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Summary

Phase contrast microscopy allows the study of highly trans-

parent yet detail-rich specimens by producing intensity con-

trast from phase objects within the sample. Presented here is

a generalized phase contrast illumination schema in which

condenser optics are entirely abrogated, yielding a condenser-

free yet highly effective method of obtaining phase contrast

in transmitted-light microscopy. A ring of light emitting

diodes (LEDs) is positioned within the light-path such that

observation of the objective back focal plane places the il-

luminating ring in appropriate conjunction with the phase

ring. It is demonstrated that true Zernike phase contrast is

obtained, whose geometry can be flexibly manipulated to

provide an arbitrary working distance between illuminator

and sample. Condenser-free phase contrast is demonstrated

across a range of magnifications (4–100×), numerical aper-

tures (0.13–1.65NA) and conventional phase positions. Also

demonstrated is condenser-free darkfield microscopy as well

as combinatorial contrast including Rheinberg illumination

and simultaneous, colour-contrasted, brightfield, darkfield

and Zernike phase contrast. By providing enhanced and ar-

bitrary working space above the preparation, a range of con-

current imaging and electrophysiological techniques will be

technically facilitated. Condenser-free phase contrast is

demonstrated in conjunction with scanning ion conductance

microscopy (SICM), using a notched ring to admit the scanned

probe. The compact, versatile LED illumination schema will

further lend itself to novel next-generation transmitted-light

microscopy designs. The condenser-free illumination method,

using rings of independent or radially-scanned emitters, may

be exploited in future in other electromagnetic wavebands,

including X-rays or the infrared.
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Introduction

Phase contrast microscopy is a ubiquitous imaging technique

in the biological sciences, providing a cheap and effective so-

lution for the visualization of transparent samples such as

living cells. The basic principle is as follows: illuminating light

from an extended source is collimated and an annulus of il-

lumination is selected by inserting a ring-shaped mask into

the aperture plane of the condenser assembly (Fig. 1 A). This

illuminating annulus is focussed through the sample by the

condenser lens as a hollow cone and, in interacting with the

sample, is split into two partially coherent beams. The system

is aligned such that direct-path light (solid lines) impinges on

the ‘phase ring’ located in the back focal plane (BFP) of the

phase contrast objective. The natural phase shift of unstained

biological specimens is only circa 90° (λ/4). In standard (‘pos-

itive’) phase contrast, the phase ring is made optically thinner

than the rest such that direct light is phase advanced at the

image plane by λ/2 relative to light diffracted by the sample

(dashed lines), most of which misses the phase ring (Zernike,

1942b). Interference between the two beams produces con-

structive and destructive interference which creates intensity

contrast at the image plane from minute differences in optical

path within the sample (Zernike, 1942a).

The fundamental design of commercial phase contrast mi-

croscopes has remained largely unaltered since Frits Zernike

was awarded the 1953 Nobel prize in Physics for its discovery

(Zernike, 1953). Modern variants have been directed against

minimizing the characteristic phase ‘halo’ and ‘shade off’ arte-

facts, which are a consequence of a restricted range of illu-

mination angles, diffraction via restricted apertures and the

impingement of a portion of the sample-diffracted light onto

the phase ring (Zernike, 1942b). Apodised phase objectives

(Otaki, 2000) employ a stepped ‘apodised’ phase ring to ‘roll

off’ halo artefacts by minimizing discontinuities in the aperture

plane. A more advanced schema was recently demonstrated

(Maurer et al., 2008) using a pair of spatial light modulators to

provide a random array of light sources and complementary

phase-plates, thus producing phase contrast using the full nu-

merical aperture (NA) of the optical system, while minimizing

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society.
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Fig. 1. (A) Optical schema for conventional Zernike phase contrast microscopy, consisting of collimated light source, phase annulus, condenser assembly

and phase contrast objective lens. Inset view of objective BFP via Bertrand lens showing overlapped phase annulus and phase ring. (B) Optical schema for

condenser-free Zernike phase contrast consisting of LED ring and phase contrast objective. Inset view of objective BFP showing overlapped image of LED

ring and phase ring.

Fig. 2. Analysis of condenser-free phase contrast with XY alignment. (A–E) View of 10× 0.3NA Ph1 objective BFP, showing progressive misalignment

of LED ring (Ø14 mm, 62 mm above sample) with respect to the phase ring. (F–J) Corresponding phase contrast images of a confluent layer of ARPE-19

cells viewed under alignment conditions in (A)–(E). Scale bar 200 µm. Optimal overlap of LEDs with phase ring C produces optimal phase contrast H.

(K) Each vertical column of pixels in an extended tile of phase contrast images discretised in F–J is plotted as mean ± SD to show global drop in intensity

and increase in contrast as LED ring is aligned optimally with the phase ring.

cross-talk between sample-diffracted light with the randomly

placed ‘phase plates’ to eliminate halo. Some modern com-

mercial systems also offer an ‘external’ phase ring option in

a conjugate aperture plane, allowing phase contrast to be

obtained with nonphase objectives and preserving the full ob-

jective aperture for epifluorescence or total internal reflection

fluorescence (TIRF) imaging.

Live cells are typically examined using an inverted micro-

scope, where access to the preparation tends to be restricted

by the condenser assembly. Commercial condensers for phase

contrast range from the simple single-lens-plus-annulus de-

sign in simple cell-inspection microscopes through to complex

high-NA condensers for high-resolution imaging. A selection

of annuli are required to match a range of phase geometries,

necessitating a bulky turret, as well as provision for adjust-

ments to centration and focus. The pancratic (Carl Zeiss AG,

Jena, Germany) and Heine (Ernst Leitz Optische Werke, Wet-

zlar, Germany) condensers were developed in the mid-20th

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society., 257, 8–22
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century to provide continuously variable annuli of illumina-

tion to satisfy phase and darkfield across a range of objectives

by providing what was termed ‘circular oblique illumination’,

employing specialized moving reflecting optics within elabo-

rate and rather costly condenser assemblies.

