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Contemporary Mathematics

Two—Grid hp—DGFEM for Second Order Quasilinear Elliptic
PDEs Based on an Incomplete Newton Iteration

Scott Congreve and Paul Houston

ABSTRACT. In this paper we propose a class of so-called two-grid hp-version
discontinuous Galerkin finite element methods for the numerical solution of a
second-order quasilinear elliptic boundary value problem based on the appli-
cation of a single step of a nonlinear Newton solver. We present both the a
priori and a posteriori error analysis of this two-grid hp—version DGFEM as
well as performing numerical experiments to validate the bounds.

1. Introduction

In our recent articles [4, 5] we have considered a class of two-grid finite element
methods for strongly monotone partial differential equations. Here, the underlying
problem is first approximated on a coarse finite element space; the resulting coarse
solution is then used to linearise the underlying problem on a finer finite element
space, so that only a linear system of equations is solved on this richer space. In
this paper we consider an alternative two-grid interior penalty (IP) discontinuous
Galerkin finite element method (DGFEM), based on employing a single step of a
Newton solver on the finer space, cf. [1], [9, Section 5.2], for the numerical solution
of the following quasilinear elliptic boundary value problem:

(1.1) =V (u(z, |Vu])Vu) = f in Q, u=0 onl,

where (2 is a bounded polygonal domain in R2, with boundary ' and f € L?(Q).
We assume that p € C%(Q x [0, 00)) satisfies the condition: there exists positive
constants m,, and M,, such that the following monotonicity property is satisfied:

(1.2) my(t—s) < plx,t)t — p(x,s)s < M, (t—s), t>s5>0, e

For ease of notation we write u(t) instead of p(x,t). The outline of this article is
as follows. In Section 2 we state the proposed two-grid IP DGFEM. In Sections 3
and 4 we consider the a priori and a posteriori error analysis, respectively, of the
two-grid IP DGFEM. Finally, in Section 5 we present some numerical results to
validate the theoretical error bounds.
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2. Two-Grid hp—Version IP DGFEM

We consider shape-regular meshes 7;, that partition  C R? into open disjoint
elements x such that Q = UneTh K. By h, we denote the element diameter of
Kk € Th, h = max.eT, hy, and n, signifies the unit outward normal vector to k. We
allow the meshes 7}, to be I-irregular; further, we suppose that Tj, is of bounded local
variation, i.e., there exists a constant p; > 1, independent of the element sizes, such
that p_1 < hm/hﬁl < p1, for any pair of elements «, k" € T, which share a common
edge e = Ok NOkK'. To each k € Ty, we assign a polynomial degree p,, > 1 and define
the degree vector p = {p, : k € Tr}. We suppose that p is also of bounded local
variation, i.e., there exists a constant ps > 1, independent of the element sizes and
p, such that, for any pair of neighbouring elements x, &' € Ty, py* < Pe/p < po.

With this notation, we introduce the finite element space

V(Th,p) = {v e L*Q): v, € Sp. (k) Ve € Th},

where Sp, (k) = Pp,. (k) if k is a triangle and S, (k) = O, (k) if k is a parallelogram.
Here, for p > 0, P,(k) denotes the space of polynomials of degree at most p on &,
while Q,(k) is the space of polynomials of degree at most p in each variable on .

For the mesh 7, we write 5}{ to denote the set of all interior edges of the
partition 7 of €, Ef the set of all boundary edges of 7j, and set £, = Sff UEEL. Let
v and q be scalar- and vector-valued functions, respectively, which are sufficiently
smooth inside each element x € 7;,. Given two adjacent elements, k¥, k= € Ty
which share a common edge e € &, ie., e = Oxt NIk~ we write v and g
to denote the traces of the functions v and q, respectively, on the edge e, taken
from the interior of k¥, respectively. With this notation, the averages of v and ¢q
at & € e are given by {v}} = /2(vT +v7) and {q} = 1/2(q" + q7), respectively.
Slmﬂarly, the jumps of v and q at & € e are given by [v] = vTn,+ + v__n,- and
lg] = " n.+ +q -n,-, respectively, where n,.+ denotes the unit outward normal
vector on k¥, respectively. On a boundary edge e € £8, we set {v} = v, {q} = g,
[v] = vn and [q] = ¢ - n, with n denoting the unit outward normal vector on the
boundary I'. For e € &, , we define h. to be the length of the edge; moreover, we
set pe = max(py, P ), if e = Ok N Ok’ € EF, and p. = py,, if e = O NT € EP.

