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Abstract

In transport logistic operations, an efficient delivery plan and better utilisation of vehicles

will result in fuel cost savings, reduced working hours and even reduction of carbon diox-

ide emissions. This thesis proposes various algorithmic approaches to generate improved

performance in automated vehicle load packing and route planning. First, modifications

to best-fit heuristic methodologies are proposed and then incorporated into a simple

but effective “look-ahead” heuristic procedure. The results obtained are very competi-

tive and in some cases best-known results are found for different sets of constraints on

three-dimensional strip packing problems. Secondly, a review and comparison of different

clustering techniques in transport route planning is presented. This study shows that

the algorithmic approach performs according to the specific type of real-world transport

route planning scenario under consideration. This study helps to achieve a better un-

derstanding of how to conduct the automated generation of vehicle routes that meet the

specific conditions required in the operations of a transport logistics company. Finally, a

new approach to measuring the quality of transportation route plans is presented show-

ing how this procedure has a positive effect on the quality of the generated route plans.

In summary, this thesis proposes new tailored and effective heuristic methodologies that

have been tested and incorporated into the real-world operations of a transport logis-

tics company. The research work presented here is a modest yet significant advance to

better understanding and solving the difficult problems of vehicle loading and routing in

real-world scenarios.

3



Acknowledgments

Firstly, I would like to thank my supervisor Dr. Dario Landa-Silva for all his support

and encouragement throughout the final year of my PhD. Also, I would like to thank

Prof. Edmund Burke and Prof. Graham Kendall who gave support and advice during

my first and second year. I also thank the School of Computer Science and the Graduate

School, both at the University of Nottingham, for providing excellent facilities for my

research. This doctoral programme would have not been possible without the financial

support of the Engineering and Physical Sciences Research Council (EPSRC), the School

of Computer Science, The University of Nottingham, and the Vietnamese Education and

Training Department. I would like to thank my parents and the rest of my family for

their help, support and even sacrifices from the start until the end. Hopefully, there will

be a happy ending because they deserve it.

4



Contents

1 Introduction 13

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Contributions: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background and Related Work 18

2.1 Brief Note on Computational Complexity . . . . . . . . . . . . . . . . . . 18

2.2 Three-Dimensional Strip Packing Problems (3D-SPP) . . . . . . . . . . . 19

2.2.1 Heuristics and Approximation Algorithms . . . . . . . . . . . . . . 22

2.2.2 Meta-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Hyper-Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Benchmark Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Multiple Carrier Transportation . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Single-Customer Multi-Carrier Transportation Planning . . . . . . 32

2.3.2 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Vehicle Routing Problems With Time Windows . . . . . . . . . . . 42

2.3.3.1 Route Building Heuristics . . . . . . . . . . . . . . . . . . 43

2.3.3.2 Local Search Methods . . . . . . . . . . . . . . . . . . . . 46

5



Contents

3 Overhead Estimation and Constructive Heuristics for 3D-SPP 50

3.1 Three-Dimensional Best Fit (3BF) Algorithm . . . . . . . . . . . . . . . . 50

3.2 Modification to 3BF+TS . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Block Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Block Reallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Procedure 3BFBL . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Overhead Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2.1 Result Evaluation BR and BRXL - 10 Instances . . . . . 63

3.4.2.2 Result Evaluation BR and BRXL - 100 Instances . . . . . 64

3.5 Further Modification to OH-3BFBL . . . . . . . . . . . . . . . . . . . . . 68

3.5.1 Multi-type Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 Layer Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Further Modification Experiment . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Overhead Estimation and Constructive Heuristics For The 3D-SPP with a

Stability Constraint 78

4.1 3D-SPP with Rotation and Stability Constraint . . . . . . . . . . . . . . . 79

4.2 Investigation into Best Fit, Best Support Heuristics . . . . . . . . . . . . . 80

4.2.1 Block Generation for Stability Constraint . . . . . . . . . . . . . . 80

4.2.2 Best Fit and Best Support Heuristics . . . . . . . . . . . . . . . . . 82

4.2.3 Experiments with Heuristics . . . . . . . . . . . . . . . . . . . . . . 84

6



Contents

4.3 Overhead Estimation with Stability Constraint . . . . . . . . . . . . . . . 86

4.3.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1.1 Experimental Set Up . . . . . . . . . . . . . . . . . . . . 87

4.3.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 88

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Heuristics For Pallet Space Equivalent Measurements 93

5.1 Introduction and Operation Overview . . . . . . . . . . . . . . . . . . . . 93

5.2 Pallet Space Equivalent Problem . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 PSE Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Heuristics For Pallet Space Equivalent . . . . . . . . . . . . . . . . . . . . 102

5.3.1 Block Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Candidate Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.2 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Clustering Effect And Planning Quality In Multi-Carrier Transport 119

6.1 Single-Customer Multi-carrier Planning Problem . . . . . . . . . . . . . . 119

6.2 Evaluation of Different Clustering Algorithms . . . . . . . . . . . . . . . . 123

6.3 Inefficient Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Resolve Inefficient Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Evaluation of Clustering Algorithms Experiments . . . . . . . . . . . . . . 135

6.5.1 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7



Contents

6.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.2.1 Standard Data . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.2.2 Relax Data . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 Resolve Inefficient Plan Experiment . . . . . . . . . . . . . . . . . . . . . . 141

6.6.1 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusions and Future Work 145

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8



List of Tables

3.1 OH3BFBL results compared to TSACC-4P, SPBBL-CC4 and 3BF+TS

with first 10 instances of BR dataset. . . . . . . . . . . . . . . . . . . . . . 63

3.2 Utilisation, standard deviation and run time for OH-3BFBL using the first

10 instances of the BR data set . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Results of OH-3BFBL compared to SPBBL-CC4 and 3BF+TS using the

first 10 instances of the BRXL data set . . . . . . . . . . . . . . . . . . . . 64

3.4 Results of OH-3BFBL with all instances of BR dataset . . . . . . . . . . . 66

3.5 Results of OH-3BFBL with all instances of BRXL dataset . . . . . . . . . 66

3.6 Result of OH-3BFBL with Multi-type block generation and layer point . 75

4.1 Performance of best fit/support heuristics with BR data set . . . . . . . . 85

4.2 BR data set - first 10 instances - non-parallel method . . . . . . . . . . . 89

4.3 BR data set - first 10 instances - parallel method . . . . . . . . . . . . . . 90

4.4 BR data set - 100 instances . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 TT data set properties and 3T’s current method performance overview . . 113

5.2 Percentage of TT data set of different handling unit types and stackability 114

5.3 Performance of heuristics and their best combined results with the TT

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Number of instances where only one heuristic has the highest utilisation . 117

9



List of Tables

5.5 Summary of Max Volume performance separated into higher and below

average instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Shipment properties at United Kingdom, Spain and France . . . . . . . . 120

6.2 Results of different clustering algorithms in LUK at initial solutions using

standard data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3 Results of different clustering algorithms in LPS at initial solutions using

standard data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Results of different clustering algorithms in LFR at initial solutions using

standard data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Results of different clustering algorithms in LUK at final solution using

standard data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Results of different clustering algorithms in LSP at final solution using

standard data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7 Results of different clustering algorithms in LFR at final solution using

standard data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Results of different clustering algorithms in LUK at initial solutions using

relax windows data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.9 Results of different clustering algorithms in LSP at initial solutions using

relax windows data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.10 Results of different clustering algorithms in LFR at initial solutions using

relax windows data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.11 Results of different clustering algorithms in LUK at final solution using

relax windows data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.12 Results of different clustering algorithms in LSP at final solution using

relax windows data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.13 LUK - Final Results - Resolve Inefficient Plan . . . . . . . . . . . . . . . 143

10



List of Figures

2.1 Euler diagram for different classes of complexity . . . . . . . . . . . . . . . 19

2.2 Box with z axis rotation properties . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Solution obtained with 3BF heuristic and optimal solution with a large

box and a group of smaller boxes . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Example showing how a bigger gap is created by appling block reallocation 53

3.3 3BF+TS where the second phase starts with the yellow boxes compared

with the optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Simple block example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Group block examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Example of an envelope box - minimum size of rectangular box that can

contain all the boxes in a block . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Block reallocation example . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Coordinate system used where y is the non-restricted dimension . . . . . . 58

3.9 Variation of the performance of OH-3BFBL Mix set up from BR1 to BR10 67

3.10 Variation of the performance of OH-3BFBL Mix setup from BRXL1 to

BRXL10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.11 A example of Extreme Point (black dots) and Layer Point (white dots) . 69

3.12 Possible Non-Extreme Point position in two-dimensions . . . . . . . . . . 69

3.13 Possible Non Extreme Point Position in three dimensions . . . . . . . . . . 70

3.14 A sample of various Multi-type blocks which have more than two box types 70

11



List of Figures

3.15 Example of blocks with the same dimensions but different arrangement -

Ambiguous block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.16 An example of multiple layer point . . . . . . . . . . . . . . . . . . . . . . 74

3.17 Example of different positions and point combinations where free space

cannot be re-used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Non-supported Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 OH-3BFMC - BR data set . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 A 800mm x 1200mm Euro standard pPallet . . . . . . . . . . . . . . . . . 94

5.2 An example of a stackable pallet . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 An example of a non-stackable pallet . . . . . . . . . . . . . . . . . . . . . 95

5.4 Comparison of utilisation between strip packing loading and PSE problem 99

5.5 A sample of a simple block . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6 Simple block and Group block . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Group Block Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Candidate Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 LSP shipment distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 LUK shipment distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 LFR shipment distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Different clustering results from DBSM and DBSKM . . . . . . . . . . . . 124

6.5 A sample of city ring roads . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Difference between straight line and actual driving distance . . . . . . . . 125

6.7 A sample of delivery plan contain backward milage . . . . . . . . . . . . . 128

6.8 Carrier rejected plan as route going through regions in different direction 129

6.9 Carrier rejected plan when shipment’s souce is in the same region with its

destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.10 Inefficient Plan Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12



1 Introduction

This chapter provides an introduction to the research presented in this PhD thesis.

Firstly, the background and motivation for investigating the three-dimensional packing

problem and the single-customer multiple-carrier transport planning problem are out-

lined. The scope and objectives of this work are described next. Then, the contributions

to knowledge arising from this PhD thesis are listed. Finally, an outline of the remaining

chapters in this work is presented.

1.1 Background and Motivation

Transport logistics have always been a very important factor in many industrial and

business scenarios. The provision of logistic services is also an extremely large and

competitive market. For example, a 2011 report by the Department for Transport Road

Freight Statistics stated that by the end of 2010 there were nearly 400,000 vehicles of over

3.5 tonnes operating in Great Britain with a turn-over of about £24 billion and 30,149

enterprises in road transportation (DFT (2011)). Even with the significant amount of

resources and investment that are dedicated to transport logistics, maximising the use of

the current infrastructure still requires extensive research. For example, according to the

Barclays Corporate report in 2008, around 29% of Heavy Goods Vehicles (HGVs) were

running empty on the road and this figure has not changed significantly according to a

similar report in 2012 (Team (2012)). With the recent economic changes and increasing

concerns regarding issues such as fuel price, efficiency and environmental impact, the

13



1 Introduction

need for optimisation in transport logistics is more crutical than ever. Important aspects

to consider in the optimisation of transport logistics operations include optimising vehi-

cle’s space utilisation, as well as more efficient transport planning through the routing

of vehicles. Therefore, research and development into an automated cutting or packing

method and transport planning tool could bring significant cost savings, improve time

efficiency and reduce environmental impact of transport operations. During the research

period of this PhD, a collaboration between 3T Logistics Ltd and The University of Not-

tingham was established to develop and improve an automated planning system for the

4PL logistics model presented in Landa-Silva et al. (2011). This offered an excellent op-

portunity to receive insightful feedback regarding practical elements of vehicle utilisation

and transport planning.

1.2 Objectives and Scope

The main research focus of this thesis is heuristics and its application to the trans-

port logistics market. The first objective was to improve vehicle utilisation by means of

a more efficient three-dimensional packing methods. There are many different heuristic

approaches proposed in the literature. The best-fit heuristic technique presented in Burke

et al. (2004) and Allen et al. (2011) are shown to be very effective when applied on its own

or as part of some meta-heuristics. One aim of this PhD project was to improve the best-

fit heuristic not only on benchmark packing problems but also, and more importantly for

the scope of this thesis, on problems arising in real-world transport logistics scenarios.

In addition to the problem definition given in previous works cited above, the stability

constraint was also included in the present work. A three-dimensional packing problem

in a real-world scenario was also investigated, heuristics designed and performance eval-

uated using a variety of scenarios. Another aim of this PhD project was to improve the

algorithmic approach to transport planning originally developed through a collaboration

between The University of Nottingham and 3T Logistics Ltd. This required updating

14



1 Introduction

the problem description and modelling to meet the current business requirements and

incorporating additional requirements from live operations. The existing approach was

extended to address a number of changes in live operations and improve the performance

of the automated planning approach.

1.3 Contributions:

The following is a list of the major contributions of this PhD thesis:

• An extension of the best-fit heuristic for the three-dimensional strip packing prob-

lem is introduced. The extension includes two block generation variations, block

reallocation and candidate point generation.

• An overhead estimation approach to improve the heuristics result for the three-

dimensional strip packing problem is introduced. It produces good results over a

set of benchmark data sets.

• An improved heuristic with overhead estimation for the three-dimensional strip

packing problem with stability constraint is developed. The proposed approach

achieves competitive results when compared to other approaches from the litera-

ture.

• Arising from live transport logistic operational scenarios, a new problem pallet

space equivalent is presented. This is a real-world problem that incorporates sta-

bility and stability constraint.

• A best-fit heuristic is proposed for a pallet space equivalent problem and positive

results are obtained through computational experiments. The proposed heuristic

has been incorporated into a real-world automated planning system and used in

live operations.

15



1 Introduction

• A new quality factor for transport planning is identified to measure inefficient

mileage of a route. A tailored meta-heuristic operator was designed to target this

new factor in order to reduce inefficient mileage.

• A investigation into the compatibility of different clustering algorithms with the

algorithmic approaches for various real-world transport planning profiles was con-

ducted. As a result, better understanding of the influence of the clustering on the

overall approach was also achieved.

1.4 Thesis Outline

This PhD thesis contains seven chapters. The first chapter introduces the background,

objectives and overview of the thesis. Chapter 2 describes the three-dimensional packing

problem and the single-customer multiple-carrier planning problem investigated in this

thesis. The definition and benchmark data sets used in the literature for these problems

are presented in that chapter too, as well as an overview of the different approaches in

the literature to solve related problems. Chapters 3, 4 and 5 address the packing prob-

lems. Chapter 3 presents an extension to best-fit heuristics for the three-dimensional

strip packing problem. Also, different block generation approaches, procedures for block

reallocation and possible block generation are introduced to enhance the used heuristics.

That chapter also presents an overhead approach to improving heuristics as an alternative

to meta-heuristics. Following from chapter 3, chapter 4 focuses on the three-dimensional

strip packing problem with the addition of stability constraint. A variety of heuristics,

including best-fit and best support heuristics, are evaluated for combination with over-

head estimation approaches. Modifications to heuristics for compatibility with stability

constraint are also presented. Experimental results show that the approaches developed

here are very competitive when compared to other approaches found in the literature.

Chapter 5 establishes a variation on the three-dimensional strip packing problem with

16



1 Introduction

stability and stackability constraints arising in real-world transport planning operations.

A pallet space equivalent problem is presented and a constructive heuristic approach

was developed. Chapter 6 focuses on a real-world problem in live transport planning

operations. A new factor in transport planning was identified and a study on the effect

of different clustering approaches using a variety of different scenarios is presented. The

approaches from both chapters 5 and 6 have been implemented on live operations and

their performance evaluated highly by the business management team hence they were

incorporated into the company’s live transport planning operations.
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2 Background and Related Work

2.1 Brief Note on Computational Complexity

A computational problem belongs to class P, this means it can be solved in polynomial

time by a deterministic Turing Machine. A problem belongs to class NP when it can be

solved in polynomial time by a non-deterministic Turing Machine. Then, problems in

P are those that can be solved in polynomial time by some deterministic algorithm (i.e.

solved efficiently) while problems in NP are those that can be solved in polynomial time

by a non-deterministic algorithm. It is not known if P = NP and this perhaps the most

important open question in computational complexity. For many problems proven to be

in NP no efficient algorithm has been found, strengthening the belief that P 6= NP but

this conjecture is still not proven (Cormen et al. 2001). There is a class of problems in

NP called the NP-complete class and these are considered the hardest problems to solve

in this class. A problem is in the NP-complete class if there is a polynomial reduction

that can be used to transform that problem into any other problem in this class. NP-

hard problems can be described as those problems that are at least as hard as the hardest

problems in the NP class and therefore it is believed that no efficient algorithm exists

for solving these problems unless P = NP. Some of the NP-hard problems have not yet

been proven to be in NP. Therefore, it is believed that when tackling a problem that is

NP-hard or NP-complete, the focus should not be in finding an efficient algorithm (it is

believed that such an algorithm does not exist) but instead on designing algorithms that

produce high-quality solutions in practical time. Figure 2.1 shows a Euler diagram for
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Figure 2.1: Euler diagram for different classes of complexity

these different classes of complexity.

Since solving NP-hard problems with exact algorithms is not efficient in terms of com-

putational time, non-exact solving methods such as heuristics, meta-heuristics and re-

cently hyper-heuristics have received more attention and their potential revealed. These

approaches do not offer a guarantee of finding optimal solutions. However, it is possible

to produce high-quality solutions in reasonable computational time.

2.2 Three-Dimensional Strip Packing Problems (3D-SPP)

One of the problems investigated in this PhD thesis within the context of freight trans-

port operations is the three-dimensional strip packing problem (3D-SPP) for which some

tailored heuristics have been developed. In the 3D-SPP we are given a container and a set

of rectangle boxes. The problem is to pack all the boxes inside the container in the most

efficient way. The container has fixed width and height but the length can be extended

as needed. Each of the boxes has fixed given dimensions for width, height and length.

The goal when solving the 3D-SPP is to minimise the length of the container required to

pack all the boxes. There are different constraints that arise in the 3D-SPP which impose
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additional restrictions on how the boxes can be packed into the container, e.g. support

constraint, stability constraint etc. The 3D-SPP is a combinatorial optimisation problem

(Papadimitriou & Steiglitz 1982) which is also NP-hard (Hopper & Turton 2001).

The 3D-SPP is classified as a 3/B/O following the classification proposed by Dyckhoff

(1990). Wäscher et al. (2007) classify this problem as a three-dimensional rectangular

open dimension problem with one variable dimension (3D-R-ODP). The 3D-SPP can be

defined as follows:

• Input:

– A set of rectangular boxes with given fixed dimensions for width, height and

length.

– A container with given fixed width and height, length can be extended as

needed in order to pack all the boxes.

• Output:

– A packing plan showing the position of each rectangular box within the con-

tainer.

• Objective:

– Minimise the length of the total packing or the length of the container used.

• Constraints:

– All boxes must be packed.

– All boxes must be packed fully inside the container.

– All boxes must be placed orthogonally (i.e. the edges of the boxes should be

parallel to the edges of the container)

– Boxes cannot overlap.
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One key difference between the 3D-SPP and the related three-dimensional container

packing problem (3D-CPP) is that in container packing, all three dimensions of the

container are pre-defined and fixed. Another difference is that in the 3D-SPP all the

boxes must be packed but this is not always the case in a solution to a 3D-CPP. As

mentioned above, the original objective in 3D-SPP is to minimise the required length of

the container needed for packing all boxes. However, in order to compare different packing

methods for 3D-SPP’s instances, measuring only the container length is not sufficient. For

example, consider an instance with one box, the width and height of the box are the same

as the container and the length of the box is 1. Obviously, this instance has an optimal

solution of length 1. Similarly, an instance with a box of length 100 (same width and

height as the container) will have an optimal solution of 100. The two solutions for these

two different instances have different lengths but both are optimal. When comparing

the performance of packing methods for a collection of instances, the used length is not

always the true reflection of the method’s efficency. Therefore, alternative measurements

are used to assess the quality of the packing. The optimal length is defined as the length

of the container required to accommodate the volume of all the boxes. That is, if we

could melt all the boxes into liquid form and then pour the liquid into the container of

fixed width and height but expandable length, then the length of the container required

to hold all the liquid is called the optimal length. The optimal length is calculated as the

total volume of all boxes divided by the surface area of the container (width multiplied

by height). The formula to calculate the optimal length is as follows:

optimalLength = [
∑

b.V olume/C.Width ∗ C.Height]

where b.V olume is the volume of all input boxes, and the width and height of the

container are given by C.Width and C.Height respectively.

The utilisation of the length of the container is calculated by:

utilisation = optimalLength/actualLength

The higher the utilisation achieved, the shorter the optimal length required for packing
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all boxes in a 3D-SPP instance.

Strip packing problems have many practical applications. In the case of 2D-SPP ap-

plications include material cutting, pallet loading and process scheduling while 3D-SPP

applications include carrier load building, container design and resource allocation (Coff-

man et al. 1978). In the literature, the two-dimensional strip packing problem has re-

ceived considerable attention from researchers, but research on the three-dimensional

problem is limited in comparison. The 3D-SPP can be seen as a generalisation of the

2D-SPP, therefore we can solve the two-dimensional case using a method for 3D-SPP by

assuming that the height of each box and the container is 1.

Bischoff and Ratcliff (1995) introduced many practical requirements for cutting and

packing problems. A number of practical constraints include: orientation constraints,

handling constraints, load stability, grouping of items, multi-drop situations, separation

of items within a container, complete shipment of certain item groups, shipment priorities,

complexity of the loading arrangement, container weight limit and weight distribution

within a container. In the research work described in this thesis, rotation constraints and

stability constraints are taken into account.

Approaches to tackling 3D-SPP include: heuristics and other approximation algo-

rithms, as well as meta-heuristics and hyper-heuristics. The following subsections review

some of these methods and briefly describe some of the most relevant ones for the work

developed in this thesis. For a more detailed discussion of these and other search method-

ologies and optimisation techniques, please refer to Burke & Kendall (2005).

2.2.1 Heuristics and Approximation Algorithms

A heuristic can be described as a “rule of thumb” approach. Based on experience and

knowledge about the problem at hand, such an approach can be developed to produce

a solution. A heuristic approach can generate reasonably good solutions within a short

computational time and moderate memory requirements. These advantages tend to
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make heuristics a good choice in practice where optimality is not essential. However,

since there is no guarantee about the quality of solution achieved, it is of course possible

for a heuristic to produce poor or even infeasible solutions. Approximation algorithms

also offer good solutions in practice and they also offer some guarantee for the quality of

the solution by providing a bound for the worst case solution. In general, approximation

algorithms are preferred over heuristics because of this quality assurance. However, to

the best of our knowledge, for cutting and packing problems in general, and particularly

for the 3D-SPP, state-of-the-art approximation algorithms only offer solutions with lower

bounds that are very close to the quality of solutions found by simple or sometimes even

inefficient packing algorithms. Therefore, heuristic approaches have received much more

attention in 3D-SPP research.

The Next Fit Decreasing Height (NFDH) approach was proposed by Li & Cheng (1990)

to tackle the 3D-SPP. NFDH first sorts boxes in decreasing order of height. Then, one

box is packed at a time with the next box in the order packed to form horizontal strips.

The next strip is packed on top of the previous strip to form layers of boxes. The process

continues until all boxes have been packed. Li & Cheng (1992) improved their previous

approach and called it LLm. The input boxes are sorted in non-increasing order of

height and then they are split into subsets. The total bottom area of each subset has to

statisfy a range of values. Each subset is packed into the container by a two-dimensional

subroutine. Subsequent approximation algorithms, which concentrate on performance

guarantee, have been introduced such as Miyazawa & Wakabayashi (2007), Miyazawa &

Wakabayashi (2009), Jansen & Solis-Oba (2006) and Bansal et al. (2007).

Many of the heuristics that have been proposed for 3D-SPP are adaptations of ap-

proaches for the 2D-SPP. Most of the heuristics for 3D-SPP are constructive algorithms.

A constructive algorithm starts with an empty container and at each iteration, a box or

a group of boxes is packed into the container until there are no boxes left or a given ter-

mination criterion is reached. Usually, the selection of the next box to pack and where to
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pack it in the container, are decisions based on experience or knowledge of the problem.

