
Parsonson, Louis (2015) Modelling angiogenesis in
three dimensions. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/29075/2/Modelling%20Angiogenesis%20in%20Three
%20Dimensions.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Modelling Angiogenesis in Three Dimensions

Louis Parsonson, BSc

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy

July 2015

Abstract

The process through which new blood vessels are formed within the body is known

as angiogenesis. An essential part of our survival, it has also been implicated more

recently in many diseases both in terms of induced growth, and abnormal vascular

structure.

Angiogenesis is characterized as two processes, the development of a vascular

network during embryonic growth and the production of new blood vessels. This

work focuses on the latter, and seeks to develop a robust, three-dimensional model

for simulating blood vessel growth and the attendant processes of blood flow and

mass transfer within the simulated system. A system was developed which utilises

medical imaging scan data (specifically, MicroCT) as the initial conditions from

which a network of vessels is grown. This is combined with GPU accelerated

simulations of fluid dynamics, with the intention of providing a technique for future

use in predictive medicine and therapeutic simulation.

1

Acknowledgements

The work presented here is the result of three and a half years at the University of

Nottingham Computer Science department, funded by an Industrial CASE award

from the Engineering & Physical Sciences Research Council (EPSRC). The work

on cloud computing was completed in collaboration with Biotronics3D, with the

use of their 3dNet Medical cloud-based medical imaging solution.

I would like to express my sincerest thanks to Dr. Bai Li, my supervisor, for

all of her advice, support and patience throughout the process, without which this

would not have been possible.

I would like to dedicate this to my father, for giving me his love of science, my

mother for teaching me to believe in myself, and to Anna for always pushing me

to be my best.

2

Contents

1 Introduction 7

1.1 Angiogenesis in health and diseases 9

1.1.1 Mechanisms of angiogenesis 9

1.1.2 Angiogenesis in cancer . 10

1.1.3 Anti-angiogenic therapy . 11

1.1.4 Angiogenesis in neurodegenerative diseases 13

1.2 Angiogenesis in tissue engineering 14

1.2.1 Cell-based vascularization 14

1.2.2 Scaffold-based strategies . 15

1.3 Challenges of vascular modelling . 16

1.4 Thesis roadmap . 18

2 Literature review 19

2.1 Modelling angiogenesis . 19

2.1.1 Anderson and Chaplain’s model 20

2.1.2 Other modelling approaches 23

2.2 Simulating blood flow . 27

3

3 Cloud medical imaging and visualisation 31

3.1 Cloud computing . 32

3.2 Medical imaging . 37

3.3 Volume rendering . 39

3.3.1 Texture-based volume rendering 39

3.3.2 Ray casting . 40

3.3.3 Rendering depth . 41

4 Modelling angiogenesis in three dimensions 44

4.1 Endothelial tip cell movement . 46

4.2 Vessel formation . 50

4.3 Physical constraints and boundary conditions 52

5 Fluid dynamics simulation 55

5.1 Growth factor diffusion . 55

5.2 Flow and pressure . 58

6 Implementing complex computation on the GPU 61

6.1 The parallel programming model 62

6.2 Diffusion . 64

6.2.1 Diffusion equation . 64

6.2.2 Memory requirements . 65

6.3 Pressure . 66

6.4 Mass transfer . 73

6.4.1 Mass transfer by advection 74

6.4.2 Delivery of mass to the body 78

4

6.5 Programming for the GPU . 80

6.6 Unifying a modular system . 82

7 Individualised modelling 86

7.1 Introduction . 86

7.2 Personalised medicine . 87

7.3 Imaging . 88

7.4 Limitations of image based methods 92

8 Modular Analysis on the Cloud 94

8.1 3DNet . 94

8.2 A flexible pipeline for medical image analysis 95

8.2.1 Event-driven workflow . 97

8.2.2 Logic engine . 98

8.2.3 Module management . 101

8.2.4 Module wrapper . 103

8.2.5 Exploiting the DICOM standard for binary file transfer . . . 106

8.2.6 Inter-component communication 108

8.2.7 Individualised modelling in the cloud 108

9 Conclusions and Future Work 110

9.1 Future work . 115

9.2 Tissue engineering . 117

9.3 Cloud computing . 118

9.4 A more general scheme for modular development 119

Publications 125

5

List of Figures 126

References 128

6

Chapter 1

Introduction

Angiogenesis is the formation of new blood vessels in the human body. With on-

going research, evidence continues to mount up to implicate vascular structure

and function, in particular the angiogenic process, in a long list of human dis-

eases. This includes cancer, diabetes, cardiovascular diseases, and in recent years