Restricted access to the cells is a barrier to quality imaging

in experiments involving microelectrodes or scanned probes,

including patch clamping and scanning ion conductance

microscopy (SICM). Kempson reported in the 1950s that a

condenser was not strictly necessary for phase contrast mi-

croscopy at very low magnifications, using a large diffus-

ing incandescent bulb along with a simple mask (Kempson,

1950). However removal of the condenser to fit SICM or other

scanning-probe systems, as is commonly necessary, has dis-

astrous consequences for brightfield imaging. Condenserless

phase contrast has been reported in the literature, in parallel

with atomic force microscopy (Lugmaier et al., 2005), using a

ring of light emitting diodes (LEDs) to produce phase contrast

around an obstructing AFM cantilever in a single fixed geom-

etry, using one particular objective lens in a bespoke hybrid

instrument.

The current work significantly extends and characterizes

condenser-free contrast enhancement into a generally appli-

cable approach which can be adapted, in principle, to any

microscope setup. This paper presents, characterizes, and gen-

eralizes a condenser-free illumination schema which produces

high-quality Zernike phase contrast and darkfield contrast us-

ing rings of LEDs; an image of which is projected into the

objective BFP using simple lens optics. The approach differs

from previous work in that it is shown to possess great geo-

metrical flexibility, and is thereby generally applicable across

a wide range of objectives including those of very high magni-

fication and NA. In addition, the linear geometric relationship

between sample distance and ring diameter permits the free

design of optical systems to match arbitrary phase contrast ge-

ometries. The ability to arbitrarily choose the working distance

of the condenserless illuminator, which may be varied from a

few millimetres to arbitrarily greater distances as appropriate

to the experiment. This permits the free introduction of elec-

trodes, fibres, perfusion assemblies, etc. into the preparation

without being limited by the condenser assembly.

As well as phase contrast, this paper exploits the geometric

flexibility of the condenser-free LED-based illumination system

to demonstrate condenser-free darkfield contrast, which con-

ventionally requires condenser assemblies of very high NA,

often mirror-based, in order to supply illuminating rays at

higher incident angle than the objective can accept. Using

this condenser-free schema, darkfield imaging can be arbi-

trarily applied either in combination or sequentially with both

transmitted-light brightfield or phase contrast microscopy to

yield additional contrast methods, including Rheinberg illumi-

nation (Rheinberg, 1896). The same simple, condenser-free,

ring-based design is also capable of producing arbitrarily vari-

able, sequential or simultaneous combinations of brightfield,

darkfield and phase contrast microscopy. The use of several dis-

crete LED rings can provide the diverse range of intermediate

regimes allowed by the Heine condenser, as well as the combi-

natorial embodiment described more recently using elaborate

bespoke optics (Piper & Piper, 2012a, 2012b, 2012c, 2013a,

2013b).

Materials and methods

Cells

Fresh buccal epithelial strews were prepared by lightly abrad-

ing the cheek with a cotton bud and mounting the dislodged

cells, immersed in a little saliva, between two coverslips. ARPE-

19 (human-derived retinal pigment epithelium), 3T3 (mouse

fibroblast) and TE671 (human rhabdomyosarcoma) cultured

cell lines were plated on poly-L-lysine-coated glass-bottomed

Petri dishes in DMEM/HAMS F12 supplemented with 2.5

mML−1 glutamine, 10% foetal bovine serum, 100 UmL−1

penicillin and 100 ugmL−1 streptomycin. Cells were cultured

for either 24 h (for individual cells) or 72 h (for confluent

cells). For scanning probe imaging, cells were fixed in 4%

paraformaldehyde (5 min) and imaged in filtered phosphate-

buffered saline, which was also added to the scanned nanoelec-

trode. For DNA staining, 1:1000 Hoechst stain stock (Sigma-

Aldrich, UK) was added to the bath and imaged using Hg lamp

illumination (Ex:355/25, Em:420LP).

Microscope

A Nikon Ti Eclipse inverted microscope body (Nikon

UK Ltd, Surrey, UK) was used for all experiments. A

range of Nikon objectives was used: 4×/0.13NA PhL,

10×/0.3NA Ph1, 20×/0.45NA Ph1 ELWD, 40×/0.6NA Ph2

ELWD, 60×/1.49NA TIRF, 100×/1.3NA (Nikon, UK). Non-

phase lenses were used with a single external Ph3/60×

phase ring mounted in an external phase ring turret

below the trinocular head. For ultra-high-NA measure-

ments a specialized 100×/1.65NA (Olympus) objective was

used with an appropriate thread adapter, in conjunction

with sapphire coverslip and index-matched immersion oil

(n = 1.78). For SICM, ‘Ionscope’ ICNanoP (pipette-scanning)

or ICNanoS (sample-scanning) SICM systems (Ionscope Ltd.,

Herts, UK) were mounted to the inverted frame with the

scanned nanoelectrode parallel to the optic axis.

LED illuminator

Commercial bare LED ring printed circuit boards (PCBs:

white, RGB; Ø44, 92 mm) were obtained from an online

supplier (www.ebay.com) and were mounted and aligned

on an adjustable retort stand using manual positioning

while inspecting the objective BFP using a Bertrand lens. For

the experiments in Figure 3 a new commercial instrument

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society., 257, 8–22
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Fig. 3. Geometric matching of LED ring to phase ring suffices to produce phase contrast. (A) Schema showing three independent rings of LEDs at a fixed

distance from the sample (180 mm), one of which matches the phase ring geometry (green). (B) BFP image showing Ø 17 mm ring of LEDs, which appears

smaller than the phase ring of the 20× 0.45NA ELWD apodised objective. (C) Corresponding field plane image to B showing brightfield contrast using

mis-matched ring. (D) BFP image showing ring of LEDs (Ø 40 mm) matched to the phase ring. (E) Corresponding field plane image to D, showing excellent

phase contrast (scale bar 100 µm). (F) BFP image showing Ø100 mm ring, appearing much larger than the phase ring. (G) Corresponding field plane

image from F showing brightfield contrast using the mis-matched ring.

employing multiple concentric LED rings was employed

(AuraTM, Cairn Research Ltd, Faversham, UK). BFP images

were acquired using a DSLR camera (Nikon D7000: Sony

IMX071 16.2 megapixel CMOS sensor, pixel size 4.78 µm)

attached to the eyepiece using a 2× eyepiece adapter (NDPL-

1, 2× magnification, Boeco GmbH, Hamburg, Germany).

