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Abstract

Random graphs and networks are of great importance in many �elds including

mathematics, computer science, statistics, biology and sociology. This research

aims to develop statistical theory and methods of statistical inference for random

graphs in novel directions. A major strand of the research is the development of

conditional goodness-of-�t tests for random graph models and for random block

graph models. On the theoretical side, this entails proving a new conditional

central limit theorem for a certain graph statistics, which are closely related to the

number of two-stars and the number of triangles, and where the conditioning is on

the number of edges in the graph. A second strand of the research is to develop

composite likelihood methods for estimation of the parameters in exponential

random graph models. Composite likelihood methods based on edge data have

previously been widely used. A novel contribution of the thesis is the development

of composite likelihood methods based on more complicated data structures. The

goals of this PhD thesis also include testing the numerical performance of the

novel methods in extensive simulation studies and through applications to real

graphical data sets.
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Chapter 1

Introduction

1.1 Background: Networks and Graphs

Networks are of great importance in the modern world, the internet and facebook

being two prominent examples. Moreover, the understanding and modelling of

networks is of major importance in many �elds within the physical and social

sciences including Biology, Computer Science, Economics, Geography and Soci-

ology. The recent book by Kolaczyk (2010) gives an extensive account covering

theory and many applications from a statistical perspective. In recent times this

has been an active topic of research for statisticians; see, for example, the papers

by Bickel et al. (2011), Chatterjee and Diaconis (2013), Caimo and Friel (2013)

and Olhede and Wolfe (2014).

It is di�cult to give a precise de�nition of a network which covers all cases of

possible interest, but broadly speaking a network consists of collection of units,

e.g. genes or people, plus information about the connections between them. In

many applications of network modelling, randomness (or stochasticity) is a key

feature of the network under consideration. In other situations, we may choose

to model uncertainty using randomness, without necessarily forming a judgment

as to whether the randomness is inherent in the network being studied. Ether

way, we are led to consideration of random networks.

From a mathematical perspective, a network is often modelled as a graph. Graph

theory is a well-established �eld of mathematics which is reviewed brie�y in

Chapter 2. In short, a graph consists of two aspects: a set of vertices (or

nodes); and a set of edges which connect pairs of vertices. It would be an over-

1



Chapter 1: Introduction

simpli�cation to say that the study of networks is equivalent to the study of

graphs because networks of interest in real-world applications often have further

features or structure in addition to the structure represented by a graph. Nev-

ertheless, the graphical structure of a network is often of primary interest and is

an important object of study in its own right.

Just as it is important to consider random networks in many areas of applica-

tion, so it is important to consider random graphs. In fact, the study of random

graphs has been an active area of research within probability theory for over half

a century, starting with work of Erd®s and Rényi (1959, 1960, 1961) and Gilbert

(1959). For up-to-date accounts of the theory of random graphs see the books by

Bollobás (2001) and Durrett (2010); see also Kolaczyk (2010) for an accessible

review of this large body of work.

Despite the progress in the theory of random graphs, it is fair to say that statistical

theory for the analysis of random graph models is still rather under-developed,

even though there have been some notable contributions in the past. No doubt

this is partly due to the di�culty in developing an asymptotic theory, as the

number of vertices of the random graph goes to in�nity, for parameter estimators

in most of the random graph models which have been considered to date. This

di�culty arises because of the complex nature of the dependence structure in

such models. However, even allowing for this, there are still a number of basic

statistical questions which have not been addressed in the literature. The purpose

of this thesis is to consider several such questions.

1.2 Main Contributions of the Thesis

The �rst question to be considered is the joint asymptotic behavior of the random

graph statistics u1, the number of edges, u2, the number of 2-stars, and u3, the

number of triangles in the Erdös-Rényi-Gilbert random graph model in which

each edge is present with probability p and the edges are statistically independ-

ent. In this asymptotic framework, the number of vertices in the graph goes to

in�nity. It is proved that, suitably standardized, u1, u2 and u3 are jointly asymp-

totic normal. This �nding is not surprising but what does seem surprising is

that the limiting covariance matrix has rank 1 rather than rank 3. Consequently,

2



Chapter 1: Introduction

the limiting covariance matrix is degenerate. We suspect that this result may be

known but, despite an extensive search, we have not been able to �nd it anywhere

in the literature. The rank de�ciency of the covariance matrix is a negative result

from the point of view of statistical inference.

The second question to be considered is whether this degeneracy can be removed

by conditioning u2 and u3 on u1, the number of edges. It is proved that a condi-

tional central limit theorem holds in this case. Moreover, the limiting covariance

matrix has full rank 2. Thus, conditioning on u1 removes the degeneracy. How-

ever, it turns that it is a major task to give a fully rigorous proof of this conditional

central limit theorem. This proof is the most substantial component of the thesis.

The primary statistical motivation for considering these central limit theorems

is to see whether they provide the basis for goodness-of-�t tests. Due to the

degeneracy in the unconditional central limit theorem mentioned above, the un-

conditional approach is not useful from the point of view of goodness-of-�t tests.

However, the conditional central limit theorem does lead to a potentially useful

conditional goodness-of-�t tests, especially in the context of block graph models,

considered later in the thesis.

The third question considered in the thesis is the use of novel composite like-

lihoods for parameter estimation in a widely-studied 3-parameter Exponential

Random Graph Model (ERGM). ERGMs and composite likelihood methods are

reviewed brie�y in Chapter 2. Theoretical asymptotic analysis of these new estim-

ators does not seem possible using existing large-sample theory but their practical

performance is investigated in a simulation study.

1.3 Structure of the Thesis

The outline of the thesis is as follows. Chapter 2 contains review material on

random graphs, relevant results from probability and statistics and other miscel-

laneous mathematical results. Most of the material is standard and is included

for convenience. However, the �nal section of the chapter reviews some relevant

publications of more advance work on the probability and statistics of random

graphs.

Chapter 3 contains a statement and proof of the joint central limit theorem for

u1, u2 and u3. The chapter also includes the statements and proofs of some ele-

3



Chapter 1: Introduction

mentary counting lemmas which are useful for calculating second moments of u2,

u3. These lemmas are also used in Chapter 4.

The proof of the conditional central limit theorem, which as mentioned above

is quite challenging, is spread over Chapter 4 and Chapter 5. In Chapter 4 a

general conditional moment result is stated and proved. More speci�cally, the

general conditional moment result gives a precise estimate of the order of the

expectation of arbitrary products of centered identically distributed binary vari-

ables conditional on their total being �xed. This result, which we believe may

be of independent interest, plays a crucial role in the proof of conditional central

limit theorem which stated and proved in Chapter 5.

Chapter 5 contains some fairly complex counting approximation lemmas which

also play a vital part in the proof of the conditional central limit theorem. This

chapter also contains the statement and proof of the conditional central limit

theorem.

In Chapter 6, three new composite likelihood estimators are suggested for use in

a 3-parameter ERGM of interest. In Section 6.2 the composite likelihoods are

derived and computational algorithms are presented for their calculation, and in

Section 6.3, the results of a simulation study of these estimators is presented.

Finally, in Chapter 7, discussion, conclusions and possibilities for future research

are described.

4



Chapter 2

Review of Background and relevant

Techniques

2.1 Introduction

In this chapter we present technical background which is relevant to later chapters

in the thesis. In Section 2.2, random graph models are reviewed. Section 2.3

covers miscellaneous mathematical topics including the spectral decomposition

theorem for symmetric matrices, equivalence relations and partitions. In Section

2.4, some important topics in probability and statistics are covered, including the

projection method and the method of moments for proving central limit theorems,

both of which are important later in the thesis. A review of composite likelihood

methods is given in Section 2.5. Finally, a review of some more advanced literature

on the statistics and probability of random graphs is given in Section 2.6.

2.2 Background on Random Graph Models

The term network refers to a collection of elements and their relations. For math-

ematical purposes, a network is represented as a graph, as de�ned in graph theory.

Graph theory is a branch of mathematics which adds precision to this notion and

provides a body of de�nitions, tools and results for examining graphs and their

properties.

5



Chapter 2: Review of Background and relevant Techniques

2.2.1 Basic Terminology in Graph Theory

A graph G(V,E) is a mathematical structure which consists of two sets, V and

E. V is a nonempty �nite set, whose elements are called vertices (or nodes). The

set E is a subset of V × V , the Cartesian product of V with itself, so that the

elements of E are pairs of vertices. We think of the elements of E as edges. If

e = (u, v) ∈ E where u, v ∈ V , then we say that vertices u and v are adjacent. If

the ordering of u and v does not matter, i.e. if (u, v) is identi�ed with (v, u), then

the edges are said to be undirected. If, on the other hand, the ordering of u and v

in (u, v) does matter, the graph is said to have directed edges. A directed graph

is abbreviated as digraph with the directions of the edges indicated by arrows.

Figure 2.1 (b), illustrates the form of digraph.

(a) (b)

Figure 2.1: (a) A simple undirected graph. (b) A digraph

When an edge joins a vertex to itself, this is called loop, and if there is more than

one edge connecting two (di�erent) vertices that is called multiple (or parallel)

edge. A graph without loops or parallel edges is called a simple graph. We will

dealing with the simple undirected graphs throughout this thesis. Figure 2.1 (a)

represents a simple undirected graph.

Throughout the thesis, the number of vertices, |V |, will denoted by n and is called

the order of the graph. The number of edges, |E|, is called the size of the graph

and is denoted it by m.

The degree of a vertex is the number of edges with an end-point in that vertex.

Also, a vertex u ∈ V is incident on an edge e ∈ E if e = (u, v) or e = (v, u).

A graph is said to be connected if and only if any vertex in the graph can reached

from all other vertices in the graph by moving along edges, and the graph is said

6



Chapter 2: Review of Background and relevant Techniques

to be disconnected otherwise. A disconnected graph splits into components where

the vertices in each component are connected. Furthermore, a graph H(VH, EH)

is a subgraph of G(VG, EG) if VH ⊆ VG and EH ⊆ EG.

Complete Graph: In a simple graph, if each pair of vertices is connected, the graph

is said to be a complete graph. A complete graph with n vertices is denoted by

Kn. Figure 2.2 represents the K4 graph. Moreover, a complete subgraph is called

a clique.

Figure 2.2: The complete graph K4

Bipartite Graph: Consider a graph G, and suppose V can be partitioned into

two disjoint sets, A and B, in such a way that each edge in G links two vertices,

with one vertex from A and one from B. Then G is a bipartite graph, and in the

sociology literature it is called a two-mode network ; see Newman (2010). Figure

2.3 represents a bipartite graph:

Figure 2.3: A bipartite graph

Bipartite graphs arise in Section 5.6 when we consider block models. Moreover,

when each vertex in set A is connected to all vertices in set B where A has nA

vertices and B has nB vertices, this graph is called a complete bipartite graph and

denoted by KnA,nB
. Such a graph is represented in Figure 2.4.

In graph theory, there are several ways to represent a graph mathematically. A

convenient representation of a graph for our purposes is the adjacency matrix.

Consider an undirected graph with n vertices with each vertex having a label

1, · · · , n. Consider yij is a binary variable representing the presence or absence

7



Chapter 2: Review of Background and relevant Techniques

Figure 2.4: A complete bipartite graph K3,4

of an edge between the vertices i and j. Formally, for a simple undirected graph

of n nodes, consider the graph adjacency matrix y = {yij}1≤i<j≤n, where yij is a

binary indicator for edge {i, j}:

yij =

{
1 if there is an edge between i and j;

0 otherwise.
(2.2.1)

For a simple undirected graph, we may de�ne the adjacency matrix to be sym-

metric, with yij = yji, for all i 6= j. Also since the graph is simple (i.e. no loops),

we de�ne yii = 0 for all i.

This thesis is concerned with random graph models. We brie�y highlight some

of the most common random graph models which are widely studied in the liter-

ature.

2.2.2 Random Graph Models

We now brie�y describe some important random graph models.

The Erdös-Rényi-Gilbert Models. In a series of papers by Erd®s and Rényi

(1959, 1960, 1961) and Gilbert (1959), random graph models are introduced. The

term random graph is used in this sense to refer to a model specifying a �nite

collection G of graphs and a uniform probability P(.) over G. Precisely, for a

given n and m, the number of vertices and edges, or the order and the size of

the graph, respectively, there is a collection G of all graphs G(V,E) with assign

probability P(G) =
(
N

m

)−1

, for each G ∈ G, where N =

(
n

2

)
is the total number

of distinct pairs of vertices. In other words, in this model we choose uniformly m

distinct pairs of vertices at random from all possible pairs and link them by an

edge. To obtain a simple undirected graph, we restrict the vertices to be distinct

to avoid loops and multiple edges. Therefore, the graph is created by choosing

uniformly at random among the set of all simple graphs with exactly n vertices

8



Chapter 2: Review of Background and relevant Techniques

and m edges.

Most commonly studied is the closely-related random graph proposed by Gilbert

(1959), denoted RG(n, p), in which every possible edge occurs independently with

probability 0 < p < 1. In the RG(n, p) model, we �x the number of vertices and

the probability of presence an edge between distinct pairs vertices, but the number

of edges is not �xed. Then the de�nition of this random graph model, RG(n, p),

is the ensemble of graphs in which each simple undirected graph G appears with

n vertices and m edges with probability

P (G) = pm(1− p)N−m,

where N = n(n − 1)/2 is the number of possible edges. We focus here on ho-

mogeneous random graphs. However, there has been a large amount of attention

in de�ning and studying inhomogeneous random graphs, such as Bollobás et al.

(2007).

Exponential Random Graph Models. Exponential random graph models

are a family of probability distributions for a class of random graphs which can

be used for representing and analyzing data about social and other networks.

See, for example Kolaczyk (2010) for further details. There are many techniques

that measure properties of an observed graph which are useful for describing

and understanding the observed graph. However, for a particular number of ver-

tices, this observed graph represents one realization of a large number of possible

graphs, as the outcome of some stochastic mechanism. Therefore, the principal

goal is to estimate model parameter from data and then evaluate how well the

model represents the data. In other words, the observed network is seen as one

particular pattern of edges out of a large set of possible patterns. In general,

we do not know what stochastic mechanism generated the observed network,

and the goal in formulating a model is to suggest a reasonable and theoretically

principled hypothesis for this process; see (Robins, Pattison, Kalish and Lusher

(2007)). Fortunately, exponential families have a variety of common properties

which makes this class of distributions mathematically convenient for purposes

of inference and simulation.

Suppose G(V,E) is a random graph, and let y = {yij}1≤i<j≤n be the (random)

adjacency matrix for G. As before, yij = yji is a binary random variable to indic-

ate the present or absence of an edge {i, j} ∈ E, in the graph G, where i, j ∈ V .

9



Chapter 2: Review of Background and relevant Techniques

An exponential random graph model (ERGM ) gives the joint distribution of the

elements in y, and has the following general form:

Pθ{Y = y} = exp

{ A∑

α=1

θα

Bα∑

β=1

uαβ(y)− ψ(θ)

}
, (2.2.2)

where

uαβ(y) =
∏

{i,j}∈Hαβ

yij; (2.2.3)

for each α = 1, · · · , A and β = 1, · · · , Bα, Hαβ consists of one or more pairs of

vertices; θ = (θ1, · · · , θA)T is the parameter vector; and the normalising constant

ψ(θ) is given by

ψ(θ) = log


 ∑

y∈{0,1}N

exp

{ A∑

α=1

θα

βα∑

β=1

uαβ(y)

}
 , (2.2.4)

where the outer sum in (2.2.4) is over all possible adjacency matrices, and N =

n(n − 1)/2. Di�erent choices for A,B1, · · · , BA are considered in the models

(2.2.5)-(2.2.7) and (2.2.9) below. The representation of (2.2.2) is equivalent to

formula (6.24) in Kolaczyk (2010) but we �nd (2.2.2) more convenient because it

makes the role of the inner summation (over β) in the expanent of (2.2.2) more

explicit. The model (2.2.2) is an exponential family distribution with natural vec-

tor parameter θ and su�cient statistics uαβ(y), α = 1, · · · , A and β = 1, · · · , Bα.

Exponential families of random graphs are among the most extensively used.

They represent �exible models for complex networks, particularly social networks.

Exponential random graph models (ERGMs), also called P ∗ models, are a family

of probability distributions for a class of random graphs. ERGMs are used, for

example, to represent structural of social network observed; see Snijders et al.

(2006).

We now consider several examples of ERGMs which have been considered in the

literature.

Bernoulli random graphs. In this model the presence or absence of any edge is

independent of the presence or absence of all the other edges in a graph. So we

assume that yij is independent of yi∗j∗ , where {i, j} 6= {i∗, j∗}. This leads to the

10
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model

Pθ{Y = y} = exp

{ ∑

16i<j6n

θijyij − ψ(θ)

}
. (2.2.5)

In other words, every edge {i, j} is present in the graph independently with prob-

ability pij = exp{θij}/(1 + exp{θij}).

Model (2.2.5) is obtained from model (2.2.2) by putting B1 = · · · = BA = 1,

the number of elements in each Hαβ is 1 and A = N = n(n − 1)/2. Under the

assumption of homogeneity, i.e. θij = θ, Gilbert (1959) model is recovered, i.e.

Pθ{Y = y} = exp

{
θL(y)− ψ(θ)

}
, (2.2.6)

where L(y) =
∑

i,j yij = m is the number of edges in the graph, and the prob-

ability of an edge being present will be p = exp{θ}/(1 + exp{θ}). In this case,

A = 1 and B1 = n(n− 1)/2.

Block models. Block models can also be represented in terms of model (2.2.2).

For example, when the vertex set V splits into two sets V1 and V2, and there is

homogeneity both within and between sets, this leads to a model of the form

Pθ{Y = y} = exp

{
θ11L11(y) + θ12L12(y) + θ22L22(y)− ψ(θ)

}
, (2.2.7)

where L11(y) and L22(y) are the number of edges connecting two elements of V1

and connecting two elements of V2, respectively, and L12 is the number of edges

connecting an element of V1 withe an element of V2. Clearly, (2.2.7) is of the form

(2.2.2) with A = 3, B1 = n1(n1 − 1)/2, B2 = n2(n2 − 1)/2 and B3 = n1n2. We

return to block models in Section 5.6.

Markov random graphs. As before, let G denote a random graph. To de�ne the

Markov property, let i, j, k, l denote four distinct vertices. Then G satis�es the

Markov property if

P (yij, ykl|rest) = P (yij|rest)P (ykl|rest), (2.2.8)

11
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where `rest' here consists of all the elements of y apart from yij and ykl. In words,

(2.2.8) says that yij and ykl are conditionally independent given the rest of the

elements of y.

Frank and Strauss (1986) characterize Markov graphs using the assumption that

the distribution remains the same when the vertices are relabeled. They use the

Hammersley-Cli�ord theorem (Besag, 1974) to prove a random graph is a Markov

graph i� the probability distribution can be written as (2.2.9).

The concept of Markov dependence for a random graph model was introduced

by Frank and Strauss (1986). This model de�nes that two potential edges are

dependent whenever they share a vertex, conditional on all other potential edges.

That is, the presence or absence of {i, j} in the graph will depend on that of

{i, k}, {j, l}, for all k 6= i, j and l 6= i, j, such random graph called Markov graph

and given by.

Pθ{Y = y} = exp

{ n−1∑

k=1

θkSk(y) + θnT (y)− ψ(θ)

}
, (2.2.9)

where y is the adjacency matrix for a random graph, and S1(y) = m is the number

of edges, Sk is the number of k-stars, for 2 6 k 6 (n−1), and T (y) is the number

of triangles. The statistics Sk and T are de�ned by

S1(y) =
∑

1≤i<j≤n

yij number of edges,

Sk(y) =
∑

1≤i≤n

(
yi+

k

)
number of k-stars (k ≥ 2),

T (y) =
∑

1≤i<j<h≤n

yijyihyjh number of triangles,

where yi+ =
∑n

j=1 yij, the degree of node i, θ = (θ1, ..., θn)
T is the parameter

vector of the distribution, and ψ(θ) is a normalizing constant,

ψ(θ) = log


 ∑

y∈{0,1}n(n−1)/2

exp

{
n−1∑

k=1

θkSk(y) + θnT (y)

}


which ensures that the sum of probabilities equals 1. It is obvious, when k = 1,

12
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S1(y) is a 1-star representing the number of edges. Clearly (2.2.9) is of the form

given in model (2.2.2) with A = n and

B1 =
n(n− 1)

2

B2 =
n(n− 1)(n− 2)

2!

Bj =
n(n− 1) · · · (n− j)

j!
, 1 6 j 6 n− 1

Bn−1 = n

Bn =
n(n− 1)(n− 2)

3!
.

The model will be more tractable when θ2 = . . . , θn−1 = τ = 0, in which case

this distribution reduces to the Bernoulli graph model, where all edges occur

with the same probability eθ1/(1 + eθ1) independently. Frank and Strauss (1986)

observed that parameter estimation is di�cult when the probability distribution

depends on the number of edges, number of 2-stars, and the number of triangles

(θ3 = . . . = θn−1 = 0). This is known as triad model and has the form

Pθ{Y = y} = exp{θ1u1(y) + θ2u2(y) + θ3u3(y)− ψ(θ)}, (2.2.10)

where the parameter vector to be estimated is θ = (θ1, θ2, θ3)
T , and the su�cient

statistics u(y) = (u1(y), u2(y), u3(y)), considered important, is de�ned by

u1(y) =
∑

1≤i<j≤n

yij number of edges

u2(y) =
∑

1≤i<j≤n

∑

k 6=i,j

yikyjk number of 2-stars

u3(y) =
∑

1≤i<j<k≤n

yijyikyjk number of triangles,

and ψ(θ) is a normalizing constant. Thus, they assumed models of any one of

the three parameters given that the other two are �xed at 0, and elaborated

a simulation-based method to approximate the maximum likelihood estimation.

Moreover, they suggested a type of conditional logistic regression method to es-

timate all parameters.

13
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Vertex degree models. Another type of ERGM is based on vertex degrees. This

models have the form

Pθ{Y = y} = exp

{ n∑

i=1

θiyi+ − ψ(θ)

}
. (2.2.11)

where yi+ =
∑

i 6=j yij, and θ = (θ1, · · · , θn)T is the parameter vector and as before

ψ(θ) is chosen to ensure the probabilities sum to 1.

2.3 Relevant Mathematical Techniques and Res-

ults

This section contains some miscellaneous mathematical concepts and results used

later in the thesis.

2.3.1 Spectral Decomposition Theorem in Linear Algebra

A set of vectors z1, z2, ..., zr ∈ R
m is said to be linearly independent if there exists

no set of scalars c1, c2, ..., cr, not all zero, such that
∑r

i=1 cizi = 0m, the m-vector

of zeros. A m × n matrix A is said to be of rank r if the maximum number

of linearly independent columns is r. Suppose now that A (n × n) is a square

matrix. Consider the quadratic form

xTAx =
n∑

i,j=1

aijxixj, (2.3.1)

where x = (x1, ..., xn)
T and A = (aij) is a symmetric matrix, i.e. AT = A where

T denotes transpose. This matrix A and the quadratic form are called positive

semide�nite if xTAx > 0 for all x ∈ R
n. If xTAx > 0 for all x 6= 0n, the n × 1

vector of zeros, then A and the quadratic form are called positive de�nite. Let A

be a square, n× n symmetric matrix. A real scalar λ is said to be an eigenvalue

of A if there exist a non-zero vector x in R
n such that

Ax = λx (2.3.2)

14



Chapter 2: Review of Background and relevant Techniques

The vector x is then referred to as an eigenvector associated with the eigenvalue

λ. The eigenvalues of the matrix A are solution of the characteristic equation

det(λI − A) = 0, (2.3.3)

where the notation det refers to the determinant of a matrix. An important result

of linear algebra, called the spectral decomposition theorem, states that for any

symmetric matrix, there are exactly n eigenvalues, and they are all real; further,

that the associated eigenvectors can be chosen so as to form an orthonormal basis.

The result o�ers a simple way to decompose the symmetric matrix as a product

of simple transformations.

Theorem 2.1 (see e.g. Mardia et al. (1980))

We can decompose any real symmetric n× n matrix A with the spectral decom-

position

A =
n∑

i=1

λiqiq
T
i = QΛQT , Λ = diag(λ1, · · · , λn), (2.3.4)

where the qi are n×1 column vectors and the matrix Q := [q1, ..., qn] is orthonor-

mal (that is, QTQ = Q QT = In), where In is the n × n identity matrix, and

contains the unit eigenvectors of A, while the diagonal matrix Λ contains the

eigenvalues of A.

2.3.2 Equivalence Relation and Partitions

An equivalence relation on a set X is a relation ∼ on X such that the following

properties are hold:

1. x ∼ x for all x ∈ X . (The relation is re�exive.)

2. If x ∼ y , then y ∼ x . (The relation is symmetric.)

3. If x ∼ y and y ∼ z , then x ∼ z . (The relation is transitive.)

A partition of a set X is a set P = {A1, · · · , An} of blocks that are subsets of X

such that the following holds.

1. If Aj ∈ P then Aj 6= ∅ for j = 1, · · · , n, where ∅ is the empty set.

2.
⋃n

j=1Aj = X.

15
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3. Aj

⋂
Ak = ∅ if j 6= k.

If ∼ is an equivalence relation on X, we de�ne the equivalence class of a ∈ X to

be the set [a] = {b ∈ X|a ∼ b}
Result 1: [a] = [b] if and only if a ∼ b.

Result 2: The set of all equivalence classes form a partition of X.

See, for example, Chapter 2 of Ayres (1965) for the above material.

A set X will said to be partially ordered (the possibility of a total ordering is not

excluded) by a binary relation R if for arbitrary a, b, c ∈ X,

1. R is re�exive, i.e. aRa

2. R is anti-symmetric, i.e., aRb and bRa if and only if a = b

3. R is transitive, i.r., aRb and bRc implies aRc.
For more details see e.g Ayres (1965).

The type of partial ordering that is relevant in this thesis is that between the

partitions of a �xed �nite set A. Suppose we are given two partitions of A,

Υ(1) = {υ(1)1 , · · · , υ(1)α } and Υ(2) = {υ(2)1 , · · · , υ(2)β }.

That is, for j = 1, 2, υ
(j)
γ ⊆ A, υ

(j)
γ

⋂
υ
(j)
δ = ∅, the empty set, if γ 6= δ, and

⋃α
γ=1 υ

(1)
γ =

⋃β
δ=1 υ

(2)
δ = A. Then we say that

Υ(1) 6 Υ(2)

if for all γ = 1, · · · , α, υ(1)γ ⊆ υ
(2)
δ for some δ = 1, · · · , β.

We shell see in Chapter 5 that the diamond partition is 'larger' than tilde parti-

tion.

2.4 Background in Probability and Statistics

Here, brie�y, we will lay some foundation of terminology, notation, and concepts

of topics in probability and statistics, to be used in later chapters. An excellent

introduction to many of the probability and statistics concepts is the book by
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van der Vaart (2000). Mardia et al. (1980) gives excellent coverage of multivariate

analysis and related topics.

2.4.1 Univariate and Multivariate Normal Distributions

The normal distribution is most important and widely used distribution in statist-

ics, because of the central limit theorem; see subsection 2.4.3. It is also called the

Gaussian distribution after the mathematician Karl Friedrich Gauss. A normal

distribution for a random variable X with mean µ and variance σ2 has probability

density function

f(x, µ, σ) =
1

σ
√
2π
e−

(x−µ)2

2σ2 . (2.4.1)

Let X = (X1, · · · , Xk)
T be a random vector with mean vector µ (k × 1) and

covariance matrix Σ (k × k)

µ =




µ1

...

µk


 , Σ =




σ11 ... σ1k
...

. . .
...

σk1 ... σkk


 .

A random vector X = (X1, · · · , Xk)
T , where Xi ∈ R, is said to have the mul-

tivariate normal distribution with mean µ (k×1) and covariance Σ (k×k) de�ned
by µ = E[X] and Σ = Cov(X) = E[(X − µ)(X − µ)T ], if every �xed linear com-

bination of its components Y = a1X1 + · · ·+ akXk is normally distributed. That

is, for any constant vector a = (a1, ..., ak)
T ∈ R

k, the random variable Y = aTX

has a univariate normal distribution N(ξ, σ2) with density (2.4.1), with ξ = µTa

and σ2 = aTΣa.

The multivariate normal distribution is said to be "non-degenerate" if and only

if the covariance matrix Σ is positive de�nite or, equivalently, if Σ has the full

rank k. In this case the distribution has density on R
k given by

fX(x1, . . . , xk) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Also, |Σ| is the determinant of Σ. The statistic (x − µ)TΣ−1(x − µ) in the non-
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degenerate case is known as the (square) Mahalanobis distance, which represents

the squared distance of the test point x from the mean µ in the metric determined

by Σ−1.

2.4.2 Di�erent Types of Stochastic Convergence

In this section, we provide a review of basic types of convergence of sequences of

random variables and vectors, and we will explain three of them.

Convergence in distribution. Let Y1, Y2, · · · be a sequence of real random

vectors in R
k, and let Y denote a random vector in R

k. For each n = 1, 2, · · ·
suppose Fn denote the distribution function of Yn; that is

Fn(y) = P (Yn1 6 y1, · · · , Ynk 6 yk),

where y = (y1, · · · , yk)T and Yn = (Yn1, · · · , ynk)T . Then the sequence Yn is said

to converge in distribution to the random vector Y as n→ ∞ if

lim
n→∞

Fn(y) = F (y),

for every y ∈ R
k at which F is continuous, where F (y) is the distribution function

of Y . This type of convergence also called weak convergence or convergence in

law, and written as Yn
d−→ Y .

Convergence in probability. A sequence Yn ∈ R
k is said to converge in

probability to Y if for every ǫ > 0

lim
n→∞

P (‖ Yn − Y ‖> ǫ) = 0,

where ‖ a ‖ is the Euclidean norm for a ∈ R
k, i.e. ‖ a ‖= (aTa)1/2 = (

∑k
i=1 a

2
i )

1/2.

This type of convergence is denoted by Yn
p−→ Y .

Almost sure Convergence. The sequence Yn is said to converge almost surely

to Y if

P (ω : lim
n→∞

‖ Yn(ω)− Y (ω) ‖= 0) = 1,

and written as Yn
as−→ Y , where ω is an element of the sample space Ω. Note that,
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for each n, Yn and Y must be de�ned on the same sample space in convergence

almost surly and convergence in probability. However, this is not a requirement

in the de�nition of the convergence in distribution.