neurodegenerative diseases [1], [2]. Study of the formation of microvasculature,

therefore, has important implications in diagnosis and treatment of diseases. It

is no surprise, then, that recent years have seen an increase in research into the

mechanisms behind the angiogenic process, as well as attempts to predict how

various therapies affect it.

Simulations of angiogenesis in two dimensions are fairly common now, with the

model developed by Anderson and Chaplain [3] being of particular note. These

models are designed to replicate growth patterns observed in vitro; thus, their ap-

plication is limited in real-world situations. Continued interest in vascular growth

in cancer, in particular, has resulted in interest in simulations of the effectiveness

of anti-angiogenic therapy [4] as well as chemotherapy [5].

7

This thesis describes how a CPU-based Cellular Potts model [6] of sprouting

angiogenesis in three dimensions is combined with medical imaging techniques

and fluid dynamics equations to create an individual-based GPU accelerated an-

giogenesis simulation. The use of the GPU, optimized for fast, highly parallel

mathematical operations, provides an increase in simulation speed and balances

resource requirements across hardware. Primarily, this work is concerned with

modelling vascular growth at the microscopic level. It is becoming clearer that the

structure and function of microvasculature, that is the smallest vessels within the

human body, are implied in many diseases. However, the need for studying mi-

crovasculature is not limited to clinical diagnosis of disease. In tissue engineering,

creating vascularized tissue is a considerable problem, limiting the size to which

effective engineered tissues can be grown [7].

The system described here attempts to personalise simulations of angiogenesis

using medical scan data. Specifically, microCT scans of resin cast rat cerebral

vasculature are segmented to remove reconstruction artifacts and imported to in-

stantiate nascent endothelial cells in a homogeneous three-dimensional grid repre-

senting the area over which the simulation is performed. A growth factor source is

added, and simulation of steady production and diffusion of the vascular endothe-

lial growth factor (VEGF) is performed on the GPU using the NVidia Compute

Unified Device Architecture (CUDA) programming platform. Motion of individ-

ual endothelial cells is then tracked over the lifetime of the simulation towards the

source of growth factor, incorporating sprouting and anastamosis (looping) events.

The network generated is used for simulations of blood flow and mass transfer, also

accelerated using graphics hardware.

8

1.1 Angiogenesis in health and diseases

Since the discovery of angiogenesis, research has continued to highlight the role

of this process in disease, from implications of vascular abnomalies in Diabetic

Retinopathy [8], Cardiovascular Diseases [9], Alzheimer’s Disease[10], through to

the uncontrolled angiogenic response initiated by tumors in cancer patients [1].

1.1.1 Mechanisms of angiogenesis

Angiogenesis is triggered by the release of angiogenic factors, such as Fibroblast

Growth Factors, a family of proteins which stimulate fibroblast and endothelial

cell growth. The binding of angiogenic factors to receptors in endothelial cells

stimulates the cells into migrating towards the source of the factor. The cells are

induced to release enzymes, which degrades the basement membrane of the parent

vessel, thus enabling them to move towards the source of the growth factor.

Angiogenesis occurs in multiple stages. Sprouts are formed as cells migrate

towards the source of the growth factor, led by the tip cell, which recruits more

endothelial cells from the parent vessel. As the tip moves, the sprout has a ten-

dency to split, thus creating the well-known branching structure associated with

the vasculature.

