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Abstract 

Confidence assessment (CA), in which students state alongside each of their answers a 

confidence level expressing how certain they are, has been employed successfully within 

higher education. However, it has not been widely explored with school pupils. This study 

examined how school mathematics pupils (N = 345) in five different secondary schools in 

England responded to the use of a CA instrument designed to incentivise the eliciting of 

truthful confidence ratings in the topic of directed (positive and negative) numbers. Pupils 

readily understood the negative marking aspect of the CA process and their facility correlated 

with their mean confidence with r = .546, N = 336, p < .001, indicating that pupils were 

generally well calibrated. Pupils’ comments indicated that the vast majority were positive 

about the CA approach, despite its dramatic differences from more usual assessment practices 

in UK schools. Some pupils felt that CA promoted deeper thinking, increased their 

confidence and had a potential role to play in classroom formative assessment. 
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1. Introduction 

Fluency in important mathematical procedures is now recognised as a critical goal within the 

learning of school mathematics (Gardiner, 2014; NCTM, 2014). Rather than constituting a 

threat to conceptual understanding, procedural fluency is its natural partner (Foster, 2013; 

Hewitt, 1996; Kent & Foster, 2015; Kieran, 2013). Indeed, procedural and conceptual 

learning are now increasingly seen to be interrelated and inseparable (Baroody, Feil, & 

Johnson, 2007; Star, 2005, 2007), since security with fundamental procedures offers pupils 

increased power to explore more complicated mathematics at a conceptual level (Foster, 

2014). East Asian countries with impressive performances in large-scale international 

assessments such as the Programme for International Student Assessment (PISA) and the 

Trends in International Mathematics and Science Study (TIMSS) succeed in emphasising the 

development of mathematical fluency without resorting to the low-level rote learning of 

procedures (Askew, Hodgen, Hossain, & Bretscher, 2010; Fan & Bokhove, 2014; Leung, 

2014). Finding ways to support the meaningful learning of mathematical procedures and the 

development of robust fluency with important mathematical skills is an urgent priority for 

Western mathematics education. The new national curriculum for mathematics in England, 

for example, emphasises procedural fluency as the first stated aim (Department for 

Education, 2013) and provides a political imperative in the UK for developing this important 

aspect of learning mathematics. 

Procedural fluency involves knowing when and how to apply a procedure and being able to 

perform it “accurately, efficiently, and flexibly” (NCTM, 2014, p. 1). Written mathematics 

assessments generally focus on competence with procedures, but an important concomitant of 

procedural competence is the pupil’s confidence in the answers that they give (Kyriacou, 

2005). If a pupil’s performance of a mathematical procedure does not result in an answer that 

the pupil believes is very likely to be correct, then it is not a useful tool for them; under such 
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circumstances it would be better to approach the problem by some other method, seek help or 

use a calculator or computer to give a reliable answer. Thus for secure development of 

procedural fluency it is important not only that a pupil can obtain the correct answer in a 

reasonable amount of time but that they have an accurate sense of their reliability with the 

procedure. 

It is common in preparation for summative assessments for school pupils to be instructed to 

guess any answers of which they are unsure. This may be presented as an aspect of 

“examination technique”, since leaving a blank response is guaranteed to result in the award 

of no marks, so any answer is better than none (Foster, 2007). However, in any practical 

circumstance beyond an educational setting, a person’s knowing whether they know is 

extremely important, as it determines whether additional support (from other people, a 

computer or a reference source) is required. For example, it is much better to know that you 

do not know the value of –2 + 7, although you think that it might be –5, than it is to be sure 

that it is –5 when in fact it is 5. In the classroom too, it is clearly extremely valuable for the 

teacher to know whether a pupil’s incorrect response is a wild guess or whether it might 

constitute evidence of a deep-seated misunderstanding or misconception. Thus knowing how 

strongly the pupil believes in the answer that they are giving can be potentially very helpful 

formative assessment for the teacher in judging what subsequent learning activities or 

interventions might be most appropriate.  

This important kind of confidence is unlikely to be captured by pupils’ global judgments of 

their feelings of confidence for mathematics or particular topics within the mathematics 

curriculum. Much research has been carried out in the field of affect, such as explorations 

into the interplay between cognition, beliefs and attitudes (Di Martino & Zan, 2011; Hannula, 

2011; Pepin & Roesken-Winter, 2014). However, broad constructs at the subject level, such 

as “mathematics confidence” (Pierce & Stacey, 2004), are too general for the purpose here. 
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Even a topic-level perception of confidence, such as “I am good at negative numbers”, is of 

limited usefulness when faced with a specific calculation such as –2 + 7. Within any 

particular topic, competence may vary significantly at the level of detail of particular 

questions, so it is important to explore pupils’ confidence at a similarly fine-grained level. 

