
Balestrieri, Florent (2015) The productivity of
polymorphic stream equations and the composition of
circular traversals. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/29745/1/thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33574386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

The Productivity of
Polymorphic Stream Equations

and

The Composition of
Circular Traversals

Florent Balestrieri

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

October 2015

Abstract

This thesis has two independent parts. The �rst is a theoretical study of productiv-
ity for very restricted stream programs. In the second part we de�ne a programming
abstraction over a recursive pattern for de�ning circular traversals modularly.
Productivity is in general undecidable. By restricting ourselves to mutually re-

cursive polymorphic stream equations having only three basic operations, namely
head, tail, and cons, we aim to prove interesting properties about productivity.
Still undecidable for this restricted class of programs, productivity of polymor-
phic stream functions is equivalent to the totality of their indexing function, which
characterise their behaviour in terms of operations on indices. We prove that our
equations generate all possible polymorphic stream functions, and therefore their
indexing functions are all the computable functions, whose totality problem is in-
deed undecidable. We then further restrict our language by reducing the numbers of
equations and parameters, but despite those constraints the equations retain their
expressiveness. In the end we establish that even two non-mutually recursive equa-
tions on unary stream functions are undecidable with complexity Π0

2. However, the
productivity of a single unary equation is decidable.
Circular traversals have been used in the eighties as an optimisation to combine

multiple traversals in a single traversal. In particular they provide more opportu-
nities for applying deforestation techniques since it is the case that an intermediate
datastructure can only be eliminated if it is consumed only once. Another use
of circular programs is in the implementation of attribute grammars in lazy func-
tional languages. There is a systematic transformation to de�ne a circular traversal
equivalent to multiple traversals. Programming with this technique is not modular
since the individual traversals are merged together. Some tools exist to transform
programs automatically and attribute grammars have been suggested as a way to
describe the circular traversals modularly. Going to the root of the problem, we
identify a recursive pattern that allows us to de�ne circular programs modularly in
a functional style. We give two successive implementations, the �rst one is based
on algebras and has limited scope: not all circular traversals can be de�ned this
way. We show that the recursive scheme underlying attribute grammars compu-
tation rules is essential to combine circular programs. We implement a generic
recursive operation on a novel attribute grammar abstraction, using containers as a
parametric generic representation of recursive datatypes. The abstraction makes at-
tribute grammars �rst-class objects. Such a strongly typed implementation is novel
and make it possible to implement a high level embedded language for de�ning
attribute grammars, with many interesting new features promoting modularity.

iii

Acknowledgements

My thanks to Venanzio Capretta who supervised my work, thank you for your
guidance, your patience and support. Thank you Graham Hutton for your encour-
agements. My thanks to the Functional Programming group at the University of
Nottingham who o�ered a nurturing environment and encouraged the exchange of
ideas. Professors Thorsten Altenkirch, Venanzio Capretta, Graham Hutton, Henrik
Nilsson. Doctors or PhD students Matteo Acerbi, Guillaume Allais, Patrick Bahr,
Joey Capper, Paolo Capriotti, Nils Anders Danielsson, Laurence Day, Gabe Dijk-
stra, Bas van Gijzel, George Giorgidze, Alexander Green, Jennifer Hackett, Mauro
Jaskelio�, Ambrus Kaposi, Nicolai Kraus, Iain Lane, Peter Morris, Darin Morrison,
Li Nuo, Ivan Perez Dominguez, Juan Carlos Saenz Carrasco, Christian Sattler, Neil
Sculthorpe.

v

Table of Contents

1 Introduction 1

1.1 Coinductive Types and Functional Programming 1
1.1.1 Coinductive types in Type theory 2
1.1.2 Coinduction and In�nity . 3
1.1.3 Productivity . 3
1.1.4 Approach in the Thesis . 4

1.2 Circular Traversals . 5
1.3 Structure of the Thesis . 5
1.4 Main Contributions of the Thesis 7
1.5 Related Work . 8

1.5.1 On The Productivity of Stream Equations 8
1.5.2 On Circular Traversals and Attribute Grammars 9

I Productivity of Pure Stream Equations 11

2 Coinduction and Productivity 13

2.1 Coinductive types and Coalgebras 13
2.1.1 Terminal Coalgebra . 13
2.1.2 Fixed-Points . 14
2.1.3 Bisimulation and Bisimilarity 15

2.2 Productivity . 18
2.2.1 Productivity and Denotational Semantics 18
2.2.2 Productivity of Polymorphic De�nitions 21
2.2.3 Productivity and Strict Languages 21
2.2.4 Strong Languages, Inductive Types 21
2.2.5 Syntactic Criteria . 22
2.2.6 Non Productive De�nitions in Type Theory 22

3 Pure Stream Equations 25

3.1 Streams and Polymorphic Functions 25
3.1.1 Polymorphism . 26
3.1.2 Polymorphic Streams Functions 26
3.1.3 Indexing Functions . 27
3.1.4 Coalgebraic Stream Equations 30
3.1.5 The Indexing Functions of Coalgebraic Equations 31

3.2 Pure Stream Equations . 31
3.2.1 Introduction . 32
3.2.2 The Syntax of Pure Stream Equations 33
3.2.3 Semantics of Pure Stream Equations 34
3.2.4 Interleaving and Projection 36

vii

Table of Contents

3.2.5 Zip-Proj Equations . 38

4 PSES Productivity is Π0
2-Complete 41

4.1 Terminology: Problems, Computability and Reductions 41
4.2 A Generalisation of the Collatz Problem 44

4.2.1 The Collatz Problem . 44
4.2.2 A Generalisation . 45
4.2.3 Properties of Collatz Functions 45

4.3 Generalised Collatz is Reduced to PSES Productivity 46
4.3.1 Comparison with Other Proofs of Undecidability 48

4.4 The Generalised Collatz Problem is Π0
2-Complete 49

4.4.1 Kurtz and Simon's Generalisation 50
4.4.2 Reduction from KSP to GCP 51
4.4.3 Discussion . 53

5 Expressivity of PSES 55

5.1 PSE De�nability . 55
5.1.1 Counter Machines . 56
5.1.2 Construction of PSE De�nability 57
5.1.3 Proof . 57

5.2 Unary De�nability . 59
5.2.1 Properties of some Indexing Functions 60
5.2.2 Collatz Functions and If-Programs 61
5.2.3 Iteration-Programs and Their Encoding 64
5.2.4 Proof of Unary Decidability 69

5.3 Further Results . 70

II Circular Traversals Compositionally 71

6 Circular Traversals Using Algebras 73

6.1 Introduction . 73
6.1.1 Circular Traversals in General 74
6.1.2 Issues With the Transformation 75

6.2 Abstract Programming Interface for Computations over a Data Struc-
ture . 77
6.2.1 The Environment Arrow . 79
6.2.2 A primitive to de�ne traversals 80

6.3 Circular Implementation . 82
6.3.1 Recursive Pattern for Circular Traversals 82
6.3.2 ArrowCata Instance . 84
6.3.3 Proving the Homomorphism Properties 86
6.3.4 Kleisli Arrow for an Indexed Monad 87

6.4 Example: List of Deviations . 88

7 Circular Traversals Using Attribute Grammars 91

7.1 Palindrome . 91
7.1.1 The Problem . 91

viii

Table of Contents

7.1.2 Bird's Solution . 92
7.1.3 Fixing Bird's Solution . 93
7.1.4 Palindrome with ArrowCata 95
7.1.5 Pairing Higher-Order Algebras 96
7.1.6 A New Traversal Primitive 96

7.2 Attribute Grammars . 99
7.2.1 Attribute Grammar Implementations 99
7.2.2 Generic AG Rules . 100
7.2.3 Attribute Grammar Systems 102

7.3 Containers and W Types . 102
7.3.1 Type-Theoretical Implementation 103
7.3.2 Haskell Implementation . 103

7.4 Circular Programs as Compositions of AGs 105
7.4.1 Generic View as a W Type 106
7.4.2 Generic Attribute Grammar Traversals 107
7.4.3 ArrowAG . 110
7.4.4 Multiple Traversals . 110
7.4.5 Circular Implementation . 110

7.5 Examples . 112
7.5.1 Palindrome . 112
7.5.2 Removing the Redundant Tests 113

8 Perspectives 115

8.1 Performance . 115
8.1.1 Experimental Results . 116

8.2 Optimisation and Recursion Schemes 117
8.3 Generic Programming with Containers 118

8.3.1 Related Works . 118
8.3.2 Generic Functions and Generic Types 119
8.3.3 Design Choices for the Payload Functor 119
8.3.4 Mutually Recursive Data Structures 120
8.3.5 Modular Datatypes and Paths 121

8.4 Embedding a Strongly Typed AG System 121
8.4.1 Example . 123
8.4.2 Full Listing . 130

8.5 Related Works . 132
8.5.1 Circular Traversals without Attribute Grammars 132
8.5.2 Circular Traversals with Attribute Grammars 132
8.5.3 Optimisation of Circular Programs 134

9 Conclusion 135

9.1 Productivity of Pure Stream Equations 135
9.2 Circular Traversals Compositionally 136

References 138

ix

Chapter 1.

Introduction

Coinductive types are essential to model in�nite computations. Such computations
must be productive, which means they always produce more data if we need them
to. In the �rst part of the thesis, we study the productivity of polymorphic stream
equations: a simple case of coinductive programs. In the second part, we study the
composition of functions that traverse the same datastructures. Such traversals can
be in fact combined in a circular de�nition, provided the evaluation is lazy.

Overview In this chapter, we introduce the notions of coinduction in �1.1 and
productivity in �1.1.3, providing a motivation for the �rst part of the thesis. In
�1.2 we motive the second part on circular traversals. �1.3 gives a road-map of the
thesis, summarising each chapters. �1.4 states the main contributions of the thesis.
�1.5 is a review of related work in the �eld.

1.1. Coinductive Types and Functional

Programming

In an in�uential article underlining the merits of functional programming [Hug89],
John Hughes identi�ed many types of glue that one can use to combine simple
programs into complex ones. One of these glues is laziness. Lazy datastructures
are constructed on demand and allow us to structure our programs into producers
and consumers, thus giving more opportunities of code reuse.
Lazy datastructures are ubiquitous in lazy languages such as Haskell (the language

of all our programming examples); but they are also common in strict languages
(with eager evaluation strategies), like ML. The usefulness of lazy datastructures
and lazy lists in particular was wildly recognised and adapted to other program-
ming paradigms [Sch00, NW00, Gru06, SBMG07]. Existing standards of popular
programming languages have been extended to cater for lazy lists, among others
Perl, Ruby, Python, SWI-Prolog.
One interesting consequence of laziness is that it is possible to de�ne in�nite data-

structures, meaning that a producer can produce an unbounded amount of data,
yet only what is needed by its consumers would ever be computed.
The most common lazy datastructure is the lazy list. For instance, in Haskell the

list of all integers is de�ned with:

ints :: [Integer]

ints = from 0

from x = x : from (x+1)

1

Chapter 1: Introduction

from is an example of a corecursive de�nition. The corecursive calls take an ever-
growing integer argument, and the list computed by from x is in�nite. It looks as
if the program doesn't terminate, but in Haskell, the list constructor : is lazy, it
doesn't evaluate its second argument (the corecursive call) to return a result. The
computation of the second argument is postponed until it is actually needed, hence
the name lazy evaluation, or call by need. We say the corecursive call from (x+1)

is guarded by a constructor, i.e. it is a direct child of the constructor (:), and is a
su�cient condition of productivity: the property that the in�nite datastructure is
well de�ned.
We can compute �nite pre�xes of from x:

take :: Integer → [a] → [a]

take n xs | n ≤ 0 = []

| null xs = []

| otherwise = head xs : take (n-1) (tail xs)

The function take is structurally recursive on its inductive argument n and always
terminates, even when the second argument xs is an in�nite list.
Formally, lazy datastructures are elements of coinductive types, which are dual to

inductive types. In Haskell, the language makes no distinction between inductive
and coinductive types, we must make that distinction ourselves in the way we
think about our programs. I believe that the theoretical underpinnings of inductive
and coinductive types can guide us in our programming, and help us design useful
programming abstractions.

1.1.1. Coinductive types in Type theory

Functional programming and formal mathematics converge in type theory, a func-
tional language where types are values, and where types and mathematical propo-
sitions are identi�ed [ML84]. Terms are the proofs of their types viewed as propo-
sitions. Arbitrarily complex types can be designed to capture the semantics of a
program, and a program with such a type comes with the proof that it behaves
according to the semantics. Furthermore, the type-checker actually validates the
proof. Such certi�ed programs are very valuable for critical tasks where program-
ming errors could cost human lives, cause physical damage, or the loss of �nancial
assets.
Coinductive types play a major role in this context. Type theories only allow

restricted recursion schemes that are known to terminate. However, many practi-
cal programs are not terminating by nature: control systems, operating systems,
network servers, etc. Coinductive types allow us to formalise their behaviour in
type theory. The recursive scheme used to de�ne coinductive values ensures the
programs are productive which means all possible observations on them terminate.
Capretta and Bove gave an embedding of general recursion using a coinductive type
for partial computations [Cap05]; so the behaviour of general recursive programs
can be formalised and their correctness proven.
Coinductive types have received less attention than their dual inductive types

[GJ98], however, the importance of coinductive types shouldn't be ignored given

2

Chapter 1: Introduction

that they fully explain lazy datastructures, and allow us to formalise in�nite de�-
nitions in type-theory.

1.1.2. Coinduction and In�nity

The theory of coinduction gives the theoretical foundation to reason about in�nite
datastructures. When a program expression has a coinductive type, the value it
denotes may be in�nite, like the sequence of all prime numbers, the Fibonacci
sequence, Pascal's triangle, continued fractions, etc. Furthermore, we can identify
the expression with its in�nite value.
This makes lazy functional programming a very high level paradigm: we can

de�ne and manipulate in�nite objects as if they existed as mathematical entities,
outside of time in their in�nite form, even though in practice only a �nite part can
ever be actually constructed in the �nite memory of a computer. In addition we
needn't be concerned about the actual steps it takes to progressively compute this
concrete portion of the in�nite value. In operational terms, the mechanism involved
is laziness. It is supported by default in non-strict languages like Haskell [Mar10],
or with primitives delay and force in strict languages like ML.
This notion of computable in�nity is also what intuitionist mathematicians use

[Dum77, �3.1 p. 40]:

All in�nity is potential in�nity: there is no completed in�nite. [. . .]
It means, simply, that to grasp an in�nite structure is to grasp the
process which generates it, that to refer to such a structure is to refer
to that process, and that to recognise the structure as being in�nite is
to recognise that the process will not terminate.

The process is given by the program expression. The in�nite structure is the
abstract idea of the data that we would construct in memory by executing the
program forever in a Utopian computer with in�nite memory and contemplating
this data at the end of time.

1.1.3. Productivity

In the presence of general recursion, we may write programs with semantically
unde�ned values, operationally blocked in a loop without returning a result. For
instance:

diverge :: Integer → Integer

diverge x = x + diverge (x + 1)

Compare this de�nition with from given above: the main di�erence is that the
recursive call here appears under a strict operation + that evaluates both its ar-
guments, while the corecursive call of from was under a lazy constructor which
delayed its evaluation. Consequently the computation here diverges: there is an
in�nite number of recursive calls to evaluate before a result is returned.
In denotational semantics, the result here is either an concrete integer or an

unde�ned value, written ⊥, the semantics associated to a diverging computation,

3

Chapter 1: Introduction

we call such a domain �at. By contrast, when a result is structured, and in particular
coinductive, the domain contains all the partial values, approximating a fully de�ned
value. We can thus distinguish between an unde�ned list and a list of unde�ned
elements. In broad terms, we say that a value is productive if it is fully de�ned.
Whereas the stream ints above was productive, the two following streams are not
productive:

partial_stream = 1 : 2 : 3 : undefined

stream_with_undefined_elements = 1 : undefined : 3 : from 4

undefined = undefined

Since we deal with potentially in�nite values, fully de�ned must be de�ned with
caution. It means we can compute arbitrarily large �nite approximations.

The formal de�nition of productivity, given in �2.2 is a bit tricky because coinduc-
tive datastructures may contain other coinductive data, consequently the de�nition
of productivity is coinductive!

In this thesis we will study in particular the productivity of stream functions. For
a function to be productive, it must preserve productivity. In this particular case,
they must map productive streams to productive streams. A productive stream is
a fully determined stream: all of its elements converge to a de�nite value. Pro-
ductivity is a semantic property: it characterises the behaviour of programs rather
than their concrete de�nition. It is a property of good behaviour, ensuring that a
piece of program, when combined with other program fragments cannot be blamed
for non-termination. This is illustrated with productive functions: by preserving
productivity, they preserve the good behaviour; if we respect their contract and
provide a well behaving (productive) input they will ensure us a well behaving out-
put. Similarly, productive data structures (coinductively or inductively de�ned)
only hold productive data.

1.1.4. Approach in the Thesis

Although the problem of deciding the productivity of a general corecursive equation
is undecidable, there might be a big enough set of equations for which a decision
procedure could be designed. We tried to �nd such a set, with enough generality to
be of some use but with enough restrictions that we would hope for the productivity
to be decidable. It seemed reasonable to only consider one simple coinductive type
and one simple form of de�nitions. Amongst the simplest yet useful coinductive
types is the stream, and amongst the simplest equations on streams are pure stream
equations (�3.2) which de�ne functions parametric over the stream elements. Such
functions do not seem to do very complex computations: being polymorphic, they
only operate on the structure of streams, in�nite sequences of elements, without in-
spection of the contained data: they cannot test the elements, and just shu�e them
around, possibly discarding or duplicating some of them. Pure stream equations
de�ne a natural yet restrictive class of polymorphic stream functions as a system of
equations using only stream constructors, destructors and recursive calls.

4

Chapter 1: Introduction

1.2. Circular Traversals

Circular traversals are the focus of the second part of the thesis. Lazy functional
languages allows us to make circular de�nitions to de�ne some data. Some circular
de�nitions can be used to de�ne coinductive values, for instance the Fibonacci
sequence:

(fib, tail_fib) = (0 : tail_fib, 1 : fib <+> tail_fib)

where (x:xs) <+> (y:ys) = x+y : xs <+> ys

In Part II, we study a particular type of circular de�nitions that arises when a
computation over a tree depends on its own result. This case usually stems from
the combinations of multiple non-circular traversals over the same tree. In fact,
the circular traversals were originally designed after transforming a multi-traversal
computation [Bir84].
As an example, let us compute the number of occurrences of the maximum ele-

ment of a list. We must traverse the list once to compute its maximum element,
and then another time to compute the number of elements equal to that �rst result.

count_maximum xs = count_equal (maximum xs) xs

maximum [] = 0 -- only considering positive integers
maximum (x : xs) = max x (maximum xs)

count_equal y [] = 0

count_equal y (x : xs) = eq x y + count_equal y xs

eq x y = if x ≡ y then 1 else 0

The two traversals can in fact be combined in a single traversal computing their
results simulataneously:

maximum_and_count_equal y [] = (0, 0)

maximum_and_count_equal y (x:xs) = (max x m, eq x y + c)

where (m,c) = maximum_and_count_equal y xs

Now we can make a circular de�nition that binds the �rst component of the result
(corresponding to the maximum) to the argument of the traversal:

count_maximum_circ xs = c

where (m,c) = maximum_and_count_equal m xs

This transformation is not modular: by combining each independent traversal we
do not promote code reuse. The problem studied in Part II is to �nd a suitable
representation of circular traversals together with combinators allowing them to be
composed.

1.3. Structure of the Thesis

Chapter 2 de�nes coinductive types, coalgebras, bisimulations, and most impor-
tantly, productivity which is the central theme of the thesis.

5

Chapter 1: Introduction

Chapter 3 gives the background notions and common de�nitions necessary for the
rest of the thesis: we de�ne pure stream equations 3.2, polymorphism, and indexing
functions.

Chapter 4 gives a proof that the productivity of pure stream equation systems
(PSES) is Π0

2 complete. PSES de�ne polymorphic functions and productivity is
equivalent to totality of the indexing function (Corollary 3.2.8), so the problem is
Π0

2. But is it Π0
2-hard? After all, the equations might not capture all polymorphic

functions and the functions that they capture might not be so complicated that
the problem is Π0

2-hard. In fact it is: we found a set of indexing functions whose
totality problem is undecidable and fully captured by PSES, i.e. there exist a PSES
specifying the corresponding polymorphic function associated with the indexing
function. Such a set is given by a generalisation of the Collatz problem.

Pure stream equation systems (PSES) de�ne polymorphic stream functions. In
Chapter 5 we asked the question: can they de�ne all polymorphic stream functions?
Since polymorphic functions are completely characterised by their indexing function
(see �3.1.2) which are partial (computable) functions from N to N, we showed that
the indexing functions of PSES cover all the computable functions; meaning that
PSES form a Turing complete computation model. In �5.1 we construct a PSES
from a counter machines implementing the corresponding indexing function. In �5.2
we strengthen the previous result by giving a more intricate encoding using a strict
subset of PSES consisting of only unary equations.

In Part II we abstracted a corecursive pattern that occurs in the technique of
circular programming [Bir84]. This programming pattern relies on lazy evaluation to
fuse many traversals of data structures into a single traversal. However, by following
this traditional approach we lose the advantages of modularity: succinctness, clarity,
reusability, unit testing and easier proofs of correctness. We show in this chapter
that this is not necessarily so: we present a generic library of combinators for
modular circular programs based on the Arrow abstraction.

We give two implementations of that abstraction, one as multiple traversals, one
as single circular traversals. Initially, in Chapter 6 we use algebras as the repre-
sentation of primitive traversals, but we realise that the product of higher-order
algebras doesn't combine their traversals.

Seeking for a �ner representation, in Chapter 7 we found a new �rst class im-
plementation of attribute grammars, using containers which for the �rst time have
been implemented in Haskell. Containers promise new possibilities for generic pro-
gramming: they give a semantic view of types rather than the usual syntactic
construction using sums and products and generic programs based on them enjoy
parametricity properties.

In Chapter 8 we discuss our research on circular traversals in a broader context
of research. We discuss the performance of circular programs, and optimisation in
general; we look at other aspects of containers; we present our AG DSL designed
on top of the container based AG abstraction, and we discuss the related works,
speci�cally regarding circular traversals and attribute grammars.

6

Chapter 1: Introduction

1.4. Main Contributions of the Thesis

Productivity of Pure Stream Equations

� Noting that stream equations de�ne computable polymorphic functions, we
reduce the productivity problem to the totality of a computable function char-
acteristic of the polymorphic property and that we call indexing function (Def-
inition 3.1.6): for a stream equation to be productive, its indexing function
must be total.

� In �5.1 we show with a more complex encoding that all polymorphic functions
are de�nable by stream equations: this class of programs consists of exactly
the computable polymorphic stream functions.

� In �5.2, we strengthen the previous result and show that stream programs con-
sisting of unary equations without mutual recursion can de�ne all polymorphic
functions, yielding an elegant model of Turing-completeness.

Circular Traversals Compositionally

� In Chapter 6 we de�ne a novel programming abstraction for combining mul-
tiple circularly dependent catamorphisms into a single catamorphism in a
lazy functional language. The circular technique was well-known, but it was
based on a program transformation which impeded modular programming.
First class attribute grammars [dMBS00, VSS09] was an existing solution for
modularly de�ning the circular traversals, but it su�ered either from a lack
of type-safety [dMBS00] or for a big notational overhead and other inconve-
niences [VSS09]. On the other hand, our solution stays within the functional
paradigm. Using the abstract interface allows the programmer to execute the
same program using multiple traversals or circularly in one traversal. Using
multiple traversals corresponds to the multi-pass compilation which is usually
determined by dependency analysis.

� In�7.3.2 we show that dependent type families can be viewed as the display
maps of GADTs. This is a new insight with interesting applications, among
which the encoding of containers in Haskell.

� In �7.3.2, we give an encoding of containers and indexed containers in Haskell,
using GADTs, o�ering new possibilities for parametric generic programming.

� In �7.4.2, we give a recursive pattern based on containers, capturing exactly
(with strong type safety) the computation of an attribute grammar.

� In �8.4, we present a �rst class attribute grammar embedding in Haskell based
on containers and using dependent type programming and type-classes to
achieve the modularity of an earlier design [dMBS00] with the advantage of
type safety, and all the while retaining simple types for the user; Furthermore,
the DSL doesn't rely on template Haskell for its syntax.

7

Chapter 1: Introduction

� In �8.4, as part of the attribute grammar implementation, we present a gen-
eralisation of datatype à la carte [Swi08] using container functors.

1.5. Related Work

1.5.1. On The Productivity of Stream Equations

Most proofs of undecidability and complexity results for stream equations, like the
ones of Ro³u [Ro³06] (discussed in depth in �4.3.1) and Simonsen [Sim09a], use
straightforward encodings of Turing machines, representing the in�nite band of
symbols as two streams, one each for the left and right side of the band relative
to the head, with canonical rewrite rules pattern matching on the current symbol.
This central dispatching mechanism is unavailable in our setting. Still, we are
able to recover all of these results even in the unary setting as direct corollaries of
Theorem 5.2.10.

As a �rst taste, Theorem 5.1.3 states that our limited systems are nevertheless
still su�cient to de�ne every computable polymorphic stream function. Although
the construction requires some imagination, the simulation of counter machines is
quite direct and mainly intended to give the reader some intuition for the long road
towards the proof of our key result, Theorem 5.2.10, which improves upon this by
restricting systems to unary stream functions without mutual recursion. This is
the main contribution of our work, which seems surprising given the very limited
expressiveness of the syntax.

Endrullis et al. [EGH08, EGH09a, EGH+07] strive to decompose rewriting into
a stream layer and a data layer in such a way as to encapsulate just so much
complexity into the data layer that the productivity of streams becomes decidable
while still retaining usefulness of computation. Our work can be seen as a another
extreme, eradicating the data layer and showing that polymorphic unary stream
functions attain computational completeness. For example, our results imply that
the lazy stream formats of Endrullis et al. [EGH09a] can actually be restricted to
(general) unary stream functions with productivity still retaining Π0

2-completeness
(in the non-unary case, a hint of Theorem 5.1.3 can be found in their encoding
of fractran-programs). We note that their notions of lazy stream speci�cations
and data-oblivious analysis shares some points with our polymorphism restriction:
choosing the unit type for the data type leaves no possibility of analysing the input.
We also note that the �at stream speci�cations, for which the authors develop an
algorithm for semi-deciding productivity, present a major di�erence by restricting
recursion, whereas we allow general nested calls.

See Simonsen [Sim09b] for a good survey of some of the complexity analysis
on stream rewriting that our developments generalise. We hope that our Turing-
complete unary recursive systems, in their simplicity, may be used as a compu-
tational model in further reduction proofs (e.g. of complexity results) not only in
rewriting theory. We conclude by remarking that all our proofs are constructive,
i.e. algorithmically implementable.

Capretta [Cap10] gives a partial algorithm to recognise productive pure stream

8

Chapter 1: Introduction

equations by generating a bisimulation relation between two solutions of the equa-
tion. If the generation terminates, then the solution is unique, and the equations
productive.

1.5.2. On Circular Traversals and Attribute Grammars

The circular programming technique to implement attribute grammars and combine
multiple traversals in a lazy functional language has untraceable origins. Many
authors cite Bird's article as the �rst publication mentioning it: [Bir84] but he
states that the method was known before he wrote about it and popularised it.
Deforestation can be facilitated if we are able to combine many traversals. Most

deforestation techniques can fuse a consumer and a producer, and are not applicable
if the intermediate data structure is consumed many times: there is clearly no fusion
site. By combining the consumers, we create fusion opportunities [LS95, Nem00].
The transformation has been automatised [CGK99], as well as its inverse: to

remove the circularity in order to make the programs stricter (create less thunks)
and faster [FSSV11].
Attribute grammars [Knu68] are implemented in lazy functional languages with

the same circular programming technique [KS87]. The authors argue that attribute
grammars form the best formalism to describe such circular programs modularly.
The same argument is repeated by Swierstra [Swi05]. The advantages of attribute
grammars as a formalism to design complex functional programs, including combi-
nator libraries and domain speci�c languages are illustrated in a number of articles,
for instance [SAAS99] [SS03].
A more recent translation of attribute grammars in Haskell uses the zipper datas-

tructure [Hue97] which consists of a sub-tree in context. Attributes are translated
to mutually recursive functions on zippers [MFS13]. In [UV05], the comonadic
structure of the attributed trees and zippers is exploited.
Whereas the previous articles gave a translation of attribute grammars to func-

tional programs, other research explored the embedding of attribute grammars as
�rst class values in Haskell. This embedding has many bene�ts: it is more �exible
than a attribute grammar system since it is directly extensible: it is possible to de-
�ne attribute grammars combinators that capture common programming patterns
like the copy rule or the chain rule. The �rst embedding [dMBS00] has the advan-
tage of simplicity and conciseness but is somehow lenient, and relies on dynamic
checks to reject bad attribute grammars.
A more recent embedding [VSS09] uses the equally recent language extensions of

GHC to enforce statically more properties of well-de�ned attribute grammars by
means of dependent programming techniques.
The same approach allows very powerful combinators to be written, such as a

macro system [VS12] in which the attributions of a non-terminal can be automati-
cally derived from the expression of that non-terminal in terms of others.

9

Part I.

Productivity of Pure Stream

Equations

11

Chapter 2.

Coinduction and Productivity

2.1. Coinductive types and Coalgebras

We use basic notions of category theory to give an abstract de�nition of coin-
ductive types. Functions producing coinductive types are co-iterations of coalge-
bras. They are known as anamorphisms to functional programmers. The categor-
ical explanation of inductive and coinductive types gives useful insight for struc-
turing programs, generic programming, fusion, program calculation and avoiding
boilerplate[Hag87, MFP91, Ven00, UV99, BdM97]. For a good introduction with
emphasis on the categorical semantics, see [JR97]. Further details are given in
Rutten's monograph on coalgebras. [Rut00].

De�nition 2.1.1 (F -coalgebra). Given an endo functor F on a category C, a F -
coalgebra is a pair (A, a) of an object A and an arrow a : A → FA. A homo-
morphism of coalgebras from a to b : B → FB is an arrow h : A → B such that
F h ◦ a = b ◦h.

F B F A
F h

oo

B

b

OO

A
h

oo

a

OO

For example, the base functor of StreamA � the coinductive type of in�nite lists
of elements of type A � is FX = A×X. A stream-coalgebra is any function of type
B → A× B, for any type B.

2.1.1. Terminal Coalgebra

F -coalgebras and their homomorphisms constitute a category, named CoalgF . A
terminal (often called �nal) coalgebra ν-out : νF → F (νF) is a terminal object
in this category. It has the following universal property: for any F -coalgebra a,
there exists a unique homomorphism ν-it a : a → ν-out; The name ν-it stands for
coiteration. The function unfold above is the coiteration operator for streams. The
unique homomorphism is called an anamorphism, it is also notated ν-it a = ⌈⌊(a)⌉⌋
with the convention in [MFP91].

F (νF) F A

νF A

F ⌈⌊(a)⌉⌋

ν-out

⌈⌊(a)⌉⌋

a

13

Chapter 2: Coinduction and Productivity

Because of this universal property, terminal coalgebras are unique up to isomor-
phism.
For instance, the type StreamA is the terminal coalgebra for the functor FX =

A × X. there is a function unfold that builds a stream from a stream-coalgebra
and an element of B:

data Stream a = a :< Stream a

unfold :: (b → (a,b)) → b → Stream a

unfold f b = x :< unfold f b’

where (x,b’) = f b

In the category of sets, terminal coalgebras exist for all strictly positive functors.

De�nition 2.1.2 (Strictly positive functor (SPF)). SPF are inductively de�ned:

S is a SPF when S is a set (constant functor)

IdSPF is a SPF (identity functor)

Σ(i : I)Fi is a SPF when I is a set and all Fi are SPF (sum)

Π(i : I)Fi is a SPF when I is a set and all Fi are SPF (product)

F1 × F2 is a SPF when F1 and F2 are SPF (�nite product)

Most datatypes in practice are strictly positive � meaning that their base functor
is strictly positive. Furthermore, in total programming languages, only strictly posi-
tive datatypes are allowed, because non-strict datatypes make a theory inconsistent:
we may de�ne an element of the empty type.

2.1.2. Fixed-Points

The categorical characterisation of a �xed-point is expressed in terms of isomor-
phism. In this section, we show Lambek's lemma: F (νF) ∼= νF . The dual result
F (µF) ∼= µF follows trivially. We write ν-in, ν-out−1 and µ-out,µ-in−1.

Theorem 2.1.3 (Lambek's lemma [Lam68]). If ω : Ω → F Ω is a terminal F -
coalgebra, then ω is also an isomorphism and its inverse is the unique coalgebra
homomorphism from F ω to ω.

Proof. F ω : F Ω → F (F Ω) is a coalgebra and ω is terminal so there is a unique
homomorphism h : F ω → ω. We show that, in the base category, h : F Ω → Ω is
also the inverse arrow of ω by proving h ◦ω = idΩ and ω ◦h = idF Ω.
The following diagram commutes because the left square characterises the coal-

gebra homomorphism h : F ω → ω and the right square is a trivial equality.

F Ω F 2 Ω F Ω

Ω F Ω Ω

F h F ω

ω

h

F ω

ω

ω

As a consequence, the external square commutes and gives the diagram of a coal-
gebra homomorphism h ◦ω : ω → ω.

14

Chapter 2: Coinduction and Productivity

F Ω F Ω

Ω Ω

F (h ◦ ω)

ω

h ◦ ω

ω

Now idΩ is already a coalgebra homomorphism corresponding to the same diagram
and the terminality of ω implies that such a homomorphism is unique, so out of
necessity h ◦ω = idΩ. Then, looking at the left square in the �rst diagram, we
reason:

ω ◦h = Fh ◦Fω = F (h ◦ω) = F idΩ = idF Ω

2.1.3. Bisimulation and Bisimilarity

A coalgebra α : A→ FA can be seen as a state machine or transition system [Jac05].
When the object A represents the set of states of the machine, and the coalgebra
α gives the dynamics of the system, it maps a state to some observations and the
successor states after a transition. Two coalgebras of the same signature functor F
can be compared: we compare their (�nite) observations. The behaviour of a state
with respect to a coalgebra is the in�nite accumulation of all the observations of
this state and its successors.
Bisimulations are relations between states of two coalgebras that relate states

with identical behaviour. Bisimilarity is the biggest bisimulation: it relates all
behaviourally identical states.
A coalgebra satis�es the principle of coinduction when behaviourally identical

states are equal: there is a one to one correspondence between state and behaviour.
A coalgebra is terminal if it captures all possible behaviours in a unique way: each

possible behaviour corresponds to one state of the terminal coalgebra. In particular,
a terminal coalgebra satis�es the principle of coinduction, but the converse doesn't
necessarily hold.
Consequently, the coiterative operation: ν-it computes the behaviour (an element

of the terminal coalgebra) of a given coalgebra for a given state.

Example 2.1.4 (Streams). A stream-coalgebra f : B → A× B is a state machine
where states are elements of B, observations are elements of A. f captures the state
transitions and observable output. In the transition described by fx = (o, y), x is
the current state, o the output (observation), y the next state.

The function unfold computes the behaviour of the state machine: the in�nite
sequence of observations from a starting state x : B, and following the transitions
given by f .

The exposition that follows generalises [Cap11]. Another categorical presentation
is given in [Bar03]. A good presentation of bisimulation with practical examples is
also available in Jacob and Rutten's tutorial [JR97].

Relations and Spans

Categorically, we can represent a relation as a pair of arrows corresponding to the
projections of the related components, this is called a span. In the category of sets,

15

Chapter 2: Coinduction and Productivity

R ⊆ A× B and xRy ⇐⇒ 〈x, y〉 ∈ R ⇐⇒ ∃r ∈ R . x = π1r ∧ y = π2r

A R B
π1 π2

The extension of the relation to a functor F is the image of the relation by the
functor: RF ,FR

FA FR FB
Fπ1 Fπ2

Bisimulations

De�nition 2.1.5. Let α, β, F -coalgebras. a relation 〈R, π1, π2〉 is a 〈α, β〉-bisi-
mulation i� there is a coalgebra ρ : R → F R such that π1 and π2 are coalgebra
morphisms π1 : ρ→ α and π2 : ρ→ β.

F A F R F B

A R B

Fπ1 Fπ2

α

π1

ρ

π2

β

〈α, α〉-bisimulations are simply called α-bisimulations.

In the category of sets this means

∀x∀y . xRy =⇒ (αx)RF (β y)

Indeed, the previous statement can be written in terms of the projections:

∀r ∈ R . ∃t ∈ F R . α(π1 r) = F π1 t ∧ β(π2 r) = F π2 t

Which is equivalent to

∃ρ : R→ F R . ∀r ∈ R . α(π1 r) = F π1 (ρ r) ∧ β(π2 r) = F π2 (ρ r)

Corresponding to the commutative diagrams

∃ρ : R→ F R . α ◦ π1 = F π1 ◦ ρ ∧ β ◦ π2 = F π2 ◦ ρ

Coinduction and Bisimilarity

De�nition 2.1.6 (Principle of Coinduction). A coalgebra 〈A,α〉 satis�es the prin-
ciple of coinduction if and only if every α-bisimulation 〈R, π1, π2〉 veri�es π1 = π2.

In the category of sets, this is equivalent to saying that all bisimulations R are
included in the diagonal relation.

∀R :α-bisimulation . ∀x∀y . xRy =⇒ x = y

Let α : A → FA, β : B → FB; we de�ne the bisimilarity relation on 〈α, β〉,
written ∼α,β. It relates the elements of A and B whose behaviour is observationally

16

Chapter 2: Coinduction and Productivity

identical with respect to coalgebras α and β, i.e. there exists a 〈α, β〉-bisimulation
that relates them.

De�nition 2.1.7 (Bisimilarity). Bisimilarity is the large relation de�ned as the
union of all 〈α, β〉-bisimulations

∼α,β =
⋃
{R ⊆ A× B | R is a 〈α,β〉-bisimulation},

∼α = ∼α,α

Coalgebras satisfying the principle of coinduction have the property that their
bisimilarity relation is the identity relation.

Property 2.1.8. A coalgebra 〈A,α〉 satis�es the principle of coinduction if and
only if ∼α= {〈x, x〉 | x ∈ A}. In other words, ∀x∀y . x ∼α y =⇒ x = y.

Theorem 2.1.9. If a coalgebra is terminal then it satis�es the principle of coin-
duction.

Proof. If 〈R, π1, π2〉 is a α-bisimulation, then there is a coalgebra ρ such that π1, π2 :
ρ→ α. If α is terminal then π1 = π2.

The reciprocal doesn't hold. The principle of coinduction is true for the coalgebras
whose elements are in one to one correspondence with their behaviours. But that
is not enough for a coalgebra to be terminal: it also must contain all the possible
behaviours. For example, the set of monotone streams of natural numbers with
head and tail is a coalgebra and is a strict-subset and restriction of the terminal
coalgebra for the stream functor: it satis�es the principle of coinduction but isn't
terminal.

Theorem 2.1.10. If a F -coalgebra 〈A,α〉 satis�es the principle of coinduction then
for every F -coalgebra 〈B, β〉, if there exists a morphism from β to α it is unique.

