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Abstract

In this paper, we present a new method for bidirectional

relighting for 3D-aided 2D face recognition under large

pose and illumination changes. During subject enrollment,

we build subject-specific 3D annotated models by using the

subjects’ raw 3D data and 2D texture. During authenti-

cation, the probe 2D images are projected onto a normal-

ized image space using the subject-specific 3D model in the

gallery. Then, a bidirectional relighting algorithm and two

similarity metrics (a view-dependent complex wavelet struc-

tural similarity and a global similarity) are employed to

compare the gallery and probe. We tested our algorithms

on the UHDB11 and UHDB12 databases that contain 3D

data with probe images under large lighting and pose vari-

ations. The experimental results show the robustness of our

approach in recognizing faces in difficult situations.

1. Introduction

Face recognition is one of the most widely researched

topics in computer vision due to a wide variety of applica-

tions that require identity management. Most existing face

recognition studies are focused on 2D images with nearly-

frontal-view faces and constrained illumination; however,

2D facial images are affected by varying illumination con-

ditions and changes in pose. Thus, although these existing

methods are able to provide satisfactory performance un-

der constrained conditions, they are challenged by uncon-

strained pose and illumination conditions.

FRVT 2006 explored the feasibility of using 3D data for

both enrollment and authentication [11]. The algorithms us-

ing 3D data have demonstrated their ability to provide good

recognition rates; however, for practical purposes, it is un-

likely that large-scale deployments of 3D systems will take

place in the near future due to the high cost of the necessary

hardware. Nevertheless, it is not unreasonable to assume

that an institution may want to invest in a limited number

of 3D scanners, if having 3D data for enrollment can yield

higher accuracy for 2D face authentication/identification.

In this paper, we propose a face recognition method

which makes use of 3D face data for enrollment, while re-

quiring only 2D data for authentication. During enrollment,

unlike the existing methods (e.g., [3]) that use a 2D image

to infer a 3D model in the gallery, we use 2D+3D data (2D

texture plus 3D shape) to build subject-specific annotated

3D models. To achieve this, we first fit an Annotated Face

Model (AFM) to the raw 2D+3D data using a subdivision-

based deformable framework. A geometry image repre-

sentation is extracted using the UV parameterization of the

model. In the authentication phase, we use a single 2D im-

age as the input to map the subject-specific 3D AFM. Given

the pose in the 2D image, an Analytical Skin Reflectance

Model (ASRM) is then applied to the gallery AFM in or-

der to transfer the lighting from the probe to the texture in

the gallery. The matching score is computed using the relit

gallery texture and the probe texture.

Our contributions are the following: (i) using 2D+3D

data to build a subject-specific 3D model during enrollment,

which is able to more accurately characterize the subject

identity than the existing 2D/3D methods which use a 2D

image to infer the 3D gallery model, (ii) a bidirectional

face relighting algorithm which allows us to achieve better

face recognition performance than the traditional unlight-

ing methods, (iii) a new view-dependent distance metric,

and iv) a new correlation-based distance metric. We used

UHDB11 and UHDB12 because other publicly available

3D face databases, including FRGC v.2, do not have probe

images under both lighting variation and pose variation.

The rest of this paper is organized as follows: in Sec-

tion 2 we briefly review related methods, in Section 3 we

present the methods for enrollment using 2D+3D data and

for authentication using 2D images, while in Section 4 we

provide qualitative and quantitative results. We provide our

conclusions in Section 5.

2. Related Work

The literature in 3D and 2D+3D Face Recognition has

rapidly increased in recent years. An excellent survey was

given by Bowyer et al. [4]. The most closely related work
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is by Riccio and Dugelay [14], who proposed to use geo-

metric invariants on the face in order to establish a corre-

spondence between the 3D gallery face and the 2D probe.

Some of the invariants were manually selected. This algo-

rithm did not utilize the texture information registered with

the 3D data from the scanner, thus did not take full advan-

tage of the input data. Blanz and Vetter [3] employed a

morphable model technique in order to acquire the geome-

try and texture of faces from 2D images. Wang et al. [20]