Pupils whose confidence and competence are strongly correlated are said to be “well 

calibrated”: 

An individual is well calibrated if, over the long run, for all propositions assigned a 

given probability, the proportion that is true is equal to the probability assigned. For 

example, half of those statements assigned a probability of .50 of being true should be 

true, as should 60% of those assigned .60, and all of those about which the individual 

is 100% certain. (Fischhoff, Slovic, & Lichtenstein, 1977, p. 552) 

It follows that in order to remain well calibrated, a pupil whose competence varies across 

some domain needs also to have varying confidence levels across that same domain. 

In this study I examine the relationship between the confidence and competence of school 

pupils within an important secondary mathematics topic: directed (positive and negative) 

numbers. I explore how well calibrated pupils are within this topic by using an instrument 

designed to incentivise the eliciting of truthful confidence ratings. I examine pupils’ 

comments on the use of this instrument and discuss what roles such tools might be able to 

play in formative and summative assessment within school mathematics. 

2. Confidence and competence 

Within the mathematics education literature, confidence has been construed in different ways. 

The Confidence in Learning Mathematics Scale within the Fennema-Sherman Mathematics 

Attitudes Scales (MAS) (Fennema & Sherman, 1976) has been used extensively to study 

pupils’ attitudes towards mathematics (Lim & Chapman, 2013). Taking a social perspective, 



5 

Burton (2004, p. 360) saw confidence as “a label for a confluence of feelings relating to 

beliefs about the self, and about one’s efficacy to act within a social setting, in this case the 

mathematics classroom”. More specifically, Galbraith and Haines (1998) stated: 

Students with high mathematics confidence believe they obtain value for effort, do 

not worry about learning hard topics, expect to get good results, and feel good about 

mathematics as a subject. Students with low confidence are nervous about learning 

new material, expect that all mathematics will be difficult, feel that they are naturally 

weak at mathematics, and worry more about mathematics than any other subject. (p. 

278) 

Similar to this, Pierce and Stacey (2004, p. 290) defined mathematics confidence, as “a 

student’s perception of their ability to attain good results and their assurance that they can 

handle difficulties in mathematics”. Some of these notions of confidence encompass 

mathematical self-efficacy, which is a pupil’s belief in advance about their likelihood of 

successfully performing a particular mathematical task. Bandura (1977) argued that a 

person’s self-efficacy is a major factor in whether they will attempt a given task, how much 

effort they will be prepared to put in, and how resilient they will be when difficulties arise. 

More recently the construct of mathematical resilience has been developed to capture the 

ways in which pupils overcome barriers to learning mathematics (Johnston-Wilder and Lee, 

2010). 

Many factors, both within and outside the classroom, are likely to be important in affecting a 

pupil’s mathematical self-confidence. A meta-analysis of studies on gender differences in 

mathematics (Frost, Hyde, & Fennema, 1994) found that girls had lower mathematics self-

concept/confidence than boys and greater mathematics anxiety, although the effect sizes were 

small. Girls’ self-confidence is lower in general (Hannula, et al., 2005; Leder, 1995), and 

there is evidence that this effect is more marked in higher-attaining sets (Jones, 1995). In a 
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case study of two schools, Boaler (1998) found that at the school where pupils were taught 

mathematics in attainment sets and used a traditional, textbook approach, boys showed 

greater confidence than girls. However, at the school which used all-attainment classes and 

open-ended activities there was no difference between boys’ and girls’ confidence. It is likely 

that multiple factors are important, so drawing simplistic conclusions from this one study 

should be avoided. 

However, in contrast to research in which confidence is viewed broadly as an overall 

perception of learning mathematics, the focus in this paper is on pupils’ confidence with 

regard to their responses to specific items. Whereas mathematical self-efficacy (Bandura, 

1977) involves a pupil’s anticipatory judgment about their likelihood of successfully 

answering a particular mathematical item, in this study pupils were invited to ascribe a 

confidence level after the item was completed. This is quite different, since at this point the 

mathematics called on, and its demands, are known, and the reasonableness of the answer can 

also be assessed (Morony, Kleitman, Lee, & Stankov, 2013). Stankov, Lee, Luo and Hogan 

(2012) defined confidence as “a state of being certain about the success of a particular 

behavioral act” (p. 747), and in this study we consider a pupil’s “confidence of response” as 

how certain they are that the answer that they have just given is correct. Unlike self-efficacy, 

this kind of confidence is after-the-fact and can even be ascribed to answers produced by 

another pupil. 