Proof. Let f, g : β → α be two coalgebra morphisms. Then 〈B, f, g〉 is a α-
bisimulation and α veri�es the principle of coinduction so f = g.

A slightly di�erent formulation of the principle of coinduction is given in [Bar03].
It expresses very clearly that bisimilarity captures behavioural equivalence: two
bisimilar elements x and y have equal behaviours ⌈⌊(α)⌉⌋x = ⌈⌊(β)⌉⌋y in the terminal
coalgebra.

Theorem 2.1.11 (Second Coinduction Principle). Let F be an endo functor in Set
that has a terminal coalgebra. Let α : A→ FA, β : B → FB, x : A, y : B then

x ∼α,β y =⇒ ⌈⌊(α)⌉⌋x = ⌈⌊(β)⌉⌋y

Note that this is an equivalence, since {〈x, y〉 | ⌈⌊(α)⌉⌋x = ⌈⌊(β)⌉⌋y} is a 〈α, β〉-
bisimulation.

Proof. If x and y are bisimilar, they are related by a bisimulation 〈R, πA, πB〉, there
is a coalgebra 〈R, ρ〉 such that πA : ρ → α and πB : ρ → β in CoalgF . By the
terminality property, ⌈⌊(α)⌉⌋ ◦ πA = ⌈⌊(β)⌉⌋ ◦ πB = ⌈⌊(ρ)⌉⌋ hence ⌈⌊(α)⌉⌋x = ⌈⌊(α)⌉⌋(πA〈x, y〉) =
⌈⌊(β)⌉⌋(πB〈x, y〉) = ⌈⌊(β)⌉⌋y.

17

Chapter 2: Coinduction and Productivity

2.2. Productivity

Productivity is essentially the notion of well-de�nedness for coinductive values. It
is best understood by studying the particular case of in�nite lists, before explaining
the general case of any coinductive type.
Although he didn't call it productivity, Dijkstra gave one of the earlier formalisa-

tions of the concept [Dij80], for the case of in�nite binary trees (which he presented
as string concatenation).
Basically, in�nite lists are productive if all its �nite pre�xes are well-de�ned. The

�nite pre�xes are approximations of the in�nite list which is their limit.
In the general case, coinductive values are (possibly) non-well founded trees,

meaning they may have arbitrary long paths. Since the tree is gradually constructed
from the root, we can compute �nite approximations to a certain depth. A tree is
productive if it has arbitrary large well-de�ned �nite approximations.
In fact if it is not productive, the de�ned object is not properly an element of

the coinductive type. Such non-productive values nevertheless deserve our atten-
tion since they correspond to valid programs in weak (not strongly normalising)
functional languages. In those languages the types do not correspond exactly to the
coinductive types since they also contained the non-productive values. This can be
a source of confusion since we still refer to them as coinductive types.
Proofs of productivity in simple cases are by induction on the length (or depth) of

the approximations. In more complex cases where the coinductive result is de�ned
by a function having both recursive and corecursive calls, we may need to use speci�c
�xed-point theorems based on complete ordered families of equivalences, [DGM03]
which generalise converging equivalence relations [Mat99].

2.2.1. Productivity and Denotational Semantics

Sijtsma wrote one of the earliest article about proving the productivity of lazy lists
[Sij89]. He de�ned productivity as a property of the denotational semantics of
lazy functional programs. His de�nition applies to values of any type, including
functions and non-recursive types. Although lazy lists were the only recursive type
he considered, we will generalise his de�nition to any recursive datatype.
The principle of denotational semantics is to map an abstract meaning to syntactic

object of a language: we call domains the semantics of types. They are sets with
some structure, whose elements are the semantics of program expressions of the
corresponding type. The domains used to denote lazy programs are usually Scott
domains. We quickly cover the basic de�nitions necessary to de�ne Scott domains.
See [AJ94] for more details on domain theory and see [Sch86, Win93] for application
of domain theory to denotational semantics, and see [CD82] for the denotational
semantics of lazy functional languages.

De�nition 2.2.1 (partially ordered set). (D,⊑) is a (partially) ordered set, also
called a poset if and only if ⊑ is a binary relation on D which is:

1. re�exive: ∀x ∈ D, x ⊑ x,
2. anti-symmetric: ∀x, y ∈ D, x ⊑ y ∧ y ⊑ x =⇒ x = y,

18

Chapter 2: Coinduction and Productivity

3. transitive: ∀x, y, z ∈ D, x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z.

We de�ne basic notions on ordered sets. Each notion has a dual one obtained by
using the symmetric partial order relation ⊒.

De�nition 2.2.2 (upper, lower bound). Let (D,⊑) a poset and A ⊆ D.

1. An element x ∈ D is a upper bound of A, written A ⊑ x if and only if all
elements of A are below it: ∀y ∈ A, y ⊑ x. The dual is a lower bound, written
x ⊑ A. We say a set is bounded when it has an upper bound.

2. A maximal element x of A is an element which doesn't have greater elements
in A: ∀y ∈ A, x ⊑ y =⇒ x = y. A minimal element is dual.

3. The greatest element of A is an element of A which is also an upper bound
of A. The least element is dual. By anti-symmetry, maximal and minimal
elements are unique if they exist.

4. If the the set of upper bounds of A has a least element, it is called the supre-
mum of A, written ⊔A. Dually, we write ⊓A the in�mum of A when it exists.

5. A is directed if and only if every �nite subset of A has a supremum.

De�nition 2.2.3 (directed-complete partial order). (D,⊑) is a directed-complete
partial order, abbreviated dcpo, if and only if it is a poset and every directed subset
of D has a supremum.

De�nition 2.2.4 (Approximations, compact elements). Let (D,⊑) be a dcpo, let
x, y ∈ D. We say x is an approximation of y, written x≪ y if and only if, for all
directed subset A ⊆ D, if y ⊑ ⊔A then there is an element a ∈ A, such that x ⊑ a.
x is a compact element of a dcpo (D,⊑) if and only if x≪ x.

De�nition 2.2.5 (Scott domain). A Scott domain is a set D with a partial order
⊑ which is:

1. bounded-complete: all bounded subsets of D have a supremum;
2. directed-complete: all directed subsets of D have a supremum;
3. algebraic: every element is the supremum of a directed set of compact ele-

ments of D.

All Scott domains D have a least element ⊥D: the supremum of the empty set
which is trivially bounded. We write ⊥ without the subscript when the domain is
implicit.

The algebraic property of Scott domains is what allows us to de�ne in�nite objects
as the limit of their �nite (compact) approximations.

We will de�ne productivity as a property of domain elements. We can sub-
sequently de�ne productivity on program expression as the productivity of their
semantics.

We consider some domain constructions that can be used to assign semantics to
types: the product, sum, exponential of domains, and a �xed-point operator. Each
construction preserves the property of Scott-domains. To keep the presentation
concise, we omit the veri�cations and many details which can be found in the
previous references.

19

Chapter 2: Coinduction and Productivity

Discrete dcpo A discrete dcpo is such that its order relation is the identiy.

Lifted domain Given a domain D, we can lift it by adding a new in�mum ⊥ /∈ D:

D⊥ = {⊥} ∪D x ⊑D⊥
y ⇐⇒ x = ⊥ ∨ x ⊑D y

A �at domain is a lifted discrete dcpo.

Product Given two domains (A,⊑A) and (B,⊑B), the Cartesian product of the
sets and the order relations (A×B,⊑A × ⊑B) is a domain. The suprema are com-
puted coordinate-wise. IfX ⊆ A×B has a supremum, then ⊔X = ⊔(πAX),⊔(πBX),
where πA and πB project the �rst and second coordinates.

Sums Given two domains (A,⊑A) and (B,⊑B), their disjoint sum is a domain,
de�ned as:

A+B = {(0, x) | x ∈ A} ∪ {(1, y) | y ∈ B}

(j, x) ⊑ (k, y) ⇐⇒ (j = k = 0 ∧ x ⊑A y) ∨ (j = k = 1 ∧ x ⊑B y)

Exponentials Given two Scott domains (A,⊑A) and (B,⊑B), The set A→ B of
Scott-continuous functions is a Scott domain.

Fixed-points We can build domains which are solutions of mutually recursive
domain equations of the form

D1
∼= F1(D1, · · · , Dn)

· · ·

Dn
∼= Fn(D1, · · · , Dn)

Where each Fk is a domain operator made of the previous constructions: product,
sums, lifting, exponentials.

The domains that are solution of the �xed-point equations can be de�ned as
the inverse limits of retractions sequences [Sch86]. Their elements are sequences of
approximations (xn)n∈N. An element is compact i� it is a �nite sequence, i.e. it is
constant after some n.

De�nition 2.2.6 (Productivity). We de�ne productivity by induction on the con-
struction of the domain.

1. Elements x of �at domains are productive i� x 6= ⊥.
2. Elements x ∈ D⊥ of lifted domains are productive i� x 6= ⊥ and x ∈ D is

productive.
3. Functions are productive i� they preserve productivity, i.e. productive argu-

ments yield productive results.
4. Tuples are productive i� all their elements all productive.
5. Elements of sums (l, x) are productive i� x is productive.

20

Chapter 2: Coinduction and Productivity

6. Elements of recursive datatypes are either compact or the supremum of a di-
rected set of compacts approximating it. The productivity of compact elements
is de�ned by the previous cases. An element which is not compact is productive
i� all the compacts approximating it are productive.

Productivity compared to Maximality Productivity and maximality are in many
speci�c cases equivalent: streams of integers are productive if and only if they
are maximal for instance. However, they are not comparable: a program can be
productive without being maximal, and conversely. The following examples are
taken from Sijtsma [Sij89].
An example of the the �rst case is the strict function force_eval :: a → ()

which is constant () for all de�ned arguments and unde�ned otherwise. It can
be de�ned in haskell by force_eval x = x ‘seq‘ (). It is not maximal since the
non-strict de�nition: unit :: a → (), unit x = () is greater, yet force_eval is
productive since it does preserve productivity: productive arguments are necessarily
de�ned and are mapped on ().
On the other hand, the inductively de�ned function length :: [a] → Integer

on lazy lists can be proven maximal yet is unproductive since the computation
diverges on all in�nite lists including productive ones � a productive function must
preserve productivity.

2.2.2. Productivity of Polymorphic De�nitions

Polymorphic programs are productive i� their specialisation to the unit domain is
productive: every type parameter is instantiated with the unit domain 1⊥ the �at
domain with a single non-bottom element.
For instance, the function head on streams is productive, since it maps the unique

productive streams of units to unit. However, head on Haskell lists (they are in fact
co-lists) is not productive because it diverges on the empty list.

2.2.3. Productivity and Strict Languages

Strict languages, unless they have support for lazy datastructures have the property
that datastructures are productive i� their computation terminates and functions
are productive i� they're total (they converge given non-bottom inputs). So pro-
ductivity corresponds to termination and totality.

2.2.4. Strong Languages, Inductive Types

We de�ned productivity as a property of domain elements, which are the semantic
values that we give to program fragments in a weak functional language. On the
other hand, programs in a strongly normalising language can be modelled with sets:
since the rules of the language prohibit diverging programs, there is no need for the
additional structure of pointed dcpo's. Every program in a strong language must
be productive if it is interpreted with partial semantics.

21

Chapter 2: Coinduction and Productivity

We can easily extend the previous de�nition of productivity to cover inductive
types, in that case, only compact elements of the domain are productive, but not
the limits (which correspond to in�nite elements).
There is a caveat though: strong languages can enforce the distinction between

inductive and coinductive types but weak languages cannot. So according to our
previous de�nition, the inductively de�ned function length :: [a] → Integer on
lazy lists, wouldn't be productive with partial semantic because the interpretation
of �nite lists with dcpos includes in�nite lists and the function length diverges
on them. However the same de�nition is productive in a strong language if the
argument is an inductive list. On the other hand, if we want coinductive lists,
then we need to make the result coinductive as well, by using coinductive natural
numbers for the result. Then the function would be productive in both settings
(weak and strong language).

2.2.5. Syntactic Criteria

The type checker of strong languages must ensure that coinductive de�nitions are
productive. The most common approach used in Coq and Agda, is to require
that corecursive calls are guarded by constructors, this is equivalent to giving a
coalgebra, more precisely such de�nitions are called futumorphisms by [UV99] and
the recursion pattern is dual to a course of value iteration.
The guardedness criterion could be relaxed to accept many more de�nitions if

we based it on lambda coiteration [Bar03] instead. Lambda coiteration captures a
corecursion pattern based on a term-coalgebra which is much slower when we must
explicitly implement it. Many articles show some examples of term-coalgebras for
stream computations [PE98, Rut03a, Hin11] and in Agda [Dan10].
Other works aim to expand the guardedness criterion, by the use of explicit type

annotations capturing to which extent a call needs to be guarded and letting the
type-checker do the work [Abe10]; or in a simply typed language where this precision
cannot be achieved using types, an algorithm performs the check [TT97a, TT97b].

2.2.6. Non Productive De�nitions in Type Theory

We can formalise general recursive functional programs in type theory using the
partiality monad [Cap05]: partial functions from A to B are formalised as functions
from A to P B where P : Set → Set is a coinductive type with two constructors:
Return : X → P X and Delay : P X → P X (thus PX = νT .X+T). The Delay
constructor acts as a guard for arbitrary recursive calls. If the computation diverge,
there will be an in�nite number of Delay, whereas if it converges, there will even-
tually be a Return. If we can prove that a computation converge, we can convert a
P X to X, by extracting the value of at the Return. Therefore if we can prove that
a function A → P B is total, we can import it in the theory, as a function A → B.
We can use the same principle to formalise general corecursive functions. A

corecursive function is (trivially) productive if its result is guarded by constructors
or equivalently, we can de�ne its result as the coiteration of a coalgebra. When it is
not de�ned in this way, we can formalise it with the productivity monad (a name I

22

Chapter 2: Coinduction and Productivity

coined): given the base functor F of the coinductive result, we de�ne a coinductive
type D F : Set with two constructors: Now : F (D F) and Later : D F. A general
recursive function A → ν F is formalised in type theory with A → D F. We can
then import it to the theory as a function A → ν F if we can prove that there is
always eventually a constructor Now along all paths of the result, viewed as a tree.

Bertot [Ber05] used the linear logic predicates always eventually to implement
the function filter on streams: it cannot accept any streams, but only those for
which the �ltering predicate is always eventually true for some element. However,
with our approach, we would write filter in the D monad, apply it to a predicate
and any stream, and then prove that the resulting stream always eventually has
some elements in order to cast the D (Stream A) to a Stream A.

23

Chapter 3.

Pure Stream Equations

Streams over some arbitrary set D are the basic example of a polymorphic coin-
ductive data type, serving as case study for almost every technique dealing with
in�nite data structures. Although being well-explored coalgebraic objects [Dij80,
Buc05, Rut03b], they have recently re-emerged in the speci�c setting of term rewrit-
ing [Zan10, EGSZ11]. They are usually introduced as the coinductive data type SD

generated by the constructor · :: · : D × SD → SD (cons), appending an element to
the front of a stream, and come with destructors head : SD → D and tail : SD → SD,
respectively selecting and removing the front element, and forming a terminal coal-
gebra. Algebraically, they can be characterised as an in�nite term model parame-
terised by the value type D modulo observational equivalence on D, also known as
bisimilarity (see De�nition 2.1.7).
Since this work is concerned with computability and partiality, we choose to work

in a semantics of partial streams, adding a bottom element ⊥ to the underlying data
type. Technically, such streams are just functions of type N→ D⊥. Note that with
this terminology, if an element of a stream equals⊥, further elements in the sequence
can still be proper inhabitants of D. Also, when speaking of computable functions,
we always mean partial computable functions. Everywhere the term stream is used
in the following chapters, partial stream must be understood.
Our problem, addressed in Chapter 4 and Chapter 5, is to decide productivity of

pure stream equations. They specify polymorphic stream functions f : ∀α .(Sα)
n →

Sα; where Sα is the type of streams (in�nite sequences) of elements of type α. The
purpose of the current chapter is to give the notations, de�nitions and properties
used in the later technical chapters.

Overview The chapter has two sections, �3.1 gives important characterisations
of polymorphic stream functions in terms of their indexing functions which are
essential in many of our proofs. �3.2 de�nes pure stream equations (PSE) which is
the object of study in Chapter 2 and Chapter 5. Examples and properties of PSE
are also given in that section and will be used in the later chapters.

3.1. Streams and Polymorphic Functions

We de�ne the abstract notion of polymorphism (�3.1.1) and we show what the poly-
morphic property speci�cally means in the case of streams. We study polymorphism
from two di�erent viewpoints: the semantical view of streams as functions on natu-
ral numbers (�3.1.2) and the coinductive view of streams as coalgebras (�3.1.4) and

25

Chapter 3: Pure Stream Equations

coalgebraic equations as a speci�cation of polymorphic stream functions, preparing
the reader for syntactic approach of �3.2. In �3.1.3 we de�ne indexing functions,
which characterise polymorphic stream functions. �3.1.5 concludes by explaining
how the di�erent notions introduced in the section will be used in later chapters to
prove the productivity of polymorphic streams equations.

3.1.1. Polymorphism

The word polymorphism literally means having many shapes. We use it to charac-
terise the functions which can be applied to arguments of di�erent types. This can
be realised in two contrasting manners [Str00].

1. By writing specialised implementations for di�erent types. We call this poly-
morphism ad hoc. Haskell type classes [WB89] fall in this category. There is
no common property between the speci�c instances of the same function.

2. By writing a universal de�nition over abstract parameter types, for instance
the projection π : a × b → a ; π〈x, y〉 = x. We call this polymorphism
parametric; All such functions enjoy a parametricity property which re�ects
the fact that the computation cannot rely on the actual values of the abstract
types. It corresponds to the categorical notion of naturality.

De�nition 3.1.1 (Parametricity property). If F and G are two type constructors,
functorial over the category of types, then a function φ : ∀α . F α → Gα is para-
metrically polymorphic if and only if it is natural in α.

∀α, β . ∀f : α→ β . ∀x ∈ F α . φ (mapF f x) = mapG f (φx)

We now study two representations for streams and view how parametrically poly-
morphic stream functions can be characterised in each case.

3.1.2. Polymorphic Streams Functions

For our study of stream productivity, we work in a set semantics. The equations that
we consider can de�ne non-productive streams with diverging elements. To model
those unde�ned elements we add a special semantic value ⊥ that doesn't belong
to any set and which is used to denote partial or non-terminating computation on
the object-level of stream reduction. A partial function from A to B is written
f : A → B⊥, and for function composition we adopt the convention of implicitly
extending the domain of f to A⊥ by setting f(⊥) = ⊥.

Streams are modelled as partial functions on natural numbers. The set of (partial)
streams over D is de�ned as SD := N→ D⊥. A stream is productive i� its denotation
s is a total function i.e. s(k) 6= ⊥ for all k ∈ N.

Stream functions are modelled as (total) functions on partial streams, for instance
f : SA → SB. We do not need to lift the result set with a bottom element, because
there is already a value in SB that stands for an unde�ned value: the completely
unde�ned stream that we can write as ⊥ and de�ned by ∀x ∈ B .⊥ x = ⊥. That

26

Chapter 3: Pure Stream Equations

stream functions are total isn't very helpful: they are de�ned for all partial streams
and return another partial stream. The interesting stream functions, when restricted
to the total streams N → A yield total streams N → B. we call such stream
functions productive, according to De�nition 2.2.6.

De�nition 3.1.2. A polymorphic stream function, abbreviated PSF, is a family of
functions

fD : SD × · · · × SD → SD

natural (parametric) in the domain argument D, i.e. for all sets α, β and functions
g : α→ β⊥, we have

map g ◦ fα = fβ ◦〈map g, · · · ,map g〉

Equivalently,

∀s1 · · · sn ∈ S
n
α . map g (fα〈s1, · · · , sn〉) = fβ〈map g s1, · · · ,map g sn〉

where map g : Sα → Sβ; map g s, g ◦ s.

Example 3.1.3. As an example, the stream function f s = λn . s(2× ⌊n/2⌋) com-
putes the stream consisting of the input elements with an even index, each given
twice:

f (s0 : s1 : s2 : s3 : s4 : s5 : s6 : · · ·) = s0 : s0 : s2 : s2 : s4 : s4 : s6 : s6 : · · ·

Let us verify that f is polymorphic. For any types α, β, and function g : α→ β,
g ◦(f s) = λn . g(f s n) = λn . g(s(2× ⌊n/2⌋)) = λn .(g ◦ s)(2× ⌊n/2⌋) = f(g ◦ s).

As this example illustrates, polymorphic stream functions are parametric in the
data type D and therefore cannot apply any operation on elements of D; in partic-
ular case analysis on the elements is not possible. Consequently, the only operation
polymorphic stream functions do is discarding, duplicating, and reordering the ele-
ments of its input streams. Therefore every element of the output stream necessarily
occurs in the input stream. We show in the next section that polymorphic stream
functions are characterised by an indexing function mapping output indices to input
indices so that every element of the output stream corresponds to an element of an
input stream. In the previous example, the indexing function is λn . 2× ⌊n/2⌋.

3.1.3. Indexing Functions

The correspondence between polymorphic stream functions and their indexing func-
tion is a direct application of the Yoneda lemma.

Lemma 3.1.4 (Yoneda). Let F be a covariant endofunctor in a category C. Let A
be an object of C. Let hA : C → Set, the covariant functor de�ned by hAX = X → A

27

Chapter 3: Pure Stream Equations

and hA u = λv . u ◦ v. Then the natural transformations hA →̇F are isomorphic to
F A. The isomorphism is given by:

. : (hA →̇F)→ F A .̂ : F A→ (hA →̇F)

f = f(idA) x̂ = λu . F u x

Proof. We prove that the functions . and .̂ are inverse of each other.

x̂ = x̂(idA) = F idA x = idFA x = x.

f̂ = λu.Fuf = λu.Fu(f idA) = λu.f (hA u idA) = λu.f(u ◦ idA) = λu.fu = f .

We �rst consider the simpler case of unary functions. As we explained earlier, they
are polymorphic and thus correspond to the natural transformations from functor
S to S. The functor S is in fact isomorphic to the hom functor: hN. The Yoneda
lemma states that the natural transformations hN → S are isomorphic to S(N) thus
N→ N. The isomorphism is given by

. : (SD → SD)→ (N→ N) .̂ : (N→ N)→ (SD → SD)

f = f(idN) î = λs . s ◦ i

Note that we identi�ed streams with functions, and that s ◦ i equals map s i and
corresponds to the functorial map for streams.

For the general case of n-ary stream functions f : ∀D .(SD)
n → SD, we identify

the set (SD)
n with In → D where In = {1, · · · , n} × N is the set of input indices

of an n-ary PSF. The elements 〈i, j〉 of In are pairs of the index of a stream in
the argument n-uple and an index of an element in this stream. We will identify
I1 with N. Again applying the Yoneda lemma states that the set of n-ary PSF is
isomorphic to SIn , or equivalently, functions N→ In: an indexing function takes an
output index and returns an input index.

We can characterise indexing functions concretely using an n-ary indexing oper-
ation that projects one element from a tuple of streams: .!!n,D . : (SD)

n → (In)⊥ →
D⊥. We usually omit the subscript since it is clear from the context.

〈s1, · · · , sn〉 !! 〈i, j〉 , si(j)

〈s1, · · · , sn〉 !! ⊥ , ⊥

We de�ne some streams of indices: For k ∈ [1 · · ·n], let idk : SIn , idk(j),(k, j).

Property 3.1.5. For all x ∈ In, 〈id1, · · · idn〉!!x = x

Proof. 〈id1, · · · , idn〉!!〈i, j〉 = idi(j) = 〈i, j〉

De�nition 3.1.6 (Indexing Functions). If f is a polymorphic stream function of
arity n, its indexing function is the function f : N → (In)⊥ = SIn de�ned by
f , fIn(id1, · · · , idn), it veri�es: ∀α . ∀s1 · · · sn ∈ (Sα)

n . ∀i, j, k ∈ N .

fα(s1, · · · , sn) k = 〈s1, · · · , sn〉!!f(k) (3.1.1)

28

Chapter 3: Pure Stream Equations

Equivalently,

f(k) = 〈i, j〉 ⇐⇒ fα(s1, · · · , sn) k = si j

f(k) = ⊥ ⇐⇒ fα(s1, · · · , sn) k = ⊥

Reciprocally, for any f ∈ SIn , we can de�ne a PSF fD such that f is its indexing
function. We simply read equation (3.1.1) as a de�nition:

fD(s1, · · · , sn) = λk .〈s1, · · · , sn〉!!f(k)

Polymorphic stream functions and indexing functions of the same arity are in bi-
jective correspondence. It might come as a surprise that a set of stream functions
is bijective to a set of streams!

We conclude the section with some remarks and examples.

Productivity and Indexing Functions

Lemma 3.1.7. A polymorphic stream function is productive if and only if its in-
dexing function is total.

It is an interesting insight that the productivity of a function on streams is reduced
to the totality on a function on natural numbers. In subsequent chapters we use
this equivalence to show di�erent properties of polymorphic stream functions.

Contravariance It is worth noting that indexing functions represent an inversion
of the usual notions of input and output for stream functions. This contravariance is
re�ected in f ◦ h = h◦f for polymorphic fD, hD : SD → SD, a fact we use repeatedly
in Chapter 5.

Computable Functions Let us stress that this thesis is only concerned with com-
putable functions, so we mean computable stream functions, computable indexing
functions, and computable streams.

Container Morphisms The containers [AAG05] generalise the representation of
streams as function types to every strictly positive type. What we call indexing
function is a container morphism for streams using their terminology.

Examples Some basic polymorphic stream functions are the tail operation:

tailD : SD → SD

tail(s) = λi . s(i+ 1)
with indexing function: tail(i) = i+ 1

29

Chapter 3: Pure Stream Equations

and the combined head-cons operation:

(head(·) :: ·)D : SD × SD → SD,

head(s) :: t = λi .

{
s(0) if i = 0,

t(i− 1) otherwise

with indexing function:

head(·) :: ·(i) =

{
(0, 0) if i = 0,

(1, i− 1) otherwise.

3.1.4. Coalgebraic Stream Equations

Streams were presented in �3.1.2 as functions from natural numbers, but we can
also view them as in�nite sequences. In programming they are implemented as lazy
datastructures. Formally, in�nite sequences are a coinductive type as in �2.1.

Coinductive types are characterised by their �nal coalgebra: a function that let us
deconstruct a value to extract some �nite information about it. The two primitive
operations to inspect a stream are headD : SD → D and tailD : SD → SD. The head
yields an observation in D: the �rst element of the stream; and the tail is the rest
the stream which in turn can be inspected. 〈headD, tailD〉 form a stream coalgebra.
A D-stream coalgebra is a function c which maps a state in A to an output element
and a next state in D×A. The type of streams SD over D captures the behaviours of
stream coalgebra, the existence and unicity of a behaviour map from any coalgebra
make 〈headD, tailD〉 a terminal coalgebra: for any coalgebra c : A → D × A, there
is a unique mapping from A to SD, called behaviour or coiteration of c and written
ν-it c : A→ SD, which recursively inspects the state in the result of c and preserves
the observations on D.

headD ◦ ν-it c = π1 ◦ c ; and tailD ◦ ν-it c = ν-it c ◦(π2 ◦ c)

The representation of streams as functions from natural numbers is justi�ed because
λ(f ∈ DN) .〈f 0, λn . f (n+ 1)〉 is also a terminal stream coalgebra.

Following the coalgebraic approach, stream functions are speci�ed by laying down
equations on heads and tails of their input and output streams. A function has the
parametricity property when stream elements are never inspected nor any operation
be carried on them. To illustrate such equations, we give the simple example of a
function which swaps every other element of its input stream. For all domain type
D and all stream s ∈ SD:

head(fs) = head(tail s)

head(tail(fs)) = head s

tail(tail(fs)) = f(tail(tail s))

In �3.2, we de�ne pure stream equations. They are parametric coalgebraic equations

30

Chapter 3: Pure Stream Equations

de�ned in terms of the polymorphic stream co-constructor . :: . : D→ SD → SD, co-
algebraically de�ned by:

∀d ∈ D, ∀s ∈ SD, head(d :: s) = d tail(d :: s) = s

With the co-constructor we can express the previous example as a single equation.

fs = head(tail s) :: head s :: f(tail(tail s))

Stream equations of this form de�ne a total coalgebra only if they verify the
guardedness criterion �2.2.5.

Partial Streams Partial streams are coalgebraically de�ned as above with a do-
main D⊥ extending D with a bottom element ⊥. A partial stream coalgebra over
domain set D and carrier A is thus a stream coalgebra A→ D⊥×A. 〈headD⊥

, tailD⊥
〉

and λ(f ∈ (D⊥)
N) .〈f 0, λn . f (n+ 1)〉 are terminal coalgebras.

To specify a partial stream the guardedness criterion is no longer necessary,
and general recursive equations can be used. Pure stream equations de�ne par-
tial streams coalgebraically using general recursion.

3.1.5. The Indexing Functions of Coalgebraic Equations

Our main interest for the thesis is the productivity of coalgebraic stream equations.
All our theoretical results are derived from the observation that indexing functions
characterise polymorphic functions: thus we can prove properties about coalgebraic
stream equations by looking at their indexing functions.
In Chapter 4 we associate to any pure stream equation a (weak) functional pro-

gram which computes its (partial) indexing function. This program is total if and
only if the pure stream equation is productive.
In �5.1 we start from an indexing function and try to derive a pure stream equa-

tion whose semantics has the same indexing function, thus answering the ques-
tion: do the pure stream equations capture all polymorphic stream functions? This
strengthens (implies) the previous result.
In �5.2 we strengthen the result even more by �nding subsets of pure stream equa-

tions that can capture all polymorphic stream functions. The subsets are obtained
by giving syntactic limitations.

3.2. Pure Stream Equations

Chapter 4 and Chapter 5 are concerned with the study of pure stream equations.
They can be viewed as very restricted functional programs on streams. The restric-
tions are needed so that we can focus on speci�c aspects of corecursive programs,
our goal being to identify which elements, which property of programs cause pro-
ductivity to be undecidable: where can we draw the frontier between undecidable
and decidable productivity? Can we express this frontier as a syntactic criterion?

31

Chapter 3: Pure Stream Equations

Overview Pure stream equations systems (PSES) are introduced by means of an
example in �3.2.1. PSES are de�ned as syntactic objects in �3.2.2 then given a
semantics as polymorphic stream functions in �3.2.3. We then de�ne in �3.2.4 a
family of stream operations for interleaving many streams and projecting one of the
interleaved streams. Those operations allow us to deal with tuples of streams as
single streams, and thus PSES can be equivalently formulated as a single equation
involving interleaving and projections, which we call a zip-proj equation �3.2.5.

3.2.1. Introduction

Pure stream equations systems (PSES) specify polymorphic stream functions. They
are constituted of mutually recursive equations involving only primitive operations
on streams: head and tail, and the binary operator ::. 〈head, tail〉 : SD → D× SD is
a �nal coalgebra and (. :: .) : D× SD → SD is its inverse.
As a representative example, consider the system:

Example 3.2.1 (Hanoi).

const(s) = head(s) :: const(s),

zip2(s, t) = head(s) :: zip2(t, tail(s)),

hanoi(s) = zip2(hanoi(tail(s)), const(s)).

The function �const� returns a constant stream of the �rst element of its argument,
�zip2� produces the interleaving of two streams: elements from each stream are given
alternatively. Through evaluation, which will be elaborated in �3.2.4 p. 38, we �nd
that:

hanoi(s) = ⊥ :: s(0) :: s(1) :: s(0) :: s(2) :: s(0) :: s(1) :: s(0) :: s(3) :: · · · .

The corresponding indexing function is hanoi(k) = max{v such that 2v divides k}
where max{N} := ⊥. To explain the naming, if the type of elements D is instantiated
with the set of disks of an in�nite Tower of Hanoi and s ∈ SD is a list of the
disks sorted by increasing size, then tail(hanoi(s)) is a walkthrough for coinductively
solving the puzzle, the k-th stream element being the disk to be moved in the k-th
step, with the smallest disk always moving in the same direction [Hin89].

We want to study the productivity of pure stream equations. The main restric-
tion we considered is polymorphism. A productive stream must have converging
elements. A non-polymorphic function has many possibilities to create diverging el-
ements because of the speci�c operations of the elements' type. Without restriction
at all on the elements' type, we would already have an undecidable problem to prove
that the head of the stream converges, let alone to prove that the whole stream is
productive. Polymorphism, as explained in �3.1.1 by virtue of the naturality prop-
erty imposes a good behaviour to the stream function: it can take elements of its
own input streams and place them in the output stream, reorganising them around.
If the inputs are assumed productive (the hypothesis of function productivity, see
De�nition 2.2.6) then their elements are converging. So where would divergence in

32

Chapter 3: Pure Stream Equations

the result stream come from? Recursive calls! Indeed, the simplest non-productive
stream equation is:

fs = fs

Read as a speci�cation, it imposes no restriction to the solutions of the equations: no
observation on the elements is given. The least solution, yields the unde�ned stream.
∀σ ∈ SD . ∀n ∈ N .(fDσ)n = ⊥ with unde�ned indexing function ∀n . f(n) = ⊥.

Pure stream equations would be extremely boring and trivially productive if there
weren't recursive calls. In fact we prove in the following chapters that the addition
of recursive calls make productivity undecidable (when considering at least two
functions). Here are a few obviously non-productive polymorphic stream functions
(non-mutually recursive). The �rst two don't even use their input elements.

bottom s = bottom s

stream-of-bottoms s = head(stream-of-bottoms s) :: stream-of-bottoms s

partial-stream s = head s :: tail(partial-stream s)

holes s = head s :: head(tail(holes s)) :: holes(tail s)

Their least solution, given a productive input s0 :: s1 :: s2 :: · · ·.

bottom s = ⊥

stream-of-bottoms s = ⊥ ::⊥ ::⊥ ::⊥ :: · · ·

partial-stream s = s0 ::⊥

holes s = s0 ::⊥ :: s1 ::⊥ :: s2 ::⊥ :: · · ·

Remark 3.2.2. In Haskell where the product is lifted, we make a semantic distinc-
tion between bottom and stream-of-bottom: when forcing their evaluation through
a case expression matching bottom fails, but stream-of-bottoms succeeds and binds
its head and tail to unde�ned values that would diverge if they are evaluated.

However, if we extend the notion of bisimilarity (see �2.1.3) to partial streams,
bottom and stream-of-bottoms are bisimilar: they're both unde�ned everywhere.
With the set semantics we use in this chapter, we consider them equal.

3.2.2. The Syntax of Pure Stream Equations

We de�ne a simple form of a recursive system of equations for specifying polymor-
phic stream functions. We call them pure stream equation systems, abbreviated
PSES. They are syntactic objects de�ned over four sets of disjoint alphabets pro-
viding symbols for function variables (fk), stream parameters (sj), constants (head,
tail, ::) and meta-symbols (equal sign, parenthesis, and spaces). A system is a
family, indexed by k ∈ [1 · · ·n], of stream equations of the following form:

fk(s0, · · · , spk−1) = σk

33

Chapter 3: Pure Stream Equations

where the right hand side σk is a stream term, de�ned below. In addition, we require
that there is only one equation per function variable, i.e. the fk are distinct; for each
equation, the parameters are distinct; and any parameter in σk has to be listed on
the left hand side. Each function has an arity pk equal to the number of parameters
it has on its de�ning equation. Function calls may occur on right hand side under
the condition that it is de�ned by one equation and that it is given a number of
stream terms arguments equal to its arity.

Stream terms are de�ned by the following generative grammar.

σ ::= si a stream parameter (i ∈ [0..pk − 1])
| tail(σ) a stream stripped of its �rst element
| head(σ) :: σ′ the head of stream σ followed by a stream σ′

| fk(σ0, · · · , σpk−1) a call to a stream function (k ∈ [1..n])

We take the convention that head σ :: σ′ means head(σ) :: σ′. We use the shortcut
tailk(σ) for tail(tail(· · · (tail(σ)))) with tail composed k times.

De�nition 3.2.3 (Unary PSES). A system is called unary if all de�ned stream
functions are unary, i.e. pk = 1 for all k.

We stress that there are no further restrictions such as guardedness on the form
of the stream terms σk since we speci�cally deal with non-productive equations
using our partiality semantics (see �3.1.4). By a canonical application of the Kleene
�xed-point theorem [GHK+03], each stream equation system of size n gives rise to
n corresponding polymorphic stream functions, the least �xed-point of the given
system of equations with respect to the partial ordering on D⊥ generated by ⊥ < d
for d ∈ D when the tail and head-cons operations are interpreted according to �3.1.3.
An equation in the system is called productive if the polymorphic stream function
it de�nes is productive. In what follows, we will usually use the same symbols to
denote syntactic occurrences and their semantic counterparts as their meaning is
always clear from the context.

In general many productive stream functions are solution of a pure equation. Only
when the least solution is productive then it is unique. For instance the equation
fs = fs has all polymorphic stream functions (productive or not) as solutions.

3.2.3. Semantics of Pure Stream Equations

We can view a pure stream equation system as an executable speci�cation for func-
tions on partial streams. We give here an operational semantics to the equations
that constructs the least solution. For this, we formalise the computation of stream
elements using a functional (reduction) relation on stream terms and indices.
We note σ ! n for the pair of a stream term σ and an index n ∈ N. We write m

for the composition of with itself m times, + for its transitive closure, ∗ for
its re�exive and transitive closure.

De�nition 3.2.4 (Indexing Reduction). The de�nition is inductive on stream

34

Chapter 3: Pure Stream Equations

terms and all the variables are universally quanti�ed.

tail σ ! n σ ! n+ 1

head(σ) :: σ′ ! n

{
σ ! 0 if n = 0

σ′ ! n− 1 otherwise

f(σ0, · · · , σp−1) ! n ρ[∀i . si ← σi] ! n

Where f(s0, · · · , sp−1) = ρ is an equation of the system and ρ[∀i . si ← σi] is the
parallel substitution in term ρ of parameters si with σi, for all i ∈ [0, p− 1].

This is e�ectively equivalent to introducing a rewriting system on constructs of
the form head(tailk(σ)) based on the following rules with a deterministic outermost
rewriting strategy.

head(head(σ) :: σ′)→ head(σ),

tail(head(σ) :: σ′)→ σ′

Note that indexing a stream variable is irreducible, meaning we reached a point
when the value is an element of a stream argument. Every reduction sequence is
unique, this allows us to express the semantics of the equation as a polymorphic
stream function. Let f be a function symbol of arity p in a PSES. For a given
domain D, we note fD the least solution of f .

De�nition 3.2.5 (Least Solution of a Pure Stream Equation).

fD(s1, · · · , sp),λx .

{
si(j) if f(s1, · · · , sp) ! x ∗ si ! j,

⊥ otherwise

for j ∈ {0, · · · , n − 1}. It is easy to see that this is indeed the smallest solution
to the given speci�cation and ful�ls the parametricity property. From this, we can
express the indexing function f ∈ SIp as

De�nition 3.2.6 (Indexing Function of a Pure Stream Equation).

f(x),

{
(i, j) if f(s1, · · · , sp) ! x ∗ si ! j,

⊥ otherwise.

It is clear that f is the indexing function of fD as expressed in De�nition 3.1.6.

De�nition 3.2.7 (Productivity of a Pure Stream Equation). A pure stream equa-
tion f is productive if and only if its least solution fD is productive.

