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Abstract. In this article we consider the application of Schwarz-type domain decompo-

sition preconditioners to the discontinuous Galerkin finite element approximation of the

compressible Navier–Stokes equations. To discretize this system of conservation laws,

we exploit the (adjoint consistent) symmetric version of the interior penalty discontinu-

ous Galerkin finite element method. To define the necessary coarse-level solver required

for the definition of the proposed preconditioner, we exploit ideas from composite finite

element methods, which allow for the definition of finite element schemes on general

meshes consisting of polygonal (agglomerated) elements. The practical performance of

the proposed preconditioner is demonstrated for a series of viscous test cases in both

two– and three–dimensions.
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1. Introduction

The application and development of discontinuous Galerkin finite element methods

(DGFEMs) for the numerical approximation of the compressible Euler and Navier-Stokes

equations has been considered extensively within the current literature; for example,

see [12–15, 18, 21, 22, 25, 27–29, 33–35], and the references cited therein. DGFEMs have

several important advantages over well established finite volume methods. The concept of

higher-order discretization is inherent to the DGFEM. The stencil is minimal in the sense

that each element communicates only with its direct neighbours. In particular, in contrast

to the increasing stencil size needed to increase the accuracy of classical finite volume

methods, the stencil of DGFEMs is the same for any order of accuracy, which has important
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advantages for the implementation of boundary conditions and for the parallel efficiency of

the method. Moreover, due to the simple communication at element interfaces, elements

with so-called hanging nodes can be easily treated, a fact that simplifies local mesh refine-

ment (h–refinement). Additionally, the communication at element interfaces is identical

for any order of the method, which simplifies the use of methods with different polynomial

orders p in adjacent elements. This allows for the variation of the order of polynomials

over the computational domain (p–refinement), which in combination with h–refinement

leads to hp–adaptivity. It should also be noted that the use of standard conforming methods

for the discretization of compressible flows suffer from issues concerning numerical stabil-

ity, which must be tackled with the introduction of suitable numerical dissipation terms in

the form of SUPG stabilisation or artificial viscosity. Such terms can adversely affect the

convergence of the underlying iterative solver used to compute the numerical solution.

Despite the advantages and capabilities of the DGFEM, the method is not yet mature

and current implementations are subject to strong limitations for its application to large

scale industrial problems. This situation is clearly reflected by the breadth of research ac-

tivity and the increasing number of scientific articles concerning DGFEMs. In particular,

one of the key issues is the design of efficient strategies for the solution of the system of

equations generated by a DGFEM, which we should point out is typically larger than the

corresponding matrix system generated when a conforming finite element method is em-

ployed. However, in the context of p–version finite element methods, it has been shown in

the recent article [17] that DGFEMs can indeed outperform their conforming counterparts

in the sense that the former class of methods may be more accurate for a given number of

degrees of freedom as the polynomial degree is increased. For two–dimensional problems,

parallel direct solvers such as MUMPS [1–3], for example, are generally applicable. How-

ever, for such problems, they still require very large amounts of memory in order to store

the L and U factors. Moreover, for three-dimensional calculations, direct methods become

impractical. Thereby, in this setting iterative solvers, such as GMRES, for example, must

be exploited. Of course, the key to computing the solution in an efficient manner relies

on the choice of the underlying preconditioning strategy employed. In order to exploit the

parallel capabilities of modern high performance computing architectures, it is natural to

consider multilevel techniques, which are based on exploiting some form of domain de-

composition approach, such as additive and multiplicative Schwarz preconditioners, since

they are naturally highly-parallelizable and scalable to a large number of processors.

In the context of DGFEMs, recent work on the design and analysis of multilevel precon-

ditioners for DGFEMs has been undertaken; for example, we refer to [4,5,8,10,16,20]. In

particular, in [4, 5], cf., also, [8], it was demonstrated that Schwarz–type preconditioners

are particularly suited to DGFEMs, in the sense that uniform scalability of the underlying

iterative method may be established without the need to overlap the subdomain partition

of the computational mesh. This is a particularly attractive property, since the absence

of overlapping subdomains reduces communication between processors on parallel ma-

chines. By (uniform) scalability, we mean that the number of iterations needed to compute

the solution of the underlying system of equations is uniform, as the mesh is refined, pro-

vided that an appropriate coarse–level solution is computed as part of the preconditioning
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strategy. In our recent article [7], we considered Schwarz–type preconditioners based on

employing a composite DGFEM, which exploits general meshes consisting of polygonal (ag-

glomerated) elements, cf. [6, 24], as the coarse-level solver. This class of methods allows

for very coarse domain-conforming meshes to be employed; in the context of designing

multilevel preconditioners, they provide a flexible mathematical and practical framework

within which coarse level approximations may be computed. In this article we extend

this work to consider the application of these multi-level preconditioners for application to

compressible flows in both two– and three–dimensions. In particular, we employ a non-

linear (damped) Newton algorithm, whereby the inner linear solves are computed using

a preconditioned GMRES solver, with an additive/multiplicative Schwarz preconditioner.

We study the dependence of the convergence of the underlying iterative solver with respect

to different mesh partitioning strategies employing both structured and general unstruc-

tured hybrid meshes. The numerical results presented in this article clearly highlight the

efficiency of the proposed solution algorithm on general finite element meshes.

This article is structured as follows. In Section 2 we introduce the three–dimensional

compressible Navier–Stokes equations. Then, in Section 3 we formulate its discontinuous

Galerkin finite element approximation, based on employing the adjoint consistent sym-

metric interior penalty method introduced in [30]. Section 4 outlines a damped Newton–

GMRES algorithm for the solution of the system of nonlinear equations arising from the

DGFEM discretization of the underlying PDE system. Section 5 is devoted to defining

the composite DGFEM (DGCFEM), which represents a natural extension of the standard

DGFEM on (coarse) agglomerated meshes; based on exploiting the DGCFEM as a coarse–

level solver, in Section 6 we construct the Schwarz preconditioners for application within

the Newton–GMRES iteration. In Section 8 we present some numerical results obtained

with the additive Schwarz preconditioner to highlight the practical performance of the

proposed solver. Finally, in Section 9 we summarize the work presented in this paper.

2. Compressible Navier-Stokes equations

In this article, we consider both two– and three–dimensional laminar compressible

flow problems. With this in mind, for generality, in this section we introduce the stationary

compressible Navier-Stokes equations in three-dimensions:

∇ · (F c(u)−F v(u,∇u)) = 0 in Ω, (2.1)

where Ω is an open bounded domain in Rd with boundary Γ; for the purposes of this sec-

tion, we set d = 3. The vector of conservative variables u is given by u= (ρ,ρv1,ρv2,ρv3,

ρE)⊤ and the convective flux F c(u) =
�

fc
1(u), f

c
2(u), f

c
3(u)
�⊤

is defined by fc
1(u) = (ρv1,

ρv2
1 + p,ρv1v2,ρv1v3,ρHv1)

⊤, fc
2(u) = (ρv2,ρv2v1,ρv2

2 + p,ρv2v3,ρHv2)
⊤, and fc

3(u) =

(ρv3,ρv3v1,ρv3v2,ρv2
3+p,ρHv3)

⊤. Furthermore, writingF v(u) =
�

fv
1(u), f

v
2(u), f

v
3(u)
�⊤

,

we have fv
k
(u,∇u) = (0,τ1k,τ2k,τ3k,τkl vl+K Txk

)⊤, k = 1,2, 3. Here, ρ, v= (v1, v2, v3)
⊤,

p, E and T denote the density, velocity vector, pressure, specific total energy, and temper-

ature, respectively. Moreover, K is the thermal conductivity coefficient and H is the total
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enthalpy given by H = E +
p

ρ
= e+ 1

2
v2 +

p

ρ
, where e is the specific static internal energy,

and the pressure is determined by the equation of state of an ideal gas

p = (γ− 1)ρe, (2.2)

where γ is the ratio of specific heat capacities; for dry air, γ= 1.4. The viscous stress tensor

is given by τ = µ
�

∇v+ (∇v)⊤ − 2

3
(∇ · v)I
�

, where µ is the dynamic viscosity coefficient;

T is given by K T = µγ
�

E − 1

2
v2
�

/Pr, where Pr= 0.72 is the Prandtl number. We rewrite

the Navier–Stokes equations (2.1) in the following form:

∇ · (F c(u)− G(u)∇u)≡ ∂

∂ xk

�

fc
k
(u)− Gkl(u)

∂ u

∂ x l

�

= 0 in Ω.

