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Filamentation of Campylobacter in
broth cultures
Nacheervan M. Ghaffar, Phillippa L. Connerton and Ian F. Connerton*

Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK

The transition from rod to filamentous cell morphology has been identified as a response

to stressful conditions in many bacterial species and has been ascribed to confer certain

survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur

spontaneously on entry in to stationary phase distinguishing it from many other bacteria

where a reduction in size is more common. The aim of this study was to investigate

the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into

the process. Using minimal medium, augmentation of filamentation occurred and it was

observed that this morphological change was wide spread amongst C. jejuni strains

tested but was not universal in C. coli strains. Filamentation did not appear to be due to

release of diffusible molecules, toxic metabolites, or be in response to oxidative stress

in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66

to 17.4 fg) than spiral forms (0.99 to 1.7 fg) and showed enhanced survival in water

at 4 and 37◦C compared to spiral cells. These observations support the conclusion

that the filaments are adapted to survive extra-intestinal environments. Differences in

cell morphology and physiology need to be considered in the context of the design of

experimental studies and the methods adopted for the isolation of campylobacters from

food, clinical, and environmental sources.
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Introduction

Campylobacter is frequently responsible for foodborne bacterial gastroenteritis worldwide (World
Health Organization [WHO], 2013). Campylobacter cells are usually slender, spiral shaped rods

measuring 0.2–0.8 µm wide and 0.5–5 µm in length (Vandamme, 2000) but like many other
microorganisms, filamentous forms have been observed under certain circumstances (Griffiths,

1993; Thomas et al., 1999; Apel et al., 2012; Cameron et al., 2012). Filamentation has been
identified in many different bacteria and is thought to occur through inhibition of cell division,

metabolic changes, or DNA damage which includes the SOS response resulting in the inhibition
of septum formation whilst the chromosome is repaired (Justice et al., 2008). It has frequently

been associated with stress and starvation conditions during which it may confer survival
advantages (Justice et al., 2008). Moreover, it has been suggested that filamentation could

represent a programmed response to unfavorable environments that aids the bacterium’s survival
(Justice et al., 2008) and may enhance virulence (Mulvey et al., 2001; Stackhouse et al., 2012).

Alternatively, filamentation may simply occur through an inadvertent loss of control of the
normal cell division process. Whichever scenario is true may depend on the species of bacteria
and the type of environmental stress encountered. Examples of environmental signals that

have been identified to induce filamentation include: starvation, exposure to oxidative stress,
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reduced water activity, the presence of quorum sensing

molecules, antibiotics, or host immune effectors (Allison et al.,
1992; Jones et al., 1996; Janion, 2001; Miller et al., 2004).

Filamentation as a response to sublethal stress has been observed
in a number of foodborne bacteria, which have led to concerns

that these bacteria may rapidly divide once the growth conditions
become permissive to cause spoilage or disease (Jones et al.,

2013).
Filamentation in Campylobacter has also been observed in

response to mutation of the response regulator RacR and its
sensor RacS, which are involved in the heat shock response (Apel

et al., 2012), in response to treatment with certain antibiotics
such as sitafloxacin (Yabe et al., 2010) and as a general response

to hyperosmotic stress (Cameron et al., 2012). Importantly, for
Campylobacter jejuni and Helicobacter pylori broth cultures,

grown in a microaerobic atmosphere, filamentation occurred
spontaneously on entry in to stationary phase (Griffiths, 1993;
Fawcett et al., 1999; Thomas et al., 1999;Wright et al., 2009). Here

nutrients may become depleted, potentially leading to starvation
stress or there may be a buildup of metabolites present in the

spent medium but the lack of a specific stress trigger distinguishes
filamentation of these two related bacterial genera from other

bacteria where stationary phase cells are generally reduced in
size (Nyström, 2004). Moreover, elongated cells can be readily

identified in scanning electron micrographs of Campylobacter
biofilms (for examples see Kalmokoff et al., 2006; Brown et al.,

2014) indicating filamentation may occur naturally in situations
where biofilms form.

The aim of this study was to investigate the cues that give rise
to filamentation of C. jejuni growing in broth cultures. We also

aimed to investigate the viability of the individual component
cells of the filament using vital staining, determine any strain

dependency and any possible differences in the ability of the two
different morphotypes to survive unfavorable conditions.

Materials and Methods

Bacterial Strains
Campylobacter strains that were used for this study included:
HPC5, HF5, (C. jejuni poultry isolates); NCTC11168,

NCTC12661 (35925B2), 81-176, PT14, 81116 (C. jejuni reference
strains isolated from humans); OR4451C, OR5482C (C. coli

poultry isolates), and FB1 (C. coli human isolate). All strains
were stored at −80◦C in Microbank vials (Pro-Lab Diagnostics,

Wirral, UK).

