regime

in order to selectively saturate the solute protons [19]:

kba ≤ ∆ω (6.6.1)

where kba is the exchange rate from the bound protons to the free water and ∆ω is the chem-

ical shift (∆ω = ωwater −ωbound protons) [50]. Therefore, CEST benefits from high fields: the

frequency separation is increased and there is a reduced interference of direct water saturation.

Table (6.1) shows the myo-inositol values for different magnetic field strengths: Myo-inositol

B0 Exchange rate (kba) Resonance frequency (∆ω) kba ≤ ∆ω

1.5 T 600/1250/1381 Hz 0.6/0.93/1.1 ppm 600/1250/1381 � 241/374/442

3 T 600/1250/1381 Hz 0.6/0.93/1.1 ppm 600/1250/1381 � 480/745/881

7 T 600/1250/1381 Hz 0.6/0.93/1.1 ppm 600/1250/1381 ≤ 1130/1752/2072

9.4 T 600/1250/1381 Hz 0.6/0.93/1.1 ppm 600/1250/1381 ≤ 1508/2337/2765

Table 6.1: Myo-inositol hydroxyl proton exchange regime, for different magnetic field

strengths.

hydroxyl groups resonate at around 1 ppm down field from water and have an exchange rate

in the range of 600-1400 Hz. These values do not satisfy the condition of slow to intermediate

exchange on the NMR time scale at lower fields, such as 1.5 T and 3 T. Effective saturation of

rapidly exchanging labile protons requires high B1 irradiation powers. However, because the

resonance frequencies of endogenous hydroxyl protons are close to that of water, the applicable

irradiation power is limited by direct water saturation and therefore, low-powered saturation

pulses have to be used instead, producing less than optimal CEST effects. As an example, an

important application of hydroxyl CEST imaging is glycosaminoglycans imaging in cartilage

(GagCEST), as a potential biomarker for osteoarthritis: a 20% increase in the gagCEST signal

was initially reported in cartilage at 3 T. With optimised B0 correction, the effect was later

showed to be negligible instead, due to direct saturation effects from the saturation scheme

necessary to saturate faster exchanging spins with a small chemical shift.

Conventional myo-inositol CEST can be performed in vivo at higher fields (≥ 7 T) with im-

proved sensitivity and all the limitations/difficulties discussed in this chapter. Only one preclin-
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ical full study [123] has been published so far, and high field human feasibility studies have yet

to be performed.

Alternative technique chemical exchange-sensitive spin-lock (CESL) can suppress direct water

saturation, providing a much wider range of available irradiation parameters. In particular, it

makes possible the use of high-powered B1, which can be exploited to improve the sensitivity of

exchanging groups in the intermediate exchange regime. Jin and Kim has recently described the

theoretical model and compared CEST and CESL approaches in phantoms of several relevant

metabolites (including myo-inositol) with promising results [333]. More in vitro and simulation

efforts have also been recently focused on CESL, with a feasibility study by Roeloffs et al.

describing the quantification of proton exchange rates from data obtained in pulsed spin-lock

experiments on a clinical 3 T scanner, using an interleaved saturation-relaxation approach [334].

6.7 Methodology used for MR data analysis

6.8 CEST

CEST images were imported into a custom made CEST tool written in Matlab. Postprocessing

included image referencing, thresholding and interpolation (spline method). WASSR frequency

shift maps were derived with the maximum symmetry algorithm and were used to correct the

CEST spectra. CEST single frequency and integral maps were calculated, ROIs were drawn in

and Z spectra and MTRasym spectra from ROIs were obtained. The MTR asymmetry metric is

still the most widely used in CEST studies. It relies on the assumption that conventional mag-

netization transfer effects are symmetric around the water peak, which is just an approximation.

However, asymmetric MT does not have a significant effect on the CEST contrast for frequency

offsets close to the water peak (< 1 ppm, such as myo-inositol).

Other confounders in traditional MTRasym are NOE mediated effects and direct saturation ef-

fects. The inverse metric [60, 61] removes direct saturation and MT effects (unwanted T2 and

MT contributions), but it requires the system to have reached steady state or near steady state,

which is not the case with the sequence used in this work. Model based analysis methods are

frequently used in the CEST literature (z-spectral fitting to the Bloch-McConell equations [64],

with varying number of different CEST pools assumed, or Lorentzian fitting [142], decompos-

ing the CEST spectrum into a sum of Lorentzian shapes).

