

Liu, M. Maureen and Davey, John W. and Jackson, Daniel J. and Blaxter, Mark L. and Davison, Angus (2014) A conserved set of maternal genes? Insights from a molluscan transcriptome. International Journal of Developmental Biology, 58 . pp. 501-511. ISSN 0214-6282

Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/30007/1/ft501%20%283%29.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

- Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners.
- To the extent reasonable and practicable the material made available in Nottingham ePrints has been checked for eligibility before being made available.
- Copies of full items can be used for personal research or study, educational, or notfor-profit purposes without prior permission or charge provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
- · Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: http://eprints.nottingham.ac.uk/end user agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

Int. J. Dev. Biol. 58: 501-511 (2014)

doi: 10.1387/ijdb.140121ad

A conserved set of maternal genes? Insights from a molluscan transcriptome

M. MAUREEN LIU1,2, JOHN W. DAVEY3,4, DANIEL J. JACKSON5, MARK L. BLAXTER3,6 and ANGUS DAVISON*,1

¹School of Life Sciences, University of Nottingham, University Park, Nottingham, UK, ²Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK, ³Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK, ⁴Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK, ⁵Courant Research Centre for Geobiology, University of Göttingen, Göttingen, Germany and ⁶Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, UK

ABSTRACT The early animal embryo is entirely reliant on maternal gene products for a 'jump-start' that transforms a transcriptionally inactive embryo into a fully functioning zygote. Despite extensive work on model species, it has not been possible to perform a comprehensive comparison of maternally-provisioned transcripts across the Bilateria because of the absence of a suitable dataset from the Lophotrochozoa. As part of an ongoing effort to identify the maternal gene that determines left-right asymmetry in snails, we have generated transcriptome data from 1 to 2-cell and ~32-cell pond snail (Lymnaea stagnalis) embryos. Here, we compare these data to maternal transcript datasets from other bilaterian metazoan groups, including representatives of the Ecydysozoa and Deuterostomia. We found that between 5 and 10% of all L. stagnalis maternal transcripts (~300-400 genes) are also present in the equivalent arthropod (Drosophila melanogaster), nematode (Caenorhabditis elegans), urochordate (Ciona intestinalis) and chordate (Homo sapiens, Mus musculus, Danio rerio) datasets. While the majority of these conserved maternal transcripts ("COMATs") have housekeeping gene functions, they are a non-random subset of all housekeeping genes, with an overrepresentation of functions associated with nucleotide binding, protein degradation and activities associated with the cell cycle. We conclude that a conserved set of maternal transcripts and their associated functions may be a necessary starting point of early development in the Bilateria. For the wider community interested in discovering conservation of gene expression in early bilaterian development, the list of putative COMATs may be useful resource.

KEY WORDS: maternal to zygotic transition, mollusk, MBT, MZT, Spiralia

Introduction

Cell division requires that genome replication and assortment are achieved while cellular function is maintained. In somatic cells, there is continuity of cytoplasm from mother to daughter, so that new nuclei take up the reins of cellular control as transcription of their genomes is resumed after division. In contrast, in the formation of a new organism the early zygote has to perform a similar feat of taking control of a new cell, but the task is made more complex because the gametic pronuclei must be reprogrammed

and coordinated before transcription initiation. In animal embryos the zygotic cytoplasm, provisioned by the mother, has been found to contain all the machinery necessary to drive the first stages of embryonic development. This maternal provisioning has been demonstrated through the blocking of transcription from the zygotic genome (Baroux *et al.*, 2008). In transcriptionally-blocked

Abbreviations used in this paper: bp, base pair; COMAT, conserved maternal transcript; GO, gene ontology; MBT, midblastula transition; MZT, maternal-zygotic transition.

Supplementary Material (one figure and 4 tables) for this paper is available at: http://dx.doi.org/10.1387/ijdb.140121ad

Accepted: 18 September 2014.

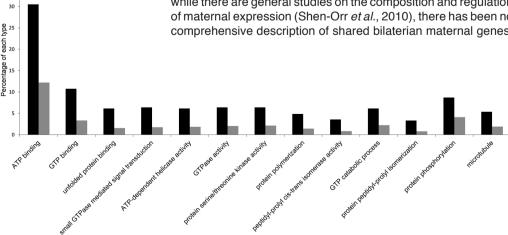
ISSN: Online 1696-3547, Print 0214-6282

^{*}Address correspondence to: Angus Davison. School of Life Sciences, University of Nottingham, University Park, Nottingham, UK. E-mail: angus.davison@nottingham.ac.uk - web: http://angusdavison.org

embryos, maternal products are often sufficient to drive the first rounds of cell division, and even the first phases of differentiation (Baroux et al., 2008).

The switch between maternal and zygotic control is called the maternal-zygotic transition (MZT), or the midblastula transition (MBT). and spans the period from fertilisation to the point where maternally provisioned factors are no longer sufficient to deliver normal development (Baroux et al., 2008, Stitzel and Seydoux, 2007, Tadros and Lipshitz, 2009). The MZT is associated with the activation of the zygotic genome. In animal species where finescale analyses have been performed, zygotic gene activation has been modelled as two phases (Baroux et al., 2008, Tadros and Lipshitz, 2009). An early phase, involving a few loci, is associated with degradation of maternal proteins and mRNAs, while the second phase is much more extensive and includes genes involved in a wide range of biological processes (Schier, 2007, Tadros and Lipshitz, 2009). Initial, albeit limited, zygotic genome activation has been identified as early as the fertilised zygote (in the paternal pronuclei of mouse, sea urchin and the nematode Ascaris suum), and as late as the 256-cell embryo stage (in Xenopus) (Baroux et al., 2008, Tadros and Lipshitz, 2009, Wang et al., 2013).

Experimental evidence indicates that the MZT is tightly regulated, and includes the birth of zygotic RNAs and the death of maternal RNAs (Schier, 2007, Stitzel and Seydoux, 2007, Tadros and Lipshitz, 2009), taking place at multiple levels and in a controlled and managed manner. Thus, while many embryos are able to transcribe experimentally introduced DNA, the early embryonic genome is maintained in a state that is incompatible with transcription. Changes in chromatin structure, combined with a dilution of factors such as transcriptional repressors by cell division, allow for the initiation of zygotic transcription. Nonetheless, despite the complexity, it has been suggested that the MZT can be simplified into two interrelated processes: the first whereby a subset of maternal mRNAs and proteins is eliminated, and the second whereby zygotic transcription is initiated (Schier, 2007, Tadros and Lipshitz, 2009).


In zebrafish, maternally-provisioned products from just three genes, Nanog, Pou5f1 and SoxB1 (known for their roles in embryonic stem cell fate regulation), are sufficient to initiate the zygotic developmental program and to induce clearance of the maternal program by activating the expression of a microRNA (Lee et al.,

2013, Leichsenring et al., 2013). In Xenopus, increasing nuclear to cytoplasmic ratio is believed to be the controlling element in the switch, with just four factors regulating multiple events during the transition (Collart et al., 2013). However, the generality of these findings remains unknown. Furthermore, while the regulation of RNA transcription (gene expression) has received considerable attention (primarily due to the advances in nucleic acid sequencing technologies), protein expression and turnover rates remain relatively under-studied (Stitzel and Seydoux, 2007). Our knowledge of maternal-to-zygotic transcription phenomena is also largely restricted to the dominant model animal species, with relatively few experimental studies existing for other metazoans.

Although there has been a recent upsurge in interest in the maternal control of embryonic development, especially the MZT (Benoit et al., 2009, De Renzis et al., 2007, Lee et al., 2013, Leichsenring et al., 2013, Tadros and Lipshitz, 2009), the study of maternal factors has played an important part in the history of embryology and development, particularly in the model animal taxa Drosophila melanogaster (phylum Arthropoda from superphylum Ecdysozoa), Caenorhabditis elegans (Nematoda, Ecdysozoa), Strongylocentrotus purpuratus (Echinodermata, Deuterostomia), Mus musculus, Homo sapiens and Danio rerio (Chordata, Deuterostomia) (Gilbert, 2006). Missing from this roster of models are representatives of "the" superphylum Lophotrochozoa, a morphologically diverse group that includes the Mollusca and Annelida. Two annelid models, Platynereis dumerilii and Capitella telata, are becoming well established (Dill and Seaver, 2008, Giani et al., 2011, Hui et al., 2009), but model molluscs have been developed for their potential to answer particular questions (e.g. asymmetric distribution of patterning molecules during development; Lambert and Nagy, 2002), or their association with a particular disease (e.g. schistosome transmitting Biomphalaria; Knight et al., 2011).

As part of an ongoing effort to identify the maternal gene that determines left-right asymmetry in molluscs (Harada et al., 2004, Kuroda et al., 2009, Liu et al., 2013), we are developing Lymnaea stagnalis pond snails as a model because they are one of the few groups that exhibit genetically-tractable, natural variation in their left-right asymmetry, or chirality, and so are ideal systems in which to understand why chirality is normally invariant, yet also pathological when it does vary (Schilthuizen and Davison, 2005). In generating a maternal transcriptomic resource for this species (the chirality-determining gene is maternally expressed; Boycott and Diver, 1923, Sturtevant, 1923), we were surprised to discover that while there are general studies on the composition and regulation of maternal expression (Shen-Orr et al., 2010), there has been no comprehensive description of shared bilaterian maternal genes.

Fig. 1. Enrichment of Gene Ontology terms in the conserved maternal transcript (COMAT) subset. Highest level GO terms that show the greatest enrichment in COMAT compared with the L. stagnalis 1 to 2-cell transcriptome. Only those comparisons with P < 1E-5 are shown. Black shading: percentage of each type in COMAT. Grey shading: percentage of each type in the 1 to 2-cell transcriptome.

One reason may be that no maternal gene resource exists for the Lophotrochozoa, Spiralia or Mollusca. Instead, previous work has described early developmental transcription in the molluscs *Ilyanassasp.* (Lambert *et al.*, 2010) and *Crepidula fornicata* (Henry *et al.*, 2010), but using combined developmental stage libraries. Here we compare a new 1 to 2-cell *L. stagnalis* transcriptome (presumed maternal) to maternal transcriptomes from selected ecdysozoan and deuterostome species to identify conserved maternally provisioned genes across the Bilateria.

Results

L. stagnalis embryonic transcriptome sequencing and assembly

Roche 454 sequencing of the two *L. stagnalis* libraries (1 to 2-cell and ~32-cell) generated 192,758 and 218,893 reads respectively, of which 163,004 and 192,552 were 150 bases or longer. The 1 to 2-cell assembly generated more contigs than the ~32-cell assembly, despite having fewer sequences (Table 2). A GC content of 36% for both libraries was approximately the same as previously reported for *L. stagnalis* (Adema *et al.*, 2006, Liu *et al.*, 2013). Merging the two assemblies produced by Newbler

and MIRA resulted in fewer, longer contigs. The 1 to 2-cell library generated 11,212 contigs, and the ~32 cell library 9,497 contigs.

Comparison between maternal transcriptomes

We compared the two developmental transcriptomes of *L. stagnalis* to each other and to six published maternal transcriptomes of roughly comparable depth derived from four deuterostomes and two ecdysozoans (Table 3; Aanes *et al.*, 2011, Azumi *et al.*, 2007, Baugh *et al.*, 2003, De Renzis *et al.*, 2007, Evsikov *et al.*, 2006, Grondahl *et al.*, 2010). For *M. musculus* and *C. elegans*, maternal-only transcripts (present in the oocyte or egg but not in developing embryos) and maternal-zygotic transcripts (found in both oocyte or egg, and after zygotic transcription has started) have been defined. For the mouse, 2,834 genes were maternal-only and 1,796 maternal-zygotic, while for *C. elegans* 2,794 were maternal-only and 2,285 maternal-zygotic (Baugh *et al.*, 2003, Evsikov *et al.*, 2006).

By reciprocal tBLASTx analyses, we identified putatively orthologous genes present in each of the seven species. About one quarter of each of the other maternal transcriptomes, between 900 and 1,900 genes, overlapped with the maternal transcriptome of the pond snail, *L. stagnalis* (Table 4). Surprisingly, 481 of the *L.*

stagnalis genes had putative orthologues in all seven taxa (Supplementary Table 1). These 481 orthologues in fact probably represent 439 or fewer distinct genes, as BLASTx analyses revealed that some matched the same sequence in the NCBI nr protein database. This result implies that 5-10% of the maternal transcriptome is conserved and shared across all of the representative taxa (*H. sapiens* 6.1%, *M. musculus* 9.9%, *D. rerio* 10.6%, *C. intestinalis* 11.4%, *D. melanogaster* 7.0%, *C. elegans* 9.0%). We refer to this conserved set as the "conserved maternal transcriptome" (COMAT).

We compared the *L. stagnalis* 1 to 2-cell transcriptome to maternal-only transcripts and maternal-zygotic transcripts from *M. musculus* and *C. elegans* (Baugh *et al.*, 2003, Evsikov *et al.*, 2006) using tBLASTx. The *M. musculus* maternal-only data set matched 1069 *L. stagnalis* transcripts, whereas the *M. musculus* maternal-zygotic data set matched 884 *L. stagnalis* transcripts. Of the 481 COMATs from *L. stagnalis*, 219 were found in the *M. musculus* maternal-only data set and 261 in the *M. musculus* maternal-zygotic data set, indicating a relative over-representation of

Fig. 2. Visualisation of maternal gene product spatial distribution in uncleaved zygotes of Lymnaea stagnalis by whole mount in situ hybridisation. Eight maternal gene products were visualised in uncleaved zygotes relative to a negative control (β-tubulin). (A) β-tubulin is not detectable in uncleaved zygotes. A polar body is indicated by the horizontal arrow. (B) β-tubulin is clearly expressed in ciliated cells of older veliger larvae. (C) contig_2724: ATP-dependent RNA helicase dhx8. (D) contig_453: heat shock 70 kda protein cognate 4. (E) contig_7974: ADP-ribosylation factor 4. (F) contig_9053: proteasome alpha 6 subunit. (G) contig_579: ergic and golgi 2. (H) contig_9016: eukaryotic translation initiation factor 3 subunit i. (I) contig_8075: eukaryotic translation elongation factor. (J) contig_8318: 78 kda glucose-regulated protein.