Growth in Liquid Cultures
Nutrient Broth Number 2 (NB2; Oxoid, Basingstoke, UK) and

Mueller Hinton Broth (MH; Oxoid) were prepared according to
manufacturer’s instructions. MEM (minimum essential medium)

without glutamine and phenol red (Catalog number 51200-
038; Life Technologies Ltd, Paisley, UK), with and without

addition of 10 mM sodium pyruvate (Sigma Aldrich, Gillingham,
UK), as an energy source were also tested. The Campylobacter

inoculum was prepared by making a suspension containing
approximately 108 CFU/ml from an overnight culture grown

on blood agar (BA; Oxoid) containing 5% (v/v) of defibrinated

horse blood (TCS, Buckingham, UK) at 37◦C incubated under
microaerobic conditions (approximately 7% O2, v/v) obtained

by the evacuation/replacement technique (Bolton and Coates,
1983). The replacement gas mix contained (5% v/v H2, 10% v/v

CO2, and 85% N2). To prepare growth curves, 0.1 ml of the
Campylobacter inoculum was added to three individual 250 ml

conical flasks containing 50ml of medium and the flasks placed in
anaerobic jars (Oxoid) under microaeobic conditions generated

as described above. The jars were placed in an orbital shaker
and shaken at 100 rpm at 37◦C with sampling at appropriate

intervals. For each time point, an aliquot was serially diluted in
maximal recovery diluent (MRD; Oxoid) and the microaerobic

atmosphere re-generated. Enumeration of campylobacters was
carried out by the Miles and Misra method on Campylobacter

blood-free selective agar plates without supplement (CCDA;
Oxoid) and incubated microaerobically at 42◦C for 48 h. The
morphology of the cells was examined microscopically over

10 independent fields using bright field, epifluorescence and
Gram-stain for each time point. Pre-used NB2 was prepared

by carrying out the above procedure with incubation for 48 h
and confirmation of the formation of filamentous cells. The cell

growth was removed by centrifugation at 13,000 g for 15min, and
the supernatant filtered through a 0.2 µm filter (cellulose acetate,

Sartorius Stedim Biotech, Epsom, UK). The pre-used filter
sterilized medium was inoculated as described above to prepare

growth curves. To reduce the potential accumulation of free
radicals in MEM with pyruvate, the medium was supplemented

with 0.15% w/v starch (Sigma Aldrich) prior to sterilization.
Statistical differences were assessed by ANOVA from the Excel

Data Analysis package (Microsoft Corporation, Redmond, WA,
USA).

Fluorescent Cell Staining (Syto9/Propidium
Iodide)
Bacterial suspensions (1 ml) were mixed with 1.5 µl of Syto
9 (absorption/emission 485/498 nm) and 1.5 µl propidium

iodide (absorption/emission 535/617 nm) from LIVE/DEAD R©

BacLightTM Bacterial Viability Kit (Life Technologies) and

incubated in the dark for 20 min at room temperature. A 5 µl
aliquot was applied to the center of a clean glass microscope

slide. An 18 mm2 coverslip was placed over the suspension. The
slides were examined over 10 min at a magnification of 1,250

(100×, plan Apo) with an epifluorescence microscope (Labophot;
Nikon, Tokyo, Japan) and images captured from 10 independent

fields using a vertical mounted digital camera.

Separation of Short Spiral and Filamentous
Morphotypes
In order to separate the short spiral and filamentous forms, three
independent biological replicates of C. jejuni 12661 or PT14 were

inoculated into 500 ml of sterile MEM with sodium pyruvate,
to a final density of approximately 105 CFU/ml. The flasks were

incubated in a shaking incubator at 100 rpm, at 37◦C under
microaerobic conditions for 30 h. The short spiral cells were

separated from filamentous cells by collecting the filtrate from the
culture that was passed through a 0.8 µm sterile nitrocellulose
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membrane (Sigma–Aldrich). The filtration was repeated with a

fresh filter. The filamentous forms were obtained by flushing
the first filter with fresh MEM (with pyruvate) and collecting

the eluate. The suspensions were examined microscopically and
diluted to contain approximately 5 × 106 CFU/ml in either

sterile water (reverse osmosis) or NB2 to examine their survival
characteristics.

Comparison of the Survival of the Short Spiral
and Filamentous Morphotypes
Suspensions of the separatedmorphotypes in either water or NB2
(prepared as described above) were either incubated at 37 or

4◦C for 96 h under microaerobic conditions. Viable counts were
performed as described above at 24 h intervals.

Determination of Intracellular ATP
The ATP concentrations were measured by luciferase

luminescence using a commercial kit according to the
manufacturer’s instructions (Promega, Southampton, UK).