Other notations are useful, to avoid messy details in asymptotic calculation in

probability theory. We de�ne the stochastic symbols op(.) and Op(.). Let {Xn} be
a sequence of random variables. We say Xn = op(1) means Xn

p−→ 0 as n→ ∞,

while Xn = Op(1) means Xn is asymptotically bounded as n → ∞, i.e. given

ǫ > 0, there exists an A = A(ǫ) such that

P (|Xn| > A) 6 ǫ,

for n su�ciently large. More generally, let an is a sequence of positive numbers.

If we say Xn = op(an) then this means that Xn/an = op(1), and likewise, Xn =

O(an) means Xn/an = Op(1).

The following result is known as Slutsky's lemma; see e.g. van der Vaart (2000),

p.11.

Lemma 2.1 (Slutsky.)

Let Xn, X and Yn be random vectors or variables. If Xn
d−→ X and Yn

d−→ c for

a constant c, then

(i) Xn + Yn
d−→ X + c;

(ii) YnXn
d−→ cX;

(iii) Y −1
n Xn

d−→ c−1X provided c 6= 0.

This result is very useful for proving convergence in distribution and is used to

prove Corollary 2.1, which is used in Chapter 3.

2.4.3 Central Limit Theorem

The most famous example of the convergence in distribution is the central limit

theorem (CLT) case in the independent and identically distributed.

Theorem 2.2 (Multivariate CLT)

Let Xi be a sequence of iid p-dimensional random vectors with E(X1) = µ and

covariance matrix Cov(X1) = Σ. Then, if X = n−1
∑n

i=1Xi is the sample mean
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of Xi, √
n(X − µ)

d−→ Np(0n,Σ).

where 0n is a zero vector.

2.4.4 Projections

To derive the limit distribution of a sequence of statistics Tn, we consider the

projection method due originally to Hoe�ding (1948); see also van der Vaart

(2000). Projection is commonly used for showing that the sequence of statistics

Tn is asymptotically equivalent to a sequence Sn, where the limit behavior of the

latter is known. Lemma 2.1 is the basis of this method, which shows that the

sequence Tn = Tn − Sn + Sn converges in distribution to S if both Tn − Sn
p−→ 0

and Sn
d−→ S.

Now assume a sequence of statistics Tn and linear space S is given. For each n,

let Ŝn be the projection of Tn on S; where Ŝn is de�ned as the random variable in

S which minimises E(T − Ŝn)
2; see van der Vaart (2000), Chapter 11. If the limit

behavior of Ŝn is known, then the limiting behavior of the sequence Tn follows

from that of Ŝn provided the quotient Var(Tn)/Var(Ŝn) converges to 1.

Theorem 2.3 (van der Vaart (2000))

For each n, let Sn be linear space of random variables with �nite second moments

that contain the constants. Let Tn be a random variable with projection Ŝn onto

Sn. If Var(Tn)/Var(Ŝn) −→ 1 as n→ ∞ then

Tn − E(Tn)

sd(Tn)
− Ŝn − E(Ŝn)

sd(Ŝn)

p−→ 0, as n→ ∞, (2.4.2)

where sd(X) is the standard deviation of a random variable X.

Corollary 2.1

Assume that the conclusion of Theorem 2.3 holds and suppose in addition that

Ŝn − E(Ŝn)

sd(Ŝn)

d−→ N(0, 1). (2.4.3)

Then
Tn − E(Tn)

sd(Tn)

d−→ N(0, 1).
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Proof: Now

Tn − E(Tn)

sd(Tn)
=

{
Tn − E(Tn)

sd(Tn)
− Ŝn − E(Ŝn)

sd(Ŝn)

}
+
Ŝn − E(Ŝn)

sd(Ŝn)
. (2.4.4)

From (2.4.2), the �rst term on the RHS of (2.4.4) goes to 0 in probability, while

the second term on the RHS of (2.4.4) is asymptotically standard normal by

assumption (2.4.3). Therefore the result follows from Slutsky's Lemma. �

In Chapter 3 we will need to make use of the following multivariate version of

Corollary 2.1.

Corollary 2.2

Suppose that Tn = (Tn,1, · · · , Tn,k)T is a sequence of random vectors and for each

n let Sn denote a linear space of random variables. For j = 1, · · · , k and, for each

n, suppose that the projection of Tn,j onto Sn is written Ŝn,j. Assume that

(i) for j = 1, · · · , k,

Tn,j − E(Tn,j)

sd(Tn,j)
− Ŝn,j − E(Ŝn,j)

sd(Ŝn,j)

p−→ 0; (2.4.5)

(ii) and

S∗
n

d−→ Nk(0k, V
∗), (2.4.6)

where

S∗
n =

(
Ŝn,1 − E(Ŝn,1)

sd(Ŝn,1)
, · · · , Ŝn,k − E(Ŝn,k)

sd(Ŝn,k)

)T

,

and

V ∗ = lim
n→∞

Cov(S∗
n) exists.

Then

T ∗
n =

(
Tn,1 − E(Tn,1)

sd(Tn,1)
, · · · , Tn,k − E(Tn,k)

sd(Tn,k)

)
d−→ Nk(0k, V

∗).

Proof. We use the Cramér-Wold device; see p.16 of van der Vaart (2000). This

states that if (Xn)n>1 and X are k-dimensional random vectors, then Xn
d−→ X if

and only if for each �xed vector a, aTXn
d−→ aTX, as n→ ∞. To prove Corollary
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2.2, it is therefore su�cient to show that for each �xed a = (a1, · · · , ak)T ,

aTT ∗
n

d−→ N(0, aTV ∗a) as n→ ∞.

Using the inequality ∣∣∣∣
k∑

j=1

cj

∣∣∣∣ 6
k∑

j=1

|cj|,

we have

|aTT ∗
n − aT Ŝ∗

n| 6
k∑

j=1

|aj|
∣∣∣∣
Tn,j − E(Tn,j)

sd(Tn,j)
− Ŝn,j − E(Ŝn,j)

sd(Ŝn,j)

∣∣∣∣. (2.4.7)

From (2.4.5), each component on the right-hand side of (2.4.7) convergence to 0

in probability, and therefore

aTT ∗
n − aT Ŝ∗

n

p−→ 0.

Therefore we may apply Corollary 2.1 to obtain

aTT ∗
n = aTT ∗

n − aT Ŝ∗
n + aT Ŝ∗

n

= op(1) + aT Ŝ∗
n

d−→ N(0, aTV ∗a),

using (2.4.6). Consequently after applying the Cramér-Wold device we may con-

clude that

T ∗
n

d−→ Nk(0k, V
∗).

�

Projection onto Sums:

Let X1, X2, · · · , XN be independent random vectors, and let S be the set of all

random variables of the form
N∑

i=1

gi(Xi),

where gi : R → R is such that E(g2(Xi)) < ∞. This class is of interest, because

the convergence in distribution of the sums can be derived from the central limit

theorem. The projection of a random variable onto this class is known as its
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Hájek projection.

Lemma 2.2 (van der Vaart (2000))

Let X1, X2, · · · , XN be independent random vectors. Then the projection of an

arbitrary random variable T with �nite second moment onto the class S is given

by

Ŝ =
N∑

i=1

E(T |Xi)− (n− 1)E(T ).

For more explanations, see van der Vaart (2000). We will use the projection

method in Chapter 3 for prove the central limit theorem given there.

2.4.5 The Method of Moments

There are many methods for proving central limit theorems. One of these is the

projection method discussed in Subsection 2.4.4. A second important technique is

the method of moments. Here, weak convergence of the sequence of distributions

is proved by establishing that the moments converge. This approach requires

conditions under which a distribution is uniquely determined by its moments.

Theorem 2.4 (Billingsley (2012),p.412)

Let µ be a probability measure on the line having �nite moments αk =
∫∞

−∞
xkµ(dx)

of all positive integer orders. If the power series Σkαkr
k/k! has a positive radius of

convergence, then µ is the only probability measure with the moments α1, α2, ....

Theorem 2.5 (Billingsley (2012),p.414)

Suppose that the distribution of X is determined by its moments, as in Theorem

2.4, that the Xn have moments of all orders, and that limn→∞E[Xr
n] = E[Xr] for

r = 1, 2, .... Then Xn
d−→ X.

Theorem 2.5 will be used to prove the main central limit theorem in Chapter 5.

2.4.6 Conditional Expectation

For elementary properties of conditional expectation; see e.g. Billingsley (2012).

Let X, Y and Z denote random vectors. In the context considered here, all

expectations speci�ed below exist and are �nite. A particular result we shell use
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later is the following. For general functions f and g, we have

E [f(X)g(Y )|Z] = E [f(X)E[g(Y )|X,Z]|Z] . (2.4.8)

2.5 Composite Likelihood Methods

2.5.1 Types of Composite Likelihood

Many application areas use composite likelihood methods for statistical inference

for parameters (Varin et al. (2011)). The advantage of composite likelihood is

to reduce the computational complexity so that it is possible to deal with large

datasets and very complex models, especially when the use of standard likelihood

is not tractable. A composite likelihood function can be derived by multiplying

togather a collection of likelihood components. Each component is a conditional

or marginal probability density or probability mass function.

Suppose f(y; θ) is a probability function of m-dimensional random vector y =

(y1, · · · , ym)T and for some unknown p-dimensional parameter vector θ ∈ Θ. Let

{A1, ..., AK} a set of marginal or conditional events with associated likelihoods

Lk(θ; y) ∝ f(y ∈ Ak; θ). A composite likelihood based on these components is a

weighted product

LC(θ; y) =
K∏

k=1

Lk(θ; y)
wk ,

with weights wk ≥ 0 to be chosen; see Varin et al. (2011) for a helpful and up-

to-date review. In what follows, f is used as a generic symbol for a probability

density function or probability mass function.

Composite Conditional Likelihoods

Suppose that the observations y1, · · · , ym have a neighborhood structure in that

yr has neighbors ys, s ∈ Nr, where for r = 1, · · · ,m, Nr ⊆ {1, · · · ,m}, r /∈ Nr, is

the set of indices of the neighbors of yr. One type of composite likelihood is the
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product of the conditional densities of a single observation given its neighbors,

LC(θ; y) =
m∏

r=1

f(yr|{ys : ys is a neighbor of yr}; θ)

=
m∏

r=1

f(yr|{ys, s ∈ Nr}; θ)

Alternatively, composite likelihood can be construct by pooling pairwise condi-

tional densities

LC(θ; y) =
m−1∏

r=1

m∏

s=r+1

f(yr|ys; θ),

or by pooling full conditional densities

LC(θ; y) =
m∏

r=1

f(yr|y−r; θ),

where y−r denotes the vector of all the observations but excluding yr. Which of

the above is used will depend in part on the structure of the problem and in part

on convenience.

Composite Marginal Likelihoods

Under independence assumptions, the most straightforward composite marginal

likelihood is

Lind(θ; y) =
m∏

r=1

f(yr; θ),

i.e. the observations y1, · · · , ym are treated as independent. The marginal likeli-

hood allows inference only on marginal parameters. However, when parameters

linked to dependence are of interest, it is necessary to model blocks of observa-

tions, as in the pairwise likelihood (Varin et al. (2011)),

Lind(θ; y) =
m−1∏

r=1

m∏

s=r+1

f(yr, ys; θ).

2.5.2 Asymptotic behavior of Composite Likelihood estim-

ators

Let X1, ..., Xn denote an IID sample from a population with distribution function

F . Suppose that we wish to construct an estimator of a parameter vector θ ∈
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Ωθ ⊆ R
d based on the sample X1, ..., Xn and using an estimating function given

by

G(θ) =
n∑

i=1

Gi(θ) ≡
n∑

i=1

G(Xi, θ),

where G(Xi, θ) ∈ R
d, i.e. G has the same dimension as θ. Assume θ0 is such that

EF{G(X1, θ0)} ≡
∫
G(x, θ0)dF (x) = 0,

and consider the sequence of estimating equations for θ given by

G(θ) ≡
n∑

i=1

Gi(θ) = 0, n = d, d+ 1, ... (2.5.1)

Theorem 2.6

Under mild technical conditions, (2.5.1) admits a sequence of solutions (θ̂n)
∞
n=d

with the following properties: as n→ ∞,

θ̂n
p−→ θ0,

i.e. θ̂n is a consistent estimator of θ0; and

n1/2(θ̂n − θ0)
d−→ Nd(0, H(θ0)V (θ0)H(θ0)

T ),

where

V (θ) = Cov{G(X1, θ)}, H(θ) = [EF{∇T
θG(X, θ)}]−1,

and ∇θ is the gradient operator.

The mild technical conditions referred to in the theorem are fairly complex to

state and, as we shall not be using this theorem in the thesis, we just refer to

van der Vaart (2000) for further details.

In the case where the composite likelihood is in fact a standard likelihood, it can

be seen that H(θ) = ī(θ)−1 where ī(θ) is the Fisher information matrix for a

single observation, and V (θ) = ī(θ). Therefore,

H(θ0)V (θ0)H(θ0)
T = ī(θ0)

−1ī(θ0)̄i(θ0)
−1

= ī(θ0)
−1
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and the standard result for maximum likelihood estimators

n
1
2 (θ̂ − θ0)

d−→ N{0, ī(θ0)−1}.

is recovered.

In Chapter 6 we will consider some novel parameter estimators in exponential

random graph models based on new composite likelihoods. These new estimat-

ors are relatively easy to compute. However, it is unfortunately the case that

the asymptotic theory presented in this subsection is not applicable due to the

complex dependence structure.

2.6 More Advanced Topics

Ruci«ski (1988) gives necessary and su�cient conditions for asymptotic normality

of counts of a �xed graph in a classical random graph, RG(n, p), and also con-

siders Poisson convergence under some restrictive conditions. At random time,

Janson (1990) considers a random graph that evolves in time by adding new edges

and Janson (1990) proves a functional limit theorem for a class of statistics of

the random graph in this time-dependent setting.

Snijders (2002), considers estimation of the parameters of the ERGM triad model

using Markov chain Monte Carlo (MCMC) methods and using stochastic approx-

imation methods to approximate the solution to the likelihood equation.

Chatterjee and Diaconis (2013) provide a method for theoretical analysis of a

2-parameter submodel of the ERGM triad model which is will be discussed in

Section 6.4.

A strong point of ERGMs is that a discrete exponential family is formed with com-

monly used graph statistics as su�cient statistics (see Robins, Snijders, Wang,

Handcock and Pattison (2007)). However, the presence of the unknown normaliz-

ing constant, ψ(θ), makes parameter estimation in ERGMs extremely di�cult to

handle from a statistical point of view, because it requires evaluating a sum over

a very large number of graphs and often too large to be feasible graphs. Geyer

and Thompson (1992) provide a Monte Carlo algorithm that uses samples from a
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distribution with known parameters to approximate the full likelihood, which is

then maximized to estimate the MLE. Bayesian approaches have been considered

by Caimo and Friel (2013) for example.

Other types of models of interest for random graphs are degree-based models,

where the focus is on the vertex degree distribution, see for example Olhede and

Wolfe (2012). By considering empirical counts of certain motifs in a graph, Bickel

et al. (2011) provide a general method of moments approach that can be used

to �t a large class of probability models. Moreover, graphs with a given degree

distribution ware studied by Britton et al. (2006) and Chatterjee et al. (2011).

However, degree distributions have not considered in this research.

Janson et al. (2004) provide exponential bounds for the upper tail for subgraph

counts, and Kunegis (2014) provides a software for computing the mean and

variance of subgraph counts in random graphs. Picard et al. (2008) provide an

analytical expression of the mean and variance of the motif count under any

exchangeable random graph model, and they approximate the motif count dis-

tribution by a compound Poisson distribution. Janson and Nowicki (1991) prove

results concerning the asymptotic behaviour of a class of statistics in various ran-

dom graph models.

Bloznelis and Götze (2001) study orthogonal decomposition of general symmetric

statistics based on samples drawn without replacement from �nite populations.

Furthermore, in terms of the Hoe�ding decomposition, they provide bounds for

the reminders of the approximations, see van der Vaart (2000).

This provides a powerful approach for deriving limit distribution for symmetric

statistics based on data obtained by simple random sampling without replacement

from a �nite population. Unfortunately the random graph statistics considered

in Chapters 4 and 5 are not symmetric statistics in the sense required, as we now

show.

Let T = t(X1, · · · , Xn) denote a statistic based on simple random sampleX1, · · · , Xn

drawn without replacement from a �nite population X = {x1, · · · , xN} con-

sisting of N units. We say that T is a symmetric statistic if t(x1, · · · , xn)
is a symmetric function of x1, · · · , xn. This means that for any permutation
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σ : {1, · · · , n} → {1, · · · , n}, then

t(xσ(1), · · · , xσ(n)) = t(x1, · · · , xn).

Here we will present a counter example to the claim that statistics of the type

considered in Chapters 4 and 5 are symmetric statistics; see Bloznelis and Götze

(2001) and Bloznelis and Götze (2002).

Example: Consider a statistic

A =
n∑

i=1

∑

i 6=j<k 6=i

(yij − p)(yik − p),

which is scalar multiple of the statistic C2 de�ned in (4.6.1) and considered in

Chapter 5. This statistic is related to the number of 2-stars in the graph. The

yij are the Bernoulli random variables de�ned in (2.2.1). Note that each term

(yij − p)(yik − p) has repeated vertex i.

For n = 4, we have

A(y) = t1(y12, y13, y14, y23, y24, y3,4)

= t1(X1, X2, X3, X4, X5, X6)

= (y12 − p)(y13 − p) + (y12 − p)(y14 − p) + (y13 − p)(y14 − p)

+(y21 − p)(y23 − p) + (y21 − p)(y24 − p) + (y23 − p)(y24 − p)

+(y31 − p)(y32 − p) + (y31 − p)(y34 − p) + (y32 − p)(y34 − p),

Now if we permute the random variables, we get some terms with no common

vertex, i.e (yij − p)(yuv − p), for i, j 6= u, v; for instance, swapping y12 with y13,

we get the following

A(y) = t2(X2, X1, X3, X4, X5, X6)

= (y13 − p)(y12 − p) + (y13 − p)(y14 − p) + (y12 − p)(y14 − p)

+(y31 − p)(y23 − p) + (y31 − p)(y24 − p) + (y23 − p)(y24 − p)

+(y21 − p)(y32 − p) + (y21 − p)(y34 − p) + (y32 − p)(y34 − p).
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As we notice, the �fth term in the summation, (y31− p)(y24− p), has no common

vertex, which mean the statistic, C2 is not a symmetric statistic, since permuta-

tion of the arguments of the statistic changes the original statistic. Thus we are

not able to use the results of Bloznelis and Götze (2001) in Chapter 5.
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Chapter 3

Central Limit Theorem: for some

Random Graph Statistics

3.1 Introduction

The aim of this chapter is to state and prove a joint central limit theorem

(CLT) for three random graph statistics in the Erdös-Rényi-Gilbert random graph

model: the number of edges, the number of 2-stars and the number of triangles.

This CLT is stated in Theorem 3.1. Although this CLT seems a very basic result

to investigate, we have not been to �nd a statement of or reference to this result

in the literature.

The most interesting and important, and perhaps surprising, aspect of this result

is that it is degenerate in the following sense: the limiting covariance matrix of

the centred and scaled trivariate statistic has rank 1 rather than rank 3, as is

seen in Theorem 3.1. It is interesting to speculate that there is a connection

between the degeneracy present in Theorem 3.1 and the approximate degeneracy

of the 3-parameter exponential random graph model established by Chatterjee

and Diaconis (2013).

The proof of Theorem 3.1 uses the projection method; see van der Vaart (2000)

and Section 2.4.4. Also needed in the proof are several counting lemmas which

are needed to calculate the variances and covariances of the three statistics.

The outline of this chapter is as follows. In Section 3.2, notation is introduced

and the main result of the chapter, Theorem 3.1, is stated. In Section 3.3, the

counting lemmas needed in the proof of Theorem 3.1, and also used later on in the
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thesis, are stated and proved. In Section 3.4, the variances and covariances of the

three statistics under consideration are found using the lemmas in the previous

section. Finally, Theorem 3.1 is proved in Section 3.5.

3.2 The Central Limit Theorem

All graphs we consider here are simple (no loops or parallel edges), have a �nite

number of vertices, and are undirected. Let

yij =

{
1 if there is an edge connecting vertex i to vertex j;

0 otherwise.
(3.2.1)

Assume Vn = {1, 2, ..., n} is a set of n vertices. Then for i ∈ Vn, j ∈ Vn, i 6= j, we

have yij = yji.

By RG(n, p) we mean the following random graph: the yij are independent and

identically distributed with P [yij = 1] = p and P [yij = 0] = q = 1− p.

Let

u1 =
∑

16i<j6n

yij,

u2 =
n∑

i=1

∑

i 6=j<k 6=i

yijyik,

u3 =
∑

16i<j<k6n

yijyjkyki.

Note that u1, u2 and u3 are, respectively, the number of edges, the number of

2-stars and the number of triangles. It will be convenient to work with centred

and scaled versions of these statistics:

T 1 =
2

n(n− 1)
u1 − p =

2

n(n− 1)

∑

16i<j6n

(yij − p), (3.2.2)

T 2 =
2

n(n− 1)(n− 2)
u2 − p2 =

2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yijyik − p2), (3.2.3)

T 3 =
6

n(n− 1)(n− 2)
u3 − p3 =

6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yijyjkyki − p3).

(3.2.4)
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Note that T 1, T 2 and T 3 are, respectively, the edge density, the 2-star density

and the triangle density, each centred by its theoretical mean.

We are now in the position to state the main result of the chapter.

Theorem 3.1

Let T 1, T 2 and T 3 be as de�ned in (3.2.2), (3.2.3) and (3.2.4) respectively. Let

Gn(n, p), n = 1, 2, · · · denote a sequence of random graphs from Erdös-Rényi-

Gilbert model RG(n, p), i.e. the number of vertices is n and the probability of

an edge being present is p. Then

n




T 1

T 2

T 3




d−→ N3(03, 2p(1− p)a aT )

as n → ∞, i.e. the limiting distribution of n(T 1, T 2, T 3)
T is multivariate nor-

mal with mean the zero vector and covariance matrix 2p(1 − p)a aT , where

a = (1, 2p, 3p2)T .

Remark 3.1

Theorem 3.1 tells us that the covariance matrix has rank 1, and therefore the

standardised joint limiting distribution of T 1, T 2 and T 3 is degenerate.

The proof of Theorem 3.1 is given in Section 3.5.

3.3 Some Counting Lemmas

In this section we present some counting lemmas which will be useful when calcu-

lating the variances and covariances of the statistics T 2 and T 3 de�ned in (3.2.3)

and (3.2.4). The cases involving T 1 are more elementary and do not require sep-

arate treatment. For example, when calculating the variance of T 2, we need to

evaluate

E[T
2

2] =

{
2

n(n− 1)(n− 2)

}2

×
n∑

i=1

∑

i 6=j<k 6=i

n∑

α=1

∑

α 6=β<γ 6=α

E
{
(yijyik − p2)(yαβyαγ − p2)

}
.

(3.3.1)

33



Chapter 3: Central Limit Theorem: for some Random Graph

Statistics

When evaluating (3.3.1), it is helpful to know, for �xed α, β and γ, how many

choices of i, j and k there are such that {{i, j}, {i, k}} has (i) zero, (ii) one or

(iii) two elements in common with {{α, β}, {α, γ}}. This is because the value

of E{(yijyik − p2)(yαβyαγ − p2)} depends on whether we are in case (i), case

(ii) or case (iii). Results of this type are elementary but some care is needed.

The required counting results are presented in Lemmas 3.1-3.3 and are used in

Section 3.4. They are also used in the next chapter in Section 4.7 when calculating

conditional moments.

The following lemma is useful when calculating V ar(T 2).

Lemma 3.1

Consider a set of vertices Vn = {1, ..., n} and �x α, β, γ ∈ Vn, where α 6= β, γ

and β < γ. De�ne Bαβγ = {{α, β}, {α, γ}}, i.e a set consisting of two pairs.

Suppose now that we choose i, j, k ∈ Vn with i 6= j, k and j < k, and de�ne

Bijk = {{i, j}, {i, k}}. Then:

(i) The number of choices of the triple {i, j, k} with i 6= j, k and j < k such that

Bαβγ and Bijk have no pair in common, i.e, Bαβγ

⋂
Bijk = ∅, the empty set,

is
(n− 3)(n2 − 6)

2
.

(ii) The number of choices of {i, j, k} with i 6= j, k and j < k such that Bαβγ

and Bijk have precisely one pair in common, i.e. |Bαβγ

⋂
Bijk| = 1, is

4n− 10.

(iii) The number of choices of {i, j, k} with i 6= j, k and j < k such that Bαβγ =

Bijk, the sets are the same, is 1.

Proof: To prove Lemma 3.1 , we have to consider three cases.

Case (i) Here, Bijk has no pairs in common with Bαβγ, i,e, Bijk

⋂
Bαβγ = ∅.

There are precisely four ways in which Case (i) can arise.

1. ("i in the middle"), i = α, j 6= α, β, γ and k 6= α, β, γ, j, leads to

(n− 3)(n− 4) instances for unordered pairs when i 6= j, k and j 6= k,

and therefore
(n− 3)(n− 4)

2
(3.3.2)
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instances for ordered pairs when j < k.

2. ("i in a terminal"), i = β, j 6= α, β and k 6= α, β, j leads to (n−2)(n−3)

instances for unordered pairs when i 6= j, k and j 6= k, and therefore

(n− 2)(n− 3)

2
(3.3.3)

instances for ordered pairs when j < k.

3. ("i in a terminal"), i = γ, j 6= α, γ and k 6= α, γ, j, leads to (n−2)(n−
3) instances for unordered pairs when i 6= j, k and j 6= k, and therefore

(n− 2)(n− 3)

2
(3.3.4)

instances for ordered pairs when j < k.

4. i 6= α, β, γ, j 6= i and k 6= i, j, (n − 3)(n − 1)(n − 2) instances for

unordered pairs when i 6= j, k and j 6= k, and therefore

(n− 3)(n− 1)(n− 2)

2
(3.3.5)

instances for ordered pairs when j < k.

Consequently, the number of choices for ordered pairs when j < k in Case

(i) is

(n− 3)(n− 4)

2
+ (n− 2)(n− 3) +

(n− 1)(n− 2)(n− 3)

2

=
(n− 3)

2
(n− 4 + 2n− 4 + (n− 1)(n− 2))

=
(n− 3)(n2 − 6)

2
.

(3.3.6)

Case (ii) Here, Bijk has one pair in common with Bαβγ, i,e, |Bijk

⋂
Bαβγ| = 1.

There are precisely eight ways in which Case (ii) can arise.

1. ("i in the middle"), i = α, j = β, k 6= α, β, γ.

2. ("i in the middle"), i = α, k = β, j 6= α, β, γ.
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3. ("i in the middle"), i = α, j = γ, k 6= α, β, γ.

4. ("i in the middle"), i = α, k = γ, j 6= α, β, γ.

Each of the subcases above has (n− 3) instances. The remaining for cases

are as follows.

5. ("i in a terminal"), i = β, j = α, k 6= α, β.

6. ("i in a terminal"), i = β, k = α, j 6= α, β.

7. ("i in a terminal"), i = γ, j = α, k 6= α, γ.

8. ("i in a terminal"), i = γ, k = α, j 6= α, γ.

In each of subcases 5-8 there are (n− 2) instances. Therefore, the number

of choices for unordered pairs when i 6= j, k and j 6= k in Case (ii) is

4(n− 3) + 4(n− 2).

Therefore, the number of choices for ordered pairs when j < k in Case (ii) is

1

2!
[4(n− 3) + 4(n− 2)] = 4n− 10. (3.3.7)

Case (iii) Finally, Bijk has precisely two elements in common with Bαβγ, i,e,

|Bijk

⋂
Bαβγ| = 2, which leads to either i = α, j = β and k = γ, or i = α,

j = γ and k = β, (2 instances) for unordered pairs when i 6= j, k and j 6= k.

Therefore, there is just one instance for ordered pairs when j < k. �

Remark 3.2

To check Lemma 3.1, note that the sum of the numbers in (3.3.6), (3.3.7) and

Case (iii) is

(n− 3)(n2 − 6)

2
+ 4n− 10 + 1 =

n(n− 1)(n− 2)

2
, (3.3.8)

which is the number of ways of selecting i, j, k from Vn with i 6= j, k and j < k.

The following lemma is useful when calculating Var(T 3).

Lemma 3.2

Consider a set of vertices Vn = {1, ..., n} and �x α, β, γ ∈ Vn, where α < β <

γ. De�ne B̃αβγ = {{α, β}, {β, γ}, {γ, α}}, i.e a set consisting of three pairs.
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Suppose now that we choose i, j, k ∈ Vn with i < j < k, and de�ne B̃ijk =

{{i, j}, {j, k}, {k, i}}. Then:

(i) The number of choices of the triple {i, j, k} with i < j < k such that B̃αβγ

and B̃ijk have no pair in common, i.e, B̃αβγ

⋂
B̃ijk = ∅, the empty set, is

(n− 3)(n2 − 16)

6

(ii) The number of choices of {i, j, k} with i < j < k such that B̃αβγ and B̃ijk

have precisely one pair in common, i.e. |B̃αβγ

⋂
B̃ijk| = 1, is

3(n− 3).

(iii) The number of choices of {i, j, k} with i < j < k such that B̃αβγ = B̃ijk,

the sets are the same, is 1.

Proof: To prove Lemma 3.2, once again we have to consider three cases:

Case (i) Here, B̃ijk has no pairs in common with B̃αβγ, i,e, B̃ijk

⋂
B̃αβγ = ∅.

There are precisely two ways in which Case (i) can arise, when i, j, k are

unordered:

1. one of i, j, k is equal one of α, β, γ, therefore 9(n− 3)(n− 4) instances;

2. all are di�erent, leading to (n− 3)(n− 4)(n− 5) instances.

Therefore, the number of instances in Case (i) of choices i, j, k with i 6= j 6=
k 6= i, (i.e. with no ordering imposed on i, j, k), is

9(n− 3)(n− 4) + (n− 3)(n− 4)(n− 5).