These approaches are particularly difficult in hydroxyl CEST, due to the absence of a clear dis-

tinctive CEST peak, separated from the water (intermediate-to-fast exchange regime). These

techniques benefit from observable narrow peaks in the z-spectra and thus have limited ap-

plicability in small frequency shifted and/or fast exchanging spins. Moreover, while in vitro

156



CHAPTER 6: DISCUSSION AND CONCLUSION

contributions can be readily separated with these methods, it is harder to check their in vivo

accuracy [139].

6.9 MRS

MRS data was analysed using LCmodel [10]. Different parameters were tested in the LCmodel

to try to achieve the best possible fit to the data, which was assumed to be the one producing

the lower residuals. The window of frequency-domain data, by default from 0.2 ppm to 4 ppm,

excluded one of the myo-inositol resonances (extra peak around 4.1 ppm). A possible downside

of extending the range to include this peak was the proximity to the water frequency (around

4.7 ppm). Inhomogeneity in the water suppression results over different spectra could be an

argument against including it. To improve baseline reproducibility, other options explored have

been to remove some macromolecular resonances from the frequency-domain window (from

0.2 ppm to 0.5 ppm), or to exclude NAA as one of the main metabolites defining the lineshape

(since NAA was quite low for several datasets) or even to restrict the baseline and make it quite

flat. However, none of these changes made a positive influence in the residual sum of squares

(RSS), which was actually bigger with the new set of parameters.

Three different references were used for metabolite quantification: water concentration (value

taken from the water reference scan, without water suppression), the total creatine concentration

(using the metabolite total creatine as a reference) or a sum of selected metabolites, by choosing

a subset of the most accurately fitted metabolites together as reference [284]: total creatine, total

choline, taurine, myo-inositol, NAA and the sum of glutamate and glutamine (Glx). The repro-

ducibility of the three references was evaluated: the water content was the most reproducible,

followed by the sum of selected metabolites and total creatine. However, due to experimental

mistakes, water reference scans were lost for several datasets, and the sum of selected metabo-

lites was chosen as the preferred method.

A custom made MRS tool was written in Matlab, to export LCmodel results, which helped with

reliability and speed in data processing.

6.10 Optimisation of pulse sequences

6.10.1 CEST

The CEST effect depends on several factors such as static field strength (B0), concentration of

metabolites with exchanging groups, exchange rate, RF saturation pulse duration and amplitude,

T1 of free water protons, B0 homogeneities, overlap of different metabolites in the CEST signal,
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MT and NOE mediated contributions. Therefore, when interpreting a CEST measurement all

these factors have to be taken into account.

A CEST pulse sequence has a presaturation module (where the CEST contrast is produced)

and a imaging module (where the contrast is acquired). Long low-powered rectangular presat-

uration pulses (CW CEST), accompanied by single slice acquisitions are commonly employed

in phantom and animal model studies, while in a clinical setting, trains of shaped short pre-

pulses separated by short delays are used instead (Pulsed CEST) and multi-slice acquisition is

desired. The presaturation module in this work has been optimised using simulations. Hydroxyl

resonances are situated very close to the water peak, and therefore their measurement is made

harder by the presence of direct water saturation effects, as well as inhomogeneities of the main

B0 field. The aim of the CEST simulations was to optimise myo-inositol CEST parameters, in

order to maximize the contrast for in vivo experiments. Several models were studied during the

simulations: long T2 (distilled water + myo-inositol) and short T2 (agar gel + myo-inositol) in

a two pool model and a three pool model including conventional MT effects. In vitro experi-

ments were performed to check the accuracy of all the simulations. The short T2 two pool model

was proven to be a good approach to calculate optimum myo-inositol CEST parameters, with a

very short computing time. Asymmetric magnetization transfer effects did not have a significant

effect on the CEST contrast for frequency offsets so close to the water peak (< 1 ppm).

The in vivo imaging module chosen was a segmented gradient echo readout (two segments),

with a centric encoding, so as to not lose contrast, which is given by the center of k space.

Gradient echo sequences have the advantage of low SAR and high speeds (less than 10 min

for the full protocol), but they can produce poor quality images because of eddy currents and

B0 inhomogeneity, compared with their spin echo counterparts. Two different schemes were

tested for their reproducibility, with the final sequence incorporating both gradient spoiling and

RF spoiling in the imaging module. A robust and reproducible CW CEST sequence was thus

developed, maximizing the in vivo myo-inositol contrast.

