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Magnetic Field Swimmer Positioning
Joe Marshall

limitation, which is that the drift that accumulates over time
Abstract— Several projects have tracked the movement of  from sensor errors means that they are unable to provide real-
swimmers in pools using body worn inertial measurement units.  time position measurements. It is possible to correct for this
In swimming, inertial sensing is subject to large amounts of drift  gnce g full length has been swum, and estimate position and

and accumulated error which can only be corrected for after a . . . .
complete length has been swum. In this article, we present a new velocity [13], [14], but this removes the ability to respond in

method for tracking swimmers by detecting variations in the '€al-ime toaswimmer’s movements.

magnetic field caused by the structure of pools. This method is This article presents a drift-free method for determining

complementary to inertial positioning, as it allows the direct ~swimming position in real-time, by sensing variations in
extraction of position without requiring post-processing, and  magnetic field strength over a swimming pool. The algorithm
u_nlike iner_tial sensing yvhich I_os&s accuracy over time, magnetic  is evaluated using the sensors of a Google Nexus 4
Ifggt:]r-ackmg becomes increasingly accurate towar dsthe end of a smartphone. We believe that a combination of this tracking
with inertial sensing may provide the basis for a wide range of

Index Terms—M agnetic field measurement, Svimming swimmer aware real-time feedback systems.

The tracking system is evaluated with reference to position
measurements taken from synchronised video recordings of

|. INTRODUCTION swimmers, to demonstrate that it provides a drift free position

Technology is commonplace in elite swim training andneasurement which is possible to calculate in real time.

research, most commonly video capture, but also body

mounted inertial measurement units (IMUs)-{5], tethering
of swimmers to speed detector reels [6] grmbls with In openoutdoor spaces, the Earth’s magnetic field is locally
embedded networks of sensors [7], [8] constant in direction and magnitude. Indoors however the

Excluding tethered systems, which restrict swimmers’ Observed magnetic field will be perturbed by elements of the
freedom, most systems are essentially non-realtime, in ttgitucture of the building, including steel beams, metal
swimmers swim whilst their performance is recorded then reinforcement in concrete and electrical currents [15], [16].
analysed afterwards. Whilst these perturbations cause problems for traditional

A few IMU based systems have demonstrated real-timkse of a magnetometer for sensing compass direction, the
feedback to swimmers of body rotation and arm movementagnetic signature of these disturbances can be detected and
[5], [9], or stroke rate [10]Using smartphones with inertial used to identify location inside a building. These magnetic
sensors, and cheap waterproof cases makes it possibledigiurbances are typically relatively constant over time,
create systems using commodity hardware for application¥eaning that a single magnetic map of a building can be made
such as games which respond to swimming strokes [11].  and used for positioning at later dates [15].

Most technology is not easily available to non-elite
swimmers: Augmented pools are extremely expensive, video [1l.  MAGNETIC FIELD IN A SWIMMING POOL

recording is not allowed in most pools, tethering is not Lap swimming pools are large rectangular basins,
compatible with shared pool use. IMUs have a majQjurrounded by reinforced concrete. Steel bars in the reinforced
accessibility advantage in two respectsstly, they are concrete create magnetic field disturbances.
unobtrusive and can easily be used in public pool sessions, anth a lap pool, swimmers typically swim lengths in lanes
secondly, inertial sensing suitable for sports analysis is wideffranged along the long axis of the pool. Most pools vary in
available in the form of consumer smartphones [12]. Howevefepth along this axisAs such, the perturbation in magnetic
for real-time feedback to swimmers, IMUs have a majdfeld due to the bottom and ends of the pool varies strongly as
a person swims along the pool and the distance from the
§ SUE"P“EO' Tf°f review 20Elé/§32/8f-2 é%e MBarISha” 1'% Zsmby IThbe bottom and ends changes. In contrast, the effect of the two
Di\;z;s%ir:;UKr%SetI’pe%r?r?its research by pro-vidir?gpg\r/vimmtpoorll agcues’s. sides of the pool is relatively constant, as the swimmer
This work obtained ethical approval from the Universitiottingham. maintains a constant distance and orientation relative to them.
Joe Marshall is with the Mixed Reality Lab, ComputeieBee, University ~ Changing lane alters the constant value of the perturbation

of Nottingham, NG8 1BB, UK (e-mail: joe.marshall@nottiagn.ac.uk). : : .
Copyright (c) 2014 IEEE. Personal use of this materiapasmitted. from the sides, which offsets the profile by a constant value.