It is natural to see the variables confidence and competence as defining a two-dimensional 

space (Figure 1). Well-calibrated pupils (Fischhoff, Slovic, & Lichtenstein, 1977), whose 

confidence closely matches their competence, would be located near to the diagonal line in 

Figure 1, with over-confident and under-confident pupils taking positions on either side. 

Viewed in this way, traditional assessments which measure only competence give a partial 

and perhaps misleading picture. Gattegno (1987) commented on the difference between a 
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pupil answering the question “2 + 3” with a querying intonation “Five?” as opposed to a more 

declamatory “Five!”, interpreting these as manifestations of differing levels of confidence 

that could require quite different teacher responses. Both for summative and for formative 

purposes, it may be extremely important to know where pupils are positioned horizontally in 

Figure 1, as well as vertically. 

Pupils’ responses in the classroom (both oral and written) can range from a wild guess to an 

assured answer, and the level of confidence has a potential role to play within formative 

assessment (Black & Wiliam, 1998; Black et al., 2003; Black & Wiliam, 2009; Clark, 2015; 

Warwick, Shaw, & Johnson, 2015). Gardner-Medwin and Gahan (2003) described students 

with different levels of belief regarding a true statement as being in a state of “knowledge, 

uncertainty, ignorance, misconception [or] delusion”, commenting that ignorance is “far from 

the worst state to be in” (p. 147). The teacher might choose to intervene in quite different 

ways with two pupils with similar competence but very different confidence. A pupil with 

high competence but low confidence (represented by the dot in the top left of Figure 1) might 

be encouraged to return to ideas with which they are confident and build from there, whereas 

a pupil with high but misplaced confidence (represented by the dot in the bottom right of 

Figure 1) might benefit from experiencing some cognitive conflict to challenge relevant 

misconceptions (see the arrows in Figure 1). In both cases, movement towards better 

calibration is desired, but this might be effected in quite different ways. 
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Figure 1. Two pupils and possible trajectories towards better calibration. 

3. Confidence assessment 

Confidence is difficult to assess reliably, since pupils may be inclined to exaggerate their 

confidence in order to win the approval of the teacher (or fend off unwanted attention) or 

raise their status in the eyes of their peers (Hannula, 2003). The common classroom practices 

of asking pupils to indicate by raising their hands whether they are sure (yes or no) or to 

specify their level of confidence using traffic lights (red/amber/green) both suffer from this 

problem of over-reporting. Inviting pupils to explain their reasoning can be a powerful 

technique for formative assessment of confidence, but may become repetitive and unengaging 

for the rest of the class – and explanations can be rote learned as well as procedures (Kent & 

Foster, 2015). 

Confidence-based assessment (CA) is one practical solution to the problem of accurately 

measuring pupils’ confidence, and this now plays an important role in higher education in the 

study of medicine and related disciplines (Gardner-Medwin, 1995, 1998, 2006; Schoendorfer 

& Emmett, 2012). It is easy to see the need for medical practitioners to recognise when they 
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are uncertain of a course of action, as mistakes can be costly in human terms. Such 

assessment practices seek to reward self-awareness by giving marks for confidence in correct 

responses while subtracting marks for misplaced confidence in incorrect responses. 

Typically, students are asked to give a confidence level of 1, 2 or 3 for each of their 

responses. If their response is correct, the number of marks that they receive for that question 

is the same as their chosen confidence level. However, if their response is incorrect, they 

instead receive a penalty of 0, 2 or 6 marks respectively (Gardner-Medwin, 1998). Thus, 

more confident responses are rewarded more highly if correct but penalised more severely if 

incorrect. The particular values used here are calculated so that a person behaving rationally 

and seeking to maximise their expected score will be motivated to state their true confidence 

level and not be rewarded for either excessive timidity (underreporting their confidence) or 

excessive bravado (exaggerating their confidence). 

It has been found that university students tend to be poorly calibrated and in general over-

estimate their performance, being unaware of their own ignorance (the Dunning–Kruger 

effect: Ehrlinger et al., 2008), but this seems to improve with practice (Gardner-Medwin & 

Curtin, 2007). The effect of CA over time should self-correct, because if a CA is well 

designed a pupil cannot do consistently well by guessing or by systematically over- or under-

reporting their confidence level. Studies have found that asking university students to 

consider how sure they are about an answer prompts them to question why they believe it to 

be correct, leading to self-checking, self-explanation and higher-level reasoning (Gardner-

Medwin & Curtin, 2007). CA has been found to encourage students to focus on 

understanding rather than just performance and to think more carefully before giving an 

answer, with students sometimes changing their answer in response to a request for a 

confidence level (Issroff & Gardner-Medwin, 1998). Little personality or gender effect 

among university students has been found (Gardner-Medwin and Gahan, 2003). 