Corollary 3.2.8. A PSE f is productive if and only if its indexing function f is
total.

Proof. By De�nition 3.2.7 and Lemma 3.1.7.

35

Chapter 3: Pure Stream Equations

Property 3.2.9. A polymorphic function is productive i� any specialisation to a
concrete type is productive.

Proof. In De�nition 3.2.5 it appears that the well-de�nedness of the output stream
elements doesn't depend on actual values of input stream elements (assuming input
streams are productive).

3.2.4. Interleaving and Projection

We de�ne some stream equations that we need for the developments in the next
chapters. They are all productive and we give their (total) indexing function.

We start by proving a property of the indexing reduction.

Lemma 3.2.10. head σi :: · · · :: head σi+n−1 :: σ ! r ∗

{
σi+r ! 0 if r < n

σ ! r − n otherwise

Proof. An induction on n. The base case n = 0 follows from re�exivity of ∗.
Assume the previous property holds for some n ∈ N (for all σ, i, r) we prove it holds
for n+ 1 by case analysis on r ∈ N.

If r = 0, head σi :: · · · :: head σi+n :: σ ! 0 σi ! 0

If 1 ≤ r < n+ 1,

head σi :: · · · :: head σi+n :: σ ! r head σi+1 :: · · · :: head σ(i+1)+n−1 :: σ ! r − 1

 ∗ σ(i+1)+r−1 ! 0 (by hyp.)

= σi+r ! 0

If r ≥ n+ 1,

head σi :: · · · :: head σi+n :: σ ! r ∗ head σi+n :: σ ! r − n (by hyp.)

 σ ! r − n− 1

= σ ! r − (n+ 1)

Interleaving

For n ∈ N, n > 0 we de�ne a pure stream equation zipn which takes n streams
and interleaves their elements, outputting the �rst element of each stream before
interleaving their tails:

zipn(s1, · · · , sn) = head s1 :: · · · :: head sn :: zipn(tail s1, · · · , tail sn)

Equivalently, it starts with the �rst element of the �rst stream and interleaves the
others streams and the tail of the �rst:

zipn(s1, · · · , sn) = head s1 :: zipn(s2, · · · sn, tail s1)

In the previous equation the recursive call is guarded by the stream constructor
and therefore is productive; see �2.2.5. Its indexing function is thus total, with:

36

Chapter 3: Pure Stream Equations

Lemma 3.2.11. zipn(k) = (k mod n, ⌊k/n⌋)

Proof. By De�nition 3.2.6 it is enough to prove by induction on q that:

zipn(σ0, · · · , σn−1) ! q × n+ r ∗ σr ! q when r < n

Base case:

zipn(σ0, · · · σn−1) ! 0× n+ r

 head σ0 :: · · · :: head σn−1 :: zipn(tail σ0, · · · , tail σn−1) ! r

 ∗ σr ! 0 (by Lemma 3.2.10)

Assuming the property true for q ∈ N, we show it for q + 1:

zipn(σ0, · · · , σn−1) ! (q + 1)× n+ r

 ∗ zipn(tail σ0, · · · , tail σn−1) ! q × n+ r (by Lemma 3.2.10)

 ∗ tail σr ! q (by induction hypothesis)

 σr ! q + 1

Projection

We de�ne a polymorphic stream function (PSF) to extracts the �rst stream ar-
gument from an interleaving of streams. It satisfy, for n > 0 and all variables
universally quanti�ed:

projn,D(zipn,D(s0, · · · , sn−1)) = s0

The following pure stream equation uniquely de�nes a PSF having the previous
property. For n > 0,

projn s = head s :: projn(tail
n s) (3.2.1)

Where tailn is n compositions of tail. The recursive call is guarded so the function
is productive. A proof by induction on x shows that:

projn x = n× x (3.2.2)

When n = 1, the interleaving and projection functions are the identity, zip1 =
proj1 = idS . When n = 0, the equation (3.2.1) for projn still makes sense if we set
tail0 = idS, it de�nes a function which outputs a constant stream consisting of the
�rst element of its input:

const s = head s :: const s .

Its indexing function is the constant null: ∀k ∈ N . const(k) = 0.
For convenience, we also de�ne the projection for the other stream arguments:

For i < n, de�ne projn,i(s), projn(tail
i(s))

Its indexing function is projn,i(k) = n× k + i

37

Chapter 3: Pure Stream Equations

proj and zip enjoy the two following properties:

projn,i,D(zipn,D(s0, · · · , sn−1)) = si

s = zipn,D

(
(projn,i,D(s))i∈{0,···,n−1}

)

Hanoi

We are now ready to return to Example 3.2.1. Recall that

hanoi(s) = zip2(hanoi(tail(s)), const(s))

We will prove that hanoi(2v(2m + 1)) = v by induction on v. In the base case, we
have

hanoi(s) ! 2k + 1 zip2(hanoi(tail(s)), const(s)) ! 2k + 1

 ∗ const(s) ! k

 ∗ s ! 0

This proves hanoi(2k + 1) = 0. In the induction step, we have

hanoi(s) ! 2v+1(2m+ 1) zip2(hanoi(tail(s)), const(s)) ! 2v+1(2m+ 1)

 ∗ hanoi(tail(s)) ! 2v(2m+ 1)

 ∗ tail(s) ! v

 s ! v + 1

This proves hanoi(2v(2m+ 1)) = v implies hanoi(2v+1(2m+ 1)) = v + 1.

It is interesting to try and compute the element in the �rst stream position,

hanoi(s) ! 0 zip2(hanoi(tail(s)), const(s)) ! 0 + hanoi(tail(s)) ! 0,

leading to an in�nite chain of reduction

hanoi(s) ! 0 + hanoi(tail(s)) ! 0 + hanoi(tail2(s)) ! 0 + · · · ,

showing that hanoi(0) = ⊥.

3.2.5. Zip-Proj Equations

Using the operations of interleaving and projection we can greatly simplify the
study of PSES. We show that any system of mutually recursive equations over multi
argument stream functions can be reduced to an equivalent single unary equation.
We de�ne a subset of pure stream equation systems and prove they are in bijection.

De�nition 3.2.12. A zip-proj equation consists of a single equation φ s = σ on a
unary polymorphic stream function φD : SD → SD. The right hand side of a zip-proj
equation is called a zip-proj stream term and belongs to the language generated by

38

Chapter 3: Pure Stream Equations

the following grammar.

σ ::= s input stream
| (tail σ) stream stripped of its �rst element
| (head σ :: σ′) �rst element of stream σ followed by σ′

| (zipn σ0 · · · σn−1) n > 0, interleaving of n streams
| (projn σ) n ∈ N, �rst projection of n interleaved streams
| (φσ) recursive call

A zip-proj equation together with the equations for all the zipn and projn called in
its right hand side form a pure stream equation system. A zip-proj equation de�nes
a polymorphic function and an indexing function corresponding to the semantics of
the pure stream equation system.

Remark 3.2.13. In a zip-proj equation the corecursion only happens in the de�ni-
tion of φ, zip and proj. There is no mutual recursion.

Lemma 3.2.14. Let (fk,D)k∈[1,n] be the solutions of a system of pure stream equa-
tions, we can construct a zip-proj equation de�ning a function φD : SD → SD such
that: ∀k ∈ [1, n], ∀s, s1, · · · , sp ∈ SD,

fk,D(s1, · · · , spk) = projn,k−1,D(φD(zipp,D(s1, · · · , sp)))

φD(s) = zipn,D

(
(fk,D(projp,0,D(s), · · · , projp,pk−1,D(s))k∈[1,n]

)

Proof. The construction uses interleaving and projections to gather multiple streams
arguments into a single one and multiple functions into one. Given a system of n
equations

fks1 · · · spk = σk

of arity pk for k ∈ [1, n], let p = max{pk | k ∈ [1, n]}, we de�ne a zip-proj equation

φ s = zipn Jσ1K · · · JσnK

as the interleaving of the right hand sides of (fk)k∈[1,n] by recursively applying the
following transformation on stream terms:

JsiK = projp(tail
i−1 s) i ∈ [1, p]

Jfk σ1 · · · σpkK = projn(tail
k−1(φ(zipp Jσ1K · · · JσpkK s · · · s))) k ∈ [1, n]

Where s is repeated (p− pk) times in the call to zipp.

Corollary 3.2.15. A pure stream equation is productive if and only if a correspond-
ing zip-proj equation is productive.

Thus, we can work in the simpler setting of zip-proj equations, without losing the
generality of PSES.

39

Chapter 4.

PSES Productivity is Π
0
2-Complete

In this chapter we study problem of the productivity of pure stream equations
systems (PSES). PSES de�ne polymorphic functions and productivity is equivalent
to totality of the indexing function (Corollary 3.2.8), so the problem is Π0

2. But is it
Π0

2-hard? After all, the equations might not capture all polymorphic functions and
the functions that they capture might not be so complicated that the problem is
Π0

2-hard. In fact it is: we found a set of indexing functions whose totality problem
is undecidable and fully captured by PSES, i.e. there exist a PSES specifying the
corresponding polymorphic function associated with the indexing function. Such a
set is given by a generalisation of the Collatz problem.

A previous proof of the same result, relies on a di�erent encoding of Collatz
functions [EGH09a]. I discuss this article in �4.3.1.

Overview �4.1 gives some background on decision problems, computability, the
arithmetical hierarchy and reduction. �4.2 de�nes the generalised Collatz problem.
In �4.3 we reduce the problem of pure stream productivity (PPSE) to the generalised
Collatz problem (GCP). In �4.4 we prove the Π0

2 hardness of GCP, implying the
Π0

2 hardness of PPSE. This proof is once again a reduction from another slightly
di�erent generalisation of the Collatz problem whose arithmetic class was already
known.

4.1. Terminology: Problems, Computability and

Reductions

Minimal knowledge of computability is necessary to understand this chapter, the
reader must know about the arithmetical hierarchy and many-one reductions. This
section gives a short overview of that knowledge. For a textbook on computability
see [Coo03].

Decision Problems

Decision problems are questions to which we can answer yes or no. Solving the
problem is giving the set of its solutions. If there is an algorithm to decide whether
an element is solution then the problem is decidable, unfortunately most interesting
problems are undecidable. We often identify a problem with the set of its solutions.

Some problems we refer to in the chapter:

41

Chapter 4: PSES Productivity is Π0
2-Complete

� The halting problem is to decide whether a Turing machine terminates on a
given input (initial con�guration).

� The totality problem is to decide whether a Turing machines terminates on
all its inputs;

� PPSE which we consider in this chapter is to decide whether a pure stream
equation system is productive.

� GCP is the generalised collatz problem de�ned in �4.2.2 is used to prove PPSE.

One purpose of computability theory is to classify sets. Usually, we consider
subsets of natural numbers. We must use some encoding to transform a problem
ranging over another domain.
For instance, Gödel encoding are based on the factorisation into prime divisors.

Given n distinct prime numbers p1, · · · , pn we can encode tuples of natural numbers
x1, · · · , xn as

∏n
k=1 p

xk

k , this is called a Gödel encoding. We use such an encoding
explicitly in �5.1.2.

Computability

We classify sets and relations on natural numbers according to their computability.
A set is primitive recursive i� its characteristic function is primitive recursive. A
set is recursive (synonyms: computable, decidable), i� its characteristic function
is recursive. A set is recursively enumerable (synonyms: computably enumerable,
semi-decidable) i� it is empty or the range of a total recursive function; equivalently
i� it is the domain of a partial recursive function. A set is co-recursively enumerable
i� its complement in N is recursively enumerable. An interesting result is that a set
is recursive i� it is both recursively and co-recursively enumerable.
The Church-Turing thesis, widely accepted allows us to identify computable with

recursive.
We may indistinguishably use the previous terminology to qualify sets, relations,

problems and predicates which can easily be identi�ed as the sets of the elements
that satisfy them, encoding tuples of natural numbers if necessary.
Sets are further classi�ed in the arithmetical hierarchy.

Arithmetical Hierarchy

First order formulas and the relations they de�ne are classi�ed in an arithmetical
hierarchy according to their quanti�er forms. We de�ne by induction two classes of
predicates: Σ0

p and Π0
p indexed by natural numbers. In the de�nition, a and x are

tuples of natural numbers.

� Σ0
0 = Π0

0 are the primitive recursive relations.

� Σ0
(p+1) are the relations P satisfying P (a) ⇐⇒ ∃x .Q(a, x). where Q ∈ Π0

p.

� Π0
(p+1) are the relations P satisfying P (a) ⇐⇒ ∀x .Q(a, x). where Q ∈ Σ0

p.

42

Chapter 4: PSES Productivity is Π0
2-Complete

We also de�ne ∆0
p as the intersection of Σ0

p and Π0
p.

The subscript corresponds to the number of alternations of unbounded quanti�ers,
and the class says which is the �rst: existential for Σ, universal for Π. The negation
of a formula and the complement of a relation belong to the other class: P ∈ Π0

p ⇐⇒
¬P ∈ Σ0

p. Each class is strictly included in both of the next: Σ0
p ∪ Π0

p ⊂ ∆0
p+1.

What is important is the smallest class in which a relation is.

� Σ0
1 are the recursively enumerable relations;

� Π0
1 are the co-recursively enumerable relations;

� ∆0
1 are the recursive relations (decidable);

� Π0
2 is the class of relations of the form P (a) ⇐⇒ ∀x . ∃y .R(a, x, y) where R

is primitive recursive; and strictly extends Σ0
1 and Π0

1.

Membership, Hardness, Completeness

The halting problem is Σ0
1 since given a Turing machine M and an initial con�g-

uration c, M terminates on c i� there exists a �nite number k of state transitions
from the starting state in con�guration c to a �nal state.
The totality problem is Π0

2 since it is equivalent to: for all initial con�guration
the machine terminates.
Note that those arguments only justify membership to a class. To get a precise

characterisation, we need to show that the problem doesn't lie in any smaller class
of the hierarchy. We say the problem is strictly in that class.
For instance if a problem is strictly Π0

2, we cannot enumerate either the elements
for which it is true nor those for which it is false, since it is neither recursively (Σ0

1)
nor co-recursively (Π0

n) enumerable.

Reducibility

We can reduce a problem Q to a problem P by providing a function f : Q → P
such that Q is equivalent to P ◦ f . So that we can solve Q whenever we can solve
P .

De�nition 4.1.1 (Reducibility). We say Q is many-one reducible to P (Q ≤m P)
i� there is is a total recursive function f such that ∀x .Q(x) ⇐⇒ P (f(x)).

We say f is a reduction from Q to P .

Property 4.1.2. The many-one reduction is a preorder on subsets of the natural
numbers.

Property 4.1.3. If C is one of Σ,Π,∆, and n ≥ 1, if Q is reducible to P then
P ∈ Cn =⇒ Q ∈ Cn.

De�nition 4.1.4 (Hardness). If all problems of a class Cn are reducible to a problem
P , then we say P is Cn-hard.

43

Chapter 4: PSES Productivity is Π0
2-Complete

By transitivity of ≤m, the following holds.

Property 4.1.5. If Q ≤m P and Q is Cn-hard then so is P .

We use that last property twice in this chapter: 1) to prove that GCP is Π0
2-hard

by reduction from KSP whose hardness is known from [KS07]. 2) to prove that
PPSE is Π0

2-hard by reduction from GCP.

Property 4.1.6. If P is Cn-hard then P is not in any lower classes.

Proof. Let Q be a relation whose lowest class is Cn, then it isn't in any of Cm, for
m < n. By the contraposition of Property 4.1.3 P isn't in any of the Cm either.

De�nition 4.1.7 (Completeness). If P is both Cn-hard and in Cn, we say P is
Cn-complete.

By Property 4.1.6, a Cn-complete problem is also strictly in Cn, but the reverse
is not necessary.

4.2. A Generalisation of the Collatz Problem

The Collatz problem, also called the 3n + 1 conjecture, states that iterating the
simple process of halving even numbers and adding one to the triple of odd numbers,
always eventually reaches one. This problem can be generalised to functions that
are linear on modulo classes.

In this section we de�ne generalised Collatz functions and the generalised Collatz
problem. A similar generalisation [KS07] was proven Π0

2. In �4.4 we reduce their
problem to ours to prove that it is also Π0

2.

4.2.1. The Collatz Problem

Let N+ the set of strictly positive natural numbers. Consider the function f : N+ →
N+ de�ned by:

f x =

{
x/2 when x is even ;

3× x+ 1 when x is odd .
(4.2.1)

The Collatz problem is to know if the iterations of f converge to 1. If it does,
then further iterations would yield a loop: 1, 4, 2, 1, 4, 2, 1, etc. We write fk for f
composed with itself k times:

f 0 = idN+ fk+1 = f ◦ fk

Conjecture 4.2.1 (Collatz). ∀x > 0 . ∃k ∈ N . fk x = 1

The conjecture is still unproven to this day despite extensive computer simulations
and research [Lag06].

44

Chapter 4: PSES Productivity is Π0
2-Complete

4.2.2. A Generalisation

We generalise the Collatz problem with the intent of reducing it to the productivity
of pure stream equations.

De�nition 4.2.2 (Collatz Functions). Let f : N → N, and a natural m > 0, we
say f is m-Collatz when it is linear on the equivalence classes modulo m.

Therefore, a Collatz function is given by the data of m and for all i < m, two
real numbers ai and bi (which are in fact necessarily rational), such that,

∀x ∈ N . x ≡ i (modm) =⇒ f x = ai × x+ bi .

Problem 4.2.3 (GCP: Generalised Collatz Problem). GCP is the set of Collatz
functions f such that every natural x is mapped to zero by an iteration of f .

GCP(f) ⇐⇒ ∀x ∈ N . ∃k ∈ N . fk x = 0 .

Note, that the problem takes as input a representation of a collatz function given
by its modulus and coe�cients. This can be encoded as a natural number, and we
can view the problem as a subset of N.

Theorem 4.2.4. GCP is Π0
2 complete.

Proof. Given in �4.4

Example 4.2.5 (Original Collatz problem). De�ne g the 2-Collatz function given
by m = 2, a0 = 3, b0 = 3, a1 = 1/2, b1 = −1/2. Then GCP(g) is equivalent to the
original Collatz problem.

Proof. Let f be the original Collatz function from (4.2.1).
If x > 0 is even, ∃p ∈ N . x = 2 × p + 2, and f(x) = p + 1, and g(x − 1) =

a1 × (2× p+ 1) + b1 = p+ 1
2
− 1

2
= p = f(x)− 1.

If x > 0 is odd, ∃p ∈ N . x = 2 × p + 1, and f(x) = 6 × p + 4, and g(x − 1) =
a0 × (2× p) + b0 = 6× p+ 3 = f(x)− 1.
We proved that ∀x > 0 . g(x − 1) = f(x) − 1. By induction on n, it follows

that ∀x, n ∈ N . gn(x − 1) = fn(x) − 1. Thus the convergence of iterations of g to
zero is equivalent to the convergence of iterations of f to one on their respective
domains.

4.2.3. Properties of Collatz Functions

The remainder of the section is dedicated to proving properties of Collatz functions.

Lemma 4.2.6. The coe�cients ai of a Collatz function are positive.

Proof. Otherwise we could �nd a big enough x for which the value of f would be
negative.

For the reduction to pure stream equations, it is useful to de�ne the Collatz
functions only in terms of natural numbers. We will thus prove the following result.

45

Chapter 4: PSES Productivity is Π0
2-Complete

Proposition 4.2.7. The Collatz functions are exactly the functions f : N → N

such that there exists a natural number m > 0, and for all natural numbers i < m,
two natural numbers ci and di, such that,

∀y ∈ N . ∀i ∈ [0,m− 1] . f (y ×m+ i) = ci × y + di .

Proof. Let f be a Collatz function. We will express coe�cients ci and di of Propo-
sition 4.2.7 in terms of the data m, ai, bi of De�nition 4.4.1. Let i ∈ [0,m− 1], we
de�ne ci, ai ×m and di, ai × i+ bi. Then, for y ∈ N,

f (y ×m+ i) = ai × (m× y + i) + bi

= [ai ×m]× y + (ai × i+ bi)

= ci × y + di

We need to show that ci and di are natural numbers. For all i ∈ [0,m − 1], di =
f i ∈ N and ci = f (m+ i)− di ∈ Z. This establishes that ci is an integer, but it is
positive because ci = ai ×m and ai ≥ 0 (Lemma 4.2.6).
Reciprocally, every function with m, ci, di as in Proposition 4.2.7 is a Collatz

function by taking ai, ci/m and bi, di − ci × i/m.

Corollary 4.2.8. The coe�cients ai, bi of a Collatz function are rational numbers.

Proof. ai = ci/m and bi = di − ci × i/m, with ci, m, di, i ∈ N.

Example 4.2.9. The function g of Example 4.2.5 corresponding to the original
Collatz problem is de�ned with the coe�cients: m = 2, c0 = 6, d0 = 3, c1 = 1,
d1 = 0. For all x, g(x × 2) = 6 × x + 3 and g(x × 2 + 1) = x. Remember that
function f of (4.2.1) is translated. For x > 1,

f(x) = g(x− 1) + 1

=

{
(6× y + 3) + 1 if x− 1 = y × 2

y + 1 if x− 1 = y × 2 + 1

=

{
3× x+ 1 if x = (y + 1)× 2− 1

x/2 if x = (y + 1)× 2

4.3. Generalised Collatz is Reduced to PSES

Productivity

The problem of pure stream productivity, noted PPSE is precisely stated.

Problem 4.3.1 (PPSE: Productivity of Pure Stream Equations). PPSE is the
set of systems of pure stream equations whose least solution consists of productive
polymorphic stream functions.

We will now describe how a stream equation φ = σh can be de�ned from a Collatz
function h, so that solving GCP(h) is equivalent to solving PPSE(φ = σh).

46

Chapter 4: PSES Productivity is Π0
2-Complete

The principle of this transformation is that collatz functions arise naturally as
indexing functions of pure stream equations thanks to zipm whose indexing func-
tion computes the quotient and remainder modulo m, and proja,b whose indexing
function multiplies by a and adds b.

Example 4.3.2. We give a zip-proj equation corresponding to the original Collatz
function:

φ s = head s :: tail
(
zip2

(
proj6,3(φ s), proj1,0(φ s)

))

Note that the indices of the projections correspond to the coe�cients ci and di of
the Collatz function g. Looking at the indexing relation: φ s ! 0 ∗ s ! 0 and for
x ≥ 1,

φ s ! x ∗ tail
(
zip2

(
proj6,3(φ s), proj1,0(φ s)

))
! x− 1

 ∗ zip2

(
proj6,3(φ s), proj1,0(φ s)

)

 ∗

{
proj6,3(φ s) ! y if x = 2× y

proj1,0(φ s) ! y if x = 2× y + 1

 ∗

{
φ s ! 6× y + 3 if x = 2× y

φ s ! y if x = 2× y + 1

This shows that φ 0 = 0 is well de�ned and when x ≥ 1, φx = φ (g x) where g is the
Collatz function for the original problem, as de�ned in Example 4.2.9. So φ is total
(and φ productive) i� g veri�es the generalised Collatz problem, i.e. its iterations
converge to 0 for any x ≥ 1.

We now consider the general case.

Reduction Given a Collatz function h, we de�ne a stream function φh with a
pure stream equation such that the indexing function is total i� h has the Collatz
property.

Lemma 4.3.3. Let m > 0, for i < m, let ci, di ∈ N, de�ning the Collatz function
h by

∀i < m, ∀y ∈ N, h (y ×m+ i) = ci × y + di

We de�ne a zip-proj equation specifying a polymorphic function φh:

φh s = head s :: tail
(
zipm((projci,di(φh s))i∈[0,m−1])

)

The indexing function of φh satis�es:

φh x =

{
0 if x = 0 ;

φh (hx) otherwise .

47

Chapter 4: PSES Productivity is Π0
2-Complete

Proof. First, φh s ! 0 s ! 0. Then, for x ≥ 1,

φh s ! x tail
(
zipm((projci,di(φh s))i∈[0,m−1])

)
! x− 1

 ∗ zipm((projci,di(φh s))i∈[0,m−1]) ! x

 ∗ projcj ,dj(φh s) ! y where y,⌊x/m⌋ and j, x mod m

 ∗ φh s ! cj × y + dj

= φh s ! hx

Equivalence We show that the equation is productive if and only if h has the
Collatz property.

Property 4.3.4. PPSE(φh) ⇐⇒ GCP(h) .

Proof. 1. GCP(h) =⇒ PPSE(φh) .
Assume GCP(h) holds, then we can de�ne a function k : N→ N which for all
x yields the smallest i such that hi x = 0. Then φh is constant null because
∀x ≥ 1 . φh x = φh (h

k(x)x) = φh 0 = 0. So φh is total and PPSE(φh) follows
from Corollary 3.2.8.

2. ¬GCP(h) =⇒ ¬PPSE(φh) .
If GCP(h) doesn't hold, then there is x ∈ N such that ∀k ∈ N . hk x > 0. And
there is an in�nite chain of indexing reductions from φhs ! x showing that
φhx = ⊥. Since the indexing function is not total, the stream equation is not
productive.

The Main Result

Theorem 4.3.5. PPSE is Π0
2 complete

Proof. 1. PPSE ∈ Π0
2 because productivity of a PSE is equivalent to totality of

its indexing function (Corollary 3.2.8).

2. The Π0
2 hardness of GCP is established in �4.4. The reduction of �4.3 from

GCP to PPSE shows that PPSE is Π0
2 hard.

4.3.1. Comparison with Other Proofs of Undecidability

Complexity of FracTran and Productivity

The proof [EGH09a] has a very similar �avor. It is a reduction from the uniform
halting problem (UHP) for FracTran programs, which in addition they had to prove
by reduction from UHP for Turing machines. The similarity of their transformation
is explained by the fact that each computation step of a FracTran program is re-
alised by iterating a Collatz function. The reciprocal being false: not every Collatz
function is the step function of a FracTran program. For a subset (of so called non-
immortal) FracTran programs, UHP is equivalent to GCP of its step function, thus
giving a reduction from FracTran UHP to GCP as another proof of Π0

2-hardness of
GCP.

48

Chapter 4: PSES Productivity is Π0
2-Complete

Stream equality

Ro³u [Ro³06] established that the problem of proving two streams equal is Π0
2 com-

plete. The two streams are de�ned using a �nite number of reduction rules allowing
pattern matching on the elements of the stream.

Reducing the Totality Problem to Stream Equality To prove Π0
2-hardness of

the problem, Ro³u encodes a Turing machineM as a set mutually recursive functions
qi : S× S → B for each state qi of the machine M . B is the type of bits and S the
type of bit-streams. The arguments of qi represent the current con�guration of the
tape and the current position of the scanner along it, the in�nite tape being split
in two halves each one represented by a bit-stream. The functions are de�ned by
pattern matching on the head of the right stream, corresponding to the bit being
scanned. Depending on this value, the function qi may call another function qj,
re�ecting a state change, with the two stream arguments re�ecting the changes on
the tape. A halting state will in addition have a clause qh〈L,R〉 = 1 to terminate
the computation. Let qs be the function encoding the starting state, and zeros =
0 :: zeros the constant stream of 0. It is equivalent for the machine M to halt on
input b1b2 · · · bn and for the term qs〈zeros, b1 :: b2 :: · · · :: bn :: zeros〉 to reduce to 1.
Ro³u then proceeds to de�ne a stream function t : S→ S,

t (R) = qs(zeros, R) :: t (1 ::R) .

Although the recursive call is guarded, each element qs(zeros, R) of the result stream
may be unde�ned because qs is partial.
Then, the stream equality t (0 :: 1 :: · · · :: 1 :: zeros) = ones (with k ones in the

argument of t) holds if and only if the Turing machine M halts on input 1j01k for
all j ≥ 0. Solving this equation corresponds to solving the totality problem when
we take M a universal Turing machine that computes fk(j) on input 1j01k, where
fk is the partial function computed by the Turing machine of Gödel number k.

Reducing PPSE to Streams Equality Pure stream equations are a subset of
the Ro³u's equation systems. It seemed uncertain whether PPSE was Π0

2 because
the restriction of polymorphism prevented us from testing elements as Ro³u did to
simulate Turing machines. Having established that PPSE is Π0

2, we can derive a
new proof of Ro³u's result by reducing PPSE to stream equality. The pure stream
equations φ s1 · · · sn = σ are already in the form of Ro³u's equation systems, and
the equality on streams φ ones · · · ones = ones is equivalent to φ being productive,
as we hinted in Property 3.2.9.

4.4. The Generalised Collatz Problem is

Π
0
2-Complete

In �4.3, we showed that the problem of solving pure stream equations was Π0
2, as-

suming that the generalised Collatz problem was Π0
2. We now prove this assumption.

49

Chapter 4: PSES Productivity is Π0
2-Complete

Kurtz and Simon made a slightly di�erent generalisation of the Collatz problem
and proved it Π0

2 [KS07]. by a reduction from FracTran, building on a previous
result by Conway [Con72]. Their formulation of the problem doesn't lend itself
naturally to a reduction to the pure stream equation problem (PSE), but a very
close formulation does.

We call KSP the generalised Collatz problem as formulated by Kurtz and Simon,
and GCP with our formulation. We give a reduction from KSP to GCP.

4.4.1. Kurtz and Simon's Generalisation

The Collatz problem and our generalisation was presented in �4.2. We refer the
reader to this section for the de�nitions. KSP is de�ned in terms of a subset of the
Collatz functions:

De�nition 4.4.1 (Collatz Functions with Positive Coe�cients). We call C the set
of Collatz functions, and C+ the set of Collatz functions whose coe�cients bi are all
positive.

Problem 4.4.2 (KSP: Generalised Collatz Problem of Kurtz and Simon). KSP is
the set of Collatz functions c such that every non-null natural x is mapped to one
by iterating c.

KSP = {c ∈ C+ | ∀x ∈ N
+ . ∃k ∈ N . ck x = 1} .

KSP is slightly di�erent from GCP because it is stated in terms of a convergence
towards 1 (resp. 0) from strictly positive arguments (resp. positive), and the function
is in C+ (resp. C).

Example 4.4.3 (Original Collatz Problem). The function f of the original problem
is a Collatz functions according to De�nition 4.4.1. It is given by m = 2, a0 = 1/2,
b0 = 0, a1 = 3, b1 = 1. All the coe�cients are positive so KSP(f) is equivalent to
the original Collatz problem.

Justifying the choice of GCP rather than KSP Seeing how Collatz functions
happen naturally as indexing functions of stream equations, we turned towards the
KSP problem that was already proven Π0

2. However, their formulation introduces
a di�culty in the reduction that GCP removes, namely convergence from 0 is not
tested. Trouble follow when a non null number is mapped to zero. To convince
himself of the di�culties, the reader is invited to try and reduce KSP to PPSE. The
di�culty vanishes if we only consider Collatz functions whose restriction to N+ is
N+. This comes down to imposing that all i < m, either ai or bi is not null. In
fact, by a trivial bijection, GCP is equivalent to KSP+ which is the restriction of
KSP to those functions. Unfortunately, restricting the domain of a problem may
well change its complexity, so we must proceed now to prove that the complexity is
the same.

50

Chapter 4: PSES Productivity is Π0
2-Complete

4.4.2. Reduction from KSP to GCP

We show that the problem KSP is contained in the problem GCP by constructing
a reduction.

De�nition 4.4.4. We de�ne a transformation (notation overline) ·̄ : C+ → C. Let
c ∈ C+, given by m, ai and bi as in De�nition 4.4.1. We de�ne m̄, āi and b̄i for
c̄ ∈ C. Set m̄,m and for i ∈ [0,m− 1], let j ∈ [0,m− 1] with j ≡ i+ 1modm;

1. if both aj and bj are null,

a) if b0 is null, set āi, 1 and b̄i, 0;

b) if b0 is non-null, set āi, 0 and b̄i, b0 − 1;

2. otherwise, (aj or bj is non-null), set āi, aj and b̄i, aj + bj − 1.

Lemma 4.4.5. Let c ∈ C+ and x ∈ N,

c̄ x =

x if c(x+ 1) = 0 and c 0 = 0 ;

c 0− 1 if c(x+ 1) = 0 and c 0 6= 0 ;

c (x+ 1)− 1 if c(x+ 1) 6= 0 .

Proof. The lemma follows directly from the de�nition if we write down the follow-
ing properties. If x ≡ imodm then x + 1 ≡ jmodm i� i + 1 = jmodm. By
De�nition 4.4.1, c̄ x = ai× x+ bi ; c 0 = b0 ; and c (x+1) = aj × x+ aj + bj . Thus,
c(x+ 1) = 0 i� aj = 0 and bj = 0 .

Lemma 4.4.6. Let c ∈ C+ such that either KSP(c) or GCP(c̄) holds. If c is null
in zero, then it is non-null for all x strictly greater than 1.

Proof. We prove the contrapositive statement. Let c ∈ C+ and x > 1 with c 0 = 0
and c x = 0 . Then,

1. ¬KSP(c) because c0 x = x 6= 1 and if k > 0, ck x = 0 6= 1 .

2. ¬GCP(c̄) because c̄ (x− 1) = x− 1, so ∀k . c̄k (x− 1) = x− 1 6= 0 .

Lemma 4.4.7. If c ∈ C+ with c 0 6= 0 and x ∈ N, then for all j ∈ N, there is a
k ∈ N, such that c̄j x = ck (x+ 1)− 1 .

Proof. Induction on j. The base case trivially holds. Let j . k ∈ N, with c̄j x =
ck (x+ 1)− 1.

c̄j+1 x = c̄(ck (x+ 1)− 1) =

{
c 0− 1 = ck+2(x+ 1)− 1 if ck+1 (x+ 1) = 0 ;

ck+1(x+ 1)− 1 otherwise . �

Lemma 4.4.8. If c ∈ C+ with c 0 6= 0 and x ∈ N, then for all k ∈ N such that
ck (x+ 1) 6= 0, there is a j ∈ N, such that c̄j x = ck (x+ 1)− 1 .

Proof. The proof is a course of value induction on k. Let c ∈ C+ with c 0 6= 0 and
let x ∈ N.

51

Chapter 4: PSES Productivity is Π0
2-Complete

1. When k = 0, choose j = 0, then c̄j x = x = (x+ 1)− 1 = ck (x+ 1)− 1 .

2. Assume the property holds for all n ≤ k. Assume ck+1 (x+ 1) 6= 0.

a) If ck (x + 1) = 0, then k 6= 0 (because x + 1 6= 0) and ck−1 (x + 1) 6=
0 (because c 0 6= 0). By induction hypothesis, there is a j such that
c̄j x = ck−1 (x + 1) − 1. So c̄j+1 x = c̄ (ck−1 (x + 1) − 1) = c 0 − 1 (by
Lemma 4.4.5.b) = ck+1 (x+ 1)− 1.

b) If ck (x+1) 6= 0 then there is a j such that c̄j x = ck (x+1)−1 (induction
hypothesis). c̄j+1 x = c̄ (c̄j x) = c (1 + c̄j x) − 1 (by Lemma 4.4.5.c)
= c (ck (x+ 1))− 1 = ck+1 (x+ 1)− 1.

This concludes the inductive case.

Lemma 4.4.9. If c ∈ C+ and A is a part of N+ on which c is non-null; let x ∈ A
and k ∈ N,

[∀j < k . cj x ∈ A] =⇒ c̄k (x− 1) = ck x− 1 .

Proof. This is an induction on k. The base case k = 0 is trivial, with the right hand
side reducing to x − 1 = x − 1. Assume the property holds for k ∈ N. If we have
∀j < k + 1 . cj x ∈ A, then in particular ck x ∈ A, so ck+1 x 6= 0 (c is non-null on
A by hypothesis) thus c̄ (ck x − 1) = ck+1 x − 1 (by Lemma 4.4.5.c). By induction
hypothesis c̄k (x− 1) = ck x− 1, therefore c̄k+1(x− 1) = ck+1 x, which concludes the
inductive case.

Lemma 4.4.10. (∀c ∈ C+) KSP(c) =⇒ GCP(c̄)

Proof. Let c ∈ C+ and assume KSP(c) holds.

1. If c 0 6= 0. Let x ∈ N. By KSP(c), there is a k such that ck (x + 1) = 1. By
Lemma 4.4.8, there is j such that c̄j x = ck (x + 1) − 1 = 0. This is true for
all x, so GCP(c̄) holds.

2. If c 0 = 0 then by Lemma 4.4.6, ∀x > 1 . c x 6= 0. We can thus apply
Lemma 4.4.9 with A = {x ∈ N | x > 1}. Let x ∈ N; if x > 0, then
x + 1 ∈ A and there is k such that ck (x + 1) = 1 (by KSP(c)), so c̄k x = 0
(by Lemma 4.4.9); if x = 0, the requested property holds trivially with k = 0
(c̄k x = x = 0), therefore GCP(c̄) holds.

Lemma 4.4.11. (∀c ∈ C+) GCP(c̄) =⇒ KSP(c)

Proof. Let c ∈ C+ and assume GCP(c̄) holds.

1. If c 0 6= 0 Let x ∈ N+. By GCP(c̄), there is a j such that c̄j (x − 1) = 0. By
Lemma 4.4.7, there is k such that c̄j (x − 1) = ck x − 1, so ck x = 1. This is
true for all x, so KSP(c) holds.

2. If c 0 = 0 then by Lemma 4.4.6, ∀x > 1 . c x 6= 0. We can thus apply
Lemma 4.4.9 with A = {x ∈ N | x > 1}. Let x ∈ N+; if x > 1, and
there is k such that c̄k (x−1) = 0 (by GCP(c̄)), so ck x = 1 (by Lemma 4.4.9);
if x = 1, the requested property holds trivially with k = 0 (c̄k x = x = 1),
therefore KSP(c) holds.

52

Chapter 4: PSES Productivity is Π0
2-Complete

Theorem 4.4.12. The generalised Collatz problem GCP is Π0
2 complete.

Proof. 1. GCP is Π0
2 hard. The function c 7→ c̄ reduces the problem KSP (Π0

2

hard [KS07]) to GCP (by Lemmas 4.4.10 and 4.4.11).

2. GCP ∈ Π0
2. The predicate GCP = {c ∈ C | ∀x ∈ N . ∃k ∈ N . ck x = 0} is Π0

2

because the predicate Rc = {(k, x) ∈ N2 | ck(x) = 0} is primitive recursive,
since c can be computed by a primitive recursive function.

4.4.3. Discussion

Even though the original Collatz problem isn't expressed verbatim with the formu-
lation given by GCP, we think it's a minor detail, and a matter of starting counting
from zero or one.

In fact, in the proof [KS07], the transformation from a counter machine to a
Collatz function only produces functions f such that x > 0 =⇒ fx > 0. As
a consequence, their proof without any modi�cation shows the undecidability of
KSP+ which is the set of functions f : N+ → N+ such that an extension in zero is
a Collatz function f0 and KSP(f0) hold.

The reduction from KSP+ to GCP is trivial, because endo-functions f of N+ are
in bijection with endo-functions g of N by ∀x ∈ N . f (x + 1) = g x + 1, it follows,
∀x, k ∈ N . fk (x+ 1) = gk x+ 1, and trivially, KSP+(f) ⇐⇒ GCP(g).

53

Chapter 5.

Expressivity of PSES

The content of this chapter is mostly contained in an article [SB12] written
in collaboration with Christian Sattler.