From time to time, migrating sprouts come into contact with other sprouts

and can join with them to form the characteristic looping of the microvascula-

ture. These events are known as anastamoses and are a key factor of the vascular

geometry, enabling bi-directional flow of blood through the system.

During embryo growth and development, the network of vasculature develops

from a field of endothelial cells, during which the cells group together to form

9

the primitive vascular network which later develops into the functional systems

our bodies rely upon. This process is also known as vasculogenesis. In developed

bodies, however, angiogenesis occurs during wound healing in a process known as

neoangiogensis. This form of angiogenesis is preceded by the release of chemical

factors by the body when in need of vascularisation, for example when areas of the

body exist in a hypoxic state. Of the triggers of neoangiogenesis, the most common

are chemical factors released by various parts of the body. Initially isolated in the

1970s from tumor mass [11], new factors have been identified since then. Of note

is Vascular Endothelial Growth Factor (VEGF), identified as a key element in the

mechanism of tumor-induced angiogenesis [12].

1.1.2 Angiogenesis in cancer

The risk of developing some form of cancer of a lifetime is currently rated on average

to be approximately 40%, or a 2 in 5 chance. This means that the majority of

people will experience cancer either through developing it, or having a friend or

relative who does. The chances of said cancer being fatal are 1 in 5, and it is

estimated that more than 1.6 million new cases of cancer will be diagnosed in the

US alone, with nearly 600 000 deaths, in 2014 [13].

Angiogenesis is of key interest in the study and treatment of cancer. Initially,

tumors in the body are unable to grow to sizes greater than one or two cubic mil-

limetres, a size limited by the diffusion limits of oxygen within the body. Tumors

which outgrow this size begin to die on the inside as they are unable to secure

adequate nutrients. However, if a tumor switches to the angiogenic phenotype

the cells begin to secret angiogenic factors, such as VEGF. As these factors move

10

through the surrounding tissue, they encounter existing blood vessels and encour-

age the growth of new vasculature towards the tumor, thus securing a nutrient

supply and creating the possibility of metastatis - in some cases, tumor cells can

detatch and enter the bloodstream, spreading the cancer across the body, often

with fatal consequences.

1.1.3 Anti-angiogenic therapy

Anti-angiogenic therapies are an area of recent interest in terms of treating cancer,

particularly in malignant glioma where angiogenesis is considered to be the key

event in tumor progression [14]. Recent evidence has shown that antiangiogenic

therapy can work to normalize tumor vasculature (i.e. making it more regular and

efficient) which in turn causes a more effective platform for targeted cytotoxic ther-

apies such as chemo- and radiotherapy, both of which require adequate functional

vasculature to maintain efficacy [15]. However, application of antiangiogenics car-

ries an inherent risk since giving to high a dose can lead to destruction of too

much of the tumor vasculature, making cytotoxic therapies ineffective and lead-

ing to toxicity in normal tissues. Anti-angiogenic therapy has shown promise in

terms of reducing the abilities of tumours to initiate vasculaturization, however re-

cent research has shown that tumors can become resistant to the therapy through

upregulation of alternative pro-angiogenic signals [16]. As such, anti-angiogenic

therapies as they stand provide a respite, but not a cure.

Modelling of such therapies is of key interest in the continuing struggle against

cancer. Arakelyan et al [4] developed a numerical model which was comprised of

a set of formulae describing each of the interactions in their system. The results

11

were in the form of numerical values of measured quantities, such as growth factor,

tumor size, effective vascular density and mature vessel density.

Ledzewicz et al [17] used a numerical method to solve a mathematical de-

scription of cancer treatment, that is solving for a maximum reduction in tumour

volume, to provide dosages of anti-angiogenic drugs. More recently, Stefanini et al

[18] detailed a model of VEGF distribution and interactions in tissue with the goal

of aiding in the design of optimal strategies for VEGF inhibition. This is purely

a numerical model which represents the tissue as a collection of concentrations.