Here, the matrices Gkl(u) = ∂ fv
k
(u,∇u)/∂ ux l

, for k, l = 1,2, 3, are the homogeneity tensors

defined by fv
k
(u,∇u) = Gkl(u)∂ u/∂ x l , k = 1,2, 3.

To prescribe boundary conditions on Γ, we assume that Γ may be decomposed as fol-

lows: Γ = ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out ∪ ΓW ∪ Γsym, where ΓD,sup, ΓD,sub-in, ΓD,sub-out, ΓW, and Γsym

are distinct subsets of Γ representing Dirichlet (supersonic), Dirichlet (subsonic-inflow),

Dirichlet (subsonic-outflow), solid wall boundaries, and symmetry boundaries, respec-

tively, cf. [23,28]. We specify the following boundary conditions:

B(u) =B(g) on ΓD,sup ∪ΓD,sub-in ∪ΓD,sub-out,

where g = (g1, . . . , g5)
⊤ is a prescribed Dirichlet condition. Here, B is a boundary oper-

ator employed to enforce appropriate Dirichlet conditions on ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out. For

simplicity of presentation, we assume that

B(u) =







u on ΓD,sup,

(u1, u2, u3, u4, 0)⊤ on ΓD,sub-in,
�

0,0, 0,0, (γ− 1)(u5− (u2
2+ u2

3+ u2
4)/(2u1))
�⊤

on ΓD,sub-out.

For solid wall boundaries, we consider isothermal and adiabatic conditions; to this end,

decomposing ΓW = Γiso ∪ Γadia, we set v = 0 on ΓW, T = Twall on Γiso, n · ∇T = 0 on Γadia,

where Twall is a given wall temperature; cf. [12,14,18,19]. On the symmetry boundary, we

simply impose that the normal component of the velocity is zero.

3. DGFEM Discretization

We introduce the adjoint-consistent interior penalty DGFEM discretization of the com-

pressible Navier–Stokes equations (2.1), cf. [30]. First, we begin by introducing some nota-

tion. We assume that Ω ⊂ Rd , d = 2, 3, can be subdivided into a mesh Th = {κ} consisting

of open element domains κ. For each κ ∈ Th, we denote by nκ, the unit outward normal

vector to the boundary ∂ κ. Given a polynomial approximation order p ≥ 1, we introduce

the finite element space V (Th, p) = {v ∈ �L2(Ω)
�d+2

: v|κ ∈
�

Sp(κ)
�d+2 ∀κ ∈ Th} ,
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where Sp(κ), is either the space Pp(κ) of polynomials of degree at most p if κ is a sim-

plex, or the space Qp(κ) of all tensor product polynomials of degree at most p in each

variable if κ is a hypercube.

An interior face of Th is defined as the (d − 1)–dimensional interior of ∂ κ+ ∩ ∂ κ−,

where κ+ and κ− are two adjacent elements of Th, not necessarily matching. A boundary

face of Th is defined as the (non-empty) (d − 1)–dimensional interior of ∂ κ ∩ Γ, where

κ is a boundary element of Th. We denote by ΓIh
the union of all interior faces of Th.

Let κ+ and κ− be two adjacent elements of Th, and x an arbitrary point on the interior

face f = ∂ κ+ ∩ ∂ κ−. Furthermore, let v and τ be vector- and matrix-valued functions,

respectively, that are smooth inside each element κ±. By (v±,τ±), we denote the traces of

(v,τ) on f taken from within the interior of κ±, respectively. Then, the averages of v and

τ at x ∈ f are given by {{v}}= (v++v−)/2 and {{τ}}= (τ++τ−)/2, respectively. Similarly,

the jump of v at x ∈ f is given by [[v]] = v+⊗nκ++v−⊗nκ− , where we denote by nκ± the

unit outward normal vector of κ±, respectively. On f ⊂ Γ, we set {{v}} = v, {{τ}} = τ and

[[v]] = v⊗ n, where n denotes the unit outward normal vector to Γ.

The DGFEM discretization of (2.1) is given by: find uh ∈ V (Th, p) such that

N (uh,v)≡ −
∫

Ω

F c(uh) :∇hvdx+
∑

κ∈Th

∫

∂ κ\Γ
H (u+

h
,u−

h
,n+) · v+ ds

+

∫

Ω

F v(uh,∇huh) :∇hvdx−
∫

ΓIh

{{F v(uh,∇huh)}} : [[v]]ds−
∫

ΓIh

{{G⊤(uh)∇hv}} : [[uh]]ds

+

∫

ΓIh

δ(uh) : [[v]]ds+NΓ\Γsym
(uh,v) +NΓsym

(uh,v) = 0 (3.1)

for all v in V (Th, p). Here, ∇h denotes the elementwise gradient operator and H (·, ·, ·) is

the (convective) numerical flux function; here, we employ the Vijayasundaram flux.

In order to define the penalization function δ(·) arising in the DGFEM (3.1), we first

introduce the local (anisotropic) mesh function h. To this end, the function h in L∞(ΓIh
∪Γ)

is defined as h(x) = min{mκ+ , mκ−}/m f , if x is in the interior of f = ∂ κ+ ∩ ∂ κ− for

two neighbouring elements in the mesh Th, and h(x) = mκ/m f , if x is in the interior of

f = ∂ κ ∩ Γ. Here, for a given (open) bounded set ω ⊂ Rs, s ≥ 1, we write mω to denote

the s–dimensional measure (volume) of ω. We write

δ(uh) = CIP

p2

h
{{G(uh)}}[[uh]],

where CIP is a (sufficiently large) positive constant. Finally, we define the boundary terms

present in the forms NΓ\Γsym
(·, ·) and NΓsym

(·, ·). To this end, we write

NΓ\Γsym
(uh,v) =

∫

Γ\Γsym

HΓ(u+h ,uΓ(u
+
h
),n+) · v+ ds+

∫

Γ\Γsym

δΓ(u
+
h
) : v+ ⊗ nds

−
∫

Γ\Γsym

n · F v
Γ (uΓ(u

+
h
),∇hu+

h
)v+ ds−
∫

Γ\Γsym

�

G⊤Γ (u
+
h
)∇hv+

h

�

:
�

u+
h
− uΓ(u

+
h
)
�

⊗ nds,
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where

δΓ(uh) = CIP

p2

h
GΓ(u

+
h
)
�

u+
h
− uΓ(u

+
h
)
�

⊗ n.

Here, the viscous flux F v
Γ and corresponding homogeneity tensor GΓ are defined by

F v
Γ (uh,∇uh) =F v(uΓ(uh),∇uh) = GΓ(uh)∇uh = G(uΓ(uh))∇uh.

Furthermore, on portions of the boundary Γ where adiabatic boundary conditions are im-

posed, F v
Γ and GΓ are modified such that n · ∇T = 0. The convective boundary flux HΓ

is defined by HΓ(u+h ,uΓ(u
+
h
),n) = n · F c(uΓ(u

+
h
)). The boundary function uΓ(u) is given

according to the type of boundary condition imposed. Here, we set

uΓ(u) =







g on ΓD,sup,

(g1, g2, g3, g4,
p(u)

γ−1
+ (g2

2 + g2
3 + g2

4)/(2g1))
⊤ on ΓD,sub-in,

(u1, u2, u3, u4,
pout

γ−1
+ (u2

2+ u2
3+ u2

4)/(2u1))
⊤ on ΓD,sub-out.