Some of the constructive heuristics proposed in the literature are described next.

Baker et al. (1980) proposed the bottom left (BL) heuristic where input boxes are sorted

according to their bottom area. Boxes are packed by placing them at the top right part

of the container then falling down to the bottom of the container and then moving to

the left as far as possible. Chazelle (1983) improved the BL heuristic by placing the box

at the bottom most position then moving it to the left as far as possible, and called this

approach bottom left most fill (BLF) heuristic. Hopper (2000) used different criteria to

sort the sequence of boxes before placing them into the container. Then, the best result

of all the criteria is selected for actually placing the boxes. The DBLF (deepest bottom

left fill) heuristic chooses the deepest position in the container and then moves to the

bottom or lowest position to finally move to the left as much as possible. The best-fit

heuristic (BF) was introduced by Burke et al. (2004). This BF procedure considers the

bottom most place in the container as candidate position and then considers the box or

shape that is a best-fit for that candidate position. If there is no shape that fits into the

current candidate position, the next candidate position (possible higher position in the

container) is considered. Karabulut & İnceoğlu (2005) proposed the deepest bottom left

fill (DBLF) for 3D-SPP based on the BLF heuristic for 2D-SPP (outlined above). Allen

et al. (2011) introduced a three-dimensional best-fit heuristic (3BF) for the 3D-SPP,

based on the BF heuristic for the 2D-SPP. This heuristic is a constructive approach that

finds the boxes that fit the best in the remaining gaps of the container. The gap is defined

as a free-area on the surface parallel to the deepest surface of the container. To cater for

the situation where there might be more than one box that fits in a gap, four different

criteria were proposed to break ties. Similar to the process followed in the 2D-BF, if the

deepest gap cannot be filled, the next deepest gap is considered. This process continues

until there are no boxes left to pack. Other different constructive heuristics have been

proposed in the literature. George & Robinson (1980) proposed a layer approach where
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the container is divided into vertical layers. Each layer is then divided into horizontal

strips and each strip is filled by a row of boxes. Bischoff & Marriott (1990) combined the

2D heuristic from George & Robinson (1980) to fill the layer of boxes. Bortfeldt (1999)

proposed approaches based on algorithms for container loading algorithms.

As stated by Bortfeldt (1999), the first algorithms for tackling the container loading

problem were proposed in Bortfeldt & Gehring (1998) and Bortfeldt & Gehring (2001).

In order to solve the strip packing problem using an algorithm for the container loading

problem, there are two approaches: open container and closed container. In the open

container approach, the algorithm solves a container loading problem considering an

unlimited length for the container. In the closed container approach, the container is

given a certain length large enough for the problem in hand. After each successful feasible

packing is achieved, the length of the container is reduced and the packing repeated. This

process of finding a packing for a container with smaller length is repeated until there is no

feasible packing found. It is important to note that the stability constraint is included

in Bortfeldt (1999). In Bortfeldt & Mack (2007), the container loading algorithm by

Pisinger (2002) was adapted to solve strip packing problems using both open and closed

container approaches. Recursive tree searches are carried out to determine the layer

depth and strip height and weight. In both Bortfeldt (1999) and Bortfeldt & Mack

(2007), the closed container approach produces superior results when compared to the

open container approach. A property that layer building approaches have is that the

quality of the packing depends on the quality of the layer depth selection.

2.2.2 Meta-heuristics

As mentioned in subsection 2.2.1, constructive heuristic approaches for strip packing

problems normally consist of a sequence of boxes being packed into the container or a

sequence of boxes that define the layer depth. It is then very useful to apply meta-

heuristics to improve the result provided by the constructive heuristics. In general, the
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term “meta-heuristic” describes a technique that seeks to generate better candidate solu-

tions from the current solution. It is generally accepted that meta-heuristics are search

techniques that can be applied without much knowledge of the optimisation problem

domain. A number of well-established meta-heuristics are outlined next.

Hill Climbing

Hill climbing is one of the simplest meta-heuristic algorithms. It takes the current

solution and makes a modification to it in order to create a new candidate solution. The

most common modification involves simple local moves like swapping or changing an

item in the current solution. The modification also involves some degree of randomness

to increase the explorative degree of the search. If the new solution is better than the

current solution then the current solution is replaced by the new solution to then continue

with the next iteration of the search. This process is repeated until the algorithm reaches

some termination condition such as fixed computation time or no further improvement to

the current solution for a number of iterations. It is possible that hill climbing generates

more than one new candidate solution from the current one, these are usually called

neighbourhood solutions and typically the best neighbour is selected. Given that hill

climbing explores solutions that are in the neighbourhood of the current solution, it is

common that hill climbing gets stuck in local optima, i.e. best solutions in the current

neighbourhood. However, a local optimum solution might not be the best global solution.

There are different methods to escape local optima. One common approach is to generate

a random solution and use this one as the current solution in order to then explore a

different part of the search space. For this, new solutions generated randomly should not

be reachable from previous solutions by the local moves used in the algorithm to avoid

returning to previously visited solutions.

Simulated Annealing

Simulated annealing (SA) was introduced by Kirkpatrick et al. (1983) and can be con-

sidered as an extension of hill climbing but with the probability of accepting some worse
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solutions. It took inspiration from the annealing process in metal production whereby

metal is heated and cooled a number of times to form a better structure and reduce

defects. SA as a search algorithm starts from a “high temperature” and goes through

a “cooling period” in which, after each iteration, the temperature is reduced gradually.

At each iteration, if a new candidate solution is worse than the current solution, there

is still a chance, based on some probability calculated using the current temperature, to

take the new candidate solution as the current solution. The higher the temperature the

higher the chance to accept a worse candidate solution to become the current solution.

It is also possible for the temperature to be increased again, i.e. re-heating the search,

after a period of cooling. The standard acceptance criteria function in SA is P (△d, T )

where △d is the difference in fitness between the new candidate solution and the current

solution, T is the temperature which normally changes with the search time, the longer

the time the lower the value of T (unless re-heating takes place).

Tabu Search

Tabu search was first introduced by Glover & McMillan (1986) and is also a kind of

hill climbing meta-heuristic but incorporates memory. Tabu search maintains a fixed

length tabu list to escape the local optima. The tabu list can contain previously found

solutions, or solution’s attributes, or modifications of solution that are avoided. Tabu

search aims to prevent visiting already seen solutions by constantly updating the tabu list

information. At each iteration, tabu search generates a number of neighbour solutions

and selects one that is not in the tabu list. It is possible that the best of all neighbour

solutions is considered even if it is worse than the current solution. This is to avoid

staying in the current local optimum. Tabu search is often considered as hill climbing

with fixed size memory.

Genetic Algorithms

Genetic algorithms (GA) are inspired by natural evolution. An introduction to GA can

be found in Goldberg & Holland (1988), however the application of GA can be traced
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back to much earlier reports by Fraser (1960) and Bremermann (1962). In GA, a solution

is encoded in the form of a chromosome. The GA starts with an initial process where

a set of solutions is generated. This process normally involves some random generation

of solutions. GA use a fitness function to evaluate the quality of each chromosome or

solution. From the initialisation, GA maintain a selection of solutions called “population”

and evolves this population to obtain better solutions. The evolution process starts with

the selection procedure where a number of chromosomes from the current population are

selected, normally good quality chromosomes are preferred. Genetic operators such as

crossover and mutation are used to generate new chromosomes which are called offspring.

The new offspring are evaluated and some of the best offspring will be selected (survive)

to form the population in the next generation. The evolution process continues until the

termination criteria are reached. Common termination criteria are a specified number

of iterations (generations) or a condition is found. Other factors involved in GA are,

for example, the selection procedure, the parameter values (such as population size),

crossover and mutation probabilities, etc.

The application of meta-heuristics to the 3D-SPP has been reported in many papers

in the literature. Bortfeldt (1999) proposed two meta-heuristics for the 3D-SPP, one

was tabu search and the other one was a genetic algorithm or GA. In that work, a

parallel implementation was also used where multiple settings of meta-heuristics worked

in collaboration. Allen et al. (2011) integrated tabu search with the best-fit (BF) heuristic

to overcome the difficulty at the end of the packing where the sequence of boxes to pack

is critical for the quality of the final result. The initial part of the packing is completed

using 3BF until a certain number of boxes are left to be packed. Then, tabu search is

used to generate packing sequences for the remaining boxes. Each box is packed in the

container using the deepest bottom left fill placement strategy. It is also worth noting

that for packing and cutting problems, solutions are represented by sequences of boxes

and then it becomes difficult to apply genetic algorithms or other evolutionary algorithms.
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This is because the genetic operators for generating offspring are very likely to violate

the hard constraints in the 3D-SPP. For example, in two different solutions a box can

be packed at the beginning in one solution and at the end in another solution. Then, a

crossover of these solutions might create two offspring, one with the same box twice, at

the beginning and at the end of the solution, and the other offspring not containing the

box at all. This would clearly violate one of the key constraints in the 3D-SPP hence

repair operators would be needed.

2.2.3 Hyper-Heuristics

A recent research direction that has been explored for tackling optimisation problems are

the so-called “hyper-heuristics” which can be described as “heuristics to choose heuristics”

(Burke et al. 2003). The idea is to automate the design of heuristics which normally re-

quires human experience or knowledge of the problem domain. Designing a very efficient

heuristic or meta-heuristic is likely to involve high cost and a long development time.

A heuristic can be very effective in tackling a certain set of constraints but could have

limited effect when other constraints are introduced. Moreover, there is a demand for

reasonably good solutions to be generated in a reasonable amount of time. Therefore, a

hyper-heuristic framework is based on trying to automate the learning process by com-

bining heuristics or the generation of heuristics. This “hyper-heuristics” approach can

be classified as the automated combination of heuristics or the automated generation of

heuristics (Burke et al. 2010).

Hyper-heuristics have had success in solving other optimisation problems such as pro-

duction scheduling (Tay & Ho 2008, Vázquez-Rodríguez & Petrovic 2010), educational

scheduling (Burke et al. 2006) and vehicle routing problems (Garrido & Riff 2010, Garrido

& Castro 2009) among others. For cutting and packing related problems, hyper-heuristics

have also been applied, for example to one-dimensional packing (Ross et al. 2002, 2003).

For the 3D-SPP in particular, Pham (2011) proposed a univariate marginal distribu-
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tion algorithm-based (UDMA) hyper-heuristic. This algorithm splits the container into

sections and stores a collection of possible heuristics and measures the possibility of

heuristic selection for each section of the container. The basic approach for the packing

is an improved 3BF heuristic. The UDMA approach starts the packing with an empty

container. The modified 3BF selects the smallest gap and the gap belongs to a section of

the container. For each section, a heuristic is selected based on some heuristic selection

probability. The packing is then processed until a full packing plan is completed. In each

iteration, good solutions are collected and the heuristic selection probability is updated.

As the process continues, good heuristics for a particular section will have a higher chance

of being selected leading to a good mapping of which heuristics to choose for different

sections of the container. For example, a box with more restricted rotation should be

packed first to allow a box with more flexibility at the end of the packing. Therefore,

a heuristic which chooses boxes that have a more restricted rotation constraint or less

possible rotation for packing, will have a higher chance of being selected at the beginning

of the packing but less chance of being selected towards the end of the packing.

2.2.4 Benchmark Data Sets

There are different benchmark data sets that have been proposed for packing problems.

One of the most popular is the BR data set introduced by Bischoff & Ratcliff (1995)

which contains 7 data sets (BR1-BR7) for container loading problems each with 100

instances. Each instance includes a set of boxes and a single container. The container

has fixed width, length and height. Each BR data set has a fixed number of box types.

For each box type, the dimensions of the box, the number of boxes and the rotation

constraint are provided. The rotation constraint indicates the rotation ability of the

box type around the x, y or z axes. If a box type has an axis rotation ability then

it can rotate around the corresponding axis. An example of a box type from the BR

data set with z axis rotation ability is shown in Figure 2.2. If a box type has rotation
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ability on all three axes then there are maximum 6 possible rotations. The instance

characteristics of the BR data sets BR1 to BR7 change from weakly heterogeneous to

strongly heterogeneous. A weakly heterogeneous problem can be described as instances

with a “small” range of box types. Whereas the strongly heterogeneous problem has

a “large” range of box types. For example, the number of box types in each instance

of the set BR1 is 3 and this increases to 20 box types in the set BR7. The BR data

set was extended further to sets BR8-B15 by Davies & Bischoff (1999). These data

sets have the same format as sets BR1-BR7 with a single container and 100 instances

per set but the number of box types are increased, each instance in BR8 has 30 box

types and each instance in BR15 has 100 box types. This BR data set is available from

the OR Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html). To investigate the

3D-SPP, the BR data set can be adapted by keeping the same width and height of the

container but extending the container length to fit all boxes.

In this thesis, in addition to the BR data set, the BRXL data set proposed by Bortfeldt

& Mack (2007) is also used. The BRXL data set is an extension of the BR1-BR10 data

sets to BRXL1-BRXL10 respectively. The container in the BRLX instances has the same

width and height as that in the BR data set, and the length can be extended. However,

the number of each box type is increased by a factor of 1000/n where n is the original

number in the BR data set. Since this can result in a non-integer value, the number of

boxes is rounded and the quantity of the last box type is adapted to have a total box

number of 1000. The rotation constraint of each box type is the same in the BRXL data

set as that in the BR data set.

31



2 Background and Related Work

Figure 2.2: Box with z axis rotation properties

2.3 Multiple Carrier Transportation

In this section, the transportation planning problem arising in a real-world business

operation at 3T Logistics Ltd is described. This problem is identified as a Single-customer

Multiple-carrier Transport Planning problem in section 2.3.1. In Section 2.3.2 we provide

some background about clustering algorithms which are a critical component in the

solution approach for this problem. Section 2.3.3 presents a brief literature review of

the vehicle routing problem with time windows which shares some similarities with the

Single-customer Multiple-carrier Transport Planning problem tackled in this thesis.

2.3.1 Single-Customer Multi-Carrier Transportation Planning

3T Logistics Ltd (3T) is a fourth-party logistics (4PL) company based in Leicester, UK.

The 4PL concept was introduced by Andersen Consulting (now Accenture) in 1997 as

a result of a consultant contract with its customers (AliReza & Mehdi 2010, Bedeman

& Gattorna 2003). In this particular model, customers outsource logistic operations to

a 4PL company. Different to the 3PL model, where the 3PL company owns vehicles

and operates the physical deliveries, 4PL companies only deal with the management of

the logistic operations for the customer. Due to nature of the model, most 4PL compa-
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nies work with intellectual capital and IT systems. 3T provides logistic solutions via its

own transportation management system. A considerable part of the services provided

by 3T is planning the delivery of goods from customers to consignees via a network of

carriers. This problem is identified by Landa-Silva et al. (2011) as a Single-Customer

Multi-Carrier Transportation Planning problem. The problem is to build vehicle loads

(Eilon & Christofides 1971, Agbegha et al. 1998) and plan the routing of vehicles con-

sidering delivery time windows (Berger & Barkaoui 2003, Bräysy 2003b, Ibaraki et al.

2002). Landa-Silva et al. (2011) proposed a hybrid method including clustering, heuris-

tic, local search and integer programming which generated significant savings in 3T’s

France operations. After a long process of observation and identification of practical

operational requirements, analysis and modelling, 3T’s transport planning problem was

defined as Single-Customer Multi-Carrier Transportation Planning (SMTP). SMTP can

be described in short as follows: a set of shipments is collected from the same source and

then delivered to a range of destinations using a set of carriers. The basic requirement is

to generate the most cost effective and high-quality transportation plans. The problem

can be described in more detail as follows. From a source location, shipments are to

be sent to customer destinations. Each shipment has different sizes and delivery time

windows. Depending on their size, shipments are classified into Full Truck Load (FTL),

Less Than Truck Load (LTL) and Groupage. It is possible to have multiple shipments

going to the same destination on the same day of delivery. Shipments will be allocated

to a plan with different transportation modes: load mode or parcel mode. A set of

carriers is available to delivery the shipments. Each carrier will have its own pricing

defined according to the transportation mode required and their availability. A common

requirement in the SMTP faced by 3T is that backward mileage is undesirable. Backward

mileage is when the next delivery is closer to the source than the previous delivery, i.e.

it is expected that each delivery is further from the source than the previous one. The

following are the constraints arising in SMTP:
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• Vehicle capacity must not be exceeded.

• Carrier availability must be obeyed.

• The working time of each vehicle must not exceed more than 12 hours continuously.

• The starting point of each vehicle must be the source location.

• Backward mileage must not exceed 15 miles.

• For each location, loading time is considered to be 30 minutes.

• Each vehicle can visit up to 6 destinations.

• Delivery must be made during the specified time window.

The quality of a transportation plan is measured by considering carrier cost, time win-

dow violations, driving mileage, driving time, vehicle utilisation and backward mileage.

Due to commercial sensitivity of the information, details of the evaluation function can-

not be published. In summary, it is a weighted sum of a number of factors such as

working hours, distance, etc. However, time window violations and cost are the major

factors and the other factors are then used as tie breakers. The current automated solu-

tion acts as a decision support system and there is no evaluation of the overall quality of

all plans. At the end of the algorithm execution, it is up to the human planner to decide

if there are changes required to the generated plan in order to suit live operations. This

approach is necessary because of the dynamic changes that happen during operations

and such changes are not anticipated in the automated solution process. For example,

the availability of a carrier may change or special and urgent deliveries may arise after

the plans have been generated.

To the best of our knowledge, single-customer multiple-carrier problem was first men-

tioned by Brown & Ronen (1997) and were referred to as consolidation customer order

into truckloads. There are two main differences in that problem by Brown & Ronen
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(1997) from the SMTP problem described by Landa-Silva et al. (2011): the truck may

load from more than one source and there may be a requirement to have flexibility in

the result. Brown & Ronen (1997) approach starts by generating all combinations of

the order into loads. Due to the restriction of tight operational rules, less than 10% of

the combinations are evaluated. From validated combinations, an Elastic Step Partition

model has been used to build the load where no order is assigned onto more than one

load. The use of the Elastic Step Partition model is critical to allow constraint violation

at a cost as described by Brown & Ronen (1997) . This is different to the use of Linear

Programming by Landa-Silva et al. (2011). Caputo et al. (2006) investigate transport

planning with two different modes: full truck load (FTL) and less than truck loads (LTL).

These are two popular costing methods which 3T Logistics Ltd has encountered within

the transport industry. In Caputo et al. (2006), orders are combined into compatible

order group by compatible geographical and cost requirement criteria. An optimisation

process is performed on each group. The optimisation starts with the allocation of a large

order which can only be delivered by full truck load into an optimal carrier. The rest of

the orders are heuristically divided into FTL and LTL groups. Division processes start

with all orders allocated to FTL groups. Then, orders with the highest cost difference to

the average of the FTL group are transfered to LTL group. The division process contin-

ues until the number of FTL is reduced by 2. The core of the remaining process is the

load building from orders in FTL groups. Caputo et al. (2006) use GA to find a solution

by encoding the assignment of each order to each truck into a binary format. There

are two main points which are different to Landa-Silva et al. (2011). These are: order

quantity can be split between trucks and there are no constraints in available quantity

of carrier. Günther & Seiler (2009) investigate a similar problem compared to Caputo

et al. (2006) with additional constraints such as time windows and temperature specifica-

tions. Günther & Seiler (2009) propose a two-phase approach. The first phase combines

orders using four combination schemes: bundling, inbound milk run, outbound milk run
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and pick-up delivery. The bundling scheme targets similar orders with the same source

and destination. The milk run schemes combine orders which share either the source or

destination. The pickup delivery scheme combines orders where the source is close to

the destination of other orders. The second phase selects generated order combinations

to maximise cost savings. There are two options: first to use linear programming and

second to use heuristic. The heuristic approach starts by selecting the maximum cost

saving combination until all orders have been selected. The linear programming option

always performs better than the heuristic one, however it was also mentioned in the same

article that heuristics were developed so that it can be integrated into a Transportation

Management System (TMS) environment. There are two major differences to Landa-

Silva et al. (2011): there is no restriction of carrier availability and the orders can come

from different sources.

2.3.2 Clustering Algorithms

The approach described in Landa-Silva et al. (2011) starts with clustering the various

destinations and then building routes based on those clusters. Therefore, good clustering

plays a major role in producing high quality transportation plans. In this section, a

literature review is provided on clustering algorithms that are related or applicable to

the SMTP.

A clustering algorithm is a form of unsupervised learning in which data elements that

do not have pre-defined label are grouped into clusters. A clustering algorithm automat-

ically takes input data and separates it into a finite and discrete number of classes so

that each class contains data elements that share some similarity. In general, there is no

one clustering algorithm that provides a high quality solution for all problem domains.

In the context of this thesis, clustering algorithms are used to classify the destination

locations into geographical clusters. Then, vehicles will make deliveries of shipments to

those destinations that belong to the same cluster or group. For example, shipments
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around Nottingham will be loaded and delivered with the same vehicle. Several surveys

have been published to review different types of clustering algorithms and studying their

advantages as well as disadvantages. Clustering algorithms can work with many types

of data input and similarity measures. In the SMTP context, data input is refered to as

points (locations) on a two-diemensional surface. Comprehensive reviews of clustering

algorithms can be found in Jain et al. (1999), Xu & Wunsch (2005) and Kotsiantis &

Pintelas (2004). Clustering algorithms can be classified into different categories: hierar-

chical method, partition method, density-based method, grid-based method (Kotsiantis

& Pintelas 2004).The fuzzy-based, kernel-based and neural network-based methods are

summarised by Xu & Wunsch (2005). A combination of clustering algorithms is also pos-

sible, for example Strehl & Ghosh (2003) proposed different ways to combine different

clustering techniques.

Hierarchical Clustering

Hierarchical clustering algorithms take data input and build a tree structure of clus-

ters called a dendrogram. There are two major approaches in hierarchical clustering.

The first approach is ameliorative (bottom-up) where data points are merged together

to form larger clusters for the next level up the tree (Jain & Dubes 1988). The other

approach is divisive (top-down) which starts with all data points belonging to a single

large cluster(Kaufman & Rousseeuw 1990). At each level going down from the top, clus-

ters are separated into smaller clusters. The process continues until some termination

condition is met. A typical condition for termination is when the required number of

clusters is found. It is also possible to fully build a tree structure of clusters so that

different clusters can be identified at different levels of the tree. One of the most popular

algorithms in hierarchical clustering is linkage metrics. As mentioned above, hierarchical

clustering involves splitting or merging data points to form clusters. The mechanism

of merging and splitting clusters depends on cluster similarity or distance measurement.

The similarity of the clusters is called linkage metrics. Using different linkages can greatly
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affect the tree structure of the cluster and therefore affect the overall outcome of the al-

gorithms. Common types of linkage are: single linkage, complete linkage and average

linkage. Single linkage is the distance between the closest items of two clusters. Complete

linkage is the distance between the furthest items between two clusters. Average linkage

is the average distance of all possible distances between items of two clusters. One of

the most popular hierarchical clustering algorithms is SLINK which was introduced by

Sibson (1973). SLINK is an ameliorative single linkage cluster algorithm. An example of

complete linkage can be found in Defays (1977) and an example of average linkage can

be found in Voorhees (1986). One of the properties of this particular type of approach is

that linkage based clustering naturally produces a cluster with a convex shape. The per-

formance of linkage based algorithms is affected if the data contains non-convex clusters.

This leads to the next class of hierarchical clustering where arbitrary shapes are taken

into account. Guha et al. (2001) presented clustering using a representative (CURE)

algorithm. Instead of using one point to represent a cluster, CURE uses a number of

points that are selected to represent a cluster. The similarity measurement between clus-

ters is calculated by combining the distance between representative points. CURE can

detect non-spherical shapes by choosing representatives at different locations across clus-

ters. After merging, representative points of the cluster are sunk to the centroid of the

cluster helping to avoid the situation where an outlier point is selected to represent the

cluster. Robust clustering using linkage ROCK algorithm was introduced by Guha et al.

(2000) which clusters the data set in a similar manner to CURE, however, it works with

categorical attributes of data. A different presentation of the cluster of CHAMELEON

algorithms was proposed by Karypis et al. (1999). For each point, a number of closest

or most similar points are stored in a graph and the others are removed. CHAMELEON

algorithms have two stages: the first stage generates a graph of each point with its near-

est neighbour point called k-nearest neighbour graph; the second stage merges clusters

together and forms a larger cluster in an agglomerative manner. The measurement of
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similarity between clusters is made using both inter-connectivity and relative closeness

(Berkhin 2006).