2.1. Standard IP DGFEM discretisation. Given a fine mesh partition 7
of ), with the corresponding polynomial degree vector p, the standard IP DGFEM
is defined as follows: find wy, , € V(Ts, p) such that

(2.1) Ap,p(un, pvvh p) = Frp(vnp)
for all vy, € V(Th, p), where Fj ,(v) = [, fvda and
Ah,p(u,v):/ (| Vru)Vau - Vo de — Z/gﬂ (IVau)Vau} - [v] ds
Q e€&,
—1—92/{{,u YD Vav} - U]]dS+Z/Jhp [v] ds.
ees, e€s,

Here, 0 € [—1,1], V}, is the element-wise gradient operator and o, = vp?/he,
where v > 0 is a sufficiently large constant. We define the energy norm on V(Ty, p):

Il = IVaol2ai0) + 3 / o pl [0 2 ds.
eegh ¢
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LEMMA 2.1 (See [6]). The semilinear form Ap p(-,-) is strongly monotone in
the sense that, there exists Ymin > 0, such that for any v > Ymin
(2.2)
App(wr, w1 = wz) = Ap p(wz, w1 — w) > Cpllwr — walfyg Ywr, wa € V(Th, p),

where Cyy, s a positive constant, independent of the discretisation parameters.

2.2. Two-grid IP DGFEM discretisation. We now introduce a two-grid
IP DGFEM based on employing a single step of the Newton iteration on the fine
mesh. To this end, we consider two partitions 7, and Ty of 2, with granularity h
and H, respectively. We assume that 7, and Ty are nested in that sense that for
any element kj, € 7T, there exists an element kg € Ty such that &, C Ey. Moreover
for each mesh, 7} and Ty, we have a corresponding polynomial degree vector p =
{pr : kK € Tp} and P = {p, : k € Ty}, respectively, where given an element xj, € Ty
and an element Ky € Ty, such that K, C Ky, the polynomial degree vectors satisfy
the condition that p,, > pgk,. Thereby, the finite element spaces V (T, p) and
V(Tw, P) satisfy the following the condition: V (T, P) C V (T, p).

Using this notation we introduce the hp-version two-grid IP DGFEM discreti-
sation of (1.1) based on a single Newton iteration step, cf. [1], [9, Section 5.2]:

(1) Compute the coarse grid approximation ug p € V (7T, P) such that
(2.3) Ap.p(ug,p,vu,p) = Fu.p(va,p) for all vy p € V(Tw, P).
(2) Determine the fine grid solution usg € V (T, p) such that
(2.4) A}, plun.pl(uzg, vhp) = A} plum,pl(un,p, vnp) = Anp(Un,p Vhp)+ Fp(Unp)
for all vy, , € V(Th, p).
Here, A;W [u](¢, v) denotes the Fréchet derivative of u — Ay, ,(u, v), for fixed v, eval-

uated at u; thereby, given ¢ we have A}, [u](¢,v) = lim; o Ah’p(u+t¢’?_‘4h"’(u’v).

REMARK 2.2. For simplicity of presentation, throughout the rest of this article
we shall only consider the incomplete IP variation of the DGFEM, i.e., when 6 = 0.

LEMMA 2.3. Under the assumptions on p, the following inequality holds:
;L,p[u](v7v) > Cm”””%)(; Yu,v € V(Th, p).

PROOF. Setting w; = u+ tv and we = w in Lemma 2.1, u,v € V(T;,p), t > 0:
Ap p(u+tv,v) — Ap p(u,v)
t
Taking the limit as ¢ — 0, we deduce the statement of the Lemma. ([l

> CnlvllB-

3. A Priori Error Analysis

For simplicity of presentation, in this section we assume that the mesh is qua-
siuniform with mesh size h and that p is uniform over the mesh, i.e., p = p.

THEOREM 3.1. Assuming that u € C1(Q) and u € H¥(Q2), k > 2, the solution
of uag € V(Th,p) of the two-grid IP DGFEM satisfies

7/2H2572
p
(3~1) ||Uh,p_U2G||DG = OTWHUHQHIC(Q),

A

s—1 P2 P2
(3:2) lu—uscllpa < Ownunm(m + OTWH“’”H’C(Q)’
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with 1 < s <min{p+1,k},p>1and1 < S <min{P+1,k}, P> 1, where C >0
is independent of the discretisation parameters.
3.1. Auxiliary Results. We first state the following auxiliary results.
LEMMA 3.2. For a function v € V(Th, p) we have the inverse inequality
vl Loy < Cph™ 2|0l L2,
where C' is a positive constant, independent of the discretisation parameters.
PRrOOF. Given k € T, employing standard inverse inequalities, see [8], gives
/ ol da < [[o]| 7 () 1011720y < OP* A2 0] 72 011 720) = CP R [0 22
K
Summing over k € Ty, employing the inequality /", a; < (X0, ai)27 a; > 0,
i=1,...,n, and taking the fourth root of both sides, completes the proof.
LEMMA 3.3. For any v,w,$ € V(T;,p),
(3'3) Ahxp(w7 ¢) = A’hp(v’ ¢) + A/h,p[v](w -, ¢) + Q(Ua w, ¢)’
where the remainder Q satisfies
1Q(v,w,¢)| < CP*h™" (1 + ||V =0y + VUl () IV (w = ) [[He Vol pa,
and C' is a positive constant, independent of the discretisation parameters.

