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Vibrational frequencies for carbon clusters, fullerenes and nanotubes evaluated using empirical carbon-carbon potentials are

presented. For linear and cyclic clusters, frequencies evaluated with the reactive empirical bond order (REBO) potential provide

the closest agreement with experiment. The mean absolute deviation (MAD) between experiment and the calculated harmonic

frequencies is 79 cm−1 for the bending modes and 76 cm−1 for the stretching modes. The effects of anharmonicity are included

via second order vibrational perturbation theory and tend to increase the frequency of the bending modes while the stretching

modes have negative shifts in the region of 20 - 60 cm−1, with larger shifts for the higher frequency modes. This results

in MADs for the bending and stretching modes of 84 cm−1 and 58 cm−1, respectively. For the fullerene molecule C60, the

high frequency modes are predicted to have harmonic frequencies that are significantly higher than experiment, and this is not

corrected by accounting for anharmonicity. This overestimation of experimental observed frequencies is also evident in the

calculated frequencies of the G band in nanotubes. This suggests that the REBO potential is not optimal for these larger systems

and it is shown that adjustment of the parameters within the potential leads to closer agreement with experiment, particularly if

higher and lower frequency modes are considered separately.

1 Introduction

The prediction of the infrared (IR) and Raman spectroscopy of

carbon clusters and closed carbon cages is a problem of fun-

damental interest and a challenge for computational methods.

Carbon clusters are often studied in relation to the chemistry

of carbon stars,1,2 and IR measurements have had a prominent

role in the detection of C60 fullerene and the possible detection

C70 in a young planetary nebula.3 Furthermore, IR and Ra-

man spectroscopy are used to characterise the structure of nan-

otubes,4,5 and IR spectroscopy has been used to study charge

dynamics in graphene.6 The capability to compute the vibra-

tional frequencies and associated spectra of these systems ac-

curately can potentially aid the interpretation and identifica-

tion of fullerene species in experimental measurements and

allow the relationship between the molecular structure and the

observed features to be explored. From a quantum chemical

perspective within the Born-Oppenheimer approximation, the

calculation of vibrational frequencies and the associated vi-

brational modes requires solutions of the nuclear Schrödinger

equation

[T̂nuc +V (R)]Ψnuc(R) = EnΨnuc(R) (1)

Adopting the harmonic approximation wherein V (R) is as-

sumed to be quadratic greatly simplifies this problem, and
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the vibrational frequencies and normal modes are obtained

through diagonalization of the mass-weighted Hessian matrix.

For small to medium sized molecules, Kohn-Sham density

functional theory7 (DFT) is most commonly used to evalu-

ated the necessary derivatives. Within this approach the cal-

culated frequencies are usually too high, and often a uniform

scaling factor is applied.8 There are a number of well estab-

lished methods for going beyond the harmonic approximation,

such as second-order vibrational perturbation theory (VPT2)

and vibrational configuration interaction (VCI). In general,

these calculations are based upon a quartic force field, and

the accuracy of VPT2 with various DFT exchange-correlation

functionals has been assessed and show that hybrid function-

als achieve an accuracy of about 30 cm−1.9 The limitation of

these methods compared to a harmonic analysis is their com-

putational cost. For VPT2 calculations, the majority of the

computational effort is in the evaluation of the necessary third

and fourth derivatives by numerical methods. The number of

energy and gradient calculations required increases rapidly as

the size of the system increases. This increase in computa-

tional cost is compounded by the cost of the individual energy

and gradient evaluations, which also increase as the system

gets larger.

Consequently, DFT based anharmonic calculations of IR

spectroscopy are limited to very small systems, and even har-

monic frequency calculations for large fullerenes become pro-

hibitively expensive, and a number of schemes to reduce the
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cost of harmonic and anharmonic frequency calculations have

been proposed.10–12 One example are methods that exploit

factors such as the localized nature of the vibrational modes

which can be applied to certain systems to reduce the cost of

the calculations.13,14 This constitutes an approximation in the

solution of the nuclear part of the problem, while using DFT to

solve the electronic part of the problem and provide the force

field. An alternative approach, which is the focus of this work

is to simplify the description of the force field through the use

of empirical potentials. The evaluation of energies and gra-

dients with empirical potentials can be computationally trivial

compared to DFT calculations, and their use can make the cal-

culation of IR spectra for large systems, that would be too ex-

pensive with DFT forces fields, computationally tractable. Of

course, for such methods to be of value then this decrease in

computational cost cannot result in an unacceptable reduction

in accuracy.

Empirical potentials describing the carbon-carbon interac-

tion are some of the most highly developed and widely used

in chemistry and materials science. Currently, the most widely

used potential for carbon is probably the reactive empirical

bond order (REBO) potential.15 This potential is a develop-

ment of the original Brenner potential16 which was based on

the Tersoff potential17 and is designed to account for changes

in atomic hybridisation and allow for the breaking and form-

ing of covalent bonds. The REBO potential is a relatively short

ranged potential and the TLHT potential of Takai et al.18 is an

example of a longer range potential and further potentials for

carbon have been developed by Murrell and co-workers.19,20

The focus of this work is an assessment of the accuracy of

such empirical potentials in the prediction of the vibrational

frequencies of carbon clusters and fullerenes. This is moti-

vated by goal of exploiting accurate empirical potentials for

the calculation of IR and Raman spectra of large fullerene and

nanotube systems in a computationally tractable manner. Fur-

thermore, potentials such as the REBO potential are widely

used in molecular dynamics simulations of carbon based ma-

terials. It is an open question whether a potential that is devel-

oped and tested based upon relatively small molecules will be

transferable and describe systems such as fullerenes and nan-

otubes accurately. The calculation of vibrational frequencies

probes the curvature of the potential energy surface around a

minimum. Consequently, if a potential does not accurately

reproduce vibrational frequencies, then the curvature of the

potential at the minima is not correct, which raises doubt over

any quantitative analysis of, for example, molecular dynamics

trajectories using the potential.