Gene	Forward primer (5' to 3')	Reverse primer (5' to 3')
beta-tubulin	TGTGGAATGGATCCCCAACAATGTCA	TCACTCAGGAGCTTTGATACGGCTTG
c2724 ATP-dependent RNA helicase	GCAGCGGTTTCTTCCGCAATG	TTTTTCTCTCCTCTTTACTGCTG
c453 heat shock 70 kda protein	CCACTGCTGCAGCCATTGCCTA	CTGAATGAGCACCCGGGCTGA
c7974 ADP-ribosylation factor 4	CAAGGTGCAACTGCCACGCAAG	AAATCCCACCACCACCCCAAC
c9053 proteasome alpha 6 subunit	CGCGCTCGCTATGAGGCAGCTA	TCATGGTATCAGCAACACCCACA
c579 ergic and golgi 2	CGTCTGCTACAGGTGGCGGTTTG	TCCGTGGTTGATTGGCCGGTTA
c9016 eukaryotic translation initiation factor 3 subunit i	TGGTGCTGTTTGGTGCATTGATTG	AGCGGGCATCAAATTTGCCAAC
c8075 eukaryotic translation elongation factor	TACTGCGCCAAGCCATTGGTGA	CTGAAGCAGGGCATCACCAGCA
c8318 78 kda glucose-regulated protein	CGCAAAACCAGCGACATATAAGCA	TGGCTGCAGCAGTTGGCTCATT

TABLE 2

ASSEMBLY OF THE LYMNAEA STAGNALIS EMBRYO TRANSCRIPTOMES

		1 cell transcriptome				32 cell trans	criptome	ne
	Newbler 2.6	MIRA	Merged	Merged + CD-Hit	Newbler 2.6	MIRA	Merged	Merged + CD-Hit
Number of contigs	13,201	15,419	11,222	11,212	11,056	14,422	9,512	9,497
Max contig length	4,258	2,937	6,051	6,051	4,214	3,564	4,212	4,212
Number contigs >100bp >100bp N50 >100bp GC content	12,908 700 36.3	15,184 630 35.8	11,146 782 36.3	11,136 781 36.3	10,921 847 36.2	14,325 689 35.3	9,490 940 36.2	9,475 938 36.2
Number contigs >1000bp >1000bp N50 >1000bp GC content	1,685 1,390 36.4	1,375 1,317 36.8	1,869 1,407 36.4	1,861 1,406 36.4	2,081 1,520 36.3	1,843 1,424 36.5	2,245 1,533 36.3	2,234 1,533 36.3
Contigs versus SwissProt hits	27.60%	25.80%	30.90%	30.90%	33.20%	29.20%	36.20%	36.20%

TABLE 3

MATERNAL TRANSCRIPTOME DATASETS USED IN THIS STUDY

Taxonomic group / Species	Common name	Number of maternal genes	Method	Source
Deuterostomia				
Homo sapiens	human	7,470	Array analysis of metaphase II oocytes	Grøndahl et al. 2010
Mus musculus	mouse	4,643*	Sanger sequencing of oocyte cDNA library	Evsikov et al. 2006
Danio rerio	zebrafish	4,375*	ABI Solid cDNA sequences of oocyte and early embryo	Aanes et al. 2011
Ciona intestinalis	Ciona / sea squirt	4,041	Array analysis of early embryo	Azumi et al. 2007
Ecdysozoa				
Drosophila melanogaster	Drosophila / fly	6,582#	Array analysis of early embryo	De Renzis et al. 2007
Caenorhabditis elegans	C. elegans / worm	5,081*	Array analysis of early embryo	Baugh et al. 2003
Lopphotrochozoa				
Lymnaea stagnalis	snail	11,212	454 sequencing of cDNA library from 1 cell embryo	This study

^{*} more sequences listed in paper, but not all retrievable or present in database (mouse ~5,400; worm 6,042; zebrafish 4,465)

TABLE 4

COMPARISON BETWEEN MATERNAL TRANSCRIPTOMES

Species	Maternal transcriptome	Number with orthologues in Lymnaea stagnalis transcriptome	%	Unique hits	%	Reciprocal hits	%	Unique reciprocal hits	%
Homo sapiens	7,470	2,394	32%	1,852	25%	2,698	36%	1,768	24%
Mus musculus	4,643	1,954	42%	1,442	31%	2,013	43%	1,361	29%
Danio rerio	4,375	1,913	44%	1,452	33%	1,985	45%	1,328	30%
Ciona intestinalis	4,041	1,360	34%	954	24%	1,110	27%	936	23%
Drosophila melanogaster	6,582	2,501	38%	1,980	30%	2,903	44%	1,900	29%
Caenorhabditis elegans	5,081	1,662	33%	1,220	24%	1,628	32%	1,181	23%

[#] fewer sequences listed in paper compared with database (6,485)

Gene ontology analyses

About one-third (31% of the 1 to 2-cell and and 36% of the ~32-cell) *L. stagnalis* transcripts (~3,400 genes) had significant BLASTx matches in the SwissProt database (Table 2). Blast2GO was used to functionally annotate both *L. stagnalis* transcriptomes. Of the 11,212 1 to 2-cell contigs, 4,311 (38%) had a significant BLASTx match, and 3,481 (31%) were assigned GO identifiers. Similarly, of 9,497 ~32-cell contigs, 4,255 (45%) had a significant BLASTx match, and 3,425 (36%) were assigned GO identifiers. For the COMAT subset, all but one of the 481 sequences had a significant BLASTx match, and 435 (90%) were assigned GO identifiers (Supplementary Table 1).

The distribution of GO annotations into functional categories revealed no obvious qualitative differences between the 1 to 2-cell and ~32 cell *L. stagnalis* transcriptomes (Supplementary Figure 1). A Fisher's exact test, with multiple correction for false discovery rate, confirmed that no functional categories were significantly under or overrepresented between the two libraries. In comparison, the COMAT subset was enriched for many functional categories compared with the complete *L. stagnalis* 1 to 2-cell transcriptome

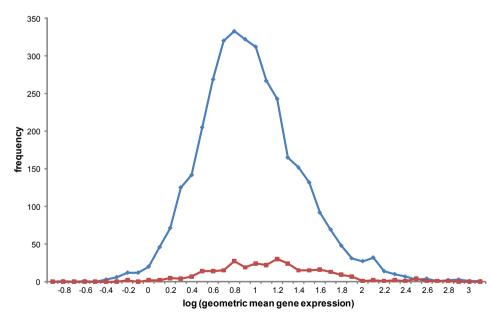


Fig. 3. Frequency histogram of relative gene expression for human housekeeping genes. Conserved maternal transcripts (COMATs, red line) tend to have a higher gene expression (measured reads per kb per million mapped reads, RPKM) than non-COMATs (blue). However, COMATs still represent several orders of magnitude of gene expression. Gene expression data from Eisenberg & Levanon (2013).

(Fig. 1; Table 5; Supplementary Table 2). In particular, GO terms associated with nucleotide metabolism and binding in general were overrepresented in the COMAT subset (Figure 1; Table 5; Supplementary Table 2). The maternal expression of a selected set of the COMAT genes was validated in one-cell zygotes using *in situ* methods (Fig. 2).

Comparison with human housekeeping genes

The COMAT subset was compared to 3802 well-characterised human housekeeping genes (Eisenberg and Levanon, 2013). All but 38 of the 481 COMAT transcripts had a significant match to this set (92%), indicating that the majority are housekeeping in function, at least in humans. In comparison, of the 4,311 *L. stagnalis* 1 to 2-cell transcripts that had a significant BLASTx match in the NCBI nr protein database, only 2,165 (50%) also had matches to the human housekeeping gene dataset. The conserved maternal gene dataset is therefore highly enriched for putative housekeeping genes (Fisher's exact test, 2156:4311 versus 443:481, *P*<0.0001).

We wished to understand if a particular subset of housekeeping genes are over-represented in the COMAT subset, or whether the genes are a random subset of all housekeeping genes. We therefore compared the GO annotations of the 3,802 human housekeeping genes against the subset of 300 human housekeeping genes (Table 6) that were found in the COMAT (a proportion of the COMATs hit the same human gene, hence fewer genes than expected). Similar GO annotations were enriched in this selected pairwise comparison compared with the COMAT as a whole (Supplementary Tables 3 and 4). At the highest level, the same first seven Molecular Functions were found in both H. sapiens housekeeping versus H. sapiens COMAT, and L. stagnalis 1 to 2-cell transcriptome versus L. stagnalis COMAT comparisons, with $P < 5E^{*}$ (Supplementary Table 4; ATP binding, GTPase activity, unfolded protein binding, protein serine/threonine kinase activity.

GTP binding, threonine-type endopeptidase activity, and ATP-dependent RNA helicase activity). Similarly, the first seven terms relating to Biological Process were also found (P < 5E-8; anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process, protein polyubiquitination, negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle, DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest, positive regulation of ubiquitinprotein ligase activity involved in mitotic cell cycle, antigen processing and presentation of exogenous peptide antigen via MHC class I, and TAP-dependent, GTP catabolic process). Thus, the overall conclusion is that the COMAT generally consists of housekeeping genes, but is particularly enriched for a particular subset, including those involved in nucleotide binding functions, protein degradation and activities associated with the cell cycle.

A final concern was that the COMATs

are simply conserved genes that tend to be highly expressed, and so are more likely to be detected in non-exhaustive sequencing experiments. We therefore used the expression data of Eisenberg & Levanon (2013) to compare the read depth of these two types of gene (COMATS and non-COMATS) in human tissues. Overall, COMATs tend to be more highly expressed, but they represent a set of genes that have a large range in their quantitative gene expression (Figure 3). Thus, while the mean gene expression in the conserved data set is higher (COMAT mean log geometric gene expression = 1.08, S.E. 0.03; non-COMAT mean = 0.90, S.E. 0.008: P < 0.001), the individual variation is considerable in both datasets (S.D. 0.51 and 0.47 respectively). Thus, a lack of depth in sequencing experiments cannot wholly explain the existence of COMATs.

Discussion

Much excitement has been caused by the discovery that the evolution of gene expression patterns seems to underpin the morphological hourglass pattern of both plants and animals (Kalinka et al., 2010. Meverowitz, 2002. Quint et al., 2012). Thus, the long-standing observation that vertebrate morphology is at its most

TABLE 5 HIGHEST LEVEL GENE ONTOLOGY TERMS ENRICHED IN THE CONSERVED MATERNAL DATASET

GO-ID	Term*	Category	FDR	P-Value after FDR	Number in test group	Number in 1 cell reference	Number in	Number not	Number not annotated reference
GO:0005524	ATP binding	F	2.83E-33	5.84E-36	119	136	255	271	1953
GO:0005525	GTP binding	F	2.62E-15	1.08E-17	42	28	70	348	2061
	· ·	F					33		
GO:0051082	unfolded protein binding	F	5.10E-11	2.75E-13	24	9		366	2080
GO:0008026	ATP-dependent helicase activity		6.39E-09	7.10E-11	24	15	39	366	2074
GO:0003924	GTPase activity	F	1.41E-08	1.61E-10	25	18	43	365	2071
GO:0004674	protein serine/threonine kinase activity	F	4.92E-08	6.17E-10	25	20	45	365	2069
GO:0003755	peptidyl-prolyl cis-trans isomerase activity	F	5.29E-07	7.72E-09	14	4	18	376	2085
GO:0004767	sphingomyelin phosphodiesterase activity	F	1.05E-04	2.28E-06	7	0	7	383	2089
GO:0004298	threonine-type endopeptidase activity	F	1.21E-04	2.74E-06	8	1	9	382	2088
GO:0004842	ubiquitin-protein ligase activity	F	1.09E-03	2.96E-05	15	17	32	375	2072
GO:0005200	structural constituent of cytoskeleton	F	2.95E-03	8.91E-05	6	1	7	384	2088
GO:0008568	microtubule-severing ATPase activity	F	3.06E-03	9.43E-05	5	0	5	385	2089
GO:0042288	MHC class I protein binding	F	1.50E-02	6.05E-04	4	0	4	386	2089
GO:0005528	FK506 binding	F	1.50E-02	6.05E-04	4	0	4	386	2089
GO:0019899	enzyme binding	F	1.92E-02	8.08E-04	24	56	80	366	2033
GO:0003676	nucleic acid binding	F	2.13E-02	9.21E-04	80	293	373	310	1796
GO:0007264	small GTPase mediated signal transduction	Р	1.78E-10	1.24E-12	25	12	37	365	2077
GO:0051258	protein polymerization	P	2.72E-07	3.75E-09	19	11	30	371	2078
GO:0006184	GTP catabolic process	Р	8.66E-07	1.32E-08	24	23	47	366	2066
GO:0000413	protein peptidyl-prolyl isomerization	Р	2.30E-06	3.94E-08	13	4	17	377	2085
GO:0006468	protein phosphorylation	P	2.76E-06	4.87E-08	34	52	86	356	2037
GO:0006200		P	5.78E-04		16	18	34	374	2071
	ATP catabolic process	P		1.50E-05					
GO:0031145	anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process	Р	1.83E-03	5.19E-05	9	5	14	381	2084
GO:0000209	protein polyubiquitination	Р	2.90E-03	8.70E-05	12	12	24	378	2077
GO:0031110	regulation of microtubule polymerization or depolymerization	Р	3.06E-03	9.43E-05	5	0	5	385	2089
GO:0000165	MAPK cascade	Р	3.12E-03	9.69E-05	8	4	12	382	2085
GO:0030174	regulation of DNA-dependent DNA replication initiation	Р	3.12E-03	9.69E-05	8	4	12	382	2085
GO:0045087	innate immune response	Р	3.49E-03	1.11E-04	10	8	18	380	2081
GO:0051437	positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle	Р	5.31E-03	1.77E-04	7	3	10	383	2086
GO:0007018	microtubule-based movement	Р	6.73E-03	2.30E-04	12	14	26	378	2075
GO:0031346	positive regulation of cell projection organization	Р	8.65E-03	3.09E-04	6	2	8	384	2087
GO:0051495	positive regulation of cytoskeleton organization	Р	8.65E-03	3.09E-04	6	2	8	384	2087
GO:0000216	M/G1 transition of mitotic cell cycle	Р	1.13E-02	4.21E-04	7	4	11	383	2085
GO:0051084	'de novo' post-translational protein folding	Р	1.29E-02	4.92E-04	5	1	6	385	2088
GO:0000084	S phase of mitotic cell cycle	Р	1.45E-02	5.71E-04	10	11	21	380	2078
GO:0008356	asymmetric cell division	Р	1.50E-02	6.05E-04	4	0	4	386	2089
GO:0010458	exit from mitosis	Р	1.50E-02	6.05E-04	4	0	4	386	2089
GO:0071363	cellular response to growth factor stimulus	Р	1.69E-02	6.97E-04	9	9	18	381	2080
GO:0051704	multi-organism process	P	2.41E-02	1.05E-03	25	61	86	365	2028
GO:0051225	spindle assembly	Р	3.17E-02	1.50E-03	5	2	7	385	2087
GO:0050684	regulation of mRNA processing	Р	3.17E-02	1.50E-03	5	2	7	385	2087
GO:0006977	DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest	P	3.17E-02	1.50E-03	5	2	7	385	2087
GO:0007167	enzyme linked receptor protein signaling pathway	Р	3.31E-02	1.58E-03	12	19	31	378	2070
GO:0051436	negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle	P	3.61E-02	1.75E-03	6	4	10	384	2085
GO:0030522	intracellular receptor signaling pathway	Р	4.64E-02	2.29E-03	8	9	17	382	2080
GO:0045664	regulation of neuron differentiation	P	4.64E-02	2.29E-03	8	9	17	382	2080
GO:0005874	microtubule	C	3.31E-06	5.93E-08	21	19	40	369	2070
GO:0019773	proteasome core complex, alpha-subunit complex	Ċ	1.05E-04	2.28E-06	7	0	7	383	2089
GO:0015778	tubulin complex	C	3.06E-03	9.43E-05	5	0	5	385	2089
GO:0005681	spliceosomal complex	C	5.33E-03	1.78E-04	18	30	48	372	2059
GO:0003081	perinuclear region of cytoplasm	C	1.69E-02	7.00E-04	11	14	25	372	2075
GO:0005829	cytosol	C	2.00E-02	8.53E-04	42	126	168	348	1963
GO:0005663	DNA replication factor C complex	C	3.17E-02	1.50E-03	5	2	7	385	2087
<u></u>	Division lactor o complex	J	J. 17 L-UZ	1.502-05	3	۷	,	505	2001