Wide-field phase contrast, darkfield and Rheinberg images

were acquired using a Nikon Digital Sight DS-Fi1 camera

(2560 × 1920, 3.4 µm pixels, 12 bit) via a Nikon 0.6× TV

lens adapter. For scanning probe experiments, bespoke LED

ring PCBs were fabricated using a Ø13 mm closed ring of

24× SMD0603 emitters (Kingbright, λpeak 515 nm, �λ1/2 30

nm, Fig. 9D) and a Ø14 mm notched ring of 13× SMD1206

emitters (Kingbright, λpeak 515 nm, �λ1/2 30 nm, Fig. 9G,

10). LEDs were driven by a regulated constant-current supply

and mounted inside the SICM Faraday cage using a simple

bespoke positioner (Fig. 9C).

Quantitative image analysis

To quantitatively compare performance of condenserless LED

phase contrast with standard commercial approaches I have

adopted the method of Vainrub to obtain an approximation

to the modulation transfer function (MTF) through imag-

ing of a transmission sample containing a wide range of

spatial frequencies (Vainrub, 2008). A commercial CD-ROM

disc (original, not CD-RW), containing open ‘pits’ and closed

‘lands’ of the appropriate size regime (inter-track distance

1.6 µm), was imaged under identical conditions under either

LED or condenser-based illumination. Images were imported

into ImageJ (U. S. National Institutes of Health, Bethesda,

http://imagej.nih.gov/ij/) and representative line profiles as

well as Fast Fourier Transform (FFT) of 1024 × 1024 pixel

subsets were extracted (Fig. 5C, D) and compared across a

range of objective magnifications and numerical apertures

(Fig. 5E).

Scanning ion conductance microscopy (SICM)

Cells were mounted in glass-bottomed Petri dishes inside the

Faraday cage of the SICM instrument on the stage of an in-

verted microscope (Nikon TiEclipse). The SICM signal was

referenced to a pair of AgCl electrodes, inserted into both nano-

electrode and bath. In these experiments lower-resolution im-

ages were acquired using a shutterless CMOS camera (DCM35,

OpticStar, Manchester, UK) to avoid vibration. Hopping-mode

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society., 257, 8–22
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Fig. 4. Axial optimisation of LED ring diameter in the objective BFP. (A) Schema of axial adjustments to match phase ring geometry. An identical ring

Ø44 mm of LEDs at three different axial positions produces images in the BFP at linearly varying diameters. At one particular position the ring overlies

the phase ring of 40×/0.65NA apodised Ph2 objective (green), while placing the ring closer to or further away from the objective mismatches the ring

to the phase ring in the objective. (B) BFP image with LED ring positioned farther than optimal (160 mm from sample), thus ring appears smaller than

the phase ring in the BFP. (C) Corresponding field plane in B, showing low transmitted brightfield contrast. (D) BFP image showing Ø44 mm LED ring

matched to phase ring diameter (at a distance of 80 mm from the sample). (I) Corresponding field plane image to H showing excellent phase contrast.

Scale bar 100 µm. (J) BFP image showing LED ring closer than optimal (50 mm from sample), producing a ring image larger than the phase ring. (M)

Corresponding field plane image to L.

SICM scans were obtained to show 3D morphological fea-

tures of cells using either sample-scanning (ICNanoS) or

pipette-scanning (IPNanoP) as described according to the

experiment. 2D and 3D renderings of data sets were pro-

duced using commercial software (SPIP, Image Metrology,

Hørsholm, Denmark).

Prepared slides

Fixed, clarified sample slides of butterfly head (Vanessa Ata-

lanta) and hedgehog flea (Archaeopsyllus erinacei) were ob-

tained, mounted in Canada balsam, courtesy of the School

of Biology; Biological Photography and Imaging collection.

Results

The condenser-free phase contrast illumination schema pre-

sented here (Fig. 1B) exploits simple lens optics to ensure that

a ring of LED sources placed at some distance from the sample

opposite the objective lens produces an image of the emitters in

the objective BFP. Inspecting the BFP of any microscope using

a Bertrand lens or phase telescope provides an ‘infinity’ view

through the objective of the area above the sample, which is

very convenient for locating and centring electrodes in elec-

trophysiology and scanning probe microscopy. It was found

in this study that insertion of a ring of individual LED sources

above the sample produced an image of the ring in the BFP

(Fig. 1B, inset). Provided the distance from objective to LED ring

exceeds the focal length of the objective lens, light emanating

from each emitter is captured by the objective and brought

into sharp focus in the BFP. Manipulation of the illuminating

ring orthogonal to the optic axis produces XY translation of

its BFP image (Fig. 2), while alteration of objective-ring dis-

tance along the optic axis produces alteration in the apparent

diameter of the ring in the BFP through perspective (Fig. 4A).

Multiple rings of varying diameters may be simultaneously

implemented to supply phase contrast to suit various objec-

tives which, when lit in turn, will only provide phase contrast

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society., 257, 8–22
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Fig. 5. (A) BFP image of conventional condenser-based annular phase contrast illumination in a 10×/0.3NA Ph1 objective. (B) Conventional phase

contrast illumination (condenser NA: 0.52) of fresh buccal epithelial strew. (C) Detail (pixel subset) from image in C. (D) BFP image of condenser-

free LED-based phase contrast illumination, showing Ø14 mm LED ring aligned with the phase ring of the same objective (sample distance 60 mm).