Therefore, the number of instances of choices i, j, k with i < j < k, (ordered

elements), in Case (i) is

9(n− 3)(n− 4)

3!
+

(n− 3)(n− 4)(n− 5)

3!
=

(n− 3)(n− 4)(n− 5 + 9)

6
,

=
(n− 3)(n2 − 16)

6
. (3.3.9)
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Case (ii) Here, B̃ijk has one pair in common with B̃αβγ, i,e, |B̃ijk

⋂
B̃αβγ| = 1.

The number of choices i, j, k with i 6= j 6= k 6= i, (i.e. with no ordering

imposed on i, j, k), in Case (ii) is

18(n− 3).

Therefore, the number of choices of i, j, k in Case (ii) with i < j < k,

(ordered elements), is
18(n− 3)

3!
= 3(n− 3) (3.3.10)

Case (iii) Finally, B̃ijk has precisely three pairs in common with B̃αβγ, i,e,

B̃ijk = B̃αβγ| = 3, the number of choices of i, j, k with i < j < k in Case

(iii) is 1. �

Remark 3.3

As a check, that the sum of the numbers in (3.3.9), (3.3.10) and Case (iii) of

Lemma3.2 is

(n− 3)(n2 − 16)

6
+ 3(n− 3) + 1 =

n(n− 1)(n− 2)

6
, (3.3.11)

the number of ways of selecting i, j, k from Vn with i < j < k.

The following lemma is useful when calculating Cov(T 2, T 3)

Lemma 3.3

Consider a set of nodes Vn = {1, ..., n} and �x α, β, γ ∈ Vn, where α 6= β, γ

and β < γ. De�ne Bαβγ = {{α, β}, {α, γ}}, i.e a set consisting of two pairs.

Suppose now that we choose i, j, k ∈ Vn with i < j < k , and de�ne B̃ijk =

{{i, j}, {j, k}, {k, i}}, i.e a set consisting of three pairs. Then:

(i) The number of choices of the triple {i, j, k} with i < j < k such that Bαβγ

and Sijk have no pair in common, i.e, Bαβγ

⋂
B̃ijk = ∅, the empty set, is

(n− 3)(n2 − 10)

6
.

(ii) The number of choices of (i, j, k) with i < j < k such that Bαβγ and B̃ijk
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have precisely one pair in common, i.e. |Bαβγ

⋂
B̃ijk| = 1, is

2(n− 3).

(iii) The number of choices of {i, j, k} with i < j < k such that Bαβγ and B̃ijk

have precisely two pair in common, i.e. |Bαβγ

⋂
B̃ijk| = 2, is 1.

Proof : We have to consider three cases to prove Lemma 3.3:

Case (i) First we consider the case in which B̃ijk has no pairs in common with

Bαβγ, i,e, B̃ijk

⋂
Bαβγ = ∅. There are precisely �ve ways in which Case (i)

can arise, when i, j, k are unordered:

1. none of i, j, k equals α, β, γ, [(n−3)(n−4)(n−5) instances];

2. one of i, j, k equals α, [3(n− 3)(n− 4) instances];

3. one of i, j, k equals β , [3(n− 3)(n− 4) instances];

4. one of i, j, k equals γ , [3(n− 3)(n− 4) instances];

5. two of i, j, k equals β and γ, [6(n− 3) instances].

Therefore, the number of choices i, j, k with i 6= j 6= k 6= i in Case (i) is

(n− 3)(n− 4)(n− 5) + 3(n− 3)(n− 4) + 3(n− 3)(n− 4) +

3(n− 3)(n− 4) + 6(n− 3)

= (n− 3)(n2 − 10)

Therefore, the number of choices i, j, k with i < j < k in Case (i) is

(n− 3)

6
(n2 − 10). (3.3.12)

Case (ii) Now we consider the case when B̃ijk has one pair in common with

Bαβγ, i,e, |B̃ijk

⋂
Bαβγ| = 1. The number of choices i, j, k with i 6= j 6= k 6= i

in Case (ii) is

12(n− 3)
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Therefore, the number of choices i, j, k with i < j < k in Case (ii) is

12(n− 3)

3!
= 2(n− 3) (3.3.13)

Case (iii) Finally, the case in which B̃ijk has precisely two pairs in common

with Bαβγ, i,e, |B̃ijk

⋂
Bαβγ| = 2, Therefore, the number of choices i, j, k

with i < j < k in Case (iii) is 1. �

Remark 3.4

Note that the sum of the numbers in (i), (ii) and (iii) of the Lemma 3.3 by

summing (3.3.12), (3.3.13) and Case (iii)

(n− 3)(n2 − 10)

6
+ 2(n− 3) + 1 =

n(n− 1)(n− 2)

6
, (3.3.14)

the number of ways of selecting i, j, k from Vn with i < j < k.

3.4 Calculation of Variances and Covariances

We now present the means , variances and covariances involving T 1, T 2 and T 3.

Proposition 3.1

Consider a random graph RG(n, p) as de�ned in Subsection 2.2.2, and let T 1, T 2
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and T 3 denote the statistics de�ned in (3.2.2)-(3.2.4) respectively. Then

E
[
T k

]
= 0, k = 1, 2, 3; (3.4.1)

Var
[
T 1

]
=

2p(1− p)

n(n− 1)
; (3.4.2)

Var
[
T 2

]
=

4(2n− 5)

n(n− 1)(n− 2)
p3(1− p)

+
2

n(n− 1)(n− 2)
p2(1− p2); (3.4.3)

Var
[
T 3

]
=

18(n− 3)

n(n− 1)(n− 2)
p5(1− p)

+
6

n(n− 1)(n− 2)
p3(1− p3); (3.4.4)

Cov
[
T 1, T 2

]
=

4

n(n− 1)
p2(1− p); (3.4.5)

Cov
[
T 1, T 3

]
=

6

n(n− 1)
p3(1− p); (3.4.6)

Cov
[
T 2, T 3

]
=

12(n− 3)

n(n− 1)(n− 2)
p4(1− p)

+
6

n(n− 1)(n− 2)
p3(1− p2). (3.4.7)

The proofs of the expectations in (3.4.1) are immediate. We will present the proofs

of the properties (3.4.2)-(3.4.7) in the following Lemmas 3.4 - 3.9 , respectively.

Lemma 3.4

In the setting of Proposition 3.1,

Var(T 1) =
2p(1− p)

n(n− 1)
.

Proof: Fix α, β ∈ Vn, where 1 6 α < β 6 n. Then,

E[T
2

1] = E

[
2

n(n− 1)

∑

α<β

(yαβ − p)T 1

]

=
2

n(n− 1)

∑

α<β

E[(yαβ − p)T 1], (3.4.8)
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and

E[(yαβ − p)T 1] = E

[
(yαβ − p)

2

n(n− 1)

∑

i<j

(yij − p)

]

=
2

n(n− 1)
E


(yαβ − p)2 + (yαβ − p)

∑

i<j
(i,j) 6=(α,β)

(yij − p)




=
2

n(n− 1)
V ar(yαβ) + 0, (3.4.9)

=
2

n(n− 1)
p(1− p), (3.4.10)

where in (3.4.9) the second expectation is zero because yij and yαβ are independent

if {α, β} 6= {i, j} and yyij are IID Bernoulli with probability p. Therefore, from

(3.4.8) and (3.4.10) and using the fact that E[T 1] = 0, from (3.4.1) with k = 1,

Var(T 1) = E[T
2

1] =
2

n(n− 1)

∑

16α<β6n

E[(yαβ − p)T 1],

=
2

n(n− 1)

∑

16α<β6n

2

n(n− 1)
p(1− p),

=
2p(1− p)

n(n− 1)
,

as required. �

Lemma 3.5

In the setting of Proposition 3.1,

Var(T 2) =
4(2n− 5)

n(n− 1)(n− 2)
p3(1− p) +

2

n(n− 1)(n− 2)
p2(1− p2).

Proof: Fix α, β, γ ∈ Vn, where α 6= β, α 6= γ and β < γ. The n(n− 1)(n− 2)/2

choices of i, j, k ∈ Vn such that i 6= j, k and j < k split into three cases

Case (i) {{i, j}, {j, k}} has no elements in common with {{α, β}, {α, γ}}. From
Lemma 3.1 , there are (n− 3)(n2 − 6)/2 such instances).

Case (ii) {{i, j}, {i, k}} has precisely one element in common with {{α, β}, {α, γ}}.
From Lemma 3.1 , there are (4n− 10) such instances.
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Case (iii) {{i, j}, {i, k}} = {{α, β}, {α, γ}}, i.e, α = i, β = j and γ = k. There

is one such instance.

Now

E{(yαβyαγ − p2)(yijyik − p2)} = E{yαβyαγyijyik − p2yαβyαγ − p2yijyik + p4},
= E{yαβyαγyijyik} − p4,

=





p4 − p4 = 0 in Case (i);

p3 − p4 = p3(1− p) in Case (ii);

p2 − p4 = p2(1− p2) in Case (iii).

Therefore, using Lemma 3.1,

E{(yαβyαγ − p2)T 2} =
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

E
{
(yαβyαγ − p2)(yijyik − p2)

}

=
2

n(n− 1)(n− 2)

{
(n− 3)(n2 − 6)

2
.0 + (4n− 10)p3(1− p)

+1.p2(1− p2)

}
,

=
2

n(n− 1)(n− 2)

{
(4n− 10)p3(1− p) + p2(1− p2)

}
.

(3.4.11)

Consequently, since E[T 2] = 0, and using (3.4.11),

Var(T 2) = E[T
2

2],

=
2

n(n− 1)(n− 2)

n∑

α=1

∑

α 6=β<γ 6=α

E{(yαβyαγ − p2)T 2},

=

{
2

n(n− 1)(n− 2)

}2 n∑

α=1

∑

α 6=β<γ 6=α

{(4n− 10)p3(1− p)

+p2(1− p2)},
=

2

n(n− 1)(n− 2)
{(4n− 10)p3(1− p) + p2(1− p2)},

as required. �
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Lemma 3.6

In the setting of Proposition 3.1,

Var(T 3) =
18(n− 3)

n(n− 1)(n− 2)
p5(1− p) +

6

n(n− 1)(n− 2)
p3(1− p3).

Proof: Fix α, β, γ ∈ Vn, where α < β < γ. The n(n−1)(n−2)
6

choices of i, j, k ∈ Vn,

with i < j < k split into three cases.

Case (i) {{i, j}, {j, k}, {k, i}} has no elements in common with {{α, β}, {β, γ}
, {γ, α}}. From Lemma 3.2 there are (n− 3)(n2 − 16)/6 such instances;

Case (ii) {{i, j}, {j, k}, {k, i}} has precisely one element in common with {{α, β}
, {β, γ}, {γ, α}}. From Lemma 3.2 there are 3(n− 3) such instances;

Case (iii) {{i, j}, {j, k}, {k, i}} is equal to {{α, β}, {β, γ}, {γ, α}}, i.e. α = i,

β = j and γ = k. There is one such instance.

Now

E{(yαβyβγyγα − p3)(yijyjkyki − p3)}
= E{yαβyβγyγαyijyjkyki − p3yαβyβγyγα − p3yijyjkyki + p6}
= E{yαβyβγyγαyijyjkyki} − p6,

=





p6 − p6 = 0 in Case (i);

p5 − p6 = p5(1− p) in Case (ii);

p3 − p6 = p3(1− p3) in Case (iii).

Using Lemma 3.2,

E{(yαβyβγyγα − p3)T 3}
=

6

n(n− 1)(n− 2)

∑

16i<j<k6n

E
{
(yαβyβγyγα − p3)(yijyjkyki − p3)

}

=
6

n(n− 1)(n− 2)

{
(n− 3)(n2 − 16)

6
.0 + 3(n− 3)p5(1− p) + p3(1− p3)

}
,

=
6

n(n− 1)(n− 2)

{
3(n− 3)p5(1− p) + p3(1− p3)

}
. (3.4.12)

44



Chapter 3: Central Limit Theorem: for some Random Graph

Statistics

Consequently, since E[T 3] = 0 and using (3.4.12),

Var(T 3) = E{T 2

3},
=

6

n(n− 1)(n− 2)

∑

16α<β<γ6n

E{(yαβyβγyγα − p3)T 3},

=

{
6

n(n− 1)(n− 2)

}2 ∑

16α<β<γ6n

{
3(n− 3)p5(1− p) + p3(1− p3)

}
,

=
6

n(n− 1)(n− 2)

{
3(n− 3)p5(1− p) + p3(1− p3)

}
,

as required. �

Lemma 3.7

In the setting of Proposition 3.1,

Cov(T 1, T 2) =
4

n(n− 1)
p2(1− p).

Proof: Fix α, β ∈ Vn, where α < β. The n(n−1)(n−2)/2 choices of i, j, k ∈ Vn

with i 6= j, k j < k splits into two cases.

Case (i) Either {i, j} or {i, k} is equal to {α, β}. The number of such instances

is 2(n− 2).

Case (ii) Neither {i, j} or {i, k} is equal to {α, β}. By substraction, the number

of such cases is

n(n− 1)(n− 2)

2
− 2(n− 2) =

(n2 − n)(n− 2)− 4(n− 2)

2

=
(n− 2)(n2 − n− 4)

2

Now

E[(yαβ − p)(yijyik − p2)] = E[yαβyijyik − pyijyik − p2yαβ + p3]

= E[yαβyijyik]− p3

=

{
p2 − p3 = p2(1− p) in Case (i);

p3 − p3 = 0 in Case (ii).
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Therefore,

E[(yαβ − p)T 2] =
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

E

{
(yαβ − p)(yijyik − p2)

}

=
2

n(n− 1)(n− 2)

{
2(n− 2)p2(1− p) +

(n− 2)(n2 − n− 4)

2
.0

}
,

=
4

n(n− 1)
p2(1− p).

Finally, since E[T 1] = E[T 2] = 0,

Cov(T 1, T 2) = E[T 1T 2],

=
2

n(n− 1)

∑

16α<β6n

E[(yαβ − p)T 2]

=
4

n(n− 1)
p2(1− p),

as required. �

Lemma 3.8

In the setting of Proposition 3.1,

Cov(T 1, T 3) =
6

n(n− 1)
p3(1− p).

Proof: Fix α, β ∈ Vn, where α < β. The n(n−1)(n−2)/6 choices of i, j, k ∈ Vn

with i < j < k splits into two cases.

Case (i) One of {i, j}, {i, k} and {j, k} is equal to {α, β}. The number of such

instances is (n− 2).

Case (ii) None of {i, j}, {i, k} or {j, k} are equal to {α, β}. By substraction,

the number of such cases is

n(n− 1)(n− 2)

2
− (n− 2) =

(n− 2)(n2 − n− 6)

6

=
(n− 2)(n+ 2)(n− 3)

6

=
(n2 − 4)(n− 3)

6
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Now

E[(yαβ − p)(yijyjkyki − p3)] = E[yαβyijyjkyki − pyijyjkyki − p3yαβ + p4]

= E[yαβyijyjkyki]− p4

=

{
p3 − p4 = p3(1− p) in Case (i);

p4 − p4 = 0 in Case (ii).

Therefore,

E[(yαβ − p)T 3] =
6

n(n− 1)(n− 2)

∑

16i<j<k6n

E

{
(yαβ − p)(yijyjkyki − p3)

}

=
6

n(n− 1)(n− 2)

{
(n− 2)p3(1− p) +

(n2 − 4)(n− 3)

6
.0

}
,

=
6

n(n− 1)
p3(1− p).

Finally, since E[T 1] = E[T 3] = 0,

Cov(T 1, T 3) = E[T 1T 3],

=
2

n(n− 1)

∑

16α<β6n

E[(yαβ − p)T 3]

=
6

n(n− 1)
p3(1− p),

as required. �

Lemma 3.9

In the setting of Proposition 3.1,

Cov(T 2, T 3) =
12(n− 3)

n(n− 1)(n− 2)
p4(1− p) +

6

n(n− 1)(n− 2)
p3(1− p2).

Proof: Fix α, β, γ ∈ Vn, where α 6= β, γ and β < γ. The n(n − 1)(n − 2)/6

choices of i, j, k ∈ Vn with i < j < k splits into three cases.

Case (i) {i, j}, {i, k} and {j, k} has no elements in common with {{α, β}, {α, γ}}.
From Lemma 3.3, there are (n−3)(n2−10)

6
such instances.

Case (ii) {i, j}, {i, k} or {j, k} has precisely two elements in common with
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{{α, β}, {α, γ}}. From Lemma 3.3, there are 2(n− 3) such instances.

Case (iii) {i, j}, {i, k} or {j, k} has precisely one element in common with

{{α, β}, {α, γ}}. From Lemma 3.3, there are one such instances.

Now

E[(yαβyαγ − p2)(yijyjkyki − p3)] = E[yαβyαγyijyjkyki − p2yijyjkyki − p3yαβyαγ + p5]

= E[yαβyαγyijyjkyki]− p5

=





p5 − p5 = 0 in Case (i);

p4 − p5 = p4(1− p) in Case (ii);

p3 − p5 = p3(1− p2) in Case (iii).

Therefore,

E[(yαβ − p2)T 3] =
6

n(n− 1)(n− 2)

∑

16i<j<k6n

E

{
(yαβyαγ − p2)(yijyjkyki − p3)

}
,

=
6

n(n− 1)(n− 2)

{
(n2 − 10)(n− 3)

6
.0 + 2(n− 3)p4(1− p)+

}
,

=
6

n(n− 1)(n− 2)
{2(n− 3)p4(1− p) + p3(1− p2)}. (3.4.13)

Consequently, from (3.4.13), and since E[T 2] = E[T 3] = 0,

Cov(T 2, T 3) = E[T 2T 3],

=
2

n(n− 1)(n− 2)

n∑

α=1

∑

α 6=β<γ 6=α

E[(yαβyαγ − p2)T 3]

=
2

n(n− 1)(n− 2)

n∑

α=1

∑

α 6=β<γ 6=α

6

n(n− 1)(n− 2)
{2(n− 3)p4(1− p) + p3(1− p2)}

=
6

n(n− 1)(n− 2)
{2(n− 3)p4(1− p) + p3(1− p2)},

as required. �

Remark 3.5

We can summarize a general expectation formula for the statistics T 1, T 2 and

T 3, as following:

E[T rT s] ∼
2rs

n2
pr+s−1(1− p), (3.4.14)
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for r, s = 1, 2, 3. Consequently, since E[T k] = 0 for k = 1, 2, 3,

Var(T 1) = E[T 1T 1] ∼ 2

n2
p(1− p),

Var(T 2) = E[T 2T 2] ∼ 8

n2
p3(1− p),

Var(T 3) = E[T 3T 3] ∼ 18

n2
p5(1− p),

Cov(T 1, T 2) = E[T 1T 2] ∼ 4

n2
p2(1− p),

Cov(T 1, T 3) = E[T 1T 3] ∼ 6

n2
p3(1− p),

Cov(T 2, T 3) = E[T 2T 3] ∼ 12

n2
p4(1− p).

3.5 Proof of Theorem 3.1

We �rst note that T 1 satis�es a central limit theorem and then apply the projec-

tion method to T 2 and T 3. Since

T 1 =
2

n(n− 1)

∑

16i<j6n

(yij − p)

is the sample mean of centred independent and identically distributed Bernoulli(p)

random variables, T 1 satis�es a central limit theorem:

T 1 − E[T 1]

sd(T 1)
=

√
n(n− 1)

2p(1− p)
T 1 ∼

n√
2p(1− p)

T 1
d−→ N(0, 1).

Note for future reference that

Var(T 1) =
2p(1− p)

n(n− 1)
.

Projection of T 2:

Consider

T 2 =
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yijyjk − p2).
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Then

E[T 2|yαβ] =
2

n(n− 1)(n− 2)
E

[
yαβ

( ∑

k 6=αβ

yαk +
∑

k 6=αβ

ykβ

)
− 2(n− 2)p2|yαβ

]

=
2

n(n− 1)(n− 2)
[yαβ2(n− 2)p− 2(n− 2)p2],

=
4p

n(n− 1)
(yαβ − p),

because of independence of the yij. Consequently, from Lemma 2.2, the projec-

tion, say Ŝ2, of T 2 onto the IID random variables {yij}16i<j6n is

Ŝ2 =
∑

16α<β6n

E[T 2|yαβ]− (n− 1)E[T 2],

=
4p

n(n− 1)

∑

16α<β6n

(yαβ − p),

= 2pT 1. (3.5.1)

The variance of the projection Ŝ2 is the following:

Var(Ŝ2) = Var(2pT 1),

= 4p2Var(T 1),

=
8p3(1− p)

n(n− 1)
,

∼ 8p3(1− p)

n2
,

which from Lemma 3.5 is equivalent to Var(T 2), as n → ∞. Consequently, due

to Theorem 2.3,

T 2 − E[T 2]

sd(T 2)
− Ŝ2 − E[Ŝ2]

sd(Ŝ2)

p−→ 0,

and in view of (3.5.1), (2.4.2) holds and so we may apply Corollary 2.1 to conclude

that
T 2 − E[T 2]

sd(T 2)

d−→ N(0, 1), as n→ ∞.

Projection of T 3:
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Consider

T 3 =
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yijyjkyki − p3).

Then

E[T 3|yαβ] =
3

n(n− 1)(n− 2)
E

[
yαβ(

∑

k 6=αβ

yβkykα)− (n− 2)p3

]

=
6

n(n− 1)(n− 2)

[
yαβ(n− 2)p2 − (n− 2)p3

]

=
6p2

n(n− 1)
(yαβ − p).

Consequently, from Lemma 2.2 the projection, say Ŝ3, of T 3 onto the IID random

variables {yij}16i<j6n is

Ŝ3 =
∑

16α<β6n

E[T 3|yαβ]− (n− 1)E[T 3]

=
6p2

n(n− 1)

∑

16α<β6n

(yαβ − p),

= 3p2T 1. (3.5.2)

The variance of the projection Ŝ3 is the following:

Var(Ŝ3) = Var(3p2T 1),

= 9p4Var(T 1),

=
18p5(1− p)

n(n− 1)
,

∼ 18p5(1− p)

n2
,

which from Lemma 3.6 is equivalent to Var(T 3), as n → ∞. Consequently, due

to Theorem 2.3,
T 3 − E[T 3]

sd(T 3)
− Ŝ3 − E[Ŝ3]

sd(Ŝ3)

p−→ 0,

and in view of (3.5.2), (2.4.2) holds and so we may apply Corollray 2.1 to conclude

that
T 3 − E[T 3]

sd(T 3)

d−→ N(0, 1), as n→ ∞.
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To complete the proof, we apply Corollary 2.2.

The covariance matrix of nŜ = (Ŝ1, Ŝ2, Ŝ3)
T = nT 1(1, 2p, 3p)

T ) is

n2Var(T 1)




1

2p

3p2



(

1 2p 3p2
)

∼ 2p(1− p)




1

2p

3p2



(

1 2p 3p2
)
.

Because of the rank of covariance matrix is 1 as opposed to 3, the joint probability

distribution of T 1, T 2 and T 3 is degenerate. �

3.6 Summary

In this chapter we proved a joint central limit theorem (CLT) for the following

three statistics assuming the Erdös-Rényi-Gilbert random graph model: the num-

ber of edges, u1, the number of 2-stars, u2, and the number of triangles, u3. The

standardised version of these statistics is jointly trivariate normal in the limit as

the number of vertices, n, goes to in�nity. However, the most interesting �nding

is that the limiting covariance of the standardised variables has rank 1 as opposed

to rank 3.

In the following chapter we present various moment results, including the import-

ant Theorem 4.1, which are used in Chapter 5 to prove Theorem 5.1, a conditional

central limit theorem for u2 and u3 conditional on u1, the number of edges.
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Chapter 4

Conditional Moment Results for

Random Graph Models

4.1 Introduction

In the previous chapter it was proved in Theorem 3.1 that the joint distribution

of (T 1, T 2, T 3)
T , suitably standardized, is asymptotically trivarate normal as n→

∞, but is degenerate in the sense that the limiting covariance matrix has rank 1

rather than 3. The main goal of this chapter and the next is to prove a conditional

central limit Theorem for (T 2, T 3)
T given T1, and show that the limiting bivariate

normal distribution is non-degenerate in the sense that its covariance matrix has

full rank 2. A key part of proving the conditional central limit theorem in Chapter

5 is precisely describing the behavior of the conditional expectation of general

products of the form

E

[ q∏

u=1

(yiu,ju − p)

∣∣∣∣
∑

16i<j6n

yij = m

]
, (4.1.1)

where m = Np and N = n(n − 1)/2. Note that in (4.1.1) the expectation is

conditional on the event
∑

16i<j6n yij = m.

Remark 4.1

Here we mention an important point concerning notation. In Chapter 3, p denoted

the probability of an edge being present in the homogeneous Bernoulli random

graph model. In contrast, in this chapter and the next, p is always de�ned by
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p = m/N , wherem, the number of edges in the graph, is the variable we condition

on.

The main result of this chapter is Theorem 4.1, which describes the behavior

of conditional expectations of the form (4.1.1) as n → ∞. A second goal is to

�nd all �rst and second conditional moments of (C2, C3), conditional on the event
∑

16i<j6n yij = m, where C2 and C3 are de�ned in (4.6.1) and (4.6.2) respectively.

On this conditioning event, the quantities C2 and C3 are related to T 2 and T 3

by a simple linear transformation; see Section 4.6.

The outline of this chapter is as follows. In Section 4.2, the main results of

the chapter, Theorem 4.1, is stated. In Section 4.3, some useful expressions

concerning sampling without replacement from a �nite population of zero-one

variables are presented. A selection of lemmas needed in the proof of Theorem

4.1 are stated and proved in Section 4.4, and in Section 4.5 Theorem 4.1 is proved.

Finally, in Section 4.6, the variables C2 and C3 are introduced, and their �rst

and second moments are calculated in Section 4.7.

4.2 General Conditional Moments Theorem

The theorem below describes the asymptotic behavior of conditional moments of

arbitrarily high order when n, the number of vertices in a random Erdös-Rényi-

Gilbert graph, goes to in�nity, and where the conditioning is on m = m(n), the

number of edges present in the random graph with n vertices. Equivalently, m(n)

is the number of y
(n)
ij equal to 1 in the sample of size N (n) where N (n) = n(n−1)/2

is the maximum number of possible edges.

The main theorem of this chapter is now stated.

Theorem 4.1

Consider a sequence of �nite populations of N (n) = n(n − 1)/2 binary variables

(i.e. zero-one variables) y
(n)
ij , 1 6 i < j 6 n, and suppose that for each n,

∑
16i<j6n y

(n)
ij = m(n). Suppose also that for each n we sample q observations

yi1,j1 , · · · , yiq ,jq

randomly, without replacement, from the full set (yij)16i<j6n of binary variables.

Let r1, · · · , rq denote any �xed positive integers. Finally, assume that for n
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su�ciently large, p(n) = m(n)/N (n) ∈ (a, b) for some constant a and b satisfying

0 < a < b < 1. Then

E

[
q∏

u=1

(yiu,ju − p(n))ru
∣∣∣∣m

(n)

]
= O(N−⌊(t+1)/2⌋), (4.2.1)

where N = N (n), ⌊x⌋ denotes the largest integer not greater than x, i.e,

⌊x⌋ = max

{
h ∈ Z

∣∣∣∣h 6 x

}
,

and

t =

q∑

u=1

I{ru=1}, (4.2.2)

where

I{A} =

{
1 if A is true;

0 if A is false.

Theorem 4.1 plays a crucial role in the proof of the conditional central limit the-

orem stated in Theorem 5.1 in Chapter 5, but we also believe it is of independent

interest.

Remark 4.2

(i) Note that the expectation in (4.2.1) is with respect to simple random sampling

from a �nite population.

(ii) In the formulation of the theorem, we have taken the population size to be

N (n) = n(n− 1)/2 and we have used two indices, iu and ju. These choices

are purely to make the link with random graphs clear. We could have used

a single index iu in the statement of the theorem if we had wanted to.

4.3 Sampling without Replacement from a Finite

Binary Population

Suppose that a population consists ofN elements, each of which is either a success

or a failure. Suppose that the proportion of successes is p, and the number of
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successes in the population is thenm = Np. To make inferences about p we take a

simple random sample of size s without replacement. Interest centers here on the

joint distribution of Y1, · · · , Ys drawn from the population without replacement,

where Yi is the number of successes on the ith draw (trial). The Yi are binary

valued since on each draw we get either a success Yi = 1 or we get a failure Yi = 0.

The Yi are not independent so the trials are not Bernoulli trials. Clearly P (Y1 =

1) = Np/N = p, the proportion of successes in the population, and P (Y1 = 0) =

(N − Np)/N = 1 − p. Now consider samples of size 2 (i.e. s = 2), selected

without replacement. Then

P (Y1 = 1, Y2 = 1) =
Np

N

Np− 1

N − 1
=

N

N − 1
p2
(
1− 1

Np

)
,

P (Y1 = 0, Y2 = 1) =
N −Np

N

Np

N − 1
=

N

N − 1
p(1− p),

P (Y1 = 1, Y2 = 0) =
Np

N

N −Np

N − 1
=

N

N − 1
p(1− p),

P (Y1 = 0, Y2 = 0) =
N −Np

N

N −Np− 1

N − 1
=

N

N − 1
(1− p)2

(
1− 1

N(1− p)

)
.

(4.3.1)

De�ne

πr,s−r = P

( s∑

i=1

Yi = r,

s∑

i=1

(1− Yi) = s− r

)
. (4.3.2)

Note that, πr,s−r is the probability of selecting r successes and s − r failures in

a simple random sample of size s selected from the population without replace-

ment. Then

π2,0 = P (Y1 = 1, Y2 = 1) =

(
2

2

)
N

N − 1
p2
(
1− 1

Np

)
,

π0,2 = P (Y1 = 0, Y2 = 0) =

(
2

0

)
N

N − 1
(1− p)2

(
1− 1

N(1− p)

)
,

π1,1 = P (Y1 = 1, Y2 = 0) + P (Y1 = 0, Y2 = 1),

=

(
2

1

)
N

N − 1
p(1− p).