Partition Method

As described above, hierarchical clustering, data input or data points are merged with

other points to form clusters. Partition method algorithms start by assigning data points

to clusters and iteratively improve the clustering by relocating points between clusters.

This is very different to hierarchial clustering where there is no change to a cluster after

the cluster has been formed. In order to start partition clustering, it is important to have

a representation of a cluster. There are three main types of representations: centroid,

medoid and probabilistic models. Centroid algorithms use generated points to represent

the cluster centre. K-Mean is one of the most popular algorithms of partition methods

and it is a centroid clustering algorithm. This algorithm separates input points into a

predefined number of k clusters. It starts by randomly choosing k centroid points. Then,

at each iteration, input points are allocated to the nearest centroid. After each alloca-

tion, the centroid points are re-calculated based on the current points in each cluster.

The process continues until there is no change in the points allocated to each centroid. A

corresponding algorithm to K-Mean is the K-Medoid algorithm introduced by Kaufman

& Rousseeuw (1987). Medoid algorithms use actual input data points to represent the

cluster centre. Similar to K-mean, K-Medoid selects k points from input points to be-

come medoid. Other points are then associated to the closest medoid. In each iteration,

each medoid is evaluated with all other non-medoid points and swaps between points to

improve the clustering. This process continues until there is no change in the medoid. K-

Mean and K-Medoid are suitable algorithms for large data sets and when a fast running

time is required. However, these methods are sensitive to noise and termination normally

results in a local optimal point. Performance of clustering algorithms depends on the

number of clusters selected. To overcome this issue, different values for the number of

clusters are normally tried for the given problem domain or, alternatively, heuristics can
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be used to find the best solution. Probabilistic clustering methods use statistical distribu-

tion models to represent clusters. In probabilistic clustering, a point belongs to a cluster

when it has the highest possibility of belonging to a corresponding distribution model.

Most of the probabilistic models algorithms are based on the Expectation-Maximisation

(EM) algorithms described by McLachlan & Krishnan (2007). One of the most popular

models for EM clustering is the Gaussian Mixture Model. EM starts with a randomly

generated model with random parameters. The model is used to calculate the possibility

of a point belonging to a cluster and separates them by assigning them to the cluster with

the highest probability. Points belonging to the same cluster are then used to re-evaluate

the parameters of the model. This process continues until it reaches a stable model.

Density-Based Clustering

Density-based clustering algorithms classify the data input into clusters by using the

density of points in an area. An area with high density can be a non-convex or arbitrary

shape cluster and therefore density-based clustering can identify non-convex clusters.

This is an advantage over the partition method clustering algorithms such as K-Mean.

The most popular density-based clustering algorithm is DBSCAN as described by Ester

et al. (1996). DBSCAN algorithm is driven by two parameters: ε - the maximum distance

between two neighbour points and MinPts - the minimum number of neighbour points

required. DBSCAN defines the following:

• Core object is a point which has more than MinPts point within a distance ε.

• Point x is directly density reachable to point y when the distance from x to y is

less than ε and x is the core object.

• Point x is density reachable to point y when there is a directly density reachable

path from one point to the other point with starting point x and ending point y.

• Point x is density connectivity to point y when there is another point z that is

density reachable to x or y.
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Based on the above definitions, a cluster is formed by core points and points with

density connectivity to a core point. Points belonging to a cluster that are not the core

point are border points. Other points which do not have any connection are considered

noise. The DBSCAN algorithm has limitations in searching for neighbours of a point

with high dimensional data. However, in the context of this thesis, two-diemensional data

is the main interest. A generalisation of DBSCAN, called GDBSCAN, was introduced

by Sander et al. (1998). DBSCAN is also sensitive to the selection of parameter values.

There is no simple method to identify the best value for ε and MinPts given the data

points. To overcome this DBCLASD, introduced by Xu et al. (1998) can be used as it does

not need both parameters. In addition, DBSCAN has a fixed ε which effectively restricts

the density of clusters, therefore, clusters with variable density are not recognisable by

DBSCAN. OPTICS clustering algorithms proposed by Ankerst et al. (1999) also address

the limitations of DBSCAN. OPTICS introduce two additional definitions: core-distance

and reachability-distance. The output cluster analysis of OPTIC algorithms is not the

clustering itself, but a cluster ordering structure which can then be used to extract the

cluster. OPTICS can find clusters which have density less than ε.

Grid-Based Clustering

Grid-based clustering splits the area into smaller segments and applies clustering op-

erators to the segments. Each segment (e.g a cube in three-dimensions or a region in

two-dimensions) can contain items. A single item segment is called a unit. Segments that

contain many elements are dense segments and clusters are made by combining dense seg-

ments together. It is worth noting that while density-based clustering described above

works best with numerical attributes, grid-based clustering works best with different

types of attributes (Berkhin 2006). STING clustering algorithms proposed by Wang

et al. (1997) divide data input into tree structures of grid cells. For each cell, two types

of parameters are stored: attribute-dependent and attribute-independent. The attribute-

dependent parameters are: mean, standard deviation, minimum, maximum and distribu-
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tion type. The attribute independent parameter is the number of items in the cell. After

the tree structure is generated, similar cells are merged as in DBSCAN. CLIQUE is a clus-

tering algorithm for high dimensional data input. For each of the attribute dimensions,

the value distribution of each attribute is stored in the one-dimensional array. CLIQUE

combines a set of two attributes to create a two-diemensional distribution space. Dense

rectangles in two-dimensional distribution space are represented in a connected graph.

The cluster is formed in a bottom-up fashion by merging the vertices of the graph.

2.3.3 Vehicle Routing Problems With Time Windows

The vehicle routing problem (VRP) is a real-world optimisation problem which has re-

ceived much research interest over the last few decades. In simple terms, the vehicle

routing problem refers to finding routes for the delivery of shipments to customers using

a fleet of vehicles and subject to some constraints whilst aiming to maximise a specific

objective. For example, the objective could be to maximise vehicle utilisation while the

constraint could be to satisfy the time windows given for the deliveries (Balakrishnan

1993, Desrosiers et al. 1995, Tang et al. 2009). Other objectives that can be considered

are the minimisation of the number of vehicles required (Solomon 1987, Bräysy 2003a)

or minimisation of the distance travelled and cost (Gendreau et al. 1996, Tas et al. 2013).

Several extensive surveys have been conducted for the VRP and its variants, for example

Laporte (1992), Solomon (1987), Laporte et al. (2000), Berbeglia et al. (2007) and Golden

et al. (2008). For the scope of this thesis, some VRP literature that is related to our

SMTP problem is reviewed. As described in Section 2.3, the SMTP problem has some of

the constraints that arise in VRP problems, such as time windows, vehicle capacity, etc.

Therefore, the focus of this thesis is on the Vehicle Routing Problem with Time Windows

(VRPTW). The VRPTW can be described as the problem of generating delivery routes

for a fleet of vehicles with the following constraints:

1. All deliveries have the same starting point, i.e. a single depot.
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2. The sum of the size of all shipments in a single route cannot exceed the given

vehicle capacity.

3. Each delivery destination has a time window with a given start time and end time.

4. Each delivery must be made within the given time window. If the vehicle arrives

at a delivery point before the start time of the time window, then the vehicle has

to wait until the time window starts.

5. After completing the last delivery, each vehicle comes back to the starting point or

depot.

6. Each destination is only visited once.

The VRPTW has received much attention from researchers. Surveys of solution tech-

niques are given by Cordeau et al. (2002) and Bräysy & Gendreau (2001b, 2005a,b).

Since VRP is an NP-hard problem, VRPTW is also NP-hard. Indeed, VRPTW with

a constant number of vehicles is described as an NP-hard problem by Solomon (1987).

Therefore, heuristic based approaches are the most common in the literature for tackling

this problem. In practice, in some scenarios the time windows can be relaxed (soft time

windows). Balakrishnan (1993) proposed three heuristics for the Vehicle Routing Prob-

lem With Soft Time Windows (VRPSTW). The following sections provide a literature

review of constructive heuristics and local search methods applied to this problem.

2.3.3.1 Route Building Heuristics

Solomon (1987) proposed four heuristics for constructing routes: Max Time Saving,

Nearest Neighbour, Insertion and Sweep Heuristic. The Max Time Saving heuristic is

based on the heuristic first introduced by Clarke & Wright (1964). This heuristic starts

by assigning each delivery point to one dedicated vehicle. Then all routes go through

a tour building procedure in which routes are merged so that cost saving is maximized.

43



2 Background and Related Work

Solomon (1987) included time window constraints into the route orientation during route

merging. The Nearest Neighbour heuristic starts building routes by adding the “closest”

delivery point from the depot. The next delivery is the delivery point that is the “closest”

to the last current delivery in the route without any constraint violation (vehicle capacity

or time window). If no feasible route can be formed by adding the delivery, then a new

route with an empty vehicle is started. The Sweep Heuristic uses the heuristic given by

Gillett & Miller (March/April 1974). Firstly, the delivery point locations are divided into

geographical segments defined around a centre point. This is a representation of real-life

practice when planning vehicles coming out from depots in different segments, the human

planner will try to make sure the segments are disjointed. The shipments in each segment

are allocated to a route using the insertion heuristic. The Insertion Heuristic selects an

unplanned shipment based on two criteria c1 and c2. The first criterion c1 determines

the best position to insert a unplanned shipment. The second criterion selects which

unplanned shipment will be inserted. Solomon (1987) introduces three different formulae

for the two criteria which have different performance. In the most effective formula, c1

selects the insert position that minimises the change in the combination of distance and

time using a weighed sum formula and c2 chooses to insert the shipment that has the

lowest cost by directly combining distance to unplanned shipment and the first criterion.

Foisy & Potvin (1993) provide a parallel implementation of the insertion heuristic

in Solomon (1987) with significant improvement in computation time. Ioannou et al.

(2001) proposed an IMPACT algorithm as another insertion heuristic. Ioannou et al.

(2001) puts emphasis on the requirement of the plan building method: short distances

between deliveries, minimal number of vehicles required, minimal impact of planning

shipments. IMPACT starts by seeding routes with a number of routes and a route is

built using a tour building approach similar to that in Solomon (1987). The IMPACT

algorithm introduces three criteria:

• ISu - measures the impact of the arrival time on the candidate shipment u itself.
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• IUu- measures the impact of the candidate shipment time window on the unplanned

shipments.

• IRu - measures the impact of the candidate shipment on the other shipments. It is

the weighted sum of c1 and c2 as in Solomon (1987) and c3 which utilises the time

windows of the candidate shipment.

The weighted sum of ISu, IUu and IRu forms the overall IMPACT criterion and

the shipment that minimises this weighted sum is selected. Dullaert & Bräysy (2003)

identified that the insertion of a candidate shipment into the beginning of the route might

increase the waiting time of the next shipment. Therefore, the original c2 criterion can

be under-estimated. A Push Backward Maximum Push Forward (PBmaxPF) criterion

is proposed to avoid such under-estimation, hence the formula is modified to c12 as in

the following equation:

c12(i, u, j) =















[(bj − tij)− (bu − tiu)] + (bju − bj) i = i0

(bju − bj) otherwise

(2.1)

PBmaxPF gives a significant increase in the cost saving if there is a small number of

deliveries on the route. However, as the number of shipments in the route increases,

the effect of PBmaxBF is reduced. This is due to the significant cost saving of the

first delivery being less than when there are many deliveries in a route. Bräysy (2003a)

proposed two route construction heuristics: Hybrid Construction and Merge Heuristic.

The basic ideas behind these two heuristics are from Solomon (1987) and Clarke &

Wright (1964). Hybrid Construction extends the seeding selection of shipments at the

beginning of route construction. After choosing furthest from the source shipments, the

subsequent seeds are selected using different criteria. The cost for the insert function is a

weighted sum evaluation of saving distance and saving waiting time and direct distance

from source to the insert shipment. In Merge Heuristic, the cost of a route is a weighted
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sum of the total distance and the total waiting time in the route. The cost saving formula

is the saving of route cost. In addition, the merged route is re-sequenced to have better

cost saving after a certain number of shipments on the route. Details of the Hybrid

Construction and Merge Heuristics can be found in Bräysy (2003b), Bräysy & Gendreau

(2001b).

2.3.3.2 Local Search Methods

A common approach for tackling the VRPTW is to start with an initial solution and

improve that solution iteratively using local search until no further improvement can be

made. At each local search iteration, one or more neighbourhood solutions are generated

from the current solution using some local move operators. Neighbour solutions are com-

pared to the current solution and based on some acceptance criteria, the neighbourhood

solution could be selected to become the new current solution for the next iteration.

This process continues until some termination criterion is met, such as no improvement

for some number of iterations or limited computation time. Popular candidate solution

acceptance criteria are first accept or best accept. In first accept, the first improving

neighbour solution encountered is selected to become the current solution. In best ac-

cept, all neighbour solutions for the current solution are generated and the best one is

selected. The selection of move operators is critical for a good performance of a local

search. A solution to the VRP can be represented as a graph where each vertex is a

shipment delivery point and each edge is the route between delivery points.

There is a wide range of move operators and local search approaches that have been

proposed in the literature for the VRP and its variants. Most of these procedures are

edge-exchange approaches (Bräysy & Gendreau 2005a). There are two main types of

operators: intra-route and inter-route. Intra-route operators make a modification to a

single route, they conduct a type of re-allocation of deliveries within a route. Inter-route

operators make changes between routes, they act like a swapping of deliveries between
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routes. The most common inter-route operators make changes between two routes only.

Croes (1958) introduced the 2-opt operator for the Traveling Salesman Problem (TSP).

This operator selects part of a route, reverses its direction and then combines this with

the rest of the route. Lin (1965) implements a 3-opt operator as an extension of 2-opt,

where one more edge is included in the change. Or (1976) introduced the Or-opt operator

where a number of shipments in the route are selected and moved to another part of the

route while maintaining the direction of the route. Potvin & Rousseau (1995) proposed

2-opt* operators which combine exchanging parts of two routes. The 2-opt* operator

splits two original routes into two start-parts and two end-parts. Then, 2-opt* exchanges

the parts so that the start-part of one route is connected to the end-part of the other

route whilst maintaining the direction of each part.

Prosser & Shaw (1996) presented a maximise saving local search approach using four

operators: 2-opt, Cross, Reallocate and Exchange. The Cross operator is an inter-route

operator which makes changes to two selected routes. The Cross operator selects and

swaps single shipments between routes. It selects a shipment from one route and moves

it to a different route. The Exchange operator selects and swaps two shipments on two

routes. Prosser & Shaw (1996) also studied the effect of the operators on the overall

performance of the local search procedure and showed that the Reallocate operator had

the most positive effect and the Exchange operator had the least positive effect. Osman

(1993) introduced a λ-interchange generation mechanism which performs a modification

between two routes. For each selected route, n and m number of shipments are selected

where n, m ≤ λ. The selected shipments are swapped between two routes. Typical

values for λ are 1 or 2. A special case for λ-interchange is CROSS exchange which was

proposed by Taillard et al. (1997). Instead of single shipments as in Prosser & Shaw

(1996), the CROSS exchange operator selects sequences of shipments which are then

swapped between two routes whilst maintaining the direction of the routes and swapped

sections. Glover (1996) employed a stem-and-cycle reference structure and ejection chain
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approach for TSP. The Sub-path Ejection Method is an intra-route operator which gen-

erates neighbour solutions of single routes. The idea of an ejection chain is to create a

sequence of remove and insert moves of shipments on a route (Lin & Kernighan (1973)).

Gendreau et al. (1992) applied two types of GENI operators where a shipment is inserted

into a route between delivery points that are not adjacent in the sequence. After the in-

sertion, the direction of part of the route might change. Two types of GENI-Unstringing

operators were also proposed, these are reversed versions of GENI operators. Most of

the inter-route operators modify a solution by applying changes between two routes.

Thompson & Psaraftis (1993) proposed a cyclic k-transfer operator where a k number

of shipments are swapped between multiple routes. Due to the increase in the size of

the search space when using cyclic transfers, a general methodology for cyclic transfer

neighborhood searches was used by Thompson & Orlin (1989).

Caseau & Laburthe (1999) suggested an incremental local optimisation approach. The

initial solution starts with a fixed k number of empty routes, then shipments are itera-

tively inserted into the route, k is the maximum number of routes allowed. Instead of

applying a solution improvement operator to a complete initial solution, improvement

operators are applied after a shipment is inserted into the route. Three operators have

been chosen: 2-edge exchange (2-opt operator), 3-edge exchange (or-opt operator) and

node transfer operator. The node transfer operator applies to the route that was not

affected by the shipment insertion. Shipments which are close to any shipment on the

selected route and have a cost saving are transferred on to the selected route. The node

transfer operator is applied if the other two operators found some improvement. All

operators use the first accept criterion. So, as soon as an improved solution is found, the

process goes to the next iteration. Since the maximum number of routes is fixed, it is

possible that an insertion cannot be made. In this case, three operators have been se-

lected to resolve the situation: 1) Swap, 2) Relocate and Flush and 3) Relocate. The idea

of these three operators is very similar to the ejection chain method where a sequence of
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modifications are made to create a feasible solution. The Swap and Relocate operators

are similar to the Or-opt and Relocate Operators introduced by Or (1976) and Prosser

& Shaw (1996). The Relocate and Flush operator removes all possible shipments that

can be moved to other routes so that new shipments can then be inserted.

Caseau & Laburthe (1999) showed that incremental local optimisation is not only

faster but also produces better results than applying improvement moves after the initial

solution is built. This is especially the case in problems of large size. Bräysy (2003a)

proposed a three-phrase approach. The first phase was to create an initial solution using

one of two heuristics: Hybrid Construction Heuristic or Merger Heuristic (described in

section 2.3.3.1). The second phase is a local search method based on an ejection chain

method with reordering of shipments during the local search. Each route is selected to

search for improvements. If no improvement can be made, then other shipments near to

the route are added to the current route as far as possible. This is to improve the chance

of improvement neighbourhood route. The third phase is to use an Or-opt operator to

minimise the total distance of routes.
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Heuristics for 3D-SPP

In this chapter, some modifications of the best-fit methodology for the three-dimensional

strip pack problem are developed. First, section 3.1 revisits the three-dimensional best-fit

(3BF) heuristic that was introduced by Allen et al. (2011). Modifications to the 3BF

heuristic with block generation and block reallocation are proposed in section 3.2. The

modified heuristic is denoted as 3BFBL. Later, in section 3.3, an overhead estimation

approach to work with 3BFBL, called OH-3BFBL, is presented. The performance of OH-

3BFBL is evaluated using data sets from the literature and compared to other approaches

published in the literature in section 3.4. Further modifications to block generation and

to identify candidate positions are introduced in section 3.5. Finally, section 3.6 presents

experimental results.

3.1 Three-Dimensional Best Fit (3BF) Algorithm

The 3BF heuristic developed by Allen et al. (2011) draws inspiration from the 2D-packing

algorithm from Burke et al. (2004) which utilises a best-fit methodology. The 3BF

heuristic packs each box in the lowest possible gap in order to fill as much gap as possible.

The packing process continues until all boxes are packed into the container. When a gap

is selected, boxes are allowed to rotate in order to find the best-fit orientation. There are

three different cases:
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• One or more boxes can totally fill the gap. If there is more than one box, a tie breaker

policy is used.

• One or more boxes can partially fill the gap. The box that fills the gap the most is

selected using a tie breaker policy if necessary.

• No box can fill the gap. The gap is discarded and the next available gap is selected.

Four tie breaker policies were proposed by Allen et al. (2011): deepest bottom left most,

maximum contact, smallest extrusion and neighbour score. Although not mentioned in

the paper, preliminary experimentation showed that the maximum contact policy has the

highest utilisation compared to other policies. The maximum contact policy chooses the

box with maximum volume and places it so that the contact area with other boxes and

the container is maximised. In Allen et al. (2011), the contact area of the box with other

boxes and with the container are weighted differently. Different weighting parameters

could affect the quality of the final solution. Details of the parameter values used in this

thesis will be described in section 3.2. The “Extreme point” method described by Crainic

et al. (Summer 2008) is used for the representation of gaps and boxes. At the beginning

of the packing, there is only one candidate point, given by the coordinates (0,0,0). After

placing a box, that position is removed from the candidate list and new points are added.

In the candidate list, points are sorted in the deepest bottom left order. The gap of one

layer is represented by a set of candidate points that have the same depth.

In the 3BF heuristic, only one box is placed per iteration. This can lead to different

selections of the next box to pack. For example, it is possible to have a single larger box

or a group of smaller boxes. 3BF will select the single biggest box to pack first. However,

it is possible to group smaller boxes together to form a block which is bigger than the

single big box. This can produce a sub-optimal plan as shown on the left of figure 3.1.

3BF will select the blue box to be packed first. However, this will provoke a situation

where the yellow boxes have no other option than being packed as shown on the left of

the figure. However, if the smaller yellow boxes are grouped together first, then 3BF
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Figure 3.1: Solution obtained with 3BF heuristic and optimal solution with a large box
and a group of smaller boxes

will output the optimal solution as seen on the right of figure 3.1, i.e the grouped yellow

boxes will be packed first.

Another issue of the 3BF heuristic is the use of extreme point which positions the block

to the deepest bottom left-most valid position. This can result in an unusable space as

shown on the left of figure 3.2. Box B is packed adjacent to block A and this creates an

unusable empty space which cannot be filled by any remaining boxes. It will be more

effective to reallocate B to the furthest possible position along the X axis. This creates

a bigger gap to be used for packing subsequent boxes as shown on the right of the figure.

In order to improve the resulting packing, Allen et al. (2011) applied tabu search (TS)

and deepest bottom left fill heuristics at the end of the packing instead of using only

3BF. This helps to avoid a “tower building” effect with the last few boxes. However, this

can still be a problem when boxes in the second phase have limited rotation and a large

dimension in the Y axis. An example is shown on the left of figure 3.3, 3BF+TS starts

the second phase with the yellow boxes which have only one possible rotation. There are

limited options with 3BF+TS to improve the overall solution. In weakly heterogeneous

cases, where the quantity of each box type is large, this can have a significant negative
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Figure 3.2: Example showing how a bigger gap is created by appling block reallocation

impact on the final result produced by 3BF+TS.

3.2 Modification to 3BF+TS

In this section, we introduce three modifications to the 3BF+TS procedure in order

to address the issues discussed in the previous section. The first modification is that

instead of using a single box, boxes are grouped into blocks for packing, this is described

in detail in section 3.5.1. The second modification introduces a reallocation process and

is described in section 3.2.2. Then, the proposed three-dimensional best-fit heuristic with

blocks (3BFBL) is described in section 3.2.3. The third modification is the introduction

of an overhead estimation approach instead of tabu search to improve the result from

the heuristic (OH-3BFBL), details are given in section 3.3.

3.2.1 Block Generation

Instead of packing one single box per iteration, packing blocks of boxes can be considered.

Two types of blocks are defined in this thesis: Simple block and Group block. A Simple

block is a group of boxes of the same type. If boxes have more than one orientation,

different orientations can be considered. A Simple block can be defined as a box with
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Figure 3.3: 3BF+TS where the second phase starts with the yellow boxes compared with
the optimal solution

particular orientation, number of boxes across the X axis and number of boxes across the

Y axis. The number of boxes across the Z axis is always 1. Figure 3.4 shows an example

of a Simple block with 3 boxes across the X axis and 2 boxes across the Y axis, the total

number of boxes is 6. A Simple block is valid when:

• Width of block ≤ width of container.

• Height of block ≤ height of container.

• Boxes required to form the block is a subset of the input boxes.

A Group block is a group of two simple blocks: first block - fBl and second block -

sBl. There are 2 different types of arrangement for the two simple blocks: "Next" and

"Above" as shown in figure 3.5. When combining simple blocks together there might

not be a perfect match because of the different dimensions hence some space is lost. In

order to measure the quality of a Group block, the volume utilisation has to be greater

or equal to v. The value for this parameter v measures the block’s volume utilisation

and is chosen empirically. The value that seems to work well with the 3BFBL heuristic

is v = 98%.