used a spherical harmonic representation [1] with the mor-

phable model for 2D face recognition. In contrast to our

method that uses 2D+3D data to build a 3D subject-specific

model for the gallery, their methods used a 2D image to

build a 3D model for the gallery based on a 3D statistical

morphable model. Yin and Yourst [23] used frontal and

profile 2D images to construct 3D shape models. Compared

with these methods, our approach is able to more accurately

model the subject identity due to the use of more informa-

tion (2D+3D). Smith and Hancock [15] presented an ap-

proach for albedo estimation from 2D images also based on

a 3D morphable model. The normals of the fitted model

were then used for the computation of shading, assuming a

Lambertian reflectance model. Biswas et al. [2] proposed

a method for albedo estimation for face recognition using

two-dimensional images. However, their approach made

the assumption that the image did not contain shadows, and

did not handle specular light. The relighting approach of

Lee et al. [8] also suffers from the self-shadowing prob-

lem. Zhou et al. [24] use nearest-subspace patch matching

to warp near frontal face images to frontal and project this

face image into a pre-trained low-dimensional illumination

subspace. This method requires training of patches in many

different illumination conditions. Huang et al. [5] extract

histograms of Local Binary Patterns (LBP) from 2D gallery

and probe. LBP is also extracted from the gallery 3D range

image. Then, the LBP histograms are compared using Chi-

square distance;,while the LBP gallery image is matched to

the LBP probe image using Canonical Correlation Analysis

(CCA). Their experimental results were limited to frontal

pose and a small database.

The proposed method, having significantly fewer con-

straints and limitations than previous approaches, widens

the applicability of such methods. Especially when com-

pared with relighting methods designed for face recogni-

tion (e.g., [17]), the proposed method offers significantly

higher visual quality in cases where specular highlights

over-saturate the images.

3. Methods

3.1. 2D+3D Enrollment

The enrollment pipeline (Algorithm 1) is depicted in

Fig. 1. We employ the Annotated Face Model (AFM) pro-

posed by Kakadiaris et al. [6] to generate geometry im-

ages (regularly sampled 2D images with three channels)

encoding geometric information (x, y and z components

of a vertex in R
3). In this paper, the number of channels

in the geometry image is seven (three channels for repre-

senting the actual geometry of the face, three for represent-

ing the texture information, and one for the visibility map).

Specifically, we first fit the AFM to the input 3D data [6].

Algorithm 1 Enrollment with 3D data

Input: 3D facial mesh, 2D facial image, subject

ID.

1. Pre-process the 3D facial mesh.

2. Register AFM to the 3D facial mesh.

3. Fit AFM to 3D facial mesh.

4. Lift texture from the 2D facial image using the fitted

AFM.

5. Compute visibility map.

6. Store the fitted AFM, texture, and visibility map in the

gallery as metadata for subject ID.

Once the fitting is complete, we represent the AFM as a

geometry image. For each vertex in the geometry image,

we compute the closest point on the data. The texel corre-

sponding to this point in the data is used to create the cor-

responding texture image for the fitted AFM. Additionally,

we compute a visibility map. If the closest point on the data

does not have a valid texel assigned (i.e., if the 3D point was

not visible to the 2D image sensor), we assign a value one to

the corresponding location in the visibility map. Otherwise,

we assign a value of zero.

Figure 1. Depiction of the enrollment procedure for our 3D-aided

2D face recognition system. First, subject’s 3D and 2D data are ac-

quired. Then, the fitted AFM (mesh, texture, and visibility mask)

are computed. Finally, the extracted data are saved in the gallery.

3.2. 2D Authentication

In the authentication stage (Algorithm 2), the input to our

method is a 2D image. Seven fiducial landmarks (two eye
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Figure 2. Converting raw 2D images to textures in the geometry

image space: Raw 2D image → Fitted AFM of the same subject

registered and superimposed over the image → Image converted

to texture in geometry image space. The conversion is done by

matching a set of landmarks on the AFM and on the 2D image.

Algorithm 2 Authentication using 2D images

Input: 2D facial image and claimed subject

ID.

1. Retrieve “claimed ID” AFM from the gallery.

2. Locate the seven landmarks on the 2D facial image.

3. Register the AFM to the 2D facial image using the cor-

responding landmarks (Fig. 2).

4. Compute the visibility map.

5. Bidirectionally relight the enrollment 2D facial texture

to match the probe 2D facial texture.

6. Compute the CWSSIM and GS (Section 3.2.3) scores

between the relit texture and the probe texture.

7. Threshold the score to make an ACCEPT/REJECT de-

cision.

inner corners, two eye outer corners, nose tip, and two nose

corners) are manually labelled. Once the pose is estimated

(using these landmarks and their corresponding locations

on the AFM along with camera information acquired before

the capture of the 2D image), the texture is mapped onto the

AFM (Fig. 2). We use an analytical skin reflectance model

to bidirectionally relight the gallery texture using the stored

AFM mesh, in order to match the illumination of the probe

texture (Fig. 3).