(4.3.3)

Now suppose we are selecting a simple random sample of size s = 3 without
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replacement from the �nite binary population of size N , and let r denote number

of ones. Then 3 − r is the number of zeros, where the possible values of r are

0, 1, 2, 3. From (4.3.2) the probability of having r ones and 3 − r zeros is πr,3−r.

Then

π0,3 =

(
3

0

)(
N −Np

N

)(
N −Np− 1

N − 1

)(
N −Np− 2

N − 2

)
,

=
N3

N(N − 1)(N − 2)
(1− p)3

(
1− 1

N(1− p)

)(
1− 2

N(1− p)

)
,

π3,0 =

(
3

3

)(
Np

N

)(
Np− 1

N − 1

)(
Np− 2

N − 2

)
,

=
N3

N(N − 1)(N − 2)
p3
(
1− 1

Np

)(
1− 2

Np

)
,

π1,2 =

(
3

1

)(
N −Np

N

)(
Np

N − 1

)(
N −Np− 1

N − 2

)
,

=
3N3

N(N − 1)(N − 2)
p(1− p)2

(
1− 1

N(1− p)

)
,

π2,1 =

(
3

2

)(
Np

N

)(
Np− 1

N − 1

)(
N −Np

N − 2

)

=
3N3

N(N − 1)(N − 2)
p2(1− p)

(
1− 1

Np

)
.

(4.3.4)

For the general case and under simple random sampling without replacement, the

probability of selecting a particular sequence of length s with r ones and s − r

zeros is given by

m(r)(N −m)(s−r)

N(s)

=

m(m− 1) · · · (m− r + 1)(N −m)(N −m− 1) · · · (N −m− s+ r + 1)

N(N − 1) · · · (N − s+ 1)
,

where e.g. m(r) = m(m − 1) · · · (m − r + 1) for r > 1 and m(0) = 1. Therefore,

the probability of selecting a sample of size s without replacement having r ones

and s− r zeros is given by
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πr,s−r =

(
s

r

)
m(r)(N −m)(s−r)

N(s)

,

=

(
s

r

)
mr(N −m)s−r

N s

N s

N(s)

[
m(r)(N −m)(s−r)

mr(N −m)s−r

]
,

=

(
s

r

)
pr(1− p)s−r N

s

N(s)

[
m · · · (m− r + 1)(N −m) · · · (N −m− s+ r + 1)

mr(N −m)s−r

]
,

=

(
s

r

)
pr(1− p)s−r N

s

N(s)

[(
1− 1

m

)
· · ·
(
1− r + 1

m

)
.

(
1− 1

N −m

)
· · ·

(
1− (s+ r + 1)

N −m

)]
,

=

(
s

r

)
pr(1− p)s−r N

s

N(s)

[
r−1∏

j=0

(
1− j

m

)][s−r−1∏

k=0

(
1− k

N −m

)]
,

=

(
s

r

)
pr(1− p)s−r.

N s

N(s)

[
r−1∏

j=0

(
1− j

Np

)][s−r−1∏

k=0

(
1− k

N(1− p)

)]
, (4.3.5)

using the fact that m = Np and N−m = N(1−p). Also, we de�ne∏r−1
j=0(1− j

Np
)

to be 1 when r = 0, and
∏s−r−1

k=0 (1− k
N(1−p)

) to be 1 when r = s.

4.4 Some preliminary lemmas

The following lemmas will be used in the proof of Theorem 4.1. We will start

with the following de�nition.

De�nition 4.1

Let Ak = {1, ..., k} and αk = (α1, ..., αk), and consider a function fr(αk), where

r 6 k, which calculates the summation of the product of all subsets of components

of αk of size r. De�ne

fr(αk) =
∑

C⊂Ak:|C|=r

∏

j∈C

αj, (4.4.1)

where the sum is over the

(
k

r

)
distinct subsets of Ak with precisely r elements.

In the case r = 0 it is natural and convenient to de�ne
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f0(αk) = 1. (4.4.2)

Moreover, from De�nition 4.1, two results will be presented in Lemma 4.1.

Lemma 4.1

Let Ak = {1, ..., k} and αk = (α1, ..., αk), and consider the function fr(αk) de�ned

in (4.4.1) and (4.4.2). Then for r > 1,

fr(αr+1) =

( r∏

i=1

αi

)
+ αr+1fr−1(αr), (4.4.3)

and for i = 1, · · · , r,

fr−i+1(αr+1) = αr+1fr−i(αr) + fr−i+1(αr). (4.4.4)

Proof: From (4.4.1) we have

fr(αr+1) =
∑

C⊂Ar+1:|C|=r

∏

j∈C

αj,

= term not involving αr+1 + terms involving αr+1,

=

( r∏

i=1

αi

)
+ αr+1

∑

C⊂Ar:|C|=r−1

∏

j∈C

αj,

=

( r∏

i=1

αi

)
+ αr+1fr−1(αr),

from the de�nition of fr−1(αr). This establishes (4.4.3).

To prove (4.4.4), we see that

fr−i+1(αr+1) =
∑

C⊂Ar+1:|C|=r−i+1

∏

j∈C

αj,

= term involving αr+1 + terms not involving αr+1,

= αr+1

∑

C⊂Ar:|C|=r−i

∏

j∈C

αj +
∑

C⊂Ar:|C|=r−i+1

∏

j∈C

αj,

= αr+1fr−i(αr) + fr−i+1(αr),

from the de�nition of fr−i(αr) and fr−i+1(αr); see (4.4.1). �
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The following lemma, which builds on Lemma 4.1, will be useful in Part I of the

proof the Theorem 4.1 in Section 4.5.

Lemma 4.2

With At = {1, ..., t} and αt = (α1, ..., αt) de�ned as before, and z any real number,

we have
t∏

i=1

(αi − z) =
t∏

i=1

αi +
t∑

r=1

(−1)rzrft−r(αt), (4.4.5)

where ft−r(αk) is de�ned in (4.4.1).

Proof: To proof the formula (4.4.5), we use the induction technique. The

lemma certainly holds when k = t = 1 provided we de�ne f0(αt) = 1. When

k = t = 2,

2∏

i=1

(αi − z) = (α1 − z)(α2 − z),

= α1α2 − z(α1 + α2) + z2,

=
2∏

i=1

αi − zf1(α2) + z2f0(α2)

=
2∏

i=1

αi +
2∑

r=1

(−1)rzrf2−r(α2),

as required. So, (4.4.5) holds for k = 2. Assume now that (4.4.5) holds for k = t,

and consider k = t+ 1. Then

t+1∏

i=1

(αi − z) = (αt+1 − z)
t∏

i=1

(αi − z),

= (αt+1 − z)

[
t∏

i=1

αi +
t∑

i=1

(−1)izift−i(αt)

]
, (4.4.6)

using the induction assumption. Expanding the RHS of (4.4.6),
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RHS = αt+1

t∏

i=1

αi − z

t∏

i=1

αi

+αt+1

t∑

i=1

(−1)izift−i(αt)− z

t∑

i=1

(−1)izift−i(αt)

=
t+1∏

i=1

αi − z

{ t∏

i=1

αi + αt+1ft−1(αt)

}
+

t∑

i=2

(−1)izi
{
ft−i(αt)αt+1 + ft−i+1(αt)

}
+ (−1)t+1zt+1 (4.4.7)

=
t+1∏

i=1

αi − zft(αt+1)

+
t∑

i=2

(−1)izift−i+1(αt+1) + (−1)t+1zt+1f0(αt+1), (4.4.8)

=
t+1∏

i=1

αi +
t+1∑

i=1

(−1)izift−i+1(αt+1),

where in moving from (4.4.7) to (4.4.8), we have made use of (4.4.3) and made

multiple use of (4.4.4). Then, (4.4.5) holds for k = t+ 1, and by the principle of

induction it therefore holds for all positive integers k. �

The following result is well-known but for convenience we provide a statement

and proof.

Lemma 4.3

Let t and α be integers such that t > 0 and 0 6 α < t. Then

t∑

r=0

(−1)r
(
t

r

)
rα = 0. (4.4.9)

Proof: We prove the formula (4.4.9) using the induction technique, with the

beginning step when t = 2 and α = 0, 1, 2. For α = 0, the LHS of (4.4.9) will be

2∑

r=0

(−1)r
(
2

r

)
= (−1)0

(
2

0

)
+ (−1)1

(
2

1

)
+ (−1)2

(
2

2

)

= 1− 2 + 1

= 0.
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For α = 1, the LHS of (4.4.9) will be

2∑

r=0

(−1)r
(
2

r

)
r = (−1)0

(
2

0

)
0 + (−1)1

(
2

1

)
+ (−1)2

(
2

2

)
2

= 0− 2 + 2

= 0,

and for α = 2, the LHS of (4.4.9) will be

2∑

r=0

(−1)r
(
2

r

)
r2 = (−1)0

(
2

0

)
02 + (−1)1

(
2

1

)
12 + (−1)2

(
2

2

)
22

= 1− 2 + 4

6= 0.

So, (4.4.9) holds for t = 2 and α = 0 and 1.

Assume, for t = k and α = 0, ..., k − 1, (4.4.9) holds. Now let t = k + 1 and

consider α = 0, ..., k. Then for α = 0, the LHS of (4.4.9) will be

k+1∑

r=0

(−1)r
(
k + 1

r

)
= (1− 1)k+1,

= 0,

from the binomial theorem. Fix α ∈ {1, ..., k}. The LHS of (4.4.9) will be

k+1∑

s=0

(−1)s
(
k + 1

s

)
sα =

k+1∑

s=1

(−1)s
(
k + 1

s

)
sα

=
k+1∑

s=1

(−1)s
(k + 1)!

s!(k + 1− s)!
s.sα−1,

=
k+1∑

s=1

(−1)s
(k + 1)!

(s− 1)!(k + 1− s)!
sα−1.
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Let r = s− 1. Then

k∑

r=0

(−1)r+1

(
k + 1

r + 1

)
(r + 1)α = (k + 1)

k∑

r=0

(−1)r+1 (k)!

(r)!(k − r)!
(r + 1)α−1,

= −(k + 1)
k∑

r=0

(−1)r
(
k

r

)
(r + 1)α−1,

= −(k + 1)
k∑

r=0

(−1)r
(
k

r

) α−1∑

j=0

rj1(α−1−j)

(
α− 1

j

)
,

= −(k + 1)
α−1∑

j=0

(
α− 1

j

) k∑

r=0

(−1)r
(
k

r

)
rj

= 0,

because
∑k

r=0(−1)r
(
k

r

)
rj = 0 for j = 1, 2, ..., k − 1, by using the inductive

assumption. Thus, (4.4.9) holds for t = k + 1. Therefore, (4.4.9) is true for

0 6 α < t and t = 1, 2, .... �

De�ne the quantity Tα(r) as follows

Tα(r) =





1 α = 0, r > 0;

0 α > r;
∑

16i1<···<iα6r i1 · · · iα 1 6 α 6 r.

(4.4.10)

The quantity Tα(r) will play an important role in the proof of Theorem 4.1. The

key property of Tα(r) we need is stated and proved in Lemma 4.4

Lemma 4.4

Let Tα(r) be as de�ned in (4.4.10). Then for all integers satisfying 0 < α 6 r,

Tα(r) is a polynomial in r of degree 2α.

Remark 4.3

The quantity Tα(r) can be written as Tα(r) = fα(δr), and δr = (1, ..., r), where

fα is de�ned in (4.4.1). However, it is more convenient below to use separate

notation.

Proof: First of all, we calculate Tα(r) in the cases α = 1 and α = 2, assuming

r > α; otherwise, Tα(r)=0, from de�nition (4.4.10).

Case: α = 1, r > α. Here

63



Chapter 4: Conditional Moment Results for Random Graph

Models

T1(r) =
r∑

i=1

i =
1

2
r(r + 1),

which is a polynomial in r of degree 2α = 2.

Case: α = 2, r > α. In this case, using the standard result

r∑

i=1

i2 =
1

6
r(r + 1)(2r + 1), (4.4.11)

we have

T2(r) =
∑

16i<j6r

ij,

=
1

2

∑

16i 6=j6r

ij, (4.4.12)

=
1

2

[ ∑

16i,j6r

ij −
r∑

i=1

i2
]
, (4.4.13)

=
1

2

[{
r(r + 1)

2

}2

− 1

6
r(r + 1)(2r + 1)

]
,

=
r(r + 1)

24

[
3r2 + 3r − 4r − 2

]
,

=
r(r + 1)

24

[
(r − 1)(3r + 2)

]
,

which is a polynomial in r of degree 2α = 4. In (4.4.12), the summation is over

all i 6= j, including i > j and j > i; and the �rst summation in (4.4.13) is over

all i, j with no restriction.

We now consider the following inductive hypothesis:

Pα: Tα(r) is polynomial in r of degree 2α when r > α.

We already know from above that P1 and P2 are true. We shall now show that

if α > 0 and Pα is true then Pα+1 is also true, i.e.

Pα+1: Tα+1(r) is a polynomial in r of degree 2(α + 1) when r > α + 1.
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Consider the general case

Tα(r) =
∑

16i1<...<iα6r

i1 · · · iα.

There are two types of terms in the sum: those for which iα = r, and those for

which iα < r. The sum of all the terms of the �rst type is given by

∑

16i1<...<iα=r

i1 · · · iα−1r = r
∑

16i1<...<iα−16r−1

i1 · · · iα−1,

= r Tα−1(r − 1),

(4.4.14)

by de�nition of Tα−1(r − 1); see (4.4.10).

The sum of all the terms of the second type, with iα < r, is given by

∑

16i1<...<iα6r−1

i1 · · · iα = Tα(r − 1), (4.4.15)

again by de�nition. Therefore combining (4.4.14) and (4.4.15), we have the iden-

tity

Tα(r) = Tα(r − 1) + rTα−1(r − 1). (4.4.16)

It will be slightly more convenient to work with the identity

Tα+1(r + 1) = Tα+1(r) + (r + 1)Tα(r), (4.4.17)

obtained by replacing α and r in (4.4.16) by α + 1 and r + 1, respectively.

Now

Tα+1(r + 1) =
r∑

j=α

{
Tα+1(j + 1)− Tα+1(j)

}
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due to cancelation and the fact that Tα+1(α) = 0 from (4.4.10). Therefore, using

(4.4.17),

Tα+1(r + 1) =
r∑

j=α

(j + 1)Tα(j). (4.4.18)

We now use the inductive hypothesis Pα and write

Tα(j) =
2α∑

k=0

A
[α]
k jk,

i.e. we may write Tα(j) as a polynomial in j of degree 2α, where the coe�cients

A
[α]
k depend on α but not on j.

Therefore, equating coe�cients of powers of j,

Tα+1(r + 1) =
r∑

j=α

(j + 1)Tα(j),

=
r∑

j=α

(j + 1)
2α∑

k=0

A
[α]
k jk,

=
2α+1∑

k=0

B
[α]
k

r∑

j=α

jk, (4.4.19)

where

B
[α]
k =





A
[α]
0 k = 0;

A
[α]
k + A

[α]
k−1 1 6 k 6 2α;

A
[α]
2α k = 2α + 1.

Now

r∑

j=α

jk =
r∑

j=1

jk −
α−1∑

j=1

jk,

=
r∑

j=1

jk − gk(α),
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where gk(α) depends only on k and α, and not j.

It is well known that
∑r

j=1 j
k is a polynomial in r of degree k + 1. This follows

from the result that

r∑

j=1

jk =
1

k + 1
rk+1 +

1

2
rk +

1

k + 1

k∑

i=2

(
k + 1

i

)
Bir

k+1−i (4.4.20)

where Bi are the Bernoulli numbers; see Conway and Guy (1996), page 106.

Since the largest power of j in (4.4.19) is (2α + 1), it follows from (4.4.20) that

(4.4.19) is a polynomial in r of degree 2α + 1 + 1 = 2(α + 1).

Finally, we want to show Tα+1(r+ 1) is a polynomial of degree 2(α+ 1) in r+ 1,

not r. To see this is the case, write

Tα+1(r + 1) =

2(α+1)∑

k=0

C
[α+1]
k rk,

=

2(α+1)∑

k=0

C
[α+1]
k (r + 1− 1)k.

(4.4.21)

Expanding and using the binomial theorem, we obtain

(r + 1− 1)k =
k∑

l=0

(
k

l

)
(r + 1)l(−1)k−l,

and after substitution in (4.4.21), we get

Tα+1(r + 1) =

2(α+1)∑

k=0

C
[α+1]
k

k∑

l=0

(
k

l

)
(r + 1)l(−1)k−l

=

2(α+1)∑

l=0

(r + 1)l
2(α+1)∑

k=l

(−1)k−lC
[α+1]
k

(
k

l

)
,

=

2(α+1)∑

k=0

D
[α+1]
k (r + 1)k.
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Then, by replacing r + 1 by r, we have

Tα+1(r) =

2(α+1)∑

k=0

D
[α+1]
k rk,

for all integers r > α + 1. Therefore, Pα+1 is implied by Pα and the lemma is

proved.

4.5 Proof of the General Conditional Moments

Theorem

The proof is a quite lengthy, so we split it into two parts, Part I and Part II.

In Part I, it will be shown that proving the results in the general case reduces to

proving the result in the case

r1 = ... = rq = 1, q = t, (4.5.1)

where t is de�ned in (4.2.2). In other words, ru = 1 for all u = 1, · · · , q, and for

no u is ru > 1. Then, in Part II, the result will be proved under condition (4.5.1).

Part I:

De�ne A = {u : ru = 1} and B = {u : ru > 1}. Then A
⋂
B = φ, the

empty set, and A
⋃
B = {1, ..., q}. Also, de�ne y

(n)
A = {yiu,ju : u ∈ A} and

y
(n)
B = {yiu,ju : u ∈ B}. In this notation,

q∏

u=1

(yiu,ju − p(n))ru =

[
∏

u∈A

(yiu,ju − p(n))

][
∏

u∈B

(yiu,ju − p(n))ru

]
. (4.5.2)

The situation considered here relates to formula (2.4.8) when the following sub-
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stitution are made:

X =y
(n)
B , Y = y

(n)
A , Z = m(n),

f(X) =
∏

u∈B

(yiu,ju − p(n))ru ,

g(Y ) =
∏

u∈A

(yiu,ju − p(n)).

(4.5.3)

Since the sampling here is equivalent to �nite population sampling, all the expect-

ations indicated in (2.4.8) and (4.5.3) can be expressed as �nite sums. Moreover,

since |f(X)| in (4.5.3) is bounded above by1, the theorem will follow if it can be

proved that

E

[
∏

u∈A

(yiu,ju − p(n))

∣∣∣∣m
(n), y

(n)
B

]
= O(N−⌊ t+1

2
⌋), (4.5.4)

for all possible y
(n)
B , where N = N (n). There are only a �nite number of possible

outcomes of the vector y
(n)
B . In particular, for n su�ciently large there are 2q−t

possible values. A further point to note is that, due to the nature of the sampling,

i.e. simple random sampling without replacement, conditioning on m(n) and

y
(n)
B in (4.5.4) is equivalent to conditioning on m̃(n) = m(n) −∑u∈B y

(n)
iu,ju

. This

simpli�cation is used below.

Consideration of the LHS of (4.5.4) leads to the following conclusions. The con-

ditional distribution of y
(n)
A given y

(n)
B and m(n) corresponds to simple random

sampling without replacement with sample size reduced from N (n) to Ñ (n) =

N (n) − (q − t); the number of ones in the �nite population is reduced from m(n)

to m̃(n) = m −∑u∈B y
(n)
iu,ju

; and the number of zeros in the �nite population is

reduced from N (n) −m(n) to Ñ (n) − m̃(n).

Let us now suppose that the theorem holds in all cases in which condition (4.5.1)

is satis�ed. Then, in view of comments in the previous paragraph, it can be

concluded that

E

[
∏

u∈A

(yiu,ju − p̃(n))

∣∣∣∣m̃
(n)

]
= O(Ñ−⌊ t+1

2
⌋), (4.5.5)
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where p̃(n) = m̃(n)

Ñ(n)
and Ñ = Ñ (n). Now Ñ (n)/N (n) converges to 1 as n → ∞

because Ñ (n) = N (n) − (q − t) and q and t are �xed, so we can replace the RHS

of (4.5.5) by O(N−⌊ t+1
2

⌋).

So (4.5.4) will follow from (4.5.5) if it can be shown that

E

[
∏

u∈A

(y
(n)
iu,ju

− p̃(n))

∣∣∣∣m̃
(n)

]
= E

[
∏

u∈A

(y
(n)
iu,ju

− p(n))

∣∣∣∣m̃
(n)

]
+O(Ñ−⌊ t+1

2
⌋).

But 0 6
∑

u∈B y
(n)
iu,ju

6 q − t, so

p̃(n) =
m̃(n)

Ñ (n)

=
m(n) −∑u∈B yiu,ju
N (n) − (q − t)

=
m(n)

N(n) −
∑

u∈B yiu,ju

N(n)

1− q−t
N(n)

=
p(n) −O( 1

N(n) )

1 +O( 1
N(n) )

= p(n) +O(N−1)

uniformly over y
(n)
B . Moreover, using Lemma (4.2),

∏

u∈A

(y
(n)
iu,ju

− p̃(n)) =
∏

u∈A

{(y(n)iu,ju
− p(n))− (p̃(n) − p(n))}

=
∏

u∈A

(y
(n)
iu,ju

− p(n))

+
t∑

r=1

(−1)r(p̃(n) − p(n))r
∑

C⊂A:|C|=t−r

∏

u∈C

(y
(n)
iu,ju

− p(n)),

(4.5.6)

where the sum in the �nal line is over all subsets C of A with t − r elements.

Therefore, taking expectation in (4.5.6), conditional on m̃(n), we �nd that
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E

[
∏

u∈A

(y
(n)
iu,ju

− p̃(n))

∣∣∣∣m̃
(n)

]

= E

[
∏

u∈A

(y
(n)
iu,ju

− p(n))

∣∣∣∣m̃
(n)

]
+

t∑

r=1

(−1)r(p̃(n) − p(n))r

×E


 ∑

C⊂A:|C|=t−r

∏

u∈C

(y
(n)
iu,ju

− p(n))

∣∣∣∣m̃
(n)




= E

[
∏

u∈A

(y
(n)
iu,ju

− p(n))|m̃(n)

]
+

t∑

r=1

O(N−r)
∑

C⊂A:|C|=t−r.

E

[
∏

u∈C

(y
(n)
iu,ju

− p(n))

∣∣∣∣m̃
(n)

]

= E

[
∏

u∈A

(y
(n)
iu,ju

− p(n))

∣∣∣∣m̃
(n)

]
+

t∑

r=1

O(N−r)O(N−⌊ t−r+1
2

⌋), (4.5.7)

assuming in the �nal line that the theorem holds in all cases satisfying (4.5.1).

But for all integers satisfying 1 6 r 6 t,

r +

⌊
t− r + 1

2

⌋
>

⌊
t+ 1

2

⌋
(4.5.8)

Consequently, Part I follows from (4.5.7).

Part II:

For the remainder of the proof it is assumed that condition (4.5.1) holds, i.e.

r1 = · · · = rq = 1 and q = t.

Therefore, using (4.3.5), the probability of selecting a sequence of length t having

r ones and t− r zeros, πr,t−r, we get
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E

[
t∏

u=1

(yiu,ju − p)

∣∣∣∣m
]

=
t∑

r=0

πr,t−r(1− p)r(−p)t−r,

=
t∑

r=0

(
t

r

)
N t

N(t)

pr(1− p)t−r

[
r−1∏

j=0

(
1− j

Np

)]
×
[
t−r−1∏

k=0

(
1− k

N(1− p)

)]

(1− p)rpt−r(−1)t−r,

= (−1)t
N t

N(t)

pt(1− p)t ×
t∑

r=0

(−1)r
(
t

r

)[r−1∏

j=0

(
1− j

Np

)][t−r−1∏

k=0

(
1− k

N(1− p)

)]
. (4.5.9)

Then, using (4.4.10),

r−1∏

j=0

(
1− j

Np

)
=

r−1∑

α=0

(−1)α
1

(Np)α
Tα(r − 1), (4.5.10)

and

t−r−1∏

k=0

(
1− k

N(1− p)

)
=

t−r−1∑

β=0

(−1)β
1

(N(1− p))β
Tβ(t− r − 1), (4.5.11)

where Tα(r) is de�ned in (4.4.10). Consequently, using (4.5.10) and (4.5.11),
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[
r−1∏

j=0

(
1− j

Np

)][t−r−1∏

k=0

(
1− k

N(1− p)

)]

=

[
r−1∑

α=0

(−1)α
1

(Np)α
Tα(r − 1)

][
t−r−1∑

β=0

(−1)β
1

(N(1− p))β
Tβ(t− r − 1)

]

=
r−1∑

α=0

t−r−1∑

β=0

(−1)α+β 1

(Np)α(N(1− p))β
Tα(r − 1)Tβ(t− r − 1)

=
t−2∑

γ=0

(−1)γ
1

Nγ

min(r−1,γ)∑

α=max(0,γ−t+r+1)

1

pα
1

(1− p)γ−α
Tα(r − 1)Tγ−α(t− r − 1)

(4.5.12)

=
t−2∑

γ=0

(−1)γ
1

Nγ

γ∑

α=0

1

pα
1

(1− p)γ−α
Tα(r − 1)Tγ−α(t− r − 1) (4.5.13)

We can change min(r − 1, γ), the upper limit of summation in (4.5.12) to γ, the

upper limit of summation in (4.5.13), because Tα(r − 1) = 0 if (r − 1) < α 6 γ,

from the de�nition of Tα(r) in (4.4.10). Also, We can change max(0, γ−t+r+1),

the lower limit of summation in (4.5.12) to 0, the lower limit of summation in

(4.5.13). Then by substituting (4.5.13) into (4.5.9) and writing

CN(p, t) = (−1)t
N t

N(t)

pt(1− p)t,

we obtain

E

[
t∏

u=1

(yiu,ju − p)

∣∣∣∣m
]
= CN(p, t)

t∑

r=0

(−1)r
(
t

r

) t−2∑

γ=0

(−1)γ
1

Nγ

γ∑

α=0

1

pα
1

(1− p)γ−α
Tα(r − 1)Tγ−α(t− r − 1),

= CN(p, t)
t−2∑

γ=0

(−1)γ
1

Nγ
×

γ∑

α=0

1

pα
1

(1− p)γ−α

t∑

r=0

(−1)r
(
t

r

)
Tα(r − 1)Tγ−α(t− r − 1).

(4.5.14)
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Using Lemma 4.4, for �xed t and variable r,

Tα(r − 1)Tγ−α(t− r − 1)

is a polynomial of degree 2α + 2(γ − α) = 2γ. Therefore, from Lemma 4.3,

t∑

r=0

(−1)r
(
t

r

)
Tα(r − 1)Tγ−α(t− r − 1) = 0,

for all γ such that 2γ < t. However, for γ > t/2, these equations are not equal

0. Therefore, the leading term in (4.5.14) is 1
Nγ∗ where γ∗ is the smallest γ such

that 2γ∗ > t. So γ∗ = t
2
if t is even and γ∗ = t+1

2
if t is odd; i.e. γ∗ = ⌊ t+1

2
⌋, the

integer part of t+1
2
. The proof is now complete. �

4.6 Preliminaries for C2 and C3

Rather than work with T 2 and T 3, the 2-star and triangle densities, respectively,

it will be more convenience to work with the equivalent variables C2 and C3

de�ned below:

C2 =
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yij − p)(yik − p) (4.6.1)

C3 =
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yij − p)(yjk − p)(yki − p), (4.6.2)

where p = N−1
∑

16i<j6n yij.

Lemma 4.5

If p = N−1
∑

16i<j6n yij then C2 = T 2, where C2 is de�ned in (4.6.1) and T 2 is

de�ned in (3.2.3).

Proof: Starting from the de�nition of C2 in (4.6.1), we have

C2 =
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yij − p)(yik − p)

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yijyik + p2 − p(yij + yik))

(4.6.3)
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Now

2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yij + yik) =
1

2

2

n(n− 1)(n− 2)

n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yij + yik)

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

j 6=i

∑

k 6=i,j

yij

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

j 6=i

(n− 2)yij

=
2

n(n− 1)

n∑

i=1

∑

j 6=i

yij

= 2.
2

n(n− 1)

n∑

i=1

∑

i<j

yij

= 2p.

(4.6.4)

Consequently, using (4.6.3) and (4.6.4), we have

C2 =

(
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yijyik + p2)

)
− 2p2

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yijyik + p2 − 2p2)

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yijyik − p2)

= T 2,

as required. �

Lemma 4.6

When p = N−1
∑

16i<j6n yij then C3 = T 3 − 3pT 2, where C3, T 2 and T 3 are

de�ned in (4.6.2), (3.2.3) and (3.2.4) respectively.
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Proof: Starting from the de�nition of C3 in (4.6.2), we have

C3 =
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yij − p)(yjk − p)(yki − p)

=
6

n(n− 1)(n− 2)
∑

16i<j<k6n

{
yijyjkyki − p3 − p(yijyik + yijykj + yjkyki) + p2(yij + yjk + yki)

}

=
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yijyjkyki − p3)

− p

n(n− 1)(n− 2)

n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yijyik + yijykj + yjkyki)

+
p2

n(n− 1)(n− 2)

n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yij + yjk + yki). (4.6.5)

In the two lines above we used the fact that

∑

16i<j<k6n

(yijyik + yijykj + yjkyki) =
1

6

n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yijyik + yijykj + yjkyki),

and
∑

16i<j<k6n

(yij + yjk + yki) =
1

6

n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yij + yjk + yki).

Since the adjacency matrix is symmetric, then (4.6.5) becomes

C3 =
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yijyjkyki − p3)

− 3p

n(n− 1)(n− 2)

n∑

i=1

∑

j 6=i

∑

k 6=i,j

yijyik

+
3p2

n(n− 1)(n− 2)

n∑

i=1

∑

j 6=i

(n− 2)yij

= T 3 −
6p

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

yijyik +
3p2

n(n− 1)

n∑

i=1

∑

j 6=i

yij
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since
∑n

i=1

∑
j 6=i yij = n(n− 1)p, twice the number of edges. Then

C3 = T 3 −
(

6p

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

yijyik

)
+ 3p3

= T 3 − 3p

(
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yijyik − p2)

)

= T 3 − 3pT 2,

as required. �

In the next section we focus on �nding conditional means, variances and covari-

ances of C2 and C3.