The study of the spectroscopy of small carbon clusters has

been an area of research of considerable activity and exten-

sive reviews of the subject can be found in the literature.21,22

Carbon clusters (Cn) comprising less than 10 carbon atoms

have low energy linear structures, with a 1Σ+
g ground state

for odd n and 3Σ−
g ground state for even n.22 Although high

level calculations suggest that the lowest energy structures are

cyclic for some n < 10.23 Larger clusters (n > 10), are be-

lieved to have cyclic structures owing to a reduction in ring

strain. Halicioglu reported harmonic vibrational frequencies

from both the Brenner and TLHT potentials for linear Cn

(n=2-5) clusters.24 The results showed the TLHT potential

to provide the closest agreement with experiment, although

the predicted stretching frequencies were considerably higher

than the experimental values (by up to 500 cm−1). The re-

ported frequencies for the Brenner potential were even worse,

and tended to be too low by several hundred wavenumbers.

The harmonic vibrational frequencies of carbon clusters and

C60 computed with the empirical potential of Murrell and co-

workers have also been reported.20 The stretching modes for

small linear carbon clusters were high compared with experi-

ment and a scaling factor of 0.615 was used for these modes.

For C60 the low frequency (less than 1000 cm−1) were under-

estimated and the higher frequency (greater than 1000 cm−1)

modes were overestimated and it was necessary to scale the

modes. Small carbon clusters of this size are accessible to

direct calculation of the harmonic frequencies with quantum

chemical methods, including DFT,25 coupled cluster theory23

and multi reference based approaches.26 These studies have

shown that overall results from DFT are reasonably accurate

compared to those from coupled cluster theory,25,26 although

some discrepancies have been identified where the minimum

energy coupled cluster theory structure is a saddle point ac-

cording to DFT.26 Furthermore, it is probably necessary to

account for both dynamical and non-dynamical correlation to

accurately treat these systems.26

The IR and Raman spectra for some fullerenes have been

reported.27–30 The most studied fullerene is C60, and the IR

spectrum of C60 has four infrared active modes (T1u) and ten

Raman active modes (two Ag and eight Hg). The four active

IR modes give bands at 526, 577, 1180 and 1433 cm−1, with a

ratio of intensities of 1, 0.48, 0.45, and 0.378, respectively,27

and there has been a considerable effort to assign all of the

vibrational modes.31 The Raman spectrum has bands at 267,

431, 495, 711, 775, 1101, 1251, 1427, 1470 and 1576 cm−1,

with the most intense peaks at 267, 495 and 1470 cm−1.28 The

strong covalent bonds between carbon atoms lead vibrations

with predominantly tangential displacements to have higher

frequencies, while the lower frequency part of the spectrum

consists mainly of radial modes.32 IR spectra have been re-

ported for other fullerenes, including C70,
27 C76

29 and C84,30

and the lower symmetry of these fullerenes leads to more

bands being evident in the IR and Raman spectra. Raman

spectroscopy is also used to probe the structure of carbon nan-

otubes and graphene.33 The G band is a multiple peak fea-

ture at 1540-1595 cm−1 and is an important component of the

Raman spectroscopy of these systems34–36 Group theory pre-
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dicts the Raman-active G band in achiral nanotubes consists of

