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Model Reduction Based on Regional Pole
and Covariance Equivalent Realizations

Zidong Wang and H. Unbehauen

Abstract—In this paper a novel model reduction problem is studied
for linear continuous-time time-invariant stochastic systems. The purpose
of this problem is to design the reduced-order model so that it has the
same dominant pole region and steady-state output covariance as those
of the original full-order model. The resulting reduced-order model can
approximate the corresponding original full-order model in two impor-
tant aspects, i.e., transient and steady-state performances. Necessary and
sufficient and conditions for the existence of desired reduced-order models
are established, and an explicit expression for these reduced-order models
is also presented. An illustrative example is used to demonstrate the
effectiveness of the proposed design method.

Index Terms—Approximation theory, covariance equivalent realiza-
tions, dominant pole region, linear continuous-time stochastic systems,
model reduction.

I. INTRODUCTION

A great many approaches are available in the literature on the
general topic of model reduction, including aggregation methods [1],
balancing techniques [2], Hankel norm approximation methods [3],
H1 norm approximations [4], andq-Markov covariance equivalent
realizations [6], [7], [14], [15], to name just a few. A major drawback
of each of these methods (with the exception of theq-Markov
covariance equivalent realizations) is that the reduced-order models
are not guaranteed to match any of the second-order information
(i.e., covariance values) of the original model outputs, which is an
important criterion when output performance is an item of interest.

Many engineering systems have performance requirements stated
in terms of steady-state output covariance values (antenna pointing
[5], vibration control in flexible structures [6], etc.). In [6], [7],
[14], and [15] a projection method has been used to obtain reduced-
order models that match the firstq + 1 output covariances and
the first q-Markov parameters of the original model. These reduced
models are calledq-Markov covariance equivalent realizations, or
“q-Markov covariance equivalent realizations (COVER’s).” Due to
the preservation ofq > 0 output covariances, theq-Markov COVER
provides a reduced-order model for continuous- and discrete-time
systems that has the same steady-state covariance values of each
of the multiple outputs as the original model, and due to the
preservation ofq-Markov parameters theq-Markov COVER also
has the capacity to provide good transient approximation. However,
complex transformations to specific coordinates were required in the
literature associated withq-Markov COVER’s (see, for example, [14]
and [15]).
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It is well known that the transient properties of linear time-invariant
systems are influenced directly by the location region of the dominant
poles, and hence the regional pole assignment problem has received
great attention in recent years [8]–[10]. Therefore, instead of theq-
Markov parameters used in [6], [7], [14], and [15], we utilize the
dominant pole region to represent the transient performance index. It
is clear that the region in which the dominant poles are situated
and the steady-state output covariance value are closely related,
respectively, to the transient and steady-state performance of linear
time-invariant stochastic systems. Therefore, in addition to the well-
studied covariance matching criterion, another new model reduction
criterion is simultaneously proposed in this paper, i.e., the reduced-
order models should preserve not only the same steady-state output
covariance value but also the same dominant pole region as those of
the original full-order models. This motivates the investigation of a
new model reduction approach called regional pole and covariance
equivalent realizations (RPCOVER’s).

In the present paper we develop a novel model reduction approach
for continuous-time time-invariant stochastic systems. The main con-
tribution is twofold: 1) the conception of RPCOVER’s is introduced
for the reduced-order models matching both the dominant pole region
and steady-state output covariance of the full-order model and 2)
necessary and sufficient conditions for the existence of the expected
RPCOVER’s are given, and a constructive approach to designing the
RPCOVER’s is also presented. Specifically, the main idea proposed
in this paper is to create a reduced-order model by matching the output
covariance of the original model and keeping the dominant poles in
the same region as those of the original model, hence, in some sense,
ensuring respectively good steady-state and transient approximation
between the full- and reduced-order models. The problem of regional
pole and covariance equivalent realizations was investigated in [11]
for discrete-time stochastic systems where the state covariance of the
reduced-order model is required to equal the output covariance of the
full-order model; hence this paper will focus on the continuous-time
case and the output covariances of both the full- and reduced-order
models are expected to be the same.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a linear time-invariant continuous-time stochastic system
described by

_x(t) = Ax(t) +Dv(t); y(t) = Cx(t) (1)

wherex(t) 2 Rn, v(t) 2 Rr, y(t) 2 Rp, andA, D, C are constant
matrices with appropriate dimensions.v(t) is a zero mean white noise
process with covariance�(t)I [�(t) is the Dirac impulse function],
andv(t) andx(0) are uncorrelated. We assume that the matrixA is
Hurwitz and (A; D) is controllable.

