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Abstract

Fungi have the ability to degrade xylan as the major component of pdintwall
hemicellulose. Fungi have evolved batteries of xylanolytic eesythat concertedly act to
depolymerise xylan backbones decorated with variable carbohydrate branchem As
alternative to acid extraction in industrial processes the comtnnati endo-1,4-xylanase
and B-xylosidase can reduce xylan to xylose. However, unlike chemical extracticedpres
enzyme systemscan selectively hydrolyse o-L-arabinofuranosyl, 4-O-methyl-D-
glucuronopyranosyl, acetyl and phenolic branches, and therefore have the pdtential
deconstruct hemicellulose whilst retaining desiraigctural integrity and functionality. The
sources, structures and catalytic activities of fungal xylanognicymes are reviewed and

discussed in the context of their biotechnological potential.

Key words. Hemicellulose, XylanB-xylosidase, Endo-xylanase, Xylose
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1. General Overview of Biological Processing

Biological processing of plant biomass has become a significant roomceéhe quest for
renewable energy. The initial focus of research has been the chardoteriaat
guantification of lignocellulosic constituents within plants species. Cuesgly several
extraction methods leading to the hydrolysis of cellulose and hemicelltdastions from
agricultural lignocellulosic biomass have been adopted, which include the us®ehtrated
acids, alkali, hydrogen peroxide, steam explosion, hot water treatmeptexp@sion and
organic solvent treatmentd]. However the use of such harsh physical and chemical
treatments for hydrolysis can result in problems during post-treatment ggecespecially if
the solubilised sugar products are be recovered as high value-added products fn
synthetic chemistry or in the food industry. Plant cell wall degradimeymes of microbial
origin have therefore attracted industrial attention since they havpotkatial to replace
toxic chemical treatments in current use and create new funcingmatiients. The catalytic
performance and formulation of functional enzyme cocktails for hydrolyzing plantass
together with associated methods for the efficient recovery of oligoaades has been the

subject of research to establish commercial feasibilities.

The field of bioconversion has evolved indobroad multidisciplinary research base that
focuses on the (i) enhancement of enzyme efficiency and specifici}y,gémetic
improvement of organisms to produce tailored plant cell wall degraciagnees, (iii)
engineering of strains that can efficiently utilize pentose sugargi@ndthanol tolerance.
The work contained in this review article summarises the currergrobsito the utilization
of hemicellulose, in particular reports the molecular characterisficsylanases ang-

xylosidases from fungal sources, for industrial applications.

2. Composition of Plant Biomass

Lignocellulosic materials are composed of cellulose, hemicellufmssijn, proteins and an
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aromatic polymer lignin. Cellulose is a generalliinear polymer constructed of D-glucose
subunits associated by B-1,4 glycosidic bonds that have a propensitydion microfibrils.
Long chains of fibrils of cellulose are interconnected by hydrogen bortdingake it
crystalline in nature. Plant cellulose is often embedded within arixncontaining

hemicellulose and lignif2, 3].

Lignin is a heterogeneous complex of polyphenolic compounds synthesized from

phenylpropanoid units such as p-coumaryl, coniferyl, syringyl and sinapfiaécthat are
connected by non-hydrolyzable C-C and aryl-ether linkages. In addition lignaiso
interconnected to cellulose and hemicellulose to form a physical barme provide cell

walls with structural integrity in order to resist microbial attack and oxielatires$4, 5].

Hemicellulose has a heteropolymeric structure, which is contprigea linear xylan
backbone with short lateral side chains of different sugars. Xylan is ts¢ abundant
constituent of hemicellulose in annual plants and hardwood species, emtpsised of a
linear chain of D-xylopyranosyl residues linked @yji,4 glycosidic bonds [1, 3, 4]. The
lateral side chains linked to xylan are formed from mannan, galaotharabinan polymers
or singularly attached D-xylose, D-mannose, D-galactose, D-gludesebinose, o-L-
arabinofuranosyl and 4-O-methyl-glucouronic, ferulic, acetic, p-coumadcgalacturonic
acids[6]. However, the constituents of side chains display large variatiooemposition
among plant species. For examplesoftwood xylans are not acetylated and contain a-1,3-
glycosidic bonds at C-3 positions, whereas hardwood xylans have high déwaalstylation

and emerge as 0-acetyl-4-0-methylglucuronoxy&n

The ratio of each polymer within lignocellulose materials have begorted in the literature
to vary between the sources of lignocellulose. The majority of the caftaadyfraction is

composed of cellulose and hemicellulose is the second most abundanteondtydrolysis

of hemicellulose into sugar monomers as well as cellulose would result in the consumption of
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more than 60 % of plant materiatgo valuable products and result in reduced agricultural

waste.

3. Breakdown of Lignocellulose

Xylanolytic and cellulolytic complexes have been identified andcegdlin saprophytic soil
inhabiting fungi and bacteria as they require preformed organic compounds assenecgy
for cellular synthesis. Unlike other eukaryotes, fungi obtain nutritionaliresgants by
secreting polymer-degrading enzymes, from their hyphal tips, to their surrosnali
absorb enzymatic breakdown products [7]. Moreover, competent fungal species t@ibi
types of extracellular catalytic systems, firstly a hydrolysisteam wherby polysaccharides
are hydrolysed and a second oxidative ligninolytic system opens phegg for the
degradation of lignin[5,8]. However, not all fungi are able to synthesize ligninolytic
enzymes. This specialized activity is reserved largely tallmsycetous white rot fungi and
plant pathogenic/saprophytic fungi, including Armillaria mellea, Plewsrobstreatus,
Phanerochaete chrysosporium, Echinodontium taxodii, Aspergillus sp., ilfusap.,
Ceriporiopsis subvermispora and Botrytis cinerea that have they abil produce such

enzymeg8-10].