10 

It seems likely that if CA can be adapted appropriately for school mathematics pupils then 

some of these benefits might carry across. However, there are possible barriers to 

implementing CA in schools. Pupils experience anxiety in relation to most kinds of 

assessment, and this could influence their perceptions of confidence. Negative marking 

protocols that penalise guessing can be complicated and unfamiliar to school pupils and their 

teachers. The practice of negative marking can be viewed as punishing pupils for what they 

do not know, as well as rewarding them for what they do know, and thus could be thought to 

conflict with a “positive” classroom ethos (Foster, 2007). It might also be feared that CA 

could weaken pupils’ self-confidence; however, this is desirable when that confidence is 

misplaced. CA attempts to increase appropriate levels of self-confidence and to support 

realistic self-awareness in order to facilitate future growth (Dweck, 2000). It is an empirical 

question to what extent CA might be successfully applied to school mathematics. So, as part 

of a larger body of work exploring different aspects of mathematical fluency, in this study I 

seek to answer the research questions: 

1. How do school mathematics pupils respond to the use of a CA instrument designed to 

incentivise the eliciting of truthful confidence ratings? How easy or difficult do they find it to 

understand? How readily or not do they accept it as a formative assessment tool? 

2. What is the relationship between school mathematics pupils’ confidence and competence 

within the topic of directed (positive and negative) numbers? In particular, how well 

calibrated are pupils within this topic? 

4. Method 

A mixed methods approach was taken so as to take advantage of the complementary strengths 

of quantitative and qualitative perspectives and mitigate the limitations of each (Ercikan & 

Roth, 2009). The overall intention was to obtain a more complete understanding of pupils’ 
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responses to the CA instrument than would be provided by either approach alone. A 10-item 

instrument was designed in order to measure pupils’ responses and confidence levels for 

directed numbers items so that the correlation between facility and confidence could be 

calculated in order to determine how well calibrated the pupils were. The instrument also 

contained a space for open comments regarding the process, which would be analysed 

qualitatively in order to elicit in an open-ended way pupils’ perceptions on the convenience, 

usefulness and acceptability of the CA approach. 

4.1 Instrument 

The instrument (Figure 2) consisted of 10 items involving calculating with directed numbers 

(positive and negative numbers and zero). Directed numbers was chosen as the mathematical 

topic because it is on the school curriculum for a wide range of ages and it was felt that a 

useful connection might be made between the mathematics and the CA scoring system for the 

pupils’ responses. It was hoped that this would help the pupils to understand the details of the 

negative marking of the CA approach more easily, since this would be their first encounter 

with such a system. 

Pupils were asked to write down for each item whatever response they thought was correct 

and to state for each response how confident they were that it was correct. They were asked 

to give a whole number from 0 to 10 inclusive to indicate how sure they were of each 

response. It was explained that their total mark would be calculated as the sum of the “how 

sure” values for the correct responses minus the sum of the “how sure” values for the 

incorrect responses. It was intended that pupils would regard the confidence scale as linear, 

since every extra mark that they staked on a response would increase or decrease their total 

by 1. Although scoring confidence on a 0–10 scale might suggest very fine discernment of 

confidence levels, a 0–10 scale (rather than, for example, a 1–3 scale, as mentioned above) 

was intended to simplify the interpretation for the pupils, since the maximum possible score 
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for the 10 items would be 100, as in more familiar school tests which give a percentage total 

mark. 

4.2 Participants 

Fourteen classes of pupils in five secondary schools in three different cities in the UK 

completed the task. Demographic data on the schools and classes are given in Table 1. The 

schools involved were a convenience sample and spanned a range of sizes and composition. 

Teachers were asked to “choose a class with some knowledge of negative numbers, so that 

the questions on the sheet [Figure 2] might be moderately demanding”. Classes from Year 7 

(age 11–12), Year 8 (age 12–13) and Year 9 (age 13–14) were used. In most schools in the 

UK, mathematics classes are set by attainment, and this was the case for all of the schools in 

this study apart from school A, which operated a mixed-attainment policy for these year 

groups. Teachers reported on the attainment of each class, and these were described as 

“high”, “middle” and “low”, indicating the relevant tertile within the school. 
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Figure 2. Pupil task sheet 

Directed Numbers 

For each of the 10 questions below, write the answer in the “Answer” box. 