^{*} ordered by category and significance

conserved during the embryonic pharyngula or phylotypic period is generally mirrored by conserved expression patterns of conserved genes at these stages (Kalinka and Tomancak, 2012, Kalinka *et al.*, 2010). In contrast, active transcription in the early zygote is much more limited. Early animal embryos instead largely rely upon RNAs and proteins provided by the maternal gonad during oocyte maturation. This transcriptionally-quiescent period might, *a priori*, be considered evolutionarily constrained, as the maternally provided transcriptome is widely considered to fulfill one major role, the initiation and management of several rounds of rapid cell division. Every one of these early cell divisions is a critical event that must be faithfully completed to ensure the development of a healthy embryo (Evsikov *et al.*, 2006).

Few studies have investigated the level of conservation of maternally provided genes (Shen-Orr *et al.*, 2010), despite their well-recognised importance in early development (Wieschaus, 1996). Indeed there are few comprehensive datasets of maternally provisioned transcripts even in well-characterised taxa, and none in the Lophotrochozoa. Improvements in sequencing technologies mean that quantitative transcriptome studies are now possible on organisms that lack genomic resources. Our work therefore provides a list of conserved maternal transcripts, or COMATs (Table 6; Supplementary Table 1), that may be useful to the wider community interested in the study of early bilaterian development.

We identified a core set of COMATs from seven representatives of the three bilaterian superphyla, spanning >600 million years of evolution (Peterson *et al.*, 2008). These species display highly divergent modes of development (from direct to indirect, and mosaic to regulative). Since the *L. stagnalis* maternal transcriptome we report here is unlikely to be complete, one possibility is that our estimate of 5-10% of all maternally provisioned transcripts being conserved across the Bilateria may rise upon deeper sampling of the snail transcriptome. Conversely, the number may reduce as maternal transcriptomes from more taxa are included in the analysis.

Unsurprisingly, we found that many of these genes had nucleotide (especially ATP and GTP) binding functions, were associated with protein degradation or had activities associated with the cell cycle (Table 6). The majority of functions ascribed are probably accurately defined as housekeeping (Eisenberg and Levanon, 2013). One possibility is that some of the most conserved maternal RNAs are those that cannot be provided (solely) as proteins. Cell cycle genes may be illustrative, because some cell cycle proteins are degraded every cycle and so maternal protein alone cannot be sufficient. Finally, the fact that the ~32-cell transcriptome was neither enriched nor underrepresented for any gene ontology relative to the 1 to 2-cell transcriptome, along with a relative overrepresentation of maternal-zygotic transcripts that are conserved between M. musculus / C. elegans and L. stagnalis suggests that the same transcripts are at least still present during early zygotic transcription (Supplementary Figure 1).

Given the wide variety of developmental modes and rates displayed by metazoan embryos, as well as the hourglass theory of evolution (Kalinka and Tomancak, 2012), one view is that we might expect to find relatively few deeply conserved maternal transcripts. Alternatively, as it has been documented that a relatively large fraction (between 45% and 75%) of all genes within a species' genome can be found as maternal transcripts (see references within Tadros and Lipshitz, 2009), another view is that maternal transcripts that are conserved between different organisms may be a stochastic

subset of a large maternal transcriptome. Instead, our analyses suggest that there is a core and specific set of maternal transcripts that may be essential for early cell divisions, irrespective of the precise mode of development.

While both our data and the others utilised in this study have obvious limitations, primarily the limited sequencing coverage, it is thus uncertain whether further investigation will reveal a greater or lesser proportion of conserved maternal transcripts. However, a simultaneous consideration is that we have detected those genes that are conserved and transcribed at a relatively high level across all taxa, since the study is at best partially quantitative. Further studies are warranted to reveal the true nature of this conservation. Nonetheless, as we found that the conserved maternal part of a well annotated group of H. sapiens housekeeping genes is enriched for precisely the same functions (Table 6, Supplementary Table 3), we can robustly conclude that there is undoubtedly highly conserved gene expression in the early development of bilaterian embryos. There may also be a distinct set of genes, with mostly housekeeping and nucleotide metabolic functions, that is a necessary starting point of the maternal-to-zygotic transition.

Our analyses thus suggest that the ancestral function of maternal provisioning in animal eggs is to supply the zygote with the materials with which to perform the basic cellular functions of rapid cell division in the early stages of development. The extent of the provisioning is evolutionarily labile, with species that have evolved rapid development relying more on maternal products. Addition of patterning molecules is phylogenetically contingent: as different groups and species have evolved different mechanisms of patterning the embryo and been under selection for fast patterning (as in lineage-driven, or mosaic development) or delayed patterning (as in species with regulative development), so the role of maternal factors in driving patterning has changed.

Materials and Methods

cDNA library construction

Early development in the pond snail L. stagnalis has been described in exquisite morphological and cytological detail (Raven, 1966). However, the L. stagnalis MZT has not been mapped in the same detail as in model species, but transcription from zygotic nuclei was first detected in 8-cell embryos, and major transcriptional activity detected at the 24-cell stage (Morrill, 1982). While division cycles are not as rapid as development in C. elegans or D. melanogaster, the L. stagnalis embryo does not divide for ~3 hour at the 24-cell stage, suggesting this may represent a shift from maternal to zygotic control. We thus separately sampled 1 to 2-cell and ~32-cell stage L. stagnalis embryos from a laboratory stock maintained in Nottingham, representing the maternal component and the early stages of zygotic transcription. Zygotes were manually dissected out of their egg capsules and stored in RNAlater (Ambion). As one embryo was expected to yield ~ 0.5 ng RNA, more than one thousand individual embryos of each type were pooled. Total RNA was then extracted using the Qiagen RNeasy Plus Micro Kit. cDNA was then synthesised and two non-normalised cDNA libraries were constructed using the MINT system (Evrogen). The libraries were then processed for sequencing on the Roche 454 FLX platform in the Edinburgh Genomics facility, University of Edinburgh. The raw data have been submitted to the European Nucleotide Archive under bioproject PRJEB7773.

Transcriptome assembly

The raw Roche 454 data were screened for MINT and sequencing adapters and trimmed of low quality base calls. The reads from each library were