3.1 Lignin Biodegradation

Lignin biodegradatioris an oxidative process that utilises members of the phenol oxidase
family of enzymes. These comprise of lignin peroxidase, manganese pezaidbsccases,
that collectively catalyze the oxidation of variable phenolic trese Laccases are of general
significance because of their non-selective ability to cagallie oxidation of a variety of
substrates including diphenols, polyphenols, diamines, substituted phenolgoamatia
amines [8]. The peroxidases of lignocellulosic fungi utilise hydrogen peroxide that is

generated by the enzymes glyoxal oxidase and glucose-2-oXiddsd@hese enzymes have
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been characterised in Basidiomycota group of white rot fungi includimgbitrus
ohshimae, Echinodontium toxodii, Ceriporiopsis subvermispora, Phanerochaete
chrysosporium, Trametes versicolor and Bjerkandera adusta whiclseoxidenolic lignin
units to diffusible products that can be acquired through hyphal tips and thsaduly

intracellular catabolic pathway8-11].

Once dissociated from lignin cellulose and hemicellulose are blaita a wider range of
competitive microbial speci€d2]. The ability to degrade plant materials efficiently arises
from the multiple cellulolytic and xylanolytic isoenzymes, which hdixerse biochemical
properties that have evolved through genetic selection for substratiebgitya and

competitive efficiency within microbial communiti§k3].

3.2 Cellulose Biodegr adation

Cellulose degrading microorganisms play a key role in carbon bydleprocessing carbon
fixed by photosynthesis. Many filamentous fungi have been characteribagteé@ complete
cellulolytic system, withall the enzymes required to hydrolyse cellulose efficiently via
synergistic actiong14]. Cellulases comprise of three classes of hydrolytic enzymes that
hydrolyse B-1,4- glycosidic bonds: (i) Endoglucanases, (ii) Exoglucanases andp<iii)

glucosidass.

Endoglucanases, also known as endopigicanase or endocellulase, are responsible for
random cleavage of internal sites within cellulose fibres. Exogluear{agnonyms: exo-1,4-
B-D-glucanase, cellobiohydrolases and exocellulase) remove short otigasdes from the
ends of glucan chainsyhich then allow B-glucosidase to hydrolyseellooligosaccharide
chains and cellobiose into glucose [15,16]. In addition to the enzysted bove novel
types of cellulase enzymes have been recently identified. Swo(lBWiDI) from T. reesei
has been described to disrupt cellulosic fibres without showing any hydrabyivity. Their

role is analogous to plant expansins, which are thought to promote aditedsilmellulases



123 that depolymerise cellulose fibrils [11,17].

124 3.3 Hemicellulose Biodegr adation

125 Unlike cellulose, hemicellulose has a more heterogenic structuredhmprises of a linear
126 main chain of $-1,4 linked D-xylose backbone and short lateral side chains of different suga
127 residueg18,19] Complete depolymerisation of hemicellulose fractions, into xylose and other
128 monosaccharide sugars, requires a compiled cooperative actiandoferse range of
129 enzymes. Enzymatic hydrolysis of hemicellulose commences witletheval of side chains
130 that block the sites where xylanases cleave the xylan backbo®-1E 4B-xylanase

131 enzymes do not cleave the xylan backbone randomly but cleave thsidigcbonds in a
132 selective manner depending on the chain length and degree of branchinpsthte

133 molecules and the presence of its constitu¢2®. The cleavage of the xylan backbone
134 vyields xylo-oligosaccharides and the final trimmingcharried out by B-xylosidase that
135 hydrolyses thé3-1,4 glycosidic linkages of short chain xylo-oligosaccharides and xgebi
136 from the non-reducing termini to release xylose monoif2dr22]. Accessory side chains are
137 further removed by a-glucuronidase, acetylxylan esteraaesbinase, p-mannosidase, o-L-

138 arabinofuranosidase and other hemicellulolytic estef&$eas illustrated in Figure 1

139 4. Sourcesof Xylanolytic Complexes

140 Xylanolytic and cellulolytic complexes have been identified aratrastierized in saprophytic
141 soil inhabiting organisms and plant pathogens. Hydrolysis of plant tiesiselseen reported
142 as a unifying characteristic of plant pathogens and rotting organisrmos these set of
143 enzymes play a role during softening of the region of penetration and inwdsnast cell

144  wall structures for obtaining nutrien&3].

145 However xylanases and -xylosidases also originate from plants such as maize, potato,tubers

146 Dbarley and ripening strawberry, plum and pear fruits in which they are thougidhbitize



147 polymers and remodel plant cell wajlk8,23,24] Glycoside hydrolases from plants tend to
148 be produced during ripening processes that cause fruit tissues to bexftanarsd play a
149 crucial role in cell enlargement, germination and other physiologroalesses (i.e budding,
150 senescence, post-pollination processes). Sugar starvation in Arabidgoseehareported to
151 induce the production of glycosyl hydrolases including B-galactosidase, B-xylosidase and [3-

152 glucosidase for the mobilisation of carbon storage reserves when photosyrghekibited
153 [25]. Fewer glycoside hydrolases have been characterized from plamspaghougH18]

154  have reported the purification of a B-xylosidase from cell wall of maize during senescence
155 and reported that the enzyme worked optimally at 37 °C and pH 4.5. Under optimal
156 conditions kinetic constants, ;Kand kg, against the synthetic substrate p-nitrophenyl-
157 xyloside were 2.5 mM and 6.5 Secespectively,which is relatively low compared to B-
158 xylosidases of fungal origin. The purified enzyme provided promising redultsigh
159 synergistic activity with Tricoderma reesei endoxylanasadmease xylose production by 94

160 % during the hydrolysis of corn stover.