(E) Corresponding field plane image from D showing excellent Zernike phase contrast using condenser-free LED ring illumination. (F) Detail from image

in E (pixel subset). All scale bars are 50 µm.

Fig. 6. (A) Geometric generalization of condenser-free phase contrast illumination using LED rings of different diameters, positioned along the optic

axis such that identical geometry matches each to the objective phase ring. (B) BFP image showing Ø92 mm LED ring aligned with the phase ring of

a 10×/0.3NA Ph1 objective (sample distance: 405 mm). (C) Corresponding field plane image from B showing excellent phase contrast in a confluent

layer of ARPE-19 cells. (D) BFP image showing Ø44 mm LED ring aligned with the phase ring of the same objective (sample distance: 190 mm). (E)

Corresponding field plane image from F in the same location as C. (F) BFP image showing Ø8 mm LED ring aligned with the phase ring of the same

objective (sample distance: 35 mm). (G) Corresponding field plane image from F in the same location as C. Scale bar 200 µm.

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society., 257, 8–22



1 4 K . F . W E B B

Fig. 7. Generation of condenser-free phase contrast imaging across a full

range of magnifications and phase positions. (A) BFP image showing

Ø44 mm LED ring aligned with the phase ring of a 4×/0.13NA PhL

objective (sample distance: 455 mm). (B) Corresponding field plane image

from a demonstrating excellent phase contrast at 4×/0.13NA PhL, scale

bar 100 µm. (C) BFP image showing Ø44 mm LED ring aligned with

the phase ring of a 10×/0.3NA Ph1 phase contrast objective (sample

distance: 194 mm). (E) Corresponding field plane image from D, scale

bar 100 µm. (F) BFP image showing Ø44 mm LED ring aligned with the

phase ring of a 40×/0.6NA Ph2 ELWD apodised phase contrast objective

(sample distance: 80 mm). (G) Corresponding field plane image from F,

scale bar 100 µm. (I) BFP image showing Ø92 mm LED ring aligned

with a Ph3 phase ring mounted in an external turret (sample distance:

15 mm), through a 100×/1.65NA objective, using a sapphire coverslip

and matched immersion oil (n = 1.78). (E) Corresponding field plane

image from D showing condenser-free phase contrast image at extremely

high resolution, revealing detail including subtle ridging in to the cell

membrane of buccal epithelia. Scale bar 50 µm.

when illumination is matched to the phase ring in the BFP

(Fig. 3). In combination, the geometric flexibility conferred by

this condenser-free illumination scheme allows this method

to be generally applied to any conceivable range of objec-

tive magnification, numerical aperture or conventional phase

position.

It was demonstrated that by progressively misaligning the

LED ring with the objective phase ring, either in XY by transla-

tion (Fig. 2) or in Z by movement along the optical axis (Fig. 4)

that true Zernike phase contrast is produced only when opti-

mal alignment is maintained. In a uniform culture of confluent

cells it can be seen that a zone of optimal alignment is charac-

terized by a characteristic drop in intensity as the attenuating

phase ring attentuates a portion of direct-path light (Fig. 2B).

This loss in intensity is accompanied by an increase in con-

trast (shown in Fig. 2C as average pixel intensity ± standard

deviation in each vertical column of pixels). Similarly, as the

LED ring is raised or lowered, and the apparent diameter of

the ring’s image in the BFP is thus made smaller (Fig. 4B,C) or

larger (Fig. 4F,G) than the phase ring, the phase contrast effect

collapses. When correctly aligned, obtained phase contrast is

excellent (Fig. 4D,E) and compares favourably with the best

commercial systems available (Fig. 5). While sensitive to align-

ment within the BFP, the phase effect is remarkably robust to

slight misalignment of the LEDs themselves, as the large optical

leverage greatly diminishes the scale of any disturbing move-

ments within the BFP. In practice, this means that alignment

of the LEDs is possible using rudimentary manual positioning,

and is tolerant to minor imprecisions in both alignment and

tilt of the ring itself while still providing good phase contrast.

The geometric flexibility of the XY and Z adjustments de-

tailed above allows the use of a single LED ring to produce

phase contrast across different objective lenses, spanning mul-

tiple conventional phase positions (Fig. 7). Alternatively, the

defined, linear, geometric relationship between distance and

diameter at a single phase position allows phase contrast to

be produced using LED rings of several diameters (Fig. 6), pro-

vided the requisite axial adjustments are made to match the

BFP image of each ring to the phase ring inside the objective.

There appears to be minimal functional distinction between

the performance of LED rings from 8 to 92 mm in this partic-

ular example (Fig. 6), and rings of up to 160 mm in diameter

have been successfully tested (not shown).

The phase contrast effect produced appears to be true

Zernike phase contrast, created using conventional detection

optics but completely abrogating the condenser assembly. In-

spection of a wide field of illumination (Fig. 5A, horizontal

field 866 µm at 10×) demonstrates wall-to-wall uniformity

comparable to a top-flight Nikon Ti Eclipse inverted micro-

scope using conventional condenser-based phase illumination

(condenser: 0.52NA, Fig. 5B). Inspection of a representative

cell as a pixel subset within these images demonstrates func-

tional identity between the two illumination methods (inset,

Fig. 5 A,B) suggesting that, in principle, any system could

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society., 257, 8–22
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Fig. 8. Performance of condenserless phase contrast in thick samples. LED illumination (Ø44 mm) was used to perform phase contrast imaging in fresh

onion skin (thickness �100 µm) and 3D cell cultures at a range of magnifications. (A) Onion skin cells imaged at 10×/0.3NA Ph1. (B) 40×/0.6NA