TABLE 6 THE 300 HUMAN GENES IN THE CONSERVED MATERNAL DATASET

Mod. 1946/04 Mod. Contrayme A delrythogrouses for hyper greater in Child Mod. Contrayme A delrythogrouses for hyper greater in Child Mod. Contrayme A delrythogrouses with line a Child Mod. Contrayme A delrythogrouse with line a Child Mod. Contrayme A delrythogrouse with line a Child Mod. Contrayme A delrythogrouse contrayme Mod. Contrayme A Mod.	Gene MTRR	Accession NM_002454	Description 5-methyltetrahydrofolate-homocysteine methyltransferase reductase	Gene NOP5/NOP58	Accession NM_015934	Description Nucleolar protein NOP5/NOP58
ABF M. M. District APP-description factor APP-description f	ACAD9	NM_014049	Acyl-Coenzyme A dehydrogenase family, member 9	NAP1L4	NM_005969	Nucleosome assembly protein 1-like 4
AFFS AN Content Part	ACADVL	NM_000018	Acyl-Coenzyme A dehydrogenase, very long chain	OTUB1	NM_017670	OTU domain, ubiquitin aldehyde binding 1
APPS M. Corporation Package Packag	ARF1	NM_001658	ADP-ribosylation factor 1	OSBPL2	NM_014835	Oxysterol binding protein-like 2
APF-SARP M. 0.1477 APF-Society of their foot of Park as obtaining or potent of Potential Potential Potential Potential Potential Potential Potential Potential Pot			· · · · · · · · · · · · · · · · · · ·			, ,
ABL ABL ABL 2017 ABL ABL 2017 ABL ABL 2017 ABL		_			_	
Math			· · · · · · · · · · · · · · · · · · ·			·
AMAPP MM, 201697 Apply improved in certain 19 PROX MM, 200374 Peptinylinghis Included Properties of the Common Service PROX MM, 200374 Peptinylinghis Included PROX MM, 200374 Pertinylinghis Included PROX MM, 200374 Pertinylinghis Included PROX MM, 200374 Properties of the Common Service PROX MM, 200376 Properties of the Common Service PROX MM, 200376 Properties PROX MM, 200376 Properties PROX PRO	ALISAT	INIVI_U1Z111		FFIL	NW_000112	r epiloyipiolyi isomerase E (cyclopillilli E)
MARKID2 M. J. J. J. Sept. Proceedings Processor Processo	ALDH9A1		Aldehyde dehydrogenase 9 family, member A1			Peptidylprolyl isomerase F (cyclophilin F)
AMADID MILES MIL		_				
ABDIA M. M. Dozober AbDIA Percentage PECI M. Dozober AbDIA Percentage PECI M. Dozober AbDIA Percentage PECI M. Dozober AbDIA Percentage Peci AbDIA Percentage Peci AbDIA Percentage Peci AbDIA Percentage Peci AbDIA Peci		_			_	
ACTIFIE MM_007875 APP1 actin-related protein 1 homolog & contractin action (yeast) PAPSAI MM_0001695 APP1 actin-related protein 1 homolog & contractin large (yeast) PAPSAI MM_0001765 APP1 Actin-related protein 1 homolog & contractin large (yeast) PAPSAI MM_0001765 Phospholipase AP-activating protein 1 APP1 APP1 APP1 APP1 APP1 MM_0001765 Phospholipase AP-activating protein 1 APP1 APP1 APP1 APP1 APP1 MM_0001765 Phospholipase AP-activating protein 1 APP1 AP						
ACTRIES M., 000735 APP actin-related protein homolog B, centracin hote (years) PLAA M., 000736 Phospholipides A2-activating protein APPARATIN M., 000736 APP without a protein APPARATIN M., 000736 APP without a protein APPARATIN M., 000736 APPARATING M., 000736 A		_				
ARPT M. M. 0007680 M. 2019 April hydrocarbon mechanic mindecated P. PRSAPT M. M. 0002780 Photophochosyl pryrephochosyl pryreph						
ATPSIA MM, Op6490 APF symhase, N+ transporting, mitochondrial F1 complex, ajhbra abzunit 1500. APFAH181 MM, Op6890 Palentine including factor acophylydrollose, isoform ib., ajhbra abzunit 1500. ATPSIA MM, Op6891 APF symhase, N+ transporting, mitochondrial F1 complex, by the property of the property						
ATP-56						
Math	ATDED	NIM 001606		DI DO1	NIM 000000	
ABCB17 N.M. 072089 ATP-binding cassets, sub-family 8 (NDRTAP), member 10 PHB2 N.M. 001493 Photosome (prosome, macropain) 25S subunit, ATPase, 2 PMC2 N.M. 002894 Proteasome (prosome, macropain) 25S subunit, ATPase, 2 PMC2 N.M. 002894 Proteasome (prosome, macropain) 25S subunit, ATPase, 3 PMC2 N.M. 002894 Pmc	AIPSB	NIVI_001086		PLRGT	INIVI_002669	Pleiotropic regulator 1 (PRL1 nomolog, Arabidopsis)
ABCBC NI,001/4299 ATTinding casette, sub-family 8 (MDP/TAP), member 7 PSMC2 NI,0028910 Protessome (prosonem, macropain) 26S aubunt, ATPaes, 2 BRD7 NI,015688 Bromochama containing 7 PSMC4 NI,002891 Protessome (prosonem, macropain) 26S aubunt, ATPaes, 3 PSMC4 NI,005609 Protessome (prosonem, macropain) 26S aubunt, ATPaes, 1 PSMC4 NI,005609 Protessome (prosonem, macropain) 26S aubunt, ATPaes, 1 PSMC4 NI,005609 Protessome (prosonem, macropain) 26S aubunt, ATPaes, 1 PSMC4 NI,005609 PSMC4 NI,005	ATAD1	NM_032810	ATPase family, AAA domain containing 1	PHB	NM_002634	Prohibitin
BNDC			, , , , , , , , , , , , , , , , , , , ,		_	
BPTF NN_013838 Bermodomain containing 7 PSNC4 NN_000803 Proteasome (prosome, macropain) 28S aubunit, ATPase, 4 BURS NN_004728 Burst Standard Proteins PSNC5 NN_002806 Proteasome (prosome, macropain) 28S aubunit, ATPase, 5 BURS NN_004728 Burst Standard Proteins PSNC5 NN_002806 Proteasome (prosome, macropain) 28S aubunit, ATPase, 6 NN_001298 Calcularium PSND11 NN_002814 Proteasome (prosome, macropain) 28S aubunit, ATPase, 10 NN_001291 Calcularium PSND11 NN_002814 Proteasome (prosome, macropain) 28S aubunit, ATPase, 10 NN_001291 Calcularium PSND11 NN_002814 Proteasome (prosome, macropain) 28S aubunit, ATPase, 10 NN_001291 Calcularium PSND11 NN_002818 Proteasome (prosome, macropain) 28S aubunit, ATPase, 10 NN_001891 Calcularium PSND11 NN_00280 Proteasome (prosome, macropain) abunit, alpha 19th, 9, 10 NN_001891 Calcularium PSND12 NN_001891 Calcularium PSND12 NN_001891 Calcularium PSND12 NN_001891 Calcularium PSND12 NN_001891 CCTC1-briding factor (rine finger protein) PSNA5 NN_002790 Proteasome (prosome, macropain) subunit, alpha 19th, 9, 3 CNRS NN_001890 CCTC1-briding factor (rine finger protein) PSNA5 NN_002791 Proteasome (prosome, macropain) subunit, alpha 19th, 9, 5 CNRS NN_001890 CCTC1-briding factor (rine finger protein) PSNA5 NN_002791 Proteasome (prosome, macropain) subunit, alpha 19th, 9, 6 CNRS NN_001890 CCTC1-briding factor (rine finger protein) PSNA5 NN_002791 Proteasome (prosome, macropain) subunit, alpha 19th, 9, 6 CNRS NN_001890 CCTC1-briding factor (rine finger protein) PSNA5 NN_002791 Proteins macropain subunit, alpha 19th, 9, 6 CNRS NN_001890 NN_001890 NN_001890 NN_00189 NN_001890 N						
BPTF						
BUBS NM_007278 BUBS budding uninhibited by benzimidazoles 3 homolog (yeas) PSMC NM_002814 Proteasome (grosome, macropain) 285 subunit, nor-ATPase, 6		_	•			. , , , , , , , , , , , , , , , , , , ,
ABASP			- ·		_	. ,
CALU		_			_	
CBR4			- •			. ,
CSNR10 NM, 001882 Casein kinase 1, alpha 1 PSMA2 NM, 002788 Proteasome (prosone, macropain) subunit, alpha type, 2 CSNR10 NM, 001886 CSNR2A3 NM, 001256866 CSCP-Chiding factor (time finger protein) PSMA4 NM, 002789 Proteasome (prosone, macropain) subunit, alpha type, 3 CSNR2A3 NM, 001256866 CSCP-Chiding factor (time finger protein) PSMA5 NM, 002791 Proteasome (prosone, macropain) subunit, alpha type, 4 PSMA5 NM, 002791 Proteasome (prosone, macropain) subunit, alpha type, 5 PSMA5 NM, 002791 Proteasome (prosone, macropain) subunit, alpha type, 5 PSMA5 NM, 002791 Proteasome (prosone, macropain) subunit, alpha type, 5 PSMA5 NM, 002791 PSMA5 NM, 002791 Proteasome (prosone, macropain) subunit, alpha type, 6 PSMA5 NM, 002794 Proteasome (prosone, macropain) subunit, alpha type, 7 PSMA5 NM, 002794 Proteasome (prosone, macropain) subunit, alpha type, 7 PSMA5 NM, 002794 Proteasome (prosone, macropain) subunit, alpha type, 7 PSMA5 NM, 002795 Proteasome (prosone, macropain) subunit, alpha type, 8 PSMA5 NM, 002796 Proteasome (prosone, macropain) subunit, alpha type, 8 PSMA5 NM, 002796 Proteasome (prosone, macropain) subunit, alpha type, 9 PSMA5 NM, 002796 Proteasome (prosone, macropain) subunit, alpha type, 10 PSMA5 NM, 002796 Proteasome (prosone, macropain) subunit, alpha type, 10 PSMA5 NM, 002796 Proteasome (prosone, macropain) subunit, beta type, 6 PSMA5 NM, 002796 PSMA5 NM, 002796 Proteasome (prosone, macropain) subunit, alpha type, 7 PSMA5 NM, 002796 PSMA5 NM, 002796 PSMA5 NM, 002796 PSMA5 NM, 002797 PSMA5 NM, 002797 PSMA5 NM, 002797 Proteasome (prosone, macropain) subunit, beta type, 6 PSMA5 NM, 002796 PSMA5 NM, 002797 PSMA5 N					_	
CSNR2A2	CSNK1A1	NM_001892		PSMA2	NM_002787	
CTCF NM_008486 CCCTC-binding factor (zinc fininger protein) PSMAS NM_002790 Professome (prosone, macropain) subunit, alph type, 5 CD89 NM_001780 CD83 molecule PSMA7 NM_002792 Professome (prosone, macropain) subunit, alph type, 7 CDRGS NM_007085 CD2-crelated kinase, arginine/serine-rich PSMB8 NM_002798 Professome (prosone, macropain) subunit, labet type, 6 CDC42 NM_00795 CDC37 homolog (S. cerevisiae) PSMB8 NM_002798 Professome (prosone, macropain) subunit, bet type, 6 CDC42 NM_001791 CDC2 (GT6) brinding protein, 25kDa) PSMB7 NM_002798 Professome (prosone, macropain) subunit, bet type, 6 CDC14 NM_001892 CDC3 (Fish (S. pombe) PSMB7 NM_0016166 Professome (prosone, macropain) subunit, lebt type, 6 CT3 NM_00892 CDC16 (Rick (S. pombe) PSMB7 NM_0016166 Professome (prosone, macropain) subunit, lebt type, 6 CT4 NM_00893 CDC16 (Rick (S. pombe) PSMB7 NM_002710 Professome (prosone, macropain) subunit, lebt type, 6 CT5 NM_00898 CDC16 (Rick (S. pombe) NM_00898 NM_00898 P	CSNK1D	NM_001893	Casein kinase 1, delta	PSMA3	NM_002788	Proteasome (prosome, macropain) subunit, alpha type, 3
CNBP NM, 003418 CCHC-type zinc finger, nucleic aid binding protein PSMAS NM, 002791 Proteasome (prosome, macropain) subunt, alpha type, 7 CRKRS NM, 015080 CDC2-related kinase, arginine/serine-rich PSMB2 NM, 002794 Proteasome (prosome, macropain) subunt, bet at type, 2 CRCK3 NM, 007076 CDC24 (STP binding protein, 25Kba) PSMB8 NM, 002799 Proteasome (prosome, macropain) subunt, bet at type, 6 CDC42 NM, 001791 CDC42 (STP binding protein, 25Kba) PSMB7 NM, 002799 Proteasome (prosome, macropain) subunt, bet at type, 7 CLC3 NM, 003892 CDC-like kinase 3 PSMB7 NM, 006251 Protein proteins or division of all value type, 16 CCT3 NM, 005998 Chaperonin containing TCP1, subunit 3 (gamma) PPPLC NM, 00109552 Protein phosphatase 1, catalytic subunit, alpha type, 6 CCT5 NM, 012073 Chaperonin containing TCP1, subunit 4 (delta) PPP2R5 NM, 00109552 Protein phosphatase 4 (formerly 2A), catalytic subunit CCT6 NM, 0017273 Chaperonin containing TCP1, subunit 4 (delta) PPP2R5 NM, 0002721 Protein phosphatase 4 (formerly X), catalytic subunit CCT6 NM,						
CBSB NM_001780 CDS2-related kinase, arginine/serine-rich PSMAZ Policy NM_002792 Proteasome (prosome, macropain) subunit, alpha type, 7 CRKRS NM_007066 CDC37 hom/00165 CDC27 related kinase, arginine/serine-rich PSMBS NM_002798 Proteasome (prosome, macropain) subunit, beta type, 6 CDC42 NM_001793 CDC42 (GTF) binding protein, 25Kba) PSMBS NM_002798 Proteasome (prosome, macropain) subunit, beta type, 7 CDC5L NM_001233 CDC5 (CDC5-like) (St, pombe) PSMBS NM_001666 Protein kinase, 4lpha 1 catalytic subunit CCT3 NM_005998 CDC-like kinase 3 PSMBS NM_001701 Protein kinase, 4lpha 1 catalytic subunit CCT3 NM_005998 Chaperonin containing TCP1, subunit 4 (deltal) PPPECD NM_002710 Protein phosphatase 2 (merey 2A), catalytic subunit CCT5 NM_010773 Chaperonin containing TCP1, subunit 5 (epsilon) PPP2RSD NM_00625 Protein phosphatase 2, regulatory subunit 8 pt. delta isoform CCT6 NM_01727 Chaperonin containing TCP1, subunit 6 (telta) PPP4C NM_002720 Protein phosphatase 2, regulatory subunit 8 pt. delta isoform CCT7 NM_00472			- , - ,			
CRKRS NM. 015083 CDC2-related kinase, arginine/serine-rich PSMB2 NM. 002794 Proteasome (prosome, macropain) subunit, beta type, 6 CDC42 NM. 001791 CDC42 (STP binding protein, 25kDa) PSMB6 NM. 002799 Proteasome (prosome, macropain) subunit, beta type, 7 CDC5L NM. 001253 CDC 5CD-C5-like (Sp. Combe) PIRS1 NM. 00251 Protein inhibitor of advated STAT, 1 CLG3 NM. 003998 Chaperonin containing TCP1, subunit 3 (gamma) PPPLC NM. 00100552 Protein phosphatase 1, catalytic subunit, all phan 1 catalytic subunit, part phane isoform CCT4 NM. 004309 Chaperonin containing TCP1, subunit 4 (delta) PPP2R5D NM. 00109552 Protein phosphatase 2 (formerly 2A), catalytic subunit, part phane isoform CCT6 NM. 0100707 Chaperonin containing TCP1, subunit 6 (zeta 1) PPPL NM. 006245 Protein phosphatase 4 (formerly 2A), catalytic subunit CCT6 NM. 001720 Chaperonin containing TCP1, subunit 6 (zeta 1) PPPRC NM. 006245 Protein phosphatase 4 (formerly 2A), catalytic subunit CCT6 NM. 00426 Chorean phane		_			_	
CDC32 MM_007976 CDC37 homolog (S. cerevisiae) PSMB6 MM_002799 Proteasome (prosome, macropain) subunit, beta type, 6 CDC42 (ATP binding protein, 25kDa) PSMB7 MM_002799 Proteasome (prosome, macropain) subunit, beta type, 7 CDC54 MM_001293 CDC42 (3TP binding protein, 25kDa) PSMB7 MM_006295 Protein inhibitor of activated STAT_1 CDC34 MM_005989 CDc-Cle-ke kinase 5 PRKA1 MM_006251 Protein inhibitor of activated STAT_1 CDC35 MM_005989 Chaperonin containing TGP1, subunit 3 (gamma) PPP1C MM_002710 Protein phosphatase 1, catalytic subunit, gamma isoform CDC74 MM_004390 Chaperonin containing TGP1, subunit 4 (getala) PPP2CB MM_001795 CDC75 MM_01273 Chaperonin containing TGP1, subunit 5 (gesion) PPP4C MM_002720 CDC76 MM_001782 Chaperonin containing TCP1, subunit 6 (gesion) PPP4C MM_002720 CDC77 MM_006429 Chaperonin containing TCP1, subunit 6 (pesion) PPP4C MM_002721 CDC78 MM_006585 Chaperonin containing TCP1, subunit 6 (pesion) PPP4C MM_002721 CDC78 MM_006585 Chaperonin containing TCP1, subunit 8 (theta) PPF4C MM_006742 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PPF4C MM_006742 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 MM_006742 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 MM_006742 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 MM_006742 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 CDC78 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 CDC79 MM_001732 Chaperonin containing TCP1, subunit 8 (theta) PRF51 CDC79 MM_001732						
CDC54						