The steady-state covariance of system (1) defined by

X = lim
t!1

E[x(t)xT (t)]

is the unique positive definite solution to the Lyapunov equation

AX +XA
T +DD

T = 0: (2)

From (1) and (2), it is easy to obtain the steady-state output
covariance of system (1) as follows:

Y = lim
t!1

E[y(t)yT (t)] = CXC
T

=C
1

0

e
At(DDT )eA t

dt C
T
: (3)
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Throughout this paper, we suppose that the dominant poles of
system (1) are located within a circular regionD(q; r) in the left-
half complex plane with the center atq + j0(q < 0) and the radius
r(r < �q). Also, we assume that the steady-state output covariance
Y of (1), which can be calculated directly from (3), is known.
Now, we are in a position to formulate the problem under study as
follows: construct amth-order (p � m < n) linear, continuous-time,
stochastic system

_xm(t) = Amxm(t) +Dmw(t); ym(t) = Cmxm(t) (4)

where xm(t) 2 Rm, ym(t) 2 Rp, w(t) is a zero mean Gauss-
ian white noise process with unit intensity and its order is to be
determined, or equivalently, find the matricesAm; Dm; Cm [de-
noted as a triple(Am; Dm; Cm)] such that the following reduction
requirements are simultaneously met.

1) The poles of (4) are located inside the desired circular region
D(q; r).

2) The steady-state output covariance of the reduced-order model
(4) is equal to that of the original full-order model (1), i.e.,
Ym = Y , where

Ym = lim
t!1

E[ym(t)yTm(t)] = CmXmC
T
m

Xm = lim
t!1

E[xm(t)xTm(t)]

and Y is defined in (3).

If the above reduction indices 1) and 2) are satisfied, then (4) is said
to be a regional pole covariance equivalent realization (RPCOVER)
of system (1) and the reduction task is accomplished.

III. M AIN RESULTS AND PROOFS

In this section we will give the existence conditions and construc-
tive design approach of the desired reduced-order model. To start
with, we first present three important lemmas.

Lemma 1 [5], [10]: Let M 2 Rs�t and N 2 Rs�z (s �

z). There exists a matrixV which simultaneously satisfiesN =
MV; V V T = I if and only if MMT = NNT .

The following lemma is easily proved.
Lemma 2: A triple (Am; Dm; Cm) is a desired RPCOVER if and

only if: 1) the eigenvalues ofAm are situated withinD(q; r) and 2)
the following algebraic equations are satisfied:

AmXm +XmA
T
m +DmD

T
m = 0 (5)

Y = CmXmC
T
m: (6)

Lemma 3 [8]: Consider the following algebraic matrix equation:

�qAmP � qPA
T
m + AmPA

T
m + (q2 � r

2)P = �Q (7)

whereQ > 0 is arbitrary. Then the poles ofAm are situated in the
given circular regionD(q; r) if and only if there exists a positive
definite solutionP to (7).

In view of the above lemmas, the main steps for designing the
desired RPCOVER’s can now be stated as follows. First, for a
given steady-state output covarianceY 2 Rp�p, the necessary and
sufficient conditions are studied for the existence of a matrixCm 2

Rp�m and a positive definite matrixXm 2 Rm�m which satisfy
Y = CmXmC

T
m, and then the matricesCm; Xm are determined.

The obtainedXm > 0 is denoted as the expected state covariance of
the reduced-order model. Second, for the specified state covariance
Xm > 0 and circular pole regionD(q; r), we seek the parameters
Am; Dm which simultaneously meet (5) and (7) for someP > 0
andQ > 0, and hence the resulting triple(Am; Dm; Cm) is just a
desired RPCOVER.

Consider the equationY = CmXmC
T
m whereY 2 Rp�p is given

but is not necessarily symmetric, andCm 2 Rp�m; Xm 2 Rm�m

are unknown matrices with given dimensions. We first establish the
solvability of Y = CmXmC

T
m for Cm 2 Rp�m and 0 < Xm 2

Rm�m. Write the singular value decomposition ofCm as

Cm = [Uc1 Uc2 ]
�c 0
0 0

V T
c1

V T
c2

(8)

where �c 2 Rr �r (rc = rank(Cm)) is the diagonal matrix
consisting of all the nonzero singular values ofCm, Uc = [Uc1 Uc2]
andVc = [Vc1 Vc2] are orthogonal matrices with proper dimensions.