161 Yeast species such as Sugiyamaella xylani¢264, Spathaspora brasiliensis, Spathasopra
162 xylofermentang27] and Candida materig@8] have been isolated from rotting wood and

163 demonstrated to elaborate extracellular enzymes that include xylanatfivities in the

164 presence of xylan as a sole carbon source. The ability of these spegiegvtand release

165 xylose raised the idea of using these species during fermentatiore afafilon substrates.

166 Spathasopra species are known for their ability to ferment xylose producing ethanol and have
167 the potential to be used during bioethanol production by fermentation of agrikcultura

168 materialg27].

169 However, the filamentous fungi remain attractive sources of robust indestzgines since
170 they operate in extra-cellular environments and are readily recoveredfdromantates to

171 ease downstream processiryxylosidases produced from yeasts, for example, are generally
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cell-associated29], whereas filamentous fungi tend to secrete the majority into the growth

medium.

Along with saprophytic and phytopathogenic mesophilic fungi, thermophilic fhage
attracted attention from researchers as sources of thermostable enktyimasnusual for
fungi to breach the upper temperature boundaries of eukaryotes and produce enzgimes whi
are stable at high temperatures to achieve faster reaction ratesydnasuch fungi that can
withstand temperatures of 5C are of potential biotechnological u$29]. Thermophilic
fungal species were discovered a century ago from self-heatingsdwkg. Exothermic
reactions associated with saprophytic/mesophilic microorganisms resufavourable
temperatures for thermophilic fungal spores to germinate and competestmurces at
temperatures above 40 {C4]. The genome sequences of several thermophilic filamentous
fungi have been determined. Mining these DNA sequences has estaliishg@sence of
redundant xylanolytic complexes that contain enzymes with the pdteotiaperate at
elevated temperatures, such as those reptdedTalaromyces thermophilus, Myriococcum

thermophilum, Scytalidium thermophilum and Thermomyces lanuginosus [30-32].

5. Syner gy between hemicellulose hydr olyzing enzymes

Due to the complexity of the hemicellulose structure, hemicellulasgnesztend to act in
concert with auxiliary enzymes. Three types of synergic relationshigs been observed: (i)
homo-synergy between main chain cleaving enzymes (i.e. Engbxyyldnases); (ii) hetero-
synergy between main chain cleaving and debranching enzymes {elg
arabinofuranosidases) and (iii) anti-synengkiereby one enzyme inhibits the activity of
another enzyme regardless whether the primary activity is maim atleavage or
debranching[3]. Interactions between selected hemicellulases have been cautiedn
different substrates in various combinations in order to uncover the bestsheergic

activity for optimum hydrolysis and for the formulation of commercial enzyme cockidiés
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composition of these cocktails require careful consideration because gggrading
enzymes, like other plant cell wall degrading enzymes, exhibiati@mi in structure and
substrate specificities. Xylanolytic activities can operate dasnain components of
multifunctional enzymes that include carbohydrate binding modules ofafiffenolecular
sizes with varying abilities to permeate branched substratexdessa the main xylan

backbone.

In several studies, incubation of endo-f;Aylanases with birchwood xylan have been
reported to vyield short chain xylooligosaccharides, with xylobiose and xyktrios
predominating and minor amounts of xylo§&0,33-35] Addition of B-xylosidase to
birchwood xylan releases negligible amounts of xylose due to the prestradimited
number of non-reducing ends that are the substrate for the eridginelhe presence of
branching hetero substituents may also be hinderingettimg B-xylosidase activity (Figure
1). However, the combination of endo-B4ylanase and B-xylosidase has been confirmed
to enhance the release of reducing sugein fxylans up to 25 fold that of B-xylosidase
treatment alone. The catalytic activity of xylanase, could lassified as a heterosynergic
relationship since the action of xylanase produces more unsubstituted non-reshatsrigr

B-xylosidase to attack, hence an effective incréasebstrate concentrati¢®,36].

A combined treatment of PB-xylosidase and arabinofuranosidase almost doubled xylose
release from water extractable wheat arabinoxytampared to B-xylosidase treatment alone.
The removal of 1—3 linked arabinose from singly substituted xylopyranosyls near non-
reducing ends provideskccess for B-xylosidase[37]. The ability to degrade water soluble
wheat arabinoxylan into reducing monombeysa combination of endo-1#xylanase and -

xylosidase could be increased 2.5-fold by the additarL-arabinofuranosidag@7-42].



220 6. Influence of Carbon Source on Xylanase and p-Xylosidase Production

221 Hydrolysis of plant polysaccharides is essential for fungal organisrabtain energy and
222 nutrients for growth. As a consequence filamentous fungi have evolved ttesedagively
223 large quantities of enzymes that degrade plant carbohydrates into fermentable sstjacs. D
224  substrates, including agricultural by-products such as wheat straw, corn cobs, stigalphee
225 corn stalks and selected carbohydrates (i.e. birch wood xylan, oat spell xylaeeahdvood
226 xylan) are used for the induction of cellulolytic and hemicellulolyticyeres under solid

227 state cultivation.

228 Studies have been conducted in order to test the response of fungasroggamidifferent
229 carbon sources within culture media and investigate expression pattenmsymies. Model
230 organisms like Neurospora crassa have been demonstrated to sgresdhee of cellulose
231 in the environment and induce lignocellulolytic enzymes in response texihasure of
232 particular carbon source available. Expression of cellulases anddtieiaises in response to
233 Auvicel (crystalline cellulose) has been reported to induce 17 of 21 predielielase and 11
234 of 19 predicted hemicellulase genes in Neurospora crassa genorhe basis of RNA
235 sequencing43,44]. Cellulolytic enzymes are synthesized in association with |blgtit
236 enzymes when fungal organisms are actively grown on cellulosergngtanedia owing to
237 traces quantities of xylan that often exist in conjunction with comaiepceparations of
238 cellulose that are sufficient to trigger basal transcription ofmibellulase encoding

239 components [45].