Here, p ≡ p(u) denotes the pressure evaluated using the equation of state (2.2). On Γiso,

we set uΓ(u) =
�

u1, 0, 0, 0, u1cv Twall

�⊤
, while uΓ(u) = (u1, 0, 0, 0, u5)

⊤ on Γadia.

On Γsym, we employ the technique introduced in [31]. To this end, we define

uΓ(u) = Bsymu on Γsym, (3.2)

where

Bsym =















1 0 0 0 0

0 1− 2n2
1 −2n1n2 −2n1n3 0

0 −2n1n2 1− 2n2
2 −2n2n3 0

0 −2n1n3 −2n2n3 1− 2n2
3 0

0 0 0 0 1















and n = (n1, n2, n3)
⊤ is the unit outward normal vector to the boundary. Additionally, it is

necessary to introduce a suitable approximation of ∇u−
h

; here, we write

(∇u)Γ, jl(uh) = ∂um
u

j

Γ(uh)∂xk
um

h (δkl − 2nknl).

With this notation, the form NΓsym
(·, ·) is defined as follows

NΓsym
(uh,v) =

∫

Γsym

HΓ(u+h ,uΓ(u
+
h
),n+) · v+ ds+

∫

Γ

δΓsym
(u+

h
) : v+ ⊗ nds

−1

2

∫

Γsym

�

F v(u+
h

,∇hu+
h
) +F v(uΓ(u

+
h
), (∇u)Γ(u

+
h
))
�

: v+ ⊗ nds

−1

2

∫

Γ

�

G⊤(u+
h
)∇hv+

h

�

:
�

u+
h
− uΓ(u

+
h
)
�

⊗ nds,

where

δΓsym
(uh) =

1

2
CIP

p2

h

�

G(u+
h
) + G(uΓ(u

+
h
))
��

u+
h
− uΓ(u

+
h
)
�

⊗ n.
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4. Newton–GMRES algorithm

To determine the numerical solution uh of the system of nonlinear equations (3.1),

we employ a damped Newton method. This nonlinear iteration generates a sequence of

approximations un
h
, n = 0, 1, . . . , to the actual numerical solution uh, using the following

algorithm. Given an iterate un
h
, the update dn

h
of un

h
to get to the next iterate un+1

h
=

un
h
+ωndn

h
is defined by: find dn

h
∈ V (Th, p) such that

N ′[un
h](d

n
h,vh) = R(un

h,vh)≡ −N (un
h,vh) ∀vh ∈ V (Th, p). (4.1)

Here, ωn denotes a damping parameter, which is dynamically chosen to guarantee that

the discrete l2-norm of the residual computed with un+1
h

is less than the same quantity

computed with un
h
. Additionally, N ′[w](·,v) denotes (an approximation to) the Fréchet

derivative of u→N (u,v), for v ∈ V (Th, p) fixed, at some w in V, where V is some suitable

chosen function space such that V (Th, p) ∈ V. Here, we define

N ′[w](φ,v) = −
∫

Ω

�

F c
u(w)φ
�

:∇hvdx

+
∑

κ∈Th

∫

∂ κ\Γ

�

Ĥu+(w
+,w−,nκ)φ

+ + Ĥu−(w
+,w−,nκ)φ

−� · v+ ds

+

∫

Ω

�

F v
u (w,∇hw)φ
�

:∇hvdx+

∫

Ω

�

F v
∇u(w,∇hw)∇hφ

�

:∇hvdx

−
∫

ΓIh

{{F v
u (w,∇hw)φ}} : [[v]]ds−

∫

ΓIh

{{F v
∇u(w,∇hw)∇hφ}} : [[v]]ds

−
∫

ΓIh

{{G⊤u (w)φ∇hv}} : [[w]])ds−
∫

ΓIh

{{G⊤(w)∇hv}} : [[φ]])ds

+

∫

ΓIh

δu[w](φ) : [[v]]ds+N ′
Γ\Γsym

[w](φ,v) +N ′Γsym
[w](φ,v),

where Ĥu+(·, ·,nκ) and Ĥu−(·, ·,nκ) denote approximations to the derivatives of the flux

functionH (·, ·, ·) with respect to its first and second arguments, respectively; for a detailed

description of these derivatives for two specific choices of numerical fluxes, we refer to the

article [26]. Additionally, we write F c
u(·) to denote the derivative of the convective flux

function, F v
u (·, ·) and F v

∇u(·, ·) to denote the derivative of F v(·, ·) with respect to its first

and second arguments, respectively, and Gu to denote the derivative of the tensor G. The

derivative of the penalization function δ is given by

δu[w](φ) = CIP

p2

h

h

{{Gu(w)φ}}[[w]] + {{G(w)}}[[φ]]
i

.

Furthermore,N ′
Γ\Γsym

[w](·,v) andN ′Γsym
[w](·,v) denote (approximations to) the Fréchet
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derivatives of the boundary terms, for v ∈ V (Th, p) fixed, at some w in V. In particular,

N ′
Γ\Γsym

[w](φ,v) =

∫

Γ\Γsym

n · F c
u(uΓ(w

+))u′Γ(w
+)φ+ · v+ ds

+

∫

Γ\Γsym

CIP

p2

h

�

Gu(uΓ(w
+))φ+(w+ − uΓ(w

+))⊗ n

+G(uΓ(w
+))(φ+ − u′Γ(w

+)φ+)⊗ n
�

: v+ ⊗ nds,

−
∫

Γ\Γsym

�

F v
u (uΓ(w

+),∇hw+)u′Γ(w
+)φ+ +F v

∇u(uΓ(w
+),∇hw+)∇hφ

+
�

: v+ ⊗ nds

−
∫

Γ\Γsym

�

G⊤u (uΓ(w
+))u′Γ(w

+)φ+∇hv+
�

:
�

w+−uΓ(w
+)
�

⊗nds

−
∫

Γ\Γsym

�

G⊤Γ (w
+)∇hv+
�

:
�

φ+ − u′Γ(w
+)φ+
�

⊗ nds.

Similarly,

N ′Γsym
[w](φ,v) =

∫

Γsym

n · F c
u(uΓ(w

+))u′Γ(w
+)φ+ · v+ ds

+
1

2

∫

Γsym

CIP

p2

h

��

Gu(w
+) + Gu(uΓ(w

+))u′Γ(w
+)
�

φ+(w+ − uΓ(w
+))⊗ n

+
�

G(w+) + G(uΓ(w
+))
�

(φ+ − u′Γ(w
+)φ+)⊗ n
�

: v+ ⊗ nds

− 1

2

∫

Γsym

�

F v
u (w

+,∇hw+)φ+ +F v
∇u(w

+,∇hw+)∇hφ
+
�

: v+ ⊗ nds

− 1

2

∫

Γsym

�

F v
u (uΓ(w

+), (∇u)Γ(w
+))u′Γ(w

+)φ+

+F v
∇u(uΓ(w

+), (∇u)Γ(w
+))(∇u)′Γ(w

+)∇hφ
+
�

: v+ ⊗ nds

− 1

2

∫

Γsym

�

G⊤u (w
+)φ+∇hv+
�

:
�

w+−uΓ(w
+)
�

⊗nds

− 1

2

∫

Γsym

�

G⊤(w+)∇hv+
�

:
�

φ+ − u′Γ(w
+)φ+
�

⊗ nds.