Either suspensions of selected morphotypes (prepared as above)
or culture suspensions collected at various time points were

centrifuged at 13,0000 g for 15 min and the cell pellets washed
in 1ml of TA buffer (20 mM Tris-acetate buffer pH 7.75)
before re-pelleting. The cell suspensions were lysed with 1%

(w/v) trichloroacetic acid in TA buffer. The ATP assays were
performed by adding 10 µl of the cell extract to a polypropylene

tube containing 100 µl of recombinant luciferase/luciferin
reagent, followed by gentle mixing and immediate reading in a

pre-blanked luminometer (Turner Designs TD 20e, Promega).
The signal was integrated over 10 s with a 2 s delay, and reported

in relative light units (RLU) that could be converted to ATP
concentrations using a pre-prepared standard curve. ATP

contents were normalized according to either viable counts or
microscopic cell counts or protein content (Bradford reagent;

Pierce).

Results

Confirmation of Filamentation on Entry to
Stationary Phase and the Imaging of Filament
Component Cells by Vital Staining
Growth curves and microscopic images of C. jejuni strains

HPC5 and HF5 growing in NB2 over 48 h are shown in
Figures 1A–C. These data confirm previous observations that

on entry to stationary phase, after 24 h, progressively longer
filaments are formed (Griffiths, 1993). The morphological

changes coincided with different phases of growth. Exponentially
growing cells showed typical short spiral forms (1.5–2.5 µm),

while mid-stationary phase cells had become elongated. Cell
populations in decline phase featured long filaments and the

appearance of coccal forms. Vital staining was carried out using
a combination of Syto 9, which stains intact cells green and

propidium iodide, which only penetrates membrane damaged
cells, staining them red. This did not produce the expected result,

with many motile and therefore essentially live red-stained cells,
appearing in the exponentially growing population. It appears

FIGURE 1 | Growth curves (A) of Campylobacter jejuni strains HPC5

(△) and HF5 (•) and morphological changes during growth of C. jejuni

HPC5 (B), and HF5 (C) in NB2. Arrow in (A) indicates the time point at which

the filamentous cells were first observed (on entry to stationary phase). Error

bars are ±SD for n = 3. In (B) and (C) the upper row shows cells stained with

fluorescent stains whilst the lower row shows bright field microscopy image of

the same cells. Scale bar, 5 µm.

that propidium iodide was able to enter live cells and was not a
good indicator of viability forCampylobacter. Vital staining of the

stationary phase cells showing filamentation was variable, with
the cell filaments, either predominantly red (staining with PI)

or predominantly green (stained with Syto-9) with relatively few
cells containing both fluors (integrated images colored yellow).
Interestingly comparison of the bright field and fluorescent

microscope images presented in Figures 1B,C, clearly showed
that the filaments contained cells that were unstained between

the stained cells, and remarkably these often appeared in a regular
interspersed pattern as demonstrated at the 72 h time points for

C. jejuni strains HPC5 and HF5 in Figure 1.

Growth of Campylobacter in Pre-Used Medium
to Investigate the Potential Role of Quorum
Sensing, Depletion of Nutrients
The exponential growth rates of C. jejuni HF5 and HPC5 in

the pre-used NB2 medium (k = 0.14 /h for both strains), were
marginally reduced compared to fresh medium (k = 0.18 /h
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for HF5 and k = 0.25 /h for HPC5; Figure 2). This difference

was significant for HPC5 (p = 0.03; ANOVA) but not
significant for HF5 (p = 0.4; ANOVA). Although not optimum,

the pre-used medium was able support exponential growth,
suggesting that essential nutrients had not become significantly

depleted in the course of achieving stationary phase in the
previous culture. Moreover the growth period required for

filamentation to occur were similar for fresh and pre-used NB2,
suggesting that the campylobacters were not responding to the

release of soluble signal molecules as observed for auto inducer
molecules involved in quorum sensing.

To investigate further the role of nutritional limitation as a
possible cause of filamentation, growth curves were prepared

using MEM for C. jejuniHF5 and HPC5. Under these conditions
filamentation was observed as early as 2 h (Figure 2; indicated

by arrows), but with no increase in viable count and no filaments
greater than 10 µm in length (Figures 3A–C). Some individual
cells were stained both red and green (Figure 3A). Addition

of sodium pyruvate, as an energy source, produced an increase
in the viable count and filamentation was delayed such that

filaments appeared after 4–6 h of incubation. Longer incubation
periods produced filaments greater than 10 µm in length,

which stained with both Syto 9 and PI. This dual staining was

FIGURE 2 | Comparison of the growth of C. jejuni strains (A) HPC5 and

(B) HF5 in: NB2 (•), pre-used NB2 (©), minimum essential medium

(MEM; �), and MEM supplemented with 10 mM sodium pyruvate (△).

Arrows indicate the time points at which filamentous cells were first observed.

Error bars are ±SD for n = 3.

particularly evident in a third strain investigated, C. jejuni 12661

(Figures 3D,E).