Similarly, Ledzewicz et al [17] used a numerical method to solve a mathematical

description of cancer treatment, solving for a maximum reduction in tumor vol-

ume, to provide dosage sizes of anti-angiogenic drugs. Benzekry et al [19] used a

similar method to model the effectiveness of combining anti-angiogenic therapies

with cytotoxic therapies. This model focuses primarily on the effect of the delay

between treatment types, rather than the dose given, and is concerned with opti-

mizing this. It explicitly states, however ,that this is a model in which parameters

would need to be adjusted to a particular patient.

Also of note is the model developed by Owen et al [5], a two-dimensional grid-

based model for simulation of combining chemotherapy with a macrophage-based

gene therapy under influence of a magnetic field, alongside a vessel and tumor

growth system. While not an antiangiogenic model, it uses a similar approach to

generate and simulate the vascular growth and drug movement, primarily through

expression of VEGF. The model is based on a regular grid, across which drug and

oxygen concentrations are stored for each cell in the grid.

12

1.1.4 Angiogenesis in neurodegenerative diseases

Our research interest in the microvasculature was brought upon by a new direc-

tion in research of Alzheimer’s Disease (AD). This is based on a new theory on the

aetiology of AD - the neurovascular pathway to neurodegeneration. Amyloid beta

(ABeta) deposition in the walls of cerebral blood vessels had generally been at-

tributed to the cause and development of AD. A growing body of evidence suggests

that there is a strong association between the structure of the cerebral vasculature

and AD, especially the microvasculature/capillaries that are responsible for the

exchange of nutrients across the blood-brain barrier. This raises the possibility

that the abnormalities in the structure may be a decisive early indicator of de-

mentia. There is also evidence that vascular changes occur early in the course

of the disease, and may even precede ABeta deposition. Studies on the brains

of mice show that before ABeta and other symptoms of AD appear, these mice

already have altered cerebral vasculature. In fact, abnormal (e.g. holed, kinked

or distorted) microvascular networks in AD brains at the arteriole, capillary, and

venule level were reported a long time ago and there was no difference between

relatively large arteries in AD and normal brains, but it is only in recent years

that the neurovascular factor has become the focus of research into AD. Similarly,

the neurovascular factor in other neurological diseases such as Multiple Sclerosis

(MS) have been receiving much interest in recent years as many MS patients have

been found to have vascular abnormalities. Thus the cerebral vasculature may be

a target for diagnosis and treatment of these neurological diseases.

13

1.2 Angiogenesis in tissue engineering

In their 2011 paper [7], Novosel et al. describe the challenge of vascularization

in tissue engineering as the key limitation in engineering large tissue structures.

In vivo, tissues are supplied with nutrients via naturally formed vascular systems,

but in vitro tissues are generally submerged in a nutrient fluid. Typically, the

maximum distance between capillary vessels in vivo is 200µm, which correlates

with the diffusion limit of oxygen, however some tissues such as skin and cartilage

are able to perfuse from a greater distance without dying, and hence these tissues

are typically the result of tissue engineering efforts. There are two main approaches

to vascularizing tissues: cell-based strategies and scaffold-based strategies. The

former is based on the ability of endothelial cells to form new vessels, the latter

on the actual vessels themselves.

1.2.1 Cell-based vascularization

Cell-based strategies for tissue vascularization rely on the twin processes of neoan-

giogenesis and vasculogenesis. Within this particular subset of methods are two

main strategies of encouraging the growth of functional vasculature, prevascular-

ization and induction of neoangiogenesis. The former deals with growing a vascular

network within the engineered tissue before implantation. The latter involves us-

ing chemical growth factors to encourage neoangiogenesis once the tissue has been

placed in situ.

14

1.2.2 Scaffold-based strategies

While still limited in its clinical applications, building artificial vasculature is an

area of continuing research. Scaffolds can be either biological in nature, derived

from decellularized mammalian sections, or artificial in nature, using directed de-

sign of vasculature-like structures. Decellularized sections reveal natural 3D vas-

cular structures; the matrix can then be seeded with human cells, introducing

the possibility of building perfusable constructs. In artificial approaches, scaffolds

are typically produced from hydrogels, made of either biopolymers or synthetic

polymers [7]. Even more recently, modified three-dimensional printing techniques

have been utilized to create a framework of a sugar-based substance which, when

hardened, is submerged in a matrix substance and seeded with cells. The frame-

work is dissolved, revealing a network of tubular structures which can be used

as a vascular system with which to perfuse an engineered tissue structure [20].