However, permission to use this material for any othepgses must be Fig.a) shows measurements of the magnitude of magnetic
obtained from the IEEE by sending a request to pubs-perms@ieee.org.  flux density (|B|u tesla) taken along a single lane in a 25

Il. MAGNETIC FIELD BASED POSITIONING



metre swimming pool by the smartphone used in oueliably detect the direction of swimmi@.shows the
experiment, placed flat on the water surface and towed frosensor orientation. Magnetic flux is measured using the built
one end to the other at constant speed. F@Jre 1(b) showsithenagnetometer, sampleat ‘full speed’, nominally 50hz
same pool 6 months later, in a different lane in the pool, atimean: 48.1hz, s.d. 1.98). The phone contains an Invensys
faster speedThe magnetic signature does not change ov&fPU6050 accelerometer& gyroscope with magnetometer
time or lane change, except for a constant offset due to tin@ut, but no specifications are available for the connected
lane change. Fiﬂ 1(c) a@i 1(d),1(e) show magnetic signatureagnetometer (some limited description of the characteristics
of two other pools. The pool in F@ 1(d) & (e) is interestingpf Nexus 4 sensors has been extracted by Ma et a). [17]

as It .ShOWS a different signature when swum in oppos@ Recording Magnetic Signature in Real Pool Conditions
directions All other pools tested showed the same profile in ] . )

both directions We believe this to be due to the movable TN€ smartphone provides a stable orientation value, [17]
depth floor of this pool, which uses two lines of scissorgacicreated using a Kalman filter to fuse accelerometer, gyro and
beneath the floor. Perturbation of the magnetic fielgiagnetometer sensors. We threshold x-axis (front-back)
measurement for the vertical line of jacks changes dependiff@jation at 40 degrees to detect when the person starts and
on the magnetometer orientation relative to it, which differs SIOPS Swimming. 40 degrees was chosen as it is significantly

when swimming one direction or the other, unlike orientatioftore than the typical maximum backward tilt everstrokes
relative to bottom of a standapdol. such as breaststroke which involve bringing the head upwards.

Orientation is also used to detect laps, by detectirgation
of 180 degrees around the vertical axis at the end of the pool.
3 To record the signature of a pool a swimmer swims along
40 L 20 . the pool on their front while kicking. This keeps the
orientation of the sensor constant and provides a constant
speed (unlike full stroke swimming which can involve large
speed and orientation variations over each stroke). They do
T this for two lengths, stopping betwedn acquire a signature

(a)Pool 1 - Lane 4, May 2013 (profile reversed in the other direction)
T T T
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)Pool 2 Profile (reverse in the other direction)
T T T T
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= . in both directions. We know these were recorded at relatively

42 p 10 1 20 2 30 3 4 constant speed and when each length started and, esodee
(d) Pool 3 profile (swimming from shallow to deep end) .
50F T T 7 T T T ™ assume that recorded points are evenly spaced over the length

';WWW of the pool This gives us two signatures which vary over
o p 10 15 "0 25 30 3 distanced along the pool, fwd(d) and back(d). Unlike indoor
(e) Pool 3 profile (swimming from deep to shallow end) _ = navigation projects, which mostly use complete 3 axis

magnetic flux density
T

K a signatures (e.g.[18]), we use magnitude of magnetic flux; this
34 2 15 20 25 30 33] is firstly because the major change along the pool is due to the
time (seconds) .

Fig. 1. Magnetic profiles recorded at different goahd times change in depth as th_e pool b.ase gets further away and only
really affects the z axis, so using multiple axes does not add

IV. MEASURING THEMAGNETIC FIELD OF A POOL much information , and secondly because using magnitude

makes the system more robust to rotation during swimming

(pedestrian systems typically assume a relatively constant

sensor orientation, which they can calibrate for }15]

y This process has an inaccuracy because at the beginning of
a length, the swimmer will push off, which creates a variation
in speed at that point. There is less variation at the end of
length, as the swimmer touches and comes into the wall whilst