Ph2, (C) 100×/1.3NA Ph3. (D–F) Individual frames from a z-stack (1 µm/step) across a layer of onion skin at 40×/0.6NA Ph2. (D) z+20 µm reveals

submembrane vesicles adjacent to the central vacuole. (E) z+60 µm reveals cell nuclei surrounded by a mobile vesicle population (see Supplementary

videos for dynamic time-lapse imaging). (F) z + 100 µm reveals a further submembrane vesicle population on the other side of the vacuole (all scale bars

50 µm). (G–I) Phase contrast imaging in a 3D culture of human rhabdomyosarcoma cells, revealing multiple overlying cell layers. (G) Upper layer of

transdifferentiated cells lies on top of the culture (z = 0 µm). (H) Deeper layer of cells and top of ‘feeder’ layer revealed at z+10 µm. (I) Nuclei and lower

attachments of ‘feeder’ layer are revealed at z+20 µm (scale bar 50 µm). See Supplementary materials for dynamic video of through-focussing within

this stack of images.

benefit from use of this illumination schema with no compro-

mise in performance. To provide a quantitative comparison

the method of Vainrub was applied (Vainrub, 2008) to extract

an approximation to the system modulation transfer func-

tion (MTF) using various objective lenses (Fig. 5D,E). Using

a sample comprising a wide range of spatial frequencies this

FFT-based approach reveals a close match between condenser-

less LED phase illumination versus commercial condenser-

mediated phase contrast (Fig. 5E). In summary the method

would appear to deliver both functionally as well as quantita-

tively equivalent images to the best commercial systems.

To evaluate the geometric generalizibility of the condenser-

free phase contrast illumination schema a wide range of objec-

tive lens magnifications and numerical apertures was tested

using a single fresh buccal epithelial sample (Fig. 7). Excel-

lent phase contrast was obtained at each of 4×/0.13NA PhL

(Fig. 7A,B), 10×/0.3NA Ph1 (Fig. 7C,D), 40×/0.6NA Ph2

(Fig. 7E,F), and 100×/1.65NA Ph3 (Fig. 7G,H). The success

obtained using such a wide range of magnifications (4–100×),

numerical apertures (0.13–1.65) and phase positions (PhL-

Ph3) strongly implies that the condenser-free phase contrast

schema is completely generalizable to cope with the full range

of optical microscope objectives in general use. Normally very

high NA objective lenses require correspondingly high-NA

condenser assemblies to achieve phase contrast, which are

both expensive and very restrictive in terms of space above

the sample. The same schema has been demonstrated suc-

cessfully using a TIRF lens 60×/1.49NA (Fig. 11) as well as a

specialized ultrahigh-NA objective lens (100×/1.65NA Olym-

pus) using a sapphire coverslip and high-index immersion oil

(n = 1.78). Excellent phase contrast to the subtle membrane

and subcellular features was obtained in buccal epithelia us-

ing these demanding objectives (Fig. 7G,H) in combination

with an external phase ring (Ph3). Buccal epithelia, while
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Fig. 9. (A) Scanning ion conductance microscopy on an inverted microscope. A glass nanoelectrode is moved under closed-loop feedback referenced to

current leaving the tip, and is scanned in XYZ to build an image. The electrode holder and motion control apparatus preclude a condenser assembly.

(B) Illumination schema for condenser-free phase contrast under SICM such that a ring of LEDs, (1206 SMD, 13 emitters, Ø14 mm), notched to admit a

scanning probe, surrounds the electrode. (C) LED illuminator PCB in working position around the electrode of the SICM instrument (ICNanoS, Ionscope

Inc, Herts, UK). (D) Confluent ARPE-19 cells imaged in phase contrast at 10×/0.3NA Ph1 using a closed LED ring (0603 SMD, 24 emitters, Ø13 mm

(inset), sample distance: 57 mm). (E) ARPE-19 cell under condenser-free phase contrast illumination (40×/0.6NA ELWD Ph2) using a notched ring

(1206 green SMD, 13 emitters, Ø14 mm (BFP inset), sample distance: 25 mm, scale box 40 µm). (F) SICM image, using sample-scanning in hopping

mode. (G) Same cell area as d imaged using a notched LED ring. (H) ARPE-19 cell under condenser-free phase contrast observation as in D, but with

electrode inserted (�), phase contrast imaging is not compromised (BFP Inset). (i) 3D rendering of dataset in F. Reproduced with permission from Webb

et al. (2013).

excellent test subjects for phase contrast imaging in general,

are axially rather thin samples. To verify performance of the

condenserless LED schema in thick samples, images were ob-

tained from the very thick (100 µm) cell layers of fresh onion

skin (Fig. 8A–F). Confluent cultures of human rhabdomyosar-

coma cell line TE671, which spontaneously forms multi-

layered cultures in vitro (Fig. 8G–I), were also imaged. See

also Supplementary material for dynamic images from these

preparations.

In a parallel series of experiments, the effect of missing LED

sources within the ring was tested with the aim of creating a

‘notch’ to fit the illuminator around the electrode of a SICM

which, due to its construction and mounting to the inverted

microscope frame, precludes the use of a phase contrast con-

denser assembly (Fig. 9A). Two similarly sized bespoke PCBs

were fabricated and each tested against the performance of a

commercial phase contrast microscope. The performance of a

fully closed ring (Fig. 9D) appeared functionally indistinguish-

able from the commercial condenser, while the omission of

emitters covering �30° of the ring also produced functionally

equivalent images (Fig. 9G), suggesting that the incorpora-

tion of the notch does not appreciably degrade imaging per-

formance while admitting a scanned probe for simultaneous

multimodal imaging.
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Fig. 10. Multimodal imaging using concurrent condenser-free phase contrast, scanning ion conductance microscopy and epifluorescence. (A) 3T3

fibroblasts under condenser-free phase contrast illumination (60×/1.49NA Ph3). Scale box 50 µm. (B) 3T3 cells from a, DNA stained with Hoechst.