4.7 First and Second Moments of C2 and C3

Here we will calculate all the conditional �rst and second moment of our statistics,

C2 and C3 in the conditional case. Speci�cally, we �nd E[C2|m], Var[C2|m],

E[C3|m], Var[C3|m], and Cov[C2, C3|m].

For an arbitrary random graph RG(n, p), n is the number of vertices, and p is

the sample mean of the number of edges in the graph. The number of possible

edges in the graph is

N =
n(n− 1)

2
.

Therefore, the number of edges present is Np, and the number of absent edges is

N −Np.

Proposition 4.1

Let (yij)16i<j0n denote the adjacency matrix of Erdös-Rényi-Gilbert random

graph. Let C2 and C3 be the statistics de�ned in (4.6.1) and (4.6.2) with

p = N−1
∑

16i<j0n yij. Then, conditional on the event
∑

16i<j0n yij = m, the

following results hold.
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E

[
C2

∣∣∣∣m
]

= −p(1− p)

N − 1
; (4.7.1)

E

[
C3

∣∣∣∣m
]

=
2p(1− p)(1− 2p)

(N − 1)(N − 2)
; (4.7.2)

Var

[
C2

∣∣∣∣m
]

=
2p2(1− p)2

n(n− 1)(n− 2)
+O(n−4); (4.7.3)

Var

[
C3

∣∣∣∣m
]

=
6p3(1− p)3

n(n− 1)(n− 2)
+O(n−6); (4.7.4)

Cov

[
C2, C3

∣∣∣∣m
]

= O(n−4). (4.7.5)

Statements (4.7.1) - (4.7.5) are proved in Subsections 4.7.1-4.7.6, respectively.

4.7.1 First Conditional Moment of C2

Lemma 4.7

In the notation used above, the conditional covariance of yij and yik, j 6= k, given

the number of edges is

E

[
(yij − p)(yik − p)

∣∣∣∣m
]
= −p(1− p)

N − 1
.

Proof: In a population consists of binary variables, zeros and ones, in (4.3.2)we

de�ned πr,s−r as the probability of choosing r ones and s−r zeros when sampling

without replacement. In this case, the sample size is 2 (i.e. s = 2 and r = 0, 1, 2).

The conditional covariance of yij and yik, j 6= k, given m, the number of edges, is

E

[
(yij − p)(yik − p)

∣∣∣∣m
]
=

2∑

r=0

πr,2−r(1− p)r(−p)2−r, (4.7.6)

where all the results of πr,2−r where r = 0, 1, 2 are presented in (4.3.3).
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Then by substitution in (4.7.6) using the equations in (4.3.3), we get

E

[
(yij − p)(yik − p)

∣∣∣∣m
]

=
Np2(1− p)2

N − 1

[
(1− 1

Np
)− 2 + (1− 1

N(1− p)
)

]

= −Np
2(1− p)2

N − 1

[
(1− p+ p)

Np(1− p)

]
,

= −p(1− p)

N − 1
.

�

To �nd the �rst conditional moment of C2, E[C2|p], we need to use Lemma 4.7.

Thus the conditional expectation of C2 is

E

[
C2

∣∣∣∣m
]

= E

[
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yij − p)(yik − p)

∣∣∣∣m
]

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

E

[
(yij − p)(yik − p)

∣∣∣∣m
]

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(
−p(1− p)

N − 1

)

= −p(1− p)

N − 1
.

4.7.2 First Conditional Moment of C3

Lemma 4.8

In the notation of context, the conditional expectation of yij, yjk and yki given

the number of edges is

E

[
(yij − p)(yjk − p)(yki − p)

∣∣∣∣m
]
=

2p(1− p)(1− 2p)

(N − 1)(N − 2)
.

Proof: Conditional on the number of edges m,
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E

[
(yij − p)(yjk − p)(yik − p)

∣∣∣∣m
]

=
3∑

r=0

πr,3−r(1− p)r(−p)3−r,

= π0,3(−p)3 + π1,2(1− p)(−p)2 + π2,1(1− p)2(−p) + π3,0(1− p)3,

(4.7.7)

where, πr,3−r; r = 0, · · · , 3, is de�ned in (4.3.4). Then by substitution in (4.7.7),

we get

E

[
(yij − p)(yjk − p)(yki − p)

∣∣∣∣m
]

=
N2

(N − 1)(N − 2)
p3(1− p)3

[(
1− 1

Np

)(
1− 2

Np

)

−
(
1− 1

N(1− p)

)(
1− 2

N(1− p)

)
− 3

(
1− 1

Np

)
+ 3

(
1− 1

N(1− p)

)]
,

=
N2

(N − 1)(N − 2)
p3(1− p)3

[
2

N2p2
− 2

N2(1− p)2

]
,

=
N2

(N − 1)(N − 2)
p3(1− p)3

[
2

N2p2(1− p)2
(
(1− p)2 − p2

)]
,

=
2p(1− p)(1− 2p)

(N − 1)(N − 2)
.

�

To �nd the �rst conditional moment of C3, E[C3|m], we need Lemma 4.8. Thus
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the conditional expectation of triangles statistic is

E

[
C3

∣∣∣∣m
]

= E

[
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yij − p)(yjk − p)(yki − p)

∣∣∣∣m
]

=
6

n(n− 1)(n− 2)

∑

16i<j<k6n

E

[
(yij − p)(yjk − p)(yki − p)

∣∣∣∣m
]

=
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(
2p(1− p)(1− 2p)

(N − 1)(N − 2)

)

=
2p(1− p)(1− 2p)

(N − 1)(N − 2)
.

4.7.3 Second Conditional Moment of C2

To derive the second conditional moment of the centered 2-stars density, C2, we

should derive the following conditional expectation,

E

[
(yij − p)(yik − p)(yi∗j∗ − p)(yi∗k∗ − p)

∣∣∣∣p
]
,

here we have three cases:

Case (i) Two edge in common, i.e. i = i∗, j = j∗ and k = k∗;

Case (ii) One edge in common, i.e. i = i∗, j = j∗ and k 6= k∗;

Case (iii) No edge in common, i.e. {i, j}, {i, k}, {i∗, j∗}, {j∗, k∗}, all are di�er-

ent.

Now, we will investigate each case in detail.

Case (i):

In this case when we have two edge in common, i.e. i = i∗, j = j∗ and k = k∗.

The number of instance in this case is 1, see Lemma 3.1. This case reduces the
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expectation to

E

[
(yij − p)2(yik − p)2

∣∣∣∣m
]

=
2∑

r=0

πr,2−r[(1− p)2]r[(−p)2](2−r),

= π0,2p
4 + π1,1(1− p)2p2 + π2,0(1− p)4,

=
N

N − 1
p2(1− p)2

[
p2(1− 1

N(1− p)
+

2p(1− p) + (1− p)2(1− 1

Np
)

]

=
Np2(1− p)2

N − 1
[1 +O(N−1)].

where πr,2−r, r = 0, 1, 2, are de�ned in (4.3.3).

Case (ii):

In this case when we have one edge in common, i.e. i = i∗, j = j∗ and k 6= k∗.

The number of instance in this case is (4n− 10), see (3.3.7) in Lemma 3.1. This

case reduces the conditional expectation to

E

[
(yij − p)2(yik − p)(yik∗ − p)

∣∣∣∣m
]
.

Let r = number of 1's, and 2− r = number of 0's, where r = 0, 1, 2. Consider the

probability of having 0 in the �rst term then r ones in the rest and 2 − r zeros

in the rest is τ0;r,2−r, and the probability of having 1 in the �rst term then r ones

in the rest and 2 − r zeros in the rest is τ1;r,2−r. The conditional expectation as

following

E

[
(yij − p)2(yik − p)(yik∗ − p)

∣∣∣∣m
]

=
2∑

r=0

τ0;r,2−r(1− p)r(−p)4−r +
2∑

r=0

τ1;r,2−r(1− p)2+r(−p)2−r

(4.7.8)

where

τ0;r,2−r =
N −Np

N − 2
πr,2−r,

and

τ1;r,2−r =
Np

N − 2
πr,2−r,

where πr,2−r, r = 0, 1, 2, are de�ned in (4.3.3).
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However, we can apply simply Theorem 4.1, and we note that t = 2, therefore

the leading term in (4.7.8) is O(N−1).

Case (iii):

In this case there is no edge in common between 2-stars, i.e. {i, j}, {i, k}, {i∗, j∗},
{j∗, k∗}, all are di�erent. The number of instance in this case is n−3

2
(n2 − 6), see

(3.3.6) in Lemma 3.1. Let r = number of 1's, and 4− r = number of 0's, where

r = 0, 1, 2, 3, 4. Consider the probability of having r ones and 4− r zeros is πr,4−r.

The conditional expectation of Case(iii) is

E

[
(yij − p)(yik − p)(yi∗j∗ − p)(yi∗k∗ − p)

∣∣∣∣m
]
=

4∑

r=0

πr,4−r(1− p)r(−p)4−r,

(4.7.9)

The corresponding probabilities, πr,4−r, again obtained by considering sampling

without replacement from a �nite binary population, and using formulas in (4.3.5).

Simply, we can apply Theorem 4.1, and we note that t = 4, thus the leading term

in (4.7.9) is O(N−2).

To calculate the conditional expectation, E[C
2

2|p], for the three cases, we have to

multiply each case by its number of instances, which already found it in Lemma

3.1 in Subsection 3.3. The number of instances in each case are:

1, 4n− 10 and n−3
2
(n2 − 6) in cases (i), (ii) and (iii) respectively.
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Finally,

E

[
C

2

2

∣∣∣∣m
]

=

(
2

n(n− 1)(n− 2)

)2 n∑

i=1

∑

i 6=j<k 6=i

n∑

i∗=1

∑

i∗ 6=j∗<k∗ 6=i∗

E

[
(yij − p)(yik − p)(yi∗j∗ − p)(yi∗k∗ − p)

∣∣∣∣m
]

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

2

n(n− 1)(n− 2)

n∑

i∗=1

∑

i∗ 6=j∗<k∗ 6=i∗

E

[
(yij − p)(yik − p)(yi∗j∗ − p)(yi∗k∗ − p)

∣∣∣∣m
]

=
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

2

n(n− 1)(n− 2)
[
p2(1− p)2 + (4n− 10)O(N−1) +

n− 3

2
(n2 − 6)O(N−2)

]
,

=
2

n(n− 1)(n− 2)

[
p2(1− p)2 +O(n−1) +O(n−1)

]
,

=
2p2(1− p)2

n(n− 1)(n− 2)
+O(n−4).

4.7.4 Second Conditional Moment of C3

To drive the second conditional moment of the centered triangles density, C3, we

should drive the following conditional expectation,

E

[
(yij − p)(yjk − p)(yki − p)(yi∗j∗ − p)(yj∗k∗ − p)(yk∗i∗ − p)

∣∣∣∣m
]
,

here we have also three cases, as the statistic number of 2-stars:

Case (i) Two edge in common, i.e. i = i∗, j = j∗ and k = k∗;

Case (ii) One edge in common, i.e. i = i∗, j = j∗ and k 6= k∗;

Case (iii) No edge in common, i.e. {i, j}, {j, k}, {k, i}, {i∗, j∗}, {j∗, k∗}, {k∗, i∗},
all are di�erent.

Now, we will investigate each case in detail.
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Case (i):

In this case when we have two edge in common, i.e. i = i∗, j = j∗ and k = k∗.

The number of instance in this case is 1, see Lemma 3.2. This case reduces the

expectation to

E

[
(yij − p)2(yjk − p)2(yki − p)2

∣∣∣∣m
]

=
3∑

r=0

πr,3−r

[
(1− p)2

]r [
(−p)2

]3−r
,

and by substitution in (4.3.4), we get

E

[
(yij − p)2(yjk − p)2(yki − p)2

∣∣∣∣m
]

=
N3

N(3)

p3(1− p)3

[
p3
(
1− 1

N(1− p)

)(
1− 2

N(1− p)

)
+ 3p2(1− p)

(
1− 1

N(1− p)

)

+3p(1− p)2
(
1− 1

Np

)
+ (1− p)3

(
1− 1

Np

)(
1− 2

Np

)]
,

=
N3

N(3)

p3(1− p)3

[
1− 3p3

N(1− p)
− 3p2

N
− 3(1− p)2

N
− 3(1− p)3

Np
+

2p3

N2(1− p)2
+

2(1− p)3

N2p2

]
,

=
N3

N(3)

p3(1− p)3

[
1− 3

N

(
p3

(1− p)
+

(1− p)3

p
+ p2 + (1− p)2

)
+

2

N2

(
p3

(1− p)2
+

(1− p)3

p2

)]
,

=
N2

(N − 1)(N − 2)
p3(1− p)3

[
1−O(

1

N
) +O(

1

N2
)

]
,

≃ p3(1− p)3.

Case (ii):

In this case when we have one edge in common, i.e. i = i∗, j = j∗ and k 6= k∗.

The number of instance in this case is 3(n− 3), see (3.3.10) in Lemma 3.2. This

case reduces the conditional expectation to

E

[
(yij − p)2(yjk − p)(yki − p)(yj∗k∗ − p)(yk∗ß∗ − p)

∣∣∣∣m
]
.
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Let r is the number of 1's, and 4− r is the number of 0's, where r = 0, 1, 2, 3, 4.

Consider the probability of having 0 in the �rst term then r ones in the rest and

4− r zeros in the rest is τ0;r,4−r, and the probability of having 1 in the �rst term

then r ones in the rest and 4 − r zeros in the rest is τ1;r,4−r. The conditional

expectation as following

E

[
(yij − p)2(yjk − p)(yki − p)(yj∗k∗ − p)(yk∗i∗ − p)

∣∣∣∣m
]

=
4∑

r=0

τ0;r,4−r(1− p)r(−p)6−r +
4∑

r=0

τ1;r,4−r(1− p)2+r(−p)4−r

(4.7.10)

where

τ0;r,4−r =
N −Np

N − 4
πr,4−r,

and

τ1;r,4−r =
Np

N − 4
πr,4−r,

where πr,4−r, r = 0, 1, 2, 3, 4, are de�ned as a general case in (4.3.5).

However, we can apply simply Theorem 4.1, and we note that t = 4, therefore

the leading term in (4.7.10) is O(N−2).

Case (iii):

In this case there is no edge in common between triangles, i.e. {i, j}, {j, k}, {k, i},
{i∗, j∗}, {j∗, k∗}, {k∗, i∗}, all are di�erent. The number of instance in this case is
(n−3)(n2−16)

6
, see (3.3.9) in Lemma 3.2. Let r = number of 1's, and (6 − r) =

number of 0's, where r = 0, 1, ..., 6. Consider the probability of having r ones and

6− r zeros is πr,6−r. The conditional expectation of C2
3 given m, Case(iii), is

E

[
(yij − p)(yjk − p)(yki − p)(yi∗j∗ − p)(yj∗k∗ − p)(yk∗i∗ − p)

∣∣∣∣m
]

=
6∑

r=0

πr,6−r(1− p)r(−p)6−r, (4.7.11)
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where

πr,6−r =

(
6

r

)
N6

N(6)

pr(1− p)6−r

r−1∏

α=0

(
1− α

Np

) 6−r−1∏

β=0

(
1− β

N(1− p)

)
,

and

N(6) = N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)

However, we can simply apply Theorem 4.1. We note that t = 6, therefore the

leading term of the conditional expectation of C
2

3 given m, Case(iii) in 4.7.11 is

O(N−3)

To calculate the conditional expectation, E[C
2

3|p], for the three cases, we have to
multiply each case by its number of instances, which already found it in Lemma

3.2 in subsection 3.3. The number of instances in each case are:

1, 3(n− 3) and (n−3)(n2−16)
6

in cases (i), (ii) and (iii) respectively.

Finally,

E

[
C

2

3

∣∣∣∣m
]

=

(
6

n(n− 1)(n− 2)

)2 ∑

16i<j<k6n

∑

16i∗<j∗<k∗6n

E

[
(yij − p)(yjk − p)(yki − p)(yi∗j∗ − p)(yj∗k∗ − p)(yk∗i∗ − p)

∣∣∣∣m
]

=
6

n(n− 1)(n− 2)

∑

16i<j<k6n

6

n(n− 1)(n− 2)

∑

16i∗<j∗<k∗6n

E

[
(yij − p)(yjk − p)(yki − p)(yi∗j∗ − p)(yj∗k∗ − p)(yk∗i∗ − p)

∣∣∣∣m
]

=
6

n(n− 1)(n− 2)

∑

16i<j<k6n

6

n(n− 1)(n− 2)
[
p3(1− p)3 + 3(n− 3)O(N−2) +

(n− 3)(n2 − 16)

6
(O(N−3))

]
,

=
6

n(n− 1)(n− 2)

[
p3(1− p)3 +O(n−3) +O(n−3)

]
,

=
6p3(1− p)3

n(n− 1)(n− 2)
.
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4.7.5 Limiting Conditional Variances of C2 and C3

We examine the limiting variance of standardized version of C2.

Var

[√
n(n− 1)(n− 2)

2p2(1− p)2
(
C2 − E(C2|m)

)
]

=
n(n− 1)(n− 2)

2p2(1− p)2

[
E(C

2

2|m)− E2(C2|m)
]
,

=
n(n− 1)(n− 2)

2p2(1− p)2

[
2p2(1− p)2

n(n− 1)(n− 2)
− p2(1− p)2

(N − 1)2

]
,

=
n(n− 1)(n− 2)

2p2(1− p)2

[
2p2(1− p)2

n(n− 1)(n− 2)
−O(

1

N2
)

]
,

= 1 +O(n−1).

Also, the limiting variance of standardized version of C3.

Var

[√
n(n− 1)(n− 2)

6p3(1− p)3
(
C3 − E(C3|m)

)
]

=
n(n− 1)(n− 2)

6p3(1− p)3

[
E(C

2

3|m)− E2(C3|m)
]
,

=
n(n− 1)(n− 2)

6p3(1− p)3

[
6p3(1− p)3

n(n− 1)(n− 2)
− 4p2(1− p)2

(N − 1)2(N − 2)2
(1− 2p)2

]
,

=
n(n− 1)(n− 2)

6p3(1− p)3

[
6p3(1− p)3

n(n− 1)(n− 2)
−O(

1

N4
)

]
,

= 1.

4.7.6 Limiting Conditional Covariance of C2 and C3

We examine the covariance of standardized C2 and C3 to proof it is leading to 0.

Cov

[√
n(n− 1)(n− 2)

2p2(1− p)2
(
C2 − E(C2|m)

)
,

√
n(n− 1)(n− 2)

6p3(1− p)3
(
C3 − E(C3|m)

)
]

=
n(n− 1)(n− 2)√

12p5(1− p)5

[
E(C2C3|m)− E(C2|m)E(C3|m)

]
. (4.7.12)

88



Chapter 4: Conditional Moment Results for Random Graph

Models

So,

n(n− 1)(n− 2)√
12p5(1− p)5

E(C2|m)E(C3|m) = O(n3)O(n−2)O(n−4)

= O(n−3)

where N = O(n2), then

Cov

[√
n(n− 1)(n− 2)

2p2(1− p)2
(
C2 − E(C2|m)

)
,

√
n(n− 1)(n− 2)

6p3(1− p)3
(
C3 − E(C3|m)

)
]

=
n(n− 1)(n− 2)√

12p5(1− p)5
E(C2C3|m). (4.7.13)

To �nd E(C2C3|m), we have three cases:

Case (i): No edge in common, where here t = 5, and the number of instances is
(n−3)(n2−10)

6
;

Case (ii): One edge in common, where here t = 3, and the number of instances

is 2(n− 3);

Case (iii): Two edge in common, where here t = 1, and the number of instances

is 1.

See Lemma 3.3. Therefore
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E(C2C3|m)

= E

[
2

n(n− 1)(n− 2)

n∑

α=1

∑

β<γ

(yαβ − p)(yαγ − p).
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yij − p)(yjk − p)(yki − p)

]

=
2

n(n− 1)(n− 2)

n∑

α=1

∑

β<γ

6

n(n− 1)(n− 2)
∑

16i<j<k6n

E [(yαβ − p)(yαγ − p)(yij − p)(yjk − p)(yki − p)]

=
6

n(n− 1)(n− 2)

[
(n− 3)(n2 − 10)

6
O(N−3) + 2(n− 3)O(N−2) +O(N−1)

]

=
6

n(n− 1)(n− 2)

[
O(n−3) +O(n−3) +O(n−2)

]

= O(n−6) +O(n−6) +O(n−5).

(4.7.14)

Finally, by substitution (4.7.14) in (4.7.13), we have

Cov

[√
n(n− 1)(n− 2)

2p2(1− p)2
(
C2 − E(C2|m)

)
,

√
n(n− 1)(n− 2)

6p3(1− p)3
(
C3 − E(C3|m)

)
]

=
n(n− 1)(n− 2)√

12p5(1− p)5
E(C2C3|m)

= O(n3)
[
O(n−6) +O(n−6) +O(n−5)

]

= O(n−2)

4.8 Summary

The main result of this chapter, Theorem 4.1, describes the asymptotic behavior

as the number of vertices, n, goes to in�nity, of a family of conditional expecta-

tions under the Erdös-Rényi-Gilbert random graph model, where the conditioning

is on m = m(n), the number of edges in the graph. A second goal of this chapter

was to �nd all �rst and second conditional moments of (C2 and C3), and the

covariance between them, where (C2 and C3) are de�ned in (4.6.1) and (4.6.2)
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respectively. The results in this chapter play a vital role in the proof of Theorem

5.1, the conditional central limit theorem in the next chapter.
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Chapter 5

Central Limit Theorem:

Conditional Case

5.1 Introduction

The statistics T 1, T 2 and T 3, de�ned in (3.2.2) - (3.2.4) denote, respectively,

the edge density, the 2-stars density and the triangle density in a random graph.

In Theorem 3.1 we proved that, under the Erdös-Rényi-Gilbert random graph

model, the vector (T 1, T 2, T 3)
T , suitably standardized, satis�es a central limit

theorem. What is noteworthy about this results, however, is that the limiting

3 × 3 covariance matrix has rank 1, so that the limiting multivariate Gaussian

distribution is degenerate. This result seems some what surprising. We have not

been able to �nd this result in the literature.

In this chapter, our main aim is to prove that this degeneracy is removed when we

condition on the edge density T
u

1 = T 1+p = m/N = p, where m is the number of

edges present andN = n(n−1)/2 as before. The result we prove in Theorem 5.1 is

equivalent to the following: Conditional on T
u

1 , (T 2, T 3)
T suitably standardized

satis�es a conditional central limit theorem with a limiting covariance matrix

which has full rank 2. However, in Theorem 5.1 it turns out to be more convenient

to work with the statistics C2 and C3 de�ned in (4.6.1) and (4.6.2) respectively.

In fact, C2 and C3 are closely related to T 2 and T 3, on the event T
u

1 : Lemma 4.5

tells us that C2 = T 2, and Lemma 4.6 tells us that C3 = T 3 − 3pT 2. Therefore,

working with T 2 and T 3 conditional on T
u

1 = p is equivalent to working with C2

and C3 conditional on T
u

1 = p after a linear transformation.
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The proof of Theorem 5.1, the main results of the chapter, uses the method of

moments (see Section 2.4.5 of Chapter 2) and is split into three components: The

proofs of Propositions 5.1, 5.2 and 5.3. The key results needed in these proofs

are Theorem 4.1 and some counting lemmas, Lemma 5.1-5.4.

The outline of this chapter is as follows. In Section 5.2 we state the conditional

central limit theorem in Theorem 5.1 and we also state the component results,

Propositions 5.1-5.3. In Section 5.3 we state and prove the counting lemmas,

Lemma 5.1-5.4, and in Section 5.4 we prove the Propositions 5.1-5.3, thereby

completing the proof of Theorem 5.1. Finally, we present some numerical results

in Section 5.5 which explore how good the conditional Gaussian approximation

for (C2, C3)
T is for various choices of p and n, and in Section 5.6 we investigate

real-world network data.

5.2 The Conditional Central Limit Theorem

Recall that p = N−1
∑

16i<j6n yij. De�ne standardized versions of C2 and C3 as

follows:

C2 =

√
n(n− 1)(n− 2)

2
C2,

=

√
2

n(n− 1)(n− 2)

n∑

i=1

∑

i 6=j<k 6=i

(yij − p)(yik − p), (5.2.1)

=
1

2

{
2

n(n− 1)(n− 2)

} 1
2

n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yij − p)(yik − p),

=

{
2−1

n(n− 1)(n− 2)

} 1
2

n∑

i 6=j 6=k 6=i

(yij − p)(yik − p), (5.2.2)

where, by de�nition

n∑

i 6=j 6=k 6=i

(yij − p)(yik − p) ≡
n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yij − p)(yik − p), (5.2.3)
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and

C3 =

√
n(n− 1)(n− 2)

6
C3,

=

√
6

n(n− 1)(n− 2)

∑

16i<j<k6n

(yij − p)(yjk − p)(yki − p), (5.2.4)

=
1

6

{
6

n(n− 1)(n− 2)

} 1
2

n∑

i=1

∑

j 6=i

∑

k 6=i,j

(yij − p)(yjk − p)(yki − p),

=

{
6−1

n(n− 1)(n− 2)

} 1
2

n∑

i 6=j 6=k 6=i

(yij − p)(yjk − p)(yki − p), (5.2.5)

again using the equivalence in (5.2.3). Although equivalent, in subsequent calcu-

lations it will be more convenient to use (5.2.2), where j and k are not ordered,

than (5.2.1), where j and k are ordered; and it will be more convenient to use

(5.2.5), where i, j and k are not ordered, than (5.2.4), where i, j and k are

ordered.

The following conditional central limit theorem for the two statistics C2 and C3

is conditional on m, the number of edges present in the graph.

Theorem 5.1

Consider a sequences of random graphs with n vertices and adjacency matrices(
y
(n)
ij

)

16i<j6n

and de�ne N (n) = n(n−1)/2, n = 1, 2, · · · . Suppose that, for each
n,

(i) conditional on
∑

16i<j6n y
(n)
ij = m(n) = N (n)p(n), the zero-one variables y

(n)
ij (1 6

i < j 6 n), are identically distributed.

(ii) As n→ ∞, p(n) = m(n)/N (n) p−→ p0 ∈ (0, 1).

Then, conditional on m(n), i.e. conditional on the event
∑

16i<j6n y
(n)
ij = m(n), we

have

(
C2

C3

)∣∣∣∣ m
d−→ N2

{(
0

0

)
,

(
p20(1− p0)

2 0

0 p30(1− p0)
3

)}
(5.2.6)

as n → ∞, i.e. the limiting distribution of (C2, C3)
T |m(n) is bivariate normal
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with mean the zero vector and covariance matrix, diag{p20(1− p0)
2, p30(1− p0)

3},
and we notice that C2 and C3 are independent.

Remark 5.1

In the follows we will simplify notation by writing y
(n)
ij = yij, m

(n) = m, p(n) = p

and N (n) = N . Note that the p used in the de�nition of C2 in (5.2.2) and C3 in

(5.2.5) is actually p(n) = m(n)/N (n).

Preliminaries Comments on the Proof: The proof is based on the method

of moments; see e.g. Billingsley (2012), Chung (2001) and Chapter 2, Section

2.4.5. A key role is played by Theorem 4.1, formula (4.2.1). It has already been

shown that E[C2|m] = O(n−2) and E[C3|m] = O(n−4) in (4.7.1) and (4.7.2)

respectively. It follows that

E

[
C2

∣∣∣∣m
]
=

√
n(n− 1)(n− 2)

2
O(n−2) = O(n− 1

2 ) (5.2.7)

E

[
C3

∣∣∣∣m
]
=

√
n(n− 1)(n− 2)

6
O(n−4) = O(n− 5

2 ) (5.2.8)

Also, from the results for Var(C2|m), Var(C3|m) and Cov(C2, C3|m) obtained in

Proposition 4.1, it follows immediately that

Var(C2|m) → p20(1− p0)
2, Var(C3|m) → p30(1− p0)

3, Cov(C2, C3|m) → 0,

(5.2.9)

as n → ∞. Consequently, the �rst and second moments for C2 and C3 already

obtained are consistent with what is stated in (5.2.6).

It remains to show that all the higher order moments of C2 and C3 (conditional

on m) converge to the corresponding moments of the bivariate normal given in

(5.2.6). Speci�cally, to apply the method of moments approach, we need to show

that for each pair of non-negative integers r and s,

E[Cr
2C

s
3 |m] → E[Zr

1Z
s
2 ] = E[Zr

1 ]E[Z
s
2 ] (5.2.10)

as n→ ∞, where (Z1, Z2)
T is bivariate normal with mean (0, 0)T and covariance

matrix diag{p20(1 − p0)
2, p30(1 − p0)

3}. Note that the equality is valid in (5.2.10)

because, due to the covariance matrix of (Z1, Z2)
T being diagonal, and because
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(Z1, Z2)
T is bivariate normal, Z1 and Z2 are independent.

It has already been show in (5.2.7)-(5.2.8) that (5.2.10) holds for all integers r

and s satisfying 0 6 r + s 6 2. It remains to show that (5.2.10) holds for all

non-negative integers r and s such that r + s > 3.

It will be helpful to split the proof into three cases:

Case I the marginal conditional moments of C2 (r > 3, s = 0).

Case II the marginal conditional moments of C3 (r = 0, s > 3).

Case III the joint conditional moments of C2 and C3 (r > 1, s > 1, r + s > 3).

Case I, II and III are covered below in Propositions 5.1, 5.2 and 5.3, respectively.

The proofs of these propositions are given in Section 5.4. �

Proposition 5.1

Assume that the conditions Theorem 5.1 hold. Then for each �xed r > 1,

E[Cr
2 |m]

n→∞−→
{

0 if r is odd;

(r − 1)!!pr0(1− p0)
r if r is even

}

where (r−1)!! = (r−1)(r−3)...5.3.1 for even r. Consequently, since the limiting

conditional moments of C2 are the same as those of Z ∼ N(0, p20(1 − p0)
2), we

may conclude that C2
p−→ N(0, p20(1− p0)

2).