PRrOOF. We follow the proof outlined by [9, Lemma 3.1]; to this end, setting
E(t) =v+t(w—wv) and n(t) = Anp(E(t), @), we note that the first equation follows
from the identity

n(1) = 1(0) + 7/(0) + / 7 ()(1 — £) dt,

where Q(v, w, ¢) = 1 n"(t)(1—t)dt and 0" (t) = A}, ,[€(t)](w—v,w—v, ¢). Thereby,
Qv,w,6) =2 / / Heu(IVE@)]) - ¥ (1 — )V (w — v) - Vo da(1 - ) dt
/ | 1 (9EODIV (w0 =) 950 - Vo da(1 o)

2 [ % [ 9E0) - ¥ - o) w0} [olastr

ec&,

[ [t ve v - pvew} - st -

ec&,
=T+ T+ T3+ 1Ty

Here, g, (|-]) and pg,(]-]) denote the first and second derivatives of u(|-|), respec-
tively. First consider Ty: given that p € C2(Q x [0,00)), Lemma 3.2 gives

Ty < O V(w =)oy V6l 20 < Cp*A IV (w = 0) 220y Vel 120
Secondly, term 75 is bounded in an analogous fashion as follows:
Tp < C ([Vwllpe(o) + [IVollLe(9) [V(w = )[4 o) VIl 20
< C (IVwllp(a) + VUl () PRIV (w0 = 0)[[72(0) Vel L2(0)
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Term T3 is bounded via the inverse trace inequality, see [8], and Lemma 3.2:

2

1
Ty <0 S hep 21V (w — )P Hae) Z/p [6]% ds

ec&, e€&,
< CIV(w =) |[7a)l6llpa < CP*A |V (w = v) |72 [4llpa-

We can bound T in an analogous manner as follows:

Ty <C QY hep 2 IV (w = 0) PV Bl g2 Z/ h=H[g] ds

e€&, e€&,

=

2

+C3 3 hep IV = 0P ITol i Eace Z/ 21 [o] ds

ecéE, ecg,
<C{lIIV(w = 0)|Vwlll 2 (o) + IV (w = 0) Vo]l L2 } [4llpe
<Cp*h~ {[|Vw|| e ) + V]| L@ } V(w0 = 0) |72 1 ¢llDG-
Combining these bounds for terms 17, T5, T5 and T4 completes the proof. O

LEMMA 3.4. Let u € H?(Q) be the analytical solution of (1.1), such that Vu €
[L>(Q)]%, and Up,p € V(Th, p) be the IP DGFEM defined by (2.1), we have that

IV tn pl Lo ) < Cp*/2,
where C' is a positive constant, independent of the discretisation parameters.

PRrROOF. Writing P, to denote the projection of u onto the finite element
space V(Tx,p) defined in [2], we have that ||u — Pyl ge) < CZ;:Z l|lull 72y and
IV (u—Pu)llLe) < Cllullg2q) for all ¢ < 2. Exploiting these bounds, standard
inverse inequalities, [8], and the a priori bound for the IP DGFEM, [6], gives

IVtun,pll @) < IV (np = Pu)llooe @) + IVPull (@)
< CP*h IV (unp — Pu)llrzgo) + IV (= Pu)ll @) + 1VUl o0
< Cp* {JJull m2q) + ||Vl o) } -

Since u € H2(Q) and Vu € [L>®(2)]?, the quantities lull 72 () and [|Vul|po(q) are
both bounded uniformly by a constant; this then completes the proof. O

3.2. Proof of Theorem 3.1. We now exploit the above results to prove
Theorem 3.1. For the first bound (3.1), we employ Lemma 2.3, (2.1), (2.4) and
(3.3); thereby, with ¢ = up,p — usg, we deduce that

Conlltinp — u2clpa < A plum,pl(unp — uze, )
= A}, plum pl(unp — um p, ®) + A}, lum pl(um,p — uac, d)
= A, plum pl(unp — um p, ¢) + Anp(um p, @) — Fip(o)
= A plum pl(unp — um p, @) + Anp(um p, @) — Anp(Unp, o)

= —OQ(um,p,Unp, 9).
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Hence, from Lemma 3.3 we get that

lunp = uzclloe < Cp*h= (14 Vun pll 1o @) Vs el ) unp — ur pllbe:

Applying Lemma 3.4, noting that p3/2 > P3/2 > 1, and the a priori bound for the
standard TP DGFEM, cf. [6, Theorem 3.3], gives
[unp — uscllpa < Cp*h~" (1 +p* + P3/2) {llu = unplde + lu—unrlde}
B h2s—2 H2S—2
<Cp*ht {WHUH%WQ) + nggﬂu?qk(n)} :

Noting that h < H and p > P completes the proof of the first bound (3.1). To
prove the second inequality (3.2), we first employ the triangle inequality

|u —uzcllpe < [lu —unplpe + [[unp — u2cllpe-

Thereby, applying the a priori error bound for the standard IP DGFEM, together
with the bound (3.1), completes the proof of Theorem 3.1.

4. A Posteriori Error Analysis

Here, we state an a posteriori error bound for the two-grid IP DGFEM.

THEOREM 4.1. Let u € H{() be the analytical solution of (1.1), ugp €
V(Tu, P) and uzg € V(Th,p) the numerical approzimations obtained from (2.3)
and (2.4), respectively; then the following hp—a posteriori error bound holds

(4.1) lu—wsllpe < C Y (i +£7),
KETH
with a constant C > 0, which is independent of h, H, p and P. Here, for k € Ty,
M = hep 2|, [+ V- {u(| Ve, p|) Vo I 2 )
+ hepg 1e(|Vun,pl) Vuza] 2o oy +72he '0ellTuzc]lZe o)
& = (u(IVun,pl) = u(|Vuzg))) Vuzgl72 (.
+ (5. (|Vum, pl) - (Vuse — Vun,p)) Vum, pll72(,)
+ hepe (oo (IVus pl) - (Vuse — Vur p)) Vur pll72ax),
and 11, ., denotes the (elementwise) L?-projection onto V (Tp, p).

PROOF. The proof of this error bound follows in an analogous manner to the
a posteriori proof presented in [5], cf. also [7]. For details, we refer to [3]. O

5. Numerical Experiments

In this section we perform numerical experiments to validate the a priori error
bound, Theorem 3.1 and demonstrate the performance of the a posteriori error
bound, Theorem 4.1; here, we set v = 10 and # = 0. Throughout this section,
we let Q be the unit square (0,1)> C R? and define the nonlinear coefficient as
w(x, |Vul) = 2+(1+|Vu|)~t. We select the right-hand forcing function f so that the
analytical solution to (1.1) is given by u(z,y) = (1 —z)y(1—y)(1 — 2y)e’20(2$*1)2.
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FIGURE 1. Convergence of error between usg and up, p.
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FIGURE 2. (a) Comparison of the error in the DGFEM norm, us-
ing both the IP DGFEM (u. = us, ) and the two-grid IP DGFEM
(ux = u2q); (b) Effectivity indices of the two-grid IP DGFEM.

5.1. Validation of Theorem 3.1. We first validate the bound given in The-
orem 3.1; to this end we first solve the standard IP DGFEM on a 256 x 256 uni-
form mesh of quadrilaterals to compute up p for a fixed constant polynomial degree
p = 1,2,3. We then compute the solution usg to (2.3)—(2.4), for p = 1,2,3, on
a fixed fine 256 x 256 mesh, while performing uniform h-refinement of the coarse
mesh, starting from a 4 x 4 mesh with polynomial degree P = p. Figure 1 shows
the convergence rate of the error between uy , and use, measured in the DG norm,
compared to the size of the coarse mesh. Here, we observe that ||us, — usclpc
tends to zero at the optimal rate O(H??), for each fixed P, cf. Theorem 3.1.

5.2. Adaptive Refinement using Theorem 4.1. For this experiment we
use the two-grid mesh adaptation algorithm from [5], with the local error indicators
1, and local two-grid error indicators &,; from Theorem 4.1, to automatically refine
the coarse and fine meshes employing both A— and hp—adaptive mesh refinement.
Figure 2 shows ||u — us¢||pe compared to the third root of the degrees of freedom,
as well as the effectivity indices of the error estimator. As can be seen for both h—
and hp-adaptive refinement, the effectivity indices are roughly constant, indicating
that the error bound overestimates the error by a roughly constant factor. For
reference purposes, we also calculate the standard IP DGFEM solution uy, p, using
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FicUure 3. CPU timing of the IP DGFEM (u. = up,p) and the
two-grid IP DGFEM (u, = usg) employing h— and hp-refinement.

both h— and hp-adaptive refinement; cf. Figure 2(a). Finally, in Figure 3 we
compare the error in the standard and two-grid IP DGFEMs against the cumulative
CPU time when both h— and hp-adaptive refinement are employed; here, we observe
that the two-grid IP DGFEM is more efficient than the standard IP DGFEM.
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