3.2.1 Analytical Skin Reflectance Model

We use a hybrid bidirectional reflectance distribution func-

tion (BRDF) to model skin reflectance. We did not em-

ploy a bidirectional surface scattering reflection distribu-

tion function (BSSRDF) model since the test data did not

have sufficient resolution to estimate a subsurface scatter-

ing component. The ASRM uses the Lambertian BRDF

to model the diffuse component and the Phong BRDF to

model the specular component. The Lambertian BRDF is

the simplest, most widely used, physics-based model for

diffuse reflectance. The model assumes that the surface

is equally bright from all directions. The intensity of the

light at a surface point is proportional to the angle between

surface normal and incident light directions (denoted as θ)

Id = E cos θ, where E is the intensity of the light source.

The Lambertian BRDF does not take into account the spec-

ular reflections caused by the oily layer of the skin. To ac-

commodate this we use the BRDF proposed by Phong [12].

The intensity given by the specular reflection at a surface

point is Is = E cosn φ, where φ is the angle between the

view vector and the reflected light and n is a parameter that

controls the size of the highlight. Note that each facial area

has different specular properties, therefore we use a spec-

ular map based on the annotation of the AFM (for details

see [6]).

3.2.2 Bidirectional Relighting

The illumination parameters and the ASRM can be opti-

mized in two different ways: estimate the albedo (unlight-

ing, see our past study [16]) and transfer illumination (re-

lighting). In both cases the texture must be represented in

the AFM’s UV space.
Generally, the texture MT is the result of the light-

ing applied on the unknown albedo MA and is given by:
MT = Is + (Id + Ia) ·MA, where Ia is the ambient com-
ponent, Id the diffuse component and Is the specular com-
ponent (assuming white specular highlights). Solving this

equation for the albedo yields: MA = MT−Is
Id+Ia

. However,

for many practical applications, the albedo itself is not re-
quired, and is used only as an intermediate step for relight-
ing. We advocate the use of bidirectional relighting without
first estimating the albedo. This means that the optimization
directly estimates the parameters for two lights (one that re-
moves the illumination from the gallery image and one that
adds the illumination from the probe image). The goal is
to match the illumination conditions of a gallery texture to
that of a probe texture. The following metric is minimized:

D =

∣

∣

∣

∣

M
′
T − I

′
∫ − (I′

⌈ + I
′
⊣)

MT − I∫

I⌈ + I⊣

∣

∣

∣

∣

, (1)

where Ia, Id, and Is are the parameters of the light illumi-

nating the gallery; I ′a, I ′d and I ′s are the parameters of the

second light illuminating the probe, while M ′

T is the target

texture. This process is depicted in Fig. 4. The relighting

method is bidirectional, meaning that probe and gallery tex-

tures can be interchanged.

In order to improve performance under low lighting con-

ditions, instead of computing the difference in the RGB

color space, we choose to use a Hue-Saturation-Intensity

(HSI) model with the intensity weighed twice the amount

of hue and saturation. We observe both visually and quan-

titatively improved relighting performance when using this

color space and weighting scheme instead of simply com-

puting an L2 norm in RGB color space.
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Figure 3. The authentication phase of the 3D-aided 2D face recognition system.

(a) (b) (c) (d) (e)

Figure 4. Optimization for relighting (textures are in geometry image space): (a) M ′
T : texture of subject A ; (b) MT : texture of subject B;

(c) Texture difference between subjects (before optimization); (d) Texture difference between subjects (after optimization); (e) Subject A

with illumination of subject B (I ′s + (I ′d + I ′a)
MT−Is
Id+Ia

).

The above equations describe an ASRM for a single

point light and the objective function to be minimized.

The ASRM is implemented as a Cg shader and for self-

shadowing the shadow mapping technique is used [16]. To

model multiple point lights, the contribution of each light’s

ASRM must be summed.

3.2.3 Distance Metrics

We introduce two simple distance metrics in order to eval-

uate the benefits of using unlit or relit images versus raw

images in a face recognition scenario.

CWSSIM: We first apply a wavelet transform to the tex-

ture channel from the geometry images. This transform de-

composes the images using the complex version [13] of the

steerable pyramid transform (CWSPT), a linear multi-scale,

multi-orientation image decomposition algorithm. The im-

age is then divided into highpass and lowpass subbands.