Growth of Campylobacter in Starch-Containing
Media to Reduce Oxidative Stress
To assess if the provision of starch as an antioxidant, in the
culture media could prevent or delay the onset of filamentation,

we cultured campylobacters in either Mueller Hinton broth
or MEM (with pyruvate) containing starch. Neither of these

alternative growth media altered the time of entry to stationary
phase or the subsequent observation of filamentous morphotypes

(results not shown). The accumulation of growth related
oxidative stressors in the culture medium was probably not a

causal effect of filamentation.

Filamentation in Different Strains of C. jejuni

and C. coli
To determine if filamention was widespread amongst C. jejuni

and C. coli a larger group of strains was examined. These
were grown in MEM with sodium pyruvate and morphological

changes compared in terms of the time taken for filamentation
to be first observed (Table 1). Differences were observed, but

filamentation was a feature of all the strains tested (cells > 5 µm)
apart from C. coli strain (FB1), which did not form filaments,

the viable count did not increase, and this strain produced coccal
forms as early as 6 h under these conditions. One strain, C. jejuni

12661, produced particularly long filaments and was therefore
chosen for further experiments involving separation of filaments

from other morphotypes.

Filamentous Forms Show Increased Survival in
Water
In order to compare the characteristics of the filamentous
and spiral cell forms coexisting in stationary phase cultures

of C. jejuni 12661 (exaggerated filamentation phenotype)
were separated using membrane filtration. A 0.8 µm filter
prevented the passage of long filamentous forms and did

not hinder the passage of short spiral forms present after
30 h incubation in MEM with sodium pyruvate at 37◦C

under microaerobic conditions. The survival characteristics
of the separated morphotypes were examined in both NB2

and in water. There was no significant difference (p > 0.5;
ANOVA) in the ability of the two morphotypes to survive in

NB2 at either 37 or 4◦C (Figures 4A,B). However, marked
differences were observed in the survival of the two morphotypes

incubated in water at either temperature (Figures 4C,D). The
viable count of the short spiral forms fell below the limit of

detection after 72 h at 37◦C and 96 h at 4◦C, whilst the
filamentous forms remained detectable at 37◦C and experienced

only a modest fall in viability of 1.5 log10 over 96 h at
4◦C.

ATP Contents of Spiral, Filamentous, and
Coccal Cell Types
In order to study the ATP contents of spiral, filamentous and

coccal cell types, C. jejuni 12661 (exaggerated filamentation
phenotype) and C. jejuni PT14 (a strain that showed a typical
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FIGURE 3 | Examples of variation in vital staining observed during

growth in MEM and in MEM supplemented with 10 mM sodium

pyruvate; (A) C. jejuni HPC5 after 2 h incubation in MEM,

(B) C. jejuni HPC5 after 4 h incubation in MEM, (C) C. jejuni HPC5

after 6 h incubation in MEM; (D) C. jejuni 12661 after 48 h

incubation in MEM supplemented with 10 mM sodium pyruvate; and

(E) C. jejuni 12661 after 72 h incubation in MEM supplemented with

10 mM sodium pyruvate. Scale bar 1 µm.

filamentation phenotype) were selected. Viable and microscopic

counts of microaerobic cultures at 37◦C of C. jejuni 12661 and
PT14 in MEMwith sodium pyruvate were collected over 216 h to

encompass exponential, stationary and decline phases of growth
(Figure 5). Spiral cells harvested in mid-exponential phase at 14 h

were serially diluted and the ATP contents of these cells estimated

TABLE 1 | Viability and filamentation of Campylobacter strains growing in

different media.

Media Strain Time to

achieve

stationary

phase (h)∗

Time to

first

filaments

(h)†

Viable count

at first

filamentation

(CFU/ml)

NB2 HPC5 30 24 3.0 × 109

HF5 30 24 1.3 × 109

Pre-used

filtered NB2

HPC5

HF5

24

24

24

24

2.5 × 109

8.3 × 108

Minimum

essential

medium (MEM;

(with sodium

pyruvate)

HPC5 24 6 1.0 × 107

HF5 24 6 1.6 × 107

FB1$

OR4451C$

OR5482C$

24

24

24

24‡

6

6

4.0 × 106

3.32 × 107

6.0 × 107

81116 24 6 6.2 × 107

11168 24 6 1.7 × 107

12661 24 6 2.1 × 107

81-176 24 6 1.3 × 107

PT14 24 6 5.2 × 107

MEM (without

sodium

pyruvate)

HPC5 – 2 2.6 × 106

HF5 — 2 1.6 × 106

*Determined from growth curve inoculated with ∼106 CFU.
†Determined microscopically, ‡Double length cells, $Campylobacter coli.