Each time, also write in the “How Sure?” box a whole number from 0 to 10 to indicate how 
sure you are that your answer is correct. On this scale 0 is “completely unsure” and 10 is 
“completely certain”. 
 

 Question Answer Leave Blank How Sure? 

1 5 – 8    

2 – 2 + 7    

3 – 3 – 5    

4 6 – (– 1)    

5 4 + (–9)    

6 (–3) × 4    

7 5 × (–2)    

8 (–2) × (–3)    

9 
15

3-  
   

10 
10

2

-
-  
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A London > mixed 11-18 comprehensive >> >> >> >> good 8 mixed 23 

B London = girls 11-18 academy > > >> < outstanding 8 low 20 

           9 middle 26 

C London = mixed 11-16 academy > >> >> = outstanding 8 high 22 

           8 high 25 

           8 middle 17 

           8 low 24 

           8 low 21 

D East Midlands < mixed 11-14 academy << < << = outstanding 7 high 32 

           7 middle 31 

           7 low 28 

           8 high 25 

           8 middle 24 

E West Midlands < mixed 11-18 academy >> > >> > outstanding 8 high 27 

Notes 

<, > and = relate to the national averages in the UK; << and >> indicate well below and well above respectively. 
1. proportion of pupils known to be eligible for free school meals 
2. proportion of pupils from minority ethnic groups 
3. proportion of pupils who are learning English as an additional language 
4. proportion of pupils with special educational needs and/or disabilities 
5. Ofsted, the Office for Standards in Education, Children’s Services and Skills, is a non-ministerial department of the UK government, with the responsibility for inspecting 
schools and producing reports. 

Table 1. Details of the schools and classes.
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4.3 Administration 

The instructions given orally to pupils by their teachers were: 

Please do this sheet on your own and without using a calculator or any books or 

number lines. For each question, write down in the “Answer” column whatever 

answer you think is correct. At the same time, for each of your answers, put in the 

“How sure?” column how confident you are that it’s correct. Do this by writing a 

whole number from 0 to 10, where 0 means you have no idea – it’s a complete guess 

– and 10 means you’re absolutely sure. So if you’re 50% sure, put a 5. Don’t write 

anything in the “Leave blank” column yet. 

Teachers were instructed to ask pupils “Does that make sense?” and answer any questions of 

clarification about how the sheet should be completed. Then pupils were told: “When you’ve 

finished, your total mark will be the total of the “How sure?” numbers for the ones you get 

right minus the total of the “How sure?” numbers for the ones you get wrong.” Again, 

teachers were instructed to ask pupils “Does that make sense?” and to answer any further 

questions of clarification. 

Teachers were then asked to lead a short discussion intended to help the pupils understand the 

process by asking “What’s the highest possible mark you could get on this sheet? What’s the 

lowest?” Pupils were intended to appreciate that if they got every question right and put a 10 

for each answer then they could get a total of 100, the highest total possible, whereas if they 

got every question wrong and put a 10 for each answer then they would get –100. 

Pupils were then given as much time as they wanted, individually, without any assistance, to 

complete the sheet. After this they were asked to change colour of pen (or pencil) and mark 

their own answers. Teachers were asked to be vigilant at this stage to ensure that pupils did 

not make any changes to their answers. The pupils were instructed as follows: 
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You’re going to mark the answers in the “Leave blank” column – you don’t have to 

leave it blank any more! Instead of marking with ticks and crosses, you’re going to 

put “+” or “–“ into the “Leave Blank” column next to your “How sure?” numbers for 

each question. Put plus if it’s right and minus if it’s wrong. 

The teacher then read out the correct answers and pupils were reminded how to obtain their 

total marks: 

Now if you look at the sign in front of your “How sure” numbers you can see that 

they are positive if you got that question right and negative if you got it wrong. So 

now you add up all of the “How sure?” numbers, taking into account whether they are 

positive or negative. You can use a calculator if you want. 

Finally pupils were given an opportunity to write a comment at the bottom: 

Please write something about your total mark. Are you surprised? What do you think 

of this process where we take account of how sure you are? Please write any 

comments in the box at the bottom. 

They were then thanked for participating in the study, and all of the sheets were returned. 

Most responses were anonymous and gender was unknown, but some teachers asked the 

pupils to write their names on the sheets and then the teacher wrote afterwards on each sheet 

whether the pupil was male or female, in order to enable a gender analysis to take place 

without at any stage highlighting gender as an issue to the pupils.  

Teachers did not report any difficulties in administering the task or any deviations from the 

instructions given. 