Pure stream equation systems (PSES) de�ne polymorphic stream functions. In
the present chapter we ask the question: can they de�ne all polymorphic stream
functions? De�nability implies Π0

2-completeness of productivity of PSES, indeed,
productivity is equivalent to totality of the indexing function (Corollary 3.2.8), this
is a stronger result than Chapter 4's for which it was enough to �nd an undecidable
set of indexing functions that was representable as PSES. Here we say all of them
are representable.

Since polymorphic functions are completely characterised by their indexing func-
tion (see �3.1.2) which are partial computable functions from N to N, we show that
the indexing functions of PSES cover all the computable functions; meaning that
PSES form another Turing complete computation model.

Overview In �5.1 we construct a PSES from a counter machines implementing
the corresponding indexing function. In �5.2 we strenghten the previous result by
giving a more intricate encoding using a strict subset of PSES consisting of only
unary equations.

5.1. PSE De�nability

In Chapter 4, the reduction from GCP relies on the possibility to represent every
Collatz function as the indexing function of a PSES. Collatz functions are the step
function of a Turing complete language called FracTran [KS07, EGH09a]. The
indexing function of the PSES that we exhibited in our reduction was iterating this
step function inde�nitely for every x ∈ N+, thus simulating the computation of the
FracTran program. However, the result of this computation was lost because we
iterated the step function until the value 1 was reached meaning termination, but
FracTran programs return the value just before. Another small di�culty before
proving de�nability, is that FracTran programs encode their inputs and outputs as
powers of 2 and 3. FracTran computational model being very similar to counter
machines, we resolved to use the latter for our encoding; in fact we use the same
method of encoding counters as powers of prime numbers as in the reduction from
counter machine to FracTran [KS07].

55

Chapter 5: Expressivity of PSES

We give a transformation from counter machines to PSES such that the indexing
function of the PSES is equal to the function computed by the counter machine,
thus proving that every polymorphic stream function is de�nable as a PSES.

5.1.1. Counter Machines

De�nition 5.1.1. A counter machine [Min67] is given by 〈N,L, I〉 where

N is the number of registers;

L the length of the program;

I is the program, consisting of L instructions I1 · · · IL which are either:

� inc(r), r ∈ [1, N], for incrementing the value of register r;

� jzdec(r, i), r ∈ [1, N], i ∈ [1, L], for testing the value of register r, decre-
menting it if positive, or branching to instruction i if null.

Execution The machine is started with the �rst instruction in a state where all
registers are null except for the �rst which is initialised with the input value. Un-
less a branching occurs, the instructions are executed sequentially. The program
terminates when sequentially leaving the last instruction. The value computed by
the machine is the value of the last register.
Formally, we describe the execution of the counter machine in terms of its state:
〈ρ, i〉 which is the content of the registers ρ : [1, N]→ N and the current instruction
number i ∈ [1, L + 1]. Note that there is no instruction L + 1 in the program,
it corresponds to an implicit IL+1 = halt instruction. We write ρ[r ← x] for the
function equal to ρ everywhere except on r which is mapped to x.
We de�ne a functional relation on states 〈ρ, i〉 → 〈ρ′, i′〉 such that we reach

instruction i′ with register values ρ′ after executing instruction i with register values
ρ. It is the smallest relation verifying, for all i, j ∈ [1, L], r ∈ [1, N] and ρ : [1, N]→
N:

� If Ii = inc(r) then 〈ρ, i〉 → 〈ρ[r ← ρ(r) + 1], i+ 1〉.

� If Ii = jzdec(r, j) then ρ(r) > 0 =⇒ 〈ρ, i〉 → 〈ρ[r ← ρ(r) − 1], i + 1〉 and
ρ(r) = 0 =⇒ 〈ρ, i〉 → 〈ρ, j〉.

Lemma 5.1.2. For all ρ : [1, N] → N, i ∈ [1, L], there is a unique successor state
〈ρ, i〉 → 〈ρ′, i′〉.

We write →⋆ for the re�exive and transitive closure of this relation. We write
s ↓ y when s →⋆ 〈ρ, L + 1〉 and ρ(N) = y. If such a y exists it is unique, a
consequence of Lemma 5.1.2. If it doesn't, we write s ↑, and say that the machine
diverges from state s.
A counter machine M computes a partial function φM : N → N⊥ such that
∀x, y ∈ N . φM(x) = y if s0 ↓ y and φM(x) = ⊥ if s0 ↑ where s0 = 〈ρx, 1〉 is the
initial state, ρx maps 1 to x and the rest of the registers to 0.

56

Chapter 5: Expressivity of PSES

5.1.2. Construction of PSE De�nability

Theorem 5.1.3. Every polymorphic stream function can be de�ned by pure stream
equations.

Polymorphic stream functions are characterised by their indexing function. Given
a counter machine M , we build a pure stream equation system with main function
ψ such that its indexing function ψ is equal to the partial function φM computed
by M . This entails Theorem 5.1.3 because counter machines are Turing Complete
[Min67].
We use a Gödel encoding of the state of all registers. Let P1 · · ·PN be the �rst N

prime numbers. ρ : [1, N]→ N is represented by ρ̂ =
∏

r∈[1,N](Pr)
ρ(r). In the proofs,

we use the following property: ̂ρ[r ← ρ(r) + 1] = Pr × ρ̂.
The pure equations are de�ned for function symbols fi, zipPr

and projPr
, proj0

and ψ (for i ∈ [0, L+ 1] and r ∈ [1, N]).

ψ s = f0(f1(s))

f0 s = head(tail s) :: f0(projP1
s)

For i ∈ [1, L],

fi s =

projPr
(fi+1 s) if Ii = inc(r);

zipPr
(fi+1 s, projPr

(tail(fj s)),
projPr

(tail2(fj s)),
. . . ,
projPr

(tailPr−1(fj s)))

if Ii = jzdec(r, j).

fL+1 s = zipPN
(fL+1(tail s), proj0 s, · · · , proj0 s)

zipPr
(s0, · · · , sPr−1) = head s0 :: · · · head sPr−1 :: zipPr

(tail s0, · · · , tail sPr−1)

projPr
s = head s :: tailPr(projPr

s)

proj0 s = head s :: proj0 s

5.1.3. Proof

The stream functions fi have been designed so that their indexing reduction follows
the �ow of execution of the program from instruction Ii according to the Gödel
encoded registers. fL+1 extracts the result of the computation when the program
ends: it has to get the value of register N from the Gödel encoding. f0 builds
the initial values of the registers ρ̂0 = P x

1 for the input x. The main function
ψ composes f0 and f1 so that the computation may start with the proper state:
initialised registers and �rst instruction.

Lemma 5.1.4. A single execution step of the machine corresponds to a few steps
of the indexing reduction. Let i ∈ [1, L], i′ ∈ [1, L+ 1], ρ, ρ′ : [1, N]→ N.

〈ρ, i〉 → 〈ρ′, i′〉 =⇒ fi s ! ρ̂ + fi′ s ! ρ̂′

Proof. 1. If Ii = inc(r) then 〈ρ, i〉 → 〈ρ[r ← ρ(r) + 1], i+ 1〉 and

fi s ! ρ̂ projPr
(fi+1 s) ! ρ̂ ∗ fi+1 s ! Pr×ρ̂ = fi+1 s ! ̂ρ[r ← ρ(r) + 1]

57

Chapter 5: Expressivity of PSES

2. If Ii = jzdec(r, j) then

a) If ρ(r) > 0, then 〈ρ, i〉 → 〈ρ[r ← ρ(r)− 1], i+ 1〉. We use Lemma 3.2.11

with ρ̂ = ̂ρ[r ← ρ(r)− 1]× Pr + 0. Thus,

fi s ! ρ̂ ∗ fi+1 s ! ̂ρ[r ← ρ(r)− 1]

b) If ρ(r) = 0, then 〈ρ, i〉 → 〈ρ, j〉 and ρ̂ = a × Pr + b where a and b are
quotient and reminder, with b 6= 0. Therefore,

fi s ! ρ̂ projPr
(tailb (fj s)) ! ρ̂ ∗ fj s ! b+Pr×a = fj s ! ρ̂

Lemma 5.1.5. The indexing of fL+1 extract the result from the encoding of the
registers. 〈ρ, L+ 1〉 ↓ y ⇐⇒ fL+1 ρ̂ = y for all ρ : [1, N]→ N, y ∈ N.

Proof. From the de�nition of ↓ it follows that 〈ρ, L + 1〉 ↓ y i� y = ρ(N). So we
must show fL+1 s ! ρ̂ ∗ ρ(N). We proceed inductively on the value of ρ(N). Let
a and b be the quotient and reminder of ρ̂ by PN .

� If ρ(N) = 0, then b 6= 0, so fL+1 s ! ρ̂ ∗ proj0 s ! a ∗ s ! 0 .

� If ρ(N) > 0, then b = 0 and a = ̂ρ[N ← ρ(N)− 1] ;

fL+1 s ! ρ̂ ∗ fL+1(tail s) ! ̂ρ[N ← ρ(N)− 1]

 ∗ tail s ! (ρ[N ← ρ(N)− 1])N (by induction hypothesis)

= tail s ! ρ(N)− 1

 s ! ρ(N) �

Lemma 5.1.6. The indexing of f0 builds the initial state of M . For all x ∈ N,
f0 x = ρ̂x, where ρx maps 1 to x and the rest of the registers to 0.

Proof. The Gödel encoding of ρx is P1 to the power x, P x
1 . An induction on x shows

f0 s ! x ∗ s ! P x
1 .

f0 s ! 0 tail s ! 0 s ! 1 = s ! P 0
1

f0 s ! x+ 1 ∗ f0(projP1
s) ! x ∗ projP1

s ! P x
1 = s ! P1 × P

x
1 = s ! P x+1

1

Lemma 5.1.7. An execution sequence in M entails a longer indexing reduction.
Let i, i′ ∈ [1, L+ 1], ρ, ρ′ : [1, N]→ N, n ∈ N,

〈ρ, i〉 →n 〈ρ′, i′〉 =⇒ ∃m ≥ n . fi s ! ρ̂ m f ′
i s ! ρ̂′ .

Proof. We proceed by induction on the length of the execution sequence.
If n = 0, the property holds with m = 0, by re�exivity.

58

Chapter 5: Expressivity of PSES

If n > 0, we decompose the sequence in 〈ρ, i〉 → 〈ρ′, i′〉 and 〈ρ′, i′〉 →⋆ 〈ρ′′, i′′〉.
Conclusion follows from Lemma 5.1.4 and the induction hypothesis.

Lemma 5.1.8. When M is converging from a state 〈ρ, i〉, the corresponding index-
ing function fi is de�ned on the encoding of ρ and computes the value returned by
M . For all i ∈ [1, L+ 1], ρ : [1, N]→ N, y ∈ N,

〈ρ, i〉 ↓ y =⇒ fi ρ̂ = y .

Proof. Assume 〈ρ, i〉 ↓ y then ∃ρh .〈ρ, i〉 →
⋆ 〈ρh, L + 1〉 and ρh(N) = y. By

Lemma 5.1.7, then Lemma 5.1.5, fi s ! ρ̂ ∗ fL+1 s ! ρ̂h
∗ ρh(N) .

Lemma 5.1.9. When M diverges from a state 〈ρ, i〉, the indexing function fi is
unde�ned for the encoding of ρ. For all i ∈ [1, L], ρ : [1, N]→ N, y ∈ N,

〈ρ, i〉 ↑ =⇒ fi ρ̂ = ⊥ .

Proof. If 〈ρ, i〉 ↑ then there is an in�nite execution sequence which never reaches a
halting state 〈ρh, L+ 1〉. From Lemma 5.1.7, it follows that the indexing reduction
sequence is also in�nite and the indexing function is unde�ned.

Lemma 5.1.10. 〈ρx, 1〉 ↓ y =⇒ ψ x = y for all x, y ∈ N.

Proof. Follows from the conjunction of Lemma 5.1.6 and Lemma 5.1.8.

ψ s ! x f0(f1s) ! x

 ∗ f1s ! ρ̂x (by Lemma 5.1.6)

 ∗ s ! y (by Lemma 5.1.8)

Lemma 5.1.11. 〈ρx, 1〉 ↑ =⇒ ψ x = ⊥ for all x ∈ N.

Proof. Conjunction of Lemma 5.1.6 and Lemma 5.1.9.

Lemma 5.1.12. ψ = φM

Proof. The conjunction of Lemma 5.1.10 and Lemma 5.1.11 gives the same charac-
terisation of ψ as φM . In particular, the contrapositive of each lemma is the converse
of the other one.

5.2. Unary De�nability

The previous construction from counter machines relied on interleaving (function
zip) for implementing conditional execution: its indexing function does a case dis-
tinction on modulo classes. Noting that zipp with p prime were the only stream
function with more than one parameter in the construction, we considered the com-
putational consequences of only allowing unary stream functions to be de�ned, we
call such PSES unary systems (De�nition 3.2.3). In fact, allowing interleaving is
synonymous to allowing non-unary stream functions since we can use interleaving
to merge any number of stream arguments into a single one, see �3.2.5.

59

Chapter 5: Expressivity of PSES

What is the expressivity of unary systems, are there some unary polymorphic
functions that cannot be de�ned by them? Can we characterise their indexing
functions? Amazingly all polymorphic functions are de�nable with unary stream
equations. In order to prove this more general de�nability result in the unary
setting, entirely di�erent techniques need to be developed to address conditional
execution since we do not have zip available. Our solution is to separate conditional
execution and unbounded looping into orthogonal concepts. Each one is studied in
its own section before we give the construction.

5.2.1. Properties of some Indexing Functions

We prove two lemmas which are used later to establish the indexing functions of
several stream equations.

Lemma 5.2.1. Given h ≥ 1 and a stream equation of the form:

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ,

then the indexing function of f statis�es, for all k ∈ N:

f(k) = v⌊k/h⌋(ak mod h) .

Proof. The proof is by induction on k ∈ N. For k < h, we have

f(s) ! k = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k

 k tailak(s) ! 0 ak s ! ak,

yielding f(k) = ak = v0(ak) = v⌊k/h⌋(ak mod h). For k ≥ h, we have

f(s) ! k = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: f(v(s)) ! k

 h f(v(s)) ! k − h.

By induction hypothesis, it follows that

f(k) = (f ◦ v)(k − h) = v(f(k − h))

= v(v⌊(k−h)/h⌋(a(k−h) mod h))

= v(v⌊k/h⌋−1(ak mod h)) = v⌊k/h⌋(ak mod h),

where we exploited contravariance of the indexing operation in the second step.

Lemma 5.2.2. Let h ≥ 1 be given with a stream equation

f(s) = head(taila0(s)) :: . . . :: head(tailah−1(s)) :: tailh(u(f(v(s)))).

Fix k ∈ N and choose c(k) ∈ N minimal such that d(k) := uc(k)(k) ∈ {⊥, 0, . . . , h−
1}. If such a c(k) exists and d(k) 6= ⊥, then f(k) = vc(k)(ad(k)), otherwise f(k) = ⊥.

60

Chapter 5: Expressivity of PSES

Proof. The proof is by induction on c(k) if it exists. At the base, c(k) = 0 is
equivalent to k < h. In this case, f(s) ! k k tailak(s) ! 0 ak s ! ak, therefore
f(k) = ak = vc(k)(ad(k)).
Now assume k ≥ h. Note that:

f(s) ! k h tailh(u(f(v(s)))) ! k − h h u(f(v(s))) ! k.

If u(k) = ⊥, then c(k) = 1, d(k) = ⊥, and f(k) = ⊥. In the remainder, we will
assume u(k) 6= ⊥. Then, f(s) ! k + f(v(s)) ! u(k), and f(k) = v(f(u(k))).
If c(k) is de�ned, then c(k) = c(u(k)) + 1 and we can apply the induction hy-

pothesis: if d(k) = d(u(k)) 6= ⊥, then v(f(u(k))) = v(vc(u(k))ad(k)) = vc(k)(ad(k)),

otherwise v(f(u(k))) = v(⊥) = ⊥.
If c(k) is unde�ned, then so is c(u(k)), and with a second induction we can

construct an in�nite sequence f(s) ! k + f(v(s)) ! u(k) + f(v2(s)) ! u2(k) +

. . . showing non-termination and f(k) = ⊥.

The inquiring reader will notice that this lemma can be seen as a generalisation
of Lemma 5.2.1 with u de�ned in a particular way, namely

u(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
h times

:: s.

5.2.2. Collatz Functions and If-Programs

Collatz functions were de�ned in De�nition 4.4.1.

Lemma 5.2.3. Given a Collatz function g, we can construct a non-mutually recur-
sive unary system de�ning a stream function v such that v = g.

Before going into the details of the proof, note that, although it is quite clear
that the above encoding of Collatz functions already enables an embedding of full
computational power into unary stream equations, what is not at all obvious is
whether we can actually de�ne every computable unary stream function through a
purely unary system.

Proof. Let modulus n > 0 and coe�cients ai, bi ∈ N be as in the above de�nition.
De�ne a stream function

add(s) = head(tailn×a0+0(s)) :: . . . :: head(tailn×an−1+(n−1)(s)) :: add(tailn(s)).

Lemma 5.2.1 shows that add(k) = ⌊ k
n
⌋ × n + (n × ak mod n + (k mod n)) = k +

n × ak mod n for k ∈ N. The role of this function is to act as a crude replacement
conditional for the unavailable zip, adding di�erent constants depending on the
equivalence class of the stream index modulo n.
Next, de�ne a stream function

u(s) = head(tailn×b0+0(s)) :: . . . :: head(tailn×bn−1+(n−1)(s)) :: u(add(s)).

61

Chapter 5: Expressivity of PSES

Using Lemma 5.2.1, we derive for q ∈ N:

u(n× q + i) = add
q
(n× bi + i) = (n× bi + i) + q × (n× ai) = n× g(k) + i .

This function is an approximation to g, the only di�erence being that the output
indices come pre-multiplied by n. We �x this by de�ning a stream function

div(s) = head(s) :: . . . :: head(s)︸ ︷︷ ︸
n times

:: div(tail(s)) .

Applying Lemma 5.2.1 yields for k ∈ N:

div(k) =

⌊
k

n

⌋
.

Finally de�ning v(s) = u(div(s)) yields the Collatz function semantics that we want:

v = div ◦ u = g .

For instance, the original Collatz function would be encoded as collatz = v as
follows:

add(s) = head(tail2(s)) :: head(tail13(s)) :: add(tail2(s)),

u(s) = head(s) :: head(tail9(s)) :: u(add(s)),

div(s) = head(s) :: head(s) :: div(tail(s)),

v(s) = u(div(s)).

For further illustration, let us evaluate stream position 3 of v(s):

v(s) ! 3 ∗ u(div(s)) ! 3 ∗ u(add(div(s))) ! 1 ∗ add(div(s)) ! 9

 ∗ add(tail2(div(s))) ! 7 ∗ . . . ∗ add(tail8(div(s))) ! 1

 ∗ div(s) ! 21 ∗ div(tail(s)) ! 19 ∗ . . . ∗ div(tail10(s)) ! 1

 ∗ s ! 10.

This is consistent with collatz(3) = 3× 3 + 1 = 10.

Note that this encoding is fundamentally di�erent from our encoding encoding
of Collatz functions in Chapter 4, the one used by Endrullis et al. [EGH09b], the
essential di�erence being the unavailability of zip in the unary setting. The dispatch
mechanism of interleaving, enabling di�ering treatment of stream positions based
on the residue of their indices, makes the implementation of Collatz-like constructs
rather straightforward. Since we are lacking even such basic conditional control �ow
mechanisms, we have to resort to highly indirect constructions such as the above.

The role of Collatz functions in our setting is to serve as an intermediate between
indexing functions and the known world of computability. To make the latter link
clearer, we will show how Collatz functions relate semantically to di�erent register
machine models under the prime factorisation register encoding introduced in the
previous section.

62

Chapter 5: Expressivity of PSES

De�nition 5.2.4. The inductive set of if-programs is generated by concatena-
tion A0 . . . An−1, increments inc(r), decrements dec(r), and conditional clauses
ifz(r, A,B), where n ∈ N, r ∈ N designates a register, and A0, . . . , An−1, A,B are
if-programs.

Although it is quite clear intuitively what the semantic e�ects of running an
if-program A on some register state R ∈ N(N) are, we will formally introduce an
associated semantics function χA : N(N) → N(N) de�ned structurally as follows:

χA0...An−1
= χAn−1

◦ . . . ◦ χA0
,

χinc(r)(R) = R[r ← R(r) + 1],

χdec(r)(R) = R[r ← max(R(r)− 1, 0)],

χifz(r,A,B)(R) =

{
χA(R) if R(r) = 0,

χB(R) else.

Note that a decrement on a zero-valued register is ignored.
We use again the Gödel encoding for the registers ·̂ : N(N) → N \ {0}, R 7→

R̂,
∏

r∈N,R(r) 6=0 p
R(r)
r from the previous section. Translated to this setting, the se-

mantics function of an if-program A takes the form χ̂A := ·̂ ◦χA ◦ ·̂
−1. Although

this is an endofunction on the positive integers, to make the following treatment
more uniform, we will extend it to the natural numbers by setting χ̂A(0) := 0.

Lemma 5.2.5. Given an if-program A, its semantics χ̂A : N → N on the register
encoding is a Collatz function.

Proof. By induction on the structure of A, noting that:

� The composition of �nitely many Collatz functions of moduli m0× . . .×mn−1

is a Collatz function of modulus m0 × . . .×mn−1.

� Given a register state R ∈ N(N), increment of register r corresponds to multi-
plication of R̂ with pr, a Collatz function of modulus 1.

� Decrement of register r corresponds to division of R̂ by pr if the former is
divisible by pr, and no change otherwise. This is a Collatz function of modulus
pr.

� Let χ̂A and χ̂B be Collatz functions of moduli mA and mB, respectively. A
conditional clause ifz(r, A,B) corresponds �rst to case distinction depending

on whether R̂ is divisible by pr and subsequent application of either χ̂A or
χ̂B. This is a Collatz function of modulus the least common multiple of
pr,mA,mB.

We note that the Collatz function χ̂A in the previous lemma is special in that
it is linear on each of its equivalence classes in the strict sense, i.e. with vanishing
ordinate, corresponding to single multiplication with a fraction. Even though we
do not make use of this fact in our developments, it shows the connection between
if-programs and the iteration steps of the fractran-programs of Conway [Con87],
which are of equivalent expressive power.

63

Chapter 5: Expressivity of PSES

5.2.3. Iteration-Programs and Their Encoding

Unsurprisingly, the expressive power of if-programs by themselves is quite limited.
To achieve computational completeness, we need an unbounded looping construct.
The following de�nition intends to provide a minimal such model, enabling us to
concentrate on the essential details of the conversion from Turing-complete programs
to stream equation systems.

De�nition 5.2.6. An iteration-program P is a tuple (BP , inputP, outputP , loopP)
consisting of an if-program BP called the body of P and designated and mutually
distinct input, output and loop registers inputP, outputP , loopP ∈ N.

The semantics of such a program is a computable function φP : N → N⊥ de-
�ned as follows: given an input i ∈ N, the register state R0 ∈ N(N) is initialised
with R0(inputP) := i, R0(loopP) := 1, and R0(r) := 0 for r 6= inputP, loopP . We
iteratively execute the body of P , yielding Rn+1 := χBP

(Rn) for n ∈ N. If there
is n minimal such that Rn(loopP) = 0, then P is called terminating with iteration
count countP (i) := n and output φP (i) := Rn(outputP) for input i. Otherwise,
countP (i) := ⊥ and φP (i) := ⊥.
Intuitively, an iteration-program is just a while-program [Per74] with a sin-

gle top-level loop, a well-studied concept in theoretical computer science bearing
resemblance to the normal form theorem for µ-recursive functions [Kle43], [Soa87]
except that we do not even allow primitive recursion inside the loop.

Theorem 5.2.7. Given a computable function φ : N→ N⊥, there is an iteration-
program P with semantics φP = φ.

Proof. This is a folk theorem [Har80], see Böhm and Jacopini [BJ66] and Perkowska
[Per74] for more details.

The reason behind our choice for this computationally complete machine model
is that we already have the machinery to simulate a single execution of the body of
such a machine via Collatz functions as indexing functions of stream equations using
our prime factorisation exponential encoding on the register state. In fact, another
option would have been the fractran-programs of Conway [Con72] [Con87], but
we are in need of a more conceptual representation in light of what lies ahead of us.
We will now investigate how to translate a top-level unbounded looping construct

into the recursive stream equation setting.
Using Lemmata 5.2.5 and 5.2.3, we can translate the encoded iteration step func-

tion χ̂BP
: N→ N of an iteration-program P to an indexing function of a stream

equation for some u. We would like to use this stream function u as it appears
in Lemma 5.2.2 in a way such that the minimal choice of c(k) corresponds to the
iteration count of P . Unfortunately, the equivalent of the stopping condition in
the lemma, that the index be smaller than some constant h, corresponds to R̂ < h
for the register state R ∈ N(N), a statement which does not have a natural mean-
ing for the registers of R individually, forestalling us from expressing the condition
ploopP | R̂ corresponding to the termination condition R(loopP) = 0. A second
problem comes from our desire to somehow extract the value of R(outputP) after

64

Chapter 5: Expressivity of PSES

termination. But since at this point of time R̂ is limited to a �nite set of values,
there is no direct way of realising this.
What we can do is extract the iteration count for particularly nicely behaving

programs.

Lemma 5.2.8. Given an iteration-program Q such that whenever Q terminates,

all its registers are zero-valued, i.e. χ
countQ(i)
BQ

= (0, 0, . . .) for terminating input
i ∈ N, there is a non-mutually recursive unary system de�ning a stream function w
such that w = countQ.

Proof. In anticipation of applying Lemma 5.2.2, we extend this system with a new
equation

q(s) = head(s) :: head(s) :: tail2(v(q(tail(s))).

Given an input i ∈ N and corresponding initial register state R ∈ N(N), the termi-
nation condition in Lemma 5.2.2 can equivalently be expressed as follows:

vc(R̂)(R̂) < 2 ⇐⇒ χ̂
c(R̂)
BQ

(R̂) = 1 ⇐⇒ χ
c(R̂)
BQ

(R) = (0, 0, . . .).

Now, by our assumption on the behaviour ofQ, the �rst point in time all registers are
zero equals the �rst point in time the loop register attains zero. But by our de�nition
of the iteration count, this just means that c(R̂) = countQ(i), and Lemma 5.2.2
shows that

q(R̂) = tail
c(R̂)

(0) = c(R̂) = countQ(i) .

All that remains is to produce the initial register stateR(i) with onlyR(i)(inputQ) =
i and R(i)(loopQ) = 1 non-zero. For this, we de�ne

r(s) = head(tailploopQ (s)) :: r(projpinputQ
(s))

and we use Lemma 5.2.1 to prove that

r(i) = projpinputQ
i
(ploopQ) = piinputQ × ploopQ = R̂(i) .

De�ning w(s) = r(q(s)), we verify that

w(i) = q(r(i)) = q(R̂(i)) = countQ(R(i)) .

Unfortunately, the set of possible iteration count functions constitutes only a
small part of the set of all computable functions. Intuitively, this is because even
very small values can be the result of prohibitively expensive operations. However,
this range can still be seen as containing Turing-complete fragments under certain
encodings. This is what we exploit in the next step by shifting the role of the
output register to the iteration count under a particular such encoding. The trick
is to have each possible output value correspond to in�nitely many iteration counts
in a controlled way such that after having computed the result, by being self-aware
of the current iteration count, we can consciously terminate the loop at one of these
in�nitely many counts, no matter how long the computation took.

65

Chapter 5: Expressivity of PSES

Lemma 5.2.9. Given an iteration-program P , there is an iteration-program
Q such that for every input i natural, Q terminates if and only if P terminates,
and furthermore if P terminates with output o ∈ N, then Q terminates after exactly
(3m+ 1)× 3o+1 iterations with all registers zero-valued where m ∈ N depends on i.

Proof. Let r0, . . . , rk−1 ∈ N denote all the registers occurring in BP except for
outputP and loopP (but including inputP). We choose loopQ as a fresh natural
number distinct from all previously mentioned registers. Both programs will have
the same input register, i.e. inputQ := inputP. The output register of Q is irrelevant
since we aim to have all registers reset at termination.
The body of Q is listed in Listing 5.1. Note that the body of P is textually

inserted at line 14. Register names main-phase, run-time, mod-three, swap-phase,
copy also designate fresh natural numbers. To enhance readability, we used some
lyrical freedom with the syntax: for example, if R(outputP) 6= 0 then A else B
end if translates to ifz(outputP , B,A). Since the program is somewhat complex,
we will describe its function in great detail.

1. if R(main-phase) = 0 then

2. if R(run-time) = 0 then

3. inc(loopP)
4. inc(mod-three)
5. end if

6. inc(run-time)
7. if R(mod-three) = 0 then

8. inc(mod-three)
9. inc(mod-three)

10. inc(mod-three)
11. end if

12. dec(mod-three)
13. if R(loopP) 6= 0 then

14. BP

15. else if R(r0) 6= 0 then

16. dec(r0)
17. [...]
18. else if R(rn−1) 6= 0 then

19. dec(rn−1)
20. else if R(mod-three) = 0 then

21. inc(main-phase)
22. end if

23. else if R(swap-phase) = 0 then

24. dec(run-time)
25. inc(copy)
26. if R(run-time) = 0 then

27. inc(swap-phase)
28. end if

29. else

30. dec(copy)
31. if R(outputP) 6= 0 then

32. inc(run-time)
33. inc(run-time)
34. inc(run-time)
35. if R(copy) = 0 then

36. dec(swap-phase)
37. dec(outputP)
38. end if

39. else if R(copy) = 0 then

40. dec(swap-phase)
41. dec(main-phase)
42. dec(loopQ)
43. end if

44. end if

Listing 5.1.: The body of Q from Lemma 5.2.9

To explain the �ow of the program, we provide a state diagram, corresponding to
di�erent phases of the program Q, and a table giving for each phase the condition on
the current register values just before an iteration of Q for the phase to be activated.
Most phases necessitate more than one iteration of Q, this is why in the diagram,

66

Chapter 5: Expressivity of PSES

they have arrows pointing to themselves. Some transitions between phases happen
within a single iteration of Q, this is the case of init immediately followed by run
P , and the last iteration of clear copy followed by clear �ags in the same iteration
of Q.

Execute P

Encode the result of P

Init Upd iter Run P
Clear

P-reg
Mod 3 Swap Triple

Clear

copy

Clear

flags

The following table summarises the tests that select each phase. The columns
correspond to phases, and the rows to registers. Each cell of the table is either 0
when the corresponding register needs to be null in this phase, > when it cannot
be null, and nothing is written when the register is not tested by the phase. Note
that the tests are mutually exclusive.

Execute P Encode the result of P

Init Upd Iter
& Run P

Clear (rk)
P -registers Mod 3 Swap Triple Clear

Copy
Clear
Flags

main-phase 0 0 0 0 > > > >
run-time 0
loopP > 0 0
rk > 0

mod-three >
swap-phase 0 > > >
outputP > 0 0
copy > 0

Execution of Q, i.e. iterated execution of BQ until decrement of loopQ, is split
into two macro phases, as signalled by the �ag register main-phase, The �rst macro
phase, when main-phase has value 0 (lines 2�22), is dedicated to executing the
original program P while keeping track of the total iteration count in a dedicated
register run-time. At the end of this phase, after P has exited with result o ∈ N

in register outputP , we want the total iteration count to equal 3m + 1 for some
arbitrary m ∈ N. The second macro phase, when main-phase has value 1 (lines 23�
44) performs the computations necessary to encode the result of P in the number
of iterations: we must triple the total iteration count o times, plus an additional
tripling to reset run-time, so that the total iteration count becomes (3m+1)× 3o+1.
Every phase is now described in detail, referring to the program in Listing 5.1,

the line numbers corresponding to each phase are given next to the name.
The �rst macro phase (lines 2�22) consists of:

Init. 3�4
Executed only at the beginning of the �rst iteration to initialise the loop

67

Chapter 5: Expressivity of PSES

register of P and mod-three (see next phase). Note that the input register of
P does not need to be initialised as inputP = inputQ = i

Update Iteration Count. 6�12
Keep track not only of the current iteration count by incrementing run-time

once per iteration, but also of how many iterations modulo 3 we are afar from
meeting the (3m+ 1)-condition in a dedicated register mod-three.

Run P . 13�14
Execute the body of P (textually inserted) once per iteration until termination
is signalled by loopP being set to zero.

We leave the phase when loopP = 0. At this point, the result of executing P
on input i is stored in register `outputP ', let o be this value.

Clear P -Registers. 15�19
All the registers used in P except its output register are reset to zero by
successive decrements.

Mod 3. 20�21
Additional iterations, up to two, might be necessary to get a total iter-
ation count equal to one modulo three (tested in line 20). The register
`mod-three' go through the values 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, · · ·. it is zero exactly
when run-time ≡ 1mod 3. we then set main-phase and proceed to the second
macro phase (line 21).

After the �nal iteration of this phase, the iteration count is 3m+1 for some m ∈ N

and the only possibly non-zero registers are main-phase and swap-phase of value 1
and outputP of value o. We duly note that if P does not terminate, then neither
does Q.
The second macro phase (lines 23�44) consists of two alternately executed sub-

phases, swap and triple responsible for shifting the iteration count back and forth
between the registers run-time and copy. The current sub-phase is indicated by the
�ag register swap-phase:

Swap. 24�28
Entered with register values [swap-phase : 0, run-time : x ≥ 1, copy : 0].

Left after x iterations, with values [swap-phase : 1, run-time : 0, copy : x].

Triple. 30�43
Entered with [swap-phase : 1, run-time : 0, copy : x ≥ 1, outputP : y ≥ 1].

Left after x iterations, with [swap-phase : 0, run-time : 3x, copy : 0, outputP :
y − 1].

Considering swap and triple together, we establish that starting (the �rst sub-
phase) with [swap-phase : 0, run-time : x ≥ 1, copy : 0] and outputP non-zero, after
2x iterations, the e�ective changes will be tripling of run-time and decrement of
outputP . In particular, if x and hence run-time denoted the iteration count before

68

Chapter 5: Expressivity of PSES

these iterations, run-time will again denote the iteration count after these iterations.
After following this reasoning o times, the iteration count and value of run-time

will be (3m + 1) × 3o when outputP reaches zero. One last instance of the swap
phase, necessary to reset run-time, costs (3m+1)× 3o iterations, ends with register
copy = (3m+ 1)× 3o and with a total iteration count of 2× (3m+ 1)× 3o.

Clear Copy. 30
Clearing the register copy by successive decrements bring total iteration count
to (3m+ 1)× 3o+1. The last iteration of Q has both a clear copy and a clear
�ags phase.

Clear Flags. 39�42
This phase is executed during the last iteration, just after the last decrement of
copy, and is necessary to clear the remaining �ags main-phase and swap-phase,
so that all registers are null without exception. In particular, clearing loopQ
signals the end of the program Q.

5.2.4. Proof of Unary Decidability

Theorem 5.2.10. A unary polymorphic stream function is de�nable by a non-
mutually recursive unary system if and only if its indexing function is computable.

Proof. We need only consider the reverse implication. Let a computable function
φ : N → N⊥ be represented as an iteration-program P , i.e. φ = φP , and let Q
be the modi�ed iteration-program as de�ned in Lemma 5.2.9. By Lemma 5.2.8,
there is a non-mutually recursive unary system de�ning a stream function w such
that for all i ∈ N there exists m ∈ N,

w(i) = countQ(i) = (3m+ 1)× 3φP (i)+1 .

As stated at the beginning, the latter expression is taken to mean ⊥ if φP (i) = ⊥.
Our strategy for extracting the �nal output value φP (i) from this expression is by

iterating a second program, adding a tail for each time the stream index is divisible
by 3. In particular, from Lemma 5.2.3, it is clear how to give a non-mutually
recursive unary system de�ning u such that

u(k) =

{
k/3 if 3 | k,

0 else

since this is a Collatz function. But note that we can alternatively directly de�ne

u(s) =head(s) :: head(s) :: head(s) ::

head(tail(s)) :: head(s) :: head(s) :: tail3(u(head(s) :: tail2(s)))

using only a single equation. For either choice, we de�ne

v(s) = head(s) :: tail(u(v(tail(s))))

69

Chapter 5: Expressivity of PSES

A second application of Lemma 5.2.2 shows that for i,m ∈ N,

v((3m+ 1)× 3i+1) = i+ 1 .

This function is almost as critically important as w as it repeats each natural number
output in�nitely many times in a controlled way and reverses the iteration count
result encoding of program Q. We now have all the parts necessary for concluding
our venture. De�ning f(s) = w(v(head(s) :: s)), we see that

f(i) = max(v(w(i))− 1, 0)

= max(v((3m+ 1)× 3φP (i)+1)− 1, 0)

= max((φP (i) + 1)− 1, 0) = φP (i)

with our usual convention regarding ⊥, proving f = φP .

5.3. Further Results

Christian Sattler must be credited for the yet unpublished results whose proofs we
omit here and which characterise with even tighter constraints the expressivity of
pure stream equations. A thorough investigation of the proofs in the previous section
shows that, in total, ten equations were de�ned for proving the main result, two of
which can be inlined. It is natural to ask: what is the minimum number of unary
equations required to de�ne an arbitrary computable indexing function? It can be
established with a rather involved proof that four equations free of mutual recursion
su�ce. Furthermore, it can be shown that recognising productivity is undecidable
with complexity Π0

2 even for unary systems with only two non-mutually recursive
equations. Interestingly, Sattler proved that productivity is decidable for a single
unary equation.
Altogether, this work amounts to an exhaustive classi�cation of de�nability and

complexity of recognising productivity based on unary system size.

70

Part II.

Circular Traversals

Compositionally

71

Chapter 6.

Circular Traversals Using Algebras

In this chapter, we present circular traversals. They allow to combine many traver-
sals into a single one and rely on lazy evaluation. There is a systematic technique
to transform many traversals into a circular one, but such a technique is not mod-
ular. We propose a new abstraction that captures circular traversals and allow to
compose them.

Overview �6.1 explains circular traversals through an example. �6.1.1 presents
the technique in general terms. �6.1.2 raises the issues with the technique and mo-
tivates our research. �6.2 de�nes the abstract interface for our combinator library.
�6.2.1 shows that the environment Arrow is suitable to de�ne non-circular traversals
compositionally. �6.2.2 extends the Arrow interface with a method for constructing
primitive traversals as iteration of an algebra. �6.3 gives an implementation of the
interface using circular traversals. �6.3.1 de�nes the recursive pattern capturing
circular traversals. �6.3.2 gives the actual implementation. �6.3.3 proves that this
circular implementation is semantically equivalent to the non-circular implemen-
tation. �6.3.4 shows that our implementation has the underlying structure of an
indexed monad. �6.4 is an example of using the library.