CDCSL NM, 001928 CDCS CDCS-like (S, pombe) PIAS1 NM, 016166 Protein inhibitor of activated STAT, 1 CLG3 NM, 003998 CDC-Cile kinase 3 PRRA1 NM, 002710 Protein phosphatase 1, catalytic subunit, garma isoform CCT4 NM_ 006490 Chaperonin containing TCP1, subunit 3 (garman) PPP2CB NM_ 000709552 Protein phosphatase 2 (formerly 2A), catalytic subunit, garma isoform CCT5 NM_ 012073 Chaperonin containing TCP1, subunit 5 (epsilon) PPP2RBD NM_ 0002720 Protein phosphatase 2, regulatory subunit B, delta isoform CCT6 NM_ 001720 Chaperonin containing TCP1, subunit 6 (epsilon) PPP2RB NM_ 002720 Protein phosphatase 2, regulatory subunit B, delta isoform CCT6 NM_ 006429 Chaperonin containing TCP1, subunit 8 (theta) PPP6C NM_ 007272 Protein phosphatase 4, (formerly XJ), catalytic subunit CCT8 NM_ 006829 Chaperonin containing TCP1, subunit 8 (theta) PSKH1 NM_ 006722 Protein phosphatase 4, (formerly XJ), catalytic subunit CCT8 NM_ 006829 Chaperonin containing TCP1, subunit 8 (theta) PSKH1 NM_ 006722 Protein phosphatase 4, (formerly XJ, catalytic subunit CTBS <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CLK3 NN, 003998 CDC-like kinase 3 PRIKA1 NN, 006251 Protein kinase, AMP-activated, alpha 1 catalytic subunit, gamma isoform CCT3 NN, 006998 Chaperonin containing TCP1, subunit 4 (delta) PPPCB NN, 0010707 Protein phosphatase 2 (formerly 2A), catalytic subunit, gamma isoform CCT6 NN, 016093 Chaperonin containing TCP1, subunit 3 (epsilon) PPP2R5D NN, 0062720 Protein phosphatase 2 (formerly 2A), catalytic subunit plants of the protein containing TCP1, subunit 64 (zeta 1) PPP4C NN, 0062720 Protein phosphatase 4 (formerly X), catalytic subunit Plants of the protein containing TCP1, subunit 8 (beta) PPP4C NN, 0062720 Protein phosphatase 4 (formerly X), catalytic subunit Plants of the phosphatase 4 (formerly X), catalytic subunit Plants of the protein complex, subunit 18 (beta) PPP6C NN, 0062720 Protein phosphatase 4 (formerly X) catalytic subunit Plants of the phosphatase 4 (formerly X) catalytic subunit Plants of the protein A (formodomain helicase DNA binding protein 4 PPP6C NN, 0062721 Protein phosphatase 2, regulatory subunit B; delta isoform Protein phosphatase 4 (formerly ZA), catalytic subunit Plants of the phosphatase A (formerly ZA), catalytic subunit Plants of the phosphatase A (formerly ZA), catalytic subunit Plants of the phosphatase A (formerly ZA), catalytic subunit Plants of the phosphatase A (formerly ZA), catalytic subunit Plants of the phosphatase A (formerly ZA), catalytic subunit Plants of the phosphatase A (formerly ZA), catalytic subunit Plants of the p			, -, -, -, -, -, -, -, -, -, -, -, -, -,			
CCT4 NM_006430 Chaperonin containing TCP1, subunit 4 (delta) PPP2CB NM_001009552 Protein phosphatase 2 (formerly 2A), catalytic subunit, beta sicoform CCT5 NM_001782 Chaperonin containing TCP1, subunit 5 (position) NM_002725 Protein phosphatase 2, regulatory subunit B, delta isoform CCT6 NM_00429 Chaperonin containing TCP1, subunit 6 (zeta 1) PPP6C NM_002721 Protein phosphatase 4 (bromerly X), catalytic subunit CCT8 NM_008429 Chaperonin containing TCP1, subunit 8 (theta) PSKH1 NM_002721 Protein phosphatase 4 (bromerly X), catalytic subunit CHD4 NM_008565 Chaperonin containing TCP1, subunit 8 (theta) PSKH1 NM_002227 Protein phosphatase 6, catalytic subunit CHD4 NM_01227 Chromosome 14 open reading frame 130 PRPF31 NM_000322 PRP31 pre-mRNA processing factor 31 homolog (S cerevisiae) CSTF1 NM_01322 Cleavage stimulation factor, 3 pre-RNA, subunit 1, 50kDa PRPF4 NM_004697 PRP67 per-mRNA processing factor 4 homolog (yeast) CSTF2 VM_015225 Cleavage stimulation factor, 3 pre-RNA, subunit 1, 50kDa RPRF4 NM_005697 PWP2 per-didic tryptophan protein homolog (S cerevisiae)	CLK3			PRKAA1		
CCT6A NM_001782 Chaperonin containing TCP1, subunit 5 (pesilon) PPP2R5D NM_002824 Protein phosphatase 2, regulatory subunit Br, delta isoform CCT6A NM_006429 Chaperonin containing TCP1, subunit 6 (zeta 1) PPP4C NM_002720 Protein phosphatase 4 (Izmerty X), catalytic subunit CCT7 NM_006429 Chaperonin containing TCP1, subunit 6 (zeta 1) PPP6C NM_002721 Protein phosphatase 6, catalytic subunit CCT6 NM_002852 Chaperonin containing TCP1, subunit 6 (heta) PSKH1 NM_002721 Protein phosphatase 6, catalytic subunit NM_002721 Protein phosphatase 6, catalytic subunit NM_002721 Protein phosphatase 6, catalytic subunit NM_002721 Protein phosphatase 7, protein phosphatase 7, protein phosphatase 7, protein phosphatase 7, protein phosphatase 8, catalytic subunit NM_002721 Protein phosphatase 7, protein phosphat					_	Protein phosphatase 2 (formerly 2A), catalytic subunit, beta
CCT6A NM001728 Chaperonin containing TCP1, subunit 3 (zeta 1) PPP4C NM002720 Protein phosphatase 4 (formerly X), catalytic subunit CCT7 NM006289 Chaperonin containing TCP1, subunit 8 (theta) PSKH1 NM006742 Protein phosphatase 6, catalytic subunit CHD4 NM001273 Chromodomain helicase DNA binding protein 4 PTFN1 NM006287 Protein sprosine phosphatase, non-receptor type 1 CHD4 NM001273 Chromodomain helicase DNA binding protein 4 PTFN1 NM005287 PRPB19 PRP	CCT5	NM 012073	Chaperonin containing TCP1, subunit 5 (epsilon)	PPP2R5D	NM 006245	
CCTR NM_006829 Chaperonin containing TCP1, subunit 7 (eta) PPP6C NM_0067271 Protein phosphatase 6, catalytic subunit CCTR NM_006858 Chaperonin containing TCP1, subunit 8 (theta) PSKH1 NM_0067272 Protein serine kinase H1 Chromodomain helicase DNA binding protein 4 PTPN1 NM_0062827 Protein serine kinase H1 Chromodomain helicase DNA binding protein 4 PTPN1 NM_002827 Protein phosphatase, non-receptor type 1 Chromosome 14 open reading trame 130 PRPF31 NM_002827 PRPF31 pre-mRNA processing factor 31 homolog (scerevisiae) NM_001624 Cleavage stimulation factor, 3° pre-RNA, subunit 1,50kDa PRPF4 NM_004529 PRPF31 pre-mRNA processing factor 4 homolog (yeast) PRPF4 ariant Corp. The Notice of					_	
CHOM 10407130 NM_001273 Chromodomain helicase DNA binding protein 4 PTPN1 NM_002827 PRP31 pre-mRNA processing factor 31 homolog (S. cerevisiae) C14orf1130 NM_175748 Cleavage stimulation factor, 3° pre-RNA, subunit 1, 50kDa PRP51 NM_001693 PRP4 pre-mRNA processing factor 4 homolog (yeast) CSTF21 NM_015235 Cleavage stimulation factor, 3° pre-RNA, subunit 2, 64kDa, tau variant COPA NM_001693 PWP2 periodic tryptophan protein homolog (yeast) Variant COPA NM_004937 Coatomer protein complex, subunit alpha RAB10 NM_016311 RAB10, member RAS oncogene family COPS2 NM_00530 CPP3 COP9 constitutive photomorphogenic homolog subunit 2 RAB11B NM_004281 RAB11B, member RAS oncogene family CAPS4 (Arabidopsis) CTD (carboxy-terminal domain, RNA polymerase II, polypeptide RAB14 NM_004570 RAB14 NM_005392 CUIlin 4B NM_005392 Cuilin 4B NM_00530 Cuilin 4B NM_00530 Cuilin 4B NM_005308 Cuilin 4B NM_005308 Cuilin 4B NM_005308 Cuilin 4B NM_005309 Cytochrome b5 type B (outer mitochondrial membrane) RAB5C NM_004637 RAB5A, member RAS oncogene family Cytochrome b75 type B (outer mitochondrial membrane) RAB5C NM_004637 RAB7A, member RAS oncogene family Cytochrome b75 type B (outer mitochondrial membrane) RAB7A NM_004637 RAB7A, member RAS oncogene family NM_004891 NM_030590 Cytochrome b75 type B (outer mitochondrial membrane) RAB7A NM_004637 RAB7A, member RAS oncogene family NM_004691 NM_004693 RAB5C, member RAS oncogene family NM_004691 NM_004693 RAB7A,	CCT7	NM_006429		PPP6C	NM_002721	
C14dr130 NM_015235 Cleavage stimulation factor, 3' pre-RNA, subunit 1,50kDa PRPF31 NM_005049 PRPF4 pre-mRNA processing factor 31 homolog (S. cerevisiae) CSTF2T NM_015235 Cleavage stimulation factor, 3' pre-RNA, subunit 2,64kDa, tau variant Castory of the processing factor 31 homolog (yeast) PRPF4 pre-mRNA processing factor 4 homolog (yeast) PRPF4 pre-mRNA processing factor 31 homolog (yeast) PRPF4 pre-mRNA processing factor 4 homolog (yeast) PRPF4 pre-mRNA processing PRPF4 pre-mRNA processing PRPF4 pre-mRNA processing factor 4 homolog (yeast) PRPF4 pre-mRNA processing factor 4 homolog (yeast) PRPF4 pre-mRNA processing factor 4 homolog (yeast) PRPF4	CCT8	NM_006585	Chaperonin containing TCP1, subunit 8 (theta)	PSKH1	NM_006742	Protein serine kinase H1
CSTF2T NM_01324 Cleavage stimulation factor, 3 pre-RNA, subunit 1, 50kDa PRPF4 NM_004697 PRP4 pre-mRNA processing factor 4 homolog (veast) Variant CSTF2T NM_015235 Cleavage stimulation factor, 3 pre-RNA, subunit 2, 64kDa, tau variant COPA NM_004371 Coatomer protein complex, subunit alpha RAB10 NM_016131 RAB10, member RAS oncogene family COPS2 NM_004286 COPS constitutive photomorphogenic homolog subunit 2 (Arabidopsis) RAB11B NM_004218 RAB118, member RAS oncogene family (Arabidopsis) CTDSP2 NM_005730 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2 (Arabidopsis) RAB14 NM_016322 RAB14, member RAS oncogene family A) small phosphatase 2 (CLEC3B NM_015004 A) small phosphatase 2 (CUIII NM_0035892 CUIIIn 1 NM_003589 CUIIIn 1 RAB1A NM_004161 RAB1A, member RAS oncogene family CUL4B NM_003581 CUIIIn 4B RAB1A NM_004161 RAB1A, member RAS oncogene family CYClin-dependent kinase 9 RAB5C NM_003685 RAB2A, member RAS oncogene family CYCP2U1 NM_183075 Cytochrome P450, family 2, subfamily U, polypeptide 1 RAB7A NM_004637 RAB7A, member RAS oncogene family CYCP2U1 NM_183075 Cytochrome P450, family 2, subfamily U, polypeptide 1 RAN NM_002868 RAB5A, member RAS oncogene family NM_004908 RAB7A NM_004637 RAB7A, member RAS oncogene family CYCP2U1 NM_003698 DAZ associated protein 1 RAN NM_0049096 RAB7A NM_004693 RAB7A, member RAS oncogene family NM_0049096 RAB7A NM_0049096 RAB7A NM_0049096 RAB7A NM_0049096 RAB7A NM_0049096 RAB7A NM_004939 DAX (SQL-Ala-Asp) box polypeptide 1 RAN NM_008884 RAP1A, member RAS oncogene family NM_004939 DAX NM_004939 DAX (SQL-Ala-Asp) box polypeptide 1 RAN NM_008884 RAP1A, member RAS oncogene family DEAD (Asp-Giu-Ala-Asp) box polypeptide 1 RAN NM_008884 RAP1A, member RAS oncogene family DEAD (Asp-Giu-Ala-Asp) box polypeptide 1 RAP1A NM_002884 RAP1A, member GAS oncogene family DEAD (Asp-Giu-Ala-Asp) box polypeptide 2 RAN NM_004664 Ras homolog gene family DEAD (Asp-Giu-Ala-Asp) box polypeptide 2 RAP1A NM_008661 REF1-silencing transcription factor C (activator 1) 2, 40kDa DEAD		_				
CSTF2T NM_015235 Cleavage stimulation factor, 3' pre-RNA, subunit 2, 64kDa, tau yew yariant variant variant variant variant variant complex, subunit alpha RAB10 NM_016131 RAB10, member RAS oncogene family COPS2 NM_004236 COP9 constitutive photomorphogenic homolog subunit 2 RAB11B NM_004218 RAB11B, member RAS oncogene family (Arabidopsis) CTD (carboxy-terminal domain, RNA polymerase II, polypeptide RAB11B NM_016322 RAB14, member RAS oncogene family A) small phosphatase 2 RAB14 NM_016322 RAB18, member RAS oncogene family A) small phosphatase 2 CULIC NM_003592 Cullin 1 RAB10 NM_016322 RAB18, member RAS oncogene family CUL1 NM_003592 Cullin 1 RAB10 NM_001604 RAB1A, member RAS oncogene family CUL1 NM_003592 Cullin 1 RAB1A NM_004161 RAB1A, member RAS oncogene family CUL14B NM_003598 Cullin 4B RAB1A NM_004161 RAB1A, member RAS oncogene family CUL14B NM_003598 Cullin 4B RAB1A NM_004161 RAB1A, member RAS oncogene family CUL14B NM_003598 Cytochrome b5 type B (outer mitochondrial membrane) RAB5C NM_004583 RAB5C, member RAS oncogene family CYP2U1 NM_183075 Cytochrome P450, family 2, subfamily U, polypeptide 1 RDX NM_004583 RAB5C, member RAS oncogene family NM_004593 DAZ associated protein 1 RANBP1 NM_002906 RAD1A NM_004593 DAZ associated protein 1 RANBP1 NM_002906 RANA NM_004593 DAZ associated protein 1 RANBP1 NM_004593 DAZ associated protein 1 RANBP1 NM_004593 DAZ associated protein 1 RAP1A NM_006325 RAN member RAS oncogene family NM_004593 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 RAP1A NM_006325 RAN member RAS oncogene family DDX17 NM_006350 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 RAP1A NM_006326 RAN member RAS oncogene family NM_006326 RAN NM_00632					_	
COPA NM_004371 Coatomer protein complex, subunit alpha RAB10 NM_016131 RAB10, member RAS oncogene family COPS2 NM_004236 COP9 constitutive photomorphogenic homolog subunit 2 RAB11B NM_004218 RAB11B, member RAS oncogene family CTDSP2 NM_005730 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide RAB14 NM_016322 RAB14, member RAS oncogene family CLEC3B NM_015004 C-type lectin domain family 3, member B RAB18 NM_021252 RAB18, member RAS oncogene family CUL1 NM_003592 Cullin 1 RAB1A NM_004161 RAB1A, member RAS oncogene family CUL4B NM_003588 Cullin 4B RAB2A NM_002665 RAB2A, member RAS oncogene family CYB5B NM_030579 Cytochrome b5 type B (outer mitochondrial membrane) RAB5C NM_004637 RAB7A, member RAS oncogene family CYP2U1 NM_183075 Cytochrome P450, family 2, subfamily U, polypeptide 1 RDX NM_004637 RAB7A, member RAS oncogene family DX179 NM_01859 DAZ associated protein 1 DX179 NM_004839 DAZ associated protein 1 DX179 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 19B RAN NM_006325 RAN, member RAS oncogene family DX171 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DX180 NM_00773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DX180 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DX181 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DX19 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 DX10 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 DX10 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DX18 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DX18 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 DX18 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DX18 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 DX19 NM_004839 DEAD (Asp-Glu-Ala-Asp) box polypeptide 25 DX19 NM_004830 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DX19 NM_004830 DEAD						
COPS2 NM_004236 COP9 constitutive photomorphogenic homolog subunit 2 (Arabidopsis) RAB11B NM_004218 RAB11B, member RAS oncogene family CTDSP2 NM_005730 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2 RAB14 NM_016322 RAB18, member RAS oncogene family CLEC3B NM_015004 C-type lectin domain family 3, member B RAB18 NM_021252 RAB18, member RAS oncogene family CUL1 NM_003592 Cullin 4B RAB1A NM_004161 RAB1A, member RAS oncogene family CUK1 NM_003588 Cullin 4B RAB2A NM_002865 RAB2A, member RAS oncogene family CYB5B NM_030579 Cytochrome b5 type B (outer mitochondrial membrane) RAB7A NM_004637 RAB7A, member RAS oncogene family CYP2U1 NM_0183075 Cytochrome P450, family 2, subfamily 1, polypeptide 1 RDX NM_002906 Rad87A, member RAS oncogene family DDX17 NM_018307 DAZ associated protein 1 RAN NM_002882 RAN binding protein 1 DDX17 NM_018309 DEAD (Asp-Glu-Ala-Asp) box polypeptide 19B RAN NM_006325 RAN, member RAS oncogene family	CSTFZT	NWI_015235		PVVP2	NIVI_005049	PWP2 periodic tryptophan protein homolog (yeast)
CTDSP2NM_005730CTD (carboxy-terminal domain, RNA polymerase II, polymeptide A) small phosphatase 2RAB14NM_016322RAB18, member RAS oncogene familyCLEC3BNM_015004C-type lectin domain family 3, member BRAB18NM_021252RAB18, member RAS oncogene familyCUL1NM_003592Cullin 1RAB1ANM_004161RAB1A, member RAS oncogene familyCUL4BNM_003588Cullin 4BRAB2ANM_002865RAB2A, member RAS oncogene familyCDK9NM_00161Cyclin-dependent kinase 9RAB5C, member RAS oncogene familyCYB5BNM_003579Cytochrome b5 type B (outer mitochondrial membrane)RAB7ANM_004637RAB7A, member RAS oncogene familyCYP2U1NM_183075Cytochrome P450, family 2, subfamily U, polypeptide 1RDXNM_002802RAN binding protein 1DDX19BNM_0018959DAZ associated protein 1RAN NM_002882RAN binding protein 1DDX19BNM_004939DEAD (Asp-Gilu-Ala-Asp) box polypeptide 19BRANNM_008325RAN, member RAS oncogene familyDDX1NM_004939DEAD (Asp-Gilu-Ala-Asp) box polypeptide 1RAP1ANM_002884RAP1A, member of RAS oncogene familyDDX18NM_004939DEAD (Asp-Gilu-Ala-Asp) box polypeptide 1RAP1ANM_002884RAP1A, member of RAS oncogene familyDDX18NM_004939DEAD (Asp-Gilu-Ala-Asp) box polypeptide 1RESTNM_006612RE1-silencing transcription factorDDX18NM_004728DEAD (Asp-Gilu-Ala-Asp) box polypeptide 21RFC2NM_002914Replication factor C (activator 1)			COP9 constitutive photomorphogenic homolog subunit 2			