Lemma 4 [12]: There exists a solutionXm to the equationY =
CmXmC

T
m (Y 2 Rp�p is not necessarily symmetric here) if and

only if

CmC
+
mY (CT

m)+CT
m = Y: (9)

Corollary 1: Equation (9) is equivalent to

U
T
c2Y = 0; Y Uc2 = 0: (10)

The proof of Corollary 1 is contained in that of the following
theorem.

Theorem 1: Assume that (9) or (10) holds. Then we have the
following results.

1) All solutions toY = CmXmC
T
m are given by

Xm = Vc
� X̂12

X̂21 X̂22
V
T
c (11)

where� = ��1c UT
c1Y Uc1�

�1
c 2 Rr �r , rc = rank(Cm) and

X̂12; X̂21; X̂22 are arbitrary matrices with proper dimensions.
2) A positive definite solutionXm to Y = CmXmC

T
m exists if

and only if � > 0.

Proof: See the Appendix.
Corollary 2: It is clear that for givenY > 0 and�c > 0, � > 0

if and only if Uc1 is of full row rank.
Remark 1: It follows from Theorem 1 and Corollaries 1 and

2 that to obtain the appropriateCm and Xm > 0 which meet
Y = CmXmC

T
m, one can first construct an orthogonal matrix

Uc = [Uc1 Uc2] where Uc1 is full row rank andUc2 satisfies
(10). Then a diagonal positive definite matrix�c 2 Rr �r and
an orthogonal matrixVc have to be chosen in order to obtain the
parameterCm from (8). Subsequently, the positive definite matrix
Xm > 0 can be easily obtained from (11). It should be pointed out
that the set ofCm andXm > 0 which meetsY = CmXmC

T
m is

never empty. In fact, for a given positive definite matrixY 2 Rp�p,
observing thatp � m, we can always set

Cm = [Ip 0p�(m�p)]; Xm =
Y 0
0 Im�p

and Y = CmXmC
T
m holds naturally.

Now, our task is to study the existence conditions as well as the
design approach of the desired RPCOVER’s. It can be assumed
from Theorem 1 that the expected state covarianceXm for the
reduced-order model is known.

Theorem 2: Given the full-order model (1), the dominant pole
regionD(q; r), and the expected state covarianceXm of the reduced-
order system, there exists a reduced-order model (4) whose poles are
located withinD(q; r) and state covariance equalsXm, if and only
if there exist positive definite matricesP > 0 andQ > 0 satisfying

r
2
P �Q �0 (12)

(TV S�1 + qI)Xm +Xm(TV S�1 + qI)T �0 (13)
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whereV is arbitrary orthogonal, andS andT are the square roots of
P andr2P �Q, i.e.,SST = P; TT T = r2P �Q; S; T 2 Rm�m.
Furthermore, if (12) and (13) are met, the two parameters of the
reduced-order model (4) can be obtained as follows:

Am =TV S�1 + qI

Dm =[�(TV S�1 + qI)Xm �Xm(TV S�1 + qI)T ]1=2:

Proof—Necessity:If there exists a lower-order model (4) which
satisfies the prescribed regional pole and state covariance constraints,
then from Lemmas 2 and 3, there must existP > 0 andQ > 0
such that

�qAmP � qPA
T
m +AmPA

T
m + (q2 � r

2)P = �Q (14)

and

AmXm +XmA
T
m +DmD

T
m =0: (15)

Note that (14) can be rewritten as

(Am � qI)P (Am � qI)T = r
2
P �Q (16)

and then (12) follows directly. DefineP = SST ; r2P �Q = TT T ,
then (16) can be rearranged as

[(Am � qI)S][(Am � qI)S]T = TT
T
: (17)

From Lemma 1, there exists an orthogonal matrixV which satisfies
(Am � qI)S = TV or

Am = TV S
�1 + qI: (18)

Substituting (18) into (15) yields (13) immediately.
Sufficiency: Suppose that there exist positive definite matrices