5. Results 

The data were collated and analysed as detailed below. Facility for each pupil was defined as 

the number of correct items (out of 10) and confidence for each pupil was defined as the 
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mean of the confidence ratings for the 10 items. The correlation between facility and 

confidence was calculated and a 2 × 2 mixed ANOVA was performed to look for a gender 

effect. Data regarding pupils’ attainment sets was not precise enough to enable an analysis. 

The qualitative data was coded and analysed separately. 

5.1 Confidence and facility 

A total of 345 pupils completed the task. Nine scripts contained missing responses and were 

excluded, leaving N = 336. The pupils’ facility correlated with their mean confidence with r = 

.546, N = 336, p < .001. This correlation is limited by the variation in each individual pupil’s 

confidence ratings and item-facilities on the different items, which analysis by item reveals 

(Table 2, Figure 3); yet, despite this, it is large. The internal reliability of the confidence 

ratings across the 10 items was very good, with a Cronbach’s alpha of .900, indicating that 

within this assessment confidence is a consistent quality, which these items measure 

coherently. Most items had a fairly high item-facility, and the mean confidence was greater 

than 5 for all, and greater than 6 for most. Items 4, 8 and 10 offered the greatest challenge. In 

each case the modal answer was the correct one, and there was an overwhelming correct 

consensus for items 1, 2, 3, 5, 6, 7 and 9. Items 8 and 10 were bimodal, with the negative of 

the correct answer being the second most popular choice. For item 4 there were two quite 

popular incorrect answers (–5 and –7). Pupils were over-confident with items 4 and 8 but 

under-confident with item 9. It can be seen from Figure 3 that values are close to ceiling for 

the first three items, so caution is needed when interpreting responses to these. 
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Figure 3. Confidence against item-facility for each item 
 

Item M SD 

1 .93 .26 

2 .90 .29 

3 .87 .33 

4 .42 .49 

5 .78 .42 

6 .79 .41 

7 .81 .39 

8 .54 .50 

9 .70 .46 

10 .54 .50 

Table 2. Mean item-facilities and standard deviations for each item 

5.2 Gender 

Gender was reported for 195 of the pupils (106 female, 89 male). A 2 × 2 mixed ANOVA 

was performed using within-subjects factor type (facility, confidence) and between-subjects 

factor gender (male, female). There was a significant interaction between type and gender, 
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F(1, 193) = 13.92, p < .001, さp
2 = .067, meaning that boys and girls displayed different 

relationships between facility and confidence. Girls demonstrated lower confidence than their 

facility would justify whereas boys demonstrated higher confidence than warranted by their 

facility (see Figure 4). There was no significant main effect of type, F(1, 193) = 14.61, p = 

.167, さp
2 = .010, meaning that if we ignore the gender of the pupils then there is no significant 

difference between facility and confidence; i.e., pupils are well calibrated. There was also no 

significant main effect of gender, F(1, 193) = 2.26, p = .135, さp
2 = .012. Post-hoc repeated-

measures t-tests confirmed that for the girls (N = 106) there was no significant difference 

between facility (M = 6.96, SD = 1.97) and confidence (M = 6.63, SD = 1.97); t(105) = 1.816, 

p = .072. For the boys (N = 89), confidence (M = 6.80, SD = 1.71) was significantly higher 

than facility (M = 6.08, SD = 2.00); t(88) = 3.304, p = .001. The relative overconfidence of 

boys is consistent with the findings of Frost, Hyde and Fennema (1994) mentioned earlier. 
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Figure 4. Facility and confidence for girls and boys (error bars show standard errors) 

5.3 Pupils’ views 
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Positive: “I liked this idea of the worksheet. I like the idea of thinking of how sure 

you are.” (Pupil 120) 

Negative: “I don't like this marking scheme as it is partly based on your confidence in 

yourself.” (Pupil 217) 

Of the 345 pupils there were far more positive responses (106) than negative responses (28). 

There was no significant difference in the total score (on the –100 to 100 scale) of those 

expressing positive views (M = 44.5, N = 106, SD = 30.0) and those expressing negative 

views (M = 44.6, N = 28, SD = 35.7); t(132) = .015, p = .988, indicating that pupils were not 

simply stating a self-interested preference based on their success with the approach. Eight 

pupils volunteered that they would like to use the approach again; for example, “I really like 

the how sure ... [a]re you process. I would like to use this more often in class” (Pupil 77). 

Pupils sometimes indicated that this was because of (rather than despite) its difficulty; for 

example, “I found this challenging and I think you should do this every lesson” (Pupil 343). 