240 Expression patterns of hemilolytic enzymes in response to a range of catbops have
241 Dbeen studied by several research groups with similar conclusions. Xytha asle carbon
242 source will lead to the expression of endo-xylanasd p-xylosidase synthesis, as
243 demonstrated in Penicillium purpurogenyd6], Trichoderma reesej47], Scytalidium

244  thermophilum48,49. Xylose residues released from xylobiose or xylan has been suggested



245 to induce expression of xylanolytic complexes [20] but in some microorganisen
246 accumulation of xylose at high concentrations (45 g/L) has been observedve a
247 repressive effect orboth xylanase and B-xylosidase expression, indicating that carbon
248 catabolite repression can be triggered by co-catabolic pro@ifgtsThe presence of glucose
249 severely reduces thdevels of mycelial B-D-xylosidase achievable in Scytalidium
250 thermophilum and Penicillium sclerotiorunmdicating that p-D-xylosidase synthesiss

251 subject to carbon catabolite represgi®,50].

252 7. Regulation of Hemicellulase Encoding Genes

253 Filamentous fungi are thought to respond to short chain oligosaccharidemehattially

254 released from polymeric substrates, which include derivatives sughlited and arabinol

255 that have been considered to induce expression of xylanolytic enfyinég] Regulatory

256 elements and binding sites of transcriptional activators have teastified in the promoter
257 regions of the genes encoding cellulolytic and xylanolytic enzymes. tfEimscriptional

258 activator, XInR, regulates the xylanase-encoding genes of Aspergilger [51]. XInR

259 contains a zinc binuclear cluster DNA binding domain that binds to themrsus sequence
260 5’-GGCTARS3’ with orthologues in other fungal species [52-55]. Transcriptome analysis of
261 wild type A nigerand a XInR knockout strain revealed 25 genes to be positively regulated by
262 XInR that includedgenes of B-xylosidase, endoxylanase, arabinofuranohydrolase, xylose
263 reductase, cellulases and sugar transpof@is Klaubauf et al. [57] have further examined
264  the secretome profiles of wild type and XInR mutants/gR) of Fusarium graminearym
265 Magnaporthe oryzaeélrichoderma reesei, Aspergillus niger and Aspergillus nidulanisein t
266 presence of 25 mM glucose, 25 mM xylose and 1% (w/v) beechwood xylan mediiam. T
267 study concluded that the regulation of core set of xylanolytic enzyrokesling GH11 endo-

268 xylanase, GH3 and GH4@xylosidases, a-glucouronidase were highly dependent on XInR

269 transcriptional regulator but other sidiezin cleaving enzymes such as a-arabinofuranosidase
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from Aspergillus nigerand o-galactosidase from Trichoderma reesei and Aspergillus

nidulans were unaffected by the deletion of XInR.

Several studies have demonstrated that the expression of fungal planaitelegrading
enzymes is subject to carbon catabolite repression [34,53,58,59]. The mmethantrolling
the preferential utilization of substrates over alternative carbon sosroesdiated by the
wide-domain repressor CreA which alters the transcription of XB¥R53,58,60] CreA
binds the promotors of the genes encoding the xylanolytic enzymes aactittador XInR to
create a double lock mechanism in which CreA represses transcriptibe attivator and

the target genes.

8. Biochemical Characterisation of Xylanolytic Complexes

The majority of fungal xylanases are single subunit proteins of vamnjimecular sizes that
generally fall within the range of 20-60 kDa with the exceptiemdp reports of dimeric
xylanasedrom Talaromyces emersonii with molecular weights of 131 and 181 kDa [14,61]
Several eukaryotic endoxylanases occur as glycosylated enzgmekidh carbohydrate
groups are covalently linked to the protein or are present in disso@alyiplexes[29].
Carbohydrate content of the three xylanases, Xa, Xbl and Xbll encodd@dlagomyces
byssochlamydoidedhave been reported as 36.6, 31.5 and 14.2 % respectively whilst
carbohydrate content was not reported for the xylanases encoded by Taéesremgesonii
[61]. It is proposed that the presence of carbohydrate moieties assowmitliexylanases
allow the proteins to tolerate higher temperatures. Xylanases sipmiéc origin such as
Aspergillus and Penicillium species, exhibit pH optima ranging frono 3 tand exhibit
optimal activities at temperature ranging from 40 to 6(3343. It is, however, notable that a
few fungi of mesophilic origin produce xylanases with increased thestadllity, for

example the xylanase of Ceratocystis paradoxa, remains att@@ °C for 1 hourf29].
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Endoxylanases from thermophilic organisms typically exhibit pH optimgimg from 4.5 to

6.5 and temperature optima in the range of 55 to 65 °C.

Fungal B-xylosidases are often characterized as monomeric glycoproteins, drp\gewme

have been reported to comprise of more than one subunit such as Humicola ifisolens
xylosidase, which is characterized as a heterodimeric protein of 6B7akida subunits that
could have arisen by post-translational cleavage [B&}.3-xylosidases of Neocallimastix
frontalis and Aspergillus pulverulentus have also been charactexszdimeric enzymes with
molecular masses 180 and 190 kDa respect{&€ly Zanoelo et al[63] characterized a cell

wall bound B-D-xylosidase fron Scytalidium thermophilum, which has a carbohydrate
content of 12 % and a molecular weight of 45 kDa. Recombinant enzymes purified from
yeasts or filamentous fungi tend to show variation in molecular massliemative enzyme
sources due to post-translational modifications. fglosidases of Talaromyces emersonii
and Trichoderma reesei have been expressed in Aspergillus orgehboth recombinant
enzymes were estimated 15 kDa larger thaiir ttieoretical molecular massg$0]. The
methylotrophic yeast Pichia pastoris is commonly used for heterologoushprpgession
studies tends to hyperglycosylate recombinant enzymes depending oantiber of N-
glycosylation sites within the target protein. Fungal glytolydrolase family 3p-
xylosidases from Neurospora crassa and Aspergillus oryzae expresBezhian pastoris
were observed to be hyperglycosylated with predicted molecularema$s31.8 and 84.7
kDa as compared wittSDSPAGE estimates between 1280 kDa, 153165 kDa
respectively [64,65] Similarly a 65.6 kDa Phanerochaete chrysosporpsylosidase
expressed irP. pastoris to produce a protein 83 kDa mass as a result of post-translational

glycosylation.