from luciferase/luciferin luminescence after lysis (Table 2). The

ATP contents of the exponential phase spiral cells (0.99 and 1.7 fg
ATP per CFU) were similar to earlier estimates for C. jejuni (Ng

et al., 1985). Recovery and separation of filamentous and spiral
forms in decline phase at 96 h enabled determination of the ATP

contents of these cell populations before the appearance of coccal
forms. Beyond 168 h the majority of the cells appeared coccal

in these cultures, and estimates of viability required the plating
of 0.2 ml culture volumes on multiple blood agar plates and/or

recovery at endpoint dilution in broth cultures. Microscopic
evaluation of 216 h cultures revealed that 61% of the C. jejuni

12661 cells had become coccal compared with 58% for C. jejuni
PT14. After correction for the ATP contents of decline phase

spiral and filamentous cells present in these cultures (Figure 5),
estimates of the ATP contents of the dominant coccal cells were

calculated (Table 2). The low or undetectable ATP contents of
the coccal cells would support the conclusion that they are no

longer viable, and that the viable campylobacters recovered from
these cultures represent the remaining spiral and filamentous
forms.

Discussion

Growth curves and microscopic examination of broth grown

cultures confirmed that filamentous morphotypes were formed
upon entry to stationary phase. Vital staining revealed interesting

structural features of the filamentous cells but also that this
methodmay not be suitable for distinguishing liveCampylobacter

cells from dead ones. The staining patterns observed suggest
growth and septa formation occur within the filaments, and

that this leads to differential dye permeability preventing dye
migration between cells. Moreover, the interspersed pattern
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FIGURE 4 | Comparison of the survival of C. jejuni 12661 morphotypes incubated microaerobically at: (A) 37◦C in NB2; (B) 4◦C in NB2; (C) 37◦C in

water; (D) 4◦C in water. Short spiral forms (•), filamentous forms (©). Error bars are ±SD for n = 3.

FIGURE 5 | Viable counts and microscopic enumeration of the cell

morphotypes observed during microaerobic growth of C. jejuni PT14

and 12661. C. jejuni PT14 (•) and 12661 (�) were cultured in MEM

supplemented with 10 mM sodium pyruvate under microaerobic conditions at

37◦C, from which samples were taken for microscopic examination and

estimates of cell bound ATP. Error bars are ±SD for n = 3.

would suggest cell division may be taking place at the

predefined cell poles within the filament suggesting at least
some of the component cells were viable. Cameron et al.

(2012) observed irregular patterns of cells remaining unstained
by PI within Campylobacter filaments formed in response

hyperosmotic stress. This prompted the authors to investigate

septa formation using Vanco-FL stain that binds D-Ala-D-Ala

moieties of peptidoglycan indicative of septa and/or sites of
new peptidoglycan synthesis. The Vanco-FL stain produced a

punctuated staining pattern in hyperosmotic-induced filaments
that did not co-localize with PI. This observation is also

indicative of internal septa formation, and as the authors
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TABLE 2 | Intracellular ATP content of C. jejuni morphotypes at different

phases of growth.

Cell Forms∗ C. jejuni 12661 C. jejuni PT14

ATP (fg/cell)† ATP (fg/cell)†

Exponential phase spirals (14 h) 1.7 ± 0.35 0.99 ± 0.12

Decline phase spirals (96 h) 1.19 ± 0.20 0.84 ± 0.14

Decline phase filaments (96 h) 17.4 ± 2.2 2.66 ± 0.54

Decline phase coccoid (196 h) 0.01 ± 0.005 ND

Decline phase coccoid (216 h) 0.01 ± 0.004 ND

∗Cell morphotypes observed at different time points (h) in microaerobic culture of

MEM with pyruvate. †±SD n = 3. ND, not detectable.

conclude phenotypic differences between cells that compose the
filament.

Quorum sensing bacteria produce and release auto inducers
that increase in concentration as a function of cell density leading
to an alteration in gene expression (Miller and Bassler, 2001) and

in some cases filamentation (Allison et al., 1992). As no change
in the time taken to form filaments occurred when pre-used

medium was inoculated with a fresh culture, it seems unlikely
that quorum sensing was involved in the process. The relatively

proficient growth of campylobacters in the pre-used medium
was unexpected, as nutrient depletion on entry to stationary

phase was suggested as a possible trigger for filamentation. This
raises questions as to what actually triggers entry to stationary

and decline phases in Campylobacter broth cultures. This is not
well understood in other bacteria and probably depends on a

combination of factors including the species of bacteria and
growth medium. For Salmonella typhimurium and Escherichia

coli it has been shown that increased levels of acetate (Wilson
et al., 2003) or carbon starvation (Sezonov et al., 2007) are

associated with the cessation of growth. The transition to
stationary phase for Campylobacter is highly dynamic with a

switch from acetate production to utilization together with a
peak in motility and numerous gene expression changes (Wright
et al., 2009). In addition, the bacteria do not appear to exhibit

enhanced stress resistance in stationary phase, unlike many
other bacteria, which is consistent with the absence of RpoS

homologues (Kelly et al., 2001). Despite the absence of RpoS,
campylobacters retain a stringent response that assists survival

in the stationary phase of many bacterial species. Mutation of
the spoT gene results in aberrant cell morphologies and early

coccoid cell formation in stationary phase cultures (Gaynor et al.,
2005).