The lowpass subband is then fed into a set of steerable band-

pass filters, which produce a set of oriented subbands and a

lower-pass subband. This lower-pass subband is subsam-

pled by two and recursively applied to the same set of steer-

able bandpass filters. Such pyramid wavelet representation

is translation-invariant and rotation-invariant. To maintain

reasonable image resolution and computational complexity,

our algorithm applies a three-scale, 10-orientation complex

steerable pyramid transform to decompose each component

of the image. Only the oriented subbands at the farthest

scale are stored, allowing us to compare the subband co-

efficients of the two images directly without the overhead

of reconstruction. These coefficients are compared using

the Complex Wavelet Structural Similarity (CWSSIM) in-

dex algorithm, a translational insensitive image similarity

measure inspired by the SSIM index algorithm [21]. CWS-

SIM iteratively measures the similarity indices between the

two sliding windows placed in the same positions of the two

images and uses the weighted sum as a final similarity score.

This score is measured by a variation of the CWSSIM index

equation originally proposed by Wang and Simoncelli [22].

In order to be able to handle variations in pose, we com-

pute the normal map of the AFM when registered to the 2D

input. The normal map is used to determine which pixels

are not visible to the camera. The hidden pixels are used to

create a thresholding map in the UV space of the AFM. We

compute the CWSPT of the resulting image. This allows us

to determine the contribution of each hidden pixel in the fi-

nal score of the CWSSIM. Since the CWSSIM is computed

using a sliding window, we use only those pixels for which

the magnitude of the thresholded CWSPT map is below the

upper bound τ .

A window of size 3 × 3 traverses the image one step
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at a time. At each step, we extract all wavelet coeffi-

cients, resulting in two sets of coefficients pw = {pw,i|i =
1, ..., N} and gw = {gw,i|i = 1, ..., N}, drawn from the

probe image and the gallery image, respectively. For the

same window, the coefficients from the visibility map are

mw = {mw,i|i = 1, ..., N}. The distance metric can be

written as follows:

S̃(pw, gw) = 1−

(

2
∑N

i=1
|pw,i||gw,i|+K

∑N

i=1
|pw,i|2 +

∑N

i=1
|gw,i|2 +K

)

×

(

2|
∑N

i=1
pw,ig

∗

w,i|+K

2
∑N

i=1
|pw,ig∗w,i|+K

)r

·Q, (2)

where w is the current step of the window, N is the number

of coefficients in the window, and r is an experimentally

determined exponent. The parameter K is a small positive

value which is used to make the result numerically stable.

The complex conjugate of gw,i is denoted as g∗w,i, and |mw|
is the cardinality of the set mw. The variable Q is defined

as

Q =
|{mw,i|mw,i > τ}|

|mw|
(3)

The first component (of the subtracted term) measures the

equivalence of the two coefficient sets while the second re-

flects the consistency of phase changes. If pw,i = gw,i

for all i’s, the distance is 0. The weighted sum of the lo-

cal scores from all windows provides the distance score:

Score(FP , FG) =
∑

w (bw · S̃(pw, gw)) where FP , FG

are the probe and gallery images and bw is a predefined

weight depending on which subband the local window lies.
GS: We propose a new metric measure for global sim-

ilarity using a correlation coefficient which is largely in-
sensitive to serious mismatches induced by parts of the
two images that do not match; thus, it is particularly suit-
able for measuring the similarity of face data and meta-
data (i.e., the texture channels of the geometry images)
which may vary substantially, not only due to different cap-
turing conditions, but also due to significant appearance
changes of the individual subjects. Assume we are given
two images Fi(x), i = 1, 2. For each image, we compute
Gi = ∇xFi+ j∇yFi, where ∇xFi and ∇yFi are the gradi-
ents along the horizontal and vertical direction respectively,
and Oi = Gi/|Gi| = ejΦi , where Φi simply captures the
orientation of image gradients at each spatial position. Our
correlation coefficient is given by

C = ℜ

{
∫

O1(x)O
∗
2(x)dx

}

=

∫

cos(Φ1(x)− Φ2(x))dx

=

∫

cos(∆Φ(x))dx (4)

To understand how C can be used to cancel out the effect of
outliers, suppose that the two images match only partially,
that is F1(x) = F2(x), only for x ∈ Ω. For x ∈ Ω, we may
observe that ∆Φ(x) = 0. For x /∈ Ω, it is not unreasonable

to assume that ∆Φ(x) is uniformly distributed in [0, 2π),
since the images do not match, and, therefore, we expect
that differences in gradient orientation can take any value in
the range [0, 2π) with equal probability. Thus, we can write

C =

∫

x∈Ω

cos(∆Φ(x))dx +

∫

x/∈Ω

cos(∆Φ(x))dx = Ω+ 0 (5)

Overall, the value of C will be the contribution from the

areas in the two images that match solely. Finally, note that

gradient orientations are relatively robust for images under

non-uniform illumination variations [9].