Here, u′Γ(u) denotes the derivative of the boundary function uΓ(u) with respect to the

conservative variables u. On the supersonic parts of the boundary, we have u′Γ(u) = 0 on
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ΓD,sup; on ΓD,sub-in and ΓD,sub-out, u′Γ(u) is given by

u′Γ(u) =















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
1

2
|v|2 −v1 −v2 −v3 1















and u′Γ(u) =















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−1

2
|v|2 v1 v2 v3 0















,

respectively. On the isothermal and adiabatic no-slip boundaries,

u′Γ(u) =















1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

cv Twall 0 0 0 0















and u′Γ(u) =















1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1















,

respectively. On Γsym, u′Γ(u) = Bsym, cf. (3.2). Finally, (∇u)′Γ denotes the derivative of the

(boundary) gradient operator (∇u)Γ.

The linear system of equations defined by (4.1) potentially may be very large, partic-

ularly for three–dimensional problems. In this setting, direct methods may not be appro-

priate due to the large memory requirements needed to store the corresponding L and U

factors, for example. With this mind, in Section 6, we consider the construction of two-

level Schwarz–type preconditioners for application within the GMRES iterative method.

First, however, in the following section, we introduce the so–called composite DGFEM

(DGCFEM), which is based on employing arbitrarily shaped (agglomerated) elements; this

scheme will then form the basis of the coarse grid solver defined in Section 6.

5. Construction of composite DGFEMs

In this section we briefly introduce the composite version of the (interior penalty)

DGFEM; for further details, we refer to our recent article [6]. For the purposes of defining

a coarse level solver for application within a Schwarz–type preconditioner, we consider a

simpler construction to that presented in [6], following the ideas developed in the arti-

cle [11], cf. [7].

Given the (fine) mesh Th, we consider a coarsened mesh TH which is constructed based

on agglomerating elements from Th. Thereby, TH represents a partition of Ω into disjoint

elements κH , such that (i) Ω = ∪κH∈TH
κH ; (ii) we may write

κH = ∪κ∈RκH
κ,

where RκH
denotes the set of elements from the fine mesh Th, which are employed to

construct κH . For the purposes of this article, we assume for simplicity, that the elements

κH are connected; we remark that this restriction may be relaxed, cf. [6]. We denote by

ΓIH
the union of all interior faces of the partition TH of Ω.

With this notation, we make the following key assumption:
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(A1) For all elements κ ∈ TH , we define

Cκ = card
¦

F ⊂ Γ∪ΓIH
: F ⊂ ∂ κ
©

.

In the following we assume that there exists a positive constant CF such that

max
κ∈TH

Cκ ≤ CF ,

uniformly with respect to the mesh size.

To each composite/agglomerated element κH ∈ TH , we assign the polynomial degree

0≤ q ≤ p. The construction of the composite finite element space V (TH , q), cf. below, may

be undertaken based on employing a suitable prolongation operator R⊤0 , cf. [6, 24]. We

point out that the choice of R⊤0 employed in [24] leads to finite element basis functions,

defined on each composite element domain κH , which are piecewise polynomials. In con-

trast, we follow the approach developed in [6], whereby the restriction of a function from

the underlying finite element space to an element κH ∈ TH is a polynomial of degree q.

Thereby, we write

V (TH , q) = {v ∈ [L2(Ω)]
d+2 : v|κH

∈ [Pq(κH)]
d+2 ∀κH ∈ TH} ,

cf., also, [11]. Following [6], the classical prolongation (injection) operator from V (TH , q)

to V (Th, p) is denoted by R⊤0 : V (TH , q) → V (Th, p). With this notation, we may write

V (TH , q) in the following alternative form

V (TH , q) = {v ∈ [L2(Ω)]
d+2 : v= R0φ, φ ∈ V (Th, p)} , (5.1)

where the restriction operator R0 is defined as the transpose of R⊤0 with respect to the

L2(Ω) inner product.

The DGCFEM discretization of the problem (2.1) is defined as follows: find uH ∈
V (TH , q) such that

NCDG(uH ,v) = 0 (5.2)

for all v ∈ V (TH , q), where NCDG(·, ·) is defined in an analogous manner to N (·, ·), relative

to a penalization function δH(·). We remark that δH(·) is defined in a similar fashion to

δ(·), subject to a change in the definition of the representative face length h employed and

of the, possibly different, polynomial approximation degree employed on the coarse grid,

cf. [6] for details.

6. Non-overlapping Schwarz preconditioners

In this section we introduce two level non-overlapping Schwarz preconditioners in

order to compute the Newton solver update dn
h
, n = 0, 1,2, . . ., defined on the fine space

V (Th, p) given by (4.1). To this end, we denote by TS = {Ωi}Ni=1 a family of partitions of Ω

into N non-overlapping domains, such that Ω = ∪N
i=1Ωi . With this (user–defined) partition,



Schwarz Preconditioners for Compressible Fluid Flows 11

we consider two families of fine and coarse meshes Th and TH , respectively, constructed

as in the previous sections, respectively. In particular, we assume that Th, TH and TS are

nested, TS ⊆ TH ⊆ Th, i.e., the subdomain partition does not cut any element of TH and

thereby of Th.

With this notation, we now introduce the local and coarse level solvers.

Local solvers For i = 1, . . . , N , the local DGFEM finite element spaces are defined on Ωi ,

respectively, in the following manner:

V (Thi
, p) = {v ∈ [L2(Ωi)]

d+2 : v|κ ∈ [Sp(κ)]
d+2 ∀κ ∈ Thi

} ,

where Thi
= {κ ∈ Th : κ ⊂ Ωi}. The classical prolongation (injection) operator from

V (Thi
, p) to V (Th, p) is denoted by R⊤i : V (Thi

, p)→ V (Th, p). The restriction operator Ri

is defined as the transpose of R⊤i with respect to the L2(Ωi) inner product, cf. above. In

particular, we note that

V (Th, p) = R⊤1 V (Th1
, p)⊕ . . .⊕ R⊤N V (ThN

, p).

The local solvers N ′i [un
h
](·, ·) : V (Thi

, p)× V (Thi
, p)→ R are defined as follows:

N ′i [un
h](ui ,vi) :=N ′[un

h](R
⊤
i ui , R⊤i vi) ∀ui ,vi ∈ V (Thi

, p), i = 1, . . . , N .

Coarse solver Employing the composite discontinuous Galerkin finite element space

V (TH , q)⊂ V (Th, p), the coarse solverN ′0 [un
h
](·, ·) : V (TH , q)×V (TH , q)→ R is defined by

N ′0 [un
h](u0,v0) :=N ′

CDG
[un

h](u0,v0) ∀u0,v0 ∈ V (TH , q),

whereN ′
CDG
[w](·,v) denotes (an approximation to) the Fréchet derivative of u→NCDG(u,v),

for v ∈ V (Th, p) fixed, at some w.

Local projection operators For i = 1, . . . , N , the local projection operators P̃i : V (Th, p)→
V (Thi

, p) are defined by:

N ′i [un
h](P̃iu,vi) :=N ′[un

h](u, R⊤i vi) ∀vi ∈ V (Thi
, p).

Analogously, on the coarse space V (TH , q), we let P̃0 : V (Th, p)→ V (TH , q) be given by

N ′0 [un
h](P̃0u,v0) :=N ′[un

h](u, R⊤0 v0) ∀v0 ∈ V (TH , q).

With this notation, we define the projection operators

Pi := R⊤i P̃i : V (Th, p)→ V (Th, p),

for i = 0,1, . . . , N .

Thereby, the additive and multiplicative Schwarz operators are defined, respectively,

by

Pad :=

N
∑

i=0

Pi , Pmu := I − (I − PN )(I − PN−1) · · · (I − P0).

The convergence analysis for the proposed preconditioner for simple elliptic PDEs has been

undertaken in our recent article [7] based on the ideas developed in [8].
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7. Implementation issues

In this section we briefly outline some of the implementation aspects of the above

multi-level preconditioners; for further details, and in particular details concerning the

construction of the projection operators Pi , i = 0, 1, . . . , N , we refer to [7]. Moreover, the

implementation of the coarse grid (composite) DGCFEM is discussed in detail in [6].