A Sensing Equipment

4 bringing their legs down quickly (as an example, we measured
. three speeds from our video ground truth data, of kicking for
i 1 X 25m length, average speed:0.59m/s, speed from start to 5m:
I""I U pmmmm 0.81m/s, speed from 20m to end: 0.53Wg¢ correct for this
[ g :_____! error in a standard pool (which has the same profile in both
: S directiong, by creating a final signature from a combination of
- C_D__l the second halves of the two signatuiidse process for doing
Fig. 2. Placing of the smartphone on the body this is:
A Google Nexus 4 smartphone is placed in a waterproof 1) Reverse back, to make badkake the midpoint of back.
pouch and strapped tightly onto the central lower back of the len

. . . . . . t =—
swimmer using a simple waist strap and pouch. This position Pteack =

was chosen, as in previous IMU research [1], [3], [5], [13], 2) Find the poinpteyp in fwd which corresponds tpteack
[14] because it offers a predictable orientation relative to tiy mMinimising the squared difference over a sliding window of
base of the swimming pool, and allows orientation sensing ngth w = len/4, vertically offsetting fwd for each possible



value ofptryp based on the assumption thabtfp andptaack
refer to the same point in the magnetic profile the profile

V. ACQUIRING AROBUSTMAGNETIC SIGNAL FROM A
SWIMMER DURING FULL STROKE SWIMMING

should be equal there (Equation 1). This corrects for the caseyetecting pool position by matching the magnetic signature,
where a swimmer may swim up in one lane and back @@quires a high quality magnetic magnitude measurement. To

another, so back’ will have a constant magnetic offset in
comparison to fwdEquations (1-3) describe this process.

vdiff(ofs) = (back'(ptpack) — fwd(Ptpack + of s)
sqdiff(ofs)=

w
X=ptpAckt+3

_ w
X=PBACK—%

Ptewp = Ptpack + min sqdiff(ofs)
—-w<ofssw

We create a combined signature from the first halbaft’
and the section of fwd fromtewp to the end (Fid. |3)This
signature consists only of points where the swimmer was i

Z (back’(x) — fwd(x + of s) — Vdiff(ofs))2

be useful, this must be acquired whilst the swimmer is
swimming whatever stroke they desire to perform. Compared
to flat swimming, swimming full strokes induces significant
noise which requires compensation.

A Characteristics of swimming induced sensor noise

Magnetometer error caused by reinforcement in concrete is
a ‘soft iron’ error, in that the iron in the reinforcement distorts
the earth’s magnetic field (in contrast to a ‘hard iron’ error,
where an electric or magnetic component actively generates its
own magnetic field) [19]. This causes a magnetometer error
that varies depending on the orientation of the magnetometer
rﬁlative to the source of the error. This error cannot be

the more stable second half of each length, so does not incll?@cgbrated for because it is from a source extemal to the

points recorded during initial accelerations of each lengt
(a) back' (reversed version of backwards profile)
I I | I

Fig. 3 The acceleration at the start of a length causesatteo$the profile to
be compressed. The recorded forward and backward magigiatures are
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combined to make a single signature which avoids rlaiscuracy.

magnetometer [19Further to this, variation in the magnitude

of that error is essentially what we are measuring. Because the
reinforced concrete grids are essentially planar, and the
swimmer is always directly above the floor plane, when
swimming flat, the induced error does not change depending
on direction in the pool (similarly at either end, the induced
error from the end of the pool is constant). In this workdwe

not consider other sources of magnetic field perturbations such
as electronic devices in the pool area, or the field generated by
the smartphone itself, as these are unlikely to be significant as
those caused by the large quantity of metal embedded in a
typical pool structure.

When collecting the pool signature, swimmers were told to
swim flat on their front and kick so their orientation relative to
the floor of the pool stays constant. However, when swimming
a full stroke, the swimmer may rotate their body away from
flat significantly. This is not a problem with breaststroke or
butterfly, as angular changes are relatively small. However,
when swimming front crawl, there is a significant side to side

shows how the combined profile is not warped body rotation, between 40 to 70 degrees from horizontaa for
initial acceleration. The dashed line is an example of a profimmpetent swimmer [20]. This causes significant noise as the
recorded by swimming (showsnoothed by sliding mean swimmer rotatesas seen in FiEIS

over 1m for clarity), against magnetic points sampled from tt >

same pool using video based ground truth position.
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Fig. 5 Side to side rotation causes error in the recordechatiagsignal.