6.1. Introduction

Richard Bird [Bir84] popularised the technique of combining traversals using cir-
cularity. His motivating example is a function repMin that computes a binary tree
with the same shape as the input tree, but where all the leaves are replaced with
the minimum value found in the input tree. A straightforward implementation re-
quires two traversals of the tree: the �rst minTree to compute the minimum, and
the second replace to create the new tree, replacing leaves of the input tree with
the minimum while preserving the structure.

data Tree = Leaf Int | Fork Tree Tree

minTree (Leaf x) = x

minTree (Fork l r) = min (minTree l) (minTree r)

replace y (Leaf x) = Leaf y

replace y (Fork l r) = Fork (replace y l) (replace y r)

repMin tree = replace (minTree tree) tree

73

Chapter 6: Circular Traversals Using Algebras

We can rewrite repMin by binding the result of each traversal:

repMin’ tree =

let min = minTree tree

rep = replace min tree

in rep

The bindings are combined in a product, making the de�nition circular:

repMin’’ tree =

let (min, rep) = (minTree tree, replace min tree)

in rep

The right hand side is abstracted:

repMinCirc tree =

let (min, rep) = min_and_replace min tree

in rep

It is critical that min_and_replace is non-strict in its �rst argument, otherwise the
circular de�nition repMinCirc would diverge.

min_and_replace takes a replacement value and an input tree, and computes
a pair of the minimum of the input tree and a new tree with the same struc-
ture but with the leaves replaced with the replacement value. We can implement
min_and_replace in a single recursion. Bird's starts with the product of minTree
and replace (two traversals) and applies unfold and fold steps to eliminate the calls
to minTree and replace.

min_and_replace y (Leaf x) = (x, Leaf y)

min_and_replace y (Fork l r) = (min ml mr, Fork tl tr)

where (ml, tl) = min_and_replace y l

(mr, tr) = min_and_replace y r

It is indeed the case that min_and_replace is non-strict in its second argument,
thus repMinCirc is well-de�ned.
The circular programming technique generalises the previous example and applies

to similar cases. The technique answers the question: given an implementation
doing many traversals, can we write a semantically equivalent program with only
one traversal?

6.1.1. Circular Traversals in General

A circular program is a form of recursive de�nition in which a structured value is
de�ned as a function of itself.
All circular programs studied here are concerned with the computation of a tuple

obtained by �attening mutually recursive bindings. Consider some terms A1,· · · An,
E with free variables x1,· · · xn bound by a let expression:

let { x1 = A1 ; x2 = A2 ; · · · ; xn = An } in E

74

Chapter 6: Circular Traversals Using Algebras

By making a tuple of all the bound variables, and all the right hand sides, we can
bind all the variables at the same time in a single circular de�nition:

let (x1, · · · , xn) = (A1,· · · ,An) in E

Now the right hand side is expressed as a function of the bound variables:

f x1 · · · xn = (A1, · · · , An)

The circular program is therefore equivalent to

let (x1, · · · , xn) = f x1 · · · xn in E

The circular binding we obtain is operationally equivalent to the mutual bindings.
The advantage of writing a single circular de�nition, rather than a group of mutually
recursive de�nitions is that, having regrouped all the individual computations in one
function f, we can then try to optimise it using program reasoning. The subject of
this chapter is the optimisation of programs performing many traversals of the same
datastructure by combining them in a circular de�nition which is then optimised to
perform only one traversal. Imagine in the previous program that all A1,· · · ,An do
a traversal over some datastructure. The goal is to �nd a function g equivalent to
f but computing the product of those di�erent traversals by traversing the input
only once.

6.1.2. Issues With the Transformation

This programming pattern has some weaknesses:

� It is sometimes di�cult to ensure totality and semantic equivalence of the
optimised program.

� The optimised program is more di�cult to understand than the original.
� Modularity is lost: we're no longer composing independent traversals, we must
rewrite them and merge them in the optimised program.

In this chapter we address each of those issues by de�ning a library for de�ning
circular programs modularly, preserving the clarity and semantics of the multi-
traversal implementation.

Diverging programs When applying the technique, one must be careful that the
optimised program doesn't diverge.
If E is strict in one of x1,· · · ,xn, then the circular program

let (x1,· · · ,xn) = C in E terminates only if C is non-strict in all the parameters
x1,· · · ,xn. That is because to force the evaluation of a xi, C must �rst be evaluated
and the computation would loop if C were strict in one of x1,· · · ,xn. In the particular
case that C = (A1,· · · An), C is trivially non-strict in x1,· · · ,xn. However, optimised
C are usually not of this simple form.
Sometimes (cf �7.1) it is di�cult to keep C non-strict whilst optimising it.

75

Chapter 6: Circular Traversals Using Algebras

Complex and non-modular programs When optimising (A1,· · · An) into a C, the
simple computations A_i are merged into a complex unmodular program C where
all aspects are intertwined and thus di�cult to understand. Additionally, we lose
the advantage of de�ning each aspect separately, the work is repeated again in C.
Ultimately if some corrections were to be made to some Ai, all the circular programs
de�ned in terms of it would need to re�ect the changes.
Unfortunately the programs obtained by the circular transformation always ap-

pear more complex than the original non-circular ones because they merge all the
aspects of the computation together. Bird acknowledges this [Bir84, �4]:

Though incomprehensible taken by itself, the �nal version has been de-
rived systematically from the original speci�cation using cyclic program-
ming in conjunction with other transformations.

In addition, modularity is lost: whereas repMin was the composition of replace
and minTree, they cannot be reused in repMinCirc: instead, their bodies are fused
in min_and_replace. This has many unfortunate consequences: The functionality
of each traversal, like replace and minTree are duplicated, and it is di�cult and
error-prone to keep a coherent state during the development of the program as cor-
rections and improvements must be re�ected on each duplicate. Additionally, errors
can be introduced whilst fusing the functions, And the newly fused function is more
complex, bigger, harder to analyse, thus harder to maintain. Finally, the transfor-
mation imposes some constraints on the traversals in order to ensure termination
(the non-strictness of replace in our example).

Attribute Grammars The drawbacks can be somewhat mitigated. One approach
is to automatise the transformation [CGK99]. This allow us to keep programming
modularly as before, with many traversals, and run a tool to obtain the circular
single traversal equivalent. Another approach is to use the attribute grammar for-
malism to program each traversals and rely on a tool to translate the attribute
grammar into a circular functional program. Alternatively, if the attribute gram-
mar formalism is implemented as a domain speci�c language (DSL) in the host
functional programming language, as in [dMBS00] or [VSS09], then each traversal
can be implemented as a grammar aspect and combined into a circular computation
using the combinators of the DSL.
Relying on external tools for program transformation does alleviate the modu-

larity loss but adds to the complexity of the development process, which may deter
programmers from using it. The attribute grammar formalism is also somewhat
limited in modularity as evidenced by the number of articles proposing diverse ex-
tensions to the paradigm: [VSK89, DC90, KW92, FMY92, Hed99, MLAZ99, VS12].
DSL implementations of attribute grammars may be weakly typed [dMBS00], or
they may not allow the de�nition of di�erent aspects, which is necessary if we want
to reuse them [MFS13, UV05]. Reviews of attribute grammar systems for Haskell
are given in the introduction, �1.5.2.
It has been suggested that the previous issues can be somewhat mitigated by

expressing the traversals as attribute grammars and compiling them using a special

76

Chapter 6: Circular Traversals Using Algebras

preprocessor, or using an embedded language for them. But those solutions are
often more complex and less modular than the original formulation and require the
trouble of using new language syntax, an external tool (preprocessor) or a macro
processor (template Haskell) together with various language extensions.

Our Solution for Compositionality In this chapter, we recover the lost compo-
sitionality without resorting to changing the compiler or the language. We propose
a set of combinators that encapsulate a recursive pattern and hide away the circu-
larity from the programmer's concern. For instance, with our combinators, the user
will be able to build repMinCirc by composing a MinCirc and a ReplaceCirc much
like repMin was built by composing min and replace. The composition of circular
de�nitions is based on the Arrow type-class, which generalises function composi-
tion. The programs written using the combinators are structurally very similar to
the program doing many traversals, the di�erences are that the datastructure be-
ing traversed is implicit and that we use the arrow notation [Pat01] to express the
programs. We show below, side by side, the repMin program in the arrow notation
and the original implementation.

repMinA = proc () → do

m ← minA ≺ ()

replaceA ≺ m

repMin tree =

let m = minTree tree

in replace m tree

Additionally, it is possible to choose whether many traversals or only one should
be done according to which instance we choose. Furthermore, in contrast with the
use of automatic program transformation tools and attribute grammar compiler,
not only the source code is modular, but compilation as well. Additionally, us-
ing the combinators prevents errors that can occur when doing the transformation
manually: in particular, certain strictness properties of the traversals could make
the circular program non-terminating [Bir84, �3]. The library interface is given as a
Haskell type-class, for which we provide two implementations: a circular implemen-
tation with one traversal and a strict implementation with many traversals. The
user code can be executed with either approach depending on his needs.

We developed the library in two stages. The �rst version relies on algebras and
is too limited to cover Bird's palindrome example [Bir84, �3]. To remedy this
limitation, we found a novel traversal abstraction, that generalises algebras and has
a direct explanation with attribute grammars.

6.2. Abstract Programming Interface for

Computations over a Data Structure

A library should always provide an interface that hides details about the concrete
implementation. In our particular case, the library should give us the means to
compose traversals on the same datastructure, without being concerned by the

77

Chapter 6: Circular Traversals Using Algebras

operational semantics. In fact, it should be possible to give two implementations:
one that traverses the datastructure many times, and one that traverses it only
once. Therefore we must abstract over the notion of function and composition. The
Arrow type class [Hug98] is such an abstraction: it captures function like objects
that can be composed and paired. Functions can be lifted to pure Arrows.

The Category type class generalises the category of Haskell types and functions
where objects are types, but where the arrows are more general. We use a type
operator variable () for hom-sets to make the type signatures nicer.

class Category () where

id :: a a

(.) :: b c → a b → a c

The name id and (.) clash with the Prelude export but generalise them: the
Category instance for Haskell functions correspond to the Prelude de�nitions. Thus
we hide the Prelude de�nition and use their Category generalisation:

import Prelude hiding (id, (.))

import qualified Prelude

instance Category (→) where

id = Prelude.id

(.) = (Prelude..)

Arrow is a subclass of Category with more structure which implies the existence
of products. arr is the action of a functor from the category (→) to the category
() and first is a family of endofunctors' actions.

class Category () ⇒ Arrow () where

arr :: (a → b) → a b

first :: a b → (a,c) (b,c)

arr and first imply the universal existence of products objects (a,b) for any
types a and b.

&&& :: c a → c b → c (a,b)

f &&& g = arr swap . first g . arr swap . first f . arr dup

where dup x = (x,x)

swap (x,y) = (y,x)

arr fst :: (a,b) a

arr snd :: (a,b) b

Functions are Arrows: with arr = id and first f (x,y) = (f x,y)

The arrow notation [Pat01] is an extension to Haskell implemented in GHC, it
provides an applicative style for de�ning arrows instead of the point-free style that is
unavoidable when using the arrow primitives id, (.), arr and first. The notation
is translated directly into those primitives. The syntax is described in the GHC
manual [Tea, �7.17].

To give an intuition of the arrow notation, here is a simple arrow program. In
the particular case when the arrow type () is instantiated with Haskell functions

78

Chapter 6: Circular Traversals Using Algebras

(→), the arrow program on the left is equivalent to the functional program on the
right.

example’ f g h j =

proc (x,y) → do

a ← f ≺ x

b ← g ≺ h a y

returnA ≺ j b

example’’ f g h j =

λ(x,y) →
let a = f x

b = g (h a y)

in j b

The arrow notation is translated to a functional program that uses the arrow
primitives:

example :: (Arrow ()) ⇒
(a b) → (c d) → (b → p → c) → (d → q) → (a,p) q

example f g h j = arr j . g . arr (uncurry h) . first f

If () is a Arrow instance, f : a b, x : a, and y is a variable, then y ← f ≺ x

is a arrow command that binds the variable y to a value of type b. Only an intuitive
understanding of the notation is necessary to read this chapter. The GHC manual
gives a precise syntax and semantics.

6.2.1. The Environment Arrow

Our problem is to combine traversals over the same datastructure. We make it
implicit using the environment arrow.
The type Env e captures functions that share the same global argument of type e.

The Arrow abstraction makes this environment implicit: it is automatically passed
around when composing and pairing functions.

newtype Env e a b = Env {runEnv :: e → a → b}

We de�ne Category and Arrow instances for Env e so that the domain and codomain
of Env e a b are a and b. We can only compose arrows that have the same envi-
ronment type. Note that for an Arrow it is always possible to de�ne id as arr id.

instance Category (Env e) where

id = arr id

Env g . Env f = Env (λe → g e . f e)

instance Arrow (Env e) where

arr f = Env $ const f

first (Env f) = Env $ λ e (x,y) → (f e x, y)

Let's see how our running example can be written in the environment arrow.
Since the traversal that computes the minimum has no other argument than the
tree, we use the unit type for the domain.

minEnv :: Env Tree () Int

minEnv = Env $ λt () → minTree t

79

Chapter 6: Circular Traversals Using Algebras

The domain of replace is Int for the replacement value that goes on every leaf.

replaceEnv :: Env Tree Int Tree

replaceEnv = Env $ λt y → replace y t

Now the repMin function can be de�ned in the arrow notation.

repMinEnv = proc () → do

m ← minEnv ≺ ()

replaceEnv ≺ m

runEnv runs the environment arrow with given global environment. We run the
repMinEnv program with runEnv repMinEnv t () which is operationally equivalent
to the original repMin with multiple traversals.

6.2.2. A primitive to de�ne traversals

Although we successfully wrote repMin with the arrow notation, the de�nition is
not polymorphic in the Arrow: the instance is constrained to Env Tree because the
two traversal primitives minEnv and replaceEnv are of this arrow type. We want
to make it polymorphic so that we can design a new arrow instance implementing
the circular traversal combinators.

Algebras and Catamorphisms

The �rst step is to abstract over the recursive pattern used to de�ne traversals.
Traversals of inductive datastructures are catamorphisms: the iteration of an alge-
bra. We give some generic de�nitions to work with algebras. These technique are
quite familiar to Haskell programmers [MFP91, Ven00, BdM97, BH12]. We work
in the category of Haskell types and functions. An inductive datastructure is the
least �xed-point of a base functor. We provide a generic view for �xed-points with
a type class Fix f t, that says f is the base functor of t. It has two methods which
are isomorphisms. The class is suitable both for inductive and coinductive type. In
the former case, inn is the initial algebra and out its inverse. in the later case, out
is the �nal coalgebra and inn its inverse.

class Functor f ⇒ Fix f t | t → f where

out :: t → f t

inn :: f t → t

The base functor of Tree is:

data TreeF r = LeafF Int | ForkF r r deriving Functor

instance Fix TreeF Tree where

out (Leaf x) = LeafF x

out (Fork l r) = ForkF l r

inn (LeafF x) = Leaf x

inn (ForkF l r) = Fork l r

A f-algebra captures the body of a catamorphism, it is an inductive step: f t

contains the results of recursive calls on the immediate subterms.

80

Chapter 6: Circular Traversals Using Algebras

type Alg f t = f t → t

Catamorphisms are the iteration of f-algebras: their existence and unicity is ensured
for the least �xed-points of f.

cata :: (Fix f t) ⇒ Alg f r → t → r

cata alg = phi

where phi = alg . fmap phi . out

The traversals of our running example can be expressed as iterated algebras:

minAlg (LeafF x) = x

minAlg (ForkF l r) = min l r

mapTreeAlg f (LeafF x) = Leaf (f x)

mapTreeAlg f (ForkF l r) = Fork l r

replaceAlg y = mapTreeAlg (const y)

Extending the Abstract Interface

As motivated at the beginning of �6.2 we want the library interface to be abstract,
so we provide a type-class with all the necessary combinators as methods.
The solution is to extend the Arrow abstraction with a primitive to build single

traversals. Keeping in mind that Env must be an instance of this new class, it
follows that the datastructure on which the traversal is performed must be implicit.
The class is parameterised with the base functor of the datastructure and the arrow
type.

class (Arrow (), Functor f) ⇒ ArrowCata f () | () → f where

cataA :: Alg f x x

The environment instance de�nes cataA directly with cata.

instance (Fix f t) ⇒ ArrowCata f (Env t) where

cataA = Env $ flip cata

Now our running example can be de�ned solely with the ArrowCata abstraction:

minA :: ArrowCata TreeF () ⇒ () Int

minA = proc () → cataA ≺ minAlg

replaceA :: ArrowCata TreeF () ⇒ Int Tree

replaceA = proc y → cataA ≺ replaceAlg y

repMinA :: ArrowCata TreeF () ⇒ () Tree

repMinA = proc () → do

m ← minA ≺ ()

replaceA ≺ m

The multi-traversal de�nition of repMin is operationally equivalent to repMinA when
we run it with the environment arrow: repMin t == runEnv repMinA t ().

81

Chapter 6: Circular Traversals Using Algebras

Polymorphic encoding of inductive datatypes The class ArrowCata generalises
an encoding of inductive datatypes variously called Church, Girard, system-F, or
polymorphic encoding [BB85, GTL89, Wra89]. The least �xed-point of functor f is
encoded as the polymorphic type: ∀ x . Alg f x → x. The bijection is given in
one direction by partially applying the cata function to the datastructure, and in
the other by applying the polymorphic function to the initial algebra.

ArrowCata generalises the encoding by making the function type an arbitrary ar-
row. We can always retrieve the implicit datastructure of an ArrowCata by applying
cataA to the initial algebra.

6.3. Circular Implementation

In the previous section, we de�ned the type-class ArrowCata f () which is an
abstract interface whose primitives can de�ne complex traversals over the same
datastructure, implicit in the arrow (), and whose base-functor is f. We also gave
an implementation of this interface: the instance ArrowCata f (Env t), where t

is the �xpoint of f, given by the instance Fix f t. When executing an ArrowCata

program with this instance, every use of cataA corresponds to a distinct traversal
of the datastructure.
Now we give a second implementation of the interface which is semantically equiv-

alent to Env, but operationally di�erent: it computes the result in a single traversal,
using the circular technique behind the scene to combine the uses of cataA.

6.3.1. Recursive Pattern for Circular Traversals

Before we de�ne a new instance for ArrowCata, we must step back and think about
how circular traversals are formed, generalising the examples of Bird's article.
In the introduction, we de�ned a combined traversal min_and_replace by fusing

the bodies of the minTree and replace. There is a generic operation on algebras
that allow us to do this modularly. We can form the product of any two f-algebras.

pairAlg :: Functor f ⇒ Alg f i → Alg f j → Alg f (i,j)

pairAlg alpha beta = λy → (alpha (fmap fst y) , beta (fmap snd y))

Thus rather than iterating each algebra in turn (two traversals), we will iterate
their product (one traversal). This is justi�ed by the universality of the product and
the initiality of algebras, from which follows the so-called banana-split law [BdM97]

(cata a, cata b) ≡ cata (pairAlg a b)

min_and_replace can be de�ned modularly using our generic combinators:

min_and_replace’ :: Int → Tree → (Int, Tree)

minReplaceAlg :: Int → Alg TreeF (Int, Tree)

min_and_replace’ y t = cata (minReplaceAlg y) t

minReplaceAlg y = minAlg ‘pairAlg‘ replaceAlg y

82

Chapter 6: Circular Traversals Using Algebras

We capture the recursive pattern of circular traversals by abstracting over the
body of the circular traversal. Looking at our introductory example:

repMinCirc tree = newtree

where (minimum, newTree) = min_and_replace minimum tree

The body is a catamorphism which can be parameterised with its own result.
The �nal result is extracted from the result of the catamorphism.

type CircBody f s r = s → (Alg f s , r)

In the example:

repMinBody :: CircBody TreeF (Int,Tree) Tree

repMinBody (minimum, newTree) = (minReplaceAlg minimum, newTree)

f is the base functor of the datastructure being traversed.

s is the carrier of the algebra; when many traversals are composed, we use pairAlg
to combine them and s is the product of all their carriers. It appears as an
argument because the algebra can circularly depend on its own result.

r is the result of the whole computation.

To run the circular traversal, we obtain the algebra and the result by calling body

with the value returned by iterating the very same algebra with cata. Note that
this circularity could be a cause of non-termination. In particular, body must be
non-strict.

circFix :: Fix f t ⇒ CircBody f s r → t → r

circFix body structure = result

where (alg, result) = body (cata alg structure)

Thus we obtain the circular version of repMin, which was modularly built us-
ing the algebras of two independent traversals (minAlg and traverseAlg) and the
generic combinators pairAlg and circFix.

repMinCirc1 = circFix repMinBody

Unfolding the previous de�nition yields:

repMinCirc2 inputTree = resultTree

where (alg, resultTree) = repMinBody (minimum, newTree)

(minimum, newTree) = cata alg inputTree

Further expansion of repMinBody then minReplaceAlg yields:

repMinCirc3 inputTree = resultTree

where (alg, resultTree) = (minAlg ‘pairAlg‘ replaceAlg minimum, newTree)

(minimum, newTree) = cata alg inputTree

And since cata (minAlg ‘pairAlg‘ replaceAlg minimum) is equivalent to min_-

and_replace, we obtain after simpli�cation:

repMinCirc4 inputTree = newTree

where (minimum, newTree) = min_and_replace minimum inputTree

which is exactly the circular program we gave in the introduction.

83

Chapter 6: Circular Traversals Using Algebras

6.3.2. ArrowCata Instance

In the previous section, we de�ned circFix that already allow us to de�ne circular
traversals modularly by combining algebras with the `pairAlg` operator. However,
using this circFix directly could lead to non-termination if we're not careful when
de�ning the circBody argument: there shouldn't be a loop between the dependen-
cies of the algebra constituents. Additionally, the carrier of the algebra becomes
a possibly complicated nested tuple type after pairing many algebras which makes
the de�nition of the circBody values cumbersome because we must keep track of
the order in which the algebras are paired, and �nd the correct paths in the nested
tuples to extract the wanted components.

To address the previous de�ciencies, we de�ne a new type around CircBody in
order to implement the type-class ArrowCata. Not only the algebra carrier (complex
nested tuple type) will be hidden by an existential quanti�cation, but we also get
the property that every circular traversal built with the ArrowCata primitives is
well-behaved.

data Circ f a b = ∀ s . C {runC :: a → CircBody f s b}

runCirc :: Fix f t ⇒ Circ f a b → t → a → b

runCirc (C circ) t x = circFix (circ x) t

Confusingly existentials are de�ned using the keyword ∀ in GHC-Haskell. The
previous de�nition corresponds to a data constructor of type:

C :: (∃ s . a → CircBody f s b) → Circ f a b

Type Class Homomorphisms

Note that runCirc almost computes an environment arrow, we just need to package
its result in the newtype constructor Env.

circEnv :: Fix f t ⇒ Circ f a b → Env t a b

circEnv = Env . runCirc

circEnv gives the semantics of a circular traversals in terms of the modular traver-
sals written as Env arrows. This is equivalent to say that circEnv is a ArrowCata-
homomorphism, hence it must preserve each of the arrowCata methods:

circEnv id ≡ id

circEnv (g . f) ≡ circEnv g . circEnv f

circEnv (arr f) ≡ arr f

circEnv (first f) ≡ first (circEnv f)

circEnv cataA ≡ cataA

Those properties can be useful to derive the actual implementations of the methods.
This approach was popularised by Elliot [Ell09]. He calls this approach denota-
tional design and explains type class homomorphisms in the following words: The
instance's meaning follows the meaning's instance.

84

Chapter 6: Circular Traversals Using Algebras

Composition

The composition of two circular traversals builds the product of their respective
algebras. Given:

f :: a → s → (alg fun s, b)

g :: b → t → (alg fun t, c)

we de�ne: compCirc f g :: a → (s,t) → (alg fun (s,t), c).

compCirc g f = λx ~(s,t) →
let (f_alg, b) = f x s

(g_alg, c) = g b t

in (pairAlg f_alg g_alg, c)

The lazy pattern ~(s,t) makes the function non-strict in that argument. This is
necessary for circFix to converge.

Lifting non-traversals

arr lifts a function to a circular traversals that doesn't actually need to traverse any-
thing to return a result, so we use the trivial (terminal) algebra. Given f :: a → b,
we de�ne: arrCirc f :: a → () → (alg fun (), b) as

arrCirc f = λx _ → (const (), f x)

Pairing

The method first should copy value from the argument to the result.

Given f :: a → s → (alg fun s, b)

we de�ne firstCirc f :: (a,c) → s → (alg fun s, (b,c))

firstCirc f = λ (a, c) s →
let (alg, b) = f a s

in (alg, (b, c))

Catamorphisms

The cataA combinator is simply the pair constructor: since it maps an algebra and
the result of iterating that algebra, to their pair:

(,) :: Alg fun s → s → (Alg fun s, s)

Class Instances

instance Functor f ⇒ Category (Circ f) where

id = arr id

C g . C f = C $ compCirc g f

instance Functor f ⇒ Arrow (Circ f) where

arr f = C $ arrCirc f

first (C f) = C $ firstCirc f

instance Functor f ⇒ ArrowCata f (Circ f) where

cataA = C (,)

85

Chapter 6: Circular Traversals Using Algebras

Example

The previous de�nition of repMinA (p. 81) being polymorphic in the ArrowCata can
be run as a single circular traversal with runCirc since Circ is now an instance of
ArrowCata.

repMinCirc t ≡ runCirc repMinA t ()

6.3.3. Proving the Homomorphism Properties

The type-class homomorphism properties given above can all be veri�ed. They
entail an important result: The interpretation of ArrowCata programs with the
Env and Circ arrows are semantically equivalent. A corollary is that circular pro-
grams written using ArrowCata primitives won't be non-terminating unless the non-
circular program is non-terminating as well: the circularity isn't the cause of non-
termination, but rather one of the algebras.

In all the proofs we use the following equality:

circEnv $ C f

≡ Env $ runCirc $ C f

≡ Env $ λt x → circFix (f x) t

≡ Env $ λt x → let (a,r) = f x (cata a t) in r

We prove: circEnv (arr f) == arr f

circEnv (arr f)

≡ circEnv (C (arrCirc f))

≡ Env $ λt x → let (a,r) = arrCirc f x (cata a t) in r

≡ Env $ λt x → let (a,r) = (const (const (), f x)) (cata a t) in r

≡ Env $ λt x → let (a,r) = (const (), f x) in r

≡ Env $ λt x → f x

≡ Env $ const f

≡ arr f

Using the previous result, we prove: circEnv id == id

circEnv id

≡ circEnv (arr id)

≡ arr id

≡ id

We prove: circEnv (C g . C f) == circEnv g . circEnv f

circEnv (C g . C f)

≡ circEnv $ C $ compCirc g f

≡ Env $ λt x → let (a,r) = compCirc g f x (cata a t) in r

≡ Env $ λt x → let (f_a, y) = f x (fst p)

(g_a, z) = g y (snd p)

p = cata (pairAlg f_a g_a) t

in z

86

Chapter 6: Circular Traversals Using Algebras

{ cata (pairAlg f_a g_a) t ≡ (cata f_a t, cata g_a t) } -- banana-split

≡ Env $ λt x → let (f_a, y) = f x (cata f_a t)

(g_a, z) = g y (cata g_a t)

in z

≡ Env $ λt x → circFix (g (circFix (f x) t)) t

≡ Env $ λt → runCirc (C g) t . runCirc (C f) t

≡ Env (runCirc (C g)) . Env (runCirc (C f))

≡ circEnv g . circEnv f

We prove: circEnv (first f) == first (circEnv f)

circEnv $ first $ C f

≡ circEnv $ C $ firstCirc f

≡ Env $ λt x → let (a,r) = firstCirc f x (cata a t) in r

≡ Env $ λt (y,z) → let (a,r) = let (a’,b) = f y (cata a t)

in (a’, (b,z))

in r

≡ Env $ λt (y,z) → let (a, b) = f y (cata a t) in (b,z)

≡ Env $ λt (y,z) → (let (a, b) = f y (cata a t) in b, z)

≡ Env $ λt (y,z) → (circFix (f y) t, z)

≡ Env $ λt (y,z) → (runCirc (C f) t y, z)

≡ first $ Env $ runCirc $ C f

≡ first $ circEnv $ C f

We prove: circEnv cataA == cataA

circEnv cataA

≡ circEnv (C (,))

≡ Env $ λt x → let (a,r) = (,) x (cata a t) in r

≡ Env $ λt x → cata x t

≡ cataA

6.3.4. Kleisli Arrow for an Indexed Monad

If it weren't for the existential in the de�nition of Circ f a b, it would have the
same expression as a Kleisli arrow, prompting us to ask whether CircBody f s b

has a monadic structure. In fact it does: it is an indexed monad, with s being the
index.

De�nition 6.3.1 (Indexed Monad). An indexed monadM on a category C, is given
by a monoid S with unit ε and multiplication ⋆, a S-indexed family of endofunctors
M : S → CC, a natural transformation from the identity functor η : I → Mε and
a S2 indexed family of natural transformations: µi,j :Mi ◦Mj →Mi⋆j verifying the
following commutative diagrams for all i, j and k.

Mi MiMε MiMjMk MiMj⋆k

MεMi Mi Mi⋆jMk Mi⋆j⋆k

Miη

id
ηMi µi,ε

Miµj,k

µi,jMk µi,j⋆k

µε,i µi⋆j,k

87

Chapter 6: Circular Traversals Using Algebras

To properly implement indexed monads we need dependent types. In the indexed
monad CircBody, the monoid is the free monoid that we can approximate in Haskell
with nested tuple types: () :: * is the unit, (,) :: * → * → * is the multiplica-
tion, and we must consider isomorphic types (a,(b,c)) and ((a,b),c) as equal, as
well as ((),a), (a,()) and a.

Arrows are Preferable over Indexed Monads for Circular Programs

Although we could think of writing circular programs monadically, it would have
the disadvantage of making the index visible. We'd rather hide it because the
semantics of the indexed monad CircBody doesn't depend on the index, thus we
can write two semantically equivalent CircBody with di�erent indices, but we cannot
substitute one for the other since they have di�erent indices. On the other hand
the arrow Circ hide the indices, so the substitution is possible.

6.4. Example: List of Deviations

To conclude the section we give another example of using our programming inter-
face. Given a �nite list of real numbers, we compute their deviations which is their
di�erence with the mean. This is the motivating example of �Why attribute gram-
mars matter� [Swi05]. We can write this function by composing three traversals to
compute the sum, the length, and the deviations.

deviations xs =

let mean = sum xs / fromIntegral (length xs)

in map (λx → x - mean) xs

Before we can write this program as a ArrowCata, we must �rst de�ne the algebras
of each traversal. Therefore we de�ne the base functor of �nite lists, and its Fix

instance:

data ListF a x = Nil | Cons a x deriving Functor

instance Fix (ListF a) [a] where

out [] = Nil

out (h : t) = Cons h t

inn Nil = []

inn (Cons h t) = h : t

Since de�ning the algebra requires always the same case analysis, we de�ne a com-
binator for that:

listAlg :: b → (a → b → b) → Alg (ListF a) b

listAlg n c Nil = n

listAlg n c (Cons h t) = c h t

The algebras are straightforward.

sumAlg :: Num a ⇒ Alg (ListF a) a

lengthAlg :: Num b ⇒ Alg (ListF a) b

mapAlg :: (a → b) → Alg (ListF a) [b]

88

Chapter 6: Circular Traversals Using Algebras

sumAlg = listAlg 0 (+)

lengthAlg = listAlg 0 ((+) . const 1)

mapAlg f = listAlg [] ((:) . f)

Each algebra gives raise to a ArrowCata primitive traversal.

sumA :: (ArrowCata (ListF a) t, Num a) ⇒ t () a

lengthA :: (ArrowCata (ListF a) t, Num a) ⇒ t () a

mapA :: ArrowCata (ListF a) t ⇒ t (a → b) [b]

sumA = proc () → cataA ≺ sumAlg

lengthA = proc () → cataA ≺ lengthAlg

mapA = proc f → cataA ≺ mapAlg f

Finally we compute the deviations with the help of the previous combinators and
the arrow notation.

deviationsA :: (ArrowCata (ListF b) t, Fractional b) ⇒ t () [b]

deviationsA = proc () → do

sum ← sumA ≺ ()

len ← lengthA ≺ ()

let mean = sum / len

mapA ≺ (λx → x - mean)

Avoiding Intermediate Bindings The bindings for sum and len might seem no-
tationally heavy. To avoid them, we can compute the mean directly from sumA

and lengthA if we de�ne a new arrow combinator liftArr2. Noting that the
Applicative [MP08] instance of (→ x) can be generalised to any arrow:

constArr :: Arrow t ⇒ b → t x b

appArr :: Arrow t ⇒ t x (a → b) → t x a → t x b

constArr = arr . const

appArr f g = proc x → do

y ← f ≺ x

z ← g ≺ x

returnA ≺ y z

Using the two applicative primitive constArr and appArr we are able to lift functions
of any arities to act upon the codomain of arrows having the same domain:

liftArr :: Arrow t ⇒ (a → b) → t x a → t x b

liftArr2 :: Arrow t ⇒ (a → b → c) → t x a → t x b → t x c

liftArr3 :: Arrow t ⇒
(a → b → c → d) → t x a → t x b → t x c → t x d

liftArr f a = constArr f ‘appArr‘ a

liftArr2 f a b = liftArr f a ‘appArr‘ b

liftArr3 f a b c = liftArr2 f a b ‘appArr‘ c

89

Chapter 6: Circular Traversals Using Algebras

We can now inline the computation of the mean to simplify deviationsA.

deviationsA’ = proc () → do

mean ← liftArr2 (/) sumA lengthA ≺ ()

mapA ≺ (λx → x - mean)

This program can be run either within Env or within Circ arrows, depending
whether we want the computation in multiple independent traversal or in a sin-
gle but circular traversal.

90

Chapter 7.

Circular Traversals Using Attribute

Grammars

The ArrowCata interface relies on explicit algebra iteration to de�ne primitive traver-
sals. The Circ instance combine the algebras and most of the time iterating the
resulting algebra produces a single traversal. Unfortunately, in some cases it does
not. This happens when the carrier of the algebra is a function type. We address
this problem by considering another way of de�ning traversals.

Overview The chapter proceeds as follows: �7.1 introduces an example for which
the Circ implementation fails to produce a single traversal, we give a modular
solution based an alternative traversal primitive related to attribute grammars; �7.3
de�nes generic attribute grammar traversals, with a strongly typed implementation
using containers; �7.4 extends ArrowCata using the new traversal representation,
and gives a circular implementation which solves the previous problem modularly;
�7.5 concludes the section with some examples.

7.1. Palindrome

7.1.1. The Problem

This example shows both the limits of Bird's approach and of ArrowCata. It mo-
tivates a new representation of traversals instead of algebras. After exposing the
problem, we'll give Bird's solution. His solution isn't easily generalisable because
of an ad-hoc step he took and we'll �x that issue. Then we'll study the problem
using ArrowCata and the Circ interpretation. We'll see that it fails its purpose of
evaluating in a single traversal. We'll seek to understand why and then propose a
new traversal primitive on which to base our circular combinators.

A palindrome is a word that is invariant by reversing the order of the letters: it
reads the same left to right and right to left. Accordingly we de�ne a function that
computes whether a list is equal to its reversal.

palindrome :: (Eq a) ⇒ [a] → Bool

palindrome x = x ≡ reverse x

This function does two traversals: one to compute whether two lists are equal (==
is rede�ned as eqlist below), and one to compute the reversal of the list.

91

Chapter 7: Circular Traversals Using Attribute Grammars

eqlist [] [] = True

eqlist (x:xs) (y:ys) = x ≡ y && eqlist xs ys

eqlist _ _ = False

reverse xs = revcat xs []

revcat [] ys = ys

revcat (x:xs) ys = revcat xs (x:ys)

We want to implement palindrome as a single traversal using Bird's circular tech-
nique.
The palindrome example was used by Bird [Bir84, �3] to illustrate that termina-

tion of circular programs is a delicate issue. In fact the circular solution that results
from the systematic transformation doesn't terminate and Bird shows how to �x it.
Unfortunately his solution is very speci�c to this example. Looking at his approach
there doesn't seem to be a general way to design a single-traversal correctly yet alone
to de�ne it modularly. It should therefore be instructive to study the ArrowCata

implementation of palindrome: does it actually capture the single-traversal circular
solution? Does it terminate?
Note that by testing equality up to the middle of the list we would avoid many

redundant tests. It would also require to compute the length of the list which is an
additional traversal. However Bird didn't study this case, and we chose to reproduce
his exact approach. The less redundant version is given in �7.5.2.

7.1.2. Bird's Solution

Following Bird's approach, we �rst take the product of eqlist and revcat:

eqrev x y z = (eqlist x y, revcat x z)

so that palindrome can be written circularly (but still with two traversals):

palindrome1 x = eq where (eq, rev) = eqrev x rev []

The next step in Bird's approach is to express eqrev as a single traversal. This is
done by repeatedly inlining and abstracting steps:

eqrev1 [] [] zs = (True, zs)

eqrev1 (x:xs) (y:ys) zs = (x ≡ y && t, r)

where (t,r) = eqrev1 xs ys (x:zs)

Note the de�nition is partial, the missing cases are eqrev1 [] (y:ys) zs and
eqrev1 (x:xs) [] zs. Bird dismissed them on account that eqrev1 is only ever
used when the �rst two arguments have the same length. We will come back to this
point after exposing Bird's method.
First let it be noted that eqrev1 traverses its �rst argument once, which is what

we wanted to achieve. Second, it is totally de�ned when the �rst two arguments
have the same length. Third, it is not semantically equal to eqrev since it is
now partial. Fourth, the function is strict in its second argument whereas eqrev

wasn't, which is another reason for semantic di�erence, this is in fact a fundamental

92

Chapter 7: Circular Traversals Using Attribute Grammars

di�erence because we can only de�ne palindrome circularly if eqrev1 is non-strict
in its second argument. Thus we merged two traversals, but we lost the ability to
use the function circularly. The solution is to avoid pattern matching on the second
argument:

eqrev2 [] ys zs = (True, zs)

eqrev2 (x : xs) ys zs = (x ≡ head ys && t, r)

where (t,r) = eqrev2 xs (tail ys) (x : zs)

Now the circular palindrome can be de�ned with the single traversal eqrev2:

palindrome2 x = eq where (eq,rev) = eqrev2 x rev []

Note that eqrev2 still isn't semantically equal to eqrev, since eqrev2 diverges
whenever the second argument is longer than the �rst. However, it doesn't matter
when used to de�ne palindrome. This aspect of the transformation is ad-hoc and
against modularisation since some of the functionality of eqlist was lost when
fusing it with revcat. What if we complete eqrev1 with the missing equations?

eqrev1 [] (y:ys) zs = (False, zs)

eqrev1 (x:xs) [] zs = (False, r)

where (t,r) = eqrev1 xs [] (x:zs)

Then we cannot even make eqrev1 non-strict in its second argument anymore. Thus
it is rather a coincidence that we can de�ne a partial eqrev that works for us. The
solution is ad-hoc and it is not at all obvious how to generalise this example.