Cells with condensed chromatin, as inside the box, are about to divide (�). (C) Overlay of panels A,B showing target cell in prophase. (D) Hopping-mode

pipette-scanning SICM image (ICNanoP, Ionscope Inc., Herts, UK) of boxed cell in panels A–C. (E) 3D rendering of dataset in D. Reproduced with permission

from Webb et al. (2013).

On the basis of this finding, a series of experiments was

performed using both sample-scanning (ICNanoS, Fig. 9)

and probe-scanning (ICNanoP, Fig. 10) SICM systems (Ion-

scope Ltd). The bespoke PCBs were mounted by a miniature

positioning system to fit around the scanning electrode

(Fig. 9B) and the entire assembly fitted inside the Faraday

cage built around the SICM system (Fig. 9C). It was found that

not only was excellent phase contrast obtained when the LEDs

were appropriately aligned with the phase ring (Fig. 9E) but

also that inserting the electrode and bringing it into working

position with the sample did not appreciably compromise the

imaging performance (Fig. 9H). Combined multimodal imag-

ing was demonstrated by performing hopping-mode scans of

ARPE-19 cells (Fig. 9F), using sample scanning to produce ren-

dered images of 3D cell morphology (Fig. 9I). To test whether

moving the electrode in the XY plane was deleterious to phase

contrast imaging further experiments were performed using

hopping-mode pipette scanning (Fig. 10). Expanding cultures

of 3T3 fibroblast cells were fixed to freeze cytokinesis, and

DNA was labelled with Hoechst stain to reveal cells in the

process of dividing (Fig. 10B). Multimodal images (parallel

SICM, epifluorescence, Zernike phase contrast) were obtained

from individual dividing cells using a TIRF lens (Fig. 10A–

C) and rendered to reconstruct cell morphology (Fig. 10D,E)

with excellent observability throughout in both phase con-

trast and epifluorescence at 60×/1.49NA. This combination

of condenser-free Zernike phase contrast and SICM imaging

has been briefly reported elsewhere (Webb et al., 2013).

Darkfield and Rheinberg illumination

As a natural extension to the condenser-free phase illumina-

tion schema outlined above, the possibility of condenser-free

darkfield illumination was explored using LED rings. Lowering

the LED ring below the phase contrast position resulted in pro-

gressively increasing diameter of its BFP image until the LED

emitters moved ‘outside’ the BFP (Fig. 11A). A comparison

schema is shown in Figure 11(B), showing how light entering

the objective occupies such an extreme angle that it doesn’t

transit the objective, losing itself into the darkened wall of the
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Fig. 11. Exploiting condenser-free geometric adjustment to yield both phase contrast and darkfield contrast in a preparation of fresh buccal epithelial cells

by shifting the axial position of the LED ring. (A) Back focal plane schema for phase contrast and darkfield illumination, showing the relative positioning

of LED ring for phase contrast (�) and darkfield illumination (dashed circles), where the ring is lowered such that LEDs are not visible on inspecting the

BFP. (B) Illumination schema for phase contrast (white) and darkfield illumination (orange) using a single ring of LEDs. Light scattered by the sample

enters the optical path (dashed lines) to create condenser-free darkfield contrast. (C) Brightfield image at 40×/0.6NA demonstrating low transmitted-light

contrast in buccal epithelia. (D) Condenser-free phase contrast image at 40×/0.6NA Ph2 from the same location as C. (E) Darkfield image of same field in

C,D showing excellent condenser-free darkfield contrast (scale bar 100 µm). (fF) Brightfield image at 40×/0.6NA demonstrating low transmitted-light

contrast in a diatom strew. (G) Condenser-free phase contrast image at 40×/0.6NA Ph2 from the same location as F. (H) Darkfield image of same field in

F, G showing excellent condenser-free darkfield contrast (scale bar 100 µm).

objective tube (solid lines Fig. 11B). In the absence of a sam-

ple, a pure black field is seen; when a sample is introduced

light scatter from small features and discontinuities results in

light entering the objective lightpath (dashed lines, Fig. 11B).

Buccal epithelial (Fig. 11C–E) and diatom strews (Fig. 11F–H)

were examined using condenserless brightfield, phase con-

trast and darkfield. Tiny vesicular bodies, edge discontinuities

and other subcellular features of the cells were easily visual-

ized, with excellent contrast against a pure black field. In the

absence of the sample, the dark field was completely blank

(not shown).

In addition to darkfield, it was interesting to exploit this

condenser-free schema to implement combinatorial tech-

niques such as Rheinberg illumination, where colour contrast

is obtained by combining coloured transmitted illumination

with darkfield illumination in a contrasting colour (Fig. 12B).

Using a single diffused central cyan LED as brightfield illumi-

nation source, along with a ring of orange LEDs in darkfield

configuration (Fig. 12A), it was possible to obtain sequential

condenser-free darkfield and brightfield images (inset). Using

both LED sources in parallel resulted in single-shot Rhein-

berg illumination images (Fig. 12B,C) which could be adjusted
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Fig. 12. Condenser-free Rheinberg illumination. (A) Schema of LED-based condenser-free Rheinberg illumination, using a single central diffused LED for

transmitted brightfield imaging (cyan) in parallel with a contrasting ring of LEDs in the darkfield position (orange). (B) Condenser-free Rheinberg image

of a butterfly head (Vanessa atalanta) taken using orange LED ring in darkfield and cyan in brightfield (inset). (C) Flexibility in colour contrast conferred

by using RGB LEDs in both brightfield and darkfield positions in b at 4×/0.13NA (scale bar 200 µm).

arbitrarily to match varying objectives. To further demon-

strate the potential of the method RGB LEDs were used in each

of the central and ring positions, allowing independent adjust-

ment of the colours in both brightfield and darkfield to produce

arbitrary Rheinberg colour contrast (Fig. 12C).