B. Rotation Error Correction

Whilst these errors clearly relate to the sine of the
orientation signal, a combination of differing and slightly
unpredictable sensor delays on the commodity hardware
meant that attempts to create an independent component
analysis algorithm for this signal failed. Similarly, whilst the
frequency of the swimmer rotation is high compared to the
overall changes in magnitude, the irregularity of the rotation
meant that low pass filtering did not create a suitably clean
signal; low pass filters also credtan unacceptable level of



delay for a real time system.

Instead, an adaptive error model is used to correct for these
errors, and to create a signal that is close to the reference
signal recorded when flatThis model is based on the
following assumptions:

magnetometer vector. Once this buffer contains
more than 1 second of data, the scale and offsets
are optimised by stepped descent, recalculating the
mnormal vector for each modification to
scale/offset and scoring it using the offsetdiff

1. The output only needs to be a relative magnetic function to find if it is better than the current value.
field value, so absolute value is not important. The Scales are modified by 0.01 per step, within a
tracking algorithm is also robust to slight range of (-0.95,1.05). Offsets are modified by 0.1
magnitude errors. per step, within a range of (-5,%T. Up to 10

2. The error being corrected for is caused by side to improvement steps are carried out for each

side rotations in the stroke, which primarily affect

magnetic measurement (at 48.1+h®8s above).

the X and Z axes of the sensor. Whilst all strokes Scale and offset factors are reset on a per length basis. This
affect the Y axis slightly, we measured typical totals because in practice the correct factor will change
rotational ranges of 100-140 degrees side to sidggnificantly over multiple lengths, even between two lengths
swimming crawl, versus approximately 15 degreein the same direction, it is hypothesised that this may be due to
front-back in breaststroke and less in crawl. changes in equipment temperature due to uneven temperature
3. The error is primarily caused by rotation relative tan the water or sensors warming ,ugensor attempts at
planes (floor, walls), so the axes of any soft irorutomatically calibrating, which fail in such high magnetic
error will be parallel to the axes of the pool itself. error surroundings, changes in sensor orientation due to slight
4. The magnetic field error changes more slowly thaposture changes, or other un-modelled factors.

the swimming induced error. Fig.@shows an example result from this optimisation.
Before

. 250

In order to error correct for rotation error, the following 2
algorithm is used: 3=
Firstly, take the raw magnetometer magnitude value: §36
mag(t) = /M, (t)? + M, (£)? + M,(t)? . (4)  Es5o
This recorded value includes two possible sources of errc % —
soft and hard iron distortions. Hard iron distortions cause g N
constant offset to be applied for each axis. Soft iron distortio 36

. . . L Time (s

cause the axes to be. distorted by an ellipsoid, which in genelg%[ 6. Recorded magnetic signal with f’ozatioruimtj noise removed.
can be at an arbitrary angle to the axes .[19ile to

Assumption 3, it is possible to assume that the ellipsoid will VI
be axis aligned when the swimmer is flat. Assumption 2

means that we only need to consider effect on X and Z axes

This means that given correct scaling ¢ and offset (@

o,) factors, a normalised version of the recorded magneti

field can be used which will be stable in x/z axis rotation. ) . ) : . .
The algorithm used is a dynamic programming algorithm i

\/(SxMx(t) + 0%+ My (6)? + (s:M,(©) + 0,)* (5)  which at each timestep the recent history of sensed magnetic

To calculate these scaling and offset factors, a scorifi§!d Strength is compared against areas of the magnetic

function of fsetdiff is used on a history buffer of magneticS/gnature which it plausibly could represent, with plausibility
field values to evaluate different factors. defined by the output of previous time steps and constraints on

MAGNETIC SIGNATURE TRACKING

The magnetic tracking algorithm uses as input the error
corrected magnetic history for the current length. This is
Enatched against the signature to acquire position at 0.1m
resolution once per 10 magnetometer points (i.e. at 5HZ).

mnormal(t) =

t how fast swimmers can realistically move. It is inspired by
of fsetdif f (t) =Z(mn0rmal(l‘) — mnormal(i — 1))2 Dixon’s on-line dynamic time warping algorithm [21but
=1 uses a regional matching window for each point, and ongoing