A1g, E1g and E2g modes.35 Furthermore, in carbon nanotubes

there is a radial breathing mode at 100 - 400 cm−1, where the

frequency of this mode is dependent on the diameter of the

nanotubes.37,38

There have been many theoretical studies of the vibrational

frequencies of C60 and C70 using a wide range of different

methodologies including force field,39,40 semi-empirical and

DFT.31,41–46 The work of Hands et al.40 is illustrative of force

field based studies, and assessed several existing force fields

and developed a new force field wherein the 13 force constants

contained within the force field were fitted to the experimental

values for the Raman active vibrational modes. This type of

model will naturally reproduce the data to which it was fitted

but was also able to account for the full spectrum. However,

there is significant difference between this type of force field

and the empirical potentials considered in this work. The po-

tentials considered here are general carbon-carbon potentials

and have not been fitted based using data for C60 or to specif-

ically describe vibrational frequencies. Fabian39 also used a

force constant based model with parameters fitted to exper-

imental IR and Raman data to simulate the IR spectrum of

C60. This work developed an approach to evaluate the inten-

sities of the IR bands based upon the bond charge model.47

A good description of the IR spectrum was achieved and it

was suggested that anharmonicity provides a possible mech-

anism for activating weak modes resolved in IR spectra of

C60 thin films and single crystals. Calculation of harmonic

frequencies of C60 and C70 with DFT is computationally ex-

pensive, particularly if good quality basis sets are used. Sev-

eral groups have applied standard DFT based approaches to

compute harmonic frequencies of C60 and C70.41–43 The aim

of this work is predominantly to assign all of the vibrational

modes, although quite recently these assignments have been

updated based upon inelastic neutron scattering data and pe-

riodic DFT calculations.46 In this work the authors note that

while calculations normally pertain to an isolated molecule,

almost all of the available data are for the solid and therefore a

periodic description is necessary. Recently,45 a self-consistent

charge density-functional tight-binding method was applied to

study the vibrational frequencies of some fullerenes using a

harmonic treatment of the vibrations and a root mean squared

deviation of about 30 cm−1 with respect to BLYP/cc-pVTZ

calculations was reported. Comparison with the experimen-

tal frequencies for the IR and Raman active modes of C60

shows that the calculated frequencies tend to be too low by

up to about 80 cm−1 in the worst case. Overwhelmingly, the-

oretical studies of the vibrational spectroscopy of these sys-

tems have been based upon harmonic frequencies, and there

has been relatively few attempts to incorporate anharmonic-

ity into the calculations.39,48,49 A potential energy surface has

been developed to describe the anharmonic vibrational mo-

tions of C60 and used to calculate anharmonically corrected

fundamentals frequencies within a vibrational self-consistent

field approach.49 The anharmonic frequencies were found to

be within about 10 cm−1 of the harmonic frequencies, and

this small degree of anharmonicity was associated with the

stiff carbon-carbon bonds in C60. In this paper, the harmonic

and anharmonic calculations of the IR spectroscopy of small

carbon clusters and fullerenes calculated with empirical po-

tentials are presented, with the accuracy of the calculations

assessed through comparison with DFT based calculations,

where these are computationally feasible, and experiment.

2 Computational Details

DFT harmonic and anharmonic frequencies were computed

following full geometry optimisation using the Q-Chem

software package.50 The B3LYP51 and B97-1 exchange-

correlation functional52 were used in conjunction withe the

6-311G* basis set53 unless stated otherwise. Vibrational fre-

quencies for several empirical potentials for carbon have been

investigated. The first is the Murrell-Mottram54 potential for

carbon parameterised by Eggen et al.20 The potential (denoted

MM here) has the following two-body and three-body terms

E =
N

∑
i

N

∑
j=i+1

V
(2)
i j +

N

∑
i

N

∑
j=i+1

N

∑
k= j+1

V
(3)
i j (2)

V
(2)
i j = −D(1+a2ρi j)exp(−a2ρi j) (3)

V
(3)
i j = D⇥P(Q1,Q2,Q3)exp(−a3ρi j) (4)

where

P(Q1,Q2,Q3) = c0 + c1Q1 + c2Q2
1 + c3(Q

2
2 +Q2

3)

+ c4Q3
1 + c5Q1(Q

2
2 +Q2

3)

+ c6(Q
3
3 −3Q3Q2

2)+ c7Q4
1

+ c8Q2
1(Q

2
2 +Q2

3)+ c9(Q
2
2 +Q2

3)
2

+ c10Q1(Q
3
3 −3Q3Q2

2) (5)

and

Q1 =
1p
3
(ρi j +ρik +ρ jk) (6)

Q2 =
1p
2
(ρik +ρ jk) (7)

Q3 =
1p
6
(2ρi j −ρik −ρ jk) (8)

ρi j = (ri j − re)/re (9)

with ri j the distance between atoms i and j. The potential

was fitted to the phonon frequencies and elastic constants of

diamond and the values for the parameters (D,re,a2,a3 and
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c0 − c10) can be found elsewhere.20 The TLHT potential18

also has two and three-body terms, with the two-body part

given by

V
(2)
i j = exp(q1 −q2ri j)−q3

✓

1

2
− tan−1[q4(ri j −q5)]

π

◆1/2

(10)

The three-body part of the potential is represented by the angle

dependent term

V
(3)
i j = Z[p+(cosθi +h)(cosθ j +h)(cosθk +h)]

⇥ exp[−b2(r2
i j + r2

ik + r2
jk)] (11)

where θi, θ j and θk are the angles of the triangle formed by

the three atoms i, j and k, and q1 −q5,Z,h, p and b are param-

eters. In the original Brenner potential16 (denoted Brenner),

the energy is expressed as

E =
1

2

N

∑
i

N

∑
j 6=i

fc(ri j)[VR(ri j)−bi jVA(ri j)] (12)

where fc(ri j) is a cutoff function and VR and VA and bi j are

defined as

VR(ri j) =
De

S−1
exp[−β

p
2S(ri j − re)] (13)

VA(ri j) =
SDe

S−1
exp[−β

p

2/S(ri j − re)] (14)

bi j = (1+ zi j)
−n (15)

with

zi j =
N

∑
k(6=i, j)

fc(rik)g(θi jk)exp[m(ri j − rik)] (16)

and

g(θi jk) = α{1+(c/d)2 − c2/[d2 +(h+ cosθi jk)
2]} (17)

The second generation REBO potential15 is significantly more

complex than the Brenner potential and is designed to describe

changes in atomic hybridization. VR and VA are modified to

VR(ri j) =

✓

1+
Q

ri j

◆

Aexp[−αri j] (18)

VA(ri j) =
3

∑
n=1

Bn exp[−λnri j] (19)

and

bi j =
1

2
(bσ−π

i j +bσ−π
ji )+ΠRC

i j +bDH
i j (20)

bσ−π
i j =

 

1+
N

∑
k 6=i, j

f c
ikgi jk

!−1/2

(21)

gi jk is a bond-bending spline function and the ΠRC
i j term is rel-

evant for radicals and is zero for closed shell systems. bDH
i j is

a dihedral bending function that depends on the local conju-

gation and involves the third nearest neighbour atoms.

bDH
i j =

Ti j

2
∑

k,l 6=i, j

f c
ik f c

jl(1− cos2[Θi jkl ]) (22)

where Θi jkl is the dihedral angle of four atoms and Ti j de-

scribes the rotation about the bonds and depends whether the

atoms are conjugated. There are many parameters incorpo-

rated in the REBO potential which are described in more detail

elsewhere.15

Vibrational frequencies were computed for the REBO,15

THLT18 and Murrell19 potentials using our own code. Struc-

tures were optimised according to the empirical potentials

with the conjugate gradient technique. In this software ana-

lytical first derivatives are available for the REBO potential,

otherwise the derivatives were evaluated numerically with a

step size of 0.005 Å in cartesian coordinates for the first and

second derivatives and 0.1 bohr along the normal modes for

the third and fourth derivatives used in the evaluation of the

anharmonic correction. These values of step size are typically

used within quantum chemistry codes.50 For the fullerene

molecules, we found it necessary to use a larger step size

of 0.5 bohr for the numerical third and fourth derivatives.