CLEC3BNM_015004C-type lectin domain family 3, member BRAB18NM_021252RAB18, member RAS oncogene familyCUL1NM_003598Cullin 4BRAB1ANM_004161RAB1A, member RAS oncogene familyCUL4BNM_003588Cullin 4BRAB2ANM_002865RAB2A, member RAS oncogene familyCDK9NM_001261Cyclin-dependent kinase 9RAB5CNM_004583RAB5C, member RAS oncogene familyCYB2U1NM_183075Cytochrome b5 type B (outer mitochondrial membrane)RAB7ANM_004637RAB7A, member RAS oncogene familyCYP2U1NM_183075Cytochrome P450, family 2, subfamily U, polypeptide 1RDXNM_002990RadixinDAZAP1NM_018959DAZ associated protein 1RANNNM_002882RAN binding protein 1DDX19BNM_007242DEAD (Asp-Glu-Ala-As) box polypeptide 19BRANNM_006325RAN, member RAS oncogene familyDDX11NM_004939DEAD (Asp-Glu-Ala-Asp) box polypeptide 1RAP1ANM_002884RAP1A, member of RAS oncogene familyDDX18NM_006366DEAD (Asp-Glu-Ala-Asp) box polypeptide 18RESTNM_001664Ras homolog gene family, member ADDX18NM_006773DEAD (Asp-Glu-Ala-Asp) box polypeptide 21RFC2NM_0016612RE1-silencing transcription factorDDX21NM_004788DEAD (Asp-Glu-Ala-Asp) box polypeptide 23RFC5NM_007370Replication factor C (activator 1) 2, 40kDaDDX27NM_017895DEAD (Asp-Glu-Ala-Asp) box polypeptide 27RXRANM_005610Retinol dehydrogenase 14 (all-trans/9-cis/11-	CTDSP2	NM_005730	CTD (carboxy-terminal domain, RNA polymerase II, polypeptide	RAB14	NM_016322	RAB14, member RAS oncogene family
CUL4B NM_003588 Cullin 4B RAB2A NM_002865 RAB2A, member RAS oncogene family CDK9 NM_001261 Cyclin-dependent kinase 9 CYB5B NM_030579 Cytochrome b5 type B (outer mitochondrial membrane) CYP2U1 NM_183075 Cytochrome b5 type B (outer mitochondrial membrane) CYP2U1 NM_183075 Cytochrome b7450, family 2, subfamily U, polypeptide 1 DDX19 NM_001895 DAZ associated protein 1 DDX19 NM_007242 DEAD (Asp-Glu-Ala-Asp) box polypeptide 19B RAN NM_008325 RAN, member RAS oncogene family DDX1 NM_004939 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DDX17 NM_006386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DDX18 NM_006773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 DDX18 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 14 DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DDX24 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DDX25 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DDX26 NM_002814 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX28 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX29 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX20 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX21 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX21 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX22 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DDX24 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked DDX25 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DDX26 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DDX27 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DDX30 NM_020470 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DDX41 NM_020470 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DDX51 NM_020470 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DDX51 NM_020	CLEC3B	NM_015004				RAB18, member RAS oncogene family
CDK9 NM_001261 Cyclin-dependent kinase 9 RAB5C NM_004583 RAB5C, member RAS oncogene family CYBSB NM_030579 Cytochrome b5 type B (outer mitochondrial membrane) CYP2U1 NM_183075 Cytochrome P450, family 2, subfamily U, polypeptide 1 RDX NM_002682 RAN binding protein 1 DX NM_002882 RAN binding protein 1 DX NM_003939 DEAD (Asp-Glu-Ala-As) box polypeptide 19B RAN NM_002882 RAN, member RAS oncogene family DX11 NM_004939 DEAD (Asp-Glu-Ala-As) box polypeptide 1 RAP1A NM_002884 RAP1A, member of RAS oncogene family DX17 NM_006386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 RAP1A NM_006848 RAP1A, member of RAS oncogene family DX18 NM_006773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 REST NM_005612 RE1-silencing transcription factor DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 REC2 NM_002914 Replication factor C (activator 1) 2, 40kDa DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 RFC5 NM_007370 Replication factor C (activator 1) 5, 36.5kDa DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_002957 Retinoid X receptor, alpha DDX30 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinoid dehydrogenase 14 (all-trans/9-cis/11-cis) DDX41 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L35						
CYB5B NM_030579 Cytochrome b5 type B (outer mitochondrial membrane) RAB7A NM_04837 RAB7A, member RAS oncogene family CYP2U1 NM_183075 Cytochrome P450, family 2, subfamily U, polypeptide 1 RDX NM_02896 Radixin DAZAP1 NM_018959 DAZ associated protein 1 RANBP1 NM_02882 RAN binding protein 1 DDX19B NM_007242 DEAD (Asp-Glu-Ala-As) box polypeptide 19B RAN NM_06325 RAN, member RAS oncogene family DDX1 NM_004939 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 RAP1A NM_06325 RAN, member of RAS oncogene family DDX17 NM_06386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 RHOA NM_001664 Ras homolog gene family, member A DDX18 NM_006773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 REST NM_005612 RE1-silencing transcription factor DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 RFC2 NM_002914 Replication factor C (activator 1) 2, 40kDa DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 RFC5 NM_007370 Replication factor C (activator 1) 5, 36.5kDa DDX24 NM_020414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_002905 Retinoid X receptor, alpha DDX34 NM_016325 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020905 Retinoid dehydrogenase 14 (all-trans/9-cis/11-cis) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L13						, ,
CYP2U1 NM_183075 Cytochrome P450, family 2, subfamily U, polypeptide 1 RDX NM_002906 RAdixin DAZAP1 NM_018959 DAZ associated protein 1 RANBP1 NM_002882 RAN binding protein 1 DDX19B NM_007242 DEAD (Asp-Glu-Ala-As) box polypeptide 19B RAN NM_006325 RAN, member RAS oncogene family DDX1 NM_004939 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 RAP1A NM_002884 RAP1A, member of RAS oncogene family DDX17 NM_006386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 RHOA NM_001664 Ras homolog gene family, member A DDX18 NM_006773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 REST NM_005612 RE1-silencing transcription factor DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 RFC2 NM_002914 Replication factor C (activator 1) 2, 40kDa DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 RFC5 NM_007370 Replication factor C (activator 1) 5, 36.5kDa DDX24 NM_002941 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_002957 Retinoid X receptor, alpha DDX34 NM_016325 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_002905 Retinoid dehydrogenase 14 (all-trans/9-cis/11-cis) DDX46 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL14 NM_003973 Ribosomal protein L15		_	•			- · ·
DAZAP1 NM_0018959 DAZ associated protein 1 DX19B NM_007242 DEAD (Asp-Glu-Ala-As) box polypeptide 19B RAN NM_006325 RAN, member RAS oncogene family DX1 NM_004939 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DX17 NM_006386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 DX18 NM_006773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 DX19 NM_004989 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 DX10 NM_004980 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 DX10 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 DX11 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DX10 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 DX10 NM_004810 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 DX10 NM_004810 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 DX10 NM_004810 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 DX10 NM_004810 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked DX10 NM_004810 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 DX10 NM_004810 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 DX10 NM_004810 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 DX10 NM_004970 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DX10 NM_004970 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DX10 NM_004970 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 DX10 NM_004970 Replication factor C (activator 1) 5, 36.5kDa DX10 NM_004970 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 DX10 NM_004970 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 DX10 NM_004970 Replication factor C (activator 1) 2, 40kDa RE					_	
DDX19B NM_007242 DEAD (Asp-Glu-Ala-As) box polypeptide 19B RAN NM_006325 RAN, member RAS oncogene family DDX11 NM_004939 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 RAP1A NM_002884 RAP1A, member of RAS oncogene family DDX17 NM_006386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 RHOA NM_001664 Ras homolog gene family, member A DDX18 NM_006773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 REST NM_005612 RE1-silencing transcription factor DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 RFC2 NM_002914 Replication factor C (activator 1) 2, 40kDa DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 RFC5 NM_007370 Replication factor C (activator 1) 5, 36.5kDa DDX24 NM_00414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_002997 Retinol X receptor, alpha DDX34 NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinol dehydrogenase 14 (all-trans/9-cis/11-cis) DDX47 NM_016225 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L135						
DDX1 NM_004939 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 RAP1A NM_002884 RAP1A, member of RAS oncogene family DDX17 NM_006386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 RHCA NM_001664 Ras homolog gene family, member A DDX18 NM_006773 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 REST NM_005612 RE1-silencing transcription factor DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 RFC2 NM_002914 Replication factor C (activator 1) 2, 40kDa DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 RFC5 NM_007370 Replication factor C (activator 1) 5, 36.5kDa DDX24 NM_002414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_002957 Retinoid X receptor, alpha DDX34 NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020695 REX1, RNA exonuclease 1 homolog (S. cerevisiae) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L14 DDX54 NM_0204072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35						0.1
DDX17 NM_006386 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 RHOA NM_001664 REST NM_005612 RE1-silencing transcription factor DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 REST NM_005612 RE1-silencing transcription factor C (activator 1) 2, 40kDa DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 RFC2 NM_002914 Replication factor C (activator 1) 5, 36.5kDa DDX24 NM_020414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_002957 Retinoid X receptor, alpha DDX3X NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinoid dehydrogenase 14 (all-trans/9-cis/11-cis) DDX41 NM_016225 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REX01 NM_020957 Ribosomal protein L14 DDX54 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L15 DDX54 NM_0204072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35			, , , , .			
DDX21 NM_004728 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 RFC2 NM_002914 Replication factor C (activator 1) 2, 40kDa DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 RFC5 NM_007370 Replication factor C (activator 1) 5, 36.5kDa DDX24 NM_020414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_002957 Retinoid X receptor, alpha DDX3X NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinol dehydrogenase 14 (all-trans/9-cis/11-cis) DDX41 NM_016222 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020695 REX1, RNA exonuclease 1 homolog (S. cerevisiae) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35						
DDX23 NM_004818 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 RFC5 NM_007370 Replication factor C (activator 1) 5, 36.5kDa DDX24 NM_020414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_002957 Retinoid X receptor, alpha DDX31 NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinoid dehydrogenase 14 (all-trans/9-cis/11-cis) DDX41 NM_01622 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020695 REX1, RNA exonuclease 1 homolog (S. cerevisiae) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35						• .
DDX24 NM_020414 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 RBBP4 NM_005610 Retinoblastoma binding protein 4 DDX37 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_020957 Retinoid X receptor, alpha DDX31 NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinoid dehydrogenase 14 (all-trans/9-cis/11-cis) DDX41 NM_016222 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020695 REX1, RNA exonuclease 1 homolog (S. cerevisiae) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35		_			_	
DDX27 NM_017895 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 RXRA NM_02957 Retinoid X receptor, alpha DDX3X NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinoid dehydrogenase 14 (all-trans/9-cis/11-cis) DDX41 NM_016225 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020695 REX1, RNA exonuclease 1 homolog (S. cerevisiae) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35						
DDX3X NM_001356 DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked RDH14 NM_020905 Retinol dehydrogenase 14 (all-trans/9-cis/11-cis) DDX41 NM_016222 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020695 REX1, RNA exonuclease 1 homolog (S. cerevisiae) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_03973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_072099 Ribosomal protein L35						01
DDX41 NM_016222 DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 REXO1 NM_020695 REX1, RNA exonuclease 1 homolog (S. cerevisiae) DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_003973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35						
DDX47 NM_016355 DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 RPL14 NM_03973 Ribosomal protein L14 DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35						
DDX54 NM_024072 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 RPL35 NM_007209 Ribosomal protein L35						- · · · · · · · · · · · · · · · · · · ·
					_	·
	DDX56	NM_019082	DEAD (Asp-Glu-Ala-Asp) box polypeptide 56	RPS6KB1	NM_003161	Ribosomal protein S6 kinase, 70kDa, polypeptide 1