While initially limited to a cuboid structure, this raises interesting implications

regarding the applicability of designing efficient vascular structures for arbitrary

three-dimensional volumes.

In their 2009 paper, Lafayette et al [21] described their method of designing

vascular scaffolds through reconstruction of micro-CT data. This process involves

perfusing the vasculature with a resin to produce a cast, scanning the cast at high

resolution, reconstructing and segmenting the images acquired, and then correcting

errors manually with a CAD software program. The advantage to this method is

that it provides a naturally formed, functional vascular structure, which can be

re-used since essentially a “pattern” is created. The disadvantage to this method

is that the structure obtained is designed for a singular purpose, and of a fixed

15

shape. Therefore, a more flexible method of scaffold design would be desirable.

1.3 Challenges of vascular modelling

In silico simulations of biological processes present complex challenges to re-

searchers. First and foremost is the complexity of the biological process being

simulated. Even simple processes within the body are comprised of many con-

stituent mechanisms, each subtly tuned to each other. Identifying these mecha-

nisms requires an in depth knowledge of the body on a microscopic level.

Because of the complexity inherent in such systems, the need for computing

resources is very high. It is of paramount importance that a simulation of a

biological system can run in reasonable time. This is especially important when

developing a model, since parameters may need to be modified repeatedly in order

to adjust the model to accurately reflect real biological processes. While the term

reasonable time can mean different things in different situations, in context of the

possible need to repeat the simulation multiple times, reasonable time is considered

here to be anything between ten minutes and two hours.

Typically, simulations of biological processes have been limited to a two-dimensional

domain. These simulations are often based on observations of in vitro experiments,

where cell movements are sometimes constrained to two dimensions, such as cell

migration within a petri dish, and often in a uniform environment. Such a sim-

ulation is not an appropriate indicator of biological processes in vivo, where the

domain is three-dimensional and variable.

This research has been performed in a three-dimensional domain. Such an

increase in dimensions has had the effect of causing an exponential increase in

16

complexity. Consider the immediate neighborhood of a single cell in a regular

grid: in two dimensions, this neighborhood is eight other cells (32 − 1); in three

dimensions, however, this is increased to twenty-six (33−1), more than three times

as many. Applying this increase in complexity to each element causes simulation

resource requirements to increase by an order of magnitude.

The nature of a biological system can be described as a collection of individual

agents with differing roles, the emergent behaviour being that which we observe

as life. This work focuses on one particular system, the growth of microvascula-

ture, and thus the agents in question are endothelial cells. Around this are several

physical and molecular phenomena, such as blood flow and respiration, reactions

or sub-systems which all contribute to the overall function of the system. The

relevance of this is the applicability of GPGPU (General Purpose Graphics Pro-

cessing Unit) hardware to such a system, as the parallel nature of computation on

a GPGPU device is ideal for simulations of complex systems. Having the GPU as

a candidate for such simulations gives a possible method for spreading the load

across all available hardware resources.

An alternative mode of parallel computing is that of grid computing, and bears

mentioning at this point. Grid computing involves sharing the resources of multiple

distinct computers, sometimes distributed geographically, communicating via a

network. This gives the immediate benefit of being very easily scalable, with

the potential of a huge amount of processing power being dedicated to a single

task. However, this comes with the increased overhead of data transfer between

machines, and increased cost involved in both the initial investment and running

costs. A GPU solution mitigates both the cost and data transfer issues, while

sacrificing overall power. It is important to note, as well, that grid computing

17

is typically for computationally more complex tasks utilizing the CPU, although

more recently GPU grids have been used [22]. An attractive middle-ground could

be found in the ability to combine multiple graphics cards in a single machine,

through the use of such technology as NVidia’s SLI bridge [23].