The smaller step size did not give a sufficiently large change

in energy and the resulting anharmonic shifts were not reli-

able. While this sensitivity of the anharmonic shifts for the

fullerenes is undesirable, implementing analytical higher or-

der derivatives for a potential as complex as the REBO poten-

tial is not practical, and we only discuss the anharmonic shifts

for the fullerenes at a qualitative rather than quantitative level.

Anharmonic corrections for the vibrational frequencies were

computed according to VPT2 using the formula55

∆EVPT2
i =

1

8ωi

m

∑
j=1

ηii j j

ω j

− 1

8ωi

m

∑
j=1

m

∑
k=1

ηiikη j jk

ω jω
2
k

(23)

+
1

4ωi

m

∑
j=1

m

∑
k=1

(ω2
i +ω2

j −ω2
k )η

2
i jk

ω j[(ωi −ω j)2 −ω2
k ][(ωi +ω j)2 −ω2

k ]

where the η’s represent derivatives of the energy with respect

to the normal modes, ωi is the harmonic vibrational frequency

of normal mode qi and there are m normal modes.

While evaluating the vibrational frequencies for the empiri-

cal potentials is relatively straightforward, determining the as-

sociated intensities is more problematic. In this work we have

used two approaches to estimate the infrared intensities. In the

first, atomic partial charges for the structure optimised accord-

ing to the empirical potential were determined in a separate

DFT calculation and the relative intensities of the modes were
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Table 1 Computed harmonic frequencies for linear carbon clusters. Bending modes are shown in italics and modes with a large intensity (>
50 km/mol as given by the DFT calculations) are shown in bold. aExperimental values from reference22 and references therein

Molecule Method Vibrational Frequencies / cm−1

C3 Brenner 11, 790, 1370

MM 89, 1919, 3321

TLHT 271, 1353, 2438

REBO 383, 1232, 2135

DFT - B3LYP 102, 1237, 2148

DFT - B97-1 77, 1228, 2134

Exp.a 63, 1225, 2040

C4 Brenner 5, 13, 600, 1118, 1449

MM 57, 127, 1416, 2719, 3408

TLHT 166, 362, 1053, 1956, 2689

REBO 211, 463, 900, 1743, 2185

DFT - B3LYP 169, 346, 938, 1592, 2124

DFT - B97-1 159, 336, 931, 1584, 2116

Exp. 160, 339, -, 1549, 2032

C5 MM 38, 90, 145, 1128, 2208, 3046, 3448

TLHT 110, 260, 407, 857, 1627, 2298, 2813

REBO 131, 330, 497, 712, 1408, 1950, 2207

DFT - B3LYP 118, 229, 564, 795, 1490, 2039, 2260

DFT - B97-1 114, 222, 552, 790, 1480, 2027, 2253

Exp. 118, 218, -, -, 1447, -, 2169

C6 MM 27, 67, 112, 154, 939, 1849, 2647, 3205, 3470

TLHT 77, 192, 322, 430, 720, 1388, 1990, 2506, 2880

REBO 89, 235, 399, 514, 591, 1174, 1688, 2050, 2219

DFT - B3LYP 101, 205, 368, 486, 668, 1227, 1731, 2030, 2180

DFT - B97-1 97, 197, 359, 467, 665, 1219, 1721, 2024, 2179

Exp. 90, 246, -, -, 637, 1197, 1694, 1960, 2061

C7 MM 19, 51, 89, 128, 160, 804, 1590, 2312, 2901, 3294, 3484

TLHT 57, 146, 255, 362, 443, 620, 1208, 1749, 2234, 2639, 2919

REBO 65, 173, 312, 441, 505, 523, 1006, 1470, 1850, 2106, 2227

DFT - B3LYP 75, 166, 262, 527, 586, 676, 1112, 1602, 1981, 2214, 2246

DFT - B97-1 73, 161, 255, 514, 583, 630, 1105, 1597, 1971, 2209, 2245

Exp. 496, 548, 1893, 2128

C8 MM 14, 40, 71, 106, 138, 163, 703, 1394, 2044, 2613, 3058, 3350, 3494

TLHT 44, 115, 206, 302, 389, 452, 543, 1067, 2007, 2405, 2728, 2728, 2944

REBO 49, 133, 246, 366, 442, 467, 530, 880, 1296, 1663, 1951, 2141, 2233

DFT - B3LYP 62, 147, 237, 367, 501, 514, 524, 973, 1397, 1762, 2025, 2131, 2158

DFT - B97-1 61, 143, 231, 360, 488, 509, 511, 968, 1390, 1754, 2019, 2133, 2154

Exp. 1710, 2072
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estimated through displacement of the partial charges with re-

spect to the normal modes. Some of the molecules studied in

this work are highly symmetric and the atomic partial charges

are zero. In this case, dipole derivatives computed in a sepa-

rate B97-1/STO-3G calculation were combined with the com-

puted normal modes as given by the Hessian of the empirical

potential to give the intensity. However, this approach is lim-

ited in that it introduces a significant computational expense

in determining the dipole derivatives. Other approaches in-

volving the introduction of bond charges have been used to

evaluate intensities for C60 and C70
39,47 and provide a basis

for computing intensities without introducing additional ex-

pense. Anharmonic corrections for the intensities were not

considered.