54



3 Overhead Estimation and Constructive Heuristics for 3D-SPP

Figure 3.4: Simple block example

Figure 3.5: Group block examples
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The volume utilisation of the block v is calculated as:
∑

SimpleBlockV olume
EnvelopeBoxV olume

, where the

envelope box volume is the volume of the smallest rectangular box that can contain the

simple blocks. Figure 3.6 shows an envelope box (the rectangular box denoted by dashed

lines) containing a block with 2 boxes.

In addition to the condition v ≥ 98% for volume utilisation, other conditions for a

Group Block are as follows:

• Width of block ≤ width of container.

• Height of block ≤ height of container.

• Boxes required to form a group block are a subset of the input boxes.

• For an “Above” arrangement:

– fBl.length ≥ sBl.length.

– fBl.height ≥ sBl.height.

– sBl is placed in point (fBl.width, 0, 0) relative to the position of fBl.

• For a “Next” arrangement:

– fBl.length ≥ sBl.length.

– fBl.height ≥ sBl.height.

– sBl is placed in point (0, 0, fBl.height) relative to the position of fBl.

Blocks are generated with a block generation process before the packing process. Block

generation starts by generating simple blocks first. Subsequently, group blocks are gener-

ated using the simple blocks generated earlier. Then, in terms of procedures we have two

for block generation: SIMPLE which only generates simple blocks and GROUP which

generates simple blocks first followed by generated group blocks. The setting for these

block generation procedures is explained in section 3.4.1.
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Figure 3.6: Example of an envelope box - minimum size of rectangular box that can
contain all the boxes in a block

3.2.2 Block Reallocation

When block and position are selected, the block reallocation procedure is applied to

investigate if there is a better position for future packing. This idea of reallocation was

introduced by Gehring & Bortfeldt (1997). In this thesis we use a block reallocation

procedure as illustrated in figure 3.7. First, we have to measure Max Left Gap which is

the largest distance from the current block to other block or the container. As shown

in figure 3.7, if the Max Left Gap is smaller than the smallest width of available boxes,

then we shift the yellow block to be next to the red block. This is done by moving the

position of the yellow block by Min Shift across the x-axis. Min Shift is the smallest

distance from the current block to other block or to the container. In this example, by

shifting the yellow block we have an Improved Right Gap which is wider and therefore

can be used for future blocks. If the Max Left Gap is not smaller than the smallest width

of available boxes then no reallocation is performed.

3.2.3 Procedure 3BFBL

In this section, the 3BFBL procedure is described including the modification mentioned

above. The coordinate system shown in figure 3.8 is used, where the y dimension is

the non-restricted dimension corresponding to the length of the container. The pseudo

code for 3BFBL is shown in Algorithm 3.1. The first difference when compared to the
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Figure 3.7: Block reallocation example

Figure 3.8: Coordinate system used where y is the non-restricted dimension

3BF heuristic is that blocks are generated in advance as described in section 3.2.1. Once

the block generation is completed, packing is started and the finished when there is no

box left in B. The heuristic starts by finding the lowest gaps. Instead of finding one

box for the selected gap, 3BFBL finds the best-fit block p and the position to place it.

The procedure to select block p is best-fit with Maximum Contact tie breaker as in 3BF.

Before adding p to the current packing plan P , 3BFBL applies the reallocation procedure

described in section 3.2.2 to p. If there is no block available then the current lowest gap

is marked as invalid for the next iteration so that the next lowest gap is tried instead.
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Algorithm 3.1 3BFBL Heuristic

Input: : container C, set of boxes to pack B, set of generated blocks BL
Output: : packing plan P, with all blocks and its position defined
1: P ← ∅
2: while |B| >0 do

3: G← GetLowestGap(C,P )
4: p← FindBestF itBlock(G,BL)
5: if p is found then

6: Reallocation(p)
7: Add p to P
8: Remove from B the boxes in p
9: else

10: Mark all gaps in G as invalid
11: end if

12: end while

3.3 Overhead Estimation

The 3BFBL procedure is a "greedy" heuristic which arrives at a local optimum when

building a solution (Pieterse & Black 2005). In particular, 3BFBL always chooses the

block with the best-fit that fills most of the selected gap. However, a best-fit block is

not necessarily the best block to select for the overall packing plan. In order to improve

the overall planning result, an overhead estimation can be implemented. The 3BF+TS

procedure is used by Allen et al. (2011). The rationale for using tabu search is to improve

the result produced by 3BF towards the end of the packing process. Instead, here we

propose the overhead estimation to improve the result produced by 3BFBL at the start

of the packing process. The idea behind the overhead estimation is that instead of only

choosing the best-fit block, a selection of blocks and their positions are considered. For

each selection, a complete packing is produced using 3BFBL. The completed packing

plans are evaluated to provide an overhead estimation of the corresponding utilisation.

The block selection that achieves the highest utilisation for the completed packing plan

is selected. The pseudo code for OH-3BFBL, the algorithm incorporating the overhead

estimation procedure is shown in Algorithm 3.2.
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OH-3BFBL takes the container, C, box set, B and generated block, BL. OH-3BFBL

also has configuration parameters but for simplicity these have been omitted from the

pseudo code. There are three parameters: number of blocks to estimate - n, gap step -

g, time limit - t. The value of parameters will be specified in section 3.4.1. Similar to

3BFBL, OH-3BFBL starts by selecting the lowest gap (line 3). Different to 3BFBL, OH-

3BFBL uses the Overhead Estimation procedure presented in Algorithm 3.3 to identify

what block is to be packed (line 4). During the packing process, it is noticed that

once one block is packed using Overhead Estimation then there is a limited choice for

the following blocks. Therefore, instead of performing an overhead utilisation at every

iteration, g number of blocks are packed just using 3BFBL (line 8). OH-3BFBL will stop

when there are no boxes left to pack or the time limit has been reached (line 2). This will

limit the run time of the algorithm so comparisons can be made with previous published

approaches.

Algorithm 3.2 3BFBL With Overhead Estimation(OH-3BFBL)

Input: : container, C set of boxes to pack B and set of generated block, BL
Output: : packing plan, P with all blocks and its position
1: P ← ∅
2: while |B| >0 and time < t do

3: G← GetLowestGap(C,P )
4: p← OverheadEstimation(G,BL, P )
5: if p is found then

6: Add p to P
7: Remove box in p from B
8: Pack g block using 3BFBL
9: else

10: Mark all marks in G is invalid for future use
11: end if

12: end while

The overhead estimation procedure shown in Algorithm 3.3 will find all valid blocks and

select n block and position combinations (line 1). Each combination is then packed into

the container. The rest of the boxes are packed using 3BFBL (line 7). The combination

resulting in the highest utilisation completed packing plan - p is returned.
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Algorithm 3.3 Overhead Estimation procedure

Input: : A gap, G and set of block, validBL
Output: : a block and position, p
1: bestF itBL← GetBestF itBlock(G,BL)
2: bestS ← 0
3: bestP ← nil
4: for all p in bestFitBL do

5: P ′ ← Copy(P )
6: pack p in packing plan P’
7: score← CompletePackingUsing3BFBL(P ′)
8: if score > s then

9: bestS ← score
10: bestP ← p
11: end if

12: end forreturn bestP

3.4 Experiment

3.4.1 Experimental Setup

Algorithms are implemented in Java single thread code. Experiments are run on a PC

with processor AMD at 2.0 GHz and 1GB of memory. The CrateViewer application is

used to visualise the solution (Allen et al. 2011). Two experiments were carried out. The

first experiment compares the performance of OH-3BFBL to other published approaches

from the literature: TSACC-4P (Bortfeldt 1999), SPBBL-CC4 (Bortfeldt & Mack 2007)

and 3BF+MH (Allen et al. 2011) using the first 10 instances of each BR and BRXL

datasets which were described in chapter 2. The second experiment investigates the

performance of OH-3BFBL on all instances from the BR and BRXL data sets. The run

time limit was set at 160 seconds for comparison with previous published methods. It is

not possible to have exactly the same hardware however similar specifications to those

reported by Allen et al. (2011) were used.

For each experiment, there were two setups: Single and Mix. For Single setup, there

was only one run with SIMPLE block generation mode and the time limit is 160 seconds.

For Mix setup, there were two runs. The first run was with SIMPLE block generation
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and the second run was with GROUP block generation. The time limit for each run was

set at 80 seconds so that total time limit was 160 seconds. The reported result for the

second setup was the best result of the two runs. A summary of the experiment setup is

as follows:

• OH-3BFBL Single Setting - One Run

– Block generation mode (blMode) = SIMPLE

– Maximum number of block are estimated (n) = 70

– Run time limit (t)= 160 seconds

– Gap Step (g) = 5

• OH-3BFBL Mix Setting - Two Runs

– First Run Setting:

∗ Block generation mode (blMode) = SIMPLE

∗ Maximum number of block are estimated (n) = 70

∗ Run time limit (t) = 80 seconds

∗ Gap Step (g) = 5

– Second Run Setting:

∗ Block generation mode (blMode) = GROUP

∗ Maximum number of block are estimated (n) = 70

∗ Run time limit (t) = 80 seconds

∗ Gap Step (g) = 5
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Test TSACC-4P
Bortfeldt (1999)

SPBBL-CC4
Bortfeldt & Mack (2007)

3BF+TS
Allen et al. (2011)

OH-3BFBL
Single

OH-3BFBL
Mix

BR1 92.3 87.3 90.0 91.2 91.7
BR2 93.5 88.6 89.6 91.7 92.7
BR3 92.3 89.4 89.0 91.3 92.2
BR4 90.8 90.1 88.8 91.2 91.6

BR5 89.9 89.3 88.5 90.9 91.6

BR6 89.2 89.7 88.6 90.8 91.3

BR7 87.1 89.2 88.7 90.8 91.1

BR8 84.0 87.9 88.3 90.0 90.0

BR9 80.9 87.3 87.9 89.7 89.6
BR10 79.1 87.6 87.9 89.4 89.0

AVERAGE 87.9 88.6 88.7 90.7 91.08

Table 3.1: OH3BFBL results compared to TSACC-4P, SPBBL-CC4 and 3BF+TS with
first 10 instances of BR dataset.

3.4.2 Experimental Results

3.4.2.1 Result Evaluation BR and BRXL - 10 Instances

The experimental results of the BR data set are shown in table 3.1 and table 3.2 and

the BRXL data set result is shown in table 3.3. Table 3.2 shows a comparison between

the performance of OH-3BFBL and TSACC-4P, SPBBL-CC4 and 3BF+TS. The results

using OH-3BFBL are competitive compared to other published works within the same

run time limit. The OH-3BFBL Mix set up has the highest utilisation for BR4 - BR8.

OH-3BFBL with Single setting gives the best result for BR8 - BR10. Across BR1 -

BR10, OH-3BFBL Mix has the highest average utilisation compared to other approaches

including OH-3BFBL with Single setup. Allen et al. (2011) is the published approach

with the highest utilisation. A paired t-test was performed between 3BF+TS and OH-

3BFBL Mix setup. This shows that the result using OH-3BFBL is significantly different

to that using 3BF+TS at a 95% confidence interval.

Table 3.2 shows the utilisation, standard deviation (STDDEV) and actual run time

of Single and Mix setups for the BR data set. The Mix setup performs better for BR1

- BR8 which are weakly heterogeneous test cases. The Single setup performs better in

strongly heterogeneous cases. The reported run time for the Mix setup is the total run

time from the two runs. The actual run time of both setups is significantly less than
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Test Single Setup
Utilisation (%)

Single Setup
STDDEV

Single Setup
Run Time (s)

Mix Setup
Utilisation (%)

Mix Setup
STDDEV

Mix Setup
Run Time (s)

BR 1 91.2 3.1275 8 91.7 0.3601 22
BR 2 91.7 1.4371 12 92.7 0.1586 36
BR 3 91.3 1.4789 24 92.2 0.1130 50
BR 4 91.2 1.0354 24 91.6 0.5941 60
BR 5 90.9 1.3067 27 91.6 1.3603 71
BR 6 90.8 0.6229 31 91.3 0.7521 96
BR 7 90.8 0.7722 48 91.1 0.8927 114
BR 8 90.0 0.8789 76 90.0 0.5844 152
BR 9 89.7 0.5675 102 89.6 0.6536 156
BR 10 89.4 0.9575 131 89.0 1.0263 160

AVERAGE 90.7 1.21846 48.3 91.08 0.64952 91.7

Table 3.2: Utilisation, standard deviation and run time for OH-3BFBL using the first 10
instances of the BR data set

Test SPBBL-CC
Bortfeldt & Mack

(2007)

3BF+TS
Allen et al. (2011)

OH-3BFBL Single OH-3BFBL Single
STDDEV

OH-3BFBL Mix OH-3BFBL Mix
STDDEV

BRXL1 86.9 92.4 96.4 0.8911 96.0 1.5263
BRXL 2 88.3 92.4 95.3 1.2048 95.4 1.3996
BRXL 3 89.8 91.9 93.7 2.7836 94.6 1.3779
BRXL 4 90.2 92.1 93.6 1.2779 94.9 0.6923
BRXL 5 89.9 92.5 92.6 0.9739 94.2 1.2594
BRXL 6 91.5 92.6 92.7 0.8820 94.5 0.9195
BRXL 7 91.0 92.6 92.9 1.1905 94.2 0.8082
BRXL 8 90.8 92.8 93.1 0.8624 94.4 0.6205
BRXL 9 90.9 92.3 93.6 0.8639 94.9 0.5757
BRXL 10 90.4 92.7 93.6 0.7822 94.8 0.7606

AVERAGE 90.0 92.4 93.63 1.1713 94.79 0.9940

Table 3.3: Results of OH-3BFBL compared to SPBBL-CC4 and 3BF+TS using the first
10 instances of the BRXL data set

the time limit of 160 seconds for most of cases except for the Mix setup in the stronger

heterogenous cases.

The result for the first 10 instances from the BRXL data set is shown in table 3.3.

For this data set, there is no published result for TSACC-4P. Both setups of OH-3BFBL

produced a significant improvement compared to SPBBL-CC4 and 3BF-TS. OH-3BFBL

Mix setup dominates here with the exception of BRXL1 where OH-3BFBL Single has

slightly higher utilisation. There is no run time reported in the BRXL data set as OH-

3BFBL always used the entire allocated time.

3.4.2.2 Result Evaluation BR and BRXL - 100 Instances

In this section, the performance of OH-3BFBL is presented using all instances from the

BR and BRXL data sets. Results for the BR data set are shown in table 3.4 and for the
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BRXL data set results are shown in table 3.5. For both data sets, OH-3BFBL with both

setups show consistent results with the larger number of test instances. The performance

using the BR data set shows a similar trend to previous experiments. OH-3BFBL Mix

setup produces better results in weakly heterogeneous cases. However, Single setup

performs better in stronger heterogeneous cases. In the BRXL data set, OH-3BFBL Mix

setup gives better results in all cases and the Single setup has the best result only in

BRXL1. One reason for the Mix setup performing better in weakly heterogeneous cases

is that these cases require a shorter run time to complete the packing at each iteration.

Single setup performs only one run well within the time limit and did not use any of the

remaining time. However, Mix setup has one additional run with different settings and

produces improved utilisation. However, in the weakly heterogeneous cases, if grouped

blocks are generated with large internal loss, it is better to use the simple block only. In

stronger heterogeneous cases, the Single setup utilises more of the allocated run time and

finds a better block at the end of the packing. On the other hand, overhead estimation

might have to stop in the middle of packing in the Mix setup. As shown in the above

experiments, OH-3BFBL Mix has a better average result in both the BR and BRXL data

sets. The performance of Mix setup was investigated in more detail. From figure 3.9,

BR1 has the widest range of results. This is due to BR1 has the least number of boxes in

the BR data set. Therefore, there are fewer number of different box dimensions available

and it might not be possible to fit the current packing plan. When the number of box

types is increased from BR1 to BR10, there are better chances to find a suitable box for

the selected gap. In addition, the average utilisation was also decreased because of the

increased complexity from BR1 - BR10. In contrast, OH-3BFBL has more consistent

results in the BRXL data set. The average result using the BRXL data sets are shown in

figure 3.10. The average result from BRXL1 to BRXL10 is not widely varied and there is

no decreasing trend from BRXL1 to BRXL10. Standard deviation is smaller compared

to the BR data set showing consistency of OH-3BFBL with the BRXL data set.
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Test Single Utilisation Single STDDEV Single Run Time Mix Utilisation Mix STDDEV Mix Run Time

BR 1 92.2 2.6345 14 92.5 2.6978 17
BR 2 91.8 1.8334 16 92.5 1.7962 21
BR 3 91.7 1.5378 18 92.2 1.3461 30
BR 4 91.3 1.4482 22 91.9 1.2431 32
BR 5 91.0 1.2365 26 91.6 1.1581 37
BR 6 90.9 1.0995 33 91.4 0.9576 47
BR 7 90.8 0.9806 48 91.0 0.9207 61
BR 8 90.0 0.9408 81 90.1 0.8489 71
BR 9 89.6 0.9543 108 89.4 0.8164 75
BR 10 89.3 0.8496 143 88.9 0.7918 80

AVERAGE 90.86 1.35152 50.9 91.15 1.2577 47.2

Table 3.4: Results of OH-3BFBL with all instances of BR dataset

Test Single Utilisation Single STDDEV Mix Utilisation Mix STDDEV

BRXL1 95.6 1.358 95.6 1.460
BRXL 2 94.6 2.277 95.2 1.361
BRXL 3 94.1 1.889 94.7 1.515
BRXL 4 93.8 1.549 94.4 1.433
BRXL 5 93.2 1.480 94.4 1.193
BRXL 6 92.6 1.902 94.2 1.072
BRXL 7 92.5 1.420 94.1 1.006
BRXL 8 92.9 1.261 94.5 1.019
BRXL 9 93.4 0.872 94.7 0.598
BRXL 10 93.6 0.672 94.9 0.558

AVERAGE 93.63 1.4681 94.67 1.1214

Table 3.5: Results of OH-3BFBL with all instances of BRXL dataset
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Figure 3.9: Variation of the performance of OH-3BFBL Mix set up from BR1 to BR10

Figure 3.10: Variation of the performance of OH-3BFBL Mix setup from BRXL1 to
BRXL10
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3.5 Further Modification to OH-3BFBL

In this section, we highlight some observations from the previous experiments and modi-

fications to OH-3BFBL. The first observation is that Group block contains only two box

types. However, it is possible to group more than two box types to form a bigger block.

In Group block generation, a third block type is not included even if there is no internal

loss. The second observation is about an issue found in Extreme Point (Crainic et al.

Summer 2008) which is used to present the packing position in 3BF and 3BFBL. The

issue is that Extreme Point does not include all possible packing positions. As shown

in figure 3.11, the black dots represent the Extreme Point generated for a packed box.

However, it is also possible to pack a block in a position represented by a white dot. The

original Extreme Point approach identifies the intersection between the projection from

the packed block to either the container side or other blocks. Point generation using

Extreme Point encourages packing boxes towards the deepest bottom left corner of the

container. However, this can result in some wasted space which can be reduced by using

the reallocation procedure described in section 3.2.2. Figure 3.12 and figure 3.13 shows

other possible locations of the same block at the deepest layer in both 2D and 3D. In

figure 3.13 case B represents shifting across the x-axis and case C represents shifting up

and across z-axis. In order to address the above issues, we propose a Multi-type Block

generation in section 3.5.1 and Layer Point in section 3.5.2.

3.5.1 Multi-type Block

In this section, we propose a Multi-type block to generate blocks with more than just

two box types. Similar to the previous Group block generation, there are two types of

arrangements: ABOVE and NEXT. A sample of various Multi-type blocks is shown in

figure 3.14.

The main idea of a Multi-type block is the combination of two existing blocks together.

The combination can be between Simple or Group block to allow more than two box types
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Figure 3.11: A example of Extreme Point (black dots) and Layer Point (white dots)

Figure 3.12: Possible Non-Extreme Point position in two-dimensions
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Figure 3.13: Possible Non Extreme Point Position in three dimensions

Figure 3.14: A sample of various Multi-type blocks which have more than two box types
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in a single combined block. The conditions for a valid combination between two blocks

are:

• Volume utilisation has to be greater or equal to α.

• Volume utilisation is calculated as:

–
∑

BoxV olumne
EnvelopeBoxV olume

≥ α where Box Volume is the sum of the volume of block

A and block B. Envelope Box is the minimum rectangular box that contains

the Multi-type block.

• Boxes required to form blocks A and B are a subset of input boxes.

• For “Next” arrangement:

– blockA.length ≥ blockB.length

– blockA.height ≥ blockB.height

– blockB is placed in point (blockA.width, 0, 0) relative to the position of blockA

• For “Above” arrangement:

– blockA.length ≥ blockB.length

– blockA.width ≥ blockB.width

– blockB is placed in point (0, 0, blockA.height) relative to the position of

blockA

The pseudo code for block generation is shown in Algorithm 3.4. The grouping pro-

cess starts with the generation of Simple blocks from single box type. Multi-type block

generation continues until a number of individual blocks are generated or there are no

more blocks available. Process GenerateAboveBlock and GenerateNextBlock will find

valid combinations between two generated blocks in BL with ABOVE and NEXT ar-

rangement and return all valid blocks. During block generation it is possible to combine
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boxes in different arrangements however the blocks generated can potentially have the

same dimension. This is termed as ambiguous blocks. Ambiguous blocks are blocks with

the same dimensions, the same number of box types and the same quantity of each box

type inside the block. An example of ambiguous block is shown in figure 3.15. During

the block generation, only one of the ambiguous blocks is added to the output.

Algorithm 3.4 Multi Block Generation

Input: : set of boxes to pack, B and block number limit, n
Output: : set of block BL
1: BL← ∅
2: BL← BL+GenerateSimpleBlock(B)
3: while BL.Count < n and nomoreblockcreated do

4: BL← BL+GenerateAboveBlock(BL)
5: BL← BL+GenerateNextBlock(BL)
6: end whilereturn BL

3.5.2 Layer Point

Layer Point is proposed to determine points which are not available using Extreme Point.

The idea of Layer Point generation is to create horizontal and vertical projections from

the block at the layer being considered. The pseudo code for Layer point is shown in

Algorithm 3.5. At the beginning of packing, there is no packed box and no layer point.

When considering the deepest gap, all packed blocks intersecting with the layer are

selected. From the selected block, the horizontal and vertical lines are projected along

the y-axis and x-axis on layer Z. The intersection between vertical and horizontal lines

are layer points using the getIntersection process in Algorithm 3.5 line 12.

When a block is packed, the deepest surface of a block has 4 corners represented as

bottom left (BL), bottom right (BR), top right(TR) and top left (TL) points as shown

in figure 3.16. Normal Extreme Point method packs deepest bottom left most point of

block – BL point into the candidate position. In Layer Point generation, each of the

categories is in correspondence with each corner of the block. Informally, each category
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Figure 3.15: Example of blocks with the same dimensions but different arrangement -
Ambiguous block

Algorithm 3.5 Generate Layer Point Procedure

Input: : packing plan, P and current layer, Z
Output: : set of layer point, LP
1: LP ← ∅
2: hLine← ∅
3: vLine← ∅
4: for all block bl and its position p in P do

5: if bl intersect Z then

6: vLine.add(project line from point (p.x, p.y, Z) across y axis
7: vLine.add(project line from point (p.x + bl.xSize(), p.y, Z) across y axis
8: hLine.add(project line from point (p.x, p.y, Z) across x axis
9: hLine.add(project line from point (p.x, p.y+bl. ySize, Z) across x axis

10: end if

11: end for

12: LP ← GetIntersection(vLine, hLine)
return LP
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Figure 3.16: An example of multiple layer point

is the bottom left most candidate point when rotating the coordinate around the y axis.

For example: top left candidate point is a bottom left candidate point if the container

is rotated 90 degrees anti-clockwise around the y axis. When considering a block, all

point categories are considered. The block’s bottom left corner will be packed in the

point from the bottom left most candidate point list. The block’s top right corner will be

packed in the point from the top right most point list and similar to the others. Instead

of generating only bottom left most layer point, there is generation of the layer point for

each category. Each candidate point can be generated using the similar method. At the

beginning, there is one point (0, 0, 0) in bottom left candidate point. When at least one

box is packed, bottom left candidate point contain the extreme point generated by the

“Extreme Point” method in Crainic et al. (Summer 2008). Bottom left candidate point

also contained in the layer points using generate method in section 3.5.2.