Generation of the coarse level mesh In the case when the coarse level mesh TH is

not provided by the user, we instead construct TH from the fine level mesh Th based on

an agglomeration algorithm. More precisely, we first create a partition of the fine level

mesh Th into NH regions or macro-elements based on exploiting the graph partitioning

package METIS [32]. In order for METIS to partition the mesh Th, the logical structure

of the mesh is first stored in a graph, where each node represents an element domain

of Th, and each link between two nodes represents a face shared by the two elements

represented by the graph nodes. The partition of Th constructed by METIS is produced

with the objective of minimizing the number of neighbours among each of the resulting

partitions. Once the partition of Th into NH regions has been computed, the coarse mesh

TH may be easily constructed; in fact, here we simply identify each subpartition region to

be a composite/agglomerated element κH ∈ TH . Thereby, TH is formed by NH elements

which are arbitrarily shaped polygons resulting from the aggregation of fine level elements.

Construction of the finite element basis functions in the DGCFEM space V (TH , q) The

composite finite element space V (TH , q)may be constructed in a number of different ways.

In the case when the coarse level mesh is TH is provided by the user, we construct the

basis for the composite finite element space based on directly exploiting the prolongation

operator R⊤0 employed in the definition of V (TH , q), cf. (5.1); for details, we refer to the

algorithm outlined in [6]. An alternative approach is to construct a basis for V (TH , q) by

working directly on the agglomerated elements κH ∈ TH . Indeed, the recent article [11]

proposed an algorithm to construct the elemental basis functions based on employing a

Gram-Schmidt orthogonalization process applied to a given set of polynomial functions.

In this article, we propose an alternative approach based on employing polynomial spaces

defined over the bounding box of each element, cf. [17]. More precisely, given an element

κH ∈ TH , we first construct the Cartesian bounding box BκH
, such that κ̄H ⊆ B̄κH

. On the

bounding box BκH
we may define a standard polynomial space Sq(BκH

) spanned by a set

of basis functions {bi,κH
}, i = 1, . . . , dim(Sq(BκH

)). Finally, a polynomial basis over the

composite/agglomerated element κH may be defined by simply restricting the support of

{bi,κH
}, i = 1, . . . , dim(Sq(BκH

)), to κH ; i.e., the polynomial basis defined over κH is given

by {bi,κH
|κH
}, i = 1, . . . , dim(Sq(BκH

)).

8. Numerical experiments

In this section we present a series of computational examples to highlight the practi-

cal performance of the non-overlapping Schwarz preconditioners proposed in this article.
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p
2h−1 2 4 8 16 32

GMRES 122 (812, 9) 300 (1759, 8) 660 (3119, 6) 1850 (8730, 6) * (*,*)

GMRES+ILU 12 (80,9) 20 (115,8) 33 (174,6) 89 (449,6) 292 (1373,6)

Table 1: Example 1: GMRES and GMRES+ILU iteration counts, when p = 1.

p
2h−1 2 4 8 16 32

GMRES 562 (3140, 7) 921 (5182, 7) 1791 (8780, 6) 3150 (15620, 6) 7977 (24154,6)

GMRES+ILU 19 (113,7) 27 (153,7) 38 (200,6) 75 (365,6) 201 (930,5)

Table 2: Example 1: GMRES and GMRES+ILU iteration counts, when p = 2.

For simplicity, we restrict ourselves to the additive Schwarz operator Pad. All the numer-

ical examples presented in this section have been computed using the AptoFEM package

(www.aptofem.com).

8.1. Example 1: Two–dimensional viscous flow in a square domain

In this first example, we consider a simple model problem in order to study the perfor-

mance of the proposed preconditioner on sequences of uniform meshes. To this end, we let

Ω be the square (−1,1)2, and supplement the compressible Navier–Stokes equations (2.1)

with an inhomogeneous forcing function f, which is chosen so that the analytical solution

to (2.1) is given by

ρ := sin(2(x+ y))+4 , ρv1 = ρv2 := 0.2 sin(2(x+ y))+4 , ρE := (sin(2(x+ y))+4)2 ,

where the dynamic viscosity coefficient µ is set to 1/10; cf. [30].

In all of the simulations presented in this section, we partition the fine level mesh Th

into four subdomains, i.e., so that N = 4. Furthermore, we set a tolerance for the Newton–

GMRES algorithm outlined in Section 4 equal to 10−8, as the termination condition, and

the absolute tolerance for the underlying GMRES inner–solver to 10−8 with a restart every

50 iterations. In the following tables, we report the maximum number of GMRES itera-

tions required to compute the solution to each inner (linear) problem within the Newton–

GMRES algorithm and, in brackets, the total number of all GMRES iterations required by

the Newton–GMRES method to attain convergence and the number of Newton iterations.

Throughout this section we employ uniform meshes consisting of quadrilateral elements

for both the fine and coarse level meshes Th and TH , respectively, with granularity h and

H, respectively.

For reference, in Tables 1 & 2 we first show the number of iterations required for con-

vergence with polynomial orders p = 1 and p = 2, respectively, when no preconditioner

is applied within the Newton–GMRES algorithm and when GMRES with an ILU precondi-

tioner is employed based on using the PETSc software package [9]. Here, we observe that

for each polynomial degree, the number of iterations increases as the mesh is uniformly

refined at each step; we point out that for h =
p

2/32 and p = 1, the Newton–GMRES
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a
a
a

a
a
a
aa

p
2h−1

p
2H−1

1 2 4 8 16

2 21 (150,9) - - - -

4 27 (174,8) 26 (164,8) - - -

8 39 (206,6) 38 (199,6) 33 (169,6) - -

16 75 (353,6) 66 (311,6) 50 (251,6) 37 (187,6) -

32 96 (477,6) 96 (472,6) 83 (406,6) 60 (291,6) 34 (167,6)

Table 3: Example 1: GMRES iteration counts with the preconditioner, when p = q = 1.

a
a
a
a
a
a
aa

p
2h−1

p
2H−1

1 2 4 8 16

2 37 (221,7) - - - -

4 68 (351,7) 46 (260,7) - - -

8 122 (572,6) 75 (363,6) 46 (226,6) - -

16 128 (606,6) 100 (476,6) 60 (278,6) 41 (192,6) -

32 140 (562,5) 135 (511,5) 67 (270,5) 39 (159,5) 32 (136,5)

Table 4: Example 1: GMRES iteration counts with the preconditioner, when p = q = 2.

a
a
a

a
a

a
aa

p
2h−1

p
2H−1

1 2 4 8 16

2 39 (230,7) - - - -

4 76 (414,7) 56 (301,7) - - -

8 99 (501,6) 182 (856,6) 66 (320,6) - -

16 127 (567,6) 141 (647,6) 90 (431,6) 55 (255,6) -

32 94 (373,5) 142 (577,5) 126 (529,5) 50 (204,5) 35 (146,5)

Table 5: Example 1: GMRES iteration counts with the preconditioner, when p = 2 and q = 1.

algorithm failed to converge, in the sense that the maximum number of GMRES iterations

(set to 10000) was exceeded within one of the (linear) inner-solves. We note that for finer

meshes the ILU preconditioner actually leads to a smaller number of iterations required to

attain convergence when the polynomial degree is increased from 1 to 2.