TABLE 6 (CONTINUED)

THE 300 HUMAN GENES IN THE CONSERVED MATERNAL DATASET

		1112 000 110111/111 0121120 111 111	_ 00.10	LD MAILIMA	
Gene	Accession	Description	Gene	Accession	Description
DHX15	NM_001358	DEAH (Asp-Glu-Ala-His) box polypeptide 15	RPS6KB2	NM_003952	Ribosomal protein S6 kinase, 70kDa, polypeptide 2
DHX38	NM_014003	DEAH (Asp-Glu-Ala-His) box polypeptide 38	RPS6KA3	NM_004586	Ribosomal protein S6 kinase, 90kDa, polypeptide 3
DHX8 DHRS7B	NM_004941	DEAH (Asp-Glu-Ala-His) box polypeptide 8	RRP1 AHCY	NM_003683	Ribosomal RNA processing 1 homolog (S. cerevisiae)
DHR37B DLG1	NM_015510 NM_004087	Dehydrogenase/reductase (SDR family) member 7B Discs, large homolog 1 (<i>Drosophila</i>)	SCRIB	NM_000687 NM_015356	S-adenosylhomocysteine hydrolase Scribbled homolog (<i>Drosophila</i>)
DNAJA2	NM_005880	DNAJ (Hsp40) homolog, subfamily A, member 2	STRAP	NM_007178	Serine/threonine kinase receptor associated protein
DNAJA2	NM 005147	DNAJ (Hsp40) homolog, subfamily A, member 3	SETD8	NM 020382	SET domain containing (lysine methyltransferase) 8
DNAJB12	NM 017626	DNAJ (Hsp40) homolog, subfamily B, member 12	SMAD5	NM 005903	SMAD family member 5
DNAJC10	NM_018981	DNAJ (Hsp40) homolog, subfamily C, member 10	SMU1	NM_018225	Smu-1 suppressor of mec-8 and unc-52 homolog (C. elegans)
DNAJC17	NM_018163	DNAJ (Hsp40) homolog, subfamily C, member 17	SHOC2	NM_007373	Soc-2 suppressor of clear homolog (C. elegans)
DNAJC5	NM_025219	DNAJ (Hsp40) homolog, subfamily C, member 5	SLC25A11	NM_003562	Solute carrier family 25 (mitochondrial carrier; oxoglutarate
		(· p · .)			carrier), member 11
DUSP16	NM_030640	Dual specificity phosphatase 16	SLC25A39	NM_016016	Solute carrier family 25, member 39
ELAVL1	NM_001419	ELAV (embryonic lethal, abnormal vision, <i>Drosophila</i>)-like 1 (Hu	SLC39A7	NM_006979	Solute carrier family 39 (zinc transporter), member 7
ETFA	NIM 000100	antigen R)	- CDC7	NIM 000110	Spastic paraplegia 7 (pure and complicated autosomal recessive)
EIFA	NM_000126	Electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduri II)	a SFG/	NM_003119	Spastic parapiegia / (pure and complicated autosomal recessive)
ECHS1	NM_004092	Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial	SPATA5L1	NM_024063	Spermatogenesis associated 5-like 1
ERGIC2	NM_016570	ERGIC and golgi 2	SFRS2	NM_003016	Splicing factor, arginine/serine-rich 2
EEF2	NM_001961	Eukaryotic translation elongation factor 2	SAE1	NM_005500	SUMO1 activating enzyme subunit 1
EIF2AK3	NM_004836	Eukaryotic translation initiation factor 2-alpha kinase 3	UBA2	NM_005499	SUMO1 activating enzyme subunit 2
EIF3D	NM_003753	Eukaryotic translation initiation factor 3, subunit D	TAF5L	NM_014409	TAF5-like RNA polymerase II, p300/CBP-associated factor
					(PCAF)-associated factor, 65kDa
EIF3I	NM_003757	Eukaryotic translation initiation factor 3, subunit I	TNKS2	NM_025235	Tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase 2
EIF4A1	NM 001416	Eukaryotic translation initiation factor 4A, isoform 1	TCP1	NM 030752	T-complex 1
EIF4A1 EIF4A3	NM_014740	Eukaryotic translation initiation factor 4A, isoform 3	TXN2	NM_030752 NM_012473	Thioredoxin 2
EIF4E2	NM 004846	Eukaryotic translation initiation factor 4E family member 2	TXNDC9	NM 005783	Thioredoxin 2 Thioredoxin domain containing 9
FBXW11	NM 012300	F-box and WD repeat domain containing 11	TIAL1	NM 003252	TIA1 cytotoxic granule-associated RNA binding protein-like 1
FZR1	NM_016263	Fizzy/CDC20 related 1 (<i>Drosophila</i>)	TRAP1	NM_001272049	TNF receptor-associated protein 1
FKBP3	NM 002013	FK506 binding protein 3, 25kDa	TOMM70A	NM 014820	Translocase of outer mitochondrial membrane 70 homolog A (S.
TREFO	14M_002010	1 Rood billiang protein 6, 20RBa	1 Givini 7 G/ C	14111_014020	cerevisiae)
FTSJ1	NM_012280	FtsJ homolog 1 (E. coli)	TPI1	NM_000365	Triosephosphate isomerase 1
FUSIP1	NM_006625	FUS interacting protein (serine/arginine-rich) 1	TUFM	NM_003321	Tu translation elongation factor, mitochondrial
GTF2B	NM_001514	General transcription factor IIB	TUBA1B	NM_006082	Tubulin, alpha 1b
GNPDA1	NM_005471	Glucosamine-6-phosphate deaminase 1	TUBA1C	NM_032704	Tubulin, alpha 1c
GRWD1	NM_031485	Glutamate-rich WD repeat containing 1	TUBB	NM_178014	Tubulin, beta
GRPEL1	NM_025196	GrpE-like 1, mitochondrial (E. coli)	YWHAB	NM_003404	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
OTDDD4	NIM 040044	OTD bis discussed in A	\/A/IIIA =	NIM 000704	activation protein, beta polypeptide
GTPBP4	NM_012341	GTP binding protein 4	YWHAE	NM_006761	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide
GTPBP10	NM_033107	GTP-binding protein 10 (putative)	UBA52	NM_003333	Ubiquitin A-52 residue ribosomal protein fusion product 1
GNL2	NM_013285	Guanine nucleotide binding protein-like 2 (nucleolar)	UBB	NM_018955	Ubiquitin B
GNL3	NM 014366	Guanine nucleotide binding protein-like 3 (nucleolar)	UBC	NM 021009	Ubiquitin C
H2AFV	NM_012412	H2A histone family, member V	UBE3C	NM_014671	Ubiquitin protein ligase E3C
HBS1L	NM 006620	HBS1-like (S. cerevisiae)	UBA3	NM 003968	Ubiquitin-activating enzyme E1C (UBA3 homolog, yeast)
HSPE1	_	5 Heat shock 10kDa protein 1 (chaperonin 10)	UBE2V1	NM_021988	Ubiquitin-conjugating enzyme E2 variant 1
HSPA5	NM_005347	Heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)	UBE2A	NM_003336	Ubiquitin-conjugating enzyme E2A (RAD6 homolog)
HSPA8	NM_006597	Heat shock 70kDa protein 8	UBE2B	NM_003337	Ubiquitin-conjugating enzyme E2B (RAD6 homolog)
HSPA9	NM 004134	Heat shock 70kDa protein 9 (mortalin)	UBE2D2	NM_003339	Ubiquitin-conjugating enzyme E2D 2 (UBC4/5 homolog, yeast)
HGS	NM 004712	Hepatocyte growth factor-regulated tyrosine kinase substrate	UBE2D3	NM 003340	Ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, yeast)
HNRPD	NM 002138	Heterogeneous nuclear ribonucleoprotein D (AU-rich element	UBE2G2	NM_003343	Ubiquitin-conjugating enzyme E2G 2 (UBC7 homolog, yeast)
	=	RNA binding protein 1)		=	3 , 3 , 3 , 3 , 4 , 5 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7
HAT1	NM_003642	Histone acetyltransferase 1	UBE2I	NM_003345	Ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast)
BAT1	NM_004640	HLA-B associated transcript 1	UBE2N	NM_003348	Ubiquitin-conjugating enzyme E2N (UBC13 homolog, yeast)
IMP4	NM_033416	IMP4, U3 small nucleolar ribonucleoprotein, homolog (yeast)	UBE2Q1	NM_017582	Ubiquitin-conjugating enzyme E2Q (putative) 1
JAK1	NM_002227	Janus kinase 1 (a protein tyrosine kinase)	UBE2R2	NM_017811	Ubiquitin-conjugating enzyme E2R 2
KPNA1	NM_002264	Karyopherin alpha 1 (importin alpha 5)	VRK2	NM_006296	Vaccinia related kinase 2
KLHL8	NM_020803	Kelch-like 8 (<i>Drosophila</i>)	VPS4A	NM_013245	Vacuolar protein sorting 4 homolog A (S. cerevisiae)
L3MBTL2	NM_031488	L(3)mbt-like 2 (<i>Drosophila</i>)	AKT1	NM_005163	V-akt murine thymoma viral oncogene homolog 1
LRRC47	NM_020710	Leucine rich repeat containing 47	VCP	NM_007126	Valosin-containing protein
MAPRE2	NM_014268	Microtubule-associated protein, RP/EB family, member 2	VBP1	NM_003372	Von Hippel-Lindau binding protein 1
MCM7	NM_005916	Minichromosome maintenance complex component 7	RALA	NM_005402	V-ral simian leukemia viral oncogene homolog A (ras related)
MRPL4	NM_015956	Mitochondrial ribosomal protein L4	WDR12	NM_018256	WD repeat domain 12
MAPK1	NM_002745	Mitogen-activated protein kinase 1	WDR3	NM_006784	WD repeat domain 3
MAPK9	NM_002752	Mitogen-activated protein kinase 9	WDR57	NM_004814	WD repeat domain 57 (U5 snRNP specific)
MAP2K1	NM_002755	Mitogen-activated protein kinase kinase 1	WDR5B	NM_019069	WD repeat domain 5B
MAP2K2	NM_030662	Mitogen-activated protein kinase kinase 2	WDR61	NM_025234	WD repeat domain 61
MAP2K5	NM_002757	Mitogen-activated protein kinase kinase 5	YPEL2	NM_001005404	Yippee-like 2 (<i>Drosophila</i>)
MAP4K4	NM_004834	Mitogen-activated protein kinase kinase kinase kinase 4	YME1L1	NM_014263	YME1-like 1 (S. cerevisiae)
	2 NM_004759	Mitogen-activated protein kinase-activated protein kinase 2	YY1	NM_003403	YY1 transcription factor
MLH1	NM_000249	MutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli)	ZBTB6	NM_006626	Zinc finger and BTB domain containing 6
MLLT1	NM_005934	Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 1	ZNF138	NM_001271649	zinc finger protein 138
MYNN	NM_018657	Myoneurin	ZNF195	NM_007152	Zinc finger protein 195
MYO1E	NM_004998	Myosin IE	ZNF197	NM_006991	Zinc finger protein 197
MTMR1	NM 003828	Myotubularin related protein 1	ZNF289	NM_032389	Zinc finger protein 197 Zinc finger protein 289, ID1 regulated
NDUFS8	NM_002496	NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa	ZNF347	NM_032584	Zinc finger protein 347
		(NADH-coenzyme Q reductase)	* **		y. r
NEDD8	NM_006156	Neural precursor cell expressed, developmentally down-	ZNF37A	NM_003421	Zinc finger protein 37A
NEO	NIM OCCOO	regulated 8	ZNE207	NIM 001105170	Zina finger protein 207
NF2	NM_000268	Neurofibromin 2 (bilateral acoustic neuroma)	ZNF397	NM_001135178	Zinc finger protein 397

TABLE 6 (CONTINUED)

THE 300 HUMAN GENES IN THE CONSERVED MATERNAL DATASET

Gene	Accession	Description	Gene	Accession	Description
NHP2L1	NM_005008	NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)	ZNF41	NM_007130	Zinc finger protein 41
NEK4	NM_003157	NIMA (never in mitosis gene a)-related kinase 4	ZNF506	NM_001099269	Zinc finger protein 506
NSUN2	NM_017755	NOL1/NOP2/Sun domain family, member 2	ZNF91	NM_003430	Zinc finger protein 91
NOL1	NM_006170	Nucleolar protein 1, 120kDa	ZFAND1	NM_024699	Zinc finger, AN1-type domain 1
NOL5A	NM_006392	Nucleolar protein 5A (56kDa with KKE/D repeat)	ZFAND5	NM_006007	Zinc finger, AN1-type domain 5
NOLA2	NM_017838	Nucleolar protein family A, member 2 (H/ACA small nucleolar RNPs)	ZDHHC5	NM_015457	Zinc finger, DHHC-type containing 5
NOLA3	NM_018648	Nucleolar protein family A, member 3 (H/ACA small nucleolar RNPs)	ZRF1	NM_014377	Zuotin related factor 1

assembled using gsAssembler (version 2.6; also known as Newbler; 454 Life Sciences) and MIRA (Chevreux et al., 2004) separately, and then the two assemblies were assembled together using CAP3 (Huang and Madan, 1999), following the proposed best practice for transcriptome assembly from 454 data (Kumar and Blaxter, 2010). gsAssembler assemblies were run with the -cdna and -urt options. MIRA assemblies used job options 'denovo, est, accurate, 454' and with clipping by quality off (-CL:qc=no). CD-HIT was then used to remove redundant sequences from the merged CAP3 assemblies (Li and Godzik, 2006), running cd-hit-est with sequence identity threshold 0.98 (-c 0.98) and clustering to most similar cluster (-g 1). The assembly has been made available on afterParty (http://afterparty. bio.ed.ac.uk).

Maternal transcriptomes from other species

We identified a number of published, high-throughput, maternal transcriptome studies from Ciona intestinalis (Urochordata, Deutrostomia), Danio rerio, Mus musculus, Homo sapiens (Chordata, Deuterostomia), C. elegans (Nematoda, Ecdysozoa) and *D. melanogaster* (Arthropoda, Ecdysozoa). A "maternal transcript" is an mRNA that is present in the embryo before the initiation of major zygotic transcription. This does not mean that these mRNAs are not also later also transcribed from the zygotic genome in the developina embryo.

We carried out a reciprocal tBLASTx comparison of the L. stagnalis 1 to 2-cell transcriptome against each of the other datasets, using a threshold expect value of 1e-10. By identifying L. stagnalis transcripts that had homologues in all of the species we identified a putative set of conserved bilaterian maternal transcripts.