3.6 Further Modification Experiment

3.6.1 Experimental Setup

In order to have a fair comparison, the experiment setting is kept the same as in section

3.4.1, i.e. number of blocks to estimate and run time. However, there is an additional
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Test OH-3BFBL Single Mode (%) OH-3BFBL Mix mode (%) OH-3BFBLEX (%)

BR1 92.2 92.5 89.6
BR2 91.8 92.5 90.8
BR3 91.7 92.2 91.3
BR4 91.3 91.9 90.9
BR5 91.0 91.6 91.1
BR6 90.9 91.4 91.1
BR7 90.8 91.0 90.8
BR8 90.0 90.1 90.6

BR9 89.6 89.4 90.3

BR10 89.3 88.9 90.0

Table 3.6: Result of OH-3BFBL with Multi-type block generation and layer point

setting: Limit of block generation where n is 10,000. The hardware setting is identical

to the previous experiment.

3.6.2 Experimental Results

Table 3.6 shows that Multi-type block generation and Layer Point both performed better

in strong heterogeneous cases. However, in the other cases, the modification did not

perform well. The reasons are: firstly, in weakly heterogeneous cases, Multi-type block

generation creates bigger blocks using more boxes, which results in fewer available boxes

at the end of the packing to choose from. This also limits any positive benefits of overhead

estimation. A second reason is that overhead estimation has to consider more block and

position combinations. It is possible that there are many different positions and block

pairs which have no difference to the final estimated result. Figure 3.17 shows an example

where there is no difference between all four positions and block combinations.
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Figure 3.17: Example of different positions and point combinations where free space can-
not be re-used

3.7 Conclusion

In this chapter, the three-dimensional strip packing problem without stability constraints

was investigated. We introduced a modified packing heuristic 3BFBL with two new

processes: Block generation and Overhead estimation used in combination with the best-

fit methodology. Block generation has two types of combinations, Simple block and

Group block, and is advantageous when combining small boxes into large blocks thereby

minimising internal loss inside the block. In order to improve the heuristic result, an

overhead estimation procedure was developed and used with 3BFBL. That overhead

estimation avoids large blocks which can create wasted space by packing the block which

has the best estimated outcome.

The proposed OH-3BFBL shows an improved performance in stronger heterogeneous

cases when compared to methods in the literature and can also obtain a better average

utilisation. Two setups were presented. The simple setup showed a slightly better per-
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formance on instances with a high number of box types and low quantity of each type.

However, in data sets with the same number of box types and increased quantity of each

type, as in the BRXL data set, the Mix setup shows a better performance than the Single

set up.

Further changes were introduced, including Multi-type block and Layer Position, both

of which improved the performance of OH-3BFBL in strong heterogeneous instances.

Multi-type block allowed the combination of more than two types of boxes together.

Layer Point modification allowed more possible packing positions. These changes lead

to slightly lower results in weak heterogeneous instances but improved performance in

strong heterogeneous cases. For weaker heterogeneous cases, Multi-type block generation

allowed more internal loss which was repeated during the packing process and lead to

low utilisation. On the other hand, Multi-type block generation was found to be more

suitable in strong heterogeneous instances where low box quantity does not allow to

repetition of internal loss.
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4 Overhead Estimation and Constructive

Heuristics For The 3D-SPP with a

Stability Constraint

In this chapter, heuristics and overhead estimation for the 3D-SPP with the addition

of a stability constraint is investigated. Stability constraint has been mentioned in the

literature as one of the key issues in the container loading problem (Bischoff & Ratcliff

(1995)). An example of this can be seen in the previous chapter where boxes are allowed

to overhang in the air to allow maximum free space. This is obviously not applicable

in real life operations. During collaborative work with 3T Logistics Ltd, this constraint

has come up on numerous occasions as a compulsory requirement in transport planning.

This requirement ensures compact and stable packing suitable for transportation. It is

necessary to mention that this stability is not important in every packing case. However in

this context and for related work with a business, it is an important aspect in determining

the feasibility of an automated packing technique in a business operation. Previous

research has been carried out for the 3D-SPP including the stability constraint. From

the previous chapter, it is known that the best fit methodology performs well in the 3D-

SPP without a stability constraint. However, to the best of our knowledge, there is no

study about the best fit performance with a stability constraint. The 3D-SPP with the

addition of a stability constraint is defined in section 4.1. In section 4.2, the performance

of a range of heuristics for the 3D-SPP with a stability constraint is investigated. Based
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on the results of section 4.2, the performance of overhead estimation in the 3D-SPP with

a stability constraint was evaluated.

4.1 3D-SPP with Rotation and Stability Constraint

In this chapter, the 3D-SPP with a stability constraint is defined. There are different

definitions for a stability constraint. For example, the bottom area of all items or boxes

must be supported by either the container or other boxes, which are fully supported.

Another definition is a percentage of the bottom area of a box is supported (partially

supported). Yet another one is only the centre of gravity of a box is supported. In this

work, only the fully supported stability constraint case is investigated. That is, a box

is supported when the entire bottom surface is completely in contact with either other

boxes or the container. Then, the 3D-SPP with a stability constraint tackled here can

be defined as follows:

• Input:

– A set of rectangular boxes with given dimensions and rotation ability.

– A container with fixed width and height, but infinite length.

• Output:

– A packing plan showing the position of each box in the container.

• Objective:

– Minimise the length of the container required to pack all boxes.

• Constraints:

– All boxes need to be placed orthogonally (i.e. the edges of the boxes need to

be parallel with the container).

– All boxes must be packed.
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– Boxes cannot overlap.

– The bottom surface of each box is in full contact with either other boxes or

the container (stability constraint).

The evaluation function for the problem is the same as described in chapter 3.

4.2 Investigation into Best Fit, Best Support Heuristics

4.2.1 Block Generation for Stability Constraint

In the previous chapter, block generation with 3BF heuristics was introduced. In block

generation, multi-type blocks allow a small internal loss. However, if there is internal

loss then it is possible to violate the stability constraint. An example is shown in figure

4.1 where block C is not completely supported when placed on top of a group block

containing A and B which has a small internal loss. In this section, the rules for the block

generation process are modifed to allow a small inner loss and so the stability constraint

can be met. Similar to the grouped block, there are two types of arrangement which

can create a block: Above and Next arrangement. Block generation can be informally

described as the combining of block A and block B if the following conditions are met:

• Volume utilisation of the combined block is greater than or equal to 98%.

– The volume utilisation is calculated as
∑

BoxV olume
EnvelopeBoxV olume

∗ Box Volume is the sum of the volume of boxes of block A and block B.

∗ Envelope box is the minimum rectangular box that contain all the blocks.

• Boxes required to form block A and block B is a subset of input boxes.

• For “Next” arrangement:

– blockA.length ≥ blockB.length
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– blockA.height ≥ blockB.height

– block B is placed in point (blockA.width, 0, 0) relative to position of block A

• For “Above” arrangement:

– blockA.length ≥ blockB.length

– blockA.width ≥ blockB.width

– block B is placed in point (0, 0, blockA.height) relative to position of block A

– block B is fully supported by block A

• Block’s top surface utilisation is greater than or equal 98%

– The utilisation of the top surface of the block is calculated as
∑

TopSurface
EnvelopeBoxTopSurface

∗ TopSurface is the area of all boxes in which the top surface is as high as

the envelope box top surface.

∗ EnvelopeBoxTopSurface is the area of the top surface of envelope box.

The new condition of top surface utilisation ensures that the combined block can be

used as a base for other blocks. This avoids forming any horizontal tower cases during

the packing process. Where blocks have a small internal loss and small top surface,

subsequent blocks to be placed on top have to have a smaller bottom surface. The limit

for volume utilisation and top surface utilisation can be changed. However after rigorous

initial experiments, it was found that 98% utilisation is more likely to produce a better

result.
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Figure 4.1: Non-supported Block

4.2.2 Best Fit and Best Support Heuristics

In chapter 3, it was shown that the performance of overhead estimation depended on

the heuristic used in completing a partial packing plan. For the 3D-SPP, a number of

heuristics were evaluated and the 3BFBL heuristic had the best performance. Therefore,

a range of heuristics is presented and their performance with an additional stability

constraint is evaluated. The best heuristic will be used with overhead estimation to

further improve performance. There are two types of heuristic which are considered:

Best Fit and Best Supported. The main idea of the best fit heuristic is to prefer blocks

which fill most of the gap. The best fit selection is comparable to 3BFBL heuristics which

was introduced in chapter 3 when blocks with a larger XZ surfaces is preferred. If there is

more than one block that has a similar XZ surface area then secondary selection is applied

(i.e. contact area). The best-support heuristic prefers a block with the largest bottom

area. This encourages subsequent boxes to be packed on top and increase stability. Where

there is more than one block available to pack into the deepest gap, the block with the
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largest XY surface is preferred. If there is more than one block that has a similar XY

surface area then a secondary selection is applied. The pseudo code for both heuristics

shown in Algorithm 4.1.

Algorithm 4.1 Best Fit/ Support Heuristic-3BFS

Input: : container, C and set of boxes to pack B, set of generated block, BL
Output: : packing plan, P with all blocks and its position
1: P ← ∅
2: while |B| >0 do

3: G← GetLowestGap(C,P )
4: bestF/S ← selectBestF it/SupportPair(G,BL)
5: p← selectPairSecondaryCriteria(bestF/S)
6: if p is found then

7: Reallocation(p)
8: Add p to P
9: Remove box in p from B

10: else

11: Mark all marks in G is invalid for future use
12: end if

13: end while

For each iteration, both heuristics start by selecting the deepest gap in the container.

There are two possible cases:

• If there is a valid block to fit in the deepest gap, then all possible pairs of blocks

and their position are evaluated. A number of blocks and positions are selected

using best-fit or best-support criteria and stored in bestF/S (Algorithm 4.1 line 4).

A secondary criteria selection is used to select one block and position in bestF/S.

The selected pair will be packed into the container.

• If there is no valid block then the deepest gap will be discarded and the next deepest

gap is selected.

In the original 3BF, only the single best fit block was considered. In order to improve

the flexibility of best-fit and best-support heuristics, a best fit/support threshold k is

introduced. For example, with best fit selection instead of considering one or more valid
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blocks with the largest XZ area, N, any blocks with an XZ surface greater than or equal to

k*N are considered for secondary selection. A similar rule is applied for the best-support

heuristic. The value of k is specified in experimental set up.

The secondary policies used in best-fit and best-support heuristics are four tie breakers

from Allen et al. (2011) Maximum Contact, Maximum XZ Surround Score, Maximum

Y, Minimum Y and one new tie breaker Maximum XY Surround Score.

• Maximum Contact: The block with the largest area contacting either of the other

boxes or the container is selected.

• Maximum XZ Surround Score: The block has the largest number of boxes which

have Y co-ordinate equal or less is selected. This selection encourages option which

form a flat XZ surface. This creates a bigger gap for future blocks.

• Maximum Y: The block placed in deepest bottom left most position and the furthest

point in Y - axis

• Minimum Y: The block placed in deepest bottom left most position and the deepest

point in Y - axis

• Maximum XY Surround Score: Block has the largest number of boxes which have

deeper XY surface. This selection encourgages forming a flat XY surface. This

offers the opportunity for future boxes to be packed on top.

Second criteria selection are used in Algorithm 4.1 line 5.

4.2.3 Experiments with Heuristics

One experiment has been carried out to investigate the performance of the selected heuris-

tics. There are 10 combinations of best fit and best-support heuristics with secondary

criteria selection. The algorithms are implemented in Java single thread code. The ex-

periments were run on a PC with AMD 2.0 GHz and 1 G memory. There are two runs
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Heuristic Utilisation (%)

Best Fit - Maximum Contact - 0.5 86.7
Best Support - Maximum Contact - 0.5 86.4
Best Fit - Maximum Contact - 0.8 85.2
Best Fit - Maximum XZ Surround Score - 0.5 85.2
Best Fit - Maximum XY Surround Score - 0.5 84.5
Best Fit - Maximum Y - 0.8 84.5
Best Fit - Maximum XZ Surround Score - 0.8 84.3
Best Fit - Maximum XY Surround Score - 0.8 84.2
Best Support - Maximum XZ Surround Score - 0.5 84.1
Best Support - Maximum Y - 0.5 83.8
Best Support - Maximum XY Surround Score - 0.5 83.7
Best Fit - Maximum Y - 0.5 83.2
Best Support - Maximum Contact - 0.8 82.4
Best Support - Maximum XZ Surround Score - 0.8 82.3
Best Support - Maximum Y - 0.8 82.0
Best Support - Maximum XY Surround Score - 0.8 81.6
Best Fit - Minimum Y - 0.8 81.2
Best Support - Minimum Y - 0.8 77.9
Best Fit - Minimum Y - 0.5 76.2

Table 4.1: Performance of best fit/support heuristics with BR data set

for each heuristic. Each run is performed with a different value for the best fit/support

parameter - k. The value of k was set to 50% and 80%. The average overall results for

1000 instances of BR1-BR10 are shown in table 4.1.

Table result in the table 4.1 is ordered by decreasing utilisation. From these result it

is important to note the following:

• Best Fit - Maximum Contact - 0.5 heuristic with a best fit threshold - k =50% and

Maximum Contact is used as secondary criteria selection has the highest average

utilisation.

• The best fit heuristic outperforms the best-support heuristic. One of the reasons

for this is that the current block generation only allows a “layer” block where

the number of blocks across the y-axis is only 1 and this limits the best-support

heuristic.
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• The Maximum Contact tie-break policy gives the all best three average results.

Therefore, Maximum Contact criteria can be useful for the 3D-SPP with a rotation

and stability constraint.

• The majority of the best results were produced when the best fit/support param-

eter, k=50%.

• Best fit and support heuristics gives a lower average result compared to results from

TSACC and TSACC-4P.

4.3 Overhead Estimation with Stability Constraint

As the results from section 4.2.3 suggest, the Best Fit - Maximum Contact heuristic where

k = 50% gives the best performance. Therefore this heuristic has been selected for be

used with overhead estimation. From now on this heuristic is referred to as OH-3BFMC.

The pseudo code for OH-3BFMC is shown in Algorithm 4.2. Similar to OH-3BFBL,

OH-3BFMC uses blocks instead of single boxes which was introduced in section 4.2.1.

Different to OH-3BFS instead of the selectBestFit/SupportPair procedure, OH-3BFMC

does not use a heuristic to pack a number of blocks after each estimation. This is due to

optimised implementation in the Java application which allows a faster estimation. An-

other key difference is instead of using the OverheadEstimation procedure, OH-3BFMC

uses OverheadEstimation3BFMC and this is presented in Algorithm 4.3. At each itera-

tion, OH-3BFMC selects the deepest gap. There are two possible cases:

• If there are valid blocks then all possible pairs of blocks and their positions are

evaluated.

• If there is no valid block then the current gap will be discarded and the next deepest

gap is selected.
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For each iteration, OH-3BFMC packs a block until there are no boxes left or the time

limit has been reached and the complete packing plan is returned. The pseudo code

for procedure OverheadEstimation3BFMC is shown in Algorithm 4.3. OverheadEstima-

tion3BFMC starts by selecting a number of best fit blocks and their positions, bestFitBL.

How the number of blocks and position is selected is described in the experimental set

up. Each selected possibility will be used in the current plan and a complete packing

plan is produced. Different to the overhead estimation procedure in the previous chapter,

3BFMC has been used to complete the packing plan (Algorithm 4.3 line 7). From the

completed packing plan, a block and its position which has the highest utilisation will

be selected.

Algorithm 4.2 3BFMC With Overhead Estimation(OH-3BFMC)

Input: : container, C set of boxes to pack B and set of generated block, BL
Output: : packing plan, P with all blocks and its position
1: P ← ∅
2: while |B| >0 and time < t do

3: G← GetLowestGap(C,P )
4: p← OverheadEstimation3BFMC(G,BL, P )
5: if p is found then

6: Add p to P
7: Remove box in p from B
8: else

9: Mark all marks in G is invalid for future use
10: end if

11: end while

4.3.1 Experimental

4.3.1.1 Experimental Set Up

3BFMC and OH-3BFMC are implemented using Java single thread code. Experiments

are run on a PC with AMD 2.0 GHz and 1 G memory. CrateViewer application is

used to visualise the solution (Allen et al. 2011). The parameters for OH-3BFMC are

as follows: number of blocks used to estimate is 130; time limit is 294 seconds. To
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Algorithm 4.3 OverheadEstimation3BFMC procedure

Input: : A gap, G and set of block, BL
Output: : a block and position, p
1: bestF itBL← GetBestF itBlock(G,BL)
2: bestS ← 0
3: bestP ← nil
4: for all p in bestFitBL do

5: P ′ ← Copy(P )
6: pack p in packing plan P’
7: score← CompletePackingUsing3BFMC(P ′)
8: if score > s then

9: bestS ← score
10: bestP ← p
11: end if

12: end forreturn bestP

investigate the performance of OH-3BFMC, two experiments were carried out. The first

experiment compares the performance of OH-3BFMC with published results from the

literature. The experimental data set contains the first 10 instances from the BR data

set. There are two comparisons of OH-3BFMC. In the first comparison, the result using

OH-3BFMC is compared with the best known approaches in the literature TSACC and

GACC. This is a direct comparison between OH-3BFMC with non-parallel methods.

The second comparison is between the parallel methods GACC-4P, TSACC-4P and OH-

3BFMC. The second experiment is an investigation into the performance of OH-3BFMC

in a wider range of instances. OH-3BFMC is tested with all 100 instances in each BR

sub-data set. The reported result is the average of 100 instances of each BR data set.

4.3.1.2 Experimental Results

BR data set - first 10 instances: The results of OH-3BFMC with the first 10 instances

of each BR data set are shown in table 4.2 and table 4.3. Table 4.2 shows a direct

comparison between OH-3BFMC with the non-parallel methods TSACC and GACC.

Table 4.3 shows a comparison between OH-3BFMC with the parallel methods TSACC-

4P and GACC-4P.
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Test TSACC GACC OH-3BFMC

BR1 92.1 83.8 87.8
BR2 92.5 88.1 89.9
BR3 90.9 88.7 89.2
BR4 89.9 87.8 88.9
BR5 89.0 87.7 88.1
BR6 87.2 87.1 88.7

BR7 84.9 85.3 87.4

BR8 81.5 83.6 85.8

BR9 78.6 81.1 84.3

BR10 76.9 78.0 82.8

AVERAGE 86.35 85.12 87.27

Table 4.2: BR data set - first 10 instances - non-parallel method

The results from Table 4.2 are summarised as follows:

• TSACC shows the best result for the weakly heterogeneous cases BR1-BR5. How-

ever OH-3BFMC improves the container utilisation for the stronger heterogeneous

cases BR6-BR10.

• On average, over all the BR data set, OH-3BFMC demonstrated the highest utili-

sation.

From Table 4.3, the results can be summarised as follows:

• TSACC-4P has the highest utilisation for the weakly heterogeneous cases BR1 -

BR6. GACC-4P yields the best results for BR7-BR8. However, OH-3BFMC gives

the highest utilisation for the stronger heterogeneous cases BR9 - BR10.

• On average, over all the BR data set, the performance of OH-3BFMC is comparable

to TSACC-4P and even better when compared with GACC-4P. However, TSACC-

4P and GACC-4P used 4 parallel computers and total CPU time is much longer

than the time limit of OH-3BFMC.
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Test TSACC-4P GACC-4P OH-3BFMC

BR1 92.3 84.3 87.8
BR2 93.5 88.6 89.9
BR3 92.3 89 89.2
BR4 90.8 88.5 88.9
BR5 89.9 88.1 88.1
BR6 89.2 88.7 88.7
BR7 87.1 87.8 87.4
BR8 83.9 85.9 85.8
BR9 80.9 84.3 84.3

BR10 79.1 82.1 82.8

AVERAGE 87.90 86.73 87.27

Table 4.3: BR data set - first 10 instances - parallel method

BR data set - 100 instances: The performance of OH-3BFMC is shown in table 4.4

with utilisation, standard deviation and run time and seen in Figure 4.2. The results can

be summarised as follows:

• Utilisation decreases from BR1 - BR10. However the general trend is that standard

variation also decreases from BR1 to BR10 with the exception of BR9.

• The average performance OH-3BFMC over 100 instances is better when compared

with only the first 10 instances.

• OH-3BFMC shows consistent results with a larger number of instances. The ma-

jority of the results can be found within 1.955% of the average.

• The run time of OH-3BFMC is lower than the limit of 294 seconds especially in

weakly heterogeneous cases.

4.4 Conclusion

In this chapter, the three-dimensional strip packing problem with the addition of a sta-

bility constraint was investigated. The stability constraint was defined as all bottom
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Test Utilisation (%) STDDEV Run Time (seconds)

BR1 89.0 3.42 59
BR2 89.2 2.51 62
BR3 89.5 1.98 89
BR4 89.1 1.80 102
BR5 88.7 1.81 129
BR6 88.6 1.48 164
BR7 87.5 1.46 229
BR8 86.1 1.38 290
BR9 84.1 1.87 297
BR10 82.2 1.84 300

AVERAGE 87.40 1.955 172

Table 4.4: BR data set - 100 instances

Figure 4.2: OH-3BFMC - BR data set
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surfaces of packed boxes must be supported by the container or other boxes. The best-fit

heuristic was adapted and best-support heuristics were introduced. The best-heuristic

preferred to pack the largest volume first whereas the best-support heuristics preferred

a block with the largest bottom surface to encourage stability in further iterations. Dif-

ferent criteria. i.e. Maximum Contact, Minimum Y etc. were adapted and tested as

a tie breaker. Different heuristics and tie breakers were combined. The performance of

each combination was evaluated to identify the best performance of best fit and maxi-

mum contact with stability constraint. The best fit heuristics out performed the selected

best-support heuristics and was also compatible with the stability constraint. Out of

all the tie breakers Maximum Contact showed consistency and good results in combina-

tion with any heuristic. Therefore, overhead estimation was combined with Maximum

Contact heuristics (OH-3BFMC). To the best of our knowledge, OH-3BFMC can obtain

the best result in strong heterogeneous instances when compared with other well known

non-parallel approaches from the literature. OH-3BFMC does not give the best result in

weak heterogeneous instances. However, the overall average performance of OH-3BFMC

is higher. When compared to the parallel methods, OH-3BFMC shows the highest utilisa-

tion for 2 out of 10 BR datasets. When the number of instances is increased, OH-3BFMC

shows competitive and consistent utilisation with a lower run time compared to the most

well known methods.
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Measurements

This chapter presentes research conducted in collaboration with 3T Logistics Ltd to find

an automated approach for a real life packing problem. The problem is described as a

Pallet Space Equivalent (PSE) problem. Firstly, the operation of 3T Logistics Ltd and

the context of the problem with real life constraints is introduced. This is followed by

the definition of the problem in comparison with the three-dimensional strip packing

problem. Thirdly, a constructive approach for the problem is presented. Finally, real life

data sets and evaluation of the performance of the heuristics are presented.

5.1 Introduction and Operation Overview

3T Logistics Ltd (3T) is a UK-based Fourth Party Logistics (4PL) provider. 3T pro-

vides transportation management services to a wide range of clients via their multi-mode

transportation management system - SOLO. When 3T Logistics receives customer orders

requiring delivery, the orders are processed, consolidated and assigned to a delivery plan.

The company then arranges collection and delivery of goods from the customer’s site to

their consignees via a network of carriers. At the warehouse, products are packed into

different types of handling units. 3T often receives the handling unit detail from its cus-

tomers and uses this information in the transport planning process. The most common

method is to palletise items although items can also be stored in bags or boxes. Depend-
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ing on the properties of an item, different handling units have different requirements for

rotation or stackability. One critical task is to calculate the cost of delivery. There are

many mechanisms for calculating delivery costs and it also depends on contracts with

carriers. The preferred and most common mechanism is based on the required vehicle

footprint. To measure the vehicle footprint, the pallet space is specified as a unit of

measurement. Therefore correctly estimating pallet space equivalent is very important

not only to 3T but also for customers and carriers. A pallet space is defined as the floor

space of a standard pallet. There are different standard pallet dimensions, for example

Euro or UK standard pallets. The shipper will typically pack products onto Euro (800 x

1200 mm) or UK (1000 x 1200 mm) standard pallets. An example of a Euro pallet can

be seen in Figure 5.1. Handling units are classified as stackable or non-stackable. An

example of a stackable pallet is shown in Figure 5.2 and a non-stackable pallet is shown

in Figure 5.3.