3 Results and Discussion

3.1 Linear Cn Molecules

Table 1 shows the harmonic frequencies for linear Cn clus-

ters computed with the second generation REBO potential,

TLHT potential, MM potential and the Brenner potential for

n=3 and 4. Also shown are frequencies computed using DFT

with the B97-1 and B3LYP exchange-correlation functionals

and 6-311G* basis set. For odd n these clusters have a 1Σ+
g

ground state and for even n a 3Σ−
g ground state. The varia-

tion of the predicted frequencies between these two function-

als is small and the frequencies generally lie within 20 cm−1

of each other, and both lie within about 40 cm−1 of the re-

ported CCSD(T) frequencies.23 The values from B97-1 are

marginally closer to the available experimental data and we fo-

cus on this functional in the following discussion. Before con-

sidering the calculated frequencies we will briefly discuss the

optimised structures. The minimum energy structures given

by the empirical potentials are more uniform than those from

DFT, with all of the bond lengths equal except for the two

carbon-carbon bonds at the ends of cluster. For the REBO po-

tential the bond lengths between the central carbons is 1.348

Å and 1.300 Å for the terminal bonds, with corresponding

values of 1.226 Å and 1.210 Å for the TLHT potential. The

predicted bond lengths for the MM potential are significantly

larger, this is a consequence of the re parameter that is set to

1.507 Å. In contrast to the REBO and THLT potentials the

bond lengths are predicted to be longer in the centre of the

cluster, with values of 1.529 Å for the central bonds and 1.517

Å for the terminal bonds. The DFT calculations are consis-

tent with the REBO and TLHT potentials and also predicts

the carbon-carbon bond lengths of the central carbons to be

shorter than for the two end carbons. However, for the longer

carbon chains the bond lengths of the central carbons are not

uniform. Furthermore, the bond lengths of the end carbons are

shorter for the odd n clusters (1Σ+
g states) than the even n clus-

ters (3Σ−
g states) of similar size, and for both states decreases

as the length of the clusters increases. For the C6 cluster the

bond length between the central carbons is 1.276 Å and the

1.305 Å for the end carbons, which are closest to the values

predicted by the REBO potential. We have also explored the

Tersoff and Brenner potentials. The Tersoff potential does not

predict linear structures for the small carbon clusters, while

the Brenner potential predicted linear structures for C3 and C4

with very low frequencies for the bending modes (see Table 1)

and non-linear structures for the larger clusters. These poten-

tials have a closely related bending potential (eqn. 17), and the

results suggest that this does not describe these small clusters

well. These findings are consistent with an earlier study,24 and

we do not consider these potentials further.

For C3, the REBO potential predicts frequencies for the

stretching modes that are very close to the values from DFT.

The frequency for the bending mode is significantly higher

than DFT, and comparison with experiment shows the value

from DFT to be more accurate. The REBO calculated fre-

quency for the symmetric stretching mode (σg) lies within

10 cm−1 of the experimental value, while the predicted fre-

quency for the antisymmetric stretching mode (σu) is consid-

erably higher than experiment. The calculated frequencies for

the stretching modes are significantly higher with the TLHT

potential while the bending mode frequency is slightly lower

than the REBO value, but remains higher than experiment.

The frequencies for the MM potential are even higher, 3321

cm−1 for the σu mode, although the frequency of the bend-

ing mode is close to the experimental value. This is consis-

tent with the finding of a previous study where these frequen-

cies were scaled by 0.615 to achieve agreement with experi-

ment.20 The higher stretching modes frequencies as given by

the TLHT potential is consistent with its shorter bond length,

although it is counterintuitive for that the MM potential has

the longest bond length and the highest frequencies.

For the larger clusters, the bending frequencies for the

REBO potential are in closer agreement with DFT and the

large error for the bending mode observed for C3 appears

to be an exception. The stretching mode frequencies from

the REBO potential are reasonably similar to the DFT val-

ues, however, the TLHT potential predicts frequencies that are

too high, in some cases by over 700 cm−1 and the stretching

frequencies for the MM potential remain considerably higher

than experiment. For C8 the order of the two highest frequency

modes are interchanged by both empirical potentials relative

to the DFT calculations. For the smaller clusters, our cal-

culated frequencies for the TLHT potential are in agreement

with earlier work.24 The results also demonstrate a consider-

able improvement between the original and second generation

REBO potentials with the original potential not predicting the

correct structures for these clusters while the newer version is

reasonably accurate.
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Table 2 Computed DFT (B97-1/6-311G*) and REBO anharmonic shifts for the linear carbon clusters frequencies. S: only stretching modes