In Tables 3, 4, & 5 we now consider the performance of the proposed additive Schwarz

preconditioner when p = q = 1, p = q = 2, and p = 2, q = 1, respectively. Here we

observe that the maximum number of GMRES iterations remains roughly constant when

the ratio of the coarse and fine mesh sizes is kept fixed. Moreover, we note that, overall,

the number of iterations required for convergence when p = q = 2 is typically smaller than

when p = 2 and q = 1; indeed, although a richer coarse space V (TH , q) leads to a more

computationally expensive preconditioner, it generally leads to a reduction in iteration



Schwarz Preconditioners for Compressible Fluid Flows 15

a
a
a
a
a
a
aa

Mesh Th

# Eles TH
500 1000 2000 4000 8000

Mesh 2 124 (936,10) - - - -

Mesh 3 186 (1303,9) 121 (800,9) - - -

Mesh 4 310 (1957,9) 168 (1150,9) 116 (700,9) - -

Mesh 5 519 (3136,9) 278 (1796,9) 151 (1034,9) 95 (646,9) -

Mesh 6 933 (5604,9) 492 (3034,9) 276 (1785,9) 162 (1090,9) 103 (687,9)

Table 6: Example 2: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using coarse meshes created with METIS and a subdomain partition generated with METIS
consisting of N = 250 domains.

counts. The behaviour observed in this numerical experiment is in agreement with the

analysis and numerical experiments presented for the Poisson equation in the articles [4,

7, 8], for example. Comparing these results with those attained with the standard ILU

preconditioner, cf. Tables 1 & 2, we note that on very coarse meshes the ILU preconditioner

requires less iterations than the proposed additive Schwarz preconditioner. However, as the

mesh is refined, the scalability of the latter preconditioner naturally leads to a significant

reduction in the number of iterations needed to attain convergence when compared to the

ILU approach.

8.2. Example 2: Laminar flow around a NACA0012

In this second example, we consider the subsonic viscous flow around a NACA0012

airfoil. At the farfield (inflow) boundary we specify a Mach 0.5 flow at an angle of attack

α = 2◦, with Reynolds number Re = 5000; on the walls of the airfoil geometry, we impose

a zero heat flux (adiabatic) no-slip boundary condition. As in the previous section we set a

tolerance for termination of the Newton–GMRES algorithm equal to 10−8, and the absolute

tolerance for the underlying GMRES inner–solver to 10−8; though here, we restart every

500 iterations.

In this example, we consider the performance of the proposed preconditioner on a se-

quence of unstructured quadrilateral–dominant hybrid meshes consisting of both quadri-

lateral and triangular elements. The coarsest mesh, denoted as mesh 1, consists of 578

elements; the subsequent meshes, meshes 2–6, each contain 1134, 2113, 4246, 8946, and

20229 elements, respectively. Here, we shall investigate the dependence of the proposed

additive Schwarz preconditioner with respect to different subdomain partition strategies.

From Section 6, we recall that the construction of the preconditioner requires that the com-

putational domain is first partitioned into N non-overlapping subdomains; this partition is

denoted by TS . The coarse and fine mesh partitions TH and Th, respectively, are then

constructed in such a manner that Th, TH and TS are nested, i.e., TS ⊆ TH ⊆ Th.

Firstly, we consider the performance of the proposed multilevel preconditioner based

on exploiting METIS for the construction of both the subdomain partition TS and the

composite elements in the coarse mesh TH . We stress that both TS and TH are constructed

in such a manner that the inclusion TS ⊆ TH ⊆ Th holds. To this end, the number of
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Figure 1: Example 2: (a) Mesh 3 partitioned into 1000 regions using METIS; (b) Zoom of (a); (c)
Further zoom of (a).
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Figure 2: Example 2: (a) Mesh 5 partitioned into 500 regions using METIS; (b) Zoom of (a); (c)
Further zoom of (a)
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a
a
a
a
a
a
a
a
a

Mesh Th

# Eles TH

500 1000 2000 4000 8000

Mesh 2 139 (1043,10) - - - -

Mesh 3 208 (1434,9) 175 (1037,9) - - -

Mesh 4 336 (2238,9) 228 (1519,9) 203 (1075,9) - -

Mesh 5 629 (3644,9) 343 (2250,9) 283 (1589,9) 172 (1004,9) -

Mesh 6 1150 (6827,9) 665 (4150,9) 435 (2831,9) 342 (2046,9) 342 (1783,9)

Table 7: Example 2: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using coarse meshes created with METIS without a subdomain partition.

iterations required to attain convergence of the Newton–GMRES algorithm for p = q = 1

are presented in Table 6. Here, as in the previous example, we again observe that the

maximum number of GMRES iterations required to attain convergence remains roughly

constant when the ratio of the coarse and fine mesh sizes is kept fixed; we remark that

while the number of elements in the coarse mesh (denoted by # Eles TH in Table 6) is

doubled at each step, the number of elements contained within each fine mesh Th is only

approximately doubled for the set of meshes studied here. For reference, in Figures 1 &

2 we show meshes 3 and 5, respectively, together with the corresponding coarse mesh

partition TH (denoted with bold lines) generated using METIS. In particular, we observe

that the resulting composite elements employed within the coarse mesh solver may contain

quite complex element shapes, which typically are not even convex. Indeed, the composite

finite element method outlined in Section 5, cf. [6], can naturally handle such element

domains. The practical performance of this class of methods on a range of element domains

which includes general simply–connected polygons, and even elements which consist of

disconnected subdomains is illustrated in [6].

We now turn our attention to study the effect of the choice of the subdomain partition

and coarse solver. To this end, in Table 7 we present the number of iterations required to

attain convergence of the Newton–GMRES algorithm when METIS is employed to construct

the coarse mesh TH ; however, here we do not employ a fixed subdomain partition of the

computational domain Ω. Instead, we solve local fine mesh problems on each of the coarse

mesh elements present in TH ; more precisely, we set TS = TH , so that N , the number of

subdomain partitions present in TS , grows as TH is refined. In essence, in this setting the

preconditioner corresponds to a block-Jacobi preconditioner with coarse mesh correction.

As expected, in Table 7 we now observe that the number of iterations required to attain

convergence of the Newton–GMRES algorithm is not only greater than the corresponding

quantity when N is kept fixed, cf. Table 6, but also that the iteration counts (in general)

increase as the fine mesh is enriched, even when the ratio of the coarse and fine mesh sizes

is kept fixed.

Finally, in this section we consider employing non-nested meshes for the coarse grid

solver; thereby, TH 6⊆ Th. To this end, in Table 8 we present the iteration counts for

the case when METIS is employed to generate a subdomain partition consisting of N =

250 domains, but the original unstructured meshes are exploited for the coarse solver.
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a
a
a
a
a
a
aa

Mesh Th

Mesh TH
Mesh 2 Mesh 3 Mesh 4 Mesh 5

Mesh 3 101 (654,9) - - -

Mesh 4 142 (1300,9) 100 (614,9) - -

Mesh 5 245 (1614,9) 129 (882,9) 90 (565,9) -

Mesh 6 106 (1698,9) 235 (1547,9) 149 (936,9) 81 (531,9)

Table 8: Example 2: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using a subdomain partition generated with METIS consisting of N = 250 domains.

a
a
a

a
a
a
aa

Mesh Th

Mesh TH
Mesh 2 Mesh 3 Mesh 4 Mesh 5

Mesh 3 118 (1038,9) - - -

Mesh 4 169 (1067,9) 94 (631,9) - -

Mesh 5 256 (1690,9) 140 (943,9) 87 (549,9) -

Mesh 6 432 (2970,9) 245 (1610,9) 151 (902,9) 105 (576,9)

Table 9: Example 2: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using Mesh 1 as a subdomain partition.

a
a
a
a
a
a
aa

Mesh Th

Mesh TH
Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Mesh 2 137 (1012,10) - - - -

Mesh 3 199 (1340,9) 153 (924,9) - - -

Mesh 4 322 (2091,9) 241 (1382,9) 162 (947,9) - -

Mesh 5 531 (3176,9) 337 (3947,9) 271 (1378,9) 173 (929,9) -

Mesh 6 909 (5610,9) 649 (3663,9) 339 (2166,9) 261 (1421,9) 250 (1137,9)

Table 10: Example 2: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes without a subdomain partition.

Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

GMRES+ILU 555 (1619,9) 638 (2805,9) 792 (4502,9) 1862 (10221,9) * (*,*)

Table 11: Example 2: GMRES+ILU iteration counts, when p = 1.