Figure 5.1: A 800mm x 1200mm Euro standard pPallet
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Figure 5.2: An example of a stackable pallet

Figure 5.3: An example of a non-stackable pallet

There are operational requirements which have a significant effect on the day-to-day

operations of 3T. Firstly an order for delivery can be changed at the last minute and 3T

has to react quickly with high frequency of change. Secondly, actual physical packing

is not carried out by the staff at 3T and therefore the packing plan should be "easy"

and "good enough" to replicate. Thirdly, customers can have a single order which is

larger than the standard vehicle capacity therefore a larger vehicle should be ordered.

Vehicle size is not specified until the planning process is completed. Therefore there are

no known fixed container dimensions at the point of receiving an order.

Currently, 3T use an in-house method to estimate the pallet space equivalent required

for each order. Due to commercial interests, details of the current method cannot be

published. The original method used by 3T is to calculate the number of pallets which

can be placed across a given width and length. It also makes the assumption that all

handling units are either stackable or non-stackable.

There are two main issues with this approach. Firstly, it cannot calculated pallet space

for a mix of stackable characters or a mix of different types of handling units. Secondly,
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currently there is no method to identify an invalid solution (i.e. the current method

output 0.5 PSE for instance which has only one standard pallet). In order to check the

performance of the current method, human observers have to be allocated to validate the

results. This method is not cost effective and can be time consuming. Based on these

issues, there are two objectives for this collaboration. Firstly, define the problem with a

better way to measure the performance of the packing method. Secondly, design a quick

and easy to implement method to improve estimation.

The rest of the chapter is arranged as follows: Section 5.2 defines the Pallet Space

Equivalent (PSE) problem and introduces a lower bound estimation which will be used

to measure its performance. Section 5.3 introduces a new method for the PSE prob-

lem. Finally, section 5.4 presents experimental and performance analysis of the proposed

method.

Actual costs can only be calculated after the delivery has been made. Additional costs

can also be incurred due to factors such as change in item quantity, waiting time charge

and fuel surcharges.

5.2 Pallet Space Equivalent Problem

The operational requirements of 3T has been investigated and the problem has been

defined as Pallet Space Equivalent (PSE) measurement. PSE problem is defined as

follows:

• Input:

– A set of rectangular handling units with given dimensions, quantities, stacka-

bility and rotation ability.

– A container with fixed width and height, but length can be extended as re-

quired.

– Handling unit can be PALLET, BOX or BAG.
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– Each handling unit has one of the following stackability options: BASE, TOP,

SAME, NONE.

• Output:

– A packing plan showing all handling units and theirs positions.

• Objective:

– To minimise the pallet space equivalent required to pack all handling units.

• Constraints:

– All handling units must be packed.

– Handling units need to be placed orthogonally (i.e. edges of boxes need to be

parallel with the container).

– Handling units cannot overlap.

– Bottom surface of each handling unit has to be fully supported by either other

handling units or the container.

– Handling units with BASE stack ability allow other handling units with TOP

ability to be placed on top.

– Handling units with TOP stack ability can be stacked on top of other base

handling units or on the floor of the container.

– Handling units with NONE stack ability can only be placed on its own (i.e. a

hazardous item such as a gas container).

– Handling units with SAME stack ability can be stacked with the same handling

unit type together.

– PALLET handling units can not be stacked more than 2 on top of each other.

– BOX, BAG handling units can be stacked more than 2 on top of other BOX

and BAG.
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– PALLET handling units can only rotate so that the pallet base is always at

the bottom.

– PALLET handling units cannot be placed on top of BOX or BAG handling

units.

To the best of our knowledge, no similar problem has been investigated in the litera-

ture. Following the classification by Wäscher et al. (2007), PSE is a three-dimensional

packing problem therefore classification of dimensionality is 3. All handling units will

be packed into selected containers therefore the kind of assignment classification is V.

There is only one container therefore O is set as an assortment of large object classifica-

tions. In summary, the PSE problem belongs to the 3/V/O problem class according to

classification by Wäscher et al. (2007). More details about classification is presented in

chapter 2.

In comparison to well-known packing problems in the literature, the PSE problem is

different to the container loading problem because the container length can be extended

to the required length. The PSE problem is similar to the three-dimensional strip packing

problem (3D-SPP) described in section 2.2 but has different requirements for utilisation

measurement. The PSE problem utilisation is measured by the floor area of the container

instead of the length of the container. This is due to operational requirements: 3T’s cus-

tomer only pays for floor space required therefore minimising floor space is the objective.

An example to demonstrate the difference between 3D-SPP and the PSE problem is an

instance with one PALLET of the same height as the container. Figure 5.4 shows an

aerial view of the same packing plan from the top of the container. Figure 5.4a shows

the utilisation using the length of the container required to pack the handling unit. In

this sample, the utilisation of the strip packing problem is not 100% due to wasted space

on the left side. This is different to the PSE problem as shown in Figure 5.4b. The

PSE problem utilisation is measured by the floor space of the pallet. In this case, the

pallet space equivalent is 1 and utilisation in this case is 100%. PSE includes two factors
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mentioned by Bischoff & Ratcliff (1995) which is not studied in previous chapters:

• "Load bearing strength of items": No more than 2 PALLET handling units are

stacked together.

• "Handling constraints": No BOX or BAG under a PALLET, no handling units can

be packed on top of handling units with no BASE stackability.

(a) Strip packing problem (b) PSE problem

Figure 5.4: Comparison of utilisation between strip packing loading and PSE problem

5.2.1 PSE Utilisation

In the 3D-SPP an optimal container length is calculated. Optimal length and actual

container length are used to calculate the utilisation as a percentage. As mentioned

in chapter 3, the PSE problem is similar to the 3D-SPP. It is possible to adapt the

utilisation measurement of 3D_SPP to measure that for PSE. Instead of container length,

an optimal floor space area can be calculated and the utilisation of PSE can be measured

based on actual and optimised floor space. Optimal floor space can be denoted as optPSE

and the formula for optPSE and utilisation of PSE are shown in Equation 5.1.

Using optPSE has issues with the height and stackability of the handling unit which

can result in an inaccurate or infeasible output result. For example, in an instance with
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utilisation =
optPSE

planPSE

planPSE = PSE of packing plan

optPSE =

∑

HandlingUnitV olume

cH ∗ pW ∗ pL

where cH is container height

pW is standard pallet width (800 mm)

pL is standard pallet length (1200 mm)

Equation 5.1: PSE Utilisation formula based on 3DSPP Adaption

a single standard pallet where height is a half that of the container length, using optPSE

will have a best utilisation of 50% and this is the best possible solution. Utilisation is

supposed to be 100% and therefore highlights the problem with handling unit height. An

example to demonstrate a stackability issue: 2 PALLET handling units where height is

half that of the container height. The handling units only have BASE stackability. The

best possible packing plan will require 2 pallet spaces or PSE. Using optPSE formula,

optimum pallet space is 1 PSE with a utilisation of 50%. This is infeasible and violates

the stackability constraint. It is not significant for comparing between different packing

methods. Nevertheless, it is critical in order to make business decisions with regards

to which method is acceptable for operation. From the above examples, any packing

method with can only achieve utilisation of 50% is not a true reflection of the quality

and usability of the packing method.

To avoid these issues, a different method for estimating the optimal floor space is

proposed and is denoted as estPSE. The pseudo code calculation is shown in Equation

5.2. The main idea of estPSE is to take advantage of the known pallet quantity and their

stackability constraints in order to estimate the minimum floor space required. To the

best of our knowledge, there is no similar method that takes into account the handling
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unit type and stackability to provide a more accurate utilisation measurement. In this

evaluation, two assumptions have been made. The first assumption is when PALLET

handling units are combined together they will not violate any constraints e.g. too high

for the container. The second assumption is that BOX and BAG handling units can

be always be packed on top of PALLET handling units. Algorithm 5.1 calculates two

estimations, one for pallet (pEst) and one for volume (vEst). The final value estPSE is the

higher of the two estimates. Algorithm 5.1 starts by calculating pallet space for PALLET

handling units which can only be placed on its own or PALLET handling units which can

only be stacked with the same type (Line 6). PALLET handling units with only BASE

or TOP stackability are combined together with the assumption that no constraints are

violated (Line 7). In the case where there are PALLET handling units with only BASE

or TOP stackability left, they will be combined with PALLET handling units which have

both BASE and TOP stackability (Line 9). After these combinations, space required

for any remaining PALLET handling units is added (Line 14). pEst does not take into

account BAG or BOX handling unit type with the assumption that everything else can be

placed on top. pEst provides a better estimation for instances where all or the majority of

handling unit types are PALLET. For simple cases such as with 1 non stackable PALLET

or 2 stackable PALLET handling units then pEst will give the correct 1 PSE for each

case. To accommodate instances with only BOX or BAG items, vEst is calculated using

the 3D-SPP adaption as presented in Equation 5.1(Line 16). estPSE will be the highest

between the pEst and vEst (Line 17). Choosing the higher value between vEst and

pEst helps to avoid instances where pallets with stackability cannot be combined. For

example, there are 2 large PALLET handling units which are as high as the container,

one handling unit has BASE stackability and the other has BOTH stackbility. pEst is

calculated as 1 PSE but this is not correct and vEst has a better estimation at 2 PSE.
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utilisation =
estPSE

planPSE

planPSE = PSE of packing plan

estPSE = optimum PSE calculated by Algorithm 5.1

Equation 5.2: PSE utilisation formula with modified optimal PSE calcuation using
estPSE

5.3 Heuristics For Pallet Space Equivalent

As mentioned in section 5.2, one of the key objectives for this research is to design a

fast, automated method to measure PSE. After discussion with the business, design and

development of heuristics for the PSE problem is the preferred option. This does not

exclude future work on other approaches such as meta-heuristics and hyper-heuristics.

As mentioned, the PSE problem is classified with and shares many characteristics

with 3D-SPP. Therefore, the best-fit methodology from literature was adapted and three

modifications were introduced: block generation, candidate point and selection criteria.

An overview of the packing heuristic is shown in Algorithm 5.2. The packing process

starts after block generation where items are grouped together to create a larger block

of handling unit. Details of block generation are presented in section 5.3.1.

At each iteration, the lowest available gap which is presented by candidate points is

selected. With the selected gap, blocks are tested to select one combination of blocks

and packing position. A combination is valid when no constraints are violated. Selection

criteria is introduced in section 5.3.3. After the block has been packed then the candidate

points are updated it continues onto the next cycle. If there are no available blocks and

positions then selected gaps are marked as invalid for future iterations. The process

continues until there are no handling units left to pack.
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Algorithm 5.1 estPSE calculation

Input: : Set of input handling units HU
Output: : Estimated optimal floor space, estPSE
1: s← NumberOfPalletOnlyHaveSameStackability(HU)
2: b← NumberOfPalletHasBaseOnlyStackability(HU)
3: t← NumberOfPalletHasTopOnlyStackability(HU)
4: both← NumberOfPalletHasBaseAndTopStackability(HU)
5: none← NumberOfPalletHasNoStackability(HU)
6: pEst← none+ ⌈ s2⌉
7: combBT ← min(b, t)
8: baseOrTop← max(b− combBT, t− combBT )
9: combBTL← min(both, baseOrTop)

10: pEst← pEst+ comBT + combBTL
11: bothLeft← max(both− combBTL, 0)
12: baseLeft← max(b− combBT − combBTL, 0)
13: topLeft← max(t− combBT − combBTL, 0)
14: pEst← pEst+ ⌈ baseLeft+topLeft+bothLeft

2 ⌉
15: volume =

∑

(i.V olume), i ∈ I

16: vEst =
∑

HandlingUnitV olume
container.Height∗standardPalletArea

17: estPSE ← max(pEst, vEst)

Algorithm 5.2 PSE packing best-fit heuristic algorithms

Input: : container C, set of handling unit to pack B, set of generated blocks BL
Output: : packing plan P, with all blocks and its position defined
1: P ← ∅
2: while |B| >0 do

3: Get lowest gaps, G
4: Find all valid block, P from BL for G
5: Select a combination block and packing position, p from P
6: if p is found then

7: Reallocation(p)
8: Remove from B the handling unit in p
9: else

10: Mark all gaps in G as invalid
11: end if

12: end while
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5.3.1 Block Generation

Block generation processes are shown in Algorithm 5.3. The block generation process

starts with the generation of a simple block for each handling unit (Lines 5, 6 and

7). Simple blocks will be combined together to generate group blocks (Line 8). Block

generation returns both generated simple blocks and group blocks.

Algorithm 5.3 Block generation process to generate simple block for different types of
handling unit

Input: : A set of input handling units, HU
Output: : A set of generated block, bl
1: procedure Block Generation

2: pallet← HU.GetPalletHandlingUnit()
3: box← HU.GetBoxItemHandlingUnit()
4: bag ← HU.GetBagItemHandlingUnit()
5: simplePallet← GenerateSimpleBlock(pallet)
6: simpleBox← GenerateSimpleBlock(box)
7: simpleBag ← GenerateSimpleBlock(bag)
8: groupBlock ← GenerateGroupBlock(simplePallet, simpleBox, simpleBag)
9: bl← simplePallet+ simpleBox+ simpleBag + groupBlock

10: return bl
11: end procedure

Simple blocks are generated by combining the same handling unit type into the same

block. Simple blocks are generated by the GenerateSimpleBlock process as shown in

Algorithm 5.4. GenerateSimpleBlock input is the handling units. For each handling

unit, all possible rotations are considered (Line 4). maxX, maxY and maxZ are the

maximum number of handling units across the x-, y- and z-axes in a block. maxX and

maxZ are calculated as the maximum number of blocks that can be placed across the

axis and are also restricted by pre-set parameters (Line 5 and 6). maxY is calculated

differently using the standard container length which is set in the experiment (Line 7).

xBound, yBound and zBound are the limits of the number of handling units along each

axis. This is to avoid a long run time which may occur during block generation. The

values of xBound, yBound and zBound are specified in the experimental set up. x, y
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and z are the number of handling units across the x-, y- and z-axes of the container. For

each combination of x, y, and z, a block is generated and checked for validation (Line 11

and 12). A simple block is valid when no constraint is violated in quantity, dimension,

bearing or stackability. For example, a combination of x = 3, y = 2, z = 2 will produce

a block such as that shown in Figure 5.5.

Algorithm 5.4 Process to generate simple block

Input: : A set of input handling units, HU
Output: : A set of generated simple block, simpleBlock
1: procedure GenerateSimpleBlock

2: simpleBlock ← ∅
3: for all Handling unit, h from HU do

4: for all possible rotation,r of HU do

5: maxX ← min(⌊c.Width/r.Width⌋, xBound)
6: maxZ ← min(⌊c.Height/r.Height⌋, zBound)
7: maxY ← min(⌊c.standardLength/r.Length⌋, yBound)
8: for x = 1→ maxX do

9: for y = 1→ maxY do

10: for z = 1→ maxZ do

11: block ← GenerateBlock(r, x, y, z)
12: if IsValid(b) then

13: Add block to simpleBlock
14: end if

15: end for

16: end for

17: end for

18: end for

19: end for

20: return simpleBlock
21: end procedure

After Simple block generation then Group blocks are generated. Group blocks are

generated by combining multiple Simple blocks together. Group block also takes into

account stackability and bearing constraints between different handling unit types. Han-

dling units of the same type which have the SAME stackability will be grouped together.

Handling units of different types can only be combined if they have suitable stackability.

For example, a BOX with BASE stackability can be combined with another BOX with
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Figure 5.5: A sample of a simple block

TOP stackability. Group block generation is shown in Algorithm 5.5 where the process

combines different types of handling units together. GenerateGroupBlock process starts

with an initial generated block, grBl with all simple blocks of PALLET (Line 2). For

each iteration, the Combine process combines the current generated block with another

simple block type in the following order: PALLET, BOX and then BAG (Line 4). This

particular order is used to ensure that a BAG will be placed on top of a BOX item. This

is not a constraint but a preferred practice in real life. The process continues until a

number of blocks are generated or no more new blocks are created. In the first iteration,

simple blocks of PALLET handling unit are combined with other PALLET, BOX and

BAG handling units. The limit of the number of blocks generated is specified in section

5.4.2.

The Combine procedure, shown in Algorithm 5.6, combines a current block with a

Simple block. Each current block is combined with a Simple block using three types

of combination NEXT, ABOVE and INFRONT. A NEXT arrangement places a Simple

block along the x-axis with current block. An ABOVE arrangement places a Simple block

on top of a current block. An INFRONT arrangement places a Simple block in front of
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Algorithm 5.5 Process to generate group block from simple block of different handling
unit types

Input: : A set of simple block of each handling unit type, simplePallet, simpleBox and
simpleBag

Output: : A set of generated block, grBl
1: procedure GenerateGroupBlock

2: grBl← simplePallet
3: while max number of block is reached or no more block can generate do

4: groupPalletBlock ← Combine(grBl, simplePallet))
5: Add groupPalletBlock to grBl
6: groupBoxBlock ← Combine(grBl, simpleBox))
7: Add groupBoxBlock to grBl
8: groupBagBlock ← Combine(grBl, simpleBag))
9: Add groupBagBlock to grBl

10: end while

11: return grBl
12: end procedure

a current block if looking from the extended end of the container. This is different to

previous block generation for the strip packing problem. Different to the strip packing

problem, a long block does not decrease utilisation due to different evaluation functions.

Figure 5.6 shows an example of one Simple block in Figure 5.6a and a Group block in

Figure 5.6b. The three possible combinations between generated block and Simple block

are shown in Figure 5.7. For each combination, only valid combinations are accepted. A

combination is valid when:

• The block is placed on its own on the container floor, no stability constraint is

violated.

• Width and height are smaller than the width and height of the container.

• There are enough handling units to form at least one block.

• Volume utilisation of the block is greater than or equal to 98%.

The volume utilisation of a block is measured using the same formula as shown in chapter

4. The value 98% is selected based on observation from rigorous experiments.
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For example,a PALLET handling unit which has BASE stackability can be combined

with a PALLET handling unit which has TOP stackability. After a combination of

PALLET block types are generated, a block contain BOX handling unit can be combined

with the PALLET block. It is possible to combine a BOX block with other blocks which

contain more than one type of PALLET. This process is similar to the loading process in

warehouses where pallets will be packed into the truck first. Then boxes will be placed

on top or next to pallets if possible to increase vehicle utilisation. Finally if there are

any bags left, loading personnel will normally place these on top of everything else. At

the first iteration, the generated Group block contains only two types of handling unit.

After each iteration, the number of handling unit types of blocks is increased by one.

The generation of Group block continues until a certain number of generated blocks is

reached or no more new blocks can be found. There is a limit to the number of group

blocks that will be set in an experimental set up.

(a) Simple Block (b) Group Block

Figure 5.6: Simple block and Group block
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Algorithm 5.6 Process to combine a Group block and a Simple block

Input: : A set of previously generated blocked,gBLs and a set of simple block, sBL
Output: : A set of generated block, combinedBlock
1: procedure Combine

2: combinedBlock ← {}
3: for all b ∈ gBL do

4: for all s ∈ sBl do

5: nextBL← GenerateNextBlock(b, s)
6: if isValid(nextBl) then

7: Add nextBL to combinedBlock
8: end if

9: aboveBL← GenerateAboveBlock(b, s)
10: if isValid(aboveBL) then

11: Add aboveBL to combinedBlock
12: end if

13: infrontBL← GenerateInfrontBlock(b, s)
14: if isValid(infrontBL) then

15: Add infrontBL to combinedBlock
16: end if

17: end for

18: end for

19: return combinedBlock
20: end procedure
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(a) ABOVE (b) NEXT

(c) INFRONT

Figure 5.7: Group Block Arrangements

5.3.2 Candidate Point

For each iteration, heuristics start by selecting the lowest gap. The original 3BF heuristic

used Extreme Point presentation to represent the gap. In this work, the approach is

adapted to take into account additional constraints. After a block has been placed into

a position, a collection of points are added to present the gap. A block and its placed

position can be denoted as B and P, respectively. The following coordinates will be added

to the candidate point list:

1. Point (P.x, P.y, P.z + B.height)

2. Point (P.x+B.Width, P.y, P.z)

3. Intersection between projection from point (P.x, P.y+B.length, P.z) down the z-axis

and previous by packed block or container.

110



5 Heuristics For Pallet Space Equivalent Measurements

4. Intersection between projection from point (P.x, P.y+B.length, P.z) down the x-

axis and previous by packed block or container.

An example of candidate points are shown in Figure 5.8. In Figure 5.8, point (1) is the

top of the block point, point (2) is the point at the left hand-side of the figure, point

(3) is the bottom point and point (4) is the right most point. It is worth noting that

the number of new candidate points are significantly less than in the original process in

chapter 3. Due to the requirement of the stability constraint, candidate points which

offer no support are avoided.

Figure 5.8: Candidate Points

5.3.3 Selection Criteria

From all valid combinations of blocks and packing positions, different criteria and tie

breakers are used to select a combination to pack. There are three main criteria:

• Max Volume: block with highest volume is selected. If there are multiple blocks

with the same volume then tie breakers are used in the following order:
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– Block with maximum area at the XZ surface

– Block with maximum height

– Block with deepest bottom left most position

– Block with smallest quantity of handling units

• Max Contact: Block with highest contact is selected. Contact area is measured by

the formula ContactArea = ContactAreaWithOtherBlocks∗2+ContactAreaWithContainer

If there are multiple blocks with the same contact area then tie breakers are used

in the following order:

– Block with maximum area at the XZ surface

– Block with maximum height

– Block with deepest bottom left most position

– Block with smallest quantity of handling units

• Max Bottom: the block with the largest bottom (area of XY surface) is selected.

If there are multiple blocks with the same contact area then tie breakers are im-

plemented in the following order:

– Block with maximum height

– Block with deepest bottom left most position

– Block with smallest quantity of handling units

5.4 Experimental

In this section, expriments which have been carried out to evaluate the heuristics are

presented. First, data sets which have been collected and used as a bench mark are

presented in section 5.4.1. The set up of the experiments is outlined in section 5.4.2 and

the experimental results are given in section 5.4.3.
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Data Set BR (Box Type) Estimate PSE Item Type Valid (%) Pallet Type (%) Other Type (%)

TT1 BR1 (03) 07.96 01.76 69 76 24
TT2 BR2 (05) 12.47 04.45 38 67 33
TT3 BR3 (08) 16.06 06.79 36 74 26
TT4 BR4 (10) 18.60 09.38 29 68 32
TT5 BR5 (12) 18.46 11.50 16 61 39
TT6 BR6 (15) 21.83 13.85 23 65 35
TT7 BR7 (20) 26.24 17.27 15 66 34
TT8 BR8 (30) 22.95 22.00 00 68 32

Table 5.1: TT data set properties and 3T’s current method performance overview

5.4.1 Data Set

We have collected 3300 instances from 3T Logistic Ltd’s database and converted these

into a data set called TT. To the best of our knowledge, no research has been conducted

for this problem using real-life data. This real-life data was gathered from various cus-

tomers during a two-week period of warehouse operation. In order to have a comparison

with data sets in the literature, the TT data was separated into different ranges of box

types. The range of box types correspond to the BR data set box types which are split

into the TT data set and into 8 subsets from TT1 to TT8.

Table 5.1 shows the data set properties and corresponding BR data set. The Estimate

PSE column indicates the average estPSE for all instances in each subset. Item Type

column is the average number of handling unit types across all instances. There is a

difference between the TT and BR data set. The number of box types in each BR data

set is the same but the number of handling unit types is within a range in TT dataset.

For example, in the instance of BR1 there are 3 different types of box but for the instance

of TT1 there are between 1 and 3 types of handling units. The Valid column shows the

percentage of current valid calculations using the current 3T method. A calculation is

invalid when the resulting pallet space is smaller than the estimate PSE.

Table 5.2 shows the stackability of the PALLET, BOX or BAG handling units. The

percentage of handling units which have BASE, TOP, SAME and NONE stackability are

reported. It is worth mentioning that NONE stackability handling units are only a small
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Data Set
Pallet Other

Base (%) OnTop (%) Same (%) None (%) Base (%) Top (%) Same (%) None (%)

TT1 38 16 17 37 09 09 09 15
TT2 34 22 22 34 10 14 14 19
TT3 37 20 19 37 13 15 15 11
TT4 33 14 14 34 22 27 27 06
TT5 37 18 18 23 33 37 37 02
TT6 45 25 25 20 28 34 34 01
TT7 46 26 26 19 29 34 34 00
TT8 68 27 27 10 30 32 32 00

Table 5.2: Percentage of TT data set of different handling unit types and stackability

percentage in comparison to the others but they take up more floor space than other

stackable handling units.