4. Results

For practical purposes, in all experiments we use a reso-

lution of 256×256 for our geometry images. The threshold

for τ in 3.2.3 is 0.5. Our implementation of bidirectional

relighting on a consumer-level graphics hardware takes, on

average, 5 seconds per relighting.

4.1. Bidirectional Relighting

We provide two examples, one demonstrating bidirec-

tional relighting, and the second demonstrating the relight-

ing of a gallery (2D facial images) to multiple probe tex-

tures. In all cases, textures from the same subject are used.

Figures 5(a,b) depict two textures of the same subject.

Note that only 5(a) has a corresponding 3D mesh, while

5(b) is a simple 2D image and uses the mesh of 5(a). We

performed bidirectional relighting to transfer the illumina-

tion conditions from one to the other. The result is two syn-

thetic textures depicted in Figs. 5(c,d). The difference of

the synthetic textures from the respective target textures is

depicted in Figs. 5(e,f). After a visual inspection, no sig-

nificant visible artifacts were introduced by the relighting

process.

Figure 6 depicts a multiple relighting example. Again,

only the source texture (top row) has a corresponding 3D

mesh; the remaining textures are using the source’s 3D

mesh. Four textures with different illumination conditions

are depicted (Fig. 6 (bottom row)) as target textures. The

proposed method estimates the four synthetic relighted im-

ages depicted in Fig. 6 (middle row). These results show

that the proposed method is robust under varying lighting

conditions, since in all cases the relighting was qualitatively

successful.

4.2. Face Recognition

In this scenario, 2D+3D data are acquired during enroll-

ment, and 2D data during authentication (one-to-one match-

ing). This is a reasonable installation where only a few

enrollment stations are needed (which may be expensive)

along with many authentication stations (which must be in-

expensive).
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(a) (b) (c) (d) (e) (f)
Figure 5. Bidirectional relighting for a specific subject: (a) Real texture 1 (RT1); (b) Real texture 2 (RT2); (c) Synthetic texture 1 (ST1):

RT1 with RT2’s illumination; (d) Synthetic Texture 2 (ST2): RT2 with RT1’s illumination; (e) RT1 minus ST2; (f) RT2 minus ST1.

Figure 6. Examples of relighting. Top row: source texture. Middle

row: synthetic relighted texture. Bottom row: target texture.

Figure 7. Examples from database UHDB12: Sample 2D images

captured with varying lighting conditions for the same subject.

Database UHDB11 [18]: In order to analyze the im-

pact of the variation in both pose and lighting, we acquired

data from 23 subjects under six illumination conditions. For

each illumination condition, we asked the subject to face

four different points inside the room. This generated rota-

tions on the Y axis. For each rotation on Y, we also acquired

three images with rotations on the Z axis (assuming that the

Z axis goes from the back of the head to the nose, and that

the Y axis is the vertical axis through the subject’s head);

thus, we acquired images under six illumination conditions,

four Y rotations, and three Z rotations per subject. For each

image we concurrently acquired the 3D mesh. Fig. 8 de-

picts the variation in pose and illumination for one of the

subjects from UHDB11. There are 23 subjects, resulting in

23 gallery datasets (3D plus 2D) and 1,602 probe datasets

(2D only).

Database UHDB12 [19]: The 3D data were captured

using a 3dMDTMtwo-pod optical scanner, while the 2D data

were captured using a commercial CanonTMDSLR camera.

The system has six diffuse lights that allow the variation of

the lighting conditions. For each subject there is a single

3D scan (and the associated 2D texture) that is used as a

gallery dataset and several 2D images that are used as probe

datasets. Each 2D image is acquired under one of the six

possible lighting conditions depicted in Fig. 7. There are 26

subjects, resulting in 26 gallery datasets (3D plus 2D) and

800 probe datasets (2D only).

Figure 8. Examples from database UHDB11 with variation of

lighting and pose.