(6) cost is simplified to simply a true/false plausibility vector.
This function is based on Assumption 4, as it assumes that a

better scaling and offset factor will create lower short term
variance in the signal. This measure is used rather than a
conventional variance to prioritise short-term fluctuation from
rotational error over slower underlying field changes.
To optimise scale and offsets, the following algorithm is
used:
1. At the beginning of each length, scale and offsets
are set to one and zero respectively.
2. As sensor points are received, a circular history
buffer 4 seconds long is used to record the full



A. Generation of Signature Matrix swimming speed of 0.25 m/s and 3 m/s respectively, chtosen

S Row 50 range from extremely slow to well above world record speed.
= .
5 10 ‘ ‘ ‘ ‘ ] Tabld | shows the variables and constants used.
;,_ 1) Update plausibility vector
—‘: =1 | At each time step, the plausibility vector is updated using
2 10 50 100 200 250 Equation[{0) below. This takes account of both the minimum
é Row 125 : : : and maximum swimming speeds, and the points which were
s of | marked as plausible in the previous time step and is
2 . constructed as follows:
§ L i To update the plausibility vector for a time step, for each
x~10 0 100 150 290 25( position to be a plausible result in this time step, it must satisfy
T gpow20 ‘ ‘ ‘ two constraints:
T P . Global speed constraint: Is possible that someone could
<, ™\ X ) .
o3 \ start a length at the time they started and have got to this point
5_10 b 50 100 150 200 554 by the current time?:
matrix column plausglobal (x) = (¢ * Smin <X < X Spayx)- (8)
Fig. 7. Each row in the signature matrix contains aseubf the full pool Local speed constraint: There must bepoint in the
signature (row 250). Each row is offset so the lastevaiuhe row is zero. previous time step plausibility vector that this point could be

When the pool signature is captured, the system generatgg gched from by travelling atspeed between,s and $ac
signature matrixSM of fixed dimensions 249x250 usi@(? plaus;geq (x) =

:Jheloyv (\Ilvheretletp is the fl:]l Ieng'tht of tk;et'rec?rde'dtggnaégrte 3 k: (dt * Spim < k < dt * Smax APLA,_1 (x — K)). ©)
© Impiementation uses finear interpolation for iNtermediate rpq “finay plausibility value is a simpl&ND operation on

values of the signature vector), these two boolean functions:

SM(r,d) = signature (d X ﬁ) — signature(len X ﬁ) (")  PLB,(x) = plausgiopal (X) A plausjgeq (). (10

Each line of the matrix takes a subset of the complete pa@) Normalise History Vector
signature from the start to a proportion of the way along the For each tracking frame, the magnetic history for the length
pool (Fig|]), and offsets values by the last value in thaf roswum so far is taken, resized to length 250, and offset by the
so that it always ends with a zer®50 points are used to final value , SO that it is in the same form as the rows in
acquire 10cm accuracy in a standard 25 metre pool. 249 rotie magnetic signature matrix. Again, linear interpolation is
are used to avoid template rows generated from a single poinsed for intermediate history values.

Matr_ix gengration is done once per pool _signaturﬁl-smorm(x)=hl-st0ry (xxle—n)—history(len) 11)
recording, so is not performance critical. Generation of t Score Plausible Rows 250

signature matrix allows for fast matching of recorde .
. . . " : . _The last 4 seconds of the history vector are then compared
magnetic data against all possible positions in the pool profile, _. : . .
. . : against the relevant section of every row in the signature
using vector & matrix operations.

matrix for which the plausibility vector PLB is true. The

B. Per Length Initialisation comparison uses a simple sum of squared differefi@s (
At the beginning ofa length, a plausibility vector is timeOfs = 4*i50
initialised; this is a Boolean vector of length initially set sqdif f (x) = Ziszozso—amwfs[hiStnOFm(k) — SM(x, K)]? (12)

to true for all points. The plausibility vector is true for pomtsﬂ Output Tracking Position

which it is plausible that the person may be at in the curretr o fioar outout position is the one with the lowest squared
time step. The initial time step occurs at 0.4 seconds from taﬁference to the signature array