Functional annotation of transcriptome

The 1 to 2-cell and 32-cell transcriptome assemblies were annotated with gene ontology (GO) terms using Blast2GO v 2.7.0 against the NCBI non-redundant (nr) protein database, with an E-value cutoff of 1e-05. GO term distribution was quantified using the Combined Graph function of Blast2GO, with enrichment assessed using the Fisher's Exact Test function (Conesa et al., 2005).

In situ validation of representative transcripts

We validated the maternal expression of a selection of sequences in L. stagnalis 1-cell embryos by using whole mount in situ hybridisation (WMISH). Primers were designed to amplify fragments of selected genes, which were then cloned into pGEM-T and verified by standard Sanger sequencing. Complementary riboprobes were prepared from these templates as described in Jackson et al., (2007a). The WMISH protocol we employed here for L. stagnalis is similar to previously described protocols for molluscan embryos and larvae (Jackson et al., 2006, Jackson et al., 2007b) with some important modifications (described elsewhere; in review). The colour reactions for all hybridisations (including the negative β -tubulin control) were allowed to proceed for the same length of time, and all samples cleared in 60% glycerol and imaged under a Zeiss Axio Imager Z1 microscope. The primers used are shown in Table 1.

Acknowledgements

The authors would like to thank The GenePool Genomics Facility (now Edinburgh Genomics), University of Edinburgh for generating the DNA sequences used in this study. Thanks to Karim Gharbi, Marian Thompson and colleagues at the GenePool, Aziz Aboobaker, as well as Eli Eisenberg for helpful advice on the human housekeeping data. Two anonymous referees provided helpful comments and advice. The work was principally funded by Biotechnology and Biological Sciences Research Council grant BB/F018940/1 to AD and MLB with additional funding provided by the Universities of Edinburgh and Nottingham, the Wellcome Trust Sanger Institute (WT098051), Biotechnology and Biological Sciences Research Council grants G00661X and F021135; Medical Research Council grant (G0900740) and Natural Environmental Research Council grant (R8/ H10/56) to MLB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. DJJ is funded by the German Excellence Initiative and DFG project JA 2108/1-2.

References

- AANES, H., WINATA, C.L., LIN, C.H., CHEN, J.P., SRINIVASAN, K.G., LEE, S.G.P., LIM, A.Y.M., HAJAN, H.S., COLLAS, P., BOURQUE, G. et al., (2011). Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Research 21: 1328-1338.
- ADEMA, C.M., LUO, M.-Z., HANELT, B., HERTEL, L.A., MARSHALL, J.J., ZHANG, S.-M., DEJONG, R.J., KIM, H.-R., KUDRNA, D., WING, R.A. et al., (2006). A bacterial artificial chromosome library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni. Memorias do Instituto Oswaldo Cruz 101: Suppl 1: 167-177.
- AZUMI, K., SABAU, S.V., FUJIE, M., USAMI, T., KOYANAGI, R., KAWASHIMA, T., FUJIWARA, S., OGASAWARA, M., SATAKE, M., NONAKA, M. et al., (2007). Gene expression profile during the life cycle of the urochordate Ciona intestinalis. Developmental Biology 308: 572-582.
- BAROUX, C., AUTRAN, D., GILLMOR, C.S., GRIMANELLI, D. and GROSSNIKLAUS, U. (2008). The Maternal to Zygotic Transition in Animals and Plants. In Control and Regulation of Stem Cells, vol. 73 (ed. STILLMAN, B.STEWART, S. and GRODZICKER, T.), pp.89-100.
- BAUGH, L.R., HILL, A.A., SLONIM, D.K., BROWN, E.L. and HUNTER, C.P. (2003). Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130: 889-900.
- BENOIT, B., HE, C.H., ZHANG, F., VOTRUBA, S.M., TADROS, W., WESTWOOD, J.T., SMIBERT, C.A., LIPSHITZ, H.D. and THEURKAUF, W.E. (2009). An essential role for the RNA-binding protein Smaug during the *Drosophila* maternal-to-zygotic transition. Development 136: 923-932.
- BOYCOTT, A.E. and DIVER, C. (1923). On the inheritance of sinistrality in Limnaea peregra. Proceedings of the Royal Society Biological Sciences Series B95: 207-213.
- CHEVREUX, B., PFISTERER, T., DRESCHER, B., DRIESEL, A.J., MULLER, W.E.G., WETTER, T. and SUHAI, S. (2004). Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Research 14: 1147-1159.
- COLLART, C., ALLEN, G.E., BRADSHAW, C.R., SMITH, J.C. and ZEGERMAN, P. (2013). Titration of four replication factors is essential for the Xenopus laevis

- midblastula transition. Science 341: 893-896.
- CONESA, A., GOTZ, S., GARCIA-GOMEZ, J.M., TEROL, J., TALON, M. and ROBLES, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* 21: 3674-3676.
- DE RENZIS, S., ELEMENTO, O., TAVAZOIE, S. and WIESCHAUS, E.F. (2007). Unmasking activation of the zygotic genome using chromosomal deletions in the *Drosophila* embryo. *Plos Biology* 5: 1036-1051.
- DILL, K.K. and SEAVER, E.C. (2008). Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp I. Development Genes and Evolution 218: 453-463.
- EISENBERG, E. and LEVANON, E.Y. (2013). Human housekeeping genes, revisited. *Trends in Genetics* 29: 569-574.
- EVSIKOV, A.V., GRABER, J.H., BROCKMAN, J.M., HAMPL, A., HOLBROOK, A.E., SINGH, P., EPPIG, J.J., SOLTER, D. and KNOWLES, B.B. (2006). Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. *Genes & Development* 20: 2713-2727.
- GIANI, V.C., JR., YAMAGUCHI, E., BOYLE, M.J. and SEAVER, E.C. (2011). Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid *Capitella teleta*. Evodevo 2.
- GILBERT, S.F. (2006). Developmental Biology. Sinauer, Sunderland, MA.
- GRONDAHL, M.L., ANDERSEN, C.Y., BOGSTAD, J., NIELSEN, F.C., MEINERTZ, H. and BORUP, R. (2010). Gene expression profiles of single human mature oocytes in relation to age. *Human Reproduction* 25: 957-968.
- HARADA, Y., HOSOIRI, Y. and KURODA, R. (2004). Isolation and evaluation of dextral-specific and dextral-enriched cDNA clones as candidates for the handedness-determining gene in a freshwater gastropod, *Lymnaea stagnalis*. *Development Genes and Evolution* 214: 159-169.
- HENRY, J.J., PERRY, K.J., FUKUI, L. and ALVI, N. (2010). Differential Localization of mRNAs During Early Development in the Mollusc, *Crepidula fornicata*. *Integrative and Comparative Biology* 50: 720-733.
- HUANG, X.Q. and MADAN, A. (1999). CAP3: A DNA sequence assembly program. Genome Research 9: 868-877.
- HUI, J.H.L., RAIBLE, F., KORCHAGINA, N., DRAY, N., SAMAIN, S., MAGDELENAT, G., JUBIN, C., SEGURENS, B., BALAVOINE, G., ARENDT, D. et al., (2009). Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. Bmc Biology 7.
- JACKSON, D.J., MACIS, L., REITNER, J., DEGNAN, B.M. and WOERHEIDE, G. (2007a). Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. *Science* 316: 1893-1895.
- JACKSON, D.J., MCDOUGALL, C., GREEN, K., SIMPSON, F., WORHEIDE, G. and DEGNAN, B.M. (2006). A rapidly evolving secretome builds and patterns a sea shell. *Bmc Biology* 4.
- JACKSON, D.J., WORHEIDE, G. and DEGNAN, B.M. (2007b). Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evolutionary Biology 7.
- KALINKA, A.T. and TOMANCAK, P. (2012). The evolution of early animal embryos: conservation or divergence? *Trends in Ecology & Evolution* 27: 385-393.
- KALINKA, A.T., VARGA, K.M., GERRARD, D.T., PREIBISCH, S., CORCORAN, D.L., JARRELLS, J., OHLER, U., BERGMAN, C.M. and TOMANCAK, P. (2010). Gene expression divergence recapitulates the developmental hourglass model. *Nature* 468: 811-U102.
- KNIGHT, M., ITTIPRASERT, W., ODOEMELAM, E.C., ADEMA, C.M., MILLER, A., RAGHAVAN, N. and BRIDGER, J.M. (2011). Non-random organization of the *Biomphalaria glabrata* genome in interphase Bge cells and the spatial repositioning

- of activated genes in cells co-cultured with *Schistosoma mansoni*. *International Journal for Parasitology* 41: 61-70.
- KUMAR, S. and BLAXTER, M.L. (2010). Comparing de novo assemblers for 454 transcriptome data. *BMC Genomics* 11.
- KURODA, R., ENDO, B., ABE, M. and SHIMIZU, M. (2009). Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. *Nature* 462: 790-794.
- LAMBERT, J.D., CHAN, X.Y., SPIECKER, B. and SWEET, H.C. (2010). Characterizing the embryonic transcriptome of the snail *Ilyanassa*. *Integrative and Comparative Biology* 50: 768-777.
- LAMBERT, J.D. and NAGY, L.M. (2002). Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. *Nature* 420: 682-686.
- LEE, M.T., BONNEAU, A.R., TAKACS, C.M., BAZZINI, A.A., DIVITO, K.R., FLEMING, E.S. and GIRALDEZ, A.J. (2013). Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. *Nature* 503: 360-364.
- LEICHSENRING, M., MAES, J., MOESSNER, R., DRIEVER, W. and ONICHTCHOUK, D. (2013). Pou5f1 transcription factor controls zygotic gene activation in vertebrates. *Science* 341: 1005-1009.
- LI, W.Z. and GODZIK, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22: 1658-1659.
- LIU, M.M., DAVEY, J.W., BANERJEE, R., HAN, J., YANG, F., ABOOBAKER, A., BLAXTER, M.L. and DAVISON, A. (2013). Fine mapping of the pond snail left-right asymmetry (chirality) locus using RAD-Seq and Fibre-FISH. *PLoS One* 8: e71067.
- MEYEROWITZ, E.M. (2002). Comparative genomics Plants compared to animals: The broadest comparative study of development. *Science* 295: 1482-1485.
- MORRILL, J.B. (1982). Developmental Biology of the Pulmonate Gastropod, *Lymnaea*. In *Developmental Biology of Freshwater Invertebrates*, (ed. HARRISON, F. W.). Alan R. Liss, Inc., New York, pp.399-483.
- PETERSON, K.J., COTTON, J.A., GEHLING, J.G. and PISANI, D. (2008). The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. *Philosophical Transactions Of The Royal Society B-Biological Sciences* 363: 1435-1443.
- QUINT, M., DROST, H.-G., GABEL, A., ULLRICH, K.K., BOENN, M. and GROSSE, I. (2012). A transcriptomic hourglass in plant embryogenesis. *Nature* 490: 98-101.
- RAVEN, C.P. (1966). Morphogenesis: the analysis of molluscan development. Pergamon Press.
- SCHIER, A.F. (2007). The maternal-zygotic transition: death and birth of RNAs. *Science* 316: 406-407.
- SCHILTHUIZEN, M. and DAVISON, A. (2005). The convoluted evolution of snail chirality. *Naturwissenschaften* 92: 504-515.
- SHEN-ORR, S.S., PILPEL, Y. and HUNTER, C.P. (2010). Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. *Genome Biology* 11.
- STITZEL, M.L. and SEYDOUX, G. (2007). Regulation of the oocyte-to-zygote transition. *Science* 316: 407-408.
- STURTEVANT, A.H. (1923). Inheritance of direction of coiling in *Limnaea*. *Science* 58: 269-270.
- TADROS, W. and LIPSHITZ, H.D. (2009). The maternal-to-zygotic transition: a play in two acts. *Development* 136: 3033-3042.
- WANG, J., GARREY, J. and DAVIS, RICHARD E. (2013). Transcription in pronuclei and one- to four-cell embryos drives early development in a nematode. *Current Biology* 10.1016/j.cub.2013.11.045.
- WIESCHAUS, E. (1996). Embryonic transcription and the control of developmental pathways. *Genetics* 142: 5-10.

Further Related Reading, published previously in the Int. J. Dev. Biol.

Maternal RNAs encoding transcription factors for germline-specific gene expression in Drosophila embryos

Jun Yatsu, Makoto Hayashi, Masanori Mukai, Kayo Arita, Shuji Shigenobu and Satoru Kobayashi

Int. J. Dev. Biol. (2008) 52: 913-923

http://www.intjdevbiol.com/web/paper/082576jy

$\textit{Centroid}, a \ novel \ putative \ DEAD-box\ RNA\ helicase\ maternal\ mRNA, is\ localized\ in\ the\ mitochondrial\ cloud\ in\ \textit{Xenopus\ laevis}\ oocytes$

Malgorzata Kloc and Agnes P. Chan

Int. J. Dev. Biol. (2007) 51: 701-706

http://www.intjdevbiol.com/web/paper/072293mk

Differences in maternal supply and early development of closely related nematode species

Magdalena Laugsch and Einhard Schierenberg

Int. J. Dev. Biol. (2004) 48: 655-662

http://www.intjdevbiol.com/web/paper/031758ml

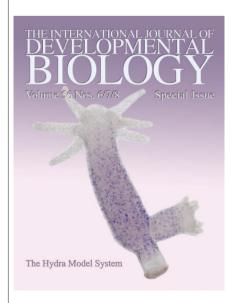
Identification and characterization of maternally expressed genes with mRNAs that are segregated with the endoplasm of early ascidian embryos

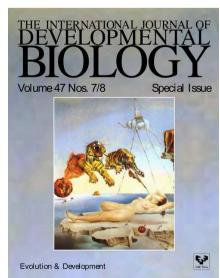
K Imai, N Satoh and Y Satou

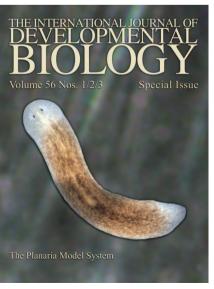
Int. J. Dev. Biol. (1999) 43: 125-133

http://www.intjdevbiol.com/web/paper/10235388

HrWnt-5: a maternally expressed ascidian Wnt gene with posterior localization in early embryos


Y Sasakura, M Ogasawara and K W Makabe


Int. J. Dev. Biol. (1998) 42: 573-579


http://www.intjdevbiol.com/web/paper/9694628

5 yr ISI Impact Factor (2011) = 2.959