Table 5.2, indicates underestimating PSE issue of 3T’s current method. From TT1

to TT10 the percentage of valid calculations using 3T’s current method decreases. This

shows that 3T’s current method does not perform well when there are more handling

unit types. A possible cause is that 3T’s current method will assume everything is either

stackable or non-stackable. This might not be a problem with a low number of handling

unit types. However, there is more likely to be a mixed stackability with a higher number

of handling unit types. It is possible to cause significant problems in operation when the

carrier collects items which are different than expected. e.g. a delay in delivery or a higher

than expected cost. This is especially true when the majority of the items are PALLET

types in comparison to other item types (Table 5.1) and about one third of PALLET

items cannot be stacked together whereas other items have more relaxed stackability.

This reflects the real-life nature of a handling unit when small items of small quantities

are not palletised and they are normally placed in a bag or box to be transported.

5.4.2 Experimental Set Up

The proposed method is implemented in C# programming language (.NET Framework

4.0) and single thread code. This is different to chapter 3 and chapter 4 where the

methods were implemented using Java. The change in language is due to a compatibility
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requirement with 3T’s current system. All experiments were run on a virtual server with

the following specifications:

• Operation System: Windows Server 2008 R2

• CPU Intel Xeon 2.67 Ghz

• RAM 1G

The experimental parameters were set as: xBound = 25, zBound = 30, yBound =

100, standard container length: 13600 mm, maximum generated block number = 10000.

Container standard length was used during block generation to avoid very long blocks

being generated. This is to encourage a more realistic outcome but it is not a constraint

during the packing process.

5.4.3 Experimental Results

Table 5.3 shows the result of the heuristics with the TT data set. Max Volume, Max

Contact and Max Bottom columns show the average utilisation of the corresponding

heuristics for each data set. The Max All column shows the average utilisation with the

highest utilisation from Max Volume, Max Contact and Max Bottom. Only Max Volume,

Only Max Contact and Only Max Bottom columns show the percentage of instances in

which only the corresponding heuristics has the highest utilisation.

From table 5.3, it can be seen that Max Volume outperforms the other two heuristics

especially in data sets with a small number of box types. However, for instances with a

larger number of box types there is not a significant difference between the performance

of Max Volume and Max Contact. By combining the highest utilisation from all the

heuristics, the overall utilisation is increased by nearly 4%. Max Bottom only has the

highest utilisation at 3% for all instances.
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Data Set Estimate PSE Max Volume (%) Max Contact (%) Max Bottom (%) Max All (%)

TT1 07.96 87.24 65.23 61 90
TT2 12.47 72.25 64.21 57 77
TT3 16.06 76.24 70.32 63 76
TT4 18.60 76.32 70.45 61 78
TT5 18.46 67.14 62.67 47 72
TT6 21.83 62.14 66.70 50 71
TT7 26.24 68.15 64.81 53 73
TT8 22.95 60.17 60.12 47 61

AVERAGE 11.46 71.2 65.5 54.8 74.8

Table 5.3: Performance of heuristics and their best combined results with the TT dataset

It is possible to obtain the same result for different heuristics. Table 5.4 shows the

number of instances where only one heuristic has the highest utilisation. Max Volume

also shows the greatest number of instances with the best performance compared to the

other two heuristics. The Max Contact heuristic also performs best in some instances

but not in as many instances as Max Volume. The Max Bottom heuristics has some best

results but was not significant compared to the others. This shows that in order to obtain

Max All results, as presented in Table 5.3, we only need to combine the Max Volume and

Max Contact heuristics. If we can select only one heuristic then Max Volume is likely to

give the best utilisation and only loses about 4% from the highest utilisation.

The average run time for each instance is less than 5 seconds for each heuristic and

in most cases it is significantly less than 5 seconds. With this result, and following

examination by the 3T planning team, the proposed heuristics approach was found to be

suitable for real-life applications. Therefore, we integrated the Max Volume heuristic into

the 3T system and the results provided by 3T have been very encouraging as they show

an increase of around 20% utilisation and the under-estimation issue has been eliminated.

Table 5.5 shows the detailed performance of the Max Volume heuristic. The results of

the Max Volume heuristic are separated into two parts, above and below average, which

are presented in Table 5.5. For each part, data for PALLET and other handling unit

types are presented with the average quantity and average type number. It can be seen

that the performance of the Max Volume heuristic is dependent on the proportion of
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Data Set Only Max Volume Only Max Contact Only Max Bottom

TT1 21 01 01
TT2 43 05 02
TT3 42 09 03
TT4 41 16 05
TT5 51 28 04
TT6 41 35 06
TT7 55 33 03
TT8 54 53 01

AVERAGE 43.5 22.5 03

Table 5.4: Number of instances where only one heuristic has the highest utilisation

Data Set
Utilisation Lower Average Utilisation Above Average

Pallet Quantity Other Quantity Pallet Type Other Type Pallet Quantity Other Quantity Pallet Type Other Type

TT1 03.49 06.24 0.86 0.84 13.71 2.05 01.28 0.13
TT2 10.39 16.37 2.16 1.84 18.67 9.67 03.48 0.52
TT3 12.15 28.98 4.01 2.49 25.51 7.12 05.73 0.64
TT4 14.54 65.60 5.38 3.63 27.35 9.18 07.94 1.06
TT5 14.44 83.38 5.87 5.13 30.67 7.30 11.00 0.81
TT6 14.08 93.21 6.85 6.54 52.44 5.11 12.67 0.89
TT7 24.37 128.42 10.21 6.95 63.40 11.20 14.80 1.80
TT8 28.67 113.67 14.33 6.33 74.52 16.23 17.53 2.45

Table 5.5: Summary of Max Volume performance separated into higher and below aver-
age instances

PALLET to other item types. Instances with low utilisation have a lower quantity of

PALLET than other types of handling unit. It is the opposite to instances with have

more PALLET than other types of handling unit. From the bottom 10% utilisation,

59% of the lowest utilisation has no PALLET items and this is due to the estimate

PSE calculation. The estimate PSE calculation takes into account the PALLET item’s

stackability but not with other item types. This is an over-estimate during the estimate

PSE calculation for BOX and BAG handling unit items. An example of an instance of

low utilisation is one BOX with the same dimensions as a standard pallet and with an

estimate PSE of 0.02 which is significantly less than the actual 1 PSE minimum space

required.
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5.5 Conclusion

In this chapter, a new type of problem which arises from real-life business operations -

Pallet Space Equivalent Measurement (PSE) is defined. To the best of our knowledge

this is a new problem that has not been reported in the literature. The PSE problem is

a variation of the three-dimensional strip packing problem with different utilisation and

addition constraints. The properties of the PSE problem were also taken into account

to design new utilisation measurements for the PSE problem. This offered improved

accuracy in utilisation measurements and allowed for a method of validating the result

of a packing method. Due to certain business requirements, Maximum Contact, Maxi-

mum Volume and Maximum Bottom heuristic approaches were utilised to tackle the PSE

problem. In order to accommodate new constraints and changes in block generation, a

number of possible packing point generation and selection criteria were implemented.

Data sets were collected and created from real life operations for the PSE problem in-

stead of using generated data sets as in chapter 3 and chapter 4. From the experiments,

Maximum Volume and Maximum Contact showed superior results in comparison to the

Maximum Bottom heuristic with a limited amount of computation time. The majority

of the best results could be obtained by combining only Maximum Volume and Max-

imum Contact. However, in contrast to the three-dimensional strip packing problem,

Max Volume had better utilisation compared to Max Contact. The performance of the

heuristic had a strong relationship with the number of PALLET items due to utilisation

measurements considering PALLET handling unit types separately to others. Further

work can be done to continue to improve the utilisation measurement.
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Quality In Multi-Carrier Transport

Landa-Silva et al. (2011) introduced the single-customer multi-carrier problem (SCMC)

with a hybrid heuristics approach (HHLP). In this chapter, the SCMC problem is updated

to reflect recent changes in 3T’s operations. Different components of HHLP are investi-

gated and modifications to adapt to the new requirements are proposed. The chapter is

structured as follows: in section 6.1, new operational requirements to the multi-carrier

planning problem presented in Landa-Silva et al. (2011) are addressed. In section 6.2,

different clustering algorithms are selected as an alternative for the original DBSCAN

in HHLP and different cluster performances in different scenarios are compared. From

3T’s operational feedback, a new load building issue was identified resulting from inef-

ficient planning. Details of the issue are introduced in section 6.3. In section 6.4, two

approaches are proposed in order to resolve the inefficient planning using evaluation func-

tions and local search operators. Experimentation and evaluation of different clustering

is presented in section 6.5 and experimentation and evaluation of modifications to resolve

the inefficient planning are given in section 6.6.

6.1 Single-Customer Multi-carrier Planning Problem

Based on the work of Landa-Silva et al. (2011), 3T has implemented HHLP into its French

operation. With significant success in France, 3T’s strategy is to extend implementation
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Shipment Number FLT LTL Groupage Straight Distance Straight Driving Time Between Distance Between Driving Time Booking Windows

LUK 84 1 15 67 153 170 187 200 380
LSP 48 1 19 29 363 348 314 320 250
LFR 12 0 1 11 233 235 251 260 120

Landa-Silva et al. (2011) (OLUK) 74 8 18 48 148 167 173 197 445

Table 6.1: Shipment properties at United Kingdom, Spain and France

of HHLP to the United Kingdom and Spain. However, there are significant differences in

the geographical nature and shipment profiles across these different countries. Table 6.1

shows a summary of shipment properties for the customer sites in the United Kingdom

(LUK), Spain (LSP) and France (LFR), and also the original UK data properties from

Landa-Silva et al. (2011)(OLUK). The UK site has the highest number of shipments

and the French site has the lowest number of shipments. Business profiles change, as

denomonstrated by the difference between the original UK data from Landa-Silva et al.

(2011) and the current UK profile. The number of full truck loads (FTL) in the UK site

is significantly lower in the original UK data. FTL shipments are assigned a dedicated

vehicle with no other shipments. Due to this arrangement, the FTL plan has no deliv-

ery conflicts. Therefore, the current UK data has more possible combinations between

shipments and increases the solution space. Another factor is driving distance, driving

distance straight from the source to the destination and between each shipment is similar

for both the current UK and original UK data. However, booking windows are more re-

stricted for the current UK data. This reflects current trends in the business transition:

customer bases in the current and original UK data are similar, but customer order size

has become smaller and more frequent and more "on demand". This is a reflection of

the current economic situation where companies want to reduce their operational costs,

making more demands on manufacturers. This places a greater constraint on the current

UK requirement compared to the original scenario.

Figures 6.1, 6.2 and 6.3 show sample distributions for one day at three different cus-

tomer sites in the United Kingdom (LUK), Spain (LSP) and France (LFR). As shown

in Table 6.1, shipment distributions across different sites have different properties. LUK

and LSP shipment distributions are generally around big cities: Manchester and London

120



6 Clustering Effect And Planning Quality In Multi-Carrier Transport

Figure 6.1: LSP shipment distribution

in the UK; Barcelona and Madrid in Spain. For France, due to the small number of

shipments, it is more difficult to show this pattern. It is worth mentioning the different

positions of warehouses which act as the shipment’s source: the UK warehouse is located

near the centre of the UK whereas France’s and Spain’s warehouses are located to the

side and near the country’s border, respectively. This causes some issues when planning

in Spain and France. For example, due to limited delivery volume and longer driving

time to other regions of Spain, it is harder to maximise the carrier’s utilisation and driver

time when planning deliverys for the West and North West of Spain.
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Figure 6.2: LUK shipment distribution

Figure 6.3: LFR shipment distribution
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6.2 Evaluation of Different Clustering Algorithms

As mentioned in Section 6.1, shipment distributions are normally close to and concen-

trated near big cities and a large cluster is likely to be created around a big city. Cluster

algorithms (DBSM) adapted from the original DBSCAN algorithm (Ester et al. 1996)

has been used by Landa-Silva et al. (2011) where larger clusters are partitioned into

smaller clusters by reducing the parameter distance of DBSCAN (ε) between shipments.

It was a very effective approach for the clustering of destinations of shipments for OLUK

and produced suitable transport plans as described in Landa-Silva et al. (2011). How-

ever, during implementation in 3T’s operation, two issues were identified. The first issue

happens when big clusters are partitioned into smaller clusters especially if a cluster

exists in a city area. Cluster by DBSM created an unbalanced plan where some routes

were concentrated within city centres and other routes went around the city. Figure 6.4a

shows a sample of a large cluster that has been separated using DBSM. Initially, all the

delivery points belong to a single large cluster, DBSM then reduced the distance limit

between shipments and split larger clusters into smaller sub-clusters. It can be observed

that the ring road of the city also acts as the boundary for the inner cluster. The closer

the shipment to the city centre, the shorter the distance between shipments. Hence,

DBSM tends to group inner city shipments into a cluster and groups outside shipments

into other clusters. During the initial load building process, outer and inner shipments

will be grouped into separate plans. This particular type of arrangement causes con-

cern for carrier operations: inner city plans normally require significantly longer times

to complete due to the nature of the traffic. It is also not possible to measure actual

driving time in a city not only because it is a longer distance but also because changes

can happen rapidly and more frequently. In some cases, it is much more difficult to travel

between deliveries and to return from the city and back to the depot which is normally

located outside the city and within working hours. Furthermore, using DBSM algorithms

to split big clusters, we cannot identify the number of clusters that will be created. For
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(a) Cluster boundary generated by DBSM (b) Cluster boundary generated by DBSKM

Figure 6.4: Different clustering results from DBSM and DBSKM

a larger cluster, with a known number of shipments inside the cluster, a number of sub-

clusters can normally be pre-defined. For example, a human planner will split a city into

regions with a set number of drops per region. Figure 6.5, shows typical examples in

London (UK) and Barcelona (Spain). This also highlights one difference between human

planners and automated planning. Human planners normally use straight line distance

as a guid when creating a plan. Even the most experienced human planner will only

have knowledge on actual driving distance for a limited area. In some instances, plans

created by human planners can be infeasible when driving and straight line distances

are significantly different. Figure 6.6 demonstrates an example of the difference between

driving and straight line distance.
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(a) London ring road (b) Barcelona ring road

Figure 6.5: A sample of city ring roads

Figure 6.6: Difference between straight line and actual driving distance
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To overcome this issue, a combination of DBSCAN and K-Mean is proposed. The

idea is to utilise the features of K-Mean to create clusters which have a balance between

inner and outer city shipments as shown in Figure 6.4b. Hence, plans are created with

delivery occuring both outside and inside the city. Because all delivery points are already

relatively close together and in a large cluster, it is possible to identify the number of

clusters required as a parameter for K-Mean from the number of drops allowed in each

vehicle. In addition, we want to explore different options of clustering algorithms to find

out if there is already a better clustering algorithm which can be used for this problem.

In general, there is no one clustering solution for all problem domains. Different problem

clustering solutions are designed based on different factors in criteria, requirements or

assumptions etc. Wide ranging surveys have been published to review different types of

clustering advantages and disadvantages. Comprehensive clustering reviews are given by

Jain et al. (1999) and Xu & Wunsch (2005). Clustering algorithms can be classified into

different categories: partition method, hierarchical method, density-based method, grid-

based method and model-based method (Kotsiantis & Pintelas 2004). A combination

of clustering algorithms is also a suitable approach. Strehl & Ghosh (2003) proposed

different ways of combining different clustering techniques. Based on these surveys, the

following cluster algorithm approaches were selected:

• Original DBSCAN (DBSOR): the original implementation of DBSCAN introduced

by Ester et al. (1996).

• Multiple DBSCAN (DBSM): the adapted DBSCAN has been used by Landa-Silva

et al. (2011).

• SLINK (SLINK): the original implementation introduced by Sibson (1973).

• Expectation–maximization (EM): the implementation was introduced by Dempster

et al. (1977).

• K-mean (KMEAN): the original implementation was introduced by Lloyd (1982).
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• DBSCAN + K-mean (DBSKM): the proposed combination of DBSCAN and K-

Mean.

6.3 Inefficient Measurement

Due to the complexity of real-life operations, it is difficult to measure the quality of the

plans created. Different criteria have been selected to measure quality. Landa-Silva et al.

(2011) selected vehicle utilisation, delivery violation, cost, driving distance and backward

distance. Backward mileage is measured to avoid subsequent delivery points which are

closer to the source than previous delivery points. A sample of a plan with backward

mileage is shown in Figure 6.7. Direct distance from the last drop (shipment 62543) is

closer than the direct distance to that of the previous drop (shipment 624980). Given

that there is no time violation, reduced backward mileage helps create delivery plans that

are suitable for carrier preference and cost structure. In general, carrier cost structure is

normally in proportion to the distance of the furthest delivery. During 3T’s operation,

it has been identified that some plans created by an automated planning process have

been rejected by the carrier. Upon observation, two types of plan were classified that

were rejected and not captured by the original criteria. The first type of rejected plan is

shown in Figure 6.8. The last drop (shipment 630039) has the longest distance from the

source compared to the other previous shipments. This plan was rejected by the carrier

due to the very long distance from the Manchester region with only one delivery to the

Cambridge region which had four deliveries. The other type of rejected plan is shown

in Figure 6.9. This happens when a shipment’s collection is inside the same cluster or

region as the shipment’s destination.
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Figure 6.7: A sample of delivery plan contain backward milage
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Figure 6.8: Carrier rejected plan as route going through regions in different direction
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Figure 6.9: Carrier rejected plan when shipment’s souce is in the same region with its
destination
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In order to detect this problem, we propose a new factor to measure plan quality -
inefficient mileage. The formula used for inefficient mileage is defined in Figure 6.10.
The main idea for calculating inefficient mileage is to compare the current planned route
to a direct route for each of the delivery points. For a perfect plan, a route going though
all deliveries to the final delivery will have zero inefficient mileage. In Figure 6.8, the
driving route to the last four deliveries is significantly longer compared to the direct
distance from the source to the last four deliveries, therefore inefficient mileage will be
included for each of the last four drops. Another example is given in Figure 6.9, where the
last two deliveries will result in inefficient mileage. Inefficient mileage evaluation depends
on the value of the parameters α and β. Smaller values of α encourage a straighter route
to the current delivery point from the previous delivery point. Smaller values of β will
help straighten the overall route.

RI(l) =

{

true RIM(l)
R(l,dn)

> β

false otherwise
(6.1)

RIM(l) =
n−1
∑

i=1

I(l, di+1) ∗ (R(l, d)−DIR(di)) (6.2)

I(l, d) =

{

1 R(l,d)
DIR(d) > α

0 otherwise
(6.3)

where

• l is the plan to measure

• d is the delivery point of the plan

• n is the number of drops in the load

• DIR is the direct distance from source to destination of drop d

• R is the distance of the load - l from source though each delivery point up to
delivery point d

• α and β are parameter thresholds and are specified in the experiment set up.

• RI functions to identify if plan-l is an inefficient plan

• RIM is a function to measure the inefficient mileage of plan - l

• I is a function to measure if a delivery point - d of plan - l creates an inefficient
route.

Figure 6.10: Inefficient Plan Formula
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6.4 Resolve Inefficient Plan

There are two approaches which have been proposed to resolve the inefficient plan issue.

In the first approach, inefficient milages measurements within the evaluation function are

incorporated and this is denoted as EVALFUNC. After an initial solution is created, we

make changes to the solution until there is no conflict left. The idea is that an inefficient

plan is likely to create conflict in delivery time because of the longer drive. Because of

commercial sensitivity, it is not possible to report the details of the evaluation function,

however, a simplified version of the evaluation function is shown in Equation 6.4. None

of the other factors are weighted more than the inefficient score. The inefficient score is

calculated using Equation 6.5, RIM and R are defined in section 6.3.

Eval(p) = 150 ∗ ConflictScore+ 100 ∗ InefficientScore+OtherScore (6.4)

InefficientScore =
RIM(l)

R(l, dn)
(6.5)

The second approach to resolve the inefficient plan issue is to use selection heuristics.

This approach is denoted as HEURISTICS. There are three components for each heuris-

tic: target election, candidate selection and operator. Each heuristic starts by select

target and candidate shipments. After selection, heuristics apply operators with select

target and candidates shipment in order to generate new solution. Inefficient shipment

is measured by the RIM function as described in section 6.3. Two target selections, two

operators and three candidate selections were chosen:

Target selections:

• Most inefficient shipment: shipments which have the highest inefficient mileage are

selected

• Most conflicted shipment: shipments which have the highest conflict time are se-

lected. Conflict time is measured by the difference between arrival time and re-
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quired delivery time of shipment.

Operators:

• Reassign: move the target shipment to all possible positions in the candidate plan.

The best position will be selected.

• Swap: swap the target shipment to all possible shipments in the candidate plan.

The best pair will be selected.

Candidate selection:

• Same cluster: plans which contain at least one shipment from the same cluster with

the target shipment are selected.

• Different cluster: plan which contain all shipments from different cluster with the

target shipment are selected.

There are a number of differences to operator in Landa-Silva et al. (2011), candidate

selection returns plans instead of shipments and all possible positions in the candidate

plan are evaluated. Also different cluster candidate functions have no distance limit.

New plan candidate functions are only applicable with the Reassign operator. It is

designed to targets delivery points with restrictions and is normally for delivery windows

outside of working hours. If a delivery plan is created and combined with shipments in

both normal working hours and outside working hours, then the driver working hours

will be long and a large proportion of the waiting time will result in additional cost.

This will reduce the quality of the plan and is also likely to be rejected by the carrier.

New heuristics are included to improve the planning process as in Algorithm 6.1. The

original improved load building process given in Landa-Silva et al. (2011) is terminated

when there are no delivery window conflicts remaining. Improved plans process and

prioritise delivery window conflicts before attempts are made to improve the solution by

eliminating inefficient plans. A combination of heuristics, in order to resolve delivery

133



6 Clustering Effect And Planning Quality In Multi-Carrier Transport

window conflicts and inefficient plans, are shown in Algorithms 6.2 and 6.3. It is possible

when resolving delivery window conflict that inefficient plans can also be resolved at

the same time. However, this depends on operational requirements and inefficient plans

can be accepted as a valid solution. Inefficient plans can also be considered as a soft

constraint and in real life operations an inefficient plan can be accepted. For example, a

plan can be classified as an inefficient plan but it will be more cost effective to pay the

carrier additional costs than to create a separate plan for a single shipment.

Algorithm 6.1 Improve plan process after initial solution to resolve constraint violation
1: procedure Improve plan process

2: i← 0
3: while Has Conflict || i > MaxInteration do

4: if IsBookingTimeWindowsConflict then

5: Resolve Delivery Windows Conflict
6: else

7: Resolve Inefficient Plan
8: end if

9: i←i +1
10: end while

11: end procedure

Algorithm 6.2 Resolve delivery windows conflict process
1: procedure Resolve Delivery Windows Conflict

2: if !CanImproveByReassignMostConflictToSameCluster then

3: else if !CanImproveBySwapMostConflictToSameCluster then

4: else if !CanImproveByReassignMostConflictToDifferentCluster then

5: else if !CanImproveBySwapMostConflictToDifferentCluster then

6: else if !CanImproveByReassignToNewPlan then

7: end if

8: end procedure
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Algorithm 6.3 Resolve inefficient plan process
1: procedure Resolve Inefficient

2: if !CanImproveByReassignMostInefficientToSameCluster then

3: else if !CanImproveBySwapMostInefficientToSameCluster then

4: else if !CanImproveByReassignMostInefficientToDifferentCluster then

5: else if !CanImproveBySwapMostInefficientToDifferentCluster then

6: end if

7: end procedure

6.5 Evaluation of Clustering Algorithms Experiments

6.5.1 Experimental Set Up

Data sets were collected from the live database of 3T for three different warehouses in

three different countries: Featherstone - United Kingdom (LUK), Pravia - Spain (LSP)

and Pontivy - France (LFR). There were 2 experimental set ups which were carried out

with different datasets: standard and relax. Standard data is the original data from 3T’s

database used in Landa-Silva et al. (2011). Relax data set contain the same data as

Standard dataset however delivery point’s booking windows is increased to full working

hours (09:00 - 16:30). For each set up, two results were reported: the first result with

an initial solution only and the second result including improvement processes from the

initial solution.