included, S+B: stretching and bending modes included

Mol. Method ∆ν1 ∆ν2 ∆ν3 ∆ν4 ∆ν5 ∆ν6 ∆ν7 ∆ν8 ∆ν9 ∆ν10 ∆ν11 ∆ν12 ∆ν13

C3 DFT S+B +41 +20 -65

DFT S 0 +18 -35

REBO S+B -11 -19 -69

REBO S 0 -26 -58

C4 DFT S+B +35 +78 +14 -37 -55

DFT S 0 0 -10 -25 -32

REBO S+B -1 +39 -17 -53 -71

REBO S 0 0 -18 -41 -58

C5 DFT S+B -44 -15 +20 -7 -37 -43 -46

DFT S 0 0 0 -7 -11 -18 -19

REBO S+B +11 +8 -2 +6 -27 -42 -54

REBO S 0 0 0 -13 -18 -31 -36

C6 DFT S 0 0 0 0 -6 -8 -20 -16 -21

REBO S+B +21 +13 +7 -2 -9 -21 -45 -49 -63

REBO S 0 0 0 0 -10 -13 -35 -31 -46

C7 DFT S 0 0 0 0 0 0 +6 +4 +8 -8 +25

REBO S+B +27 +20 +13 +6 -14 -1 -17 -28 -41 -49 -46

REBO S 0 0 0 0 0 -8 0 -9 -25 -32 -27

C8 DFT S 0 0 0 0 0 0 -34 -20 -22 +24 -27 -31 -24

REBO S+B +31 +16 +11 -19 +5 -1 +4 -13 -23 -36 -37 -46 -53

REBO S 0 0 0 0 -7 0 0 -7 -16 -22 -22 -26 -34

Some of the discrepancy between the computed frequen-

cies and experiment can be associated with the harmonic ap-

proximation. Table 2 shows the computed anharmonic cor-

rections to the normal mode frequencies as given by VPT2

for DFT and the REBO potential. Two values for the anhar-

monic shift are shown. The first includes all vibrational modes

within the evaluation of the anharmonic shift, while the sec-

ond excludes the bending modes from the VPT2 calculation.

Near degeneracy effects can often result in VPT2 giving er-

roneous predictions of anharmonic shifts. This can often be

corrected by removing low frequency modes from the calcu-

lation resulting in more accurate anharmonic corrections for

the higher frequency modes, although by removing vibrational

modes from the calculation the anharmonic shift will tend to

be underestimated. The DFT calculations predict a large shift

to lower frequency (-65 cm−1) for the σu mode and a posi-

tive shift of (+20 cm−1) for the σg mode. These anharmonic

shifts are consistent with earlier coupled cluster calculations

that reported anharmonic shifts of -51 cm−1 and +18 cm−1

for the σu and σg modes, respectively.56 Anharmonic shifts at

the coupled cluster level have also been reported for C5 where

values of -7, -17, -26, and -31 cm−1 were evaluated for the

four stretching modes with the bending modes excluded from

the anharmonic frequency calculation.57 Again, these results

are consistent with our corresponding DFT calculation. For

C3 the REBO potential gives anharmonic shifts of -19 cm−1

and -69 cm−1 for the σg and σu modes. For the σu mode

this is close to the value from DFT, but the shift in the σg

mode has a different sign to DFT. However, combining these

anharmonic corrections with the computed harmonic frequen-

cies gives values of 1213 cm−1 and 2066 cm−1 for the σg and

σu modes, which are close to the experimental values of 1225

cm−1 and 2040 cm−1. Although, the inclusion of anharmonic-

ity does not account for the deviation from experiment of the

REBO potential for the bending mode.

For the larger clusters (n > 5) DFT anharmonic correc-

tions are only reported with the bending modes excluded since

the inclusion of the bending modes results in clearly unreli-

able frequencies which is likely to be a consequence of near-

degeneracy effects. For the REBO potential this is less of a

problem and anharmonic shifts are given with and without the

bending modes included. The calculations for the larger linear

clusters do reveal some general trends in the computed an-

harmonic shifts. Anharmonicity tends increase the frequency

of the bending modes while the stretching modes have neg-

ative shifts in the region of 20 - 60 cm−1, with larger shifts

for the higher frequency modes. The calculations also show

that neglecting the bending modes in the evaluation of the an-

harmonic correction does result in an underestimation of the

anharmonic shift compared to the full anharmonic calculation.

The agreement between the calculated REBO frequencies and

experiment is illustrated in Figure 1. For the bending modes

the mean absolute deviation (MAD) between experiment and

the calculated harmonic frequencies is 79 cm−1, and this in-
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Fig. 1 Correlation between the calculated REBO and experimental

vibrational frequencies for the linear carbon clusters. The top panel

shows the bending modes and the lower panel stretching modes.

Calculated harmonic frequencies are shown in red and anharmonic

frequencies are shown in blue

creases to 84 cm−1 with the inclusion of the VPT2 anharmonic

correction. This represents a significantly poorer agreement

with experiment than DFT for which the MAD for the bend-

ing modes is 20 cm−1. For the stretching modes, the REBO

potential is more accurate with a MAD for the harmonic fre-

quencies of 76 cm−1 which decreases to 58 cm−1 with the in-

clusion of anharmonic effects. This compares to a MAD of 63

cm−1 for the harmonic DFT frequencies, although this MAD

decreases to 21 cm−1 following scaling of the frequencies by a

standard value of 0.96. For these clusters, the displacement of

atomic charges along the normal modes allows for the modes

with non-zero intensity of be identified.

3.2 C16, C60, C70 and Nanotubes

The calculated frequencies for the linear carbon clusters show

the REBO potential to be the significantly more accurate than

the other empirical potentials considered. While the computed

REBO frequencies are significantly less accurate than DFT for

the bending modes, its accuracy for the stretching modes is

comparable to unscaled harmonic DFT frequencies and over-

all the decrease in accuracy is modest in view of the vastly re-

duced computational cost. Consequently, the use of the REBO

potential has the potential to allow relatively accurate calcula-

tions of the vibrational frequencies of much larger carbon sys-

tems and we focus on the use of this potential. In order to test
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Fig. 2 Computed IR spectra for cyclic C16. (a) harmonic

B97-1/cc-pVDZ, (b) harmonic REBO and (c) anharmonic REBO

this we first consider the larger (mono)cyclic cluster C16.