detection of swimming starting, when 3 points of history data

outposition = minpos sqdif f(x 13
have been collected. p POSxepr, (Sq fr @) (13)
5) Update Plausibility Vector
C. Per frame tracking The minimum value for sqdiff is found, and a plausibility
TABLE | threshold is set as 5.0 x minimum value. The plausibility
DEFINITION OF VARIABLES AND CONSTANTS vector after the time step (PLA) is set based on this threshold.
_Name Description minVal = min, scorefn (x) (14
sigsteps=10 Number of signature steps per metre I ibleM — 5.0+ minVal 1
Smin = 0.25xsigsteps Minimum speed (signature steps per second) ptausipteMax = o. minva . ( 5)
Smax = 3%sigsteps Maximum speed (signature steps per second. PLA.(x) = PLB.(x) A (scorefn(x) < plausibleMax) (16)
dt Time step since last frame (seconds)
t Time since beginning of length (seconds) VIIl. ALGORITHM EEEICIENCY
PLB Plausibility vector at time t before tracking )
(Boolean vector) A Rotation Error Correction
PBA Plausibility vector at time t after tracking . . . .
len Number of points in magnetic history vector The rotation error correction uses a magnetic history buffer

The algorithm assumes a minimum and maximurfontaining 200 samples (4 seconds at 50hz). As each sample
comes in, up to 10 optimisation steps occur. These require:



1) Calculate the magnitude of each point with offsets to Xere requires 1,327,000 floating point calculations per second
and Z (5 additions, 5 multiplications, 1 square root penaking it easily within the range of a standard smartphone

point) level processor such as the 1Ghz ARM7 core used in the
2) Calculate the offset difference function (1 subtraction, author’s Sony Xperia m. A majority of the time currently is
multiplication per point) spent performing rotational noise reduction; in future we

This gives a total of 200x13x10 = 26,000 floating poinbelieve it may be possible to reduce this by designing an
operations per optimisation step, or 1,300,000 per secomdgorithm to perform the error reduction at 5hz, in tandem
all of which are trivially parallelisable and vectorisable. with the tracking algorithm, to allow this algorithm to be

B. Signature Tracking implemented on simpler wearable sensor hardware.

Without the local plausibility vector constraint, the worst Incoming magnetic signal
case scenario is that the algorithm will require searching tt 54 T T T T —
full range between the fastest and slowest possible positions ~ ]
defined by the global minimum and maximum speeds, define 4;: \
by below. Further to this, the scoring algorithm uses a - 'y : : : : :
second window, which means it only compares agains  |§ ' ' ' '
selected columns of the signature matrix after 4 seconds h N Range of plausible
elapsed. The number of columns compared is defindd8)y ( 5.0} positions .
rowrange(t) = min(250,t X S;,4,) — Min(250,t X $,,:,)(17)
o
— o
250 t<4 £ 100p T e
columnrange(t) = (;) £250 t>4 (18) é \ %
The number of comparisons between values required a 15-0f Y 5 g
given time is equal to the product of rowrange(t) anc Estimated position\ °
columnrange(t). For our maximum and minimum values 4| i
matrix size and time stepaking a maximum of this product ."s.
means that the maximum number of comparison®7i&77, ".‘o\,,

which given the relatively simple calculations involved (one 25.0 ' ' . . . P
. . . S L 0.0 4.0 80 12.0 16.0 20.0 40 ~l 47

floating point subtraction, one multiplication and one additior -

per comparison) is easily within the capabilities of even low ime (s)

S . Fig. 8. A plot of a tracking result, showing the estimated pasjtand the
end smartphoneg.g. The author’s Sony Xperia M reports a range of positions which are plausible position eseéséor each time step.

real world throughput of 1,009,000,000 floating point
operations for multiplication of large double precision floating VIIl. ACCURACY EVALUATION

point matrices). The scoring operations are also trivially .
. . . To evaluate the accuracy of the algorithm, a test was run
parallelisable and well suited to vector operations. . . . .
. . ith 3 swimmers, in a standard 25 metre public pool. Each
The number of comparisons in the worst case grows as the L ; .
wum 2 lengths kicking, then continued to swim front crdawl.

square of the signature matrix resolution, meaning that the . .
. rticipant unfortunately managed to loosen the strap of the
balance between resolution and performance must be carefu : . . . .
. o one holder during their swim, which meant that their data
considered. It should be noted that the magnetic signal does
. L - was lost. A total of 10 lengths were recorded from the
not change very quickly, so 250 points is easily able to capture ™ .~ L .
T remaining two participants. Front crawl was chosen as being
the full range of variation in all the pools tested.