1.4 Thesis roadmap

The rest of the thesis is organised as follows. Chapter 2 provides background to

the thesis, introducing the key concepts in computerised modelling of angiogensis,

and simulating blood flow. Chapter 3 introduces cloud computing and medical

imaging, in particular an application of the former using the latter. Chapter 4

describes in detail the angiogenesis model developed during the course of this

work. Chapter 5 describes the blood flow and diffusion simulation work of the

thesis; Chapter 6 details how these were implemented using parallel processing on

the GPU. Chapter 7 explains how individual vasculature from microCT images are

integrated with the modelling and simulation frameworks to form a personalised

simulation system. Chapter 8 comes back to cloud computing in the context of a

modular analysis framework, work completed in the first year of the project, and

how the model described in previous chapters can be implemented as a unique

analysis module. Conclusions and future work are given in Chapter 9.1.

18

Chapter 2

Literature review

2.1 Modelling angiogenesis

In the past decades, considerable effort has been made in the development of

mathematical models of angiogenesis [18, 24, 25]. Mathematical models rely on

the phenomenon of hypoxic regions of tissue producing growth factors, which then

diffuse across the tissue towards existing vessels causing endothelial cell migration

and the creation of de novo vasculature. This is often combined with hydrody-

namic models to assess the effectiveness of the vasculature, and direct remodelling

efforts. These models rely on a partially stochastic process, which can produce

inefficient or unrealistic results, and are generally bound to a discrete grid result-

ing in sharp corners. While such attempts to ’grow’ simulated vascular networks

in silico have been the most popular approach, some efforts have been made to

generate vasculature following tree-based or fractal methods. This has, however,

had limited success.

19

2.1.1 Anderson and Chaplain’s model

Anderson and Chaplain [3] developed a model based on motion of migrating en-

dothelial tip cells governed by three functions; the chemotactic function, or ten-

dency to climb a growth factor gradient; the haptotactic function, relating to the

requirement of fibronectin; and cell motion.

Motion of migrating endothelial tip cells is defined as a partial differential

equation with three key components as follows:

∂n

∂t
= Dn∇

2n− χ∇ · (n∇c)− ρ∇ · (n∇f) (2.1)

where χ represents a function of the angiogenic factor (VEGF-A) density c, ρ

represents a function of fibronectin density f , and Dn represents a random-walk

component, based on endothelial cell density n .

In this system, the function chi represents uptake and binding of the angiogenic

factor, and is described as follows:

∂c

∂t
= −λnc (2.2)

where λ is a positive constant. Finally, uptake and binding/degradation of

fibronectin, the function rho, is modelled as:

∂f

∂t
= ωn− µnf (2.3)

where ω and µ are both positive constants [3].

This system of equations was then solved using finite difference methods to

provide a discretization of the model which could be applied to a regular grid de-

20

scribing a unit square (i.e. a numerical domain of [0, 1] × [0, 1]) representing an

area of width 2mm. The square was divided into a grid of 200 x 200 cells, offering

a resolution of 0.01mm per unit. This system was expanded to include random

branching events and looping due to fusion of cells which met (anastomosis). Sim-

ulation efforts were shown to give results visually comparable to those of in vivo

experiments.

This led the way for further improvements and modifications of the scheme

and blood flow modelling using fluid dynamics. Arakelyan et al [4] developed a

numerical model for tumor vasculature which was comprised of a set of formulae

describing each of the interactions in their system. The results were in the form

of numerical values of measured quantities including growth factor density, tu-

mour size, effective vascular density, concentration of pericytes, and mature vessel

density. Their model suggested that the joint administration of two agents, an

anti-angiogenic agent and an anti-maturation agent, provided prolonged suppres-

sion of tumour growth and a decrease in average tumour size, irrespective of initial

conditions.

Preziosi and Astanin showed a model of vasculogenesis and angiogenesis which

created realistic models of vascular networks, comparable to real networks [26].

Linninger and Vaicaitis showed examples of artificially generated cerebral vascular

trees based on actual patient data which show similarity to the real images [27].