As a final demonstration of simultaneous multimodal

condenser-free contrast for transmitted-light microscopy a

system was constructed using two LED rings and a single cen-

tral LED, allowing the satisfaction of brightfield, darkfield and

phase contrast according to the illustration (Fig. 13B) and ge-

ometric schema shown in Figure 13(A). By illuminating each

ring in turn, high quality images were produced in sequence

of phase contrast (Fig. 13C), darkfield (Fig. 13C) and Rhein-

berg illumination (Fig. 13G). Turning on all three LED sources

together produced an image unlike any of the others alone

(Fig. 13E). This image represents the simultaneous evocation

of brightfield, darkfield and phase contrast in a multimodal

regime whose potential may be considerable in challenging

samples, since the spectral content and relative intensity of

each component may be arbitrarily and flexibly manipulated.

Textural and morphological detail is thus considerably en-

hanced, yielding tunable, visually compelling contrast.

Discussion

Phase contrast microscopes have become ubiquitous

workhorses in the biomedical research lab, from basic cell cul-

ture observation systems to advanced research microscopes.

While the technique is not expensive, in comparison with

advanced methods such as differential interference contrast

(DIC), it requires multiple optical and mechanical components

to achieve the requisite Köhler conjugation of planes and align-

ment of the phase annulus with the phase ring. The key ob-

servation of the current work is that so long as the image of a

ring of LED emitters appears in the BFP of the objective, con-

jugate and aligned correctly with the phase ring, the result is

true Zernike phase contrast. Excellent contrast is obtained de-

spite the absence of a field diaphragm, even in thick samples

where multiple layers of cells are resolvable within 3D cell

cultures (Fig. 8G–I) and subcellular dynamics are visualizable

even in 100 µm thick onion cells at a range of magnifications

up to 100×, 1.3NA (Fig. 8A–F, see also Supplementary mate-

rials). The condenser-free schema, using the objective itself to

project the LED emitters into the BFP, can be flexibly adapted

using simple geometry to a range of objective magnifications

and conventional phase positions.

The method has been tested with phase contrast objectives

from all four major manufacturers of commercial systems,

and has been found to work equally well for each provided

attention is paid to proper alignment by observing the BFP. A

major advantage of the method, along with its relative sim-

plicity of design, alignment and flexibility between objective

lenses, lies in the significantly enhanced working distances
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Fig. 13. Multimodal condenser-free imaging conferred by LED illumina-

tion schema. (A) Schema showing the implementation of parallel bright-

field, phase contrast and darkfield imaging using condenser-free LED il-

lumination. Matching the appropriate geometry allows either sequential

or simultaneous imaging using separate transmitted brightfield (cyan),

phase contrast (white) and darkfield (orange) illumination. (B) Combina-

torial condenserless illumination system in use for Rheinberg illumina-

tion. Note the simple positioning retort, and extended working distance.

(C) Condenser-free phase contrast image of hedgehog flea (Archaeopsyllus

erinacei) at 4×/0.13NA. (D) Condenserless darkfield image (using white

LEDs) of sample in (C). (E) Brightfield image obtained of sample in c us-

ing central diffused cyan LED. (F) Orange LED in darkfield configuration

obtained from sample in C. (G) Rheinberg illumination created by simul-

taneous illumination with brightfield (cyan) and darkfield (orange) LEDs.

(H) Simultaneous phase contrast, transmitted brightfield and darkfield

illumination of sample in (C), using all three LED systems simultaneously

(scale bar 500 µm).

possible between the illumination assembly and the sample.

For comparison, images in Figures 6 (B) and (C) were acquired

using a Ø92 mm ring with a sample distance of 180 mm;

acquiring a comparable image using standard commercial

phase condenser would provide a working distance of less than

50 mm.

The condenser-free phase contrast illumination scheme

elaborated in this paper (Fig. 1B) is fully compatible with

existing phase contrast optics, including apodised objectives,

as well as being potentially generalizable to random-source,

quantitative phase stepping and other allied phase methods.

It will be interesting in future papers to investigate whether a

similar approach, but lighting only one or several emitters at

a time, could further satisfy the requirements for the aperture-

scanning phase contrast microscope embodied by Ellis using

a vibrating optical fibre and moving phase ring (Ellis, 1988).

Replacing the scanned components with a fixed ring of inde-

pendent emitters lit in concert with a spatial light modulator

may provide such a system free of moving parts. Similarly,

the advanced diffraction tomography recently implemented

using lasers scanned via the condenser assembly (Fiolka et al.,

2009) and the full-NA, randomized phase contrast embodied

by Maurer may be tractable using this simplified, condenser-

free approach (Maurer et al., 2008).

In addition to visible light, there would seem to be no barrier

to obtaining condenser-free phase contrast in other regions

of the electromagnetic spectrum employing either aperture

scanning or arrays of independent emitters of X-rays, UV or

the infrared. The simplified optical design may make possible

both phase and darkfield contrast in these exotic wavebands

without the need for diffractive or other elaborate condenser

optics (Neuhausler & Schneider, 2006). Condenser-free imag-

ing should thus reduce the complexity and cost of such systems

in future, as well as provide for flexibility in geometric adjust-

ment – a nontrivial goal to achieve in these regimes (Kimura

et al., 2013).

It is possible that the chosen cell samples inherently mask

any small artefacts induced by omission of emitters or, by anal-

ogy, of the discretization of the ring into multiple independent

sources. Analysis of any such effects awaits a full theoretical

treatment of the schema. The current work convincingly ar-

gues for functional equivalence in the hands of the researcher

pursuing multimodal imaging with scanning probes, address-

ing cells with electrodes, or requiring additional access to the

preparation.