Authentication: We performed a variety of authentica-

tion experiments. We evaluated both relighting and unlight-

Figure 9. ROC curve on authentication experiment on UHDB12

(varying illumination).
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Figure 10. ROC curve for an authentication experiment using data

from UHDB11 (varying illumination and pose). Note that the

Equal Error Rate which the 3D-aided 2D face recognition algo-

rithm achieves is half that of the leading commercial product avail-

able at this time.

ing. In the unlighting case, both gallery and probe images

were unlit (thus becoming albedos). In the relighting case,

the gallery image was relit according to the probe image.

The results for UHDB12 (using our algorithm, the CWS-

SIM metric and Z-normalization) are summarized using a

Receiver Operating Characteristic (ROC) curve (Fig. 9).

Note that face recognition benefits more from relit images

than from unlit images. It achieves a 10% higher authentica-

tion rate at 10−3 False Accept Rate (FAR) than unlighting.

The performance using the raw texture is also included as a

baseline. Even though these results depend on the UHDB12

and the distance metric that was used, they indicate clearly

that relighting is more suitable for face recognition than

unlighting. The reason behind this is that any unlighting

method produces an albedo for which the ground truth is

not known; therefore, the optimization procedure is more

prone to errors.

Before we proceed, we will explain E normalization.

Let {FG
i (x)} with i = 1, . . . , N be the set of gallery

images and {FP
i (x)} with i = 1, . . . ,K be the probe

set. We create a dissimilarity matrix in the gallery set

D
1 = [Cn(F

G
i (x), FG

j (x))], where Cn(Fi(x), Fj(x)) is the

normalized correlation coefficient C(Fi(x), Fj(x)) in or-

der to force Cn to satisfy the following properties: (i) re-

flectivity (i.e., Cn(Fi(x), Fi(x)) = 0) and (ii) positivity

(i.e., Cn(Fi(x), Fj(x)) > 0 if Fi(x) 6= Fj(x)). It can be

easily seen that because C is symmetric, Cn satisfies the

symmetry property Cn(Fi(x), Fj(x)) = Cn(Fj(x), Fi(x)),
as well. Since Cn is a proper dissimilarity measure, we can

extract features by applying the method proposed in [10].

The features of the probe set can be derived by creating

the dissimilarity matrix between the gallery and probe set

D
2 = [Cn(F

G
i (x), FP

j (x))] and then applying the method
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Figure 11. Identification performance of the 3D-aided 2D face

recognition approach versus the performance of a leading com-

mercial 2D face recognition product.

in [10]. Finally, we create a new dissimilarity matrix D
3

using these features.

In order to assess the robustness of the 3D-aided 2D face

recognition approach with respect to both lighting and pose

variation, we employed UHDB11. Figure 10 depicts the

ROC curve for UHDB11 for four different methods: (i)

3D-3D: Using the UR3D algorithm by the University of

Houston where both the gallery and probe are 3D datasets

(shape only no texture) [6]; (ii) 2D-3D(BR GI, GS): Our

proposed 2D-3D algorithm using bidirectionally relit im-

ages, GS distance metric, and E-normalization; (iii) 2D-

3D(BR GI, CWSSIM): Our proposed 2D-3D algorithm us-

ing bidirectionally relit images, CWSSIM distance met-

ric, and E-normalization;(iv) 2D-3D(GI, GS): Our proposed

2D-3D algorithm using raw texture from the geometry im-

ages, GS distance metric, and E-normalization; (v) 2D-

2D(2D Raw, GS): Computing the GS distance metric for the

raw 2D data, and E-normalization; (vi) L1(2D Raw, GS):

Results from the L1 IdentityToolsSDK [7]. Note that our

proposed 2D-3D(BR GS, GS) outperforms one of the best

commercial products.

2D-3D Identification Experiment: We also constructed

an identification experiment using data from UHDB11. The

results are provided in a Cumulative Matching Character-

istic (CMC) curve on 23 subjects of UHDB11 (Fig. 11).

Our approach outperforms the commercial 2D-only prod-

uct throughout the entire CMC curve.

5. Conclusions

A new system for face recognition that uses 2D+3D data

for enrollment and 2D data for authentication was proposed.

This was achieved by fitting an annotated deformable model

to the 3D data and by using an analytical skin reflectance
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model to relight the 2D data while using the fitted AFM

from the gallery. The qualitative and quantitative evaluation

demonstrate that the 2D/3D method with relighting process

provides robust face recognition performance under varying

pose and lighting condition.
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