7.1.3. Fixing Bird's Solution

Bird's eqrev2 relied on the assumption that both lists compared for equality had
the same length. In order to devise a general programming pattern, we cannot make
such assumptions. Can we de�ne eqrev4 as a single traversal that is semantically
equal to eqrev under the constraint that eqrev4 must be non-strict in its second
argument? This is the constraint that pushed Bird to depart from the semantics of
eqlist.

eqrev can in fact be de�ned as a single traversal, non-strict in the second argument
by postponing the case analysis (this remark was made previously [CGK99]).

eqrev3 [] ys zs = (null ys, zs)

eqrev3 (x:xs) ys zs = (eq_xxs, rev)

where (eq_xs, rev) = eqrev3 xs (safe_tail ys) (x:zs)

eq_xxs = case ys of

[] → False

(y : ys’) → x ≡ y && eq_xs

safe_tail [] = []

safe_tail (h:t) = t

93

Chapter 7: Circular Traversals Using Attribute Grammars

Notice however that ys is pattern matched twice, meaning the second argument list
as a whole is consumed twice. We can again use circularity to share the pattern
matching to compute both safe_tail and eq_xxs at the same time. The circularity
between eq_xs and tail_ys doesn't create a loop during evaluation because eqrev4
is non-strict in its second argument and the case expression is non-strict in eq_xs.

eqrev4 [] ys zs = (null ys, zs)

eqrev4 (x:xs) ys zs = (eq_xxs, rev)

where (eq_xs, rev) = eqrev4 xs tail_ys (x:zs)

(eq_xxs, tail_ys) = case ys of

[] → (False, [])

(y : ys’) → (x ≡ y && eq_xs, ys’)

Note that we have two levels of circularity now: one in the de�nition of eqrev4 and
one in the de�nition of palindrome4:

palindrome4 x = eq where (eq,rev) = eqrev4 x rev []

Let's unfold the recursion in palindrome4 [a,b,c] to see how it works.

palindrome4 [a,b,c] = q1

where

(q1, r1) = case r of -- eqrev4 [a,b,c] r []

[] → (False, [])

(y : ys’) → (a ≡ y && q2, ys’)

(q2, r2) = case r1 of -- eqrev4 [b,c] r1 [a]

[] → (False, [])

(y : ys’) → (b ≡ y && q3, ys’)

(q3, r3) = case r2 of -- eqrev4 [c] r2 [b,a]

[] → (False, [])

(y : ys’) → (c ≡ y && q4, ys’)

(q4, r) = (null r3, [c,b,a]) -- eqrev4 [] r3 [c,b,a]

Notice how in each de�nition (qk, rk) depends on (qk+1, rk−1), as if when we traverse
the input list, each qk is computed bottom up and rk top down. This is in fact
what would be called synthesized and inherited attributes in the attribute grammar
terminology. The connection with attribute grammars will become clear later in
this section and in �7.4.
For each input element a new thunk is created in which the case expression cannot

be reduced until the reverse list is computed. The whole input list is read before we
can reduce the �rst case expression. Then each subsequent case expression becomes
reducible.

palindrome4 [a,b,c] = q1

where

(q1, r1) = (a ≡ c && q2, [b,a])

(q2, r2) = (b ≡ b && q3, [a])

(q3, r3) = (c ≡ a && q4, [])

(q4, r) = (True, [c,b,a])

Equivalently without the super�uous bindings.

94

Chapter 7: Circular Traversals Using Attribute Grammars

palindrome4 [a,b,c] = a ≡ c && b ≡ b && c ≡ a && True

To avoid the redundant tests we would need to compare only half of the list. See
�7.5.2 for an implementation.

7.1.4. Palindrome with ArrowCata

When combining multiple traversals with ArrowCata, we must express the simple
traversals as algebras. Both algebras are higher order: their carriers are function
types. Thus the iteration of the algebra computes a partial application.
The algebra for revcat traverses the list left to right and builds a Hughes list

[GH09] right to left.

revcatAlg :: Alg (ListF a) ([a] → [a])

revcatAlg Nil zs = zs

revcatAlg (Cons x revcat_xs) zs = revcat_xs (x:zs)

Although the de�nition of eqlist by pattern matching was symmetrical in the
way both arguments where recursed upon, when we de�ne the underlying algebra,
only one of the arguments drives the recursion and is the focus of the inductive de�-
nition. The catamorphism computes the partial application of equality: eqlist xs,
thus a list predicate [a] → Bool that computes whether the list is equal to xs.

eqlistAlg :: Eq a ⇒ Alg (ListF a) ([a] → Bool)

eqlistAlg Nil [] = True

eqlistAlg (Cons x eqlist_xs) (y:ys) = x ≡ y && eqlist_xs ys

eqlistAlg _ _ = False

Now that we have expressed the traversals as algebras, we may combine them
using our primitives to de�ne palindrome:

palindromeA = proc () → do

rev ← cataA ≺ revcatAlg

eq ← cataA ≺ eqlistAlg

returnA ≺ eq (rev [])

As expected we can run the program in the Env and Circ arrows:

runEnv palindromeA [1,2,3] () =⇒ False

runCirc palindromeA [1,2,1] () =⇒ True

Unlike when using Bird's technique, we do not have to worry about termination
since we proved in �6.3.3 that Circ and Env are semantically equivalent interpre-
tations of a ArrowCata program. And since the Env interpretation is operationally
equivalent to the original multiple traversal palindrome which terminates, so does
the Circ interpretation.
Unfortunately, even the Circ interpretation runs two traversals. That's because

when we evaluate eq (rev []) both rev and eq have the list stored in their closure
and traverse it to compute their result. The program isn't even circular: if we inline
the de�nitions, runCirc palindromeA is operationally equivalent to:

palindrome3 x =

let (eq,rev) = cata (pairAlg eqlistAlg revcatAlg) x

in eq (rev [])

95

Chapter 7: Circular Traversals Using Attribute Grammars

7.1.5. Pairing Higher-Order Algebras

Since our approach for modular circular programs is to combine basic traversals,
we now wonder if algebras are suitable: can we combine eqlistAlg, revcatAlg and
obtain an algebra operationally equivalent to the one underlying the single traversal
eqrev4 de�ned earlier?

The algebra of eqrev4 has for carrier [a] → [a] → (Bool, [a]) whereas the
algebra underlying runCirc palindromeA, being the product of eqlistAlg and
revcatAlg has for carrier the product of their carriers, namely ([a] → Bool,

[a] → [a]). That product algebra computes a pair of partial applications that
keep the whole input datastructure in their closure environment to re-traverse it
when applied to the remaining argument. We shall seek to merge them, to obtain
an algebra equivalent to eqrev4. For this we would need a new operation to combine
higher-order algebras:

hpair :: Functor f ⇒
Alg f (a → b) → Alg f (c → d) → Alg f ((a, c) → (b,d))

It would need to verify that:

(1) cata (hpair g h) x (a,c) ≡ (cata g x a, cata h x c)

We can de�ne such a function:

hpair u v x (a,c) = (u (fmap (pr1 c) x) a, v (fmap (pr2 a) x) c)

pr1 :: c → ((a, c) → (b,d)) → a → b

pr2 :: a → ((a, c) → (b,d)) → c → d

pr1 c f a = fst $ f (a,c)

pr2 a f c = snd $ f (a,c)

The reader can verify (1). It is a consequence that pr1 c and pr2 a are alge-
bra morphisms. Unfortunately even cata (hpair eqlistAlg revcatAlg) does two
traversals. This is because the recursive calls are computed independently for each
component of the pair in fmap (pr1 c) x and fmap (pr2 a) x as can be seen when
we simplify eqrev5 = cata (hpair eqlistAlg revcatAlg):

eqrev5 Nil (y, z) =⇒ (null y, z)

eqrev5 (Cons h t) (y, z)

=⇒ case y of

[] → (False, snd (eqrev5 t ([], h : z)))

(h’:t’) → (h ≡ h’ && fst (eqrev5 t (t’, z)) -- one recursive call
, snd (eqrev5 t (y, h : z))) -- another recursive call

7.1.6. A New Traversal Primitive

In the previous section, we failed to combine the two higher-order algebras eqlistAlg
and revcatAlg to obtain an algebra for eqrev4 which does a single traversal. The
operator that we designed has the right type but duplicates the recursive calls. I

96

Chapter 7: Circular Traversals Using Attribute Grammars

conjecture that it is not possible to solve this problem with algebras. In order to ex-
press eqrev4 modularly, we must have a control over the way higher-order algebras
use the function they recursively compute. A higher-order list-algebra is isomorphic
to

data HOListAlg a i s = HOListAlg (i → s) (a → (i → s) → (i → s))

The �rst component is the function associated with an empty list and the second
component computes the function associated with a non-empty list from its head
and the function associated with its tail. Let's consider this second case: we're
de�ning:

algCons :: a → (i → s) → (i → s)

algCons a f i = ...

We're interested in characterising how algCons will use the function f. That can
only be by applying f to some x :: i and using f x :: s to compute the �nal s
result of algCons a f i. This can be speci�ed with a function of this type:

algConsSpec :: a → i → (i, s → s)

We de�ne an algebra from that speci�cation:

algCons a f i = result (f x)

where (x, result) = algConsSpec a f i

Without loss of generality, we can �pull� the s argument out of the pair, this will
allow the i of the result to depend circularly on it.

algConsSpec2 :: a → s → i → (s,i)

algCons x f i = s

where (s,i’) = algConsSpec2 x (f i’) i

Now we can add the case for the empty list, this gives us a full speci�cation of a
higher-order algebra. Since that speci�cation also provides a direct explanation of
the computations of an attribute grammar, we call the type ListAG.

data ListAG a i s = ListAG (i → s) (a → s → i → (s, i))

We turn a list attribute grammar to a list algebra just as above:

algListAG :: ListAG a i s → Alg (ListF a) (i → s)

algListAG (ListAG nil cons) Nil = nil

algListAG (ListAG nil cons) (Cons h t) = λ i →
let (s, ti) = cons h (t ti) i in s

The two algebras of palindrome are easily speci�ed as attribute grammars. We
spend some time explaining the �rst one.

eqlistLAG :: Eq a ⇒ ListAG a [a] Bool

eqlistLAG = ListAG null eqlistConsAG

97

Chapter 7: Circular Traversals Using Attribute Grammars

Only the case for non-empty list is interesting:

eqlistConsAG x eq_xs [] = (False, [])

eqlistConsAG x eq_xs (y:ys) = (x ≡ y && eq_xs, ys)

Let us verify that running that speci�cation yields the algebra that we expect:

algListAG eqlistLAG Nil ys ≡ null ys

algListAG eqlistLAG (Cons x eq_xs) [] ≡
let (s, ti) = eqlistConsAG x (eq_xs ti) [] in s

≡
let (s, ti) = (False, []) in s

≡
False

algListAG eqlistLAG (Cons x eq_xs) (y:ys) ≡
let (s, ti) = eqlistConsAG x (eq_xs ti) (y:ys) in s

≡
let (s, ti) = (x ≡ y && eq_xs ti, ys) in s

≡
let (s, ti) = (x ≡ y && eq_xs ys, ys) in s

≡
x ≡ y && eq_xs ys

The AG implementation for revcat is not more di�cult, we let the reader verify
for himself that algListAG revAG == revcatAlg

revcatLAG :: ListAG a [a] [a]

revcatLAG = ListAG id (λx rev_xs zs → (rev_xs, x:zs))

Now thanks to the direct insight on the use of higher-order recursive arguments
we can pair two attribute grammars in a single traversal, it's almost a product, if
not for the transposition of the results.

pairListAG :: ListAG a i s → ListAG a i’ s’ → ListAG a (i,i’) (s,s’)

pairListAG (ListAG n1 c1) (ListAG n2 c2) = ListAG n c

where

n ~(i1,i2) = (n1 i1, n2 i2)

c x (s1,s2) ~(i1,i2) = transpose (c1 x s1 i1, c2 x s2 i2)

transpose (~(a,b),~(c,d)) = ((a,c),(b,d))

Remark: lazy patterns on inherited attribute are essential since we want eqrev to be
lazy on its second argument. Our �nal implementation of palindrome is modularly
de�ned by pairing two independent traversals speci�ed as attribute grammars.

eqrev5 = cata $ algListAG $ pairListAG eqlistLAG revcatLAG

palindrome5 x = fst p where p = eqrev5 x (snd p, [])

98

Chapter 7: Circular Traversals Using Attribute Grammars

7.2. Attribute Grammars

Algebras characterise a tree traversal by de�ning the inductive step: how to compute
the value for a whole tree from the values recursively computed for each subtree.
We say the value is synthesized, or computed bottom-up.
Attribute grammars (AG) complement this by allowing some parameters to be

propagated to the subtrees from the root, thus computed top-down. They are said
inherited in AG terminology. As we illustrated in the previous section, the algebras
associated with AG are higher-order and compute a function from inherited to
synthesized attributes. What makes them interesting for circular programming
is that we can merge independent AG to run both at the same time in a single
traversal. This was not possible with higher-order algebras. Since they o�er more
modularity we will use AG instead of algebras as the basis of our circular traversal
abstraction. Prior to implement a new Circ datatype based on AG in �7.4, we shall
�rst study the generalisation of ListAG given in the previous section, and de�ne AG
generically for any recursive datatype.

7.2.1. Attribute Grammar Implementations

AG systems (compiler compilers, and other tools) are de�ned around a rich AG
language where attributes and rules to compute them are named objects. How-
ever, the core computation of an AG can be characterised abstractly in a functional
language. Such an abstraction may in turn form the base of a full-featured AG em-
bedded language. Such implementations are called �rst-class because the attribute
grammars are data objects that can be combined, and eventually evaluated as a
tree traversal. One major advantage of this approach is that new combinators can
be de�ned as simple functions.

First Class AG

There are currently three implementations of �rst-class AGs to my knowledge. The
�rst [MBS00] which we will explain shortly, doesn't capture important structural
properties, and non-termination can result from careless usage from the program-
mer. The second [VSS09] is robust but relies on type families and many extensions
to the type-class system. Furthermore, the genericity, the structural invariants and
simplicity of the code all depend on the all important use of template Haskell. We
discuss those systems in more detail in �8.5. The third is the one we give now. It
may be the �rst time that a strongly typed characterisation of AG is given.

Zipper Based AG

There are also some embedding of AG in functional languages that are not �rst
class: the zipper based approach for instance [UV05, MFS13]. Such embeddings
de�ne the computation of attributes as mutually recursive functions over a zipper
[Hue97] view of the tree focusing on a particular node. The recursion is intrinsic to
the de�nition of the attributes, unlike in �rst-class implementations in which the
recursion is extrinsic and con�ned in the evaluator.

99

Chapter 7: Circular Traversals Using Attribute Grammars

7.2.2. Generic AG Rules

Independently of the concrete language used to de�ne an AG, we can characterise the
computation of attributes in the following way. Each node of the tree is decorated
with inherited and synthesized attributes by applying rules which are functions of
attributes inherited from the parent and attribute synthesized by the children, to
the inherited attributes of the children and the synthesized attribute of the parent.

Weakly Typed AG Implementation

The previous description of attribute rules is illustrated by the following type very
similar to the one given in [MBS00]:

type SimpleAG c i s = c → (i, [s]) → (s, [i])

c standing for constructor, is a label identifying the particular node on which the
rule is applied. The lists [s] and [i] are the collections of children's synthesized
and inherited attributes.

Unfortunately, this representation relies on the assumption that the AG rules
always compute a list of the same length as it was given. The generic view used
here is that of a general tree type. Concrete datatypes must be converted to this
tree in order to run an attribute grammar on them. c is a type of node labels:

data TreeG c = Node c [TreeG c]

For instance, a generic view for lists would be:

data ListC a = ConsC a | NilC -- list constructors
listToTree :: [a] → TreeG (ListC a)

listToTree [] = Node NilC []

listToTree (x : xs) = Node (ConsC x) [listToTree xs]

Note how the type ListC parallels the de�nition of List: it has the same construc-
tors, except that the children (recursive) are removed, all other �elds (non-recursive)
are kept. We call such a type, the type of shapes from the container terminology.

listToTree is a total injective function, however its inverse is partial since nothing
ensures that the list of children has the right size.

The execution of the attribute grammar is a circular catamorphism.

runSimpleAG :: SimpleAG c i s → TreeG c → i → s

runSimpleAG g (Node c tt) i = s

where (s, ii) = g c (i, ss)

ss = zipWith (runSimpleAG g) tt ii

tt and ii are expected to have the same size but this invariant is not ensured by
the type system.

100

Chapter 7: Circular Traversals Using Attribute Grammars

Bijective Generic Tree Representation

We re�ne the generic representation above and make it bijective. We must ensure
that the children collections have the required arity which depends on each con-
structor. This is achieved using GADTs by having the constructors indexed by
their arity, as type level natural numbers. The TreeW type uses existential quanti�-
cation (confusingly ∀ in GHC syntax).

data TreeW c = ∀ p . NodeW (c p) (p (TreeW c))

The constructors for lists are now indexed by the type of their children collections,
one for Cons and none for Nil. V0 and V1 are vector types of zero and one element.

data V0 x = V0

data V1 x = V1 x

data ListS a p where

ConsS :: a → ListS a V1

NilS :: ListS a V0

Lists are now in bijection with their generic tree representation.

listToTreeW :: [a] → TreeW (ListS a)

listToTreeW [] = NodeW NilS V0

listToTreeW (x : xs) = NodeW (ConsS x) (V1 $ listToTreeW xs)

Now converting from the generic representation is also a total function, since the
exact number of children is known.

treeWToList :: TreeW (ListS a) → [a]

treeWToList (NodeW NilS V0) = []

treeWToList (NodeW (ConsS x) (V1 xs)) = x : treeWToList xs

Strongly Typed AG Implementation

With this generic implementation of trees, we can more precisely capture what an
attribute grammar is:

type AG c i s = ∀ p . c p → (i, p s) → (s, p i)

Running an AG is exactly as before with runSimpleAG, it is simply a matter of
generalising zipWith to liftA2:

runAG :: Shape c ⇒ AG c i s → TreeW c (i → s)

runAG g (NodeW c tt) i = s

where (s , ii) = g c (i, ss)

ss = liftA2 (runAG g) tt ii

liftA2 is an operation on applicative functors. Just like zipWith, it applies runAG g

component-wise to the vectors.

101

Chapter 7: Circular Traversals Using Attribute Grammars

ListAG

We can show that AG (ListS a) i s is isomorphic to ListAG a i s of the previous
section. Recall the de�nition:

data ListAG a i s = ListAG (i → s) (a → s → i → (s, i))

fromListAG :: ListAG a i s → AG (ListS a) i s

fromListAG (ListAG nil cons) NilS (i, V0) = (nil i, V0)

fromListAG (ListAG nil cons) (ConsS x) (i, V1 s) = (s’, V1 i’)

where (s’, i’) = cons x s i

toListAG :: AG (ListS a) i s → ListAG a i s

toListAG g = ListAG (nil g) (cons g)

where nil g i = fst $ g NilS (i, V0)

cons g x s i = (s’,i’)

where (s’, V1 i’) = g (ConsS x) (i, V1 s)

7.2.3. Attribute Grammar Systems

Attribute grammars (AG) have been suggested as a way to write circular programs
modularly before [SAAS99, Swi05, MFS13, MBS00, VSS09]. Our approach is dif-
ferent. They use full featured attribute grammar language which is programming
paradigm, whereas we work in the functional paradigm by composing AG values
using arrows. Ours is a novel way to compose attribute grammars and is closer to
the applicative style of functional programming.
Although our type AG characterises attribute grammars, there is a lot more to an

attribute grammar system: named attributes, rule de�nitions, and various combi-
nators that allow to de�ne attribute grammars modularly. Those features are very
desirable when writing compilers or other big project. In this chapter we do not
study such a full AG system, however we give an overview of our work in this re-
spect in �8.4. Rather, this chapter focuses on the composition of traversals expressed
using the AG primitive.

7.3. Containers and W Types

It may not appear at �rst sight that our new generic view is based on W types, the
dependent type of well-orderings, and closely related to the notion of container.
The type TreeW given previously corresponds to a well known type-theoretical

construct: the W type, capturing well-orders. This section explains the type the-
oretical implementation of containers and well-orders, and relates them to their
surprising implementation in Haskell with a novel insight that type families are the
display maps of GADTs.
Containers [Abb03] give a semantic description of a data-structure that contains

some elements. They have been used for generic programming [Mor07], as an alter-
native to the algebraic (syntactic) description of datatypes. Another use of contain-
ers, and the one that interests us in this chapter, is as a representation of strictly
positive functors (see De�nition 2.1.2).

102

Chapter 7: Circular Traversals Using Attribute Grammars

7.3.1. Type-Theoretical Implementation

The important observation is that we can separate two concepts: the shape of the
data-structure, corresponding to the bare structure with all the elements removed;
and a mapping that can put back the elements in their original position in the
structure. We formalise this idea in type-theory: We call container the couple
(S, P) usually written S ⊳ P of a set of shapes S and a shape indexed family of
positions (Ps)s∈S. Using Agda syntax [Nor07],

Container : Set1 where

⊳ : (S : Set) → (P : S → Set) → Container

The container S ⊳ P is a code representing a parameterised type. Its semantics is
given by its extension, written JS ⊳ PK : Set → Set, denoting a parametric type
of data-structures. The elements of JS ⊳ PK X denote the data-structures which,
as explained above are separated into a bare structure given by a shape s : S,
and a payload function f : P s → X that restores the elements in their original
positions, for each position in P s.

JS ⊳ PK X = Σ(s:S)(P s → X)

We will call the functors JS ⊳ PK, container functors. Elements of the dependent
sum Σ(s:S)(P s → X) are pairs (s,f) with s : S and f : P s → X. The exten-
sion is functorial in the element type X. Given a function g : X → Y, we can apply
it to every element in the structure, the resulting structure has the same shape, we
compose g with the payload function to get a new payload function.

JS ⊳ PK g = λ (s , f) → (s , g ◦ f)

Container functors capture exactly strictly positive functors (SPF). When writing
generic programs over functors, we can either choose the syntactic representation
of a SPF, or the semantic representation as a container [Mor07].

Well-Orders

The �xed-point of a container functor is a W type, it is a generic representation
of an inductive datatype. This is what we use in our generic implementation of
attribute grammars.

7.3.2. Haskell Implementation

Containers are dependent types. It is surprising that we can implement them in
Haskell. The respective de�nitions are very di�erent, how are they related?
Haskell with GHC extensions can emulate some dependent type constructs. There

are a few di�erent approaches, they rely on representing values as types using type
constructors instead of value constructors, on type level functions, either with the
logical paradigm o�ered by type classes [Hal00], or with open type families. With
those extensions, GHC-Haskell is very similar to the language Omega [SL07].
The approach we will use here is di�erent and novel. Using only GADTs, and the

isomorphism between a display map and an indexed set, we can de�ne a dependent
type without representing the values as types.

103

Chapter 7: Circular Traversals Using Attribute Grammars

Display Maps

Display maps are used in categorical semantics of type-theory to represent indexed
sets [Tay99]. Sets like A : Set are object in the category and families B : A → Set

are represented by a display map, also called a �bration: f : E → A. The idea is
that E represents the union of all B a: Σ(a : A)(B a) and f is the �rst projec-
tion. An element b : B a is represented by an element x : E such that f x = a.
Reciprocally, given a display map f : E → A, we associate a family B : A → Set

de�ned by B a = Σ(x : E)(f x = a).

Type Families are the Display Maps of GADTS

A GADT is a datatype family indexed by types. This is not a usual construction in
type theories, where indices are normally values of closed types. This is in contrast
with GADTs for which the set of indices is open, as we can always extend the set
of types. We will best understand what a GADT is in type-theoretical terms by
considering its display maps, although the index is a type rather than a value, so is
an abuse of language to call this a display map.
Take a GADT with one type parameter G : Set → Set, Its display map would

be F : I → Set, where I = Σ(X:Set)(G X). So a GADT can in fact be viewed as
a type family indexed by values: the set of indices is the union of all G X, and the
type family F returns the G subset of the union in which its argument is an element:
∀ i ∈ I, i ∈ G (F i).
Reciprocally, given a type of indices I, any type family F : I → Set can be rep-

resented with a GADT G : Set → Set, such that for any set X, G X is the inverse
image of X by F: G X = { i : I | F i = X }. We used the set comprehension be-
cause in GHC-Haskell, the proof term corresponding to the type equality is implicit,
we cannot manipulate it.
Note that the other approaches using GADTs de�ne indexed types directly with

type indices representing values either by using singleton types [McB01a] or with
the GHC extension DataKind which promotes every datatype to a kind and its
constructors to types. On the other hand, by representing the display map as a
GADT, the indices are implicit, but correspond to Haskell values.
Now that we have a representation of type families, we can represent dependent

sums and products. Σ (a : A)(B a) is represented by:

data Dsum a where

Dpair :: a b → b → Dsum a

Π(a:A)(B a) is represented by:

newtype Dprod a = Dprod (∀ b . a b → b)

Now we have everything we need to implement containers in Haskell: a container
is de�ned by a GADT of shapes indexed by their positions.
The type of container extension takes a container s (GADT indexed by the po-

sitions) and an element type x, it is a dependent sum

104

Chapter 7: Circular Traversals Using Attribute Grammars

infix 0 :<

data Ext s x where

(:<) :: s p → (p → x) → Ext s x

Note that with e�ciency in mind, we will be generalising the applicative functor
Λx.p→ x to any applicative functor f . Since most of our examples will have �nite
positions, this allow us to use tuple types directly. Accessing the �elds of a tuple
are arguably faster than calling a function, with the advantages of data sharing and
memoisation. Now the shapes are indexed by that applicative functor instead of
the positions:

data Ext s x where

(:<) :: s f → f x → Ext s x

Alternatively, we could have chosen to use type level natural numbers as shape
indices and �x the applicative functor to a vector type:

data Ext s x where

(:<) :: s n → Vec n x → Ext s x

Where Vec is a GADT indexed by type level natural numbers:

data Vec n x where

VNil :: Vec Zero x

VCons :: x → Vec n x → Vec (Succ n) x

data Zero

data Succ n

Such containers with �nite positions are called small container [Mor07], or decidable
containers [Abb03].

7.4. Circular Programs as Compositions of AGs

In �7.1 we saw that higher-order algebras couldn't be combined in a single traversal,
and we gave a solution as attribute grammars (AG), but only for the special case
of lists. We now give a generic implementation of AG and extend ArrowCata to
use AG as primitive traversals. We also modify the type Circ to use AG instead of
algebras.

Overview

We �rst de�ne a generic view of recursive datatypes as �xed-point of a container
functor (W type) �7.4.1, on which the generic AG implementation is based. AG
datatype and operations are given next �7.4.2. Then the type-class ArrowAG ex-
tending ArrowCata is de�ned �7.4.3, it constitutes the programming interface for
composing attribute grammars using the arrow notation. Finally, the circular im-
plementation of ArrowAG is given �7.4.5.

105

Chapter 7: Circular Traversals Using Attribute Grammars

7.4.1. Generic View as a W Type

For our �rst circular abstraction based on algebras in �6.2 and �6.3 the generic view
for recursive datatypes was as �xed-point of a functor, and witnessed by the type-
class Fix f t �6.2.2. For the new circular abstraction based on attribute grammars,
we use an alternative generic view as a �xed-point of a container functor, also known
as a W type.

W Types

W types are parameterised by a container which in Haskell are implemented as a
position indexed type of shapes �7.3.2.

data W s where

Sup :: s p → p (W s) → W s

Container Functor

The base functor of a W type is also known as the extension of the container:

data WF s x where

WF :: s p → p x → WF s x

Payload Functors

The parameter s in W and WF is in fact a generalisation of a container and to be
useful the indices p known as payload functors need to be applicative functors. This
characterises the fact that if we have two trees of the same shape, although we don't
know their children positions as in normal containers, we can nonetheless make the
pairs of children in the same position.
We capture this with a type-class Shape:

class Shape s where

pureS :: s p → x → p x

appS :: s p → p (x → y) → p x → p y

Applicative functors must also obey some laws [MP08].
For example, the list payloads are applicative, respectively the empty vector for

NilS and the one element vector for ConsS.

instance Shape (ListS a) where

pureS NilS = λcase{}

appS (ConsS h) (V1 f) (V1 x) = V1 (f x)

Functoriality of the payload functor follows from any applicative instance:

mapS :: Shape s ⇒ s p → (x → y) → p x → p y

mapS sp f px = appS sp (pureS sp f) px

The functoriality of a container functor follows from the functoriality of its pay-
load functors.

instance Shape s ⇒ Functor (WF s) where

fmap f (WF s p) = WF s (mapS s f p)

106

Chapter 7: Circular Traversals Using Attribute Grammars

Generic View as W Type

We view recursive types as �xed-points of a container functor. This is a re�nement
of the Fix generic view where we require the base functor to be a container functor.

class (Shape s, Fix (WF s) t) ⇒ FixW s t | t → s where -- no new method

The view for lists:

instance Fix (WF (ListS a)) [a] where

out [] = WF NilS V0

out (h:t) = WF (ConsS h) (V1 t)

inn (WF NilS V0) = []

inn (WF (ConsS h) (V1 t)) = h:t

instance FixW (ListS a) [a] where

Note that because of the type dependency, only one base functor is allowed (one
instance of Fix f t for any type t). Therefore, all the previous examples using the
instance Fix (ListF a) [a] cannot be compiled together with the new container
view of lists: FixW (ListS a) [a]. It is in fact possible to design a type-class
hierarchy where more than one base functor is used but we chose to omit those
complications.

Container Algebras

Existential types like WF are eliminated with a polymorphic function. AlgW s x

corresponds to the uncurried version of Alg (WF s) x.

type AlgW s x = ∀ p . s p → p x → x

uncurryW :: AlgW s x → Alg (WF s) x

curryW :: Alg (WF s) x → AlgW s x

uncurryW f (WF s p) = f s p

curryW f s p = f (WF s p)

A generic iteration on container algebras:

cataW :: (FixW s t) ⇒ AlgW s r → t → r

cataW = cata . uncurryW

7.4.2. Generic Attribute Grammar Traversals

The computation of an attribute grammar can be described by the type AG f i s

where f is the type of node shapes of the tree, indexed by the payload functors of
children collections.

newtype AG f i s = AG {appAG :: ∀ p . f p → (i , p s) → (s , p i)}

Let us breakdown the type:

107

Chapter 7: Circular Traversals Using Attribute Grammars

newtype AG f i s = AG {appAG ::
∀ p . � collection type, for the children of the current node
f p → � node shape (grammar production)

also containing the non-recursive data (the terminals)
(i, � inherited attribute from the parent
p s) →� children synthesized attributes

(s, � synthesized attribute for this node
p i)} � children inherited attribute

AG f i s is the description of the AG. Its semantics is a a tree traversal that com-
putes the synthesized attribute of the root given an inherited attribute for the root.
We call this function i → s the semantics of the tree given by the attribute gram-
mar. We express the tree traversal as a container algebra.

algAG :: Shape f ⇒ AG f i s → AlgW f (i → s)

algAG (AG ag) f p i = s

where (s , pi) = ag f (i, appS f p pi)

Remarks

p is a collection of the semantics of the subtrees (children), pi is the collection of
inherited attributes for the children, appS f p pi applies the semantic function of
each child to its inherited attribute to compute the child's synthesised attribute. It
is best if the operation appS f p pi is lazy in pi to ensure the circular de�nition
is not diverging, but it is enough that ag itself is lazy in the collection of children
synthesized attributes.
We must iterate the algebra to traverse the tree.

runAG :: FixW f t ⇒ AG f i s → t → i → s

runAG ag t i = cataW (algAG ag) t i

For the rest of the section we de�ne some useful operations on AG.

Product of Attribute Grammars

The product of two AG takes the product of inherited attributes and return the
product of synthesized attributes. It satis�es:

runAG (pairAG g1 g2) t (i1,i2) ≡ (runAG g1 t i1, runAG g t i2)

In terms of algebras, it veri�es:

algAG (pairAG g1 g2) ≡ hpair (algAG g1) (algAG g2)

However, the left hand side does one traversal whereas the right hand side does two,
see �7.1.5 p. 96 for the de�nition of hpair.
The implementation of pairAG uses the fact that the children collection is an

applicative functor to separate the component of the pairs of synthesized attributes
and to make the pairs of inherited attributes for each child.

108

Chapter 7: Circular Traversals Using Attribute Grammars

pairAG :: Shape f ⇒ AG f a b → AG f c d → AG f (a,c) (b,d)

pairAG g1 g2 = AG $ λ f ~((a,c), pbd) →
let (b, pa) = appAG g1 f (a, pb)

(d, pc) = appAG g2 f (c, pd)

pb = mapS f fst pbd -- b attributes from (a,b)

pd = mapS f snd pbd -- d attributes from (b,d)

pac = mapS f (,) pa ⊛ pc -- pairs of a and c attributes
(⊛) = appS f

in ((b,d), pac)

Constant Inherited Attribute

If an attribute grammar depends on a global parameter, we can make it an inherited
attribute that gets duplicated to every non-terminal of the grammar.

inherit :: Shape f ⇒ (a → AG f b c) → AG f (a,b) c

inherit pag = AG $ λf ~((a,b), pc) →
let (c, pb) = appAG (pag a) f (b, pc)

in (c, mapS f (λb → (a,b)) pb)

Attribute Grammar from an Algebra

An algebra is an attribute grammar with only synthesized attributes.

synth :: Shape f ⇒ AlgW f s → AG f () s

synth alg = AG $ λf ~((),s) → (alg f s, pureS f ())

It veri�es

algAG (synth (curryW alg)) ≡ curryW (cons . alg . fmap ($ ()))

Note that we cannot compute the inverse of algAG, i.e. a function of type:

AlgW f (i → s) → AG f i s

Thus AGs contain strictly more information on the traversal than algebras. Just
like algebras contain strictly more information than a catamorphism.

Identity Attribute Grammar

idAG copies its inherited attribute everywhere: inherited and synthesized attribute
all are the same. The semantics is the identity function for any tree t:

runAG idAG t ≡ id

idAG :: Shape f ⇒ AG f x x

idAG = AG $ λf ~(x, ps) → (x, pureS f x)

109

Chapter 7: Circular Traversals Using Attribute Grammars

7.4.3. ArrowAG

We extend ArrowCata with a new primitive to run an attribute grammar. The arrow
primitive takes the AG and the inherited root attribute as input and returns the
synthesized attribute of the root. As for ArrowCata, the tree on which the traversal
is being made is implicit.

class (ArrowCata (WF f) ()) ⇒ ArrowAG f () | () → f where

apply_ag :: (AG f i s, i) s

The primitive apply_ag allow to compose higher-order AG: an AG which computes
another AG [VSK89]. On the other hand, if the AG isn't computed by another AG,
we may prefer to use the following function:

ag :: ArrowAG f () ⇒ AG f i s → i s

ag g = proc i → apply_ag ≺ (g,i)

We may also initialise the inherited attribute from outside the arrow:

ag_init :: ArrowAG f t ⇒ i → t (AG f i s) s

ag_init i = proc g → apply_ag ≺ (g,i)

Once an AG is made into a ArrowAG, it can be composed with other AG com-
putations simply by using the composition operator (.) rede�ned in Category, the
super-class of Arrow. Composing AGs g and f is as simple as: ag g . ag f.

It is the �rst time to my knowledge that attribute grammars are composed using
arrows. This promotes an applicative style which is closer to that of the functional
paradigm.

7.4.4. Multiple Traversals

Env is an instance of ArrowAG. The method apply_ag immediately runs the attribute
grammar, therefore when composing attribute grammars, each does its own traversal
(a pass in compiler terminology).

instance (FixW f t, Shape f) ⇒ ArrowAG f (Env t) where

apply_ag = Env $ λt (g,i) → runAG g t i

Env is again the semantics for the circular implementation.

7.4.5. Circular Implementation

We revise the type of circular programs of �6.3.2.

data CircAG f a b = ∀ i s . CAG (a → s → (AG f i s, i, b))

Let us breakdown the role of each type components:

110

Chapter 7: Circular Traversals Using Attribute Grammars

data CircAG f a b = ∀ i s . CAG (

a → input of the computation: domain of the arrow
s → synthesized attribute of the root after computation
(AG f i s, attribute grammar
i, inherited attribute for the root
b) result of the computation: codomain of the arrow

The types of inherited and synthesized attributes are hidden by the existential
quanti�cation. The attribute grammar, the inherited attributes for the root and the
result of the computation all depend on the input and the synthesized attributes of
the root element, obtained by circularity after running the attribute grammar.

Running the Circular Computation

Just as in Chapter 6, the semantics of a circular program is given in the environment
arrow.

circAGtoEnv :: FixW f t ⇒ CircAG f a b → Env t a b

circAGtoEnv = Env . runCircAG

runCircAG :: FixW f t ⇒ CircAG f a b → t → a → b

runCircAG (CAG body) struct param = result

where (ag, inherited, result) = body param (runAG ag struct inherited)

Instances De�nitions

The implementation of ArrowAG combinators is straightforward and is similar to the
instances for Circ given in �6.3.2 for which we gave detailed explanations.
Composition is the most interesting case. We make the pair of the two under-

lying AGs, we must wire the pairs of synthesized and inherited attributes to the
corresponding CAG body, and the thread the arrow computation parameter x to
b1, whose result r1 is then passed to b2 producing the �nal result r2. One must
be careful to use lazy patterns on the second argument of a CircAG so that the
circularity in runCircAG doesn't cause it to diverge.

instance Shape f ⇒ Category (CircAG f) where

id = arr id

CAG b2 . CAG b1 = CAG $ λ x ~(s1 , s2) → -- the lazy pattern is crucial
let (g1, i1, r1) = b1 x s1

(g2, i2, r2) = b2 r1 s2

in (pairAG g1 g2, (i1, i2), r2)

instance Shape f ⇒ Arrow (CircAG f) where

arr f = CAG $ λx ~() → (idAG, (), f x) -- arr :: (a → b) → (a b)
first (CAG b) = CAG $ λ(x,y) s → -- �rst :: (a b) → ((a,c) (b,c))

let (g, i, r) = b x s

in (g, i, (r,y))

instance Shape f ⇒ ArrowCata (WF f) (CircAG f) where

cataA = ag_init () <<< arr (λx → synth (curryW x)) --

cataA :: Alg (WF f) x x

111

Chapter 7: Circular Traversals Using Attribute Grammars

instance Shape f ⇒ ArrowAG f (CircAG f) where

apply_ag = CAG $ λ ~(g,i) s → (g, i, s) -- apply_ag :: (AG f i s, i) s

instance Shape f ⇒ ArrowLoop (CircAG f) where

loop (CAG b) = CAG $ λ x s → -- loop :: ((a, r) (b, r)) → (a b)
let (g, i, ~(y, r)) = b (x, r) s

in (g, i, y)

7.5. Examples

7.5.1. Palindrome

The palindrome function studied in �7.1 can be implemented modularly using
ArrowAG. The two traversals are de�ned as attribute grammars.