6.10.2 LASER MRS

The sequence used for MRS at 9.4 T was LASER (localization by adiabatic selective refocus-

ing). This method is insensitive to B1 variations, minimises artifacts for J-coupled resonances

and produces defined excitation profiles at high fields, since refocusing adiabatic pulses have

much higher bandwidth compared to the pulses used in PRESS or STEAM. The 180 degree

pulse power required careful calibration before the protocol was run. At the start, a global

power calibration was performed (with a long TR), followed by the voxel positioning and shim-

ming procedures. During the 180 degree calibration, an array of pulses were applied and the

adiabatic plateau behaviour could be tested (that is, the power had reached its maximum and it
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had not started to drop). The default TE value was initially 40 ms and this could be reduced

by applying different procedures, for example: reducing the width of the 180 degree pulse (fol-

lowed by calibration) or reducing the duration of the gradient crushers. This last modification

could introduce unwanted coherences on the baseline of the spectrum, which could be compen-

sated by increasing the gradient crusher amplitude (paying attention to the effect this could have

on the eddy currents). The final TE achieved was 24 ms and the baseline of the spectrum was

routinely checked before any MRS scan was started.

To control movement artifacts and frequency drift, the averages of the LASER sequence (512)

were acquired in groups of two, so that in postprocessing they could all be aligned and summed

together, with the water peak used as reference for the alignment. The water suppression scheme

(VAPOR) was initially optimized automatically but too much suppression caused problems

sometimes when using the water peak as a reference and therefore, the optimisation of the

water suppression was eliminated from the protocol. Moreover, a reference scan without water

suppression was acquired at the beginning, for subsequent eddy current correction.

6.11 Experimental difficulties

Some of the work performed in this thesis is experimental and of high difficulty. This is partic-

ularly the case for the in vivo work described in Chapter 5. The main technical complications

are described here:

6.11.1 Anaesthesia

Respiratory depression is a major adverse effect and the most probable emergency situation

of inhalational anaesthetics [335]. Isoflurane is recommended as the first choice anaesthetic

in mice and was administered at 3% for induction and 1-2% for maintenance. Hypothermia,

which usually occurs under anaesthesia, was prevented by placing the animal on a warmed

mat. Moreover, the animals’ respiratory pattern and depth of anaesthesia, including testing the

responsiveness to manipulations and rear foot reflexes, were monitored throughout the surgery,

which was performed following appropriate training and supervision as required.

6.11.2 Shim and movement artifacts

The experimental difficulties of imaging hydroxyl groups using CEST have to be considered.

Myo-inositol has six hydroxyl (OH) groups and hydroxyl CEST resonances are affected by

direct water saturation effects, due to their proximity to the water peak. High magnetic fields

maximise the frequency separation between OH and free water resonances, which is why this
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study was performed at 9.4 T. There is a trade-off between saturation efficiency of the hydroxyl

CEST resonances, with the CEST effect increasing with ~B1 power and spillover effects or direct

saturation of the free water pool, which also increases with ~B1 power. Direct saturation effects

impose a restriction on the RF pulse power that can be used (0.9 µT was chosen in this case) and

therefore on the saturation efficiency of the CEST sequence.

A 22 mm volume coil maximised the homogeneity of the B1 magnetic field in the experiments.

Static magnetic field (B0) inhomogeneities also present a challenge for CEST imaging. This

is particularly relevant for high magnetic fields, where the effects of B0 inhomogeneities are

magnified. B0 inhomogeneities lead to a shift in the water resonance frequency that results in

asymmetric direct water saturation and consequently to artificial CEST effects in the conven-

tional asymmetry analysis. Even small shifts in B0 inhomogeneity can cause large errors in the

measured CEST asymmetry. Accurate correction of field inhomogeneities is essential to obtain

precise CEST asymmetry measurements. The WASSR method has been used in this work to

obtain an absolute mapping of the water frequency, together with intensive shimming before

the CEST and WASSR measurements. However, susceptibility artifacts in regions of tissue

interface changes, such as the cortex and the lower parts of the brain complicated the task of

shimming. Agar caps in between the top of the animal head and the volume coil were intro-

duced to reduce those susceptibility artifacts. Nevertheless, shimming artifacts can be observed

in many datasets, especially in the lower area of the brain (due to the proximity of the ear canal).