The optimised structures of cyclic C16 as given by the

REBO potential is a highly symmetrical planar structure with

all of the bond lengths equal to 1.356 Å. The computed har-

monic and anharmonic frequencies are illustrated in Figure

2 and tabulated in Table 3. In this Figure, superimposed on

the computed spectra are asterisks denoting the computed fre-

quencies with zero intensities. Also shown are the harmonic

frequencies computed at the B97-1/cc-pVDZ level. In gen-

eral, the lower frequency modes (< 450 cm−1) correspond to

vibrations involving motions out of the molecular plane and

the higher frequency modes involve motions within the plane

of the molecule. For both REBO and DFT spectra, there is

only one (doubly-degenerate) vibrational mode that has non-

zero intensity. This is computed to have an overall intensity

of 34.1 km mol−1 from DFT and is predicted to be slightly

weaker using the combination of the REBO normal modes and

B97-1/STO-3G dipole derivatives at 19.4 km mol−1. This dif-

ference may be attributed to using a smaller basis set in the cal-

culation of the dipole derivatives. The effect of anharmonicity

in the cyclic clusters is similar to the linear clusters. Most of

the bending modes are shifted to higher frequency by about

5-15 cm−1, while the stretching modes are shifted to lower

frequency by typically 30 cm−1. Comparison with the DFT

calculations can provide some estimate of the accuracy of the

REBO frequencies. For the mode with non-zero intensity, the

REBO potential gives harmonic and anharmonic frequencies

of 595 cm−1 and 589 cm−1 which is in reasonable agreement
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Table 3 Computed harmonic and anharmonic DFT and REBO frequencies for cyclic carbon clusters, all modes are doubly degenerate except

those denoted with an asterisk

Molecule Method Computed Frequencies / cm−1

C16 B97-1/cc-pVDZ 149, 217, 305, 337, 420, 421*, 428, 433*, 447, 452, 454, 471, 558,

(harmonic) 589, 606, 917, 953*, 1133, 1229, 1496, 1634*, 1674, 1693

C16 REBO 52, 68, 140, 156, 246, 260, 352, 363, 433*, 444, 451, 505, 510,

(harmonic) 526*, 531*, 595, 912, 1248, 1557, 1819, 2016, 2139, 2181*

C16 REBO 61, 83, 150, 169, 254, 270, 359, 371, 417*, 449, 457, 509, 514,

(anharmonic) 530*, 534*, 589, 900, 1232, 1535, 1791, 1981, 2105, 2147*

with the DFT value of 606 cm−1. However, for the modes with

no intensity there is a overestimation of the higher frequency

modes and also some underestimation of the lower frequency

modes.

Table 4 Computed REBO harmonic frequencies in cm−1 for the IR

and Raman active modes of C60 with different parameterisations of

the REBO potential (see text for details). Experimental data. 27 aroot

mean square deviation from experiment.

Mode Exp. REBO REBOLD REBOopt REBOopt2

T1u 526 443 542 430 498

577 533 516 512 564

1180 1104 1101 1059 1198

1422 1633 1612 1575 1462

Ag 495 457 449 440 489

1470 1666 1633 1575 1493

Hg 267 198 227 194 199

431 444 478 431 475

711 692 696 667 738

775 738 787 715 804

1101 1050 1059 1059 1127

1251 1333 1322 1264 1181

1427 1583 1589 1540 1454

1576 1636 1667 1559 1470

RMSa - 99 91 79 45

The calculated and experimental frequencies of the IR and

Raman active modes of C60 are shown in Table 4. These

modes have been assigned based on a visual comparison of

the animated normal modes using IQMOL (http://iqmol.org/)

with those from a DFT calculation where the IR and Raman

active modes can be determined directly through calculated

intensities. Overall, the lower frequency modes tend to be

underestimated and the high frequency modes are signifi-

cantly overestimated, which is consistent with the findings for

C16. Furthermore, the relative order of the vibrational modes

is not consistent with experiment. For example, the lowest

T1u mode is predicted to have a lower frequency that the

lowest Ag mode. A positive shift in the low frequency modes

arising from anharmonicity would be expected based upon the

calculations on the smaller clusters. REBO VPT2 calculations

are consistent with this with shifts in the range +10 cm−1

to +30 cm−1 for the lower frequency modes. For the higher

frequency modes (>1000 cm−1), VPT2 anharmonic shifts

are predicted in the range -10 to -20 cm−1 with some higher

frequency shifts of -30 cm−1 for some modes, for example

the Ag mode at 1666 cm−1 in C60. The magnitude of these

shifts are larger than the values of about -10 cm−1 suggested

previously,49 but are too small to fully account for the

deviations from experiment suggesting that the improvements

in the potential can be made. Nanotubes are related systems

and the G band in nanotubes has been well characterised by

Raman spectroscopy and lies at 1540-1595 cm−1. Within

a non-periodic framework nanotubes can be modelled by

finite open or capped nanotubes.58,59 For finite uncapped

zigzag nanotubes of length 30.6 Å and varying diameters

including (9,0), (10,0), (11,0), (12,0) and (13,0) nanotubes

(illustrated in Figure 3) the vibrational modes comprising

the G band are computed to lie in the range 1730-1780

cm−1. This is approximately 200 cm−1 too high and is inline

with the findings for C60. The calculated intensities of the

IR active modes evaluated by combining dipole derivatives

from a B97-1/STO-3G calculation with the REBO normal

modes gives relative intensities of 1:0.01:0.86:0.5 compared

to the experimental values of 1:0.48:0.45:0.4 which shows the

intensity of the second T1u mode to be vastly underestimated.

However, the source of this discrepancy can be associated

with the DFT calculation which also underestimates the

intensity of this band.