Interestingly, it was not found necessary for condenser-free

phase contrast to angle the emitters of the LEDs towards the

objective lens, even at very high NA, due to the wide pseudo-

Lambertian emission of ‘white’ phosphor-coated LEDs. No at-

tempt was made to vary the angle of LED emission in the exper-

iments presented. Directing the centre of each emitter towards

the objective was found to increase the amount of light enter-

ing the imaging system, as expected from their emission pro-

file imposed by the phosphor coating (emission angle 120°,

C© 2014 The Author. Journal of Microscopy published by John Wiley & Sons, Ltd on behalf of the Royal Microscopical Society., 257, 8–22



C O N D E N S E R - F R E E C O N T R A S T M E T H O D S 2 1

not shown), at the cost of more complex fabrication. Some

experiments employing bespoke PCB’s (Fig. 9, 10) used single-

wavelength LEDs fitted with individual ‘collimating’ lenses

(emission angle 60°), which did not detrimentally affect per-

formance and resulted in greater light throughput due to the

larger fractional solid angle captured. The apparent size of

the LED emitters in the BFP is commensurately diminished

by increasing the distance from the sample, as predicted by

perspective. This does not appreciably decrease image quality,

however it is noted that the captured light intensity is dimin-

ished with distance due to a diminution of solid angle entering

the objective. Modern, intense LED sources largely negate this

issue by providing sufficient light flux, the uncaptured fraction

of which further provides a useful work light in and around

the preparation.

Using the equipment available it was not possible to obtain

darkfield at higher magnifications than 40×, since the angu-

lar requirements of annular darkfield in objectives of NA > 1

could not be met due to refraction from the upper coverslip.

The surface meniscus prevented correct alignment when this

coverslip was omitted. Condenser-free darkfield illumination

in very high-NA objectives may be possible in future using

an immersed ring illuminator without requiring expensive

and rare mirror-based darkfield condenser equipment. Inter-

estingly it was possible to satisfy the phase contrast regime

of a specialized Olympus objective lens (100×/1.65NA) on a

Nikon microscope body, despite the differences in tube lens

length, provided the external phase ring was made conjugate

with the image of the LEDs. This ability to match phase il-

lumination to arbitrary specialized or antiquated equipment

is a particular strength of the method, and may allow resur-

rection or hybridization of dormant equipment, repurposing

within bespoke assemblies or the refurbishment and robus-

tification of microscopes for deployment in the developing

world.

The integration of several allied contrast methods into a sin-

gle instrument composed of one or more rings complemented

with central LED illumination further promises to allow mul-

timodal or combinatorial imaging, several configurations of

which have been recently demonstrated but requisite illu-

mination system using conventional imaging is highly spe-

cialized and complex (Piper & Piper, 2012a, 2012b, 2012c,

2013a, 2013b). Using the simple system detailed here, the

intensity and spectral composition of each illuminating com-

ponent is easily and arbitrarily variable to bring out the best in

particular samples. Potential embodiments using individual

LEDs or short segments of the ring would provide analogous

illumination to so-called ‘relief contrast’, useful to improve

contrast in thick samples (Piper, 2007). By sequentially mov-

ing these individual or grouped sources around the ring, with

complementary scanning phase element, it may be possible to

achieve aperture scanning in the manner of Ellis (Ellis, 1988)

while eliminating several degrees of complexity. It should also

be noted that polarization of each individual emitter may allow

a very simple radially polarized beam to be generated, which

may be of use in highlighting birefringent structures within

certain samples (Oldenbourg, 1996).

Conclusion

Condenser-free transmitted-light contrast enhancement by

Zernike phase contrast and darkfield microscopy has been

demonstrated using simple rings of LED sources. It is to be

hoped that application of this approach will result in highly

efficient and convenient illuminators for microscopy. It seems

clear that this condenser-free illumination schema is general

in nature. In principle the approach can be applied to any

sample to which conventional phase contrast illumination

is amenable; including either upright, inverted, bespoke or

multimodal imaging systems. The principal advantages are

the flexibility of geometric adjustment, conferring either large

working distances between illuminator and stage as well as the

ability to miniaturize the illumination system for highly com-

pact microscopes of the future. Phase contrast microscopes

will be greatly simplified in terms of alignment, while also

providing for large working distances and arbitrary illumi-

nation spectra. Geometric flexibility will also allow matching

of phase contrast or darkfield illumination to any particular

objective lens or phase position, even if complementary equip-

ment is no longer available or not supported by any particu-

lar microscope. In addition, there is little complexity or cost

burden associated with implementing multiple illuminating

structures in parallel. These may be sequentially or simulta-

neously lit to provide phase contrast, darkfield, brightfield, or

any combination thereof. In principle the method is poten-

tially applicable at any waveband across the electromagnetic

spectrum. Condenser-free contrast enhancement using mul-

tiple independent illumination sources thus has the potential

to increase the scope for biological imaging in labs without

access to large amounts of funding or equipment.
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Supporting Information

Additional Supporting information may be found in the online

version of this article at the publisher’s website:

“Onion skin z stack, 40×, 1µm steps, 110µm thick.mp4”. Shows

an axial (z) focal series at 40µ/0.6NA Ph2, 1 µm per step,

of 110 µm total thickness. The dynamics of submembrane

vesicular pools is visualized throughout the full axial scan in

excellent phase contrast.

“Onion skin subcellular dynamics, 100×, timelapse 5 s im-

age.mp4”. Shows a dynamic picture of vesicular stream-

ing around the nucleus within a single onion skin cell at

100×/1.3NA Ph3, 5s/image. Excellent phase contrast is ob-

tained at the plane of focus, with a clear view of subcellular

dynamics at an imaging depth of 20 µm inside the sample.

“Rhabdomyosarcoma cells, 60× z stack 0.5 µm steps.mp4”.

Shows an axial (z) focal series through a multi-layered 3D

cell culture of human rhabdomyosarcoma cells (TE671) at

60×/1.4NA Ph3, at 0.5 µm/step. A clear view is obtained

throughout the culture (total thickness 40 µm), showing

clearly the populations of cells which overlie layers beneath.
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