As a microaerophile, Campylobacter is particularly sensitive
to the presence of free radicals and may suffer oxidative stress

when grown in broth media despite being supplied with a
reduced oxygen atmosphere (John et al., 2011). Strictly anaerobic

conditions in the presence of alternative electron acceptors
nitrate or fumarate have also been shown to induce filamentation

in Campylobacter indicating an oxygen requirement for DNA
synthesis (Sellars et al., 2002). The presence of starch in

Campylobacter culture media acts as an antioxidant and affords
a degree of protection against oxidative stress caused by

free radicles that can accumulate during exponential growth
(Mehlman and Romero, 1982). The provision of starch in

the culture media did not influence the timing or degree of

filamentation, which suggests that the accumulation of reactive
oxygen species (ROS) in the growth medium is not a predisposing

factor to the appearance of the filamentation morphotype.
However, this does not rule out a role for oxidative stress at

a cellular level. Endogenous ROS produced as a consequence
of cellular metabolism have been suggested to play a role as

signalingmolecules and effectors in the development of microbial
multi-cellularity, including programed cell death (Čáp et al.,

2012).
Campylobacters were unable increase in viable count in

MEM, without a carbon source but some increase in cell
size was observed. The addition of pyruvate to the MEM

allowed growth but with the early onset of filamentation as
compared with growth in nutrient rich medium. Nutritional

differences clearly impact on the observed morphological
changes but since pyruvate remained in excess during the
growth period as a carbon and energy source, it is unlikely

that filamentation is a response to carbon starvation in these
experiments. Bacteria also require sufficient iron, phosphorous,

sulfur, nitrogen, and other trace elements for growth and
it is possible that one, or a combination of these, become

quickly exhausted in minimal medium resulting in filamentation,
compared to rich media. However, the response to nutrient

limitation even within a well-mixed Campylobacter broth
culture is not uniform, in most cultures filamentous types

arise among spirals that continue to divide. This implies that
once the growth rate has become limited due to nutritional

availability, then the formation of the filaments is either a
stochastic process or developmentally controlled to generate a

subpopulation that are more able to survive nutritional depletion
and/or environmental stresses. In the wider environment other

limiting physiological factors may also trigger the filamentation
response.

Campylobacter jejuni cultured in MEM with pyruvate exhibit
an ability to retain a viable subpopulation through decline phase
at 37◦C under microaerobic conditions despite a fall in viable

count from >8 log10 CFU/ml at the end of exponential phase
(24 h in Figure 5) to 3 log10 CFU/ml at 168 h. We have

measured the ATP contents of cell morphotypes recovered from
the decline phases of these cultures to demonstrate significant

increases in the cellular ATP contents of the filamentous types as
compared with spiral forms, sampled in either exponential phase,

or separated from filaments in decline phase. These increases
may be accounted for because the filaments appear to consist

of multiple cells, joined in an ordered conglomerate. Consistent
with this view, is the observation that the C. jejuni strain 12661

produces notably longer filaments and has a higher ATP content
(17.4 fg ATP/CFU) than C. jejuni PT14 (2.66 fg ATP/CFU).

However, we have noted interspersed staining patterns and cell
division within filaments, which could represent cells with greater

metabolic activity within a single filament. In the later stages of
these cultures (>168 h) the majority of the cells become coccoid.

ATP content estimates of coccal cells were either extremely low
or non-detectable, suggesting they are not viable as concluded

in previous reports (Moran and Upton, 1986; Boucher et al.,
1994).
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Differences in the ability of Campylobacter isolates to survive

in microcosm waters have been documented but without
reference to the formation of filaments (Buswell et al., 1998).

The increased ability of the filamentous morphotype to survive
in water compared to the short spiral form suggests that further

research is necessary to assess the impact this may have on
the transmission of the campylobacters from the environment

to farm animals and on the safety of post-process foods.
Based on these observations caution is advised when applying

mathematical models that predict the survival Campylobacter,
but do not take into account that changes in cell morphology

and physiology that can increase their probability of survival.
The presence of multicellular filaments may also lead to

underestimates of viable cell numbers in cultures, since a single
filament can form a single colony despite a multicellular origin,

and filaments can exhibit differing refraction properties to non-
dispersed cell suspensions that can make the interpretation
of optical density measurements problematic (Wright et al.,

2009).
Rapid filamentation was observed in MEM with pyruvate,

in all the C. jejuni tested, and in all but one of the C. coli
strains tested regardless of the strains being of either poultry

or human origin. The response appears widespread amongst
the two species. The minimal medium employed in these

experiments did not support any observable growth of the single
C. coli strain that did not form filaments, it could therefore

not be concluded that this strain lacked the capacity to form
filaments.