Alternative parameterisations of the REBO potential have

been reported in the literature. In particular, Lindsay and

Broido modified the potentials to improve its description of

structural data and to the in-plane phonon-dispersion data

for graphite, and the resulting potential also gave better lat-

tice thermal conductivity values in single-walled carbon nan-

otubes.60 In this work the re-parameterisation was limited

to T0 (equation 22) and the coefficients of the bond bend-

ing spline function. Also shown in Table 4 are the com-
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Fig. 3 Model of the (13,0) nanotube with a component of the G

band vibration indicated

puted frequencies from this version of the potential, denoted

REBOLD. The performance of this parameterisation relative

to the original REBO potential is mixed. Overall, there is

an improvement in the predicted frequencies as shown by a

reduction in the root-mean square (RMS) deviation from ex-

periment. However, the predicted frequencies of the high fre-

quency modes remain significantly overestimated and also the

order of the two lowest IR active T1u modes are incorrectly

interchanged.

We have also modified the potential to optimise the values

of the predicted vibrational frequencies for these modes with-

out a significant perturbation of the underlying potential. The

two parameters in the potential that have been varied are the

exponent α in the repulsive part of the potential (equation 18)

and the bond angle term is modified to

bσ−π
i j =

 

1+ζ
N

∑
k 6=i, j

f c
ikgi jk

!−1/2

(24)

where a scaling factor ζ is introduced. Variation of the two

parameters α and ζ leads to optimum values of α = 4.74 Å−1

(compared to the original value of α = 4.7465390606595 Å−1)

and ζ = 1.10, which gives an RMS error of 79 cm−1 com-

pared with experiment. The new parameters do reduce the

deviation from experiment for the higher frequency modes but

within the form of the potential it was not possible to achieve

this without adversely affecting the low frequency modes and

the resulting parameters represent a compromise in accuracy

between the low and high frequency modes. The potential

has been further optimised wherein the low frequency modes

(<1200 cm−1) and high frequency modes are treated sepa-

rately. In these optimisations the Ti j term in the dihedral bend-

ing function (equation 22) is scaled by a factor η in addition

to the variation of α and ζ . For the low frequency modes val-

ues of α = 4.76 Å−1, ζ = 0.80 and η = 1.8 are optimal and

for the high frequency modes the respective values are 4.74

Å−1, 1.60 and 1.5. For these parameters there is a significant

decrease in the RMS error to 45 cm−1 and an improvement in

the predicted ordering of the vibrational modes. This error is

significantly lower than that obtained through a linear scaling

of the REBO frequencies, where an optimum scaling factor

of 0.95 gives an RMS error of 85 cm−1. The optimisation of

the potentials was performed on the computed harmonic fre-

quencies and subsequent inclusion of anharmonicity leads to

a mixed picture and no overall improvement in the agreement

with experiment.
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Fig. 4 Experimental (upper panel) and simulated (lower panel) IR

spectra of C70. Experimental data adapted from reference27

Figure 4 shows the experimental and simulated REBOopt2

IR spectra for C70. In the simulated spectrum the IR bands

have been broadened by representing with gaussian functions

with full width at half maximum of 7 cm−1. The simulated

spectrum predicts bands in reasonable agreement with the ex-

periment. The intensity of the weaker bands is overestimated

by the calculation but the most intense band is reproduced with

a calculated frequency of 1459 cm−1 compared with the ex-

perimental band at 1427 cm−1.

Table 5 Computed harmonic vibrational frequencies in cm−1 for the

G band and radial breathing mode (RBM) in model nanotubes

Nanotube G Band RBM

(9,0) 1667 332

(10,0) 1657 301

(11,0) 1633 274

(12,0) 1624 251

(13,0) 1615 233

The computed harmonic frequencies for the highest fre-

quency component of the G band and the radial breathing

mode (RBM) for a range of zigzag nanotubes calculated with

the REBOopt2 parameterisation are shown in Table 5. The pre-

dicted values for G band are much closer to the experimentally
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observed range of 1540-1595 cm−1 compared with the origi-

nal REBO potential. Similarly, the predicted frequencies for

the RBM are within the 100 - 400 cm−1 range that is seen

experimentally. Furthermore, strong dependence of the RBM

frequency on the diameter of the nanotube is reproduced by

the calculations.

4 Conclusions

The calculation of the vibrational frequencies and associated

spectroscopy of large carbon systems lies at the limits of the

size of system that can be studied with standard quantum

chemical approaches. This work has explored the use of em-

pirical potentials in the calculation of harmonic and anhar-

monic frequencies of carbon clusters and fullerenes. For the

linear carbons clusters C3 to C8, the most accurate frequencies

are predicted by the REBO potential, with a MAD from ex-

periment of 79 cm−1 for the bending modes and 76 cm−1 for

the stretching modes. Incorporating anharmonicity via VPT2

does not improve the predicted frequencies of the bending

modes but does reduce the MAD for the stretching modes to

58 cm−1. For C60 and the G band in nanotubes the predicted

frequencies for the higher frequency modes are consistently

much too high, and for C60 there is a large RMS deviation be-

tween the calculated and experimental vibrational frequencies

for the IR and Raman active modes. Modification of the poten-

tial to reproduce the experimental vibrational frequencies does

result in a reduction in the error in the calculated frequencies

but it is found that to achieve satisfactory agreement with ex-

periment it is necessary to consider the low frequency (<1200

cm−1) and high frequency modes separately. This gives an

RMS error of 45 cm−1 for the IR and Raman active modes of

C60 and leads to a reasonable agreement with experiment for

the IR spectrum of C70 and the G band and RBM of nanotubes.
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