Proposition 5.2

Assume that the conditions Theorem 5.1 hold. Then for each �xed s > 1,

E[Cs
3 |m]

n→∞−→
{

0 if s is odd;

(s− 1)!!p
3s/2
0 (1− p0)

3s/2 if s is even,

}

Consequently, since the limiting conditional moments of C3 are the same as those

of Z ∼ N(0, p30(1− p0)
3), we may conclude that C3

p−→ N(0, p30(1− p0)
3).
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Proposition 5.3

Assume that the conditions Theorem 5.1 hold. Then for r, s > 1,

E[Cr
2C

s
3 |m]

n→∞−→
{

(r − 1)!!(s− 1)!!pr0(1− p0)
rp

3s/2
0 (1− p0)

3s/2 if r,s even;

0 otherwise

}
.

Consequently, since the limiting joint conditional moments of C2 and C3 are the

same as those of the corresponding joint moments of Z1 ∼ N(0, p20(1− p0)
2) and

Z2 ∼ N(0, p30(1− p0)
3), where Z1 and Z2 are independent and normal, it follows

that C2 and C3 are asymptotically independent and normal.

Before proving Propositions 5.1-5.3, we provide some preliminary results. These

results depend on some counting arguments which are quite complicated.

5.3 Some Counting Lemmas

In this section we make use of two types of equivalence relation: Tilde equivalence

relations, de�ned in subsection 5.3.1; and diamond equivalence relations, de�ned

in subsection 5.3.2. Tilde equivalence relations are relevant when we want to

count the number of tilde singletons, i.e. the number of tilde equivalence classes

with one element. The number of tilde singletons will play the role of t in The-

orem 4.1. In contrast, diamond equivalence relations are more convenient to use

when we counting indices as in the key Lemma 5.1. As will be seen, there is

actually a relationship between the two types of equivalence relation considered:

A given tilde equivalence relation uniquely determines a diamond equivalence re-

lation. However, the uniqueness does not go the other way. There are many tilde

equivalence relations which determine the same diamond equivalence relation.

Consider Cr
2 , which is given by

Cr
2 = {2n(n− 1)(n− 2)}−r/2

n∑

i1 6=j1 6=k1 6=i1

· · ·
n∑

ir 6=jr 6=kr 6=ir

r∏

u=1

(yiuju − p)(yiuku − p),

(5.3.1)
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and Cr
3 , which is given by

Cr
3 = {6n(n− 1)(n− 2)}−r/2

×
n∑

i1 6=j1 6=k1 6=i1

· · ·
n∑

ir 6=jr 6=kr 6=ir

r∏

u=1

(yiuju − p)(yjuku − p)(ykuiu − p),(5.3.2)

where (5.2.3) has been used repeatedly. First, we give some de�nitions. De�ne

Nn = {1, ...n}, (5.3.3)

Ar,n = {(iu, ju, ku : u = 1, ..., r) ∈ N 3r
n |iu 6= ju 6= ku 6= iu} (5.3.4)

and

T (y, A) =
r∏

u=1

(yiuju − p)(yiuku − p), A ∈ Ar,n. (5.3.5)

Since there is a one-to-one relationship betweenAr,n and the set of those (iu, ju, ku :

u = 1, ..., r) which appear on the RHS of (5.3.1), it follows that we have the iden-

tity

Cr
2 = {2n(n− 1)(n− 2)}−r/2

∑

A∈Ar,n

T (y, A), (5.3.6)

where the sum in (5.3.6) is over all elements A of Ar,n.

5.3.1 De�nition of Tilde Equivalence Relation

Now consider a general A ∈ Ar,n. It is seen that T (y, A) depends on (and only

on) those yij with index sets

L1 = {i1, j1}, L2 = {i1, k1}, · · · , L2r−1 = {ir, jr}, L2r = {ir, kr} (5.3.7)

Using the givenA ∈ Ar,n, de�ne an equivalence relation∼ on the set {L1, L2, ..., L2r}
as follows:

for Lu, Lv ∈ {L1, L2, ..., L2r}, Lu ∼ Lv if and only if Lu = Lv. (5.3.8)

Remark 5.2

When assessing equality in (5.3.8), the Lu and Lv in (5.3.7) are treated as sets
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with two elements rather than as ordered pairs. Note that yij = yji due to the

fact that we are considering graphs with undirected edges.

The relation ∼ is easily seen to be:

(i) re�exive (Lu ∼ Lu), because Lu = Lu;

(ii) symmetric (Lu ∼ Lv if and only if Lv ∼ Lu), because Lu = Lv if and only if

Lv = Lu;

(iii) transitive (Lu ∼ Lv and Lv ∼ Lw implies Lu ∼ Lw), because Lu = Lv and

Lv = Lw then Lu = Lw.

Therefore it is an equivalence relation, which determines a partition of the set

{L1, L2, ..., L2r} corresponding to equivalence classes. Let us writeΥ(2r) = {υ1, ...υβ}
for a typical partition of {L1, ..., L2r}, where

⋃β
γ=1 υγ = {L1, ..., L2r} and υγ∩υδ =

∅, the empty set, unless δ = γ. The υγ are called the blocks of the partitions.

Let us now de�ne

Ar,n[Υ
(2r)] = {A ∈ Ar,n|A determines partition Υ(2r)}. (5.3.9)

Since each A ∈ Ar,n determines one and only one partition of {L1, ..., L2r}, we
have the identity

Cr
2 = {2n(n− 1)(n− 2)}−r/2

∑

06Υ(2r)61

∑

A∈Ar,n[Υ(2r)]

T (y, A), (5.3.10)

where 0 is an abbreviation for the minimal partition {{L1}, ..., {L2r}}, 1 is an

abbreviation for the maximal partition {L1, L2, ..., L2r}, and

Ar,n =
⋃

06Υ(2r)61

Ar,n[Υ
(2r)], (5.3.11)

and the ordering is with respect to the partial ordering of set partitions; see

Chapter 2. Note that the union in (5.3.11) is over all distinct partitions of the
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set {L1, L2, ..., L2r}.

Finally, we de�ne the number of singletons in partition Υ(2r) = {υ1, ..., υβ} as

follows:

t = S(Υ(2r)) = card {γ ∈ {1, ..., β} : |υγ| = 1} ,

where card is that for cardinality, i.e. number of elements, and |υγ| = card{υγ}.

Example: Note that, for C3
2 , where r = 3, we have to con�gure three potential

2-stars as in Figure 5.1. We use the notation for Lu in (5.3.7) with r = 3.

There are several cases for these three 2-stars. To illustrate, we will explain
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Figure 5.1: Three potential 2-Stars in Case 1. Here, none of the Lu are equal,

i.e. Lu 6= Lv if u 6= v.

three cases in detail.

Case 1. Suppose there are no equalities among the Lu. Here we have L1, · · · , L6; all

are di�erent. The resulting partition is a set of 6 blocks, one block for each of

Lu, since there are no equalities in this case. So Υ(6) = {υ1, · · · , υ6}, where
υu = {Lu}, u = 1, · · · , 6. Therefore, we have 6 blocks each of them has size

1, i.e. |υu| = 1. Consequently, the number of singletons in this case is t = 6.

Case 2. Two distinct equalities among the Lu; see Figure 5.2. Suppose we have,

L1 = L3; L2 = L4; L5 6= L6; L1, L2, L5, L6 all di�erint. In this

case we have 4 blocks, Υ
(6)
2 = {υ1, υ2, υ3, υ4}, where υ1 = {L1, L3}; υ2 =

{L2, L4}; υ3 = {L5}; υ4 = {L6}.

Therefore we have 2 blocks of length 1. Consequently, the number of

singletons in this case is t = 2.
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Figure 5.2: Three potential 2-Stars in Case 2. Here, L1 = L3 (red)and L2 =
L4 (blue), and all other Lu are distinct.

Case 3. Equalities among two distinct triples; see for instance Figure 5.3, and let

we have

L1 = L3 = L5 6= L2 = L4 = L6.

In this case we have 2 blocks, Υ
(6)
3 = {υ1, υ2}, where υ1 = {L1, L3, L5}; υ2 =
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Figure 5.3: Three potential 2-Stars in Case 3. Here, L1 = L3 = L5 (red) and

L2 = L4 = L6 (blue) and L1 6= L2.

{L2, L4, L6}. Because of none blocks of length 1, the number of singletons

in this case is t = 0.

5.3.2 De�nition of Diamond Equivalence Relation

Let us consider an equivalent relation ′♦′, this time on the set {L1, ..., Lr} rather

than {L1, ..., L2r}, where here

L1 = {i1; j1, k1}, · · · , Lr = {ir; jr, kr}.

In the de�nition of L1, · · · , Lr, note that there is a semi-colon after the indices

i1, · · · , ir, respectively. This is to ensure that for a given Lu, there is a unique way

to construct two pairs of indices {iu, ju} and {iu, ku} from Lu. As will be seen
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below, this semi-colon will enable us to relate the diamond equivalence classes to

the tilde equivalence classes. The diamond equivalent relation ′♦′ is de�ned as

follows:

For Lu, Lv ∈ {L1, ..., Lr}, we say that Lu♦Lv if at least one of the set equalities

{iu, ju} = {iv, jv} or {iu, ju} = {iv, kv} or {iu, ku} = {iv, jv} or {iu, ku} = {iv, kv}
holds.

Clearly from the de�nition ′♦′ is seen to be re�exive, symmetric and transitive

and it therefore de�nes an equivalence relation. Let us use a bar to denote

the corresponding partition of {L1, ..., Lr}, i.e. Υ
(r)

= {υ1, ..., υβ}, with blocks

υγ ⊆ {L1, ..., Lr}. Let bγ = |υγ|, the number of elements in block υγ. The blocks

υγ are of two types:

(i) Those consisting of a single element , Lu say, of {L1, ..., Lr}, corresponding
to a pair {iu, ju} and {iu, ku}; blocks of this type will be called diamond

singletons.

(ii) Those blocks consisting of two or more elements of {L1, ..., Lr}.

The blocks in (ii) contain elements (i.e. pairs) which satisfy equality constraints.

Let t0 denote the number of blocks of υγ of type (i), i.e. the number of diamond

singletons. Let α denote the number of blocks of type (ii) of size b1, ..., bα respect-

ively, and suppose that these blocks have, respectively, t1, ..., tα singletons with

respect to the tilde equivalence relation.

Note: to calculate the number of tilde singletons tγ in a diamond block υγ of

type (ii), we proceed as follows. Suppose υγ = {Luδ
: δ = 1, · · · , bγ}. Then for

each Luδ
in the block, construct the two pairs {iuδ

, juδ
} and {iuδ

, kuδ
}, noting the

semi-colon in the de�nition of the Lu = {iu; ju, ku}. Finally, count the number of

tilde singletons, tγ, among the 2bγ pairs {iuδ
, juδ

} and {iuδ
, kuδ

}, δ = 1, · · · , bγ.

5.3.3 Counting Indices over a Diamond Block

Lemma 5.1

Let υγ denote any block of Υ
(r)
. Suppose that |υγ| = bγ > 2, and let tγ denote

the number of tilde singletons in υγ. Write fγ for the number of ways of choosing

the indices
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{iuδ
; juδ

, kuδ
}, δ = 1, · · · , bγ.

Then

fγ = O{n1+bγ+I(tγ>1)} as n→ ∞, (5.3.12)

where

I(tγ > 1) =

{
1 if tγ > 1,

0 otherwise,

is an indicator function.

Proof: Due to the connectedness of the set υγ with respect to the diamond equi-

valence relation ♦, there exist sequences u1, · · · , ubγ ∈ {1, · · · , r} and v1, · · · , vbγ−2 ∈
{1, · · · , r} such that υγ = {Lu1 , · · · , Lubγ

}, and the diamond relations

Lu1 ♦ Lu2 (5.3.13)

Lv1 ♦ Lu3 for some v1 ∈ {u1, u2} (5.3.14)

Lv2 ♦ Lu4 for some v2 ∈ {u1, u2, u3} (5.3.15)
...

Lvbγ−2
♦ Lubγ

for some vbγ−2 ∈ {u1, · · · , ubγ−1} (5.3.16)

The cases tγ = 0, tγ = 1 and tγ > 1 are considered separately. When convenient

we shall write b(γ) by bγ.

For tγ = 0. First we focus on Lu1 , and consider the number of choices for the

indices {iu1 , ju1 , ku1}. As there are no constraints apart from iu1 6= ju1 6= ku1 6=
iu1 , there are O(n

3) choices for the indices iu1 , ju1 and ku1 . Now we consider Lu2 .

Due to the relation Lu1♦Lu2 in (5.3.13), there are at most O(n) choices which

have not already been �xed by the relation (5.3.13). This is because at least one

of {iu2 , ju2} or {iu2 , ku2} is equal to at least one of {iu1 , ju1} or {iu1 , ku1}. Similar

arguments show that the number of choices of indices for each of

{iuδ
, juδ

, kuδ
}, δ = 3, · · · , bγ − 1,

is at most O(n). However, because tγ = 0, neither of {ib(γ), jb(γ)} or {ib(γ), kb(γ)}
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can be a tilde singleton with respect to the tilde equivalence relation. Therefore

all three of the indices ib(γ), jb(γ), kb(γ) must have already been determined by the

earlier iuδ
, juδ

, kuδ
, δ = 1, · · · , bγ − 2, through the tilde equivalence relation, see

Figure 5.4.
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Figure 5.4: The potential 2-Stars in the block υγ .

Therefore

fγ = O(n3).O(nbγ−2) = O(n1+bγ ). (5.3.17)

For tγ = 1. Without loss of generality, we can arrange for the unique tilde

singleton in υγ to belong to Lu1 . As in the case tγ = 0, there are O(n3) ways

of choosing the indices in Lu1 and at most O(n) ways of choosing the indices in

each of Lu2 , · · · , Luγ−1.

Finally, because there is only one tilde singleton in this case, which has already

appeared in Lu1 , it follows that the indices iub(γ)
, jub(γ)

, kub(γ)
have already been

determined by the tilde equivalence relation. Therefore, as in case tγ = 0,

fγ = O(n3).O(nbγ−2) = O(n1+bγ ). (5.3.18)

For tγ > 1. In this case we cannot rule out the possibility that Lubγ
con-

tains a tilde singleton, so there are potentially O(n) ways of choosing the indices

iub(γ)
, jub(γ)

, kub(γ)
while still responding the tilde equivalence relation. Therefore

in this case

fγ = O(n3).O(nbγ−1) = O(n2+bγ ). (5.3.19)

Putting (5.3.17), (5.3.18) and (5.3.19) together, we obtain (5.3.12). �

The next Lemma plays a crucial role in the proof of Proposition 5.1 below. It
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turns out that, with minor modi�cations, essentially the same result can be used

to prove Proposition 5.2 and Proposition 5.3, as is discussed below.

5.3.4 Counting Lemma for Proposition 5.1

The following Lemma is for counting indices over a tilde partition, Υ(2r).

Lemma 5.2

Let t = 2t0 +
∑α

γ=1 tγ denote the number of tilde singletons of Υ(2r). De�ne

Emax =
3

2
r +

3

2

⌊
t

2

⌋
. (5.3.20)

Then ar,n[Υ
(2r)], the cardinality of the set Ar,n[Υ

(2r)] de�ned in (5.3.9), satis�es

ar,n[Υ
(2r)] =

{
O(nEmax) if t > 1

O(nr+α) if t = 0,
(5.3.21)

where α is the number of diamond blocks of type (ii) in the diamond partition

Υ
(r)

determined by the tilde partition Υ(2r).

Proof: First, let Υ
(r)

= {υ1, · · · , υβ} denote the diamond partition determ-

ined by the tilde partition Υ(2r). Without loss of generality it is assumed that

υ1, · · · , υα are type (ii) diamond blocks and υα+1, · · · , υβ are the singleton dia-

mond blocks, with t0 = β−α. Note that for each diamond singleton block, {Lu}
say, there are O(n3) ways of choosing the indices iu, ju and ku. Therefore the

number of ways of choosing the indices for the t0 diamond singleton blocks is

{O(n3)}t0 = O(n3t0). (5.3.22)

Since the blocks υγ are disconnected from each other, it follows that, as n→ ∞,

ar,n[Υ
(2r)] = O(n3t0)O(

α∏

γ=1

fγ)

= O(n3t0)O(nα+
∑α

γ=1 bγ+
∑α

γ=1 I(tγ>1))

= O(nE)
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where fγ is de�ned in Lemma 5.1 and

E = 3t0 + α +
α∑

γ=1

bγ +
α∑

γ=1

I(tγ > 1).

Now, r = t0 +
∑α

γ=1 bγ from the de�nition of these quantities. Moreover, α 6

(r− t0)/2 since each type (ii) block contains at least two elements of {L1, ..., Lr}.
Therefore,

E 6 3t0 +

(
r − t0
2

)
+ (r − t0) +

α∑

γ=1

I(tγ > 1)

=
3r

2
+

3t0
2

+
α∑

γ=1

I(tγ > 1).

Now consider a block υγ of type (ii) such that tγ > 2. If, for a given γ, we move

all (if tγ is positive and even) or all but one (if tγ > 3 is odd) of the singletons

in block γ into blocks of type (i), then we decrease the sum of indications by 1,

but we increase E by at least 3
2
because t0 increases by at least 1. Therefore,

to maximise E we should move all the tilde singletons into blocks of type (i) if

t is even, and if t is odd we should move all but one of the tilde singletons into

blocks of type (i). The maximum value of E given t = 2t0 +
∑α

γ=1 tγ is therefore

as stated in (5.3.20).

On the other hand, if t = 0 then t0 = 0, tγ = 0, γ = 1, · · · , α, r =
∑α

γ=1 bγ and

then E = α + r, so the second part of (5.3.21) follows immediately. �

5.3.5 Counting Lemma for Proposition 5.2

Lemma 5.2 plays a key role in the proof of Proposition 5.1. Lemma 5.3 and

Lemma 5.4, stated below, play exactly analogous roles in the proofs of Proposi-

tion 5.2 and Proposition 5.3, respectively, as we shall now discuss.

Lemma 5.3 is relevant to Proposition 5.2 in which powers Cr
3 of C3 de�ned

in (5.2.5) are considered. In this case we de�ned the tilde relation on the set

{L1, · · · , L3r}, where for u = 1, · · · , r,
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L3(u−1)+v =





{iu, ju} if v = 1

{ju, ku} if v = 2

{ku, iu} if v = 3

(5.3.23)

The equivalence relation is de�ned as before: for Lu and Lv in {L1, · · · , L3r}:
We de�ne Lu ∼ Lv if we have the set equality Lu = Lv; and, since tilde de�nes

an equivalence relation, a given set of equalities involving the Lu will lead to a

partition of {L1, · · · , L3r}. A typical such partition will be denoted by Υ(3r); note

the analogy with Υ(2r) above. Moreover, in exactly the same way as before, Υ(3r)

determines a diamond partition Υ
(r)

= {υ1, · · · , υβ} on the set {L1, · · · , Lr},
where now Lu = {iu, ju, ku}, u = 1, · · · , r, with no need for the semi-colon. Let

ar,n[Υ
(3r)] denote the number of choices of {iu, ju, ku : u = 1, · · · , r} ⊆ N 3r,

see (5.3.3), which satisfy the equality constrains implied by Υ(3r) and satisfy

iu 6= ju 6= ku 6= iu for u = 1, · · · , r. Then the following analogue of Lemma 5.2

holds.

The set {L1, · · · , Lr} is de�ned in exactly the same way, and the diamond relation

is now de�ned by

Lu♦Lv if at least one of {iu, ju}, {ju, ku} or {ku, iu} is equal to at least one of

{iv, jv}, {jv, kv} or {kv, iv}.

Lemma 5.3

Let t denote the number of tilde singletons in the partition Υ(3r) of the set

{L1, · · · , L3r} de�ned by (5.3.23). Then

ar,n[Υ
(3r)] =

{
O(nEmax) if t > 1

O(nr+α) if t = 0,

where, as before, Emax is given by (5.3.20) and α is the number of diamond blocks

of type (ii) in the diamond partition Υ
(r)

determined by tilde partition Υ(3r).

Proof: The statement and proof of the analogue of Lemma 5.1 required here

is identical to that of Lemma 5.1. The proof of Lemma 5.3 is the same as that

of Lemma 5.2, even though the de�nition of the underlying set {L1, · · · , L3r} is

slightly di�erent. �
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5.3.6 Counting Lemma for Proposition 5.3

In the �nal case, Proposition 5.3, moments of the form Cr
2C

s
3 are considered.

Here, the underlying set is de�ned by

{L1, · · · , L2r, L2r+1, · · · , L2r+3s}

where, for u = 1, · · · , r,

L2(u−1)+v =

{
{iu, ju} if v = 1

{iu, ku} if v = 2,
(5.3.24)

and for u = r + 1, · · · , r + s,

L2r+3(u−r−1)+v =





{iu, ju} if v = 1

{ju, ku} if v = 2,

{ku, iu} if v = 3,

(5.3.25)

The tilde relation is de�ned in the same way as before, i.e. Lu ∼ Lv if the

set equality Lu = Lv holds. Partitions of the set {L1, · · · , L2r+3s} are written

Υ(2r,3s). The diamond relation is de�ned in the same way as before but now

on the set {L1, · · · , Lr+s}. Let ar,s,n[Υ
(2r,3s)] denote the number of choices of

{iu, ju, ku : u = 1, · · · , r + s} ⊆ N r+s, see (5.3.3), with iu 6= ju 6= ku 6= iu such

that the equalities implies by the partition Υ(2r,3s) are respected. The analogue

of Lemma 5.2 in this case is as follows.

Finally we give the counting lemma needed for Proposition 5.3.

Lemma 5.4

Let t denote the number of tilde singletons in the partition Υ(2r,3s) of the set

{L1, · · · , L2r+3s} de�ned by (5.3.24) and (5.3.25). Then

ar,s,n[Υ
(2r,3s)] =

{
O(nEmax) if t > 1

O(nr+s+α) if t = 0,

where α is the number of diamond blocks of type (ii) in the diamond partition
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Υ(r,s) determined by tilde partition Υ(2r,3s), and

Emax =
3

2
r +

3

2
s+

3

2

⌊
t

2

⌋

Proof: The details of the proof are very similar to those of Lemma 5.2 and

Lemma 5.3, and are omitted.

5.4 Proof of Propositions 5.1-5.3

Proof of Proposition 5.1: Let S(Υ(2r)) denote the number of tilde singletons

in the partition Υ(2r). For the moment, �x Υ(2r) and suppose that S(Υ(2r)) = t >

1. The contribution of Υ(2r) to the expectation E[Cr
2 |m] is given by

{
2−1

n(n− 1)(n− 2)

}r/2 ∑

A∈Ar,n[Υ(2r)]

E[T (y, A)|m]; (5.4.1)

see (5.3.5), (5.3.6) and (5.3.10).

From the general conditional moment results in Theorem 4.1,

E[T (y, A)|m] = O(n−2⌊(t+1)/2⌋) (5.4.2)

Moreover, from Lemma 5.2 with t > 1, the cardinality of the set Ar,n[Υ
(2r)],

namely ar,n[Υ
(2r)], is of order given by

ar,n[Υ
(2r)] = O

{
n3r/2+3⌊t/2⌋/2

}
(5.4.3)

Therefore, using the fact that |∑n
j=1 cj| 6

∑n
j=1 |cj|, (5.4.1) is bounded as follows:
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∣∣∣∣
{

2−1

n(n− 1)(n− 2)

}r/2 ∑

A∈A[Υ(2r)]

E[T (y, A)|m]

∣∣∣∣

6

{
2−1

n(n− 1)(n− 2)

}r/2 ∑

A∈A[Υ(2r)]

∣∣∣∣E[T (y, A)|m]

∣∣∣∣

= O(n−3r/2)ar,n[Υ
(2r)]O(n−2⌊(t+1)/2⌋),

= O(n−3r/2)O(n3r/2+3⌊t/2⌋/2)O(n−2⌊(t+1)/2⌋), (5.4.4)

= O(n−3r/2+3r/2+3⌊t/2⌋/2−2⌊(t+1)/2⌋),

= O(n3⌊t/2⌋/2−2⌊(t+1)/2⌋),

=

{
O(n−t/4) if t > 1 is even,

O(n−(t+7)/4) if t > 1 is odd,

= O(n−t/4).

In (5.4.4), the �rst term comes from the factor outside the sum in the de�nition

of Cr
2 , the second term comes from Lemma 5.2 and the third term comes from

Theorem 4.1.

Since, for given r, the number of partitions of the set with 2r elements is �nite, we

may conclude that the total contribution of all partitions Υ(2r) with S(Υ(2r)) =

t > 1 to the sum (5.4.1) is also O(n−t/4) for �xed r, and therefore this contribution

is negligible as n→ ∞.

Now consider those partitions Υ(2r) with S(Υ(2r)) = t = 0. Using Lemma 5.2

again, along with the fact that α 6 ⌊r/2⌋, where α is the number of diamond

blocks of type (ii),

{
2−1

n(n− 1)(n− 2)

}r/2 ∑
A∈A[Υ(2r)]

∣∣∣∣E[T (y, A)|m]

∣∣∣∣ = O(n−3r/2)O(nr+α)O(1),

= O(nα−r/2),

= o(1). (5.4.5)

unless α = r/2, in which case (5.4.5) is O(1). Since, as noted above, α 6 ⌊r/2⌋,
α = r/2 is only possible when r is even. Therefor when r is odd, the sum (5.3.10)

convergence to 0 as n→ ∞.
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In the remainder of the proof, we only need to consider those partitions Υ(2r)

with r even, t = 0 and α = r/2.

The number of ways of dividing r = 2s objects into s blocks of size 2 is given by

(r − 1)!! = (r − 1)(r − 3) · · · 3.1. (5.4.6)

This result follows easily from an induction argument.

We also need to include a factor 2s due to the fact that there are two ways

of forming diamond block of size 2 (see Figure 5.5) with no singletons from

Lu = {iu; ju, ku} and Lv = {iv; jv, kv} :

pair {iu, ju} with {iv, jv} and pair {iu, ku} with {iv, kv};

or pair {iu, ju} with {iv, kv} and pair {iu, ku} with {iv, jv}.
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Figure 5.5: There are two ways of forming diamond block of size 2 with no

singletons.

when calculating E[Cr
2 |m], where Cr

2 is written as in (5.3.1), we have shown that

with r even, we may restrict attention to the situation where all diamond blocks

are of size 2 and no tilde singletons are present. In this case, using the size 2

block structure, with tilde singletons absent, we may write a typical term in the

expectation of the multiple sum on the RHS of (5.3.1) as

E

[
s∏

u=1

(yiuju − p)2(yiuku − p)2
∣∣∣∣m
]
∼

s∏

u=1

E

[
(yiuju − p)2(yiuku − p)2

∣∣∣∣m
]

∼
{
p2(1− p)2

}s

= pr(1− p)r,

(5.4.7)
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where r = 2s. Therefore, using (5.4.6), we may conclude that, still assumingr =

2s is even,

E[Cr
2 |m] ∼ 2−sn−3r/2n3r/22spr(1− p)r(r − 1)!!,

= (r − 1)!!pr(1− p)r,
p−→ (r − 1)!!pr0(1− p0)

r

(5.4.8)

as required, since p
p−→ p0 as n→ ∞ by assumption. Therefore, Proposition 5.1

holds and the proof is complete. �

Proof of Proposition 5.2: This has exactly the same structure as the proof of

Proposition 5.1. However, there are some minor di�erences in the details, which

we now list.

1. The set on which the tilde equivalence relation is de�ned is expanded from

{L1, · · · , L2r} to {L1, · · · , L3r}; see (5.3.23)

2. As before, we de�ne the diamond equivalence relation on L1, · · · , Lr, but

now we may de�ne Lu = {iu, ju, ku}, i.e. we do not need to distinguish iu

from ju or ku, because now all three pairs {iu, ju}, {ju, ku} and {ku, iu} are

all present.

3. The role that Lemma 5.2 plays in the proof of Proposition 5.1 is played by

Lemma 5.3 in the proof of Proposition 5.2.

4. As in the proof of Proposition 5.1, it is established that when r is odd,

E[Cr
3 |m] → 0 as n → ∞ and when r = 2s is even, the only non-negligible

contributions are those corresponding to all diamond blocks being of size 2

with no tilde singletons present. In this case, a typical term in the expect-

ation of the multiple sum on the RHS of (5.3.2) is given by

E

[
s∏

u=1

(yiuju − p)2(yjuku − p)2(ykuiu − p)2
∣∣∣∣m
]

∼
s∏

u=1

E

[
(yiuju − p)2(yiuku − p)2(ykuiu − p)2

∣∣∣∣m
]

∼
{
p3(1− p)3

}s

= p3r/2(1− p)3r/2,

(5.4.9)
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5. Using (5.3.2), (5.4.6) and (5.4.9), and still assuming r = 2s is even, the

analogue of (5.4.6) is

E[Cr
3 |m] ∼ 6−sn−3r/2n3r/26sp3r/2(1− p)3r/2(r − 1)!!,

= (r − 1)!!p3r/2(1− p)3r/2,
p−→ (r − 1)!!p

3r/2
0 (1− p0)

3r/2,

(5.4.10)

as required, since p
p−→ p0 as n→ ∞ by assumption. �

Proof of Proposition 5.3:

The structure of this proof is exactly the same as that of Proposition 5.1 and

Proposition 5.2, but there are a few minor di�erences in the details which are

now explained.

1. The tilde equivalence relation is de�ned on the set

{L1, · · · , L2r, L2r+1, · · · , L2r+3s}; see (5.3.24) and (5.3.25).

2. The diamond equivalence relation is de�ned on {L1, · · · , Lr, Lr+1, · · · , Lr+s}
where

Lu =

{
{iu; ju, ku} u = 1, · · · , r,
{iu, ju, ku} u = r + 1, · · · , r + s.

The role of the semi-colon in {iu; ju, ku} has been explained above in Sub-

section 5.3.2.

3. The role that Lemma 5.2 plays in the proof of Proposition 5.1 is played by

Lemma 5.4 in the proof of Proposition 5.3.

4. Lemma 5.4 and Theorem 4.1 together imply that E[Cr
2C

s
3 |m] → 0 unless

both r and s are even. When r and s are even, the only non-negligible

contributions are from those diamond partitions in which all diamond blocks

are of size 2 and no tile singletons are present.