Laboratory based experiments of protein expression and
metabolism of Campylobacter demand the use of broth grown

cultures to control the phase of growth. Cultures are often
harvested in late exponential phase to maximize cell yields,

which can contain filamentous forms with potentially different

characteristics to exponentially grown short spiral forms. Whilst
it has long been recognized that growth in vitro cannot

necessarily be compared with growth in vivo, the observation
that in vitro grown cells harvested late in the growth cycle

show such radically different morphology and survival ability,
to cells in exponential phase, requires consideration in the

context of experimental design and the methods to be adopted
for environmental surveys. The filamentation of Campylobacter

strains in laboratory broth culture appears to be a common
occurrence. Whether filamentation occurs in all environments

inhabited by campylobacters, for example in the intestines of
animals and birds, is not known but the presence of filaments

in biofilms indicates that this should be further investigated.
Similarly there are no reports of filamentous forms observed from

environments such as water courses, or from chilled meat, where
campylobacters survive but have limited growth potential.
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Čáp, M., Vachova, L., and Palkova, Z. (2012). Reactive oxygen species in the

signaling and adaptation of multicellular microbial communities. Oxid. Med.

Cell Longev. 2012, 976753. doi: 10.1155/2012/976753

Fawcett, P. T., Gibney, K. M., and Vinette, K. M. (1999). Helicobacter pylori

can be induced to assume the morphology of Helicobacter heilmannii. J. Clin.

Microbiol. 37, 1045–1048.

Gaynor, E. C., Wells, D. H., MacKichan J. K., and Falkow S. (2005). The

Campylobacter jejuni stringent response controls specific stress survival and

virulence-associated phenotypes.Mol. Microbiol. 56, 8–27. doi: 10.1111/j.1365-

2958.2005.04525.x

Griffiths, P. L. (1993). Morphological changes of Campylobacter jejuni growing

in liquid culture. Lett. Appl. Microbiol. 17, 152–155. doi: 10.1111/j.1472-

765X.1993.tb00382.x

Janion, C. (2001). Some aspects of the SOS response system–a critical survey. Acta.

Biochim. Pol. 48, 599–610.

John, A., Connerton, P. L., Cummings, N., and Connerton, I. F. (2011). Profound

differences in the transcriptome ofCampylobacter jejuni grown in two different,

widely used, microaerobic atmospheres. Res. Microbiol. 162, 410–418. doi:

10.1016/j.resmic.2011.02.004

Jones, A. L., Beveridge, T. J., and Woods, D. E. (1996). Intracellular survival of

Burkholderia pseudomallei. Infect. Immun. 64, 782–790.

Jones, T. H., Vail, K. M., and McMullen, L. M. (2013). Filament formation by

foodborne bacteria under sublethal stress. Int. J. Food Microbiol. 165, 97–110.

doi: 10.1016/j.ijfoodmicro.2013.05.001

Justice, S. S., Hunstad, D. A., Cegelski, L., and Hultgren, S. J. (2008). Morphological

plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 6, 162–168. doi:

10.1038/nrmicro1820

Frontiers in Microbiology | www.frontiersin.org 8 June 2015 | Volume 6 | Article 657

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Ghaffar et al. Filamentation of Campylobacter

Kalmokoff, M., Lanthier, P., Tremblay, T. L., Foss, M., Lau, P. C., Sanders, G., et al.

(2006). Proteomic analysis ofCampylobacter jejuni 11168 biofilms reveals a role

for the motility complex in biofilm formation. J. Bacteriol. 188, 4312–4320. doi:

10.1128/JB.01975-05

Kelly, A. F., Park, S. F., Bovill, R., and Mackey, B. M. (2001). Survival of

Campylobacter jejuni during stationary phase: evidence for the absence of a

phenotypic stationary-phase response.Appl. Environ. Microbiol. 67, 2248–2254.

doi: 10.1128/AEM.67.5.2248-2254.2001

Mehlman, I. J., and Romero, A. (1982). Improved growth medium for

Campylobacter species. Appl. Environ. Microbiol. 43, 615–618.

Miller, C., Thomsen, L. E., Gaggero, C., Mosseri, R., Ingmer, H., and Cohen,

S. N. (2004). SOS response induction by beta-lactams and bacterial defense

against antibiotic lethality. Science 305, 1629–1631. doi: 10.1126/science.1

101630

Miller, M. B., and Bassler, B. L. (2001). Quorum sensing in bacteria. Annu. Rev.