Comments were coded in more detail and analysis revealed four overall themes. These 

themes emerged from analysis of the pupils’ comments and were not decided on beforehand 

based on the literature. 

5.3.2 Understanding of the process 

Many comments indicated good understanding of how the CA process worked and awareness 

of the dilemma of wanting to give a high confidence rating if the answer was correct but a 

low one if it might be incorrect. For example: “I was confident because I wanted points but 

on ones I wasnt [sic] sure of, I put a low confidence rate [sic]” (Pupil 138). One pupil 

compared their competence and CA scores directly: “I have got 10/10 but 66/100 due to the 

lack of confidence in my answer. To get a better answer [sic] I should have felt more 

confident in my answers and I would have got a better mark” (Pupil 288). One-hundred-and-
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eighteen pupils said that they were surprised by the outcome of the CA – many said “very” 

surprised. Thirty-four pupils commented that their score was low because of their confidence 

ratings, many indicating that they wished that they had put 10 for the items that they got 

right. 

5.3.3 Fairness of the process 

Eleven pupils expressed reservations regarding the use of CA, especially if it were to be 

introduced into high-stakes assessments; for example, “i [sic] don’t like the process of taking 

... account of how sure you are because it isn’t fair on people” (Pupil 42). One pupil 

commented: “I don’t really like the idea of adding up the how sure you were because if 

someone was really sure of some thing [sic] and got it wrong it would take away 10 so that’s 

10 of your mark” (Pupil 182). One pupil questioned the rationale of attempting to measure 

confidence: “i [sic] don’t think the pross [process] of taking in accant [account] how sure you 

are is acurat [accurate] because you cant [sic] really put what your [sic] really thinking in 

numbers” (Pupil 36). Some felt that confidence should be irrelevant to a score in 

mathematics: “I don’t like the marking scheme because the marks are based on how sure you 

are and not the work” (Pupil 224). However, others seemed to regard it as fairer than normal 

marking; for example, “I like the ‘are you sure’ system because even if you are not sure it 

gives you a chance” (Pupil 175). Some pupils seemed to object to CA mainly because it 

lowered their score: “I think the process of how sure you are is bad because it makes your 

score worse” (Pupil 167). But others saw this as good: “I like the process and [it] makes it 

more challenging to get a high score.” (Pupil 165) The vast majority expressed no concerns 

regarding fairness. 

5.3.4 Deeper thinking and increased confidence 
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Five pupils indicated that they had given more thought to their responses because of the CA 

process. For example, “I think the ‘How Sure’ column makes you think more” (Pupil 159). 

Many pupils stressed the importance of confidence; for example, “I was pretty surprised that 

I got all the answers right, although I am not happy that I am not confident of myself and 

wasn’t sure of my answers eventhough [sic] they were right” (Pupil 64). Seven pupils stated 

or implied that the CA process could raise pupils’ confidence. Many stated that they would 

give higher confidence ratings if they could do a CA again: For example, “I need to be more 

confident and believe in myself. I only got one wrong. I would be confident next time.” 

(Pupil 67). Another pupil commented: “I think it’s a Good [sic] idea because it incourges 

[sic] people to believe in them selfs [sic]” (Pupil 37). 

5.3.5 Usefulness for formative assessment 

Four pupils commented on what they perceived as the prevalence of guessing in the 

mathematics classroom, implying that CA could address this. For example, “I think that this 

was a good idea because most of the time kids lie and just guess so this is a good process” 

(Pupil 4). Two pupils interpreted this from the teacher’s perspective. For example, “I think 

it’s good to find out how confident people are with their answer because you might guess 

(and not feel confident) and get it right. This tells the teacher that you’re comfortable, when 

you’re not” (Pupil 203). 

6. Discussion 

We will now consider the findings under the headings of the research questions given earlier. 

6.1 How do school mathematics pupils respond to the use of a CA instrument designed to 

incentivise the eliciting of truthful confidence ratings? How easy or difficult do they find it to 

understand? How readily or not do they accept it as a formative assessment tool? 
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It is clear that pupils understood the CA instrument very readily. The observed large 

correlation (Cohen, 1992) between facility and confidence implies that pupils were 

attempting to give true confidence levels, and the clear impression from the comments given 

was that students were concerned to maximise their score by deploying their confidence 

ratings appropriately. This means that the confidence responses can potentially be of 

considerable value to teachers for formative assessment purposes, since they offer a reliable 

way of probing pupils’ confidence at an item-level. However, some caution is needed here 

because the schools and teachers participating in this study were a convenience sample and 

may not be representative of schools and teachers more generally. 