In contrastto endoxylanases, B-xylosidases from mesophilic and thermophilic origin exhibit

optimal temperature ranges between 50 and 70 °C and themas&bility is highly
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variable depending on structural differences. The pH optim@mghl B-xylosidases from
mesophilic and thermophilic origin differ with the formers ranging from pH 2.5elthe

latter pH 5-7 [21,30,45,46,63-67].

B-xylosidases have been reported to exhibit bifunctional activitggsnst the synthetic
substrates 4-nitrophengHD-xylopyranoside (PNPX) and 4-nitropheryk-
arabinofuranoside (PNPA®4,68] The majority off-xylosidases studied to date have been
characterised against PNPX but it should be noted that enzymedagheawil performance in
the natural environment or during industrial application may differ. For exaaplgax of
1052 pmol mift mg* was recorded for recombinat crassa-xylosidase against PNPX as
compared with 10.2 pmol nmilnmg™ against xylobiose with descending values for longer
chain xylooligosaccharide substrat¢€5]. Similarly Aspergillus oryzae KBN61G3-
xylosidase exhibitedjyreater catalytic efficiency (Maxand ka) against the synthetic substrate
PNPX rather than naturally occurring xylooligosaccharidégt) a Vinax Of 250 against PNPX
and 25.5 pmol mih mg* against xylobiosd64]. The structural configuration of the C-O-
xylosidic bond between 1,4 xylose residues is markedly different to predented by
xylopyranoside 4-nitrophenyl, which is likely to affect the positionindinithe active site and

the rate of hydrolysis.



337 9. Xylanase classification

338 The glycosyl hydrolases have been classified according to theio atid sequence directed

339 structures and catalytic mechanisms [69-71]. These classificatimsavailablein the

\v
1

340 Carbohydrate Active Enzymes database (CAZyhttp(//www.cazy.org/Glycosid

341 [Hydrolases.htn)l Fungal xylanases (endo-134xylanase, E.C.3.2.1.8) generally fall into two

342 families of the glycosyl hydrolases (GH) that were initiallynea F and G, and later
343 renamed a&H10 and 11 in the consolidated scheTi2]. However, enzymes with xylanase
344  activities associated with distinct catalytic domains daa be found in GH families 5, 7, 8
345 and 43. Exoxylanase activity (exo-1p4«ylanase, E.C.3.2.1.37) has also been reported f

346 the fungus Chaetomium thermopHhik3].

347 9.1 Glycoside Hydrolase Family 10

348 Family GH10 xylanases have a catalytic domain molecular mass of approxirBatépa
349 with the possibility of translational fusions to variable accessory oienthat can feature
350 alternative catalytic domains or carbohydrate binding modules. Thayt@matdomain
351 structure is that of an eiglitdd (B/ar) barrel, commonly referred to as the Thdrel fold
352 (Figure 2A). Structural studies of the binding of xylooligosacchariddate that GHO
353 xylanases contain five xylopyranose subsitels &ad that hydrolysis occurs between subsites
354 D and E[74]. Catalysis proceeds via a double displacement mechanism that ritai
355 anomeric centrg¢/5], using two glutamate residues located on the carboxy-terminaloénds
356 corep-strands 4 and [76]. Comparative studies indicate famBH10 xylanases have higher
357 affinity for shorter linearp-1,4-xylooligosaccharides than family GH11, which has been
358 proposed to be as a consequence of smaller substrate bindirj@&itdhis gives the family
359 GH10 enzymes greater flexibility with respect to the degree of polyatiensbut restricts
360 the enzymes ability to cleave branched chain substrates. Howevéf Gtanase of the

361 thermophillic fungus Thermoascus aurantiacus has been reported to show #efilel g


http://www.cazy.org/Glycoside-Hydrolases.html
http://www.cazy.org/Glycoside-Hydrolases.html

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

activity against xylotriose in which the non-reducing moietyirikdd to an arabinose side-
chain, compared to the undecorated form of the oligosaccHa@BgleHigh resolution X-ray
crystallographic structures of GH10 xylanases from the theromophilesmdascus
aurantiacus and Thermomyces lanuginosus have enabled comparisons yitbsederived
from mesophiles to assess the structural determinants that confelostadbifity to the
enzymes. Thermoascus aurantiacus GH10 xylanases were noted tot Hemefi
improvementsn hydrophobic packing, favourbbinteractions between charged side chains
with helix dipoles, the introduction of prolines at the N-termini of lesli¢79] and the

formation of salt bridgef80].

Structural and complementary mutational studies have highlighted tHdt el C-terminka
residues of GH10 xylanase from Aspergillus niger are disordered and cotabildkes non-
substrate bound monomd&l]. Removal of the five disordered residues located at the N-
terminus of the protein, with or without the presence of C-termiliwdrdered leucine
(residue 302), resulted in a 2 to 4-fold increase in the half-liteeofecombinant enzymes at
50°C. These data highlight a role for the protein termini in structurdlilisgathat had
previously been ascribed potential roles in oligomerisation and thermibgtaddil a

thermophillic Bacillus ssp. family GH10 xylang&2].