List equality.

eqlistAG :: Eq a ⇒ AG (ListS a) [a] Bool

eqlistAG = AG $ λcase

NilS → λ(y, V0) → (null y, V0)

ConsS a → λ(y, V1 t) → case y of

[] → (False, V1 [])

(x:y’) → (a ≡ x && t, V1 y’)

eqlistA :: (Eq a, ArrowAG (ListS a) ()) ⇒ [a] Bool

eqlistA = ag eqlistAG

Reversing a list. The inherited attribute is used as a stack to compute the result:
when the end of the list is reached (NilS case), the inherited attribute is returned.

revcatAG :: AG (ListS a) [a] [a]

revcatAG = AG $ λcase

NilS → λ(z, V0) → (z, V0)

ConsS a → λ(z, V1 r) → (r, V1 (a:z))

To compute the reverse of the list we must initialise the inherited attribute with
the empty list:

reverseA :: ArrowAG (ListS a) () ⇒ () [a]

reverseA = proc () → ag revcatAG ≺ []

The palindrome function simply composes reversal and equality (remember that the
list being traversed is implicit).

palindromeA2 :: (Eq a, ArrowAG (ListS a) ()) ⇒ () Bool

palindromeA2 = eqlistA . reverseA

We can evaluate the program as a single traversal:

palindrome6 :: (Eq a) ⇒ [a] → Bool

palindrome6 x = runCircAG palindromeA2 x ()

112

Chapter 7: Circular Traversals Using Attribute Grammars

7.5.2. Removing the Redundant Tests

In the previous implementation of palindrome half of the equality tests are redun-
dant since it is enough to test that the �rst half of the list is equal to the reverse
of the second half (which is equal to the �rst half of the reverse of the whole list).
Therefore we implement a new list equality predicate equalprefix which takes an
additional integer parameter to interrupt the recursion early.

palindrome7 x = equalprefix (n + q) x (reverse x)

where (n, q) = length x ‘quotRem‘ 2

equalprefix n x y

| n ≤ 0 = True

| null x || null y = False

| otherwise = head x ≡ head y

&& equalprefix (n - 1) (tail x) (tail y)

We must provide AG primitives for length and equalprefix: length is best im-
plemented using an algebra.

listAlgW :: b → (a → b → b) → AlgW (ListS a) b

listAlgW n c NilS V0 = n

listAlgW n c (ConsS x) (V1 xs) = c x xs

lengthAlgW :: AlgW (ListS a) Int

lengthAlgW = listAlgW 0 ((+) . const 1)

lengthA2 :: ArrowAG (ListS a) () ⇒ () Int

lengthA2 = ag (synth lengthAlgW)

The AG for equalprefix inherits the pre�x length and the second list. Above,
the guards allowed for an concise implementation, instead we are forced to pattern
match �rst on the list. Which means the case n ≤ 0 is repeated.

equalprefixAG :: Eq a ⇒ AG (ListS a) (Int, [a]) Bool

equalprefixAG = AG $ λcase

NilS → λ ((n,y), V0) → (n ≤ 0, V0)

ConsS a → λ ((n,y), V1 t) →
if n ≤ 0 then (True, V1 (n,y))

else case y of [] → (False, V1 (n,y))

(b:y’) → (a ≡ b && t, V1 (n-1, y’))

equalprefixA :: (Eq a, ArrowAG (ListS a) ()) ⇒ (Int, [a]) Bool

equalprefixA = ag equalprefixAG

A modular version of the palindrome with no redundant tests.

palindrome8 = proc () → do

rev ← reverseA ≺ ()

len ← lengthA2 ≺ ()

let (n, q) = len ‘quotRem‘ 2

equalprefixA ≺ (n + q, rev)

113

Chapter 8.

Perspectives

In this chapter we put our work on circular programming in perspective. We discuss
the performance of the library. We compare it to other optimisation techniques. We
discuss other uses of containers in particular their application to implement attribute
grammars. We conclude with a survey of related work.

Overview First (�8.1) there is the important aspect of performance. Does the cir-
cular programming technique o�er an improvement over multiple traversals? What
is the additional cost of our implementation over manually written circular pro-
grams? In �8.2 we discuss other transformation based program optimisations, in
particular optimisations where the program must conform to certain recursive pat-
terns. In �8.3 we explain further developments on containers and the potential
they o�er for generic programming. In �8.4 we give a review of our strongly typed
embedding of a full AG system in Haskell and compare it with other existing �rst
class AG implementations. Finally in �8.5 we give credit to related works which
in�uenced us and we compare our work with theirs.

8.1. Performance

Originally, circular traversals were used as an optimisation. However recent ad-
vances in compilers for lazy languages optimise multiple strict traversals often much
better than circular ones. Circular programs, by combining the consumers of a
datastructure maximise the possibilities of fusions, particularly of the foldr/build
variety [GLJ93].

An improved circular transformation algorithm [CGK99] incorporates a strictness
analysis to ensures the circular program is as strict as possible. Their experimen-
tal results show that their stricter circular programs are an improvement over the
multi-traversals, whilst they also show that the plain circular programs have worse
performance. Unfortunately, we haven't been able to reproduce their results. They
stress that it is essentials that the strictness analysis be done prior to introducing
circularity.

Although our research on circular traversals wasn't focused on optimisation but
rather in �nding a good abstraction, it is important to compare the performance of
programs using our library, with the corresponding multiple and circular traversals
written directly (without the library). Remember that a program using the library
can be run both as multiple traversals or as circular traversals.

115

Chapter 8: Perspectives

Our conclusions should be taken with caution as we only compared the perfor-
mance of a single example: palindrome which is a very small program. Nonetheless,
that example is disappointing from an optimisation perspective: manually written
implementations both normal and circular are faster than the ones using the library
and multiple traversals solutions are always much faster than the circular ones.

8.1.1. Experimental Results

We used GHC version 7.8.3 and compiled our program with option -O for the normal
level of optimisation. We ran di�erent implementations of the function palindrome

with arguments [1..n]++[n,n-1..1] with n = 10000.

Description Program Heap Alloc. GC Copy GC colls.

Original
Multi Traversal palindrome 2,754,472 2,043,936 6
Bird palindrome2 8,034,512 5,150,008 16
Bird Fixed palindrome4 9,474,488 9,065,392 19
ArrowAG:Env palindromeA2 26,908,888 4,224,720 52
ArrowAG:Circ palindrome6 294,923,656 127,285,536 582

Equal Pre�x
Multi Traversal palindrome7 2,072,016 1,099,992 4
ArrowAG:Env palindrome8 35,674,736 6,103,816 68
ArrowAG:Circ palindrome8 414,818,048 226,515,240 828

The last two columns correspond to the memory copied during garbage collection
and the number of garbage collections. Sizes are given in bytes.

It is striking that our modular approach comes with a huge overhead, which is
di�cult to explain unless more is known about the particular compiler. ArrowAG:Env
programs should be operationally equivalent to the multi traversals yet they perform
with a signi�cant penalty. The ArrowAG:Circ program should be equivalent to
Bird Fixed, yet it is inconceivably memory hungry. Such a huge cost in memory
and garbage collection overshadows any possible advantage that could have been
gained in traversing the datastructure only once or of deforesting it.

The tests were done with the short-cut fusion enabled to optimise lists operations
and we might think that it bias the comparison, but when deactivating them the
�gures are similar.

In summary, our comparison showed bad performance for our system on a single
and extremely simple example. This motivates further research to improve our
solution, as well as investigate the di�culties of the compiler to optimise it. More
experiments with more complex examples are needed before any strong conclusions
should be formed regarding the practical potential of our approach.

116

Chapter 8: Perspectives

8.2. Optimisation and Recursion Schemes

As we explained in the previous section, the circular transformation was originally
intended as an optimisation. We now discuss the general problem of program op-
timisation based on identifying recursion schemes and discuss the advantages of
using the newly found attribute grammar recursion scheme for optimisation pur-
poses. We conclude that strong languages by limiting (co)-recursion facilitate the
task of automatic optimisation.
Many optimisation techniques involve using speci�c recursion schemes to de�ne

functions. If the programmer is to manually optimise his code with such a technique,
he almost always trades program clarity or modularity for e�ciency.
Ideally, we would write programs only caring about their semantics and rely on

a clever compiler to optimise it. That task is greatly facilitated when programs are
structured to re�ect some underlying principles. For instance, writing traversals as
algebras rather than general recursive functions gives opportunities for the compiler
to combine them. One major success story is the foldr/build fusion rule implemented
in GHC which expects consumers (traversals) as algebras and producers to use a
polymorphic encoding rather than constructors [GLJ93].
If algebras are useful, it is natural that attribute grammars will be even more

so, since they provide more insight on the recursion (one can compute an algebra
from an attribute grammar, but not the converse). By attribute grammar, we
mean the recursive scheme in its embodiment with containers, rather than a high
level attribute grammars language. An AG recursive scheme would provide even
more clues to a compiler. In particular it would allow to choose the most e�cient
way to schedule traversals, making use of circularity only when it's advantageous,
combining strict traversals as much as possible.
However this disciplined programming is in practice too much to ask. There are

two reasons: 1) there may be numerous underlying schemes in which to cast a given
function. For instance map may be viewed both as a catamorphism and an anamor-
phism, both as a producer and a consumer. In fact, simply considering shortcut
fusion and its dual stream-fusion[CLS07], there would be already four ways to de�ne
map so that it is fusible. 2) The speci�c encodings that are required usually add some
complexity. For instance producers in short-cut fusion and especially consumers in
stream-fusion may be repelling for the extra e�ort required to implement them.
If we cannot rely on the programmer to write his programs using given abstrac-

tions, one approach to optimisation is to transform it so that it does. To make
the recursive schemes explicit, the compiler must �rst �nd the algebras correspond-
ing to catamorphisms [LS95, JL97, Nem00, JV00, YHT] or the coalgebras corre-
sponding to anamorphisms [CLS07, Har11, HHJ11] or both algebras and coalgebras
underlying hylomorphisms [DP11], or any other possible scheme (paramorphisms,
histomorphisms, etc).
In the presence of general recursion, such a transformation is never complete in

the sense that there will always be some catamorphisms that the compiler doesn't
recognise as such, and cannot calculate their algebra. This is a consequence of
Rice's theorem which states that any non-trivial property of a computable function
is undecidable.

117

Chapter 8: Perspectives

A clear advantage of strong languages against weak ones, with respect to op-
timisation, is that by forbidding general recursion it is always possible to derive
the algebras and coalgebras. It also seems likely that attribute grammars could be
automatically derived.

8.3. Generic Programming with Containers

Containers were used in Chapter 7 to precisely capture the recursive scheme under-
lying the evaluation of attribute grammars. Containers are a recent discovery with
many useful applications to generic programming. This section discusses containers
in this broader context.

Overview In �8.3.1 we start by discussing existing work on generic programming
with containers and parametric genericity. In �8.3.2, we list some important imple-
mentations of generic functions using containers, noting their suitability for de�ning
generic types. In �8.3.3 we discuss di�erent possibilities for the payload functor
when implementing containers in Haskell. In �8.3.4 we explain the generalisation of
containers to indexed containers which provides a generic view for mutually recur-
sive datatypes, and thus allows us to implement a full attribute grammar system,
since we must support context free grammars, naturally implemented as mutually
recursive datatypes. In �8.3.5 we show some other use of containers: implement-
ing container based modular datatypes (à la carte) and generic operations on them
involving paths.

8.3.1. Related Works

Generic programming with containers is the subject of two chapters of Morris
[Mor07], there is unfortunately too few examples of generic programming: the major
part of the chapters are concerned with implementing containers and the bijection
between the container and strictly positive generic view. Only one section (5.4)
gives a simple example of a generic program: the generic Map, a one liner when
using containers, to be contrasted with the equivalent de�nition with a syntactic
view which would need to consider many cases. Morris mainly used this example
to illustrate that containers o�er an alternative view of types where their syntactic
structure doesn't play a role. Let me stress again that very importantly this means
that parametric properties of generic functions with containers are automatic. A
feature that Gibbons [GP09] values particularly. The containers are therefore a
welcome addition to the functorial based generic-view that Gibbons studied. In
his paper, he only considered (co-)iteration over (co-)algebra, with quite a limited
scope for generic programming. Containers broaden the applications of parametric
genericity.

118

Chapter 8: Perspectives

8.3.2. Generic Functions and Generic Types

In many cases, generic programs not only work on the generic representation of a
type, but also on types which are constructed generically from another type. We
saw an example with our AG implementation: the type AG c i s depends on the
container representing the base functor of a recursive type and the generic func-
tion runAG :: AG c i s → W c → i → s traverses the structure whose generic
representation is W c.
We believe that containers are particularly suited to de�ne generic types. Generic

types constructed using the syntactic view are often hard to use because they usually
consist of sums of products and �xed-points: the constructor names from the original
type are lost. On the other hand, the semantic view o�ered by containers allow to
retain the connection with the original constructors via the shapes.
Apart from their application to attribute grammars, we know of two other elegant

generic types using containers.
Generic di�erentiation [Mcb01b] is used in the de�nition of the zipper [Hue97].

The derivative of a containers is given [AAGM05]. It should be interesting to see if
we can implement this in Haskell using our encoding of containers with GADTs.
From a recursive type, we can de�ne a type of its path which uniquely identify

subtrees. Operations on path include membership, extracting a subtree, substitut-
ing another subtree. In this thesis we used containers as representation of the base
functors of recursive datatypes and with this representation paths are lists of depen-
dent pairs of shapes and positions. It becomes more interesting when we want to
de�ne the paths of mutually recursive datastructures. We give more details about
this in a section below. Interestingly, containers can also be seen as representation
of datastructures with the positions being in fact paths to the leaves.

8.3.3. Design Choices for the Payload Functor

The basic characteristic of containers is to split a functor into its non-recursive part
(the shape) and its payload depending on the shape. We can choose to implement
the payload as a function indexed by the recursive positions. This is the usual
de�nition of containers.

data WF1 s where

WF1 :: s p → (p → x) → WF1 s

Or we can represent the payload as an applicative functor. It is a generalisation of
the previous case, as p → x is an applicative functor. This is the approach followed
in this chapter. Note that the applicative instance must be given for every index f

of a shape type s.

data WF2 s where

WF2 :: s f → f x → WF2 s

A third possibility, when the children are �nite is to index the shape with the
number of children and use a vector type for the payload. Such containers are called
decidable because equality on positions is decidable [Abb03].

119

Chapter 8: Perspectives

data WF3 s where

WF3 :: s n → Vec n x → WF3 s

Where n is a type level natural number and Vec n x is a dependent type of lists of
length n.
With that last approach we may de�ne uncurried functions from vectors: instead

of Vec n x → y we may de�ne a Uncurry n x y where Uncurry is a type function
de�ned as a type family in GHC, such that:

Uncurry 0 x y = y

Uncurry (n+1) x y = x → Uncurry n x y

This makes programming with containers very non-obtrusive. For instance a list
algebra using a this approach would be written:

length NilS = 0

length (Cons x) n = n + 1

This is the approach used in our implementation of an AG System on top of the
AG type.

8.3.4. Mutually Recursive Data Structures

To program generically with mutually recursive data structures, and to implement
context free attribute grammars, we need to view them as indexed W types, and
represent their indexed base-functor as an indexed container. Although a complex
dependent type, indexed containers can be implemented in Haskell using the same
display-map technique we used for simple containers.
Indexed containers are de�ned in type theory as follows [AM09]:

data ICont (I : Set)

(S : I → Set)

(P : (i : I) → S i → I → Set)

(X : I → Set)

: I → Set where

icont : (i : I) →
(s : S i) →
(f : (j : I) → P i s j → X j)

→ ICont S P i

In the Haskell encoding P i is the display map of a i.

data ICont (a :: * → (* → *) → *)

(x :: * → *)

(i :: *) where

icont :: a i b → (∀ j . b j → x j) → ICont a x i

The following correspondence between the type-theoretical and Haskell implemen-
tation may be helpful.

120

Chapter 8: Perspectives

Type theory Haskell

Set Kind *

I : Set Kind *

i, j : I i, j : *

{ s : S i | P i s = b } a i b

P i s : I → Set b : * → *

X : I → Set x : * → *

8.3.5. Modular Datatypes and Paths

As part of our AG System described in the next section, we have implemented a
modular generic representation of mutually recursive datatypes, inspired by [Swi08]
and [BH11]. Basically, each constructor is de�ned as an independent container
functors, and we can gather any collection of them in a sum before taking the �xed-
point (W-type), or more usefully to de�ne a free monad. Indexed containers o�er
the right abstractions to implement strongly typed paths, in term of which we may
de�ne some useful generic functions: we may for instance check whether a path is
contained in a certain datastructure, and if so extract the subtree identi�ed by that
path, or substitute another subtree. The notation we found is extremely clear: it
is a dependently typed list of alternating shapes and positions: each shape must be
tested against the nodes of the tree, and each position is used to select one of the
children for each node. For instance, a path through a binary tree, starting at the
root, expecting a node (not a leaf) and following its left child, and so on.

a_path = TOP ⊲ node −→ left

⊲ node −→ right

⊲ node −→ right

Note that the actual shape value is not important, only its type matters, for that
reason we chose to use type proxies instead. node is a proxy for Node. Thus the
data associate with each Node shape doesn't appear in the path.

8.4. Embedding a Strongly Typed AG System

Using our Haskell encoding of indexed-container functors, we implemented a strongly
typed embedded AG system for Haskell. Our library, using many type system ex-
tensions, is essentially a dependently typed implementation of [MBS00]. It retains
the advantage of type inference, and a simplicity of the types that the user can ma-
nipulate. The authors of the aforementioned article doubted that such a simplicity
would be possible whilst enforcing strong type invariants. Moreover, the syntax of
the embedding is pure haskell yet is that of a high level AG language unlike that
used in [MBS00] and [VSS09] where a pre-processor or macro-processor was needed
in order to present a nicer syntax. Such a two-level approach has a disadvantage in
that the user who wants to de�ne new combinators has to manipulate the underlying
implementation which is very di�erent from the surface language.

121

Chapter 8: Perspectives

It has a number of novel characteristics. Notably its high degree of modularity.
It implements all the modular features of [MBS00] and more, whilst implementing
a stronger type safety. The features in common with [MBS00] are:

� Attribute grammars are composed of aspects which are merged together. Also
provided in [VSS09].

� Aspects de�nes the computation rules of a single attribute for a set of pro-
duction. They may depend on other attributes, but the computation of those
attributes is de�ned independently as another aspect.

� Rules de�ne the computation of a single attribute for a single production.

� Rule combinators are functions that compute some rule according to a general
pattern: copying, collecting the values of a monoid, chaining attributes.

We were also able to implement AG macros as in [VS12] which allow to de�ne the
semantics of a constructor in terms of others and delegate all attribute computation
to them, save for a few special cases. As example they de�ne a constructor Square in
terms of Multiply, and inherit all the semantics of computing a value but override
the semantics of representing the expression as a string.
We must stress the new level of modularity that we have by de�ning rules on single

productions: this allows us to de�ne attribute grammars over modular datatypes
as was done in [Swi08] but with algebras. We also work with mutually recursive
datatypes as in [BH11].
Thus there are three independent dimensions of modularity. Two of them corre-

spond to the expression problem [Coo91].

� Productions (constructors) are de�ned independently and combined;
� Attributes are de�ned independently and combined;
� Rules are de�ned independently and combined.

Some other features supporting modularity:

� Reusing an attribute grammar, renaming some attributes;
� Reusing an attribute grammar, changing the semantic rules for some at-
tributes, for some productions;

� Reusing rules on other productions to de�ne a rule;
� Generic rules which can be used as default, and implement some common
pattern: copy, chain, collect, macros.

We �nd worth mentioning that all the generic rules are implemented on top of the
library, as a user could program them. In particular the macro system described in
the example below relies on the possibility to run the AG itself that is being de�ned:
this is a true example of higher-order attribute grammar where an attribute is an
attribute grammar and is executed during the computation of another attribute
grammar. For the macro system, we make sure that the two are actually the same
using a circular binding.

122

Chapter 8: Perspectives

Finally we made a lot of e�ort in order to simplify the types that the user of
the library must manipulate, but in some cases the error messages can leak some
information about the library implementation and are actually quite remote to what
we would want to tell the user if we had a control on GHC error handling.
The whole library is about 3250 lines of Haskell, including comments. It went

through 27 revisions. It is now ready for being made public.

8.4.1. Example

Without giving any details about the actual library implementation, we will give an
example of its use, so as to illustrate some of the above claims. The whole program
is given at the end of the section, we now proceed to explain it step by step.
We give some snippets of a attribute grammar for a primitive desk calculator, the

main example of Paakki's AG survey [Paa95], also used in [MFS13].
A desk program is of the form PRINT e WHERE x = c, ... x = c where e stands

for an expression, x stands for variables, and c for integer constants. Expressions
are sums of variables and constants. For instance:

PRINT x + y + 11 WHERE x = 22, y = 33

A Haskell representation of this language uses mutually recursive datatypes to
precisely capture the context free grammar.

data Prog = Print Exp [Def]

data Exp = Exp :+ Fact | Fact Fact

data Fact = Var String | Cst Int

data Def = String := Int

Our previous example:

deskExample =

Print (Fact (Var "x") :+ Var "y" :+ Cst 11) ["x" := 22, "y" := 33]

We will write an attribute grammar to compile Desk programs. The target language
has four instructions:

data Instr = LOAD Int | ADD Int | PRINT | HALT

A compiled program is simply a list of instruction. The previous example compiles
to:

runDeskG deskExample

=⇒ [LOAD 22, ADD 33, ADD 11, PRINT, HALT]

Grammar De�nition We will implement the same language in a modular fashion:
meaning that we will be able to extend it later, and choose the constructors a la
carte, as in [BH11] (which generalises [Swi08] to mutually recursive datatypes).
Each non-terminal is de�ned as an empty type, serving as a label

123

Chapter 8: Perspectives

data PROG

data EXP

data DEF

data DEFS

data FACT

Each production, is given a name (corresponding to the datatype constructor).
This time, the datatype should have only one constructor and should contain any
non-recursive data. We only give two cases, the other ones are similar. Note that
we reuse the same constructor names as in Prog, this only means that the two
de�nitions are in di�erent modules. As a convention, we write non-terminals in
upper case.

data Print = Print

instance Constructor Print where

type Production Print = PROG =⇒ ’[EXP, DEFS] -- list of non-terminals

Notice that how we specify the recursive part of the production almost as BNF
production, thanks to the type level list of GHC. =⇒ is simply a more illustrative
way to write a product type.
The Var production has only one terminal, the String name of the variable and

no non-terminals are on the right hand side.

data Var = Var String -- terminals are part of the shape
instance Constructor Var where

type Production Var = FACT =⇒ ’[] -- no non-terminals for that production

Next some smart constructors are de�ned. A process that may seem tedious al-
though could easily be automated with template Haskell. Smart constructors are
immensely useful when using datatypes à la carte, and our implementation is similar
in spirit to that of [Swi08]. We omit the details.

iprint = injC proxies Print

ivar = injC proxies . Var

We obtain an implementation à-la-carte of Desk as the �xpoint Expr of the sum
CSum of its constructors functors given as a type level list, once again very useful.

type DeskExpr = Expr (CSum ’[Print, Add, Fact, Var, Cst, Defnil, Defcons, Def])

We can now convert from Desk to DeskExpr using the smart constructors. Each
datatype (non-terminal) needs its conversion function:

progE :: Prog → DeskExpr PROG

expE :: Exp → DeskExpr EXP

factE :: Fact → DeskExpr FACT

defsE :: [Def] → DeskExpr DEFS

defE :: Def → DeskExpr DEF

We give two cases to illustrate how straightforward the de�nition is.

progE (Print e ds) = iprint (expE e) (defsE ds)

factE (Var v) = ivar v

We may also do without using Desk and using DeskExpr with the smart constructor
instead.

124

Chapter 8: Perspectives

Attributes de�nition The attribute grammar has the following attributes.

code synthesized target code, list of instructions, de�ned for PROG and EXP;
name synthesized name, string, de�ned for DEF;
value synthesized value, integer, de�ned for DEF, FACT;
ok synthesized attribute, boolean that indicates correctness, de�ned for DEFS,

FACT;
envs synthesized environment, symbol table, de�ned for DEFS;
envi inherited environment, symbol table, de�ned for EXP, FACT.

The textual description translates immediately so transparently to Haskell that
there is very no need for explanation. We give only a few cases.

data Code = Code

instance Attribute Code where

type Mode Code = Synthesized

type Type Code a c n = [Instr]

type Domain Code = Over ’[PROG, EXP]

data Ok = Ok

instance Attribute Ok where

type Mode Ok = Synthesized

type Type Ok a c n = Bool

type Domain Ok = Over ’[DEFS, FACT]

data EnvI = EnvI

instance Attribute EnvI where

type Mode EnvI = Inherited

type Type EnvI a c n = SymbolTable

type Domain EnvI = Over ’[EXP, FACT]

Remark: the parameters a, c, n of Type allow to de�ne attributes depending on
(a) the attribute record, (c) the container and (n) the non-terminal to which it is
associated. Those parameters are not used in this example but are very useful in
other cases.

Aspects and Namespace Before de�ning rules, we must de�ne a namespace:
attributes may be given alternative computation rules in di�erent namespaces. For
our simple example we use one namespace:

data Desk = Desk

Namespaces contain a set of rules. There are some operations for importing rules
from other namespaces. The importing mechanism is very �exible but we lack the
space to describe it in detail.
An aspect is a set of concrete choices of rules picked from di�erent namespaces.

Rules are uniquely identi�ed by their namespace and the attribute they implement.
Here we de�ne a single aspect which takes all of the rules from the same namespace:

type DeskAspect =

IA Desk ’[Code, EnvS, Ok, Value, Name, EnvI]

125

Chapter 8: Perspectives

Semantic Rules We use two classes to de�ne rules: SRule for synthesized at-
tributes and IRule for inherited attributes.
The context of the instance declaration UseS a ’[Ok] says that we will use the

synthesized attribute Ok. Then the parameters of the class are: the namespace Desk,
the attribute being de�ned Code and the production Print. The type system only
allow correct rules: for instance this one is possible because Code is de�ned for the
non-terminal PROG of which Print is indeed a production.
The actual implementation is given by the method srule of which the �rst argu-

ment is a type proxy necessary to identify the namespace (Desk here), the second
is the inherited attribute i, the third is the production shape Print (along with
non-recursive data) and the rest are the eventual recursive arguments. Note that
the method has a variable number of argument using the dependently typed tech-
nique described in �8.3.3: observe how the de�nition feels almost as if we used the
original constructors. There is absolutely no syntactic overhead and we didn't even
resort to template Haskell.
In the de�nition, any attribute may be referred to using his label and the operator

! (left associative and with the highest priority so that attributes can be used as
functions). The validity is typechecked: here it is possible to access the Ok attribute
of d because Ok is de�ned for DEFS and d is indeed a DEFS since it is the second
child of Print. Likewise, Code is de�ned for e of type FACT. Note that Code is being
de�ned so we can use in the de�nition without listing it in the context. The instance
wouldn't be valid if we'd use an attribute but didn't specify it in the context unless
it is being de�ned.

instance (UseS a ’[Ok]) ⇒ SRule c a Desk Code Print where

srule _ i Print e d = if Ok! d then Code! e ++ [PRINT, HALT] else [HALT]

The other two productions for which a rule for Code should be de�ned are Add

and Fact for the EXP non-terminal. Both of them need to access the attributes Ok

and Value.

instance (UseS a ’[Ok, Value]) ⇒ SRule c a Desk Code Add where

srule _ i Add e f = if Ok! f then Code! e ++ [ADD $ Value! f] else [HALT]

Fact has only one child.

instance (UseS a ’[Ok, Value]) ⇒ SRule c a Desk Code Fact where

srule _ i Fact f = if Ok! f then [LOAD $ Value! f] else [HALT]

Let us also see the rules for Ok, recall that this attribute is de�ned over FACT with
productions Var and Cst, and DEFS with productions Defnil and Defcons.
The case for Var uses the inherited attribute EnvI: we must project it from the

inherited record i. Observe as well that Var doesn't have children, and its �eld
name corresponds to a non-terminal of type String.

instance (UseI a ’[EnvI]) ⇒ SRule c a Desk Ok Var where

srule _ i (Var name) = Map.member name (EnvI! i)

The cases for Cst and Defnil show that all the information really necessary to
identify the rule is given in the instance head.

126

Chapter 8: Perspectives

instance SRule c a Desk Ok Cst where

srule _ _ _ = True

instance SRule c a Desk Ok Defnil where

srule _ _ _ = True

instance (UseS a ’[Name, EnvS]) ⇒ SRule c a Desk Ok Defcons where

srule _ i Defcons h t = Ok! t && not (Map.member (Name! h) (EnvS! t))

We now give a rule for inherited attributes. By default inherited attributes are
simply passed down the tree, this is achieved by saying that in the default case, the
copy rules should be used in the namespace Desk.

type instance Default Desk = Copy

Copy rule will cover the cases for Add and Fact. The only case we need to implement
is for Print. The context is the same as in SRule, and IRule has the same param-
eters as SRule plus one added at the end which is the name of the child for which
we de�ne the inherited attribute. Recall that each child gets an inherited attribute
from his parent, since we may want to pass di�erent values to di�erent children,
each child gets its own IRule instance (only if necessary: the default mechanism
and copy rule take care of all the other cases).

instance (UseS a ’[EnvS]) ⇒ IRule c a Desk EnvI Print PrintEXP where

irule _ i Print e d = EnvS ! d

Children names are simply type level natural numbers identifying their position.
We will de�ne EnvI for the EXP child of Print. It is its �rst child so we de�ne

type PrintEXP = N0 -- N0 is the type level zero

Running the AG We de�ne an AG by combining di�erent attributes. The actual
rules chosen to compute them are given independently by choosing of a particular
aspect. Only inherited attributes like EnvI are initialised.

deskF envi = envi ‘asAttr‘ EnvI & Code & EnvS & Ok & Name & Value

We run the AG by providing a namespace in which to choose the attribution rules
(here Desk) and by providing the AG speci�cation deskF. attrTrivial is the initial
value for the inherited attribute EnvI: it is used in this case because the non-terminal
PROG doesn't inherit a EnvI. Finally, we extract the Code attribute which contains
the list of instructions corresponding to the Desk program.

runDeskG :: Prog → [Instr]

runDeskG prog = Code ! runAG’ Desk (deskF attrTrivial) exp

where exp = progE prog

AG Macros We extend the grammar with a new production Twice for the EXP

non-terminal. It has a single child, a FACT non-terminal.

data Twice = Twice

instance Constructor Twice where

type Production Twice = EXP =⇒ ’[FACT]

127

Chapter 8: Perspectives

We de�ne a new namespace for the extension:

data DeskExt = DeskExt

Just like we used the copy rule as default for the Desk namespace, we can also
import rules from di�erent namespaces. Here we import the macro rules and copy
rules for Twice, as well as all the rules of DeskAspect and Utils contains some rules
necessary for the macro mechanism.

type instance Import DeskExt =

’[IA Copy ’[Macro Twice]

, IC Macros ’[Twice]

, DeskAspect

, UtilsAspect]

A macro de�nition has two components. The �rst builds an macro expression
on which to delegate the computation of synthesized attributes. Here we convert
Twice e to the macro expression Add (Fact e) e and run the AG on this tree. The
synthesized attribute at the root of the macro tree will be taken for the attribute of
the original node (Twice). Note in passing that we implemented the macro system
as a true higher order attribute grammar: each macro computation runs the �nal
attribute grammar on the macro trees. The �nal AG is circularly bound to an
inherited attribute passed down the main tree.
The second component of a macro must specify for each child of the original node

where to �nd the corresponding inherited attribute in the macro expression. Note
that the macro expression may not have the same number of children: this is the
case here: Twice e has one child, Add e e has two. We must choose one of them to
retrieve the inherited attribute for the child of Twice. The speci�cation is given as
paths: one for each child. Using containers, we can represent strongly typed path
generically. Here there is only one child, and we give the path to the second child
of Add.

Top ⊲ Add −→ add_right

Macros are implemented on top of the AG system: the macro speci�cation is given
as an inherited attribute, and the generic rules of macro attribute computations will
take care of the rest.
We de�ne a AG fragment that only contains the macro attribute which we ini-

tialise with our speci�cation

twice_macro = frag $ Macro Twice’ ‘with‘

MacroDef (λ_ e → iadd (ifact e) e)

(Top ⊲ Add −→ add_right :V)

We can run the extended AG. This time we use runHoagWithUtils which takes
care of passing the circularly bound AG as an inherited attribute, and adding the
necessary attributes for computing macros. We reused the previous deskF AG
fragment, and extended it with twice_macro.

runDeskExt e =

Code ! runHoagWithUtils DeskExt (λenvi → deskF envi & twice_macro)

(getAttr EnvI) attrTrivial e

128

Chapter 8: Perspectives

Types Amazingly we where able to simplify the types that a user manipulates.
This was not likely according to [MBS00]. The use of type level lists brings a lot of
clarity.
The type of the previous attribute grammar fragment as inferred by the system:

deskF :: Container c ⇒ Attr EnvI r c ’I n →
PFrag ’[EnvI] -- used inherited attributes

’[Code, EnvS, Ok, Name, Value] -- used synthesized attributes
c -- container
r -- attribute record type with renaming
r -- attribute record type
’[EnvI, Code, EnvS, Ok, Name, Value] -- produced attributes
n -- non-terminal

Attr EnvI r c ’I n is the inherited attribute initial value that we must provide
to actually get the AG fragment.
Whereas a proper AG cannot be extended, a fragment retain that possibility. In

fact for that very reason, we made sure the user of the library cannot ever access
the AG type. So that we can combine a fragment, we must keep track of 1) the
attributes it uses and that may be provided by other fragments 2) the attributes it
computes. When combining fragments, the union of each set of attribute is made.
An AG is simply a fragment which computes all the attributes that it needs. This
is the case of deskF above.
The PFrag parameters are in order: the list of the inherited attributes (only

EnvI here) that are needed, the list of synthesized attributes ([Code, EnvS, Ok,

Name, Value] that are needed. The type variable c is the container on which the
AG will be run. deskF is generic and can be run on any container for which all
the. The type variable r is the attribute record. The polymorphic quanti�cation
allows future extension, the concrete type will be inferred when running the AG.
The second occurrence of r re�ects the fact that no attribute was renamed in this
fragment, otherwise we would have some other type. The next parameter is the list
of attributes which the fragment computes. The last parameter is the non-terminal
for which the attribute grammar is de�ned: it will determine the type of inherited
attributes that must be given to the root when computing the AG.

129

Chapter 8: Perspectives

8.4.2. Full Listing

-- Instruction: Target Language is [Instr]

data Instr

= LOAD Int | ADD Int | PRINT | HALT

-- Non-Terminals
data PROG

data EXP

data DEF

data DEFS

data FACT

-- Productions
data Print = Print

instance Constructor Print where

type Production Print =

PROG =⇒ ’[EXP, DEFS]

data Add = Add

instance Constructor Add where

type Production Add =

EXP =⇒ ’[EXP, FACT]

data Fact = Fact

instance Constructor Fact where

type Production Fact = EXP =⇒ ’[FACT]

data Var = Var String

instance Constructor Var where

type Production Var = FACT =⇒ ’[]

data Cst = Cst Int

instance Constructor Cst where

type Production Cst = FACT =⇒ ’[]

data Defnil = Defnil

instance Constructor Defnil where

type Production Defnil = DEFS =⇒ ’[]

data Defcons = Defcons

instance Constructor Defcons where

type Production Defcons =

DEFS =⇒ ’[DEF, DEFS]

data Def = Def String Int

instance Constructor Def where

type Production Def = DEF =⇒ ’[]

-- Smart constructors
iprint = injC proxies Print

iadd = injC proxies Add

ifact = injC proxies Fact

ivar x = injC proxies (Var x)

icst x = injC proxies (Cst x)

idefnil = injC proxies Defnil

idefcons = injC proxies Defcons

idef x y = injC proxies (Def x y)

-- Children Names
type PrintEXP = N0 -- First child of Print

-- Type of the Abstract Syntax Tree.
type DeskExpr = Expr (CSum

’[Print, Add, Fact, Var, Cst,

Defnil, Defcons, Def])

-- Attributes Declaration
data Code = Code

instance Attribute Code where

type Mode Code = Synthesized

type Type Code a c n = [Instr]

type Domain Code = Over ’[PROG, EXP]

data Name = Name

instance Attribute Name where

type Mode Name = Synthesized

type Type Name a c n = String

type Domain Name = Over ’[DEF]

data Value = Value

instance Attribute Value where

type Mode Value = Synthesized

type Type Value a c n = Int

type Domain Value = Over ’[DEF, FACT]

data Ok = Ok

instance Attribute Ok where

type Mode Ok = Synthesized

type Type Ok a c n = Bool

type Domain Ok = Over ’[DEFS, FACT]

type SymbolTable = Map String Int

130

Chapter 8: Perspectives

data EnvS = EnvS

instance Attribute EnvS where

type Mode EnvS = Synthesized

type Type EnvS a c n = SymbolTable

type Domain EnvS = Over ’[DEFS]

data EnvI = EnvI

instance Attribute EnvI where

type Mode EnvI = Inherited

type Type EnvI a c n = SymbolTable

type Domain EnvI = Over ’[EXP, FACT]

-- Namespace and Aspects
data Desk = Desk

type DeskAspect = IA Desk

’[Code, EnvS, Ok, Value, Name, EnvI]

-- Semantic Rules for Code
instance (UseS a ’[Ok]) ⇒

SRule c a Desk Code Print where

srule _ i Print e d =

if Ok! d then Code! e ++ [PRINT, HALT]

else [HALT]

instance (UseS a ’[Ok, Value]) ⇒
SRule c a Desk Code Add where

srule _ i Add e f =

if Ok! f

then Code! e ++ [ADD $ Value! f]

else [HALT]

instance (UseS a ’[Ok, Value]) ⇒
SRule c a Desk Code Fact where

srule _ i Fact f =

if Ok! f then [LOAD $ Value! f]

else [HALT]

-- Semantic Rules for Value
instance (UseI a ’[EnvI]) ⇒

SRule c a Desk Value Var where

srule _ i (Var name) = fromJust $

lookup name (EnvI! i)

instance SRule c a Desk Value Cst where

srule _ i (Cst x) = x

instance SRule c a Desk Value Def where

srule _ i (Def name value) = value

-- Semantic Rules for Ok
instance (UseI a ’[EnvI]) ⇒

SRule c a Desk Ok Var where

srule _ i (Var name) =

member name (EnvI! i)

instance SRule c a Desk Ok Cst where

srule _ i _ = True

instance SRule c a Desk Ok Defnil where

srule _ i _ = True

instance (UseS a ’[Name, EnvS]) ⇒
SRule c a Desk Ok Defcons where

srule _ i Defcons h t = Ok! t

&& not (member (Name! h) (EnvS! t))

-- Semantic Rules for Name
instance SRule c a Desk Name Def where

srule _ i (Def name value) = name

-- Semantic Rules for EnvS
instance SRule c a Desk EnvS Defnil where

srule _ i Defnil = empty

instance (UseS a ’[Name, Value]) ⇒
SRule c a Desk EnvS Defcons where

srule _ i Defcons h t =

insert (Name! h) (Value! h) (EnvS! t)

-- Semantic Rules for EnvI
instance (UseS a ’[EnvS]) ⇒ IRule c a

Desk EnvI Print’ PrintEXP where

irule _ i Print’ e d = EnvS ! d

-- Copy Rule for Inherited Attributes
type instance Default Desk = Copy

-- Grammar Fragment
deskF envi = envi ‘asAttr‘ EnvI &

Code & EnvS & Ok & Name & Value

-- Running the Attribute Grammar
runDeskG :: DeskExpr → [Instr]

runDeskG x =

Code ! runAG’ Desk (deskF attrTrivial) x

131

Chapter 8: Perspectives

8.5. Related Works

A whole body of work in�uenced our research. In addition to putting our work in
a broader context, this section will also serve to give credit where it is due.