The vast majority of pupils strongly accepted the CA approach, despite its dramatic 

differences from usual assessment practices in UK schools. The overwhelmingly positive 

nature of the comments indicate that on the whole the pupils welcomed its potential benefits 

to themselves and their teachers. Pupils recognised the importance of assessing their 

confidence and on the whole felt that the instrument did so fairly. Several pupils suggested 

that the CA process prompted deeper thinking about their answers and increased their 

confidence. Further study would be needed to determine whether these perceptions were 

accurate and to assess teachers’ perceptions of the usefulness of the instrument. 

It seems likely from this that a CA approach could give teachers reliable data on pupils’ 

genuine confidence levels by disincentivising pupils artificially inflating their expressions of 

confidence in order to make a positive impression on the teacher. Having more accurate 

information about the pupils’ real confidence levels could enable the teacher to intervene in 

more effective ways to help move pupils towards better calibration. The CA approach is 

likely to discourage guessing answers and instead contribute to greater pupil self-awareness, 

highlighting to pupils, as well as to teachers, when they would benefit from additional 

support. 
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6.2 What is the relationship between school mathematics pupils’ confidence and competence 

within the topic of directed (positive and negative) numbers? In particular, how well 

calibrated are pupils within this topic? 

Although caution is needed because the schools and teachers used were a convenience 

sample, the large correlation of .546 between the pupils’ facility and their confidence (N = 

336, p < .001) does indicate that pupils were generally well-calibrated in this topic area. The 

fact that the correlation, though high, is by no means perfect might be seen positively: 

teachers should not feel that lowering the difficulty of the questions that they pose is the only 

way to raise pupils’ confidence. Girls demonstrated lower confidence than their facility 

would justify whereas boys were over-confident, which is consistent with previous findings 

(Frost, Hyde, & Fennema, 1994). Further study is needed to determine to what extent the 

calibration and gender effects might be similar across other mathematical topics. 

Additionally, facilities were generally high with this instrument and further work will reveal 

whether similar results are obtained when more difficult items are used and pupils are less 

sure of their responses. Further work might also reveal any associations with setting practices 

in schools. 

It might be anticipated that with regular use of a CA approach pupils’ calibration across 

various topics would improve over time (Gardner-Medwin & Curtin, 2007), and longitudinal 

studies would be needed to determine whether this is the case. Many pupils’ comments 

indicated that they would give different confidence ratings if they had the opportunity to 

attempt another CA, suggesting that they had gained some insight into their reliability in this 

topic.  

7. Conclusion 
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Mathematics, among all school subjects, presents a uniquely tantalising prospect of certainty. 

Russell (1956, p. 53) described how in his youth he “wanted certainty in the kind of way in 

which people want religious faith”, and that he “thought that certainty is more likely to be 

found in mathematics than elsewhere”. Yet very few school pupils experience mathematics as 

a place of secure certainties. Mathematics teachers want their pupils to experience the 

confidence of knowing and understanding mathematics but do not want to engage in 

assessment practices which encourage pupils to pretend to be confident when they are not. In 

helping pupils to develop better calibration with regard to procedural competence, CA offers 

a powerful and easily implemented way to support pupils’ realistic appraisals of their own 

confidence. Such an approach rewards honest disclosure of confidence and contrasts starkly 

with “guess-and-hope” strategies that pupils are frequently reported resorting to (Holt, 1990). 

It is evident that pupils easily grasped the negative marking aspect of the CA process and 

showed good calibration. Their comments were overwhelmingly positive about the approach, 

despite it contrasting strongly with more usual assessment practices in schools. It is 

encouraging that some pupils felt that CA promoted deeper thinking, increased their 

confidence and could be useful for formative assessment. 

As discussed earlier, the CA approach employed in this study does not attempt to address 

conceptual confidence. It is possible for a pupil to be very confident that their answer will be 

marked correct (high procedural confidence) without possessing an underlying sense of 

confidence in the mathematics behind it. Boaler (2009, p. 121) described a mathematics pupil 

getting the answer right but not understanding what she was doing: “We just plugged into it. 

And I think that’s what I really struggled with – I can get the answer, I just don’t understand 

why”. Such a pupil might show high levels of procedural competence and procedural 

confidence and, being regarded as a successful pupil, their lack of enjoyment and 

disinclination to pursue the subject in a post-compulsory phase might appear puzzling to the 
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teacher. Thus there is a need to expand CA to find ways of eliciting truthful expressions of 

confidence in concepts, so that the teacher might be assisted in supporting pupils’ growth in 

conceptual confidence too. However, ascertaining and supporting pupils’ procedural 

confidence is an important first step. 
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