5. When r and s are both even and t = 0, the only ways to arrange

{L1, · · · , Lr, Lr+1, · · · , Lr+s} into blocks of size 2 are as follows: each block

is either of the form {Lu, Lv} where either u, v ∈ {1, · · · , r} or u, v ∈
{r + 1, · · · , r + s}. In this case α, the number of diamond blocks, is given
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by α = (r + s)/2. Then

E[Cr
2C

s
3 |m] ∼ 2−r/2n−3r/26−s/2n−3s/22r/26s/2nr+s+(r+s)/2

pr(1− p)rp3s/2(1− p)3s/2(r − 1)!!(s− 1)!!

∼ (r − 1)!!(s− 1)!!pr(1− p)rp3s/2(1− p)3s/2,
p−→ (r − 1)!!(s− 1)!!pr0(1− p0)

rp
3s/2
0 (1− p0)

3s/2

as required, since p
p−→ p0 as n→ ∞ by assumption. �

5.5 Numerical Results

The purpose of numerical study to be presented in this section is to examine how

accurate the conditional Gaussian approximation based on Theorem 5.1 is for

particular choices of n and m = Np.

We implemented the R Core Team (2014) program version 3.1.2 for simulating

random graphs RG(n,m) which assign equal probabilities to graphs with n nodes

and exactlym edges. We chose the values n = 100, 200, 500, 1000 and p = m/N =

0.1, 0.3, 0.5, 0.7 and 0.9, where N = n(n − 1)/2. In each case we ran M = 1000

Monte Carlo repititions, and random vectors

C
(1)

=

(
C

(1)

2

C
(1)

3

)
, · · · , C(M)

=

(
C

(M)

2

C
(M)

3

)

were simulated, where C
(i)

2 and C
(i)

3 are the statistics de�ned in (4.6.1) and (4.6.2)

respectively.

We also calculated the Mahalanobis statistics

Z(i) =
(
C

(i) − µ
n,p

)T
V −1

n,p

(
C(i) − µ

n,p

)

where, from (4.7.1) and (4.7.2),

µ
n,p

=

(
E[C

(i)

2 ]

E[C
(i)

3 ]

)
=

(
−p(1− p)/(N − 1))

2p(1− p)(1− 2p)/{(N − 1)(N − 2)}

)
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and from (4.7.3)-(4.7.5),

V n,p =

(
Var(C

(i)

2 ) Cov(C
(i)

2 , C
(i)

3 )

Cov(C
(i)

2 , C
(i)

3 ) Var(C
(i)

3 )

)
=

(
2p2(1−p)2

n(n−1)(n−2)
0

0 6p3(1−p)3

n(n−1)(n−2)

)
.

Note that under Theorem 5.1, the Z(i) should have approximately a χ2
2 distribu-

tion.

Based on the 1000 Mont Carlo runs for each combination of n and m = Np

considered, we produced the following output.

(A) Normal QQ plots for C2 and C3 and χ
2
2 QQ plots for Z.

(B) Approximate con�dence intervals for the three quartiles of Z.

(A): QQ plots for C2, C3 and Z.

In Figures 5.6-5.8 QQ plots are presented for p = 0.1, 0.5 and 0.9 and for n =

100, 500, 1000. The QQ plots for other choices of n and p were not presented

because they were broadly similar. In QQ plots for C2 and C3 the relationship

between the empirical and theoretical quantiles is approximately linear when the

theoretical quantiles of N(0, 1) lie between approximately -2 and 2. However,

there is some modest departure from linearity in the extreme tails, as might be

expected.

In the χ2
2 quantile plots for Z, in the bottom row of Figures 5.6-5.8, some care is

needed in interpreting the results because the scale of the horizontal axis changes.

However, it is seem that the region over which the plot is linear is increasing as

n increases in each case.

(B): Approximate con�dence intervals for the three quartiles of Z.

To compare the empirical quartiles of Z with the theoretical quartiles of χ2
2, we

constructed con�dence intervals for the theoretical quartiles based on Z(1), · · · , Z(m).

Let Z(1) 6 · · · 6 Z(m) denote the order statistic based on Z(1), · · · , Z(m). Then

we constructed the approximate con�dence intervals according to

Z(mr) ± 1.96
√
Var(Z(mr)) r ∈ (0, 1), (5.5.1)

where Var(Z(mr)) is approximated by
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Var(Z(mr)) ≈
r(1− r)

mf(Qj)
, (5.5.2)

where f is the probability density function of χ2
2. In the above, r = 0.25, 0.5 and

0.75 and Qj is the jth quartile of χ2
2 (i.e. j = r/0.25 where r = 0.25, 0.5, 0.75).

The approximations (5.5.1) and (5.5.2) are based on central limit theorems for

quantiles; see e.g. van der Vaart (2000).
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Figure 5.6: Q-Q Plots of C2, C3, and Z when p = 0.1 and n = 100, 500, 1000.
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Figure 5.7: Q-Q Plots of C2, C3, and Z when p = 0.5 and n = 100, 500, 1000.
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Figure 5.8: Q-Q Plots of C2, C3, and Z when p = 0.9 and n = 100, 500, 1000.
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In Figure 5.9, we illustrate the con�dence intervals for Q1, Q2, Q3 of χ2
2, but only

displayed when p = 0.1, 0.5, 0.9. We note that the most intervals contain the

theoretical quartiles of χ2
2, which are:

Q1 = 0.58

Q2 = 1.39

Q3 = 2.77.

The width of the con�dence intervals of Q1 is less than the width of con�dence

intervals of Q2, and the width of the con�dence intervals of Q2 is less than the

width of con�dence intervals of Q3.

In conclusions, the data of C2 and C3 in Q-Q plots appear to be normally dis-

tributed. Whereas, the data of Z in Q-Q plots appear to be χ2
(2) distributed.
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Figure 5.9: Error Bar Plots for Con�dence Intervals of Q1, Q2, Q3 of Z,when

n = 100, 200, 500, 1000, for p = 0.1, 0.5, 0.9.

5.6 Block Graph Models and Numerical results

In this section, we consider a random graph model with vertices split into classes.

Such models are known as block models. A general introduction to block models

was given by Faust and Wasserman (1992).

Here we consider graphs with h di�erent types of vertices. We are interested

in developing conditional tests based on Theorem 5.1 for statistics such as the

density of 2-stars and the density of triangles given the number of edges. Let Aα

denote the set of vertices of type α, α = 1, 2, ..., h. So, Aα

⋂
Aβ = φ if α 6= β,

and
⋃h

α=1Aα = Vn, the full set of vertices. Let nα and mα denote the number
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of vertices and edges, respectively, in block α and de�ne pα = mα/Nα where

Nα = nα(nα − 1)/2.

We will look at the density of 2-stars and triangles among Aα to Aα connections,

and also look at the density of 2-stars among Aα to Aβ connection (α 6= β). In

the �rst case, we shall condition on the number of Aα to Aα edges, and in the

second case we condition on the number of Aα to Aβ edges.

Applying Lemma 4.5 and Lemma 4.6 to block α, it is seen that

C
αα

2 =
2

nα(nα − 1)(nα − 2)

n∑

i=1
i∈Aα

∑

j<k
j,k∈Aα\{i}

(yij − pα)(yik − pα),

=
2

nα(nα − 1)(nα − 2)

n∑

i=1
i∈Aα

∑

j<k
j,k∈Aα\{i}

(yijyik − p2α), (5.6.1)

= T
αα

2

and

C
αα

3 =
6

nα(nα − 1)(nα − 2)

∑

16i<j<k0n
i,j,k∈Aα

(yij − pα)(yjk − pα)(yki − pα)

=
6

nα(nα − 1)(nα − 2)

∑

16i<j<k6n
i,j,k∈Aα

(yijyjkyki − p3α)− 3pα




6

nα(nα − 1)(nα − 2)

n∑

i=1

∑

j<k
j,k∈Aα\{i}

(yijyjk − p2α)




= T
αα

3 − 3pαT
αα

2

where T
αα

2 is de�ned in (5.6.1) and T
αα

3 is de�ned by

T
αα

3 =
6

nα(nα − 1)(nα − 2)

∑

16i<j<k6n
i,j,k∈Aα

(yijyjkyki − p3α).
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Let mαβ denote the number of edges connecting vertices in Aα with vertices in

Aβ, and de�ne pαβ = mαβ/nαnβ. Then, using similar calculations to these used

to prove Lemma 4.5,

C
αβ

2 =
2

nαnβ(nβ − 1)

n∑

i=1
i∈Aα

∑

j<k
j,k∈Aβ

(yij − pαβ)(yik − pαβ)

=
2

nαnβ(nβ − 1)

n∑

i=1
i∈Aα

∑

j<k
j,k∈Aβ

(yijyik + p2αβ)−
2pαβ

nαnβ(nβ − 1)

n∑

i=1
i∈Aα

∑

j<k
j,k∈Aβ

(yij + yik)

=

{
2

nαnβ(nβ − 1)

n∑

i=1
i∈Aα

∑

j<k
j,k∈Aβ

(yijyik + p2αβ)

}
− 2p2αβ,

=
2

nαnβ(nβ − 1)

n∑

i=1
i∈Aα

∑

j<k
j,k∈Aβ

(yijyik − p2αβ),

= T
αβ

2 .

The quantities C
βα

2 and T
βα

2 are de�ned similarly. Note that usually T
αβ

2 6= T
βα

2

and C
αβ

2 6= C
βα

2 .

5.6.1 Numerical Results

We aim in this section to use the conditional central limit theorem, Theorem 5.1,

to examine goodness-of-�t of a random block model applied to real data. Recall

the statistics C2 and C3, �rst de�ned in (4.6.1) and (4.6.2), respectively. Here

we work with standardised versions, Z2 and Z3, de�ned by

Zj = (Cj − E(Cj))/V ar(Cj), j = 2, 3, (5.6.2)

where the conditional means and variances of C2 and C3 are given in Proposition

4.1.

The approach we use is to obtain blocks, or subsets, of vertices is community

detection algorithms. The problem of detecting communities in networks has

received a lot of recent interest, for example, Arias-Castro and Verzelen (2013)

and Birmele et al. (2012). There are di�erent types of algorithms to �nd the
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community structure, for instance, FastGreedy, Walktrap, edge.betweenness and

spinglass algorithms; see e.g. Lancichinetti and Fortunato (2009). We use the

igraph package to implement the algorithms. Community structure refers to the

occurrence of subsets of vertices in a graph that are more densely connected

internally than with the rest of the graph. This inhomogeneity of connections

suggests that the network has certain natural divisions within it. We give very

partial descriptions, so the reader might want to search the review by Fortunato

(2010) to �nd more information concerning community detection.

First of all we apply the approach to a simulated Erdös-Rényi-Gilbert random

graph in order to illustrate and clarify what the procedure is. The main output

is in Table 5.2. Then we apply the procedure to a real dataset, the main outputs

here being Table 5.3, Figure 5.12 and Figure 5.13.

5.6.1.1 Block Graph Models in a Simulated Random Graph

We use the R program, in particular the igraph package, to generate an Erdös-

Rényi-Gilbert random graph. Set n = 20, m = 24, i.e. RG(20, 24), then N =

n(n− 1)/2 = 190, is the maximum number of edges, and p = m/N = 0.1263158;

see Figure 5.10. The standardized statistics Z2 and Z3 are de�ned in (5.6.2), and

we obtained the following results for the whole random graph.
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Figure 5.10: A simulated Erdos-Renyi-Gilbert random graph with n = 20
vertices and m = 24 edges.
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n m p 2-stars triangles Z2 Z3 Z

20 24 0.1263158 56 3 0.5312366 0.4170583 0.45615

We notice the random graph in Figure 5.10 has 56 2-stars and 3 triangles, while

the probability of an edge being present is p = 0.13. Then we implemented the

Fastgreedy algorithm, see Lancichinetti and Fortunato (2009), to partition the

graph into subgraphs with dense connections within the subgroups and sparser

connections between them. Thus we get 6 types of vertices as shown in Figure

5.11 with di�erence sizes as Table 5.1.
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Figure 5.11: Blocks obtained using the Fastgreedy algorithm in Erdos-Renyi-

Gilbert random graph with n = 20 vertices and m = 24 edges.

Table 5.1: The sizes of blocks in Erdös-Rényi-Gilbert random graph with n =
20 vertices and m = 24 edges.

Block A1 A2 A3 A4 A5 A6

Size 6 4 3 4 2 1

Then we calculated Z2 and Z3 within the subgraphs. Thus we obtained the

following results in Table 5.2.
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Table 5.2: The results of block graph models of Erdös-Rényi-Gilbert random

graph with n = 20 vertices and m = 24 edges.

n m p Z2 Z3 Z

A1 6 6 0.4 -0.845294 -0.0200631 0.7149244

A2 4 4 0.6666667 0.2598076 4.914392 24.21875

A3 3 2 0.6666667 0 10.25305 105.125

A4 4 4 0.6666667 0.2598076 4.914392 24.21875

A5 2 1 1 NA NA NA

A6 1 0 NA NA NA NA

From the results in Table 5.2, we found the values of Z2 within the subgraphs is

reasonable and consistence with Theorem 5.1, the conditional central limit the-

orem. However, most the values of Z3 within the subgraphs are large and are not

consistence with Theorem 5.1. We believe this is a small sample e�ect. We note

that, when the number of 2-stars or triangle equal zero, Z2 or Z3 , respectively,

yield NA, meaning ' Not Available'.

5.6.1.2 Block Graph Models applies to a Real Data Set

We use the immuno dataset from built-in data set in blockmodeling package. We

�rst of all calculated Z2 and Z3 using the full dataset and obtained the following

results.

dataset n m p 2-stars triangles Z2 Z3

immuno 1316 6300 0.0073 58656 9485 -6.597 781.6

Both Z2 and Z3 are outside the numerical range, but note that Z3 is much further

outside than Z2.

To investigate the goodness-of-�t test in block models, we analyse community

structures of this dataset. A network is said to have community structure if it

can be divided into subsets of vertices with dense connections within the subsets
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and sparser connections between the subsets.

We used algorithms for community detection to partition the set of vertices with

dense connections internally and spares connections between communities. In

particular, the Fastgreedy algorithm was implemented and produced the following

block sizes.
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Figure 5.12: Graph of immuno dataset.

Block A1 A2 A3 A4 A5 A6

Size 136 106 355 100 299 320

We also implement Walktrap algorithm for forming blocks. This gave di�erent

block sizes but broadly similar results in terms of goodness-of-�t.
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Figure 5.13: Applying Fastgreedy algorithm in immuno dataset.

Table 5.3: The results of block graph models of immuno dataset to obtain 6

blocks.

n m p Z2 Z3 Z

A1 136 597 0.06503268 -1.739917 79.61699 6341.892

A2 160 503 0.09038634 -2.010289 61.87462 3832.51

A3 355 1644 0.02616376 -1.588977 210.0418 44120.08

A4 100 450 0.09090909 -0.851095 58.47941 3420.565

A5 299 1454 0.03263675 -1.797357 179.9231 32375.54

A6 320 1489 0.0291732 -3.072335 187.5388 35180.25

If the Erdös-Rényi-Gilbert model, referred to below as the null model, holds

within subgraphs then Z2 and Z3 in each row will each be standard normal and

independent. It is noteworthy that in all rows in Table 5.3, Z2 is either within

range of a standard normal or just outside, indicating that the number of 2-stars

is not much di�erent to what we would expect under the null model, given the

number of edges present in each subgraph. In contrast,the statistic Z3 is way out
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of the range of a standard normal, indicating there are many more triangles than

one would expect under the null model. Similar �ndings - that Z2 is approximately

within rang and negative, while Z3 is way out of the range and positive - were

obtained when looking at other dataset. This suggest that the triangle statistic

will often be more sensitive to departures from the null model than the 2-star

statistic.

5.7 Summary

In this chapter we proved Theorem 5.1, a conditional central limit theorem for

the number of 2-stars and the number of triangles given the number of edges. The

result was proved under the Erdös-Rényi-Gilbert random graph model assuming

that the number of vertices, n, goes to in�nity. In Section 5.6 we applied a

goodness-of-�t statistic to blocks in a �tted block model based on real-world

network data.

The main purpose of the following chapter is to explore three new composite

likelihood methods for Exponential Random Graph Model (ERGM) de�ned in

(6.1.1) and compare their performances.
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Chapter 6

Composite Likelihood for

Exponential Random Graph Models

6.1 Introduction

Exponential random graph models (ERGMs) have already been reviewed in

Chapter 2; see Section 2.2 and Section 2.6. In this chapter we focus on a widely-

studied 3-parameter ERGM which was mentioned in (2.2.10) above and is stated

here again for convenience:

Pθ{Y = y} = exp{θ1u1(y) + θ2u2(y) + θ3u3(y)− ψ(θ)} (6.1.1)

where y = (yij)16i<j6n is the adjacency matrix of the random graph of n vertices,

the parameter vector to be estimated is θ = (θ1, θ2, θ3)
T , u1(y) =

∑
16i<j6n yij is

the number of edges, u2(y) =
∑n

i=1

∑
i 6=j<k 6=i yijyik is the number of 2-stars and

u3(y) =
∑

16i<j<k6n yijyjkyki is the number of triangles.

Exact maximum likelihood estimation of θ is intractable unless n, the number

of vertices, is quite small, because evaluation of ψ(θ) requires summation of 2N

terms where N = n(n − 1)/2. A widely-used method of parameter estimation

for model (6.1.1) is composite likelihood; see Section 2.5 of Chapter 2. However,

so far as we are aware, the only type of composite likelihood that has been used

for estimating the vector parameter, θ, in (6.1.1) is the one where the component

likelihoods are the conditional distribution of each edge given knowledge of all
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the other edges. More speci�cally, the composite likelihood L
[1]
c (θ, y)) given by

L[1]
c (θ; y) =

∏

16i<j6n

Lij(θ), (6.1.2)

where Lij(θ) = P (yij|rest, θ), where 'rest' means all yαβ with α < β and (α, β) 6=
(i, j). This composite likelihood has been used by a number of authors; see for

example Snijders and Van Duijn (2002).

The purpose of this chapter is to explore three new composite likelihoods for

model (6.1.1) and compare their performance with that of (6.1.2). The �rst of

these new composite likelihoods is:

L[2]
c (θ; y) =

n∏

i=1

∏

i 6=j<k 6=i

Li|jk(θ), (6.1.3)

where Li|jk(θ) = P (yij, yik|rest, θ), and 'rest' now means all yαβ, 1 6 α < β 6 n),

except for yij and yik. The second new composite likelihood is given by

L[3]
c (θ; y) =

∏

16i<j<k6n

Lijk(θ), (6.1.4)

where Lijk(θ) = P (yij, yjk, yki|rest, θ), and 'rest' now means all yαβ, 1 6 α < β 6

n), except for yij, yjk and yki. Finally, The third new composite likelihood is

given by

L[4]
c (θ; y) =

∏

16i<j<k<l6n

Lijkl(θ), (6.1.5)

where Lijkl(θ) = P (yij, yik, yil, yjk, yjl, ykl|rest, θ), and 'rest' now means all yαβ,

1 6 α < β 6 n), except for yij, yjk,yil, yjk, yjl, ykl.

The motivation for considering the new composite likelihoods (6.1.3)-(6.1.5) is

that, including the joint distribution on two or more yij's conditional on the rest

we may hope to retain more information concerning the dependence structure

of the yij. As will be seen, from computational point of view, the composite

likelihoods (6.1.3)-(6.1.5) are tractable. Unfortunately, the standard asymptotic

theory for composite likelihood in Chapter 2 can not be applied because the

required independence assumptions do not hold, and the asymptotic theory of

(6.1.3)-(6.1.5) as n → ∞ is unknown. However, it is possible to study the nu-
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merical performance of the new estimators in simulation studies and this we do

later in the chapter.

The outline of this chapter is as follows. In Section 6.2 we determine the com-

posite likelihoods in (6.1.2)-(6.1.5) more explicitly and provide algorithms for

calculation them. In Section 6.3 we present simulation results concerning the

performance of the estimators. Finally, we brie�y explore connections with the

work of Chatterjee and Diaconis (2013).

6.2 Composite Likelihood for ERGMs

In this section we derive explicit expressions for the composite likelihoods (6.1.2)-

(6.1.5). We also present computational algorithms for calculating them.

6.2.1 Calculation of Composite Likelihood (6.1.2)

De�ne

P (yij|rest, θ) = Pθ{Yij = yij|Yhk = yhk for all {h, k} 6= {i, j}}.

Then

P (yij|rest, θ) ∝ exp{θ1yij + θ2yij(
∑

k 6=i,j

(yik + yjk) + θ3yij
∑

k 6=i,j

yikyjk}

∝ exp{θ1yij + θ2yijSij + θ3yijTij}
∝ exp{yij θ̃ij}

where

θ̃ij = θ1 + θ2Sij + θ3Tij (6.2.1)

where

Sij =
∑

k 6=i,j

(yik + yjk), (6.2.2)
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and

Tij =
∑

k 6=i,j

yikyjk (6.2.3)

Therefore,

P (yij|rest, θ) =
exp{yij θ̃ij}
1 + exp{θ̃ij}

.

Lemma 6.1

The composite log-likelihood function, l1(θ), for the composite likelihood (6.1.2)

l1(θ) =
∑

1≤i<j≤n

(
yij θ̃ij − log{1 + exp(θ̃ij)}

)
,

where θ̃ij is de�ned in (6.2.1).

An algorithm for calculating l1(θ) is now given in Algorithm 1.

Algorithm 1 Calculation of the composite likelihood l1(θ) in (6.1.2).

Step 0 Input the adjacency matrix y = (yij)1≤i,j≤n of an undirected graph,

Step 1 Calculate yi+ =
∑n

k=1 yik, i = 1, . . . , n, and T (i, j) =
∑n

k=1 yikyjk,
1 ≤ i < j ≤ n,

Step 2 Set l1 = 0,

Step 3 For 1 ≤ i < j ≤ n, calculate
D = θ1 + θ2(yi+ − yij + yj+ − yij) + θ3T (i, j),
l1 = l1 + (yijD − log(c))
where c = 1 + eD,

Step 4 Return l1.

Note that, Algorithm 1 avoids the storage of the Sij and Tij, which results in

greater computationally e�ciency.
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6.2.2 Calculation of Composite Likelihood (6.1.3)

Continuing with the model (6.1.1), we now explore composite likelihood based

on pairs yij and yαβ given the rest. These probabilities are of the form

P (yij, yαβ|rest, θ)
= Pθ{Yij = yij, Yαβ = yαβ|Yhk = yhk for all {h, k} 6= {i, j} and {h, k} 6= {α, β}},

and we have two cases:

Case 1: α and β are both di�erent to i and j.

Case 2: One of α and β is equal to one of i or j.

The composite likelihood (6.1.3) in Case 1 is

P (yij, yαβ|rest, θ) ∝ exp{θ1(yij + yαβ) + θ2(yij
∑

k 6=i,j

(yik + yjk) + yαβ
∑

k 6=α,β

(yαk + yβk)) +

θ3(yij
∑

k 6=i,j

yikyjk + yαβ
∑

k 6=α,β

yαkyβk)}

∝ exp{θ1(yij + yαβ) + θ2(yijSij + yαβSαβ) + θ3(yijTij + yαβTαβ)}
∝ exp{yij θ̃ij + yαβ θ̃αβ}

where

θ̃ij = θ1 + θ2Sij + θ3Tij,

θ̃αβ = θ1 + θ2Sαβ + θ3Tαβ,

where Sij and Sαβ are de�ned by (6.2.2) and Tij and Tαβ are de�ned by (6.2.3).

We notice that, in Case 1, the two random variable yij and yαβ are treated as

independent. Therefore, it is unlikely that Case 1 will lead to an improvement

over l1(θ) in Lemma 6.1. We therefore explore Case 2.

Consider Case 2 with A = {{i, α}, {i, β}}, yA = {yu,v : {u, v} ∈ A} and yAc =

{yu,v : {u, v} ∈ Ac}, where Ac is the compliment of A in the edge set E. In this
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case the conditional distribution of yAc is

Pθ{YA = yA|YAc = yAc} ∝ exp{θ1(yiα + yiβ) + θ2(yiαyiβ + yiα(
∑

k 6=i,α,β

yik +
∑

k 6=i,α

yαk)

+yiβ(
∑

k 6=i,α,β

yik +
∑

k 6=i,β

yβk)) + θ3(yiαyiβyαβ

+yiα
∑

k 6=i,α,β

yikyαk + yiβ
∑

k 6=i,α,β

yikyβk)}

∝ exp{θ1(yiα + yiβ) + θ2(yiαyiβ + yiαSiα,β + yiβSiβ,α)

+θ3(yiαyiβyα,β + yiαTiα,β + yiβTiβ,α)}
∝ exp{yiαθ̃1,iα,β + yiβ θ̃1,iβ,α + yiαyiβ θ̃2,iαβ}

where

θ̃1,iα,β = θ1 + θ2Siα,β + θ3Tiα,β, (6.2.4a)

θ̃1,iβ,α = θ1 + θ2Siβ,α + θ3Tiβ,α. (6.2.4b)

θ̃2,iαβ = θ2 + θ3yαβ, (6.2.4c)

and

Siα,β =
∑

k 6=i,α,β

yik +
∑

k 6=i,α

yαk = yi+ + yα+ − 2yiα − yiβ (6.2.5)

and

Tiα,β =
∑

k 6=i,α,β

yikyαk = Tiα − yiβyαβ, (6.2.6)

with corresponding de�nition for Siβ,α and Tiβ,α. Therefore

Pθ{YA = yA|YAc = yAc} =
exp{yiαθ̃1,iα + yiβ θ̃1,iβ + yiαyiβ θ̃2,iαβ}∑1

yiα=0

∑1
yiβ=0 exp{yiαθ̃1,iα + yiβ θ̃1,iβ + yiαyiβ θ̃2,iα,β}

.

(6.2.7)

From (6.2.7), we construct a composite log-likelihood function as follows.

Lemma 6.2

The composite log-likelihood function, l2(θ), for the composite likelihood (6.1.3)

is given by

l2(θ) =
n∑

i=1

∑

α<β,i 6=α,β

yiαθ̃1,iα,β + yiβ θ̃1,iβ,α + yiαyiβ θ̃2,iαβ − log(ciα,iβ)
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where ciα,iβ is the normalization constant

ciα,iβ =
1∑

yiα=0

1∑

yiβ=0

exp{yiαθ̃1,iα,β + yiβ θ̃1,iβ,α + yiαyiβ θ̃2,iα,β}

where θ̃1,iα,β, θ̃1,iβ,α, and θ̃2,iα,β are de�ned in (6.2.4).

An algorithm for calculating l2(θ) is now given in Algorithm 2.

Algorithm 2 Calculation of the composite likelihood l2(θ) in (6.1.3).

Step 0 Input the adjacency matrix y = (yij)1≤i,j≤n, of an undirected graph,

Step 1 Calculate yi+ =
∑n

k=1 yik, i = 1, . . . , n, and T (i, j) =
∑n

k=1 yikyjk, 1 ≤
i < j ≤ n.

Step 2 Set l2 = 0.

Step 3 For i = 1, . . . , n, α < β, i 6= α, i 6= β, calculate
D1 = θ1 + θ2[(yi+ − yiα − yiβ) + (yα+ − yiα)] + θ3(T (i, α)− yiβyαβ)
D2 = θ1 + θ2[(yi+ − yiα − yiβ) + (yβ+ − yiβ)] + θ3(T (i, β)− yiαyβα)
D3 = θ2 + θ3yα,β
l2 = l2 +D1yiα +D2yiβ +D3yiαyiγ − log(c)
where c = 1 + eD1 + eD2 + eD1+D2+D3

Step 4 Return l2.

6.2.3 Calculation of Composite Likelihood (6.1.4)

Let A = {{i, α}, {i, β}, {α, β}}, yA = {yu,v : {u, v} ∈ A}, yAc = {yu,v : {u, v} ∈
Ac}, and de�ne

P (yA|yAc,θ) = Pθ{YA = yA|YAc = yAc}.
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Than

P (yA|yAc,θ) ∝ exp{θ1(yiα + yiβ + yαβ) + θ2((yiαyiβ + yiαyαβ + yiβyαβ)

+yiα
∑

k 6=i,α,β

(yik + yαk) + yiβ
∑

k 6=i,α,β

(yik + yβk) + yαβ
∑

k 6=i,α,β

(yαk + yβk))

+θ3((yiαyiβyαβ) + yiα
∑

k 6=i,α,β

yikyαk + yiβ
∑

k 6=i,α,β

yikyβk + yαβ
∑

k 6=i,α,β

yαkyβk)}

∝ exp{θ1(yiα + yiβ + yαβ) + θ2((yiαyiβ + yiαyαβ + yiβyαβ)

+yiαS̀iα,β + yiβS̀iβ,α + yαβS̀αβ,i) + θ3((yiαyiβyαβ)

+yiαTiα,β + yiβTiβ,α + yαβTαβ,i)}
∝ exp{yiαθ̃1,iα + yiβ θ̃1,iβ + yαβ θ̃1,αβ + θ2(yiαyiβ + yiαyαβ + yiβyαβ)

+θ3(yiαyiβyαβ)}

where

θ̃1,iα,β = θ1 + θ2S̀iα,β + θ3Tiα,β, (6.2.8a)

θ̃1,iβ,β = θ1 + θ2S̀iβ,α + θ3Tiβ,α, (6.2.8b)

θ̃1,αβ,i = θ1 + θ2S̀αβ,i + θ3Tαβ,i, (6.2.8c)

where

S̀iα,β =
∑

k 6=i,α,β

(yik + yαk), (6.2.9)

with corresponding de�nition for S̀iβ,α and S̀αβ,i, and Tiα,β is de�ned in (6.2.6)

with corresponding de�nition for Tiβ,α and Tαβ,i. Therefore

Pθ{YA = yA|YAc = yAc} =

c−1
iαβ exp{yiαθ̃1,iα+yiβ θ̃1,iβ +yαβ θ̃1,αβ +θ2(yiαyiβ +yiαyαβ +yiβyαβ)+θ3yiαyiβyαβ}

(6.2.10)
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where ciαβ is the normalization constant given by

ciαβ =
1∑

yiα=0

1∑

yiβ=0

1∑

yαβ=0

exp{yiαθ̃1,iα + yiβ θ̃1,iβ + yαβ θ̃1,αβ

+ θ2(yiαyiβ + yiαyαβ + yiβyαβ) + θ3(yiαyiβyαβ)} (6.2.11)

From 6.2.10, we construct a composite log-likelihood function as follows.