9.1 Glycoside Hydr olase Family 11

Family GH11 xylanases vary markedly in their biochemical dtaretics in terms of pl,
thermostability, pH profiles and catalytic properties [83]. However, they daeenmon core
structure of approximately 20-25 kDa molecular mass, which is compaiséwo anti-
parallelB-sheets in the form d p-jelly-roll. The overall jelly-roll structure is folded over to
create an active site clefirom the inner B-sheet two glutamate residues are orientated into
the cleft, which represent the catalytic residues of a doubleadespent mechanism similar

to that used by family GH10 xylanases (Figure 2B). The topology of GHabags have
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been described to take the shapaght hand, withlie two B-sheetand a-helix resembling
the palm and fingers and two loop regions forming thumb and cord [84]. Séwegall
GH11 xylanases have been reported to contain disulphide bridges that cdeldstaloility

to extra-cellular enzymes. Molecular dynamic studies indicatethieaN-terminal regionef
GH11 xylanases initiate protein unfoldif®p], and engineering an N-terminal disulfide bond
has been reported to enhance enzyme thermostability [86788 xylanases from
Aspergillus nigeff89], Aspergillus kawachif90], and Scytalidium acidophilum [91] contain
disulfide bonds that connect the cord andstand P12, whereas the xylanases from
Paecilomyces variotj92] and Thermomyces lanuginos[83] disulfide bonds are located
between am-helix and strand f11. Two disulfide bridges were observed in the family GH11
xylanase of the anaerobic ruminal fungus Neocallimastix patriciarumtheutdisulfide
located in the N-terminal region serves to tether the N-terinhocatedu-helix to strand 14

[94].

10. p-Xylosidase classification

The CAZy database placfsxylosidases into GH families 3, 8, 30, 39, 43, 52, 54, 116, 120
but B-xylosidases of fungal origin are restricted to families 3, 43 andnbdddition, GH
family 31 refers tou-xylosidase activities from Aspergillus niger and Aspergillus nidsila

that hydrolysen-D-xylosidic linkages

Glycoside families 3, 31 and 54 function by a double-displacement mechamherea&sH
43 family enzymes typically operate by inversion of the anomenteevhere aspartate and

glutamate are claimed to be the catalytic nucleophile base and proton donoivelgpect

10.1 Glycoside Hydr olase Family 3
The CAZy database contains 4669 family GH3 protein sequences of which 5&86 are

eukaryotic origin and exhibit the following catalytic activities: -glucosidase (EC 3.2.1.21),



411 xylan 1,48-xylosidase (EC 3.2.1.37), N-acetylhexosaminidase (EC 3.2.1.52), gluc@n 1,3-
412 glucosidase (EC 3.2.1.58), glucan B4pucosidase (EC 3.2.1.74), exo-1,3-1,4-glucanase
413 (EC 3.2.1}, o-L-arabinofuranosidase (EC 3.2.1.5%rglucosylceramidase (EC 3.2.1.45),
414  isoprimeverose producing oligoxyloglucan hydrolase (EC 3.2.1.120), corffgfuncosidase

415 (EC 3.2.1.126) anfl-N-acetylglucosaminide phosphorylases (EC 2.4.1.-

416 Gene sequences encodifigkylosidases classified within family GH3 have been reported
417 from several fungal sources including Aspergillus nig@5], Aspergillus oryzae [67],

418 Aspergillus japonicug96], Aspergillus nidulang97], Neurospora crassg5], Humicola

419 insoleng[98], Trichoderma reesg#7] and Talaromyces emersof®i9]. However, structural

420 information is only available for enzyme from Trichoderma reesei, for vdnedi-angle X-

421 ray scattering data has been collected and compared with thed styscture of brley p-D-

422 glucan exohydrolasfl00]. These data suggest the Trichoderma reesei enzyme consists of
423 three domains as opposed to two characterised for the barley enzyme. The N-terminal domain
424  consists of an (0/B)g TIM-barrel domain and the second an ofo sandwich with the third

425 remaining unclassified. Glycoside hydrolase family 3 enzymes perfaatytoareaction by

426 a double-displacement mechanism, in which two carboxylic acid residuated in the

427 active site are involved in the formation of a covalent glycesyyme intermediate. The GH

428 3 catalytic nucleophile, aspartate, is conserved across all family membersauadad in the

429 N-terminal (o/B)g TIM barrel domain [101]. The catalytic residues of the family GiH3

430 xylosidases of Trichoderma reesei and Talaromyces emersonipvadred by carbodiimide-

431 nucleophile modification, which resulted in complete inactivation of tizgraes suggesting

432 that carboxyl groups are required for catalysis, which is consistaht the candidate

433 aspartate and glutamate residues identifieh protein sequence comparisqis].

434 10.2 Glycoside Hydr olase Family 43

435 Glycoside hydrolase family 43 contains 312 of eukaryotic origin with thewiwlg enzyme



436 activities: B-xylosidase (EC 3.2.1.37), B-1,3-xylosidase (EC 3.2.},-a-L-arabinofuranosidase
437 (EC 3.2.1.55), arabinanase (EC 3.2.1.99), xylanase (EC 3.2.1.8) and galacfan 1,3-
438 galactosidase (EC 3.2.1.145), a-1,2-L-arabinofuranosidase (EC 3.2.1.-), ex;5-L-

439 arabinofuranosidase (EC 3.2)1.-

440 Fungal sources of familyGH43 p-xylosidases include Penicillium herqudil02],
441  Cochliobolus carbonurfil03], Aspergillus oryzag104], Thermomyces lanuginosy$05]
442 and Paecilomyces thermof#i[22]. Family GHi3 B-xylosidases are predicted to have
443 molecular masses between 35-62 kDa that do not contain recognisat#dgosesignal

444  sequences, and are therefore likely to be cell associated enzymes.