More precisely, METIS is employed to compute a subdomain partition of the coarse mesh

TH ; the local problems are then constructed based on grouping the fine level elements

whose centroids lie within a given subdomain. Even though the coarse and fine meshes

are no longer nested, we observe that the preconditioner performs extremely well, again

leading to roughly a constant number of iterations required to attain convergence when

the ratio of the coarse and fine mesh size is kept (roughly) constant. Indeed, comparing

the iteration counts reported in Table 8 with the corresponding numbers presented in
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p
3h−1 4 8 16 32

GMRES 145 (859,8) 210 (1126,7) 433 (2097,6) 947 (4699,6)

GMRES+ILU 16 (94,8) 29 (159,7) 66 (336,6) 170 (830,6)

Table 12: Example 3: GMRES and GMRES+ILU iteration counts, when p = 1.

Table 6, we observe that exploiting the unstructured meshes for the coarse grid solver,

as apposed to the coarse meshes generated by METIS, leads to a slight reduction in the

number of iterations needed to attain convergence. Table 9 considers the performance of

the preconditioner when Mesh 1 is employed as the subdomain partition; thereby, TS 6⊆
TH 6⊆ Th. The number of iterations to attain convergence are comparable to those reported

in both Tables 8 & 6. In Table 10 we again consider employing the unstructured meshes

for the coarse mesh TH , though now we do not employ a fixed subdomain partition of the

computational domain Ω, cf. above. Indeed, as in Table 7, from Table 10 we again observe

that by increasing the number of subdomain partitions as the coarse mesh is enriched leads

to an increase in the number of iterations required to attain convergence.

For comparison Table 11 presents results using GMRES with the ILU preconditioning

for p = 1. As noted in the previous example, the number of iterations required to attain

convergence increases as the number of elements is increased; moreover, this approach

again fails to converge on the finest mesh. In this setting, we see that when the additive

Schwarz preconditioner is applied and METIS is used for the construction of both the sub-

domain partition TS and the composite elements in the coarse mesh TH , cf. Table 6, that

the number of iterations required to attain convergence is always less than the correspond-

ing quantity for the ILU preconditioner.

8.3. Example 3: Three–dimensional viscous flow in a cube domain

In the following two examples, we now turn our attention to three–dimensional lami-

nar flows. To this end, as in the two–dimensional setting, we first study the performance of

the proposed preconditioner on sequences of uniform meshes for a simple model problem.

Here, we set Ω to be the unit cube (0, 1)3 and supplement the compressible Navier–Stokes

equations (2.1) with an inhomogeneous forcing function f, which is chosen so that the

analytical solution is given by

ρ := sin(2(x + y + z)) + 4 , ρv1 = ρv2 = ρv3 := 0.2 sin(2(x + y + z)) + 4 ,

ρE := (sin(2(x + y + z)) + 4)2 .

As in Example 1, we set the dynamic viscosity coefficient µ to 1/10.

In this section we set N = 8; i.e., the fine level mesh Th is partitioned into eight sub-

domains. As in the previous examples, the termination tolerance for the Newton–GMRES

algorithm is set to 10−8; similarly, the absolute tolerance for the underlying GMRES inner–

solver is 10−8 with a restart every 50 iterations. Throughout this section we exploit uniform

hexahedral elements for both the fine and the coarse level meshes Th and TH , respectively,

with granularity h and H, respectively.
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a
a
a
a
a
a
a
a

p
3h−1

p
3H−1

2 4 8 16

4 27 (167,8) - - -

8 37 (202,7) 34 (190,7) - -

16 47 (240,6) 47 (235,6) 40 (198,6) -

32 68 (356,6) 68 (328,6) 63 (304,6) 44 (215,6)

Table 13: Example 3: GMRES iteration counts with the preconditioner, when p = q = 1.

a
a
a

a
a

a
a
a
a

Mesh Th

# Eles TH

350 2800

Mesh 1 230 (1397, 7) -

Mesh 2 629 (3547,7) 304 (1880,7)

Mesh 3 1835(9184,7) 993 (5844,7)

Table 14: Example 4: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using coarse meshes created with METIS and a subdomain partition generated with METIS
consisting of N = 300 domains.

For reference, in Table 12 we first show the number of iterations required for conver-

gence with polynomial order p = 1, when no preconditioner is employed and when an ILU

preconditioner is applied within the Newton–GMRES algorithm. Here, we observe that

the number of iterations increases as the mesh size is halved at each step. Secondly, in

Table 13 we consider the performance of the proposed additive Schwarz preconditioner

when p = q = 1. As for the two–dimensional case, we observe that the maximum number

of GMRES iterations remains roughly constant when the ratio of the coarse and fine mesh

sizes is kept fixed, cf. [4, 7, 8]. Analogous behaviour is also observed for the cases when

p = q = 2 and p = 2 and q = 1; though, as before, the latter case leads to a slight increase

in the number of iterations required to attain convergence. For brevity, these numerics

have been omitted. As in Example 1, on very coarse meshes, we note that the number of

iterations required to attain convergence is typically smaller when the ILU preconditioner

is employed when compared to the proposed additive Schwarz preconditioner; however,

as before, this behaviour is reversed as the mesh is refined.

8.4. Laminar flow around a streamlined body

In this final example we consider laminar flow past a streamlined three–dimensional

body. Here, the geometry of the body is based on a 10 percent thick airfoil with boundaries

constructed by a surface of revolution. More precisely, the (half) geometry is given by the
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a
a
a
a
a
a

a
a
a

Mesh Th

# Eles TH

350 2800

Mesh 1 158 (927, 7) -

Mesh 2 458 (2732,7) 262 (1633,7)

Mesh 3 1053(5857,7) 715 (4413,7)

Table 15: Example 4: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using coarse meshes created with METIS and a subdomain partition generated with METIS
consisting of N = 150 domains.

a
a
a
a
a
a
a
a
a

Mesh Th

# Eles TH

350 2800

Mesh 1 252 (1472, 7) -

Mesh 2 662 (3822,7) 431 (2624,7)

Mesh 3 1890(9546,7) 1902 (9739,7)

Table 16: Example 4: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using coarse meshes created with METIS without a subdomain partition.

following expression

16(x − 1/4)2+ 400z2 = 1, 0≤ x ≤ 1/3, 0≤ y ≤ 1/100,

z = 1/(10
p

2) (1− x), 1/3< x ≤ 1, 0≤ y ≤ 1/100, z > 0,

z = −1/(10
p

2) (1− x), 1/3< x ≤ 1, 0≤ y ≤ 1/100, z < 0,

16(x − 1/4)2+ 400(z2+ (y − 1/100)2) = 1, 0≤ x ≤ 1/3, y > 1/100,

200(z2+ (y − 1/100)2)− (1− x)2 = 0, 1/3≤ x ≤ 1, y > 1/100,

cf. [23]. This geometry is considered at laminar conditions with inflow Mach number

equal to 0.5, at an angle of attack α= 1◦, and Reynolds number Re= 5000 with adiabatic

no-slip wall boundary condition imposed. Throughout this section, we set a tolerance for

termination of the Newton–GMRES algorithm equal to 10−8, and the absolute tolerance for

the underlying GMRES inner–solver to 10−8; though here, we restart every 500 iterations.