Lemma 6.3

The composite log-likelihood function, l3(θ), for the Calculation of composite

likelihood (6.1.4) as following

l3(θ) =
∑

i<α<β

yiαθ̃1,iα + yiβ θ̃1,iβ + yαβ θ̃1,αβ + θ2(yiαyiβ + yiαyαβ + yiβyαβ)

+ θ3(yiαyiβyαβ)− log(ciαβ)

where ciαβ is de�ned in (6.2.11), and θ̃1,iα, θ̃1,iβ, and θ̃2,iα,β are de�ned in (6.2.8).

A convenient algorithm for calculating l3(θ) is given in Algorithm 3.
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Algorithm 3 Calculation of the composite likelihood l3(θ) in (6.1.4).

Step 0 Input the adjacency matrix y = (yij)1≤i,j≤n, of an undirected graph,

Step 1 Calculate yi+ =
∑n

k=1 yik, i = 1, . . . , n, and T (i, j) =
∑n

k=1 yikyjk, 1 ≤
i < j ≤ n,

Step 2 Set l3 = 0,

Step 3 For 1 ≤ i < α < β ≤ n, calculate

D1 = θ1 + θ2[(yi+ − yiα − yiβ) + (yα+ − yαi − yαβ)] + θ3{T (i, α)− yiβyαβ}
D2 = θ1 + θ2[(yi+ − yiα − yiβ) + (yβ+ − yβi − yβα)] + θ3{T (i, β)− yiαyβα}
D3 = θ1 + θ2[(yα+ − yαi − yαβ) + (yβ+ − yβi − yβα)] + θ3{T (α, β)− yαiyβi}

Step 4 Calculate

c =
1∑

yiα=0

1∑

yiβ=0

1∑

yαβ=0

exp{yiαθ̃1,iα,β + yiβ θ̃1,iβ,α + yαβ θ̃1,αβ,i

+ θ2(yiαyiβ + yiαyαβ + yiβyαβ) + θ3yiαyiβyαβ

and

l3 = l3 +D1yiα +D2yiβ +D3yαβ + θ2(yiαyiβ + yiαyαβ + yiβyαβ)

+ θ3yiαyiβyαβ − log(c)

Step 5 Return l3.

6.2.4 Calculation of Composite Likelihood (6.1.5)

Let A = {{i, j}, {i, α}, {i, β}, {j, α}, {j, β}, {α, β}}, yA = {yi,j : {i, j} ∈ A} and

yAc = {yi,j : {i, j} ∈ Ac}, and de�ne

P (yA|yAc) = Pθ{YA = yA|YAc = yAc}.
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Then

P (yA|yAc) ∝ exp{θ1(yij + yiα + yiβ + yiα + yjβ + yαβ)

+θ2((yijyjα + yijyjβ + yijyiβ + yijyiα + yjαyαβ

+yjαyαi + yjαyjβ + yαβyαi + yαβyβi + yαβyβj + yβiyβj + yβiyiα)

+yij
∑

k 6=i,j,α,β

(yik + yjk) + yiα
∑

k 6=i,j,α,β

(yik + yαk)

+yiβ
∑

k 6=i,j,α,β

(yik + yβk) + yjα
∑

k 6=i,j,α,β

(yjk + yαk)

+yjβ
∑

k 6=i,j,α,β

(yjk + yβk) + yαβ
∑

k 6=i,α,β

(yαk + yβk))

+θ3((yijyiαyjα + yijyiβyjβ + yiαyiβyαβ + yjαyjβyαβ)

+yij
∑

k 6=i,j,αβ

yikyjk + yiα
∑

k 6=i,j,α,β

yikyαk + yiβ
∑

k 6=i,j,α,β

yikyβk

+yjα
∑

k 6=i,j,α,β

yjkyαk + yjβ
∑

k 6=i,j,α,β

yjkyβk + yαβ
∑

k 6=i,j,α,β

yαkyβk)}

∝ exp{θ1(yij + yiα + yiβ + yjα + yjβ + yαβ)

+θ2((yijyjα + yijyjβ + yijyiβ + yijyiα + yjαyαβ

+yjαyαi + yjαyjβ + yαβyαi + yαβyβi + yαβyβj + yβiyβj + yβiyiα)

+yijSij,αβyiαSiα,jβ + yiβSiβ,jα + yjαSjα,iβ + yjβSjβ,iα + yαβSαβ,i)

+θ3((yijyiαyjα + yijyiβyjβ + yiαyiβyαβ + yjαyjβyαβ)

+yijTij,αβ + yiαTiα,β + yiβTiβ,α + yjαTjα,iβ + yjβTjβ,iα + yαβTαβ, i)}
∝ exp{yij θ̃1,ij + yiαθ̃1,iα + yiβ θ̃1,iβ + yjαθ̃1,jα + yjβ θ̃1,jβ + yαβ θ̃1,αβ

+θ2(yijyjα + yijyjβ + yijyiβ + yijyiα + yjαyαβ

+yjαyαi + yjαyjβ + yαβyαi + yαβyβi + yαβyβj + yβiyβj + yβiyiα)

+θ3(yijyiαyjα + yijyiβyjβ + yiαyiβyαβ + yjαyjβyαβ)}

where

Sij,αβ =
∑

k 6=i,j,α,β

(yik + yjk),

Tij,αβ =
∑

k 6=i,j,α,β

yikyjk, (6.2.12)

θ̃1,ij = θ1 + θ2Sij,αβ + θ3Tij,αβ,
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with corresponding de�nition for Siα,jβ, Siβ,jα, Sjα,iβ, Sjβ,iα and Sαβ,ij, and with

corresponding de�nition for Tiα,jβ, Tiβ,jα, Tjα,iβ, Tjβ,iα and Tαβ,ij, and with cor-

responding de�nition for θ̃1,iα, θ̃1,iβ, θ̃1,jα, θ̃1,jβ, θ̃1,αβ.

Therefore

Pθ{YA = yA|YAc = yAc} = c−1exp{yij θ̃1,ij + yiαθ̃1,iα + yiβ θ̃1,iβ + yjαθ̃1,jα

+ yjβ θ̃1,jβ + yαβ θ̃1,αβ + θ2A+ θ3B}.

where

A =yijyjα + yijyjβ + yijyiβ + yijyiα + yjαyαβ + yjαyαi+

yjαyjβ + yαβyαi + yαβyβi + yαβyβj + yβiyβj + yβiyiα,

B =yijyiαyjα + yijyiβyjβ + yiαyiβyαβ + yjαyjβyαβ,

c =
1∑

yij=0

1∑

yiα=0

1∑

yiβ=0

1∑

yjα=0

1∑

yjβ=0

1∑

yαβ=0

exp{yij θ̃1,ij + yiαθ̃1,iα

+ yiβ θ̃1,iβ + yjαθ̃1,jα + yjβ θ̃1,jβ + yαβ θ̃1,αβ + θ2A+ θ3B}

(6.2.13)

Lemma 6.4

The composite log-likelihood function, lc(θ), for the composite likelihood (6.1.5)

as following

lc(θ) =
∑

i<j<α<β

LA(θ)

where LA(θ) is the log of the composite likelihood (6.1.5)

LA(θ) = yij θ̃1,ij+yiαθ̃1,iα+yiβ θ̃1,iβ+yjαθ̃1,jα+yjβ θ̃1,jβ+yαβ θ̃1,αβ+θ2A+θ3B−log(c)

where A, B and c are given in (6.2.13), and θ̃1,ij, θ̃1,iα, θ̃1,jα, θ̃1,jβ, θ̃1,αβ are de�ned

in (6.2.12)

A convenient algorithm for calculating l4(θ) is given in Algorithm 4.
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Algorithm 4 Calculation of the composite likelihood l4(θ) in (6.1.5).

Step 0 Input the adjacency matrix y = (yij)1≤i,j≤n, of an undirected graph,

Step 1 Calculate yi+ =
∑n

k=1 yik, i = 1, . . . , n, and T (i, j) =
∑n

k=1 yikyjk, 1 ≤
i < j ≤ n,

Step 2 Set l4 = 0,

Step 3 For 1 ≤ i < j < α < β ≤ n, calculate

Dij =θ1 + θ2[(yi+ − yijyiα − yiβ) + (yj+ − yji − yjα − yjβ)]

+ θ3{T (i, j)− yiαyjα − yiβyjβ}
Diα =θ1 + θ2[(yi+ − yijyiα − yiβ) + (yα+ − yαi − yαj − yαβ)]

+ θ3{T (i, α)− yijyαj − yiβyαβ}
Diβ =θ1 + θ2[(yi+ − yijyiα − yiβ) + (yβ+ − yβi − yβj − yβα)]

+ θ3{T (i, β)− yijyβj − yiαyβα}
Djα =θ1 + θ2[(yj+ − yjiyjα − yjβ) + (yα+ − yαi − yαj − yαβ)]

+ θ3{T (i, α)− yijyαj − yiβyαβ}
Djβ =θ1 + θ2[(yj+ − yjiyjα − yjβ) + (yβ+ − yβi − yβj − yβα)]

+ θ3{T (j, β)− yjiyβi − yjαyβα}
Dαβ =θ1 + θ2[(yα+ − yαiyαj − yαβ) + (yβ+ − yβi − yβj − yβα)]

+ θ3{T (α, β)− yαiyβi − yαjyβj}.

Calculate A and B de�ned in (6.2.13).

Step 4 Calculate c de�ned in (6.2.13), and

l4 = l4 + yijDij + yiαDiα + yiβDiβ + yjαDjα + yjβDjβ + yαβDαβ

+ θ2A+ θ3B − log(c)

Step 5 Return l4.

6.3 Simulation Studies of the Composite Likeli-

hood

6.3.1 Introduction

In this section we explore by simulation the four composite likelihood estimators

derived in Section 6.2 and computed using Algorithm 1 - Algorithm 4. As before,
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y = (yij)1≤i,j≤n denotes the adjacency matrix for a random graph with n vertices,

and yij = yji and yii = 0 as we only consider simple undirected graphs here.

We focus on the �tting of two models: the 3-parameter model

Pθ{Y = y} = exp{θ1u1(y) + θ2u2(y) + θ3u3(y)− ψ3(θ)}, (6.3.1)

and 2-parameter model with probabilities given by

Pθ{Y = y} = exp{θ1u1(y) + θ3u3(y)− ψ(θ)}, (6.3.2)

where, as before, u1(y), u2(y) and u3(y) denote, respectively, the number of edges,

the number of 2-stars and the number of triangles. In subsection 6.3.2 we present

simulation results for the four composite likelihood estimators of the 3-parameter

model (6.3.1), and in subsection 6.3.3 we present simulation results for the cor-

responding estimators for the 2-parameter model (6.3.2).

In all cases we have simulated from the homogeneous Bernoulli random graph

model with θ2 = θ3 = 0 in (6.3.1) and θ3 = 0 in (6.3.2). Ideally, we would also

have explored simulations from models (6.3.1) and (6.3.2) with non-zero θ2 and

θ3. However, this would have required the use of an iterative MCMC simulation

method such as Metropolis-Hastings or Gibbs sampler. Not only would this have

greatly increased the computing resources needed, but there would also have been

uncertainty about whether the MCMC procedure had converged. In our current

work we have opted to obtained reliable results for more limited set of cases

(θ2 = θ3 = 0), rather than obtain possibly unreliable results in a broader set of

cases. However, simulation studied with θ2 6= 0 and/or θ3 6= 0 is an interesting

topic for further work.

Throughout this section, the number of Monte Carlo runs is M = 100 in each

case.

6.3.2 Numerical Results for the 3-Parameter Model

In this subsection, the Root Mean Squared Error (RMSE) for an estimator θ̂(k)

based on Monte Carlo realisations

θ̂(k)[j] = (θ̂
(k)
1 [j], θ̂

(k)
2 [j], θ̂

(k)
3 [j])T , j = 1, · · · ,M,
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is given by

RMSE(k) =

√√√√ 1

M

M∑

j=1

{
(θ̂

(k)
1 [j]− θ1)2 + (θ̂

(k)
2 [j]− θ2)2 + (θ̂

(k)
3 [j]− θ3)2

}
,

(6.3.3)

where in all examples θ = (θ1, θ2, θ3)
T is of the form (θ1, 0, 0)

T , and k = 1, 2, 3, 4

corresponds to estimators based on the composite likelihoods calculated in Al-

gorithm 1- Algorithm 4, respectively.

Numerical results are shown in Table 6.1. When n = 10, RMSE(4) is the smal-

lest in each case, followed by RMSE(3), with the di�erence being greatest when

θ1 = 2. However, when n > 20, the RMSE results for the four estimators are very

similar indeed. We also note that as n increases, the RMSE for each estimator

decreases steadily, suggesting that the estimators are consistent under the homo-

geneous Bernoulli model at least, a result we have not proved theoretically. A

further conclusion we draw is that for these estimators performance as measured

by RMSE becomes worse as θ1 increases.
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Table 6.1: The Root Mean Squared Error (RMSE) of di�erent composite like-

lihood estimators of the four methods, implemented using the al-

gorithms mentioned in Section 6.2, assuming θ2 = θ3 = 0 and θ1
varying, with n the number of nodes, and the number of Monte

Carlo runs M = 100. Cases with n = 50 and n = 100 were not

calculated for RMSE(4) due to the run time being too long.

θ1 n=10 n=20 n=30 n=50 n=100

-2 RMSE(1) 16.79983 7.616962 1.650574 0.5476716 0.3746696

RMSE(2) 15.3608 7.449942 1.788648 0.5474275 0.3745891

RMSE(3) 15.02113 7.521577 1.735983 0.5470767 0.3744534

RMSE(4) 14.98221 7.669413 1.951661 0.5465144 ���

-1 RMSE(1) 12.90397 1.63242 1.039710 0.6503136 0.4377969

RMSE(2) 8.796941 1.616878 1.037407 0.6494742 0.4377857

RMSE(3) 8.533732 1.606362 1.034880 0.6491427 0.4377313

RMSE(4) 8.475723 1.589709 1.030610 ��� ���

0 RMSE(1) 4.983311 2.295181 2.094724 1.347965 0.7484166

RMSE(2) 4.526295 2.271271 2.085905 1.3472 0.7483615

RMSE(3) 4.309999 2.257489 2.078797 1.346123 0.7482923

RMSE(4) 4.036978 2.22743 2.06983 ��� ���

1 RMSE(1) 57.68832 6.030356 3.659141 2.858981 1.835285

RMSE(2) 58.27078 5.988627 3.645089 2.857446 1.835245

RMSE(3) 57.61023 5.963112 3.637414 2.855695 1.834834

RMSE(4) 55.2161 5.913037 3.617684 ��� ���

2 RMSE(1) 275.3757 121.9528 14.1641 8.708826 5.96737

RMSE(2) 313.8732 120.5589 14.15409 8.70749 5.973889

RMSE(3) 160.8919 124.9955 14.14478 8.705931 5.961482

RMSE(4) 120.8304 126.3075 13.92554 ��� ���

Monte Carlo estimators of the correlation matrices of the θ̂(k), k = 1, 2, 3, 4, are

given below in (6.3.4)-(6.3.7) respectively for the case n = 30 and θ1 = 0, values

we chose because they correspond to the center of Table 6.1.

The correlation matrix of θ̂(k) based on Monte Carlo realisations θ̂(k)[1], · · · , θ̂(k)[M ]
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was calculated as

Corr(k) = D(k)

{
1

M

M∑

j=1

(
θ̂(k)[j](θ̂(k)[j])T − θ

(k)
(θ

(k)
)T
)}

D(k)

where

θ
(k)

=
1

M

M∑

j=1

θ̂(k)[j], D(k) = diag

{
1

σ
(k)
1

,
1

σ
(k)
2

,
1

σ
(k)
3

}

and, for α = 1, 2, 3,

σ(k)
α =

1

M

M∑

j=1

{
(θ̂(k)α [j])2 − (θ

(k)

α )2
}
,

where θ
(k)

= (θ
(k)

1 , θ
(k)

2 , θ
(k)

3 )T . The correlation matrices were found to be

Corr(1) =




1.0000000 −0.9275569 0.3470725

−0.9275569 1.0000000 −0.6686536

0.3470725 −0.6686536 1.0000000


 , (6.3.4)

Corr(2) =




1.0000000 −0.9275396 0.3486106

−0.9275396 1.0000000 −0.6698873

0.3486106 −0.6698873 1.0000000


 , (6.3.5)

Corr(3) =




1.0000000 −0.9273094 0.3502174

−0.9273094 1.0000000 −0.6716093

0.3502174 −0.6716093 1.0000000


 , (6.3.6)

and

Corr(4) =




1.0000000 −0.9273055 0.3517414

−0.9273055 1.0000000 −0.6728100

0.3517414 −0.6728100 1.0000000


 . (6.3.7)

There are two main points to note about (6.3.4)-(6.3.7). First, in all cases θ̂
(k)
1

and θ̂
(k)
2 are highly correlated, while in contrast θ̂

(k)
1 and θ̂

(k)
2 are both somewhat

less correlated with θ̂
(k)
3 . Second, the four correlation matrices are remarkably

similar. Scatterplots of the components of each of the four estimators based

on Monte Carlo realisations are shown in Figure 6.1. These plots corroborate
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the �ndings in (6.3.4)-(6.3.7). Broadly similar results were obtained with other

choices of θ1 and n, when n > 20.

Figure 6.1: Scatter plots for components of θ̂1, θ̂2, θ̂3 and θ̂4 when θ1 = 0 and

n = 30, based on M = 100 Monte Carlo runs.

In Figure 6.2, QQ plots are shown of the squared Mahalanobis distances against

the χ2
3 quantiles. Let

V(k) =

{
1

M

M∑

j=1

θ̂(k)[j](θ̂(k)[j])T
}
− θ

(k)
(θ

(k)
)T

denote the sample covariance matrix of θ̂(k) based on Monte Carlo realisations

θ̂(k)[j], j = 1, · · · ,M . Then for each θ̂(k)[j] de�ne

τ
(k)
j = (θ̂(k)[j]− θ)T (V(k))

−1(θ̂(k)[j]− θ),

where θ = (0, 0, 0)T in the example considered. If the normal approximation
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θ̂(k) ≈ N3(θ, V(k)) is good, then τ
(k)
j , j = 1, · · · ,M , will be approximately χ2

3.

Figure 6.2: Mahalanobis to compare between CLEs for the full model, when

θ1 = 0 and n = 30.

It is seen from Figure 6.2 that, apart from a single outlier which appears at the

some location on all four plots, the χ2
3 approximation to the τ

(k)
j looks to be very

good for each of the four estimators. Moreover, as found previously, the behavior

of the four estimators is very similar.

Finally, we look at the sample correlation of θ
(1)
α , θ

(2)
α , θ

(3)
α and θ

(4)
α for α = 1, 2, 3.

The relevant correlation matrices were founded to be

Corr1 =




1.0000000 0.9999919 0.9999844 0.9999646

0.9999919 1.0000000 0.9999958 0.9999858

0.9999844 0.9999958 1.0000000 0.9999910

0.9999646 0.9999858 0.9999910 1.0000000



, (6.3.8)
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Corr2 =




1.0000000 0.9999867 0.9999789 0.9999432

0.9999867 1.0000000 0.9999949 0.9999785

0.9999789 0.9999949 1.0000000 0.9999860

0.9999432 0.9999785 0.9999860 1.0000000



, (6.3.9)

Corr3 =




1.0000000 0.9999816 0.9999801 0.9999324

0.9999816 1.0000000 0.9999986 0.9999805

0.9999801 0.9999986 1.0000000 0.9999826

0.9999324 0.9999805 0.9999826 1.0000000



, (6.3.10)

again in the case θ1 = 0 and n = 30. The correlations of each component across

estimators are remarkably high, and certainly high than we would have expected.

These �nding are con�rmed in the scatterplots in Figure 6.3.

Figure 6.3: Scatterplots to compare between methods for the Full Model,

when θ1 = 0 and n = 30.
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6.3.3 Numerical Results for the 2-Parameter Model

In this case we just focused on two estimators of the parameters in model (6.3.2):

these based on the composite likelihoods calculated in Algorithm 1 and Algorithm

3. The RMSE for an estimator θ̂(k) based on Monte Carlo realisations θ̂(k)[j],

j = 1, · · · ,M , is given by

RMSE(k) =

√√√√ 1

M

M∑

j=1

{
(θ̂

(k)
1 [j]− θ1)2 + (θ̂

(k)
3 [j]− θ3)2

}
, (6.3.11)

where in all examples θ3 = 0 and here we limit attention to k = 1 and k = 3.

The RMSEs are presented in Table 6.2 for this case. As can be seen from Table

6.2, there are some di�erences in RMSE(1) and RMSE(3) in the same cases when

n 6 30, and when they are di�erent, RMSE(1) is smaller than RMSE(3). How-

ever, for each value of θ1, the two estimators are essentially identical when n is

su�ciently large. This last �ndings was calculated by further simulations which

have not included here.
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Table 6.2: The Root Mean Squared Error (RMSE) of two composite likelihood

estimators in model (6.3.2), implemented using Algorithm 1 and

Algorithm 3 mentioned in Section 6.2, assuming θ3 = 0 and θ1
varying, with n the number of nodes, and the number of Monte

Carlo runs M = 100.

θ1 n=10 n=20 n=30 n=50 n=100

-2 RMSE1 12.87015 5.893478 2.801062 0.2449863 0.1195854

RMSE3 13.79034 5.943486 2.709793 0,2448274 0.1196195

-1 RMSE1 6.603481 0.4712673 0.3349784 0.2046826 0.1384643

RMSE3 6.360478 0.4651426 0.3337344 0.2043459 0.1384179

0 RMSE1 1.287476 0.6367887 0.5146259 0.4166038 0.2379807

RMSE3 1.204182 0.628152 0.5112811 0.4158055 0.2377244

1 RMSE1 4.507642 1.507897 1.273537 0.731839 0.5128981

RMSE3 4.168313 1.488465 1.255581 0.7301646 0.5118664

2 RMSE1 51.15089 3.620943 3.360931 2.082709 1.182569

RMSE3 54.08247 3.568708 3.334704 2.082709 1.181996

4 RMSE1 103.2746 153.56 139.8623 15.45466 9.316641

RMSE3 103.8711 185.2349 158.3944 15.41858 9.312107

6.4 Connection with Chatterjee and Diaconis (2013)

There has been some interesting and important recent theoretical work on model

(6.3.2) by (Chatterjee and Diaconis (2013)). They consider the model on simple

graphs with n vertices given by

Pθ1,θ3 = exp{2θ1u1(y) +
6θ3
n
u3 − n2ψn(θ1, θ3)} (6.4.1)

where, as before, u1(y) and u3(y) denote the number of edges and the number

of triangles in the graph and y is the adjacency matrix. They prove that, with

high probability , when n is large, θ1 ∈ R and θ3 > 0, a realisation y from (6.4.1)

is essentially the same as an Erdös-Rényi-Gilbert graph generated by including

edges independently with probability that the maximizing value of the following
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function:

ψn(θ1, θ3) ≃ sup
0≤u≤1

(
θ1u+ θ3u

3 − 1

2
ulog(u)− 1

2
(1− u)log(1− u)

)
. (6.4.2)

The optimum value is denoted u∗(θ1, θ3). In other words, most realizations of

this model look like realisations of the Erdös-Rényi-Gilbert simple model. Here,

almost all graphs are essentially empty graphs or complete graphs. Chaterjee and

Diaconis produced the �rst proofs of "degeneracy " observed in theses models.

After calculating u∗ from our simulation, we notice when that θ3 < 0 have di�er-

ent behavior, with most values of u∗ being greater than or equal 0.5 for θ3 < 0,

and most values of u∗ being less than or equal 0.5 for θ3 > 0. These results �t in

with the results in Chatterjee and Diaconis (2013), as can be seen in Figure 6.4

and Figure 6.5.
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Figure 6.4: u∗ against the rank of u∗, θ0 = (0, 0)T and n = 30.
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Figure 6.5: u∗ against the Norm of u∗, θ0 = (0, 0)T and n = 30.
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6.5 Summary

In this chapter we explore three new composite likelihoods, de�ned in (6.1.3)-

(6.1.5), for the estimation of the parameters in the triad Exponential Random

Graph Model (ERGM ) given in (6.1.1). These new composite likelihoods are

based on the conditional distributions of more complicated data structures than

in the standard and widely-used composite likelihood in which the components

consist the conditional distribution of an edge being present given knowledge of

the rest of the edge data.

Our numerical results indicate that the new composite likelihoods perform well in

the examples considered. However, our �ndings are inconclusive in that there is

no evidence that the new composite likelihoods perform better than the standard

one except possibly when the graph is small (e.g. with n = 10 vertices).

One limitation of our simulation study is that we only simulated from the ho-

mogeneous Bernoulli random graph model. This was due to the large amount

of computer time that would be needed to simulate from a general triad ERGM

using the Markov Chain Monte Carlo procedure.
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Summary, Conclusion and Further

Research

In this chapter we �rst summarize the main results and conclusions of the thesis.

Then we discuss possible directions for further research.

7.1 Summary of the Thesis

The new material in the thesis is contained in Chapters 3-6. In Chapter 3, the

main result is Theorem 3.1. This result gives a central limit theorem for three

random graph statistics, the number of edges, u1, the number of 2-stars, u2, and

the number of triangles, u3. The results is proved under the Bernoulli random

graph model in which the presence or absence of each potential edge is an in-

dependent Bernoulli random variable with �xed probability p of an edge being

present. Theorem 3.1 was proved using the projection method. That a joint cent-

ral limit theorem holds for these statistics is not a surprise. The surprising aspect

of this theorem is that the limiting covariance matrix has rank 1 as opposed to

rank 3 and therefore the limiting trivariate normal distribution is degenerate. We

have not been able to �nd mention of this result anywhere in the literature. From

the point of view of the key statistical motivation for proving this central limit

theorem, which is to construct goodness-of-�t tests, this degeneracy result is a

negative one.

In order to see this degeneracy can be removed by conditioning we investigated

whether it is possible to prove a central limit theorem for u2 and u3, the number
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of 2-stars and the number of triangles, respectively, conditional on u1, the number

of edges. It turns out that such a central limit theorem does holds and, moreover,

the limiting conditional covariance matrix of u2 and u3, suitably standardised,

has full rank 2, and therefore the limiting bivariate normal distribution is non-

degenerate. However, we were could not see how to use the projection method

in this case because conditioning on the number of edges induced dependency

between the Bernoulli random variables. As an alternative we used the method

of moments. The proof turned out to be very long and is covered in two chapters,

Chapter 4 and Chapter 5.

The main result in Chapter 4, Theorem 4.1, gives the order of the expectation

of a general product of central Bernoulli random variables subject to their (non-

centred) sum,
∑

16i<j6n yij = m, being �xed. Theorem 4.1 plays a crucial role

in the proof of the conditional central limit theorem and it may also be of inde-

pendent interest.

Theorem 5.1, the most substantial result in the thesis, states the joint central

limit theorem for u2 and u3 conditional on u1, the number of edges. In addition

to using Theorem 4.1, the proof of Theorem 5.1 depends on some fairly complic-

ated counting lemmas. These counting lemmas are stated and proved in Chapter

5. In Section 5.6, goodness-of-�t tests based on Theorem 5.1 are applied to sub-

graphs of real network data via a �tted block model.

In Chapter 6, three new composite likelihood estimators were investigated for

estimating the 3 parameters of the so-called triad Exponential Random Graph

Model (ERGM ). The three new composite likelihoods are based on the condi-

tional likelihoods of more complex data structures than simply the conditional dis-

tribution of each edge given the rest of the edge data, which is what is done withe

the standard composite likelihood estimator for the triad ERGM. The asymptotic

theory of the three new estimators seems to be intractable but simulation res-

ults suggest that all of the new estimators perform well. However, the numerical

results do not provide any evidence that the new estimators are better than the

standard composite likelihood estimator apart from possibly the case n = 10. In

fact, all four estimators have remarkably similar behavior in all cases considered

when n > 20.
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7.1.1 Discussion and Further Research

It is of interest to apply the conditional goodness-of-�t tests based on the Ma-

halanobis distance using the statistics C2 and C3 in the central limit result in

Theorem 5.1. We made a start on this in Section 5.6 but it would be of interest

to look at many other real network data examples, in conjunction with di�erent

ways of determining the blocks. While it is usually the case that the Erdös-Rényi-

Gilbert random graph model will not be adequate for most real network data, we

believe that for some block graph models the random graph hypothesis within

blocks will sometimes be of interest.

Indeed, we could choose blocks to minimise a suitable goodness-of-�t statistic

based on Theorem 5.1 using some kind of stochastic search method such as sim-

ulated annealing. Developing such a procedure would be of potential interest.

A limitation of our simulation study in Chapter 6 is that we only used data sim-

ulated from the homogeneous Bernoulli model. This was due to the fact that

simulating from the general triad ERGM is expensive because a Markov Chain

Monte Carlo (MCMC) method is required, and it would have been very expens-

ive in computing time if we had simulated from the models using MCMC in the

simulation study. In addition, there would have been uncertainty in the interpret-

ation of the results due to the question of whether the MCMC simulations had

converged. Nevertheless, our current results concerning the new estimators are

inconclusive and it will be necessary to simulate from general models within the

triad ERGM before the e�cacy and usefulness of our new composite likelihood

estimators can be fully evaluated.

One more direction for future research will now be mentioned. We have shown

that conditioning on the number of edges makes the di�erence between a degen-

erate and non-degenerate central limit theorem for u2 and u3 in the Erdös-Rényi-

Gilbert model. Chatterjee and Diaconis (2013) have shown that a 2-parameter

submodel of the triad ERGM based on u1 and u3 exhibits certain pathologies.

It would be interesting to know whether or not conditioning on u1 removes these

pathologies in the case of the 2-parameter submodel and the full 3-parameter

triad ERGM. The results of this thesis gives some hope that conditioning will

have a bene�cial e�ect on statistical inference in the triad ERGM.
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