: thﬁa stroke with the greatest amount of rotation induced noise

within the capability of modern mobile hardware, in practiceIn the signal. Swimmers were both male intermediate

the local constraint in the plausibility vector improves th gwimmers (swimming at a pace of 6 or 7 minutes per 400m).

) . The swimmers varied their speed during the testing, between
performance considerably, vastly reducing the search spa .
. . , .63 m/s to 1.14 m/s average speed per length. One participant
As an example, Fifl.]8 shows one length of tracking, with the . , .
: N - swam parts of their lengths doing catch-up drill, where the
received magnetic signal on the bottom, the target signature on. .
. . : swimmer uses exaggerated, slower stroke actions.
the right, and the detected position of the magnetic tracker as . o
. . . A pool profile recorded from kicking lengths of one
each measurement is received shown as the central black ling. . * : )
rticipant was used for all testing provide support for the
The grey channel around the central measurement shows the A .
idea that the profile is unique to the pool rather than the

range of plausible values as each measurement comes in L . . .
9 P immer. This did not alter the results in comparison with

typically 10-20 possible positions are tested (2500-5000. . ,
g ; ; sing the swimmer’s own recorded profile.
comparisons), with a worst case of approximately 50 (up t5

12500 calculations).

C. Overall Algorithm Efficiency
As shown above, in the worst case, the algorithm shown



due to drift caused by noise in the sensors become
increasingly poor over time [13]. For this reason, inertial
positioning systems for swimming cannot be real-time and
need to apply correction algorithms to the inertial data at the
end of a length when the swimmer is at a known position.

Fig. 9 A suitable ground truth dataset was acquired witbreefce to the
regular 250mm spaced (240mm + grouting) tiling onsilde of the pool.

To acquire a ground truth dataset, the swimming was videc
recorded. The pool used is uniformly tiled along the edge,
with the pool edge being level to the water. Regular referenc
points on this tiling were used to create a ground truth positior
in the pool, by hand annotating features on the image an
using a simple planar homography to measure the position i
the pool of the belt on which the system was mounted@:ig. 9)
This gave a ground truth measurement that is accurate to mo
than the 10cm resolution that the tracking algorithm works at
Overall, 5265 ground truth data points were recorded, alonc
the full pool length for all lengths swum.

B. Accuracy Measurements

TABLE Il
DESCRIPTIVE STATISTICS FOR MAGNETIC TRACKING ACCURACY

Statistic Value
Absolute error mean Uabserra=0.73mM
Abs. error standard deviation Gabserro=0.65M
Correlation with ground truth r’=0.98
error mean Uerror = 0.02mM
error standard deviation Gerror = 0.98M

Fig.a) shows a plot of magnetic measurements versu
ground truth measurements. The mean absolute error over tt
dataset is 0.73m. F{g0lb) shows the distribution of the error;
71.5% of points are within £1 metre of the ground truth .data
This exceeds the performance of standard person wor
magnetic tracking algorithms e.g. [15], [18h part due to
swimming specific constraints on initial position, velocity and
orientation. The fact that swimming pools are strongl
directional in their construction is also likely to be a factor, i%
that the magnetic field is not subject to large variation as a
swimmer moves from side to side in the pool, in contrast to

5 (a)Ground truth vs magnetic position
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ig. 10. Performance of the algorithm against ground truthsomesnent

TABLE Il
PERFORMANCE AT DIFFERENT POINTS IN THE ROL

the building structure induced errors describggl5].

As can been seen from the diagrams, the correlationrange from Range to Uabserror Gabserror

between the two is extremely strond=0.98), Fig[10fc)

shows a Bland-Altman plot [22] which demonstrates the
algorithm performance through the length, showing that it
actually improves in accuracy towards the end. T i

0 5 111 0.81
5 10 0.63 0.58
10 15 0.84 0.50
15 20 0.66 0.70
20 25 0.47 0.47

shows descriptive statistics relating to this improvement. This
improvement is in contrast to inertial sensor based systems,
which whilst they can be accurate at the beginning of a length,
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