P; Q and an orthogonal matrixV such that (12) and (13) hold. We
can directly chooseAm = TV S�1 + qI andDm = (�(TV S�1 +
qI)Xm�Xm(TV S�1+qI)T )1=2 whereP = SST andr2P�Q =
TT T and then have

AmXm +XmA
T
m +DmD

T
m = 0:

Furthermore, from the proof of necessity, we know thatAm =
TV S�1 + qI is equivalent to

(Am � qI)P (Am � qI)T = r
2
P �Q:

Then, it follows from Lemma 3 thatAm satisfies the prespecified
circular pole constraints. Finally, by the definition of RPCOVER,
we know that the obtained triple(Am; Dm; Cm) is just a desired
RPCOVER of the full-order model (1), whereCm is determined by
Theorem 1.

Remark 2: The positive definite matricesP andQ which meet
(12) and (13) always exist. In fact, note thatq < 0, and therefore we
can chooseP > 0 andQ > 0 such thatT andS�1 are small enough
(in the norm setting) to meet (13). In the limiting case, by choosing
Q = r2P and henceT = 0, (13) holds automatically.

Remark 3: Note that the desired RPCOVER’s are usually not
unique. This freedom can be utilized to achieve new reduction re-
quirements, such as theH1-norm approximation constraint, i.e., the
reduced-order models should retain the same (or similar) disturbance
rejection behavior (in aH1-norm sense) as the full-order model.
This will be one of the main topics of further research.

Finally, the RPCOVER’s based model reduction procedure can be
formulated as follows.

1) Determine the output covarianceCXCT and the dominant pole
regionD(q; r) of the original system (1).

2) Obtain the parameterCm and the desired state covarianceXm

of the reduced-order model by using Theorem 1.
3) ChooseP andQ appropriately such that (12) and (13) hold.
4) Calculate the parametersAm; Dm of the reduced-order model

from Theorem 2.

IV. A N ILLUSTRATIVE EXAMPLE

Consider the linear continuous stochastic system (1) with the
parameters

A =

�2:4983 �0:2631 �0:8286 0:8107 0:4423
�0:3464 �4:1546 �1:6877 0:1128 0:5459
�0:0922 �0:2321 �4:1253 0:1934 0:2425
�0:0666 �0:1867 �0:0328 �4:1349 0:7956
�0:2554 �0:1523 �0:0585 0:1226 �3:2082

D =
0:2200 0 0 0 0

0 0 0:1300 0 0
0 0 0 0 0:06

T

C =
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

: (18a)

It is easy to calculate the pole set of system matrixA as

f�2:7887+ 0:0870i;�2:7887� 0:0870i;�4:6642;

� 4:3287;�3:5510g:

The dominant pole region can be chosen asD(�3:5; 1:5), i.e.,
q = �3:5; r = 1:5, and the steady-state covariance and output
covariance of system (1) can be, respectively, calculated as the
following:

X =

0:0097 �0:0004 �0:0004 �0:0001 �0:0004
�0:0004 0:0002 �0:0004 0:0000 0:0001
�0:0004 �0:0004 0:0021 0:0000 0:0000
�0:0001 0:0000 0:0000 0:0000 0:0001
�0:0004 0:0001 0:0000 0:0001 0:0006

Y =CXC
T

=
0:0097 �0:0004 �0:0004

�0:0004 0:0021 0:0000
�0:0004 0:0000 0:0006

: (18b)

It is desired to construct a third-order RPCOVER. From Theorem 1,
we can obtain the output matrix and the state covariance, respectively,
asCm = I3 and thusXm = CXCT . Subject to the constraints (12)
and (13), we can choose

P =
1:8942 0:1295 0:3386
0:1295 1:7321 0:1196
0:3386 0:1196 1:0168

Q =
4:2614 0:2914 0:7618
0:2914 3:8932 0:2691
0:7618 0:2691 2:2799

:

Then, from Theorem 2, by settingV = I3, the parameters
Am; Dm can be determined as

Am =
�3:4826 �0:0007 �0:0020
�0:0016 �3:4516 �0:0021
�0:0090 �0:0031 �3:4094

Dm =
0:2603 �0:0069 �0:0077

�0:0069 0:1197 0:0008
�0:0077 0:0008 0:0629

:

The pole set of the reduced-order systems is
f�3:4829; �3:4090; �3:4517g. It is apparent that the full-
and reduced-order models have the same pole region and
steady-state output covariance. Furthermore, lety = (y1 y2 y3)

T ,
ym = (ym1 ym2 ym3)

T , respectively, stand for the outputs
of the full- and reduced-order models which are driven by the
white noise inputs. The simulation results (Figs. 1–6) show that
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Fig. 1. “�”: the output ofy1 and “� � �”: the output ofym1.