Microbiol. 55, 165–199. doi: 10.1146/annurev.micro.55.1.165

Moran, A. P., and Upton,M. E. (1986). A comparative study of the rod and coccoid

forms of Campylobacter jejuniATCC 29428. J. Appl. Bacteriol. 60, 103–110. doi:

10.1111/j.1365-2672.1986.tb03366.x

Mulvey, M. A., Schilling, J. D., and Hultgren, S. J. (2001). Establishment of

a persistent Escherichia coli reservoir during the acute phase of a bladder

infection. Infect. Immun. 69, 4572–4579. doi: 10.1128/IAI.69.7.4572-4579.2001

Ng, L. K., Taylor, D. E., and Stiles, M. E. (1985). Estimation of Campylobacter spp.

in broth culture by bioluminescence assay of ATP. Appl. Environ. Microbiol. 49,

730–731.

Nyström, T. (2004). Stationary-phase physiology. Annu. Rev. Microbiol. 58, 161–

181. doi: 10.1146/annurev.micro.58.030603.123818

Sellars, M. J., Hall, S. J., and Kelly, D. J. (2002). Growth of Campylobacter

jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-

oxide, or dimethyl sulfoxide requires oxygen. J. Bacteriol. 184, 4187–4196. doi:

10.1128/JB.184.15.4187-4196.2002

Sezonov, G., Joseleau-Petit, D., and D’Ari, R. (2007). Escherichia coli physiology

in Luria-Bertani broth. J. Bacteriol. 189, 8746–8749. doi: 10.1128/JB.

01368-07

Stackhouse, R. R., Faith, N. G., Kaspar, C. W., Czuprynski, C. J., and Wong,

A. C. (2012). Survival and virulence of Salmonella enterica serovar enteritidis

filaments induced by reduced water activity. Appl. Environ. Microbiol. 78,

2213–2220. doi: 10.1128/AEM.06774–6711

Thomas, C., Hill, D. J., and Mabey, M. (1999). Morphological changes of

synchronized Campylobacter jejuni populations during growth in single

phase liquid culture. Lett. Appl. Microbiol. 28, 194–198. doi: 10.1046/j.1365-

2672.1999.00504.x

Vandamme, P. (2000). “Taxonomy of the family campylobacteraceae,” in

Campylobacter, 2nd Edn, eds I. Nachamkin and M. J. Blaser (Washington, DC:

American Society for Microbiology), 3–26.

Wilson, P. D., Wilson, D. R., Brocklehurst, T. F., Coleman, H. P., Mitchell, G.,

Waspe, C. R., et al. (2003). Batch growth of Salmonella typhimurium LT2:

stoichiometry and factors leading to cessation of growth. Int. J. Food Microbiol.

89, 195–203. doi: 10.1016/S0168-1605(03)00142-9

World Health Organization [WHO]. (2013). The Global View of

Campylobacteriosis Report of an Expert Consultation. Available at:

http://www.who.int/foodsafety/publications/foodbornedisease/globalview

campylobacterosis/en/

Wright, J. A., Grant, A. J., Hurd, D., Harrison, M., Guccione, E. J., Kelly, D. J.,

et al. (2009). Metabolite and transcriptome analysis of Campylobacter jejuni in

vitro growth reveals a stationary-phase physiological switch. Microbiology 155,

80–94. doi: 10.1099/mic.0.021790–21790

Yabe, S., Higuchi, W., Takano, T., Razvina, O., Iwao, Y., Isobe, H., et al. (2010).

In vitro susceptibility to antimicrobial agents and ultrastructural characteristics

related to swimming motility and drug action in Campylobacter jejuni and

C. coli. J. Infect. Chemother. 16, 174–185. doi: 10.1007/s10156-010-0040-1

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Ghaffar, Connerton and Connerton. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 9 June 2015 | Volume 6 | Article 657

http://www.who.int/foodsafety/publications/foodborne_disease/global_view_campylobacterosis/en/
http://www.who.int/foodsafety/publications/foodborne_disease/global_view_campylobacterosis/en/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Filamentation of Campylobacter in broth cultures
	Introduction
	Materials and Methods
	Bacterial Strains
	Growth in Liquid Cultures
	Fluorescent Cell Staining (Syto9/Propidium Iodide)
	Separation of Short Spiral and Filamentous Morphotypes
	Comparison of the Survival of the Short Spiral and Filamentous Morphotypes
	Determination of Intracellular ATP

	Results
	Confirmation of Filamentation on Entry to Stationary Phase and the Imaging of Filament Component Cells by Vital Staining
	Growth of Campylobacter in Pre-Used Medium to Investigate the Potential Role of Quorum Sensing, Depletion of Nutrients
	Growth of Campylobacter in Starch-Containing Media to Reduce Oxidative Stress
	Filamentation in Different Strains of C. jejuni and C. coli
	Filamentous Forms Show Increased Survival in Water
	ATP Contents of Spiral, Filamentous, and Coccal Cell Types

	Discussion
	Author Contributions
	Acknowledgment
	References