445 To date structures for members have only begndrdined for B-xylosidases of bacterial
446 origin. However, Ravenal et al [106] have modelled two GH43 enzyraes Penicillium
447 purpurogenum, a bifunctionatl-arabinofuranosidase/xylobiohydrolased a -xylosidase.
448 Like other members of the family the catalytic domains hafiree blade B-propeller fold that
449 contains a two subsites and a funnel shaped activ@6ite07] During catalysis, the active
450 site harbours the substrate sugar molecule at the non-reducing end andainéngesugar
451 backbone tends to be positioned at right angles to the enzyme teittiacjure. GH43
452 enzymes perform catalytic reaction by inversion of the anomeric certtee.catalytic
453 residues are believed to be formed by aspartate as a nucleophilentagleitamate as a
454  proton donor. The catalytic reaction is executed as a single displatcesaetion in which
455 one carboxylate (in this case glutamate) protonates the substrateavd@tmnd (aspartate)
456 acts as a base to activate a nucleophilic water molecule, wésthts in a nucleophilic

457  attack, cleavage of the glycosidic bond and inversion at the anomeric carbon.

458 10.3 Glycoside Hydr olase Family 54 and Family 31
459 Glycoside hydrolase family contains 37 enzymes eokaryotic origin with a-L-

460 arabinofuranosidase (EC 3.2.1.55) and B-xylosidase (EC 3.2.1.37) activities. The majority of
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the proteins classified within GH family 54 have a-L-arabinofuranosidase activities but two
from Aspergillus awamori and Hypocrea koningii are bifunctional wittL-
arabinofuranosidase/p-xylosidasesacivities against arabinose, xylobiose and arabinose
linked xylobiose [101]. There are no protein structures availabl@-kytosidases however

an a-L-arabinofuranosidase (EC 3.2.1.55) structure has been determined from Aspergillus
kawachii [108]. The catalytic mechanism of GH Family 54 is considered tonrdtse

anomeric carbon.

There are over 600 GH family 31 memberseokaryotic origin with a-glucosidase (EC
3.2.1.20), a-1,3-glucosidase (EC 3.2.1.84), sucrasenaltase (EC 3.2.1.48), a-xylosidase

(EC 3.2.1.177), a-glucan lyase (EC 4.2.2.13), isomaltsyltransferase (EC 2.4.d--
mannosidase (EC 3.2.1.24) and oligosacchasde4-glucosyltransferase (EC 2.4.1.161)
activities. To date only one a-Xylosidase has been cloned and characterized from Asperillus
niger which is composed of 736 amino acids and exhibit activitynstga-nitrophenyl-D-
xyloside but not against p-nitropherdb-xyloside [108]. Based on a-xylosidase structures

of bacterial origin,GH31 catalytic domains ar€3/a)s barrel structures that operate by

retaining a mechanism with aspartate as the catalytic nucleapkilproton donor.

11. Industrial Applications of Endo-xylanases and p-Xylosidases

Despite the general cooperative action of xylanolytic enzymes, it isitleexglanases and 3-
xylosidases that are most often used to solubilize xylan in induptoaksses. Industrial
applications include bread making, xylitol production, fruit juice cleaifon, processing of

pre-digested animal feed, bioethanol production and paper pulp processing [1,109].

Robust extraction methods are employed in the processing of wood to pulp and paper in order
to separate cellulose fibrils from lignocellulosic materials. Tipeseesses include the use of
concentrated acids, alkalis, hydrogen perox@@; explosion and organic solvent treatments

[1,20]. Finished white pulp is bleached with acid or toxic chlorine reagahtsigh
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temperature and pressure, the by-products of which represent a threat ézdsyatems. To
comply with environmental regulations the harsh chemical methods hemeadm@aced with
alternative chlorine free bleaching such as hydrogen peroxide, ozone, dogpochlorite
and biobleaching [110]. Enzymatic treatments using endo-xylanaseog&haits have been
used to enhance delignification. Hemicellulases are used in erasysisted bleaching to
soften and swell the fibre structuieenhance the efficiency of bleaching chemicals used in
later treatment stagd29,109] However, it is essential for the enzyme preparation to be
completely free of cellulase activity, the presence of which wonfgir pulp quality. Most
fungal specieso-express cellulolytic and xylanolytic to utilise plant cell Wwadaterials
However, a few strains of fungi have been reported to produce cellulasidrenotolerant
xylanases that degrade the xylan of lignocellulosic components, andudaable for
application in pulp bleaching bioprocesses: Aspergillus sp. JMil], Talaromyces
thermophiles stolk AX4[112] and Thermomyces lanuginosus SSBP (formally known as

Humicola lanuginosg[113].

Xylan rich agricultural wastes hydrolysed into its monosaccharide @t via enzymatic
treatments in a form of liquors containing 3040 % xylose and 20 % other sugars (i.e.
arabinose, galactose, and mannose) are attractive renewable feedstofeksnentations
aimed to produce bio-based chemicfld4]. The most widely produced xylan derived
product is xylitol, which is a popular ingredient in oral care and chegurg products.
Xylitol is a 5-carbon alcohol, produced by the chemical hydrogenationlo$eythat has
been shown to exhibit antimicrobial properties, and specifically to eethue growth of
dental plague and decrease the incidence of dental ¢ati&f Xylitol is also used as an
artificial sweetener with less than quarter of the calories of glubogesritically it does not
induce insulin release in humans, which makes it a suitable subsbitutedividuals with

diabetes [115, 116]. Xylose fermenting yeasts such as the Candida speaiestosaC.