Parameters were set as follows: α = 1.5, β = 0.5 and maximum interation is 200. Each

clustering algorithm was tested with at least 4 sets of parameters and the best results

are reported. For each set up, shipment data of 15 days were randomly selected and the

average result reported.

6.5.2 Experimental Results

6.5.2.1 Standard Data

Results of initialisation for standard tests are shown in Tables 6.2, 6.3 and 6.4. At

LUK, which has the highest of number of shipments, the DBSCAN variation clustering
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Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 8.7 93.8 12.75 270 638 3515 6.2
DBSM 10.7 83.3 6.96 166 387 3802 2.3
SLINK 11.3 87.7 8.67 216 411 4109 3.9

KMEAN 11.2 91.1 12.17 239 461 4345 5.3
EM 10.3 84.4 7.50 199 371 3889 3.0

DBSKM 10.5 85.5 6.42 160 392 3647 1.8

Table 6.2: Results of different clustering algorithms in LUK at initial solutions using
standard data

Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 13.3 92.7 9.0 580 617 4094 3.2
DBSM 14.0 84.6 8.5 484 637 3315 0.5
SLINK 15.2 85.4 6.2 455 405 2736 0.3

KMEAN 13.8 92.6 9.4 526 474 4031 2.8
EM 13.6 92.4 3.5 535 481 4732 2.0

DBSKM 13.8 84.8 8.0 493 623 3647 0.4

Table 6.3: Results of different clustering algorithms in LPS at initial solutions using stan-
dard data

algorithm outperforms the other clustering algorithms. DBSKM has the lowest cost,

violation and working time and DBSOR has the highest vehicle utilisation. However, in

LSP and LFR, other types of clustering techniques give better results. In LSP, SLINK

has the lowest driving distance, driving time, cost and inefficient plan. EM produces

plans with the lowest violation. Similar to LUK, DBSOR has the lowest load build

with the highest utilisation however more delivery time violations and inefficient plans

are generated. There is no significant difference in the performances of DBSOR, DBSM

and DBSKM. This is due to the distribution and quantity of shipments and only small

clusters are formed. In LFR, no plan is created for all cluster algorithms. This is because

the load building heuristic by Landa-Silva et al. (2011) only creates plans when there are

FTL or LTL. However, as shown in Table 6.1, there are fewer FTL and LTL per day due

to changes in business demands.

Tables 6.5, 6.6 and 6.7 summarise the final results of the optimisation with standard

data. The improve plan process reduced the number of conflicts therefore there was

no delivery window violation in the final result. The main trend from the initial to

the final results is a cost increase. In order to resolve violation, shipments with very

strict booking slots (i.e. 08:30 to 09:00) have to be delivered separately and results in a
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Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 0.4 28.6 1.5 384 604 330 0.4
DBSM 0.4 28.6 1.5 384 604 330 0.4
SLINK 0.8 29.6 0.8 187 235 302 0.0

KMEAN 0.7 38.4 1.7 278 353 387 0.3
EM 0.7 41.4 2 217 330 330 0.0

DBSKM 0.4 28.6 1.5 384 604 330 0.4

Table 6.4: Results of different clustering algorithms in LFR at initial solutions using
standard data

significant cost increase. In LUK, the result from DBSKM has the lowest cost and the

lowest cost increment from the initial state. From Table 6.2, DBSKM, DBSM and EM

have a low delivery time violation. However, improved plan processes work better with

the DBSKM cluster therefore the cost increase in DBSKM is the smallest. DBSOR has

the highest vehicle utilisation and cost in the initial state, but it also has the highest

delivery time violation. The final result using DBSOR has the highest cost with lower

vehicle utilisation. This indicates less violation from the initial solution and is likely

to give a better cost in the final result. The quality of initial load building can also

be seen when comparing changes in total loads and plan mileages. From Tables 6.2 to

6.5, total loads and plan mileages increase due to resolving violation, except for DBSOR

where the number of loads increased but the plan mileage decreased. The clusters using

DBSOR are larger therefore there are fewer numbers of clusters for reassignment or to

swap operators. In this case, conflict shipments are assigned to a new plan. When

considering an inefficient plan, DBSKM and DBSM have the best results compared to

the other algorithms. Since a business focussed solution is required, total cost is the

most important factor in the final result. DBSKM gives the best result with the lowest

cost and it also has the lowest inefficient plan which is more acceptable for the human

planner.

In LSP, a similar correlation occurs between initial delivery time violation and total

cost. With the lowest violation in the initial solution, EM produces plans with the

lowest cost after resolved delivery time violation. SLINK, KMEAN and EM have a high

utilisation which is different from LUK. LSP has fewer shipments than LUK therefore
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Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 13.1 79.5 0 257 475 4758 7.5
DBSM 13.9 73.1 0 194 586 4542 4.8
SLINK 12.7 80.5 0 228 526 4635 5.7

KMEAN 13.7 79.6 0 272 536 4726 7.9
EM 12.3 84.4 0 299 571 4389 4.0

DBSKM 12.2 80.7 0 198 517 3904 3.9

Table 6.5: Results of different clustering algorithms in LUK at final solution using stan-
dard data

it is easier to be grouped in KMEAN and EM. However, the performance of KMEAN

and EM are dependent on parameter selection. If the reported result is an average result

with different parameters then KMEAN and EM are no better than the others. DBSOR,

DBSM and DBSKM have similar results because of the shipment distribution, as seen in

Figure 6.1. There is only a high density of shipments around the Barcelona region and

overall fewer shipments compared to LUK. Therefore there is no significant difference

between DBSOR, DBSKM and DBSM. For LSP, the number of inefficient plans is very

low across the different approaches. This is due to the distance from the source of

shipment to the destination which is much longer than in LUK. Therefore carriers can

only make a smaller number of drops. The inefficient plan measurement (Figure 6.10)

gives the first drop direction as the main direction. If there are a low number of drops

then it is not easy to identify if the route is acceptable unless there is a significant change

in the direction of the route. However, because of the geographic position of LSP which

is to one side of Spain, it is very unlikely to have loads going via different directions.

In LFR, the final result is very similar to the initial state as only a very small number of

plans are created with small conflicts. With a small number of shipments and shipments

which are far apart from each other, new plans are normally created to resolve the conflict.

From discussions with human planners, the current load building method is not suitable

for LFR for a data set with a small number of shipments.
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Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 16.6 76.8 0 552 694 5663 3.7
DBSM 16.4 77.5 0 418 552 5813 1.8
SLINK 15.8 78.7 0 520 674 5242 2.4

KMEAN 16.4 77.9 0 547 743 5549 4.2
EM 15.3 79.1 0 564 684 5131 3.7

DBSKM 16.1 77.0 0 448 652 5341 1.4

Table 6.6: Results of different clustering algorithms in LSP at final solution using stan-
dard data

Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 0.4 15.6 0 108 364 350 0.0

DBSM 0.4 12.6 0 78 201 370 0.0

SLINK 0.8 15.7 0 187 365 332 0.2
KMEAN 0.7 11.0 0 278 505 397 0.1

EM 0.7 13.4 0 97 411 335 0.1
DBSKM 0.4 11.6 0 61 215 346 0.0

Table 6.7: Results of different clustering algorithms in LFR at final solution using stan-
dard data

6.5.2.2 Relax Data

Table 6.8, 6.9 and 6.10 show the results of the same set of data with extended delivery

windows. Standard experiments show a correlation between delivery time violation and

final cost. The less conflict in the initial state, the closer the initial cost is to the final

cost. This experiment investigated the effect of delivery windows on cost and the selection

of clustering algorithms. This is critical to business operation as delivery windows are

contracted with the customer. However, if the effect of extended delivery windows is

significant for a business then a decision can be made to re-negotiate the contract with

the customer. Compared to previous experiments, changes occur in all three sites. Firstly,

delivery time violation is decreased, as predicted. Secondly, vehicle utilisation is increased

because larger sub-points are formed during sub-point generation. More about sub-point

generation can be found in Landa-Silva et al. (2011). Thirdly, increased delivery windows

reduce time constraints and allow a shipment in one region to be treated as a single drop

in the optimisation process. The distance of a plan, working time and inefficient plan

are decreased or at least similar compared to those in the standard experiment. This

is partly because of sub-point generation improvement. Moreover, shipments cannot be
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Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 10.9 94.1 3.83 269 472 4579 5.9
DBSM 11.2 84.1 0.7 169 387 3934 2.8
SLINK 11.4 88.8 3.3 224 404 4327 4.2

KMEAN 11.3 92.7 2.7 246 460 4425 6.0
EM 11.5 95.6 2.3 269 387 4059 5.2

DBSKM 11.1 85.8 0.2 180 371 3849 2.3

Table 6.8: Results of different clustering algorithms in LUK at initial solutions using relax
windows data

Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 13.8 91.5 3.1 586 692 4932 3.1
DBSM 12.8 85.8 0.3 391 465 4235 0.4

SLINK 15.1 79.6 0.2 452 499 3630 0.4

KMEAN 13.7 90.6 1.3 528 640 5056 2.3
EM 14.0 89.3 1.3 522 628 5432 2.0

DBSKM 12.9 87.0 0.4 402 469 4236 0.5

Table 6.9: Results of different clustering algorithms in LSP at initial solutions using relax
windows data

grouped in sub-points but can be delivered with shipments in the same region.

Compared to the initial solution of the standard data set, DBSOR still has the lowest

number of loads created with the highest vehicle utilisation. DBSKM has the lowest

violation in the initial state. Inefficient plan in the initial state has a slight increase

because of relaxed booking windows. This allows a carrier to have more time to deliver

to more destinations. It is important to note that the result for initial DBSKM has a

lower cost than the final state of the standard booking windows with a lower delivery

time violation. Feedback from business planners suggests the results of the DBSKM

initial state can be used as one possible solution without any further modification. One

factor not shown in the table is run time where the average run time of the optimisation

output to the initial state is 5 minutes and the time for full optimisation is 10 minutes.

Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 0.4 29.4 0 393 604 330 0.4
DBSM 0.4 29.4 0 393 604 330 0.4
SLINK 0.8 30.2 0 297 345 302 0.0

KMEAN 0.7 38.4 0 297 367 387 0.3
EM 0.7 41.4 0 217 330 330 0.0

DBSKM 0.4 29.4 0 393 604 330 0.4

Table 6.10: Results of different clustering algorithms in LFR at initial solutions using
relax windows data
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Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 11.4 90.5 0 271 478 4907 6.8
DBSM 10.9 84.1 0 173 401 4332 2.9
SLINK 11.7 86.8 0 231 419 4327 4.5

KMEAN 12.3 86.1 0 239 434 4425 6.7
EM 12.2 92.2 0 188 365 4059 5.5

DBSKM 10.9 85.5 0 161 384 3787 2.6

Table 6.11: Results of different clustering algorithms in LUK at final solution using relax
windows data

Cluster Algorithms Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

DBSOR 14.8 85.4 0 586 573 5877 3.1
DBSM 12.8 85.8 0 391 392 4924 0.4

SLINK 15.1 79.5 0 452 453 4505 0.4

KMEAN 14.3 86.2 0 528 542 4689 3.0
EM 14.7 85.2 0 522 527 4703 2.3

DBSKM 13.0 87.0 0 402 402 4832 0.5

Table 6.12: Results of different clustering algorithms in LSP at final solution using relax
windows data

The majority of the run time is spent in distance query time between all delivery points

and pricing from different carriers. However, it is important in business to have a balance

between the solution quality and an acceptable run time. For a business with a known

order then run time is not a critical factor, but in particular logistic models this is not

the case. For both LSP and LFR, SLINK gives the lowest costs with EM and KMEAN

having similar results. At LFR when the booking time window is extended, there is no

conflict at the initial state.

6.6 Resolve Inefficient Plan Experiment

6.6.1 Experimental Set Up

Similar to the experiment of the clustering performance, there are 2 experimental set ups:

Standard data and Relax. The data set was collected from 3T’s live database for the

United Kingdom (LUK). For each set up, evaluation integration and inefficient heuristic

approaches were evaluated. Only the final results are reported because the initial states

of the two approaches were identical. The clustering algorithm DBSKM was selected for
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this experiment based on its performance from section 6.5.2. The maximum iteration for

each run was set to 200.

6.6.2 Experimental Results

Table 6.13 shows the results for evaluation integration and combination heuristics for

the standard set of data. The evaluation function approach does have an postive effect

on reducing the number of inefficient plans when compared with the original improve

plan process. Combine heuristics approach has the best performance in creating efficient

plans. It has a slight increase in cost in both evaluation and the heuristic approach.

However, the effect of inefficient plan reduction has significant business impact than cost

increase. With the relax data, fewer plans are created because shipments can be grouped

together to increase vehicle utilisation. The evaluation function approach generates more

inefficient plans than the heuristic approach. Relax windows gives more options to load

vehicles. This creates longer routes and a higher chance of inefficient plans. However,

the evaluation function does not have the capability to swap or reassign shipments.

The heuristic approach not only takes advantage of the opportunity to maintain vehicle

utilisation but also reduces the number of inefficient plans. After all experiments, the

output was demonstrated to 3T planners to evaluate the practicality of the solution.

By introducing inefficient measure and combine DBSCAN+KMEAN clustering, the final

result is feasible and the acceptances are significant improved. The DBSCAN+KMEAN

combination is now the preferred clustering algorithm. It is also important to point

out that without taking into account any knowledge of a carrier’s costing structure, the

proposed planning process can produce plans with no delivery window conflicts and near-

zero inefficient plans at a lower cost. Inefficient plans were also investigated and identified

as normally having a higher cost compared to the other plans. This shows that costings

are dependent on driving mileage and fuel price. A transport plan with a straight route

is likely to have a lower carrier cost.
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Approach Total Loads Vehicle Fill Delivery Time Violation Plan Mileage Working Time Total Cost Inefficient Plan

EVALFUNC 14.5 77.8 0 155 450 3218 1.3
HEURISTICS 14.5 77.9 0 149 423 3229 0.8

EVALFUNC (Relax Windows) 12.4 88.5 0 175 418 3003 2.0
HEURISTICS (Relax Windows) 12.9 85.1 0 164 394 3106 0.3

Table 6.13: LUK - Final Results - Resolve Inefficient Plan

6.7 Conclusion

In this chapter, the Single-Customer Multi-Carrier planning problem was updated to

include a business requirement. Different clustering algorithms and their performance

and compatibility with current HHLP approaches in different scenarios were investigated.

Inefficient planning issues from the application of HHLP in a business were identified.

A formula to identify inefficient plans was designed as well as different approaches to

eliminate inefficient plans. From the experiments, the density based clustering algorithms

DBSCAN and its variations were found to be suitable with a large number of shipments

cases(LUK, LSP). However, distribution based (EM), centroid based (KMEAN) and

connectivity based (SLINK) clustering were more suitable with a smaller number of

shipments cases. With standard data, the original DBSCAN clustering algorithm gave

the best utilisation and lowest cost. However this led to creation of a large number

of inefficient plans and affected the feasibility of transforming the automated plan into

actual delivery plans. DBSKM offered a better carrier plan with only a small increase in

cost.

When the data set’s constraint was relaxed, DBSKM reacted positively and its perfor-

mance significantly improved with the lowest cost. A gap was also identified in the cur-

rent method where data containing a large number of small shipments resulted in HHLP

becoming ineffective. Two approaches to eliminate inefficient plans were proposed: inte-

grated into evaluation function and heuristic specifically targeting the issue plan. The

heuristic approach was more efficient in resolving the inefficient plans compared to the

integrated evaluation function. The heuristic approach also offered an excellent effect on

making the delivery plan more feasible leading to a lower cost of delivery. This reflects

143



6 Clustering Effect And Planning Quality In Multi-Carrier Transport

a relationship between the carrier cost and the efficiency of the plan.
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7.1 Conclusions

As computational power has become more accessible, the demand for automated opti-

misation in transportation logistics has increased significantly. One of the most common

transportation logistic optimisation problems is the maximisation of vehicle utilisation.

Therefore, three-dimensional cutting and packing problems have received increased at-

tention in recent years as they arise when seeking to optimise vehicle utilisation. When

three-dimensional cutting and packing problems are compared to one- or two-dimensional

packing problems, a number of areas which require improvement can be identified.

A range of algorithmic methods and frameworks have been developed for different

classes of three-dimensional strip packing problems under different constraints. In the

research presented in this PhD thesis, modifications to the 3BF framework were proposed

and then extended with a “look-ahead” approach. Firstly, block generation processes

(Single Mode and Mix Mode) were proposed in order to combine suitable boxes and create

larger blocks which were suitable for a best-fit methodology. Secondly, a procedure of

position re-allocation was presented, to reduce potential space lost. Thirdly, an overhead

estimation approach was implemented with a modified best-fit heuristic (OH-3BFBL).

The OH-3BFBL heuristic showed an improved performance, with stronger heteroge-

neous instances, when compared to the performance shown in standard data sets. In-

creasing the number of box types improved the result of Single Mode, however, Mix

Mode still had a better average utilisation across all instances. For instances containing
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a large quantity of each box type, OH-3BFBL demonstrated a significant improvement

compared to the best known approaches with the same computational run time. To im-

prove the performance of OH-3BFBL, recursive block generation and improved processes

for candidate point generation were implemented in OH-3BFBLEX. This modification

allowed OH-3BFBLEX to explore more possible packing positions and therefore provide

enhanced utilisation in strong heterogeneous cases. However, a negative impact was

observed in weak heterogeneous cases due to ambiguous blocks and their positions.

Following our initial research into 3D-SPP, the 3D-SPP problem with a stability con-

straint was considered next. There are a number of different criteria available for stability

constraints and the fully supported stability was selected for this research. Adjustments

to the block generation process were made in order to maintain the stability constraint.

An adapted best-fit methodology and an additional best-support heuristic were consid-

ered and implemented. The performance of previous 3BF heuristics and best-support

heuristics with stability requirements were evaluated. From initial experiments, Maxi-

mum Contact criterion was able to produce a good result with best-fit or best-support

heuristics. Maximum Contact was selected to be the main criterion to select blocks and

combine with overhead estimation (OH-3BFMC). The OH-3BFMC approach showed an

improved result in stronger heterogeneous instances and gave a best overall result when

compared to best known single thread approaches. When compared to multi-threaded

implementation, OH-3BFMC still resulted in higher utilisation for instances with the

largest number of box types and the average performance was not far off the best known

result.

Following the collaboration with 3T Logistics Ltd, this research was extended to a real

life Pallet Space Equivalent problem (PSE) as a variation of the 3D-SPP. To the best of

our knowledge, no previous work has been carried out for the 3D-SPP using data from

real-world cases and live operations. With support from 3T, the operational packing

process and its relationship with 3T’s businesses requirements was observed. From that
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observation, the PSE problem and utilisation evaluation was defined. The PSE problem

models packing of an order with a combination of PALLET, BOX or BAG items. Each

item has rotation, quantity and a stackability constraint and all items need to be placed.

However, in constrast to the utilisation in 3D-SPP using container length, the utilisation

in the PSE problem is only concerned with the floor space required for all items to be

packed. Due to the stability and stackability constraint, a new method to evaluate PSE

utilisation was proposed where the stackability of pallets was considered to estimate the

optimum floor space required. New ways to evaluate utilisation helped to provide a

better picture of the performances of the packing methods and was critical for deciding

which method would be good or suitable enough for live operations. A range of heuristics

were adapted from 3D-SPP heuristics and evaluated for the PSE problem. Maximum

Volume and Maximum Contact heuristics gave the best results across all instances. This

is a similar trend compared to the work with the 3D-SPP problem where the best-fit

heuristic was more likely to produce good results compared to best-support heuristics.

The experiment also showed a correlation between the proportion of pallet item type and

utilisation. The utilisation evaluation was more effective when there were more pallet

items.

Finally, 4PL transport planning with new operational requirements was studied. A

single customer multi-carrier planning problem was re-visited and the problem descrip-

tion was updated to reflect new business requirements. One important component of

the current solution method is clustering. DBSCAN clustering algorithms were adapted

and gave good initial solutions. Different clustering algorithms from the literature were

reviewed and a hybrid of clustering techniques was proposed. Experiments indicated that

for different instances the clustering algorithm selection can affect the planning result.

Advantages and disadvantages of different clustering algorithms for different customer

scenarios were investigated and analysed. For instance, with high number of shipments,

density-based clustering algorithms perform better. Centroid based-algorithms are more
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suitable for instances with a small number of shipments across a larger area. With large

numbers of shipments, DBSOR normally offered good vehicle utilisation but it also gave

the highest number of inefficient plans. DBSKM offered a lower vehicle utilisation and

there were fewer inefficient plans created so more feasible delivery plans were achieved.

One of the main constraints of the planning problem is that delivery windows have to be

met. The effect of extending small delivery windows was investigated and experiments

showed that a more flexible delivery window has a positive effect in reducing transport

costs. This finding offered critical information for 3T and its customers. The customer

can then identify potential savings in negotiation with its customer delivery windows.

After obtaining feedback from what happens in live operations, a new attribute of plan

measurement was introduced - inefficient plan measurement and local search operators

were used to eliminate inefficient plans from the final solution. Inefficient plans were de-

scribed by operational staff as a vehicle route going backwards or with a very sharp bend.

In order to resolve inefficient plans, two approaches were proposed: integrated inefficient

plan in evaluation function and inefficient specific local search operator. The specific local

search operator achieved a better performance compared to other approaches. The over-

all result presented a significant increase in plan quality especially plan acceptance and

all modifications are now implemented in the current system being used at 3T Logistics

Ltd.

With this detailed approach and experiment, the reader can easily have an out-of-

the-box method for the three-dimensional strip packing. With additional constraints,

the overhead estimation approach can offer a quick and simple-to-implement option to

improve the solution. For audiences who are interested in 4PL transport planning, the

clustering algorithms review can give some guidance as to which cluster technique is

suitable depending on individual requirements. It also gives information about new

factors to measure and possible solutions to improve planning quality.
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7.2 Future Work

In this section, a number of research areas that were beyond the scope of this thesis are

identified. They involve practical requirements and hence may be of interest for future

research.

• Chapter 3: block generation and overhead estimation provide a simple framework

for the three-dimensional strip packing problem. A different block generation strat-

egy which incorporates information about the boxes (i.e. when the number of

boxes is large then build two layers of box instead of single layer) would be useful.

Overhead estimation can be extended to reduce computational effort by avoiding

ambiguous packing where different blocks with similar dimensions have the same

final result.

• Chapter 4: currently, block generation employs a conservative approach. However,

it is possible to have a further study on the effect of internal loss inside the generated

blocks. In practice, it is possible to pack an item which is not fully supported. For

example, a large foam box cannot be packed underneath other items, however

it is perfectly acceptable to have this foam box overhanging other items within

reasonable practical conditions. Therefore, a study on non-fully supported stability

would have practical relevance.

• Chapter 5: current utilisation evaluation takes into account the stackability of

pallet type handling unit. Further improvement could be made to include other

types of handling units and their stackability. For example, BOX or BAG items

which cannot be combined with any other item or itself can be used to estimate

floor space. Heuristic approaches have been introduced in this thesis. Due to

business requirements, overhead estimation was not included in the scope of this

project. However, it is possible to apply overhead estimation to improve the results.

Another possible option is to integrate a meta-heuristic into the packing process.

149



7 Conclusions and Future Work

• Chapter 6: the current planning approach is based on the assumption that ship-

ments are ready and can be collected at any time. Due to requirements from the

customer, a shipment collection time can also have time windows. For example, a

shipment can be collected at anytime but some can only be collected after 12:00

due to manufacture time. If all shipments are collected at 12:00 then some ship-

ments cannot be delivered on time. One simple solution is to have a dedicated

vehicle which is very expensive for late collected shipments. A study in automated

transport planning with multiple time windows could be carried out to accommo-

date this new requirement. Another practical requirement raised by a customer is

having a maximum number of vehicles that can be loaded at the same time. For

example, a warehouse has a limited number of bays for loading trucks. If the num-

ber of plans to collect at one point in time is more than the number of bays then it

is not practical. The current approach did not take this factor into account. Also,

due to the complexity of real-world live operationss it is possible to add additional

constraints to the problem in the future. Research into the application of a wide

range of meta-heuristics and hybrid appraoches for transport planning would have

great potential for future research and development.
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