Fig. 2. The signal ofy1 � ym1.

Fig. 3. “�”: the output ofy2 and “� � �”: the output ofym2.

the reduced-order model approximates the full-order one well and
the real reduction objectives are met.

Finally, it is remarkable that, although both the RPCOVER ap-
proach developed in the present paper and the well-studiedq-
Markov COVER theory aim at designing reduced-order models
which match the steady-state output covariance and approximate
the transient behavior of the full-order model, in certain cases the
RPCOVER approach supplements theq-Markov COVER theory
because: 1) the dominant pole region is very often used in practice
to represent the transient performance index of linear systems; 2) no
complex transformations to specific coordinates are required in the

Fig. 4. The signal ofy2 � ym2.

Fig. 5. “�”: the output ofy3 and “� � �”: the output ofym3.

Fig. 6. The signal ofy3 � ym3.

RPCOVER approach; and 3) since there exists much design freedom,
the RPCOVER approach provides the possibility to realize multiple
model reduction requirements.

V. CONCLUSIONS

This paper has developed a new approach to constructing reduced-
order models which maintain both the steady-state behavior (via
matching steady-state covariance) and the transient property (via
matching dominant pole region). An effective algebraic method has
been exploited to prove the existence of the desired reduced-order
models and to derive the associated analytical expressions. Further
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studies will mainly concentrate on the extension of the present results
to the case where the dominant pole region is more general (e.g.,
convex region) than the circular region used in this paper and on
the multiple objectivemodel reduction problem (e.g., transient and
steady-state properties, disturbance rejection behavior, etc.) based on
the equivalent realization of the steady-state second-order information
(state covariance or output covariance).

APPENDIX

Proof of Theorem 1—1) :We define

X̂ = V
T

c XmVc; Ŷ = U
T

c YmUc:

Then Y = CmXmC
T

m is equivalent to

Ŷ =U
T

c Uc
�c 0
0 0

V
T

c XmVc
�c 0
0 0

U
T

c Uc

=
�c 0
0 0

X̂
�c 0
0 0

(19)

which can be rewritten as

��1c 0
0 I

Ŷ
��1c 0
0 I

=
Ir 0
0 0

X̂
Ir 0
0 0

: (20)

Partition

X̂ =
X̂11 X̂12

X̂21 X̂22

; Ŷ =
UT

c1Y Uc1 UT

c1Y Uc2

UT

c2Y Uc1 UT

c2Y Uc2

(21)

then (20) is equivalent to the following equations:

X̂11 = ��1c U
T

c1Y Uc1�
�1

c =� (22)

��1c U
T

c1Y Uc2 =0 (23)

U
T

c2Y Uc1�
�1

c =0 (24)

U
T

c2Y Uc2 =0: (25)

Noticing that a solutionXm to Y = CmXmC
T

m exists if and only
if (23)–(25) are satisfied, and (23)–(25) are equivalent to (10), the
proof of Corollary 1 follows immediately. By using the definition of
X̂, we have

Xm = VcX̂V
T

c = Vc
� X̂12

X̂21 X̂22

V
T

c

whereX̂12; X̂21; X̂22 are arbitrary matrices with proper dimensions.
2): It is clear thatXm > 0 is equivalent to

� X̂12

X̂21 X̂22

> 0: (26)

The necessity is obvious. To prove the sufficiency, we choose

X̂12 = X̂
T

21; X̂22 = X̂
T

22

then the left-hand side of (26) is a partitioned Hermitian matrix.
Inequality (26) holds if and only if [13]

� > 0 (27)

X̂22 > 0 (28)

X̂22 � X̂
T

12�
�1
X̂12 > 0: (29)

Since X̂22 (a symmetric matrix) andX̂12(X̂12 = X̂T

21) are
arbitrary, for sufficiently large elements of̂X22 both (28) and (29)
can be satisfied. Hence, there exists a positive definite solutionXm

to equationY = CmXmC
T

m. The proof of Theorem 1 is then
completed.
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