511 tropicalis, C. guilliermondii and C. parapsilosis have been extepsstatiied for their
512 capability to ferment xylose into xylitol using xylose reductase. Microbial reductirylose
513 enriched broth using Candida maltosa, was shown to yield 2I3xylitol from 250 g L
514 xylose[117]. A combined environmentally low impact process has been reported il xyl
515 bioconversion using hydrolysates of corncob and wheat bran (1:1 ratio) first gdnayate
516 solid state fermentatioby Aspergillus terreus, and then utilised as feedstock for Candida
517 tropicalis to convert 75.14 % of the xylose to xylifall8]. Genetic engineering methods
518 have also been used to create integrated xylitol production pathwa$accharomyces
519 cerevisiae and Candida tropicali§l19,120] Saccharomyces cerevisiae INVScl
520 transformants co-expressifigl,4-xylanase ang-xylosidase from Aspergillus terreus and
521 xylose reductase from Candida tropicalis was used in a semi-aerobiat&ioreto produce

522 0.71 g xylitol/g xylan[119].

523 First generation bioethanol production was based on the fermentation ofatily
524 metabolisable sugar glucose, however much research has been caraedh@utonversion
525 of hemicellulose hydrolysate into second generation ethanol prodydtlgh Ethanol is
526 either used directly as a chemical or as an additive to gasqgiine 20 % by volume. The
527 blend of ethanol into gasoline is an improved substitute of methyl tefbiatyl ether
528 (MTBE) that may provide cleaner combustion and reduce greenhouse gammesnj$,5].
529 Efficient production of bioethanol from lignocellulosic materials requarggnisms that are
530 capable of the complete hydrolysis of agricultural waste madeairadl fermenting organisms
531 that convert all types of monosaccharide constituents into ethantdbdlie engineering
532 approaches have been employed in order to produce new strains with hyperipmoduct
533 phenotypes for hemicellulase production and generate Saccharomycesami@uisPichia

534 stipitis strains capable of ethanolic pentose fermentation [120,121

535 Xylooligosaccharides obtained by enzymatic hydrolysis of hemicedliase been reported
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as useful bioactive ingredients of food and health products. Similar to xylitol
xylooligosaccharides are moderately sweet compounds with no tdfdaasl no hazardous
properties and can be applied to foods, juices and carbonated beverégesstddies have
reported that these short chain sugars variably support the growth of probiatibditus
and Bifidobacterium species promoting a number of health benefits suble ahibition of
pathogenic bacteria preventing gastro-intestinal infections and iegbrintestinal transit

[122,123]

The use of exogenous hydrolytic enzymes in animal feed has signficimttial to improve
nutritive values and digestibility of feed. Commercially availableymes were initially
developed as silage additives in order to obtain pre-digested animahfseever nowadays
such enzymes are directly added into ruminant diets. These additives are approvedde incre
the metabolizable energy and subsequently lead to animal weighdrghimprovements in

milk production[124, 125]

Enzymatic clarification of fruit juices has become a popular praogssce production. The
utilization of pectinases along with cellulases, xylanases and p-xylosidases for the
degradation of all polymeric carbohydrates found in fruit pulp can improve yieldshlyre
pressed juice is turbid and viscous, and without processing the carbohydcate tpied to
settle during storage. The hydrolysis of polysaccharides weakensateseluwalls that
results in the release of cell wall materials and a reductidreimater holding capacity, this
leads to efficient juice recovery with reduced turbidity and amease in the levels of
reducing sugars [126]. For example, treatment of pineapple juice withrgifye niger
DFR-5 xylanase has been reported provide a yield of 71.3 % and a ctduéyof 64.7 %
[127]. Endoxylanases and B-xylosidases are also used in the brewing industry on crushed
barley in order to solubilize arabinoxylans that can give beers a mymhamance with

lower oligosaccharides. The hydrolysis of arabinoxylans in wort reduces the beer’s turbidity
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thus improving its appearance and viscofi8,129]

Endoxylanases and B-xylosidases are employed in the baking industry due to the abundance
of hemicelluloses within cereals. Wheat flour is obtained by thiengpprocess and consists

of starch and arabinoxylan. The addition of several carbohydrase enzymes susyiases,
endo-xylanases and glucanases in post-milling processes tends to thedifyality of the

flour. Endoxylanases and B-xylosidases act on the arabinoxylan fraction of the dough to
liberate the water retained in the arabinoxylan that helps evieibdti®n of water and rise in
viscosity [130]. The quality of bread obtained from enzyme treated dough was improved
regarding dough rise, bread shape, loaf volume and crumb structure [131]. However, it
should be noted that exogenous xylanases have to overcome an endogenoylariees

inhibitor protein to maximise their effects in bread making [132].

12. Concluding remar ks

There are an increasing number of fungal xylanolytic enzymes eitlagacterised or under
study. These studies are prompted by the importance of hemicellulose abundant

carbohydrate in nature. Systematic approaches are likely to yieldiryleér enzymes and
connections as to how they interact with plants as symbionts, pathagérsaprophytes.
Despite the abundance of hemicellulose, it is an underutilised resatiiee as a renewable
bioenergy source or a source of complex chemicals. Biotechnological appbcataking

use of xylanolytic enzymes are increasing and will continue to @s $lee concerted actions

of multi-enzyme systems become better understood.
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Figure Legends

Figure 1

A. Xylan polymer structure showing the actions of xylanolytic enzymesbabkbone of the
substrate is composed of 1H-linked xylose residues with branchesuedrabinofuranosey
-4-O-methylglucuronic acid; ferulic or p-coumaric acids. B. Hydrolysfiscylobiose and
higher xylooligosaccharides lffly-xylosidase.

Figure 2.

A. Structure of the family GH 10 xylanase from Thermoascus aurantidnve ng
TIM-barrel fold with the catalytic glutamate residues projectingpithe active site
cleft [80]. B. Structure of the family GH 11 xylanase from Trichodermeaseiee
showing B-jellyroll fold with the catalytic glutamate residues projectingto the
active site cleff133].
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