8.5.1. Circular Traversals without Attribute Grammars

Foremost, Bird's article [Bir84] was the catalyst that started me thinking about
circular programs and why couldn't we possibly capture the recursive pattern within
the language rather than resort to a meta transformation. Bird explains his method
through examples without giving an algorithm for a systematic transformation.
For one of his example, the palindrome, Bird takes a creative step to obtain a
terminating circular program. It is not obvious from his article whether a systematic
transformation could be formulated.
Takeichi [Tak87] claims to o�er a systematic transformation corresponding to

Bird's technique, but what he does is actually very di�erent. Essentially he ex-
presses each traversal as an algebra, specialises a catamorphism combinator by
partial application to the datastructure, which by the way corresponds to the poly-
morphic (a.k.a. Church) encoding of the datastructure, and applies this function
to all the algebras. Not only his programs are not circular, but arguably they still
perform many traversals, since each algebra is being iterated independently.
Pardo, Fernandes and Saraiva [PFS09] present a variation of foldr/build shortcut

fusion rule [GLJ93], which may produce circular programs when it is applied. In
particular, GHC is suitable for this technique as it supports the application of user
supplied transformation rules. In order for the rule to be triggered, the program
must be written in a special way. In particular we must choose whether a function
is a producer or a consumer. Surprisingly for the repmin example, we need to de�ne
min as a producer of both the minimum value and a copy of the tree and de�ne
replace as a consumer. There lies a lack of modularity: in other circumstances min
would be a consumer.

8.5.2. Circular Traversals with Attribute Grammars

The implementation of AG in functional languages was �rst studied in 1987 [Joh87,
KS87].
Both articles revisit Bird's circular traversals using AG. Johnsson's approach

[Joh87] is to formulate the whole program in the AG paradigm and then translate
it in a lazy functional program. He writes the recursive function directly (as Bird
did), as one monolithic de�nition. He realises that the encoding of an AG lacks the
clarity of its formulation in the AG paradigm and proposes a language construct to
write AGs, and gives an algorithm to translate it into the base language.
Kuiper and Swierstra [KS87] give a systematic transformation from multiple

traversals (MT) to single circular traversals (CT). Their approach is to use at-
tribute grammars as an intermediate step. They give two formal translations of AG
as functional programs: one corresponds to MT, the other to CT. Thus, to trans-
form a MT program to CT, one must identify the MT program with the non-circular

132

Chapter 8: Perspectives

implementation of an AG; and from that AG, derive the circular implementation,
which results in Bird's CT. Their transformation-based approach isn't modular.

Swiestra, Alcocer and Saraiva's work [SAAS99] was a primary in�uence for us.
They propose a modular approach to circular programming. Traversals are written
as algebras and combined using the product operation. It is in fact the underly-
ing principle for our Circ implementation of ArrowCata. We went one step further
than them: whereas they explicitly take the products of the algebras and binding
them circularly which adds a lot of complexity to the program compared to the
multi-traversal version, we on the other hand, devised combinators around a type
that encapsulates circular algebras: this allows us to hide the underlying complex-
ity and implementation details. Consequently, ArrowCata programs implemented
in the arrow notation are as simple and clear to read and write as are their multi-
traversal equivalent written compositionally in functional notation. They also de�ne
AG using algebras, following a systematic principle to de�ne complex algebras over
mutually recursive datatypes and their iteration. They acknowledge that it is cum-
bersome to go through the systematic process of deriving the algebra types and
combinators, and they suggest to leverage genericity using PolyP. However, they
argue that much of the complexity lies in programming directly with algebras and
in the second part of the article, they introduce an attribute grammar preproces-
sor for Haskell. They discuss optimising the generated program. They avoid the
circularity by analysing the dependencies between the attributes and generate the
minimum of tree traversals as needed: thus each traversal still computes as many
attributes as possible.

AG as an Embedded Language Other approaches to circular traversals focus on
embedding an AG language in Haskell.

Zipper Based AG A zipper [Hue97] consists of the pair of a subtree and its
context. One can �plug� back the subtree into its context and obtain the whole
tree. Attributes are translated as mutually recursive functions over the zipper. It
should be noted that this approach to AG doesn't lead to circular programs in fact
the zipper is traversed many times. Moreover traversing the zipper involved many
operations of plugging a subtree into its context, an operation which involves copying
the spine of the context (proportional to the depth of the subtree). Alternatively,
one can use a cyclic zipper [BFT11], which involves copying the whole tree to start
with, but which doesn't need subsequent allocations. Attributes may be recomputed
many times but that can be avoided by using memoization [Hin00]. Lastly, this
approach to AG o�ers less modularity than �rst class embeddings.

Zippers were �rst used to de�ne AG by Uustalu and Vene [UV05]. They realised
that the comonadic structure of trees and zippers has a natural interpretation for
AG: the counit extracts the attribute of the root and the cobind extends a function
that computes an attribute to a function that computes a decorated tree. They
give an abstract interface for de�ning the functions computing the attributes of an
AG. It consists of three typeclasses: Comonad of course with methods counit and
cobind already described, Synth which gives access to only children's attributes,

133

Chapter 8: Perspectives

and Inh which gives access to parent's and sibling's attributes. To compute one of
those relative attributes it is necessary to use the cobind function �rst.
Another AG library [MFS13] is built on top of a generic zipper library [Ada10].

An AG translates directly into mutually recursive functions over the zipper of the
tree. To access an inherited attribute, one simply calls the corresponding function
on the parent node from the zipper's context. The style they advocate risks throwing
runtime errors as they access children by number without static checks. This is in
fact similar to the partiality we can get when using Moor's �rst class implementation
of AG [MBS00].

First Class AG A survey of �rst class embeddings is given in �8.4. We will only
mention here what di�erentiate them from direct translations. A �rst class embed-
ding comes with the possibility to de�ne AG combinators. Which means we can
split up an AG into its constituent parts, which we call aspects. It is then possible
to replace an aspect with another one to alter a local behaviour. To obtain that sort
of modularity in Haskell, one would need parameterised modules: one could a�ect
globally for the whole module which implementation of a function they use, simply
by changing the parameter we use to instantiate the module. Another use of AG
combinators is to abstract over common programming patterns, and thus promote
code reuse. Examples from Kastens and Waite [KW92] include automatic prop-
agation of inherited attributes, computation of chained attributes which capture
inorder traversals, etc.

8.5.3. Optimisation of Circular Programs

Our research wasn't actually focused on optimisation, and there is evidently much
room for re�ning our implementation.
Recent compilers optimise much more e�ciently the multiple traversals than the

circular ones. And whilst the circular transformation used to be viewed as an
optimisation in the eighties, it is now the other way around: lazy programs are now
optimised by making them stricter, and thus circularity must be removed.
An intermediate approach [CGK99] is to retain circularity whilst maximising

stricti�cation when possible. Their algorithm transform MT into e�cient CT. A
strictness analysis allow to optimise the circular program so that as little laziness
is used. They claim better performance over both lazier circular programs and
non-circular ones, but it may be that progress in compilers has either reduced or
reversed this advantage.

134

Chapter 9.

Conclusion

9.1. Productivity of Pure Stream Equations

We studied productivity of stream equations. We chose to focus on streams as they
are a simple but very common coinductive type. We furthermore restricted our
object of study to polymorphic functions de�ned using only the terminal coalgebra
and its inverse, and mutual recursion.

We proved interesting and novel results in this limited setting, showing that those
simple means allow the de�nition of all polymorphic functions, the productivity
of which is undecidable. It was crucial to realise that as a consequence of the
Yoneda lemma, polymorphic functions are in bijection with their indexing functions:
endofunctions on natural numbers, and that productivity of the former is equivalent
to totality of the latter, this is the focus of �3.1.3.

We gave three results each improving on the previous one, each characterising
more closely the stream equations. The �rst states that productivity of pure stream
equation systems (PSES) is undecidable. The proof is by reduction from a gener-
alised Collatz problem, given in Chapter 4.

The other two results, given in �5.1 and �5.2, showed that PSES and a unary PSES
(a further restriction) can de�ne all the polymorphic functions. The proofs are by
reduction from a Turing complete language to a PSES, whose indexing function is
given by that program. In the last reduction, the pure stream equations considered
are limited to only one parameter; however their expressivity is retained and all the
polymorphic functions are captured. Further reducing the number of equations to
four, retains the expressivity. And further reducing them to two, productivity is still
undecidable yet not all polymorphic functions de�nable. Finally, the productivity
of a single equation is decidable. This work showed that unrestricted recursion, and
in particular nested recursion, in the otherwise most restricted setting is the main
cause for the undecidability of productivity.

Further Research Our research showed that unrestricted recursion makes pro-
ductivity undecidable. Thus we may want to �nd useful recursion schemes for
coinductive de�nitions. One such interesting scheme is given by lambda-coiteration
[Bar03]. I have developped a Haskell library for writing lambda-coiterative de�ni-
tions. Type-checking ensures productivity of the de�nitions. It would be very useful
to formalise a general syntactic criterion based on lambda-coiteration. It would �nd
practical applications for the productivity check of theorem-provers and dependent
type theories.

135

Chapter 9: Conclusion

9.2. Circular Traversals Compositionally

Summary By investigating the recursive pattern behind the technique of circular
traversals, we developed two abstractions, each relying on a di�erent representation
of primitive (single) traversals. The �rst abstraction used algebras. We found out
that it was not possible to combine two higher-order algebras (whose carrier is a
function) in a single traversal. This prompted us to �nd a �ner representation of
higher-order traversals in which the function being computed can only be used in
a controlled manner: the representation doesn't have direct access to that function
and must instead provide arguments for it and expect results from it. This new
representation of traversal coincides with the computation rules of an attribute
grammar (AG). We went on to de�ne the circular traversal combinator using this
representation.

Main Results In �7.1, we drew the conclusion that higher-order algebras cannot
be combined in a single traversal whereas attribute grammars can.

By designing an "Arrow" interface around algebras and attribute grammars, this
allows them to be composed in an applicative style which is not usual in the AG
paradigm. This approach �ts naturally in a functional setting and is to be contrasted
with the use of a full blown AG language involving attribute names and many
syntactic hurdles.

In addition, we provided two semantically equivalent implementations of the "Ar-
row" interface allow to execute the same program with di�erent operational costs:
one circularly with a single traversal, the other with multiple traversals. In par-
ticular, this could be of interest when programming with AG when it is normally
necessary to analyse attribute dependencies to avoid a too costly circular de�nition.

In Chapter 7, we represented primitive traversals as attribute grammars. That
representation is novel: we showed that AG semantic rules are best described us-
ing a container representation of the base-functor of the tree-type denoted by the
grammar.

Containers are dependent types, but we have been able to implement them as
well as indexed containers in Haskell. This is explained in �7.3. We discuss in �8.3
the new possibilities o�ered by containers for parametric generic programming.

The container implementation relies on a novel insight on GADTs, namely the re-
alisation that dependent type families can be viewed as the display maps of GADTs,
as we explain in �7.3.2.

In �8.4 we discuss our implementation of a full featured AG system on top of the
generic representation of AG semantic rules. This is an embedded language that
o�ers a lot of modularity in the spirit of datatypes à la carte [Swi08].

Further Research There is a wealth of ideas that stems from our work and need
to be studied.

We didn't focus on performance. Both the circular library and the attribute
grammar DSL need to be tested with more examples, closer to real world cases.
Understanding the performance costs associated with circular programs is crucial

136

Chapter 9: Conclusion

since laziness plays an important role in the functional paradigm. We could work
on compiler optimisation in the presence of circularity and laziness.
Attribute grammars have many advantages for writing modular code, but they

are ignored by many functional programmers. Working to better integrate them to
functional languages facilitate their adoption. This may involve the design of a new
language seamlessly integrating principles from both paradigms, or making better
embedding languages.
AG embedded languages are inherently slower than external AG systems like a

preprocessor. Could we use introspection so that an AG embedded language could
optimise the number of traversals to avoid circularity when necessary?
Containers seem have a great potential for generic programming, it would be

interesting to design more algorithms with containers in Haskell. A good choice
would be the zipper.
Finally, to make the connection between the two parts of my thesis: circular

programs and productivity, we could implement an attribute grammar system in
type-theory, where the corecursion and the proof of productivity would be explicit
using the partiality monad. This work would have the bene�t of giving more �exi-
bility to de�ne corecursive programs than the usual guardedness criteria.

137

References

[AAG05] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers - con-
structing strictly positive types. Theoretical Computer Science, 342:3�
27, September 2005. Applied Semantics: Selected Topics.

[AAGM05] M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. δ for data: deriva-
tives of data structures. Fundamenta Informaticae, 65:1�128, March
2005.

[Abb03] Michael Abbott. Categories of Containers. PhD thesis, University of
Leicester, October 2003.

[Abe10] Andreas Abel. Miniagda: Integrating sized and dependent types. In
Ana Bove, Ekaterina Komendantskaya, and Milad Niqui, editors,Work-
shop on Partiality And Recursion in Interative Theorem Provers (PAR
2010), Satellite Workshop of ITP'10 at FLoC 2010, 2010.

[Ada10] Michael D. Adams. Scrap your zippers: A generic zipper for heteroge-
neous types. In Proceedings of the 6th ACM SIGPLAN Workshop on
Generic Programming, WGP '10, pages 13�24, New York, NY, USA,
2010. ACM.

[AJ94] Samson Abramsky and Achim Jung. Domain Theory. In Samson
Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editors, Hand-
book of Logic in Computer Science, volume 3, pages 1�168. Clarendon
Press, Oxford, 1994.

[AM09] Thorsten Altenkirch and Peter Morris. Indexed containers. In Twenty-
Fourth IEEE Symposium in Logic in Computer Science (LICS 2009),
2009. to appear.

[Bar03] Falk Bartels. Generalised coinduction.Mathematical Structures in Com-
puter Science, 13(2):321�348, 2003.

[BB85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of
typed λ-programs on term algebras. Theoretical Computer Science,
39:135�154, 1985.

[BdM97] Richard S. Bird and Oege de Moor. Algebra of programming. Prentice
Hall International series in computer science. Prentice Hall, 1997.

[Ber05] Yves Bertot. Filters on coinductive streams, an application to eratos-
thenes' sieve. In Typed Lambda Calculi and Applications, 7th Interna-
tional Conference, TLCA 2005, pages 102�115. Springer-Verlag, 2005.

139

References

[BFT11] Eric Badouel, Bernard Fotsing, and Rodrigue Tchougong. Attribute
grammars as recursion schemes over cyclic representations of zippers.
Electronic Notes in Theoretical Computer Science, 229(5):39 � 56, 2011.
Proceedings of the Second Workshop on Mathematically Structured
Functional Programming (MSFP 2008).

[BH11] Patrick Bahr and Tom Hvitved. Compositional data types. In Proceed-
ings of the Seventh ACM SIGPLAN Workshop on Generic Program-
ming, WGP '11, pages 83�94, New York, NY, USA, 2011. ACM.

[BH12] Patrick Bahr and Tom Hvitved. Parametric compositional data types.
In James Chapman and Paul Blain Levy, editors, Proceedings Fourth
Workshop on Mathematically Structured Functional Programming, vol-
ume 76 of Electronic Proceedings in Theoretical Computer Science,
pages 3�24. Open Publishing Association, feb 2012.

[Bir84] Richard S. Bird. Using circular programs to eliminate multiple traver-
sals of data. Acta Inf., 21:239�250, 1984.

[BJ66] Corrado Böhm and Giuseppe Jacopini. Flow diagrams, Turing machines
and languages with only two formation rules. Commun. ACM, 9(5):366�
371, 1966.

[Buc05] Wilfried Buchholz. A term calculus for (co-)recursive de�nitions on
streamlike data structures. Ann. Pure Appl. Logic, 136(1-2):75�90,
2005.

[Cap05] Venanzio Capretta. General recursion via coinductive types. Logical
Methods in Computer Science, 1(2):1�18, 2005.

[Cap10] Venanzio Capretta. Bisimulations generated from corecursive equations.
Electronic Notes in Theoretical Computer Science, 265:245 � 258, 2010.
Proceedings of the 26th Conference on the Mathematical Foundations
of Programming Semantics (MFPS 2010).

[Cap11] Venanzio Capretta. Coalgebras in functional programming and type
theory. Theoretical Computer Science, 412(38):5006�5024, 2011. CMCS
Tenth Anniversary Meeting.

[CD82] Robert Cartwright and James E. Donahue. The semantics of lazy (and
industrious) evaluation. In Symposium on LISP and Functional Pro-
gramming, pages 253�, 1982.

[CGK99] Wei-Ngan Chin, Aik-Hui Goh, and Siau-Cheng Khoo. E�ective op-
timization of multiple traversals in lazy languages. In PEPM, pages
119�130, 1999.

[CLS07] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion:
From lists to streams to nothing at all. In Proceedings of the ACM

140

References

SIGPLAN International Conference on Functional Programming, ICFP
2007, April 2007. To appear.

[Con72] John Horton Conway. Unpredictable iterations. In Number Theory
Conference, pages 49�52. University of Colorado, 1972.

[Con87] John H. Conway. Fractran: A simple universal programming language
for arithmetic. In T. M. Cover and B. Gopinath, editors, Open Problems
in Communication and Computation, chapter 2, pages 4�26. Springer,
1987.

[Coo91] William R. Cook. Object-Oriented Programming Versus Abstract
Data Types. In Proceedings of the REX School/Workshop on Founda-
tions of Object-Oriented Languages, pages 151�178, London, UK, 1991.
Springer-Verlag.

[Coo03] S. Barry Cooper. Computability Theory. Chapman & Hall / CRC
mathematics, 2003.

[Dan10] Nils Anders Danielsson. Beating the productivity checker using embed-
ded languages. In Ana Bove, Ekaterina Komendantskaya, and Milad
Niqui, editors, Proceedings Workshop on Partiality and Recursion in
Interactive Theorem Provers, volume 43 of EPTCS, pages 29�48, 2010.

[DC90] G. D. P. Dueck and G. V. Cormack. Modular attribute grammars.
Comput. J., 33(2):164�172, April 1990.

[DGM03] Pietro Di Gianantonio and Marino Miculan. A unifying approach to
recursive and co-recursive de�nitions. In Herman Geuvers and Freek
Wiedijk, editors, Types for Proofs and Programs, volume 2646 of Lec-
ture Notes in Computer Science, pages 618�618. Springer Berlin / Hei-
delberg, 2003.

[Dij80] Edgar W. Dijkstra. On the producitivity of recursive de�nitions.
EWD749, 1980.

[dMBS00] Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class
attribute grammars. Informatica (Slovenia), 24(3), 2000.

[DP11] Facundo Domínguez and Alberto Pardo. Exploiting algebra/coalgebra
duality for program fusion extensions. In Proceedings of the 11th Inter-
national Workshop on Language Descriptions, Tools, and Applications
(LDTA 2011). To be published by ACM, 2011.

[Dum77] Michael Dummett. Elements of Intuitionism. Clarendon Press, 1977.

[EGH+07] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara,
and Jan Willem Klop. Productivity of stream de�nitions. In Proceedings
of FCT 2007, number 4639 in LNCS, pages 274�287. Springer, 2007.

141

References

[EGH08] Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Data-
oblivious stream productivity. In LPAR, pages 79�96, 2008.

[EGH09a] Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Complexity
of fractran and productivity. CoRR, abs/0903.4366, 2009.

[EGH09b] Jrg Endrullis, Clemens Grabmayer, and Dimitri Hendriks. Complexity
of Fractran and productivity. In CADE, pages 371�387, 2009.

[EGSZ11] Jörg Endrullis, Herman Geuvers, Jacob G. Simonses, and Hans Zan-
tema. Levels of undecidability in rewriting. Inf. Comput., 209(2):227�
245, 2011.

[Ell09] C. Elliott. Denotational design with type class morphisms. extended
version), LambdaPix, 2009.

[FMY92] Rodney Farrow, Thomas J. Marlowe, and Daniel M. Yellin. Compos-
able attribute grammars: Support for modularity in translator design
and implementation. In 19th ACM Symp. on Principles of Program-
ming Languages, pages 223�234, Albuquerque, NM, January 1992. ACM
press.

[FSSV11] João Paulo Fernandes, João Saraiva, Daniel Seidel, and Janis Voigtlän-
der. Stricti�cation of circular programs. In Proceedings of the 20th ACM
SIGPLAN workshop on Partial evaluation and program manipulation,
PEPM '11, pages 131�140, New York, NY, USA, 2011. ACM.

[GH09] Andy Gill and Graham Hutton. The Worker/Wrapper Transformation.
Journal of Functional Programming, 19(2):227�251, March 2009.

[GHK+03] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Law-
son, Michael Mislove, and Dana S. Scott. Continuous Lattices and Do-
mains, volume 93 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2003.

[GJ98] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In
ICFP, pages 273�279, 1998.

[GLJ93] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to defor-
estation. In Functional Programming Languages and Computer Archi-
tecture, Copenhagen, Denmark, 1993, 1993.

[GP09] Jeremy Gibbons and Ross Paterson. Parametric datatype-genericity.
In Proceedings of the 2009 ACM SIGPLAN workshop on Generic pro-
gramming, WGP '09, pages 85�93, New York, NY, USA, 2009. ACM.

[Gru06] Dominik Gruntz. In�nite streams in java. In Proceedings of the 4th
International Symposium on Principles and Practice of Programming
in Java, PPPJ '06, pages 182�187, New York, NY, USA, 2006. ACM.

142

References

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types.
Cambridge University Press, 1989.

[Hag87] Tatsuya Hagino. A Categorical Programming Language. PhD thesis,
University of Edinburgh, 1987.

[Hal00] Thomas Hallgren. Fun with functional dependencies. In Proc. of the
Joint CS/CE Winter Meeting, 2000.

[Har80] David Harel. On folk theorems. SIGACT News, 12:68�80, September
1980.

[Har11] Thomas Harper. A library writer's guide to shortcut fusion. In Haskell
Symposium 2011, September 2011.

[Hed99] Gorel Hedin. Reference Attributed Grammars. In D. Parigot and
M. Mernik, editors, Second Workshop on Attribute Grammars and their
Applications, WAGA'99, pages 153�172, Amsterdam, The Netherlands,
1999. INRIA rocquencourt.

[HHJ11] Ralf Hinze, Thomas Harper, and Daniel W.H. James. Theory and prac-
tice of fusion. Technical Report CS-RR-2011-01, Department of Com-
puter Science, University of Oxford, 2011.

[Hin89] Andreas M. Hinz. The Tower of Hanoi. Enseign. Math., 35(2):289�321,
1989.

[Hin00] Ralf Hinze. Memo functions, polytypically! In Proceedings of the 2nd
Workshop on Generic Programming, Ponte de, pages 17�32, 2000.

[Hin11] Ralf Hinze. Concrete stream calculus�an extended study. JFP, 20(5-
6):463�535, 2011.

[Hue97] Gérard P. Huet. The zipper. J. Funct. Program., 7(5):549�554, 1997.

[Hug89] John Hughes. Why functional programming matters. Comput. J.,
32(2):98�107, 1989.

[Hug98] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67�111, 1998.

[Jac05] Bart Jacobs. Draft: Introduction to coalgebra. towards mathematics of
states and observations, 2005.

[JL97] Patricia Johann and John Launchbury. Warm fusion for the masses:
Detailing virtual data structure elimination in fully recursive languages.
Available on the Internet, 1997.

[Joh87] Thomas Johnsson. Attribute grammars as a functional programming
paradigm. In Functional Programming Languages and Computer Ar-
chitecture, volume 274 of LNCS, pages 154�173. Springer-Verlag, 1987.

143

References

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and
(co)induction. EATCS Bulletin, 62:222�259, 1997.

[JV00] Patricia Johann and Eelco Visser. Warm fusion in stratego: A case
study in generation of program transformation systems. Annals of
Mathematics and Arti�cial Intelligence, 29:1�34, 2000.

[Kle43] Stephen C. Kleene. Recursive predicates and quanti�ers. Trans. AMS,
53(1):41�73, 1943.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127�145, 1968.

[KS87] M. F. Kuiper and S. D. Swierstra. Using attribute grammars to derive
e�cient functional programs. In IN COMPUTING SCIENCE IN THE
NETHERLANDS CSN'87, 1987.

[KS07] Stuart A. Kurtz and Janos Simon. The undecidability of the generalized
Collatz problem. In TAMS, volume 4484 of LNCS, pages 542�553.
Springer, 2007.

[KW92] U. Kastens and W. M. Waite. Modularity and reusability in attribute
grammars. ACTA INFORMATICA, 31:601�627, 1992.

[Lag06] J.C. Lagarias. The 3x+1 problem: An annotated bibliography (1963-
2000). Technical report, ArXiv math (NT0608208), 2006.

[Lam68] J. Lambek. A �xpoint theorem for complete categories. Mathematische
Zeitschrift, 103:151�161, 1968.

[LS95] John Launchbury and Tim Sheard. Warm fusion: Deriving build-cata's
from recursive de�nitions. In FPCA, pages 314�323, 1995.

[Mar10] Simon Marlow. Haskell 2010 language report.
http://www.haskell.org/definition/haskell2010.pdf, 2010.

[Mat99] John Matthews. Recursive function de�nition over coinductive types.
In Yves Bertot, Gilles Dowek, Laurent Théry, André Hirschowitz, and
Christine Paulin, editors, Theorem Proving in Higher Order Logics,
volume 1690 of Lecture Notes in Computer Science, pages 839�839.
Springer Berlin / Heidelberg, 1999.

[MBS00] Oege De Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class
attribute grammars. Informatica, 24:2000, 2000.

[McB01a] Connor McBride. Faking it: Simulating dependent types in haskell,
2001.

[Mcb01b] Conor Mcbride. The derivative of a regular type is its type of one-hole
contexts (extended abstract). 2001.

144

References

[MFP91] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional pro-
gramming with bananas, lenses, envelopes and barbed wire. In FPCA,
pages 124�144, 1991.

[MFS13] Pedro Martins, João Paulo Fernandes, and João Saraiva. Zipper-based
attribute grammars and their extensions. In Programming Languages -
17th Brazilian Symposium, SBLP 2013, Brasília, Brazil, October 3 - 4,
2013. Proceedings, pages 135�149, 2013.

[Min67] Marvin L. Minsky. Computation: �nite and in�nite machines. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[ML84] P. Martin-Lof. Constructive mathematics and computer programming.
Royal Society of London Philosophical Transactions Series A, 312:501�
518, October 1984.

[MLAZ99] Marjan Mernik, Mitja Lenic, Enis Avdicausevic, and Viljem Zumer.
Multiple Attribute Grammar Inheritance. In D. Parigot and M. Mernik,
editors, Second Workshop on Attribute Grammars and their Applica-
tions, WAGA'99, pages 57�76, Amsterdam, The Netherlands, 1999.
INRIA rocquencourt.

[Mor07] Peter Morris. Constructing universes for generic programming. PhD
thesis, Department of Computer Science, University of Nottingham,
2007.

[MP08] Conor Mcbride and Ross Paterson. Applicative programming with ef-
fects. J. Funct. Program., 18(1):1�13, January 2008.

[Nem00] L. Nemeth. Catamorphism-based program transformations for non-
strict functional languages. University of Glasgow, 2000.

[Nor07] Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden, September 2007.

[NW00] Dung Nguyen and Stephen B. Wong. Design patterns for lazy evalua-
tion. In Proceedings of the Thirty-�rst SIGCSE Technical Symposium
on Computer Science Education, SIGCSE '00, pages 21�25, New York,
NY, USA, 2000. ACM.

[Paa95] Jukka Paakki. Attribute grammar paradigms—a high-level
methodology in language implementation. ACM Comput. Surv.,
27(2):196�255, June 1995.

[Pat01] Ross Paterson. A new notation for arrows. In International Conference
on Functional Programming, pages 229�240. ACM Press, September
2001.

145

References

[PE98] Dusko Pavlovic and Martín Hötzel Escardó. Calculus in coinductive
form. In LICS, pages 408�417, 1998.

[Per74] Eleonora Perkowska. Theorem on the normal form of a program. Bull.
Acad. Pol. Sci., Ser. Sci. Math. Astr. Phys., 22(4):439�442, 1974.

[PFS09] Alberto Pardo, João Paulo Fernandes, and João Saraiva. Shortcut fu-
sion rules for the derivation of circular and higher-order monadic pro-
grams. In Proceedings of the 2009 ACM SIGPLAN workshop on Partial
evaluation and program manipulation, PEPM '09, pages 81�90, New
York, NY, USA, 2009. ACM.

[Ro³06] Grigore Ro³u. Equality of streams is a Π0
2-complete problem. In Pro-

ceedings of the 11th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP'06). ACM, 2006.

[Rut00] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor.
Comput. Sci., 249(1):3�80, 2000.

[Rut03a] Jan J. M. M. Rutten. Behavioural di�erential equations: a coinductive
calculus of streams, automata, and power series. Theor. Comput. Sci.,
308(1-3):1�53, 2003.

[Rut03b] Jan M. Rutten. Behavioural di�erential equations: a coinductive calcu-
lus of streams, automata, and power series. Theor. Comp. Sci., 308(1-
3):1�53, 2003.

[SAAS99] S. D. Swierstra, P. R. Azero Alocer, and J. Saraiava. Designing and
implementing combinator languages. In Doaitse Swierstra, Pedro Hen-
riques, and José Oliveira, editors, Advanced Functional Programming,
Third International School, AFP'98, volume 1608 of LNCS, pages 150�
206. Springer-Verlag, 1999.

[SB12] Christian Sattler and Florent Balestrieri. Turing-Completeness of Poly-
morphic Stream Equation Systems. In Ashish Tiwari, editor, 23rd
International Conference on Rewriting Techniques and Applications
(RTA'12), volume 15 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 256�271, Dagstuhl, Germany, 2012. Schloss
Dagstuhl�Leibniz-Zentrum fuer Informatik.

[SBMG07] Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic
programming: Extending logic programming with coinduction. In Lars
Arge, Christian Cachin, Tomasz Jurdzi«ski, and Andrzej Tarlecki, ed-
itors, Automata, Languages and Programming, volume 4596 of Lecture
Notes in Computer Science, pages 472�483. Springer Berlin Heidelberg,
2007.

[Sch86] David A. Schmidt. Denotational semantics: a methodology for language
development. William C. Brown Publishers, Dubuque, IA, USA, 1986.

146

References

[Sch00] Sibylle Schupp. Lazy lists in c++. SIGPLAN Not., 35(6):47�54, June
2000.

[Sij89] Ben A. Sijtsma. On the productivity of recursive list de�nitions. ACM
Trans. Program. Lang. Syst., 11:633�649, October 1989.

[Sim09a] Jakob Grue Simonsen. The Π0
2-completeness of most of the properties

of rewriting systems you care about (and productivity). In Proc. 20th
Int. Conf. on RTA, RTA '09, pages 335�349. Springer, 2009.

[Sim09b] Jakob Grue Simonsen. The pi-2-0-completeness of most of the properties
of rewriting systems you care about (and productivity). In RTA, volume
5595 of Lecture Notes in Computer Science, pages 335�349. Springer,
2009.

[SL07] Tim Sheard and Nathan Linger. Programming in omega. In CEFP,
pages 158�227, 2007.

[Soa87] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives
in Mathematical Logic. Springer, 1987.

[SS03] João Saraiva and Sérgio Schneider. Embedding domain speci�c lan-
guages in the attribute grammar formalism. In Proceedings of the
36th Annual Hawaii International Conference on System Sciences
(HICSS'03) - Track 9 - Volume 9, HICSS '03, pages 324.1�, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[Str00] Christopher Strachey. Fundamental concepts in programming lan-
guages. Higher Order Symbol. Comput., 13:11�49, April 2000.

[Swi05] Wouter Swierstra. Why Attribute Grammars Matter. The
Monad.Reader, 4, July 2005.

[Swi08] Wouter Swierstra. Data types à la carte. J. Funct. Program., 18(4):423�
436, 2008.

[Tak87] Masato Takeichi. Partial parametrization eliminates multiple traversals
ofdata structures. Acta Informatica, pages 42�57, 1987.

[Tay99] Paul Taylor. Practical Foundations of Mathematics, volume 59 of Cam-
bridge studies in advanced mathematics. Cambridge University Press,
1999.

[Tea] The GHC Team. Ghc user guide.

[TT97a] Alastair Telford and David Turner. Ensuring streams �ow. In Proc. 6th
AMAST, pages 509�523. Springer, 1997.

147

References

[TT97b] Alastair Telford and David Turner. Ensuring the Productivity of In�-
nite Structures. Technical Report 14-97, The Computing Laboratory,
University of Kent at Canterbury, Canterbury, Kent, CT2 7NF, UK,
September 1997. This technical report has been revised (March 1998).
A shorter version of this paper was presented at AMAST '97.

[UV99] Tarmo Uustalu and Varmo Vene. Primitive (co)recursion and course-of-
value (co)iteration, categorically. Informatica, Lith. Acad. Sci., 10(1):5�
26, 1999.

[UV05] Tarmo Uustalu and Varmo Vene. Comonadic functional attribute eval-
uation. In M. van Eekelen, editor, Proceedings of 6th Symposium on
Trends in Functional Programming, Trends in Functional Programming,
pages 33�43, Tallinn, september 2005. Intellect.

[Ven00] Varmo Vene. Categorical Programming with Inductive and Coinductive
Types. PhD thesis (Diss. Math. Univ. Tartuensis 23), Dept. of Computer
Science, Univ. of Tartu, August 2000.

[VS12] Marcos Viera and S. Doaitse Swierstra. Attribute grammar macros. In
SBLP, pages 150�164, 2012.

[VSK89] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. SIGPLAN Not., 24(7):131�145, June 1989.

[VSS09] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute
grammars �y �rst-class: how to do aspect oriented programming in
haskell. SIGPLAN Not., 44:245�256, August 2009.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL '89, pages 60�76, New
York, NY, USA, 1989. ACM.

[Win93] Glynn Winskel. Formal Semantics of Programming Languages: an In-
troduction, The. MIT Press, 1993.

[Wra89] G. C. Wraith. A note on categorical datatypes. In Category Theory and
Computer Science, pages 118�127, London, UK, 1989. Springer-Verlag.

[YHT] Tetsuo Yokoyama, Zhenjiang Hu, and Masato Takeichi. Calculation
rules for warming-up in fusion transformation.

[Zan10] Hans Zantema. Well-de�nedness of streams by transformation and ter-
mination. LMCS, 6(3), 2010. paper 21.

148

	Abstract
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Coinductive Types and Functional Programming
	1.1.1 Coinductive types in Type theory
	1.1.2 Coinduction and Infinity
	1.1.3 Productivity
	1.1.4 Approach in the Thesis

	1.2 Circular Traversals
	1.3 Structure of the Thesis
	1.4 Main Contributions of the Thesis
	1.5 Related Work
	1.5.1 On The Productivity of Stream Equations
	1.5.2 On Circular Traversals and Attribute Grammars

	I Productivity of Pure Stream Equations
	2 Coinduction and Productivity
	2.1 Coinductive types and Coalgebras
	2.1.1 Terminal Coalgebra
	2.1.2 Fixed-Points
	2.1.3 Bisimulation and Bisimilarity

	2.2 Productivity
	2.2.1 Productivity and Denotational Semantics
	2.2.2 Productivity of Polymorphic Definitions
	2.2.3 Productivity and Strict Languages
	2.2.4 Strong Languages, Inductive Types
	2.2.5 Syntactic Criteria
	2.2.6 Non Productive Definitions in Type Theory

	3 Pure Stream Equations
	3.1 Streams and Polymorphic Functions
	3.1.1 Polymorphism
	3.1.2 Polymorphic Streams Functions
	3.1.3 Indexing Functions
	3.1.4 Coalgebraic Stream Equations
	3.1.5 The Indexing Functions of Coalgebraic Equations

	3.2 Pure Stream Equations
	3.2.1 Introduction
	3.2.2 The Syntax of Pure Stream Equations
	3.2.3 Semantics of Pure Stream Equations
	3.2.4 Interleaving and Projection
	3.2.5 Zip-Proj Equations

	4 PSES Productivity is 02-Complete
	4.1 Terminology: Problems, Computability and Reductions
	4.2 A Generalisation of the Collatz Problem
	4.2.1 The Collatz Problem
	4.2.2 A Generalisation
	4.2.3 Properties of Collatz Functions

	4.3 Generalised Collatz is Reduced to PSES Productivity
	4.3.1 Comparison with Other Proofs of Undecidability

	4.4 The Generalised Collatz Problem is 02-Complete
	4.4.1 Kurtz and Simon's Generalisation
	4.4.2 Reduction from KSP to GCP
	4.4.3 Discussion

	5 Expressivity of PSES
	5.1 PSE Definability
	5.1.1 Counter Machines
	5.1.2 Construction of PSE Definability
	5.1.3 Proof

	5.2 Unary Definability
	5.2.1 Properties of some Indexing Functions
	5.2.2 Collatz Functions and If-Programs
	5.2.3 Iteration-Programs and Their Encoding
	5.2.4 Proof of Unary Decidability

	5.3 Further Results

	II Circular Traversals Compositionally
	6 Circular Traversals Using Algebras
	6.1 Introduction
	6.1.1 Circular Traversals in General
	6.1.2 Issues With the Transformation

	6.2 Abstract Programming Interface for Computations over a Data Structure
	6.2.1 The Environment Arrow
	6.2.2 A primitive to define traversals

	6.3 Circular Implementation
	6.3.1 Recursive Pattern for Circular Traversals
	6.3.2 ArrowCata Instance
	6.3.3 Proving the Homomorphism Properties
	6.3.4 Kleisli Arrow for an Indexed Monad

	6.4 Example: List of Deviations

	7 Circular Traversals Using Attribute Grammars
	7.1 Palindrome
	7.1.1 The Problem
	7.1.2 Bird's Solution
	7.1.3 Fixing Bird's Solution
	7.1.4 Palindrome with ArrowCata
	7.1.5 Pairing Higher-Order Algebras
	7.1.6 A New Traversal Primitive

	7.2 Attribute Grammars
	7.2.1 Attribute Grammar Implementations
	7.2.2 Generic AG Rules
	7.2.3 Attribute Grammar Systems

	7.3 Containers and W Types
	7.3.1 Type-Theoretical Implementation
	7.3.2 Haskell Implementation

	7.4 Circular Programs as Compositions of AGs
	7.4.1 Generic View as a W Type
	7.4.2 Generic Attribute Grammar Traversals
	7.4.3 ArrowAG
	7.4.4 Multiple Traversals
	7.4.5 Circular Implementation

	7.5 Examples
	7.5.1 Palindrome
	7.5.2 Removing the Redundant Tests

	8 Perspectives
	8.1 Performance
	8.1.1 Experimental Results

	8.2 Optimisation and Recursion Schemes
	8.3 Generic Programming with Containers
	8.3.1 Related Works
	8.3.2 Generic Functions and Generic Types
	8.3.3 Design Choices for the Payload Functor
	8.3.4 Mutually Recursive Data Structures
	8.3.5 Modular Datatypes and Paths

	8.4 Embedding a Strongly Typed AG System
	8.4.1 Example
	8.4.2 Full Listing

	8.5 Related Works
	8.5.1 Circular Traversals without Attribute Grammars
	8.5.2 Circular Traversals with Attribute Grammars
	8.5.3 Optimisation of Circular Programs

	9 Conclusion
	9.1 Productivity of Pure Stream Equations
	9.2 Circular Traversals Compositionally

	References