Movement has been a major complication. A purposedly built mouse holder was designed for

the experiment, without ear bars, due to the small space available inside the volume coil, which

also restricted the weight of the animals. Movement effects rendered some datasets unusable

(n=8) and were the main factor affecting in vivo reproducibility. Of the datasets that had to be

discarded due to movement, either a good enough shim could not be achieved or movement

artifacts could be seen in the CEST/WASSR images, even after repositioning the animal inside

of the scanner.

6.11.3 Specificity

An intrinsic complication is the overlap of different molecules in the CEST signal in the re-

gion of the myo-inositol resonance, including metabolites such as glutamate, creatine or any

hydroxyl group (i.e. glucose). Therefore, definite relations effect-metabolite are not feasible

with this technique. Alternative techniques were used to confirm myo-inositol changes (MRS)

and correlations were established instead (with myo-inositol MRS and with Iba staining), but

the limitation remains that if more than one CEST metabolite were affected, changes in over-

lapping metabolites could interfere with each other, complicating the interpretation of the CEST

contrast.
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A further constraint in specificity is the potentially confounding effect of prolonged anaesthe-

sia on some metabolites. As an inhalatory anaesthetic, isofluorane permits accurate control of

the depth of anaesthesia, however, AD mouse models were reported to be more susceptible to

repeated anaesthesia with isofluorane than controls [336].

6.12 Future work arising from this thesis

The main challenges in this project were to find the right quantitative molecular biomarker, a

robust neuroinflammatory model with which to test the hypothesis and finally, the difficulties

associated with a reproducible in vivo myo-inositol CEST protocol.

Future work on this project could be centered around refining myo-inositol CEST quality. Mo-

tion of the animal caused artifacts in some datasets and problems with shimming. Possible

improvements could include upgrading the animal holder design, to achieve a better restraint of

the animal body. Breathing effects are the cause of the movement and therefore, potential im-

provements could be evaluated, such as experimenting with alternative anaesthetic agents (i.e.

injectable), or paralysing the animal for the duration of the experiment. In vivo reproducibility

could possibly benefit from the use of other analysis methods, such as multiple Lorentz pool

fitting or model based analysis based on the full solution of the Bloch-McConnell equations,

with a finite number of pools.

Specificity is a inherent limitation of conventional CEST. Diverse alternative methods to im-

prove this could be investigated, such as frequency-labelled exchange (FLEX [20]) transfer

or chemical exchange-sensitive spin-lock (CESL). FLEX labels exchangeable protons by their

chemical shift evolution instead of the usual saturation method. This has several advantages

for specificity: it can separate different magnetization transfer effects using time domain anal-

ysis and exchange rate filtering, and direct saturation effects on water can be removed without

the need for asymmetry analysis. This method has been proven to be successful in vivo for

paraCEST [337] and diaCEST [338]. CESL can suppress direct water saturation, improving the

sensitivity and specificity of molecules containing fast exchanging protons (such as hydroxyls).

This approach has been recently used in vivo to measure cerebral glucose uptake by Zu et al..

Better sensitivity than CEST and more specificity to the exchange effects of interest have been

reported [339].

Microglia activation is a well established characteristic of neuroinflammation and myo-inositol

is considered to be a glial marker. However, the physiological mechanism has not been properly

described and evidence is usually limited to myo-inositol levels increasing in many neuroin-

flammatory disorders. Therefore, myo-inositol, although a promising quantitative biomarker

for neuroinflammation needs to be further researched and tested. In the search for robust neu-
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roinflammatory challenges, alternative LPS dosages could be evaluated. At the time this work

was performed, the LPS dose was limited by the Home Office license (hard constraint), but

the license can be amended for future experiments. A too strong LPS dose injected in one of

the sides of the hippocampus will spread across the whole brain and invalidate the use of the

contralateral region as control, but intermediate dosages could be tested. Additionally, different

neuroinflammatory challenges could be used: Carrillo-de Sauvage et al. has recently reported

GluCEST changes in a model of selective astrocyte activation (overexpression of the cytokine

ciliary neurotrophic factor, CNTF). This rat animal model, as characterised by LASER MRS

shows a 61% increase in myo-inositol, accompanied by other metabolic changes (total choline

(33%), glutamine (-14%), total NAA (-19%), taurine (-9%) and glutamate (-18%) [273]. A

robust neuroinflammatory model would provide further validation for myo-inositol as a glial

marker and CEST as an imaging biomarker for neuroinflammation.
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