In this example, we consider the performance of the proposed preconditioner on a

sequence of unstructured hexahedral meshes. Here, the initial coarse mesh consists of

768 elements; two subsequent meshes, consisting of 6144 and 49152 elements, respec-

tively, are constructed, based on uniformly refining this initial mesh. As in Example 2,

we consider different strategies for constructing the subdomain mesh partition. Firstly, in

Tables 14 & 15 we consider the performance of the proposed multilevel preconditioner

based on exploiting METIS for the construction of both the subdomain partition TS and

the composite elements in the coarse mesh TH with p = q = 1 consisting of N = 300 and

N = 150 domains, respectively. Here, we observe that the maximum number of GMRES

iterations required to attain convergence grows slightly when the ratio of the coarse and

fine mesh sizes is kept fixed. We remark that this may be simply pre-asymptotic behaviour;
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a
a
a
a
a
a
aa

Mesh Th

Mesh TH
Mesh 1 Mesh 2

Mesh 2 427 (2458,7) -

Mesh 3 1151 (6459,7) 554 (3185,7)

Table 17: Example 4: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using a subdomain partition generated with METIS consisting of N = 250 domains.

a
a
a

a
a
a
aa

Mesh Th

Mesh TH
Mesh 1 Mesh 2

Mesh 2 329 (1999,7) -

Mesh 3 857 (4951,7) 453 (2626,7)

Table 18: Example 4: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes using a subdomain partition generated with METIS consisting of N = 150 domains.

indeed, a slight growth of the number of iterations on relatively coarse meshes has been

observed in our previous examples. We also point out that a reduction in the number of

subdomains in the partition TS leads to a decrease in the number of iterations required

to attain convergence, though at the expense of solving larger systems of local problems.

As in Example 2, we now consider the case when TS = TH , so that N , the number of

subdomain partitions present in TS , grows as TH is refined, cf. Table 16; as before, we

again observe that the number of iterations required to attain convergence grows by about

a factor of 2 as the fine mesh is enriched, even when the ratio of the coarse and fine mesh

sizes is kept fixed.

Finally, Tables 17, 18 & 19 present the number of iterations required to attain conver-

gence when the unstructured hexahedral meshes are employed for the coarse mesh solver.

In particular, here Tables 17 & 18 considers the case when TS is constructed based on

employing METIS with N = 250 and N = 150, respectively. As in Example 2, we again

observe that the number of iterations required to attain convergence is reduced when TH

is selected to be one of the user–defined unstructured meshes, as apposed to a coarse mesh

generated by METIS. Moreover, we again notice that a reduction in N leads to a reduction

in the number of iterations needed to attain convergence. Table 19 presents the case when

TH = TS ; as before, we again observe that the number of iterations required to attain

convergence grows as the fine mesh is enriched, even when the ratio of the coarse and fine

mesh sizes is kept fixed.

For comparison in Table 20 the results using GMRES with ILU preconditioner are re-

ported for p = 1. As we have previously observed, on very coarse meshes, the number

of iterations required to attain convergence is typically smaller when the ILU precondi-

tioner is employed when compared to the proposed additive Schwarz preconditioner; this

behaviour is reversed as the mesh is enriched, cf. Table 14.
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a
a
a
a
a
a
aa

Mesh Th

Mesh TH
Mesh 1 Mesh 2

Mesh 2 518 (3015,7) -

Mesh 3 1430 (7942,7) 941 (5498,7)

Table 19: Example 4: GMRES iteration counts for the preconditioner, with p = q = 1 on unstructured
meshes without a subdomain partition.

Mesh 1 Mesh 2 Mesh 3

GMRES+ILU 59 (358,7) 264 (1515,7) 914 (5229,7)

Table 20: Example 4: GMRES+ILU iteration counts, when p = 1.

9. Concluding remarks

In this article we have considered the application of Schwarz-type domain decomposi-

tion preconditioners for discontinuous Galerkin finite element approximations of compress-

ible fluid flows. Here, the coarse level solver employed within the proposed precondition-

ing strategy is based on exploiting ideas from so-called composite discontinuous Galerkin

methods; this class of methods can easily handle general polygonal element domains con-

sisting of agglomerated ‘standard’ elements. In this way, extremely coarse meshes may be

defined, even for computational domains which contain small geometric details. The ap-

plication of the preconditioner to viscous compressible flows in two– and three–dimensions

clearly highlights the efficiency and robustness of the proposed solution strategy.

Acknowledgements

SG and PH acknowledge the financial support of the EPSRC under the grant EP/H005498.

PH also acknowledges the support of the Leverhulme Trust.

References

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal

solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41, 2001.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetricand

unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501–520, 2000.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the

parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[4] P.F. Antonietti and B. Ayuso. Schwarz domain decomposition preconditioners for discontinu-

ous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math. Model.

Numer. Anal., 41(1):21–54, 2007.

[5] P.F. Antonietti and B. Ayuso. Multiplicative Schwarz methods for discontinuous Galerkin

approximations of elliptic problems. M2AN Math. Model. Numer. Anal., 42(3):443–469, 2008.



Schwarz Preconditioners for Compressible Fluid Flows 25

[6] P.F. Antonietti, S. Giani, and P. Houston. hp–Version composite discontinuous Galerkin meth-

ods for elliptic problems on complicated domains. SIAM J. Sci. Comput., 35(3):A1417–A1439,

2013.

[7] P.F. Antonietti, S. Giani, and P. Houston. Domain decomposition preconditioners for discon-

tinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comp., In

press.

[8] P.F. Antonietti and P. Houston. A class of domain decomposition preconditioners for hp-

discontinuous Galerkin finite element methods. J. Sci. Comp., 46(1):124–149, 2011.

[9] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith,

and H. Zhang. PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.

[10] A.T. Barker, S.C. Brenner, E.-H. Park, and Li-Y. Sung. Two-level additive Schwarz precon-

ditioners for a weakly over-penalized symmetric interior penalty method. J. Sci. Comp.,

47:27–49, 2011.

[11] F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, and P. Tesini. On the flexibility of agglomeration

based physical space discontinuous Galerkin discretizations. J. Comput. Phys., 231(1):45–65,

2012.

[12] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the

numerical solution of the compressible Navier-Stokes equations. J. Comp. Phys., 131:267–

279, 1997.

[13] F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2d

Euler equations. J. Comp. Phys., 138:251–285, 1997.

[14] C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for the Euler and

Navier-Stokes equations. Internat. J. Numer. Methods Fluids, 31:79–95, 1999.

[15] C.E. Baumann and J.T. Oden. An adaptive-order discontinuous Galerkin method for the

solution of the Euler equations of gas dynamics. Internat. J. Numer. Methods Engrg., 47:61–

73, 2000.

[16] S.C. Brenner and K. Wang. Two-level additive Schwarz preconditioners for C0 interior penalty

methods. Numer. Math., 102(2):231–255, 2005.

[17] A. Cangiani, E.H. Georgoulis, and P. Houston. hp-Version discontinuous Galerkin methods

on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci., In press.

[18] V. Dolejší. On the discontinuous Galerkin method for the numerical solution of the Navier-

Stokes equations. Int. J. Numer. Meth. Fluids, 45:1083–1106, 2004.

[19] M. Feistauer, J. Felcman, and I. Straškraba. Mathematical and Computational Methods for

Compressible Flow. Clarendon Press, Oxford, 2003.

[20] X. Feng and O. A. Karakashian. Two-level additive Schwarz methods for a discontinuous

Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal., 39(4):1343–

1365 (electronic), 2001.

[21] K.J. Fidkowski and D.L. Darmofal. A triangular cut-cell adaptive method for high-order dis-

cretizations of the compressible Navier-Stokes equations. J. Comput. Phys., 225:1653–1672,

2007.

[22] K.J. Fidkowski, T.A. Oliver, J. Lu, and D.L. Darmofal. p-Multigrid solution of high-order

discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Com-

put. Phys., 207(1):92–113, July 2005.

[23] S. Giani and P. Houston. Anisotropic hp–adaptive discontinuous Galerkin finite element meth-

ods for compressible fluid flows. Int. J. Numer. Anal. Model., 9(4):928–949, 2012.

[24] W. Hackbusch and S.A. Sauter. Composite finite elements for the approximation of PDEs on

domains with complicated micro-structures. Numer. Math., 75:447âĂŞ–472, 1997.
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