The model incorporates natural flow laws to generate trees with high congruence

to actual vasculature in terms of appearance and statistical properties. Moore and

David developed a method for modelling the autoregulation function of the cerebral

vasculature in such a way as to simulate the effects of stenosis and occlusion [28].

Perfahl et al developed a multiscale model of angiogenesis in tumours in three

21

dimensions, which was shown to be able to predict the spatio-temporal evolution

of vascular tumours [29].

Maturation of vessels is an important factor in the growth of blood vessels

which relates to the formation and regression of mature vessels, (that is, vessels

which have stabilized). Previous models have focused mainly on the formation

of immature vessels (here categorized as angiogenesis). The model developed by

Arakelyan et al [4] includes the concept of vessel maturation, however the algo-

rithm is described numerically in terms of more abstract concepts such as effective

vascular volume and concentration of pericytes. As such, its application is less

direct in terms of predicting vascular growth initiated by tumor presence.

Godde and Kurtz [30] developed a model which works on a hexagonal grid

and considers shear-stress and pressure dependent systems. Their model showed

that shear-stress dependent modelling led to a more homogeneous distribution of

capillaries connecting terminal arterial and venous vessels than that of pressure

dependent modelling. Owen et al. [31] developed a multi-scale model of angiogen-

esis and vascular remodelling which accounts for vessel pruning due to low wall

shear stress amongst other factors.

A model of VEGF distribution and interactions in tissue was developed by

Stefanini et al [18] which was designed to aid in determining optimal strategies

for VEGF inhibition. The model describes kinetic ligand-receptor interactions be-

tween VEGF isoforms (VEGF121, VEGF165) and ECM binding sites for VEGF165.

The model does not explicitly describe tissue geometry, but rather represents the

components of the tissue (capillaries, ECs, basement membranes) as numerical

values of concentrations of molecular species.

Watson et al. [25] developed a model of vascular development in the murine

22

retinal plexus during neonatal development, involving modelling development of

the astrocyte network which precedes vasculogenesis in neonatal mice. This ap-

proach employs similar modelling techniques to those outlined by Anderson and

Chaplain in [3] by tracking individual astrocyte and endothelial tip cells. How-

ever, this model adds increased complexity through remodelling of vasculature.

This involves simulation of blood flow through the network, and delivery of oxy-

gen to surrounding tissue as a result, followed by pruning of the capillary network

in light of relevant criteria. Simulation is started at embryonic day fifteen (E15),

with an initial seeding of astrocyte cells around the location of the optic nerve.

These cells grow outward, encouraged by an existing gradient of platelet-derived

growth factor A (PDGF-A), a factor implicated in the development of astrocyte

networks. Hypoxic astrocytes are modeled as producing VEGF-A; thus, as the as-

trocyte network grows, a gradient of VEGF-A is created across the retina. At the

day of birth (E21.5) endothelial cells are seeded around the optic nerve and begin

to migrate radially outward, motivated by the recently created VEGF-A gradient.

2.1.2 Other modelling approaches

Cellular Automata

An alternative to the typically developed models is that of a cellular automaton

model for angiogenic processes. In a cellular automaton a region is, typically,

divided into a regular grid, each of which constitutes one cell in the automaton.

Each cell is assigned a state, and the state of each cell is derived iteratively from

itself and its neighbors. Rules are established to determine whether a cell changes

state after each iteration. Possibly the most well known cellular automaton is

23

Conway’s Game of Life [32], in which a cell can be either alive or dead. Evolution of

the system is described by three rules; if a cell has fewer than two living neighbors,

or more than three living neighbours, it dies; if a cell has two or three living

neighbors, it survives; if a dead cell has three living neighbours, it is brought

to life [33]. Through this simple model, immensely complex systems have been

designed, and it continues to be a subject of study today.

Topa [34] demonstrated a cellular automaton model developed to simulate tu-

mor induced angiogenesis, emulating the results of Anderson and Chaplain’s [3]

model. The results, whilst comparable to those of Anderson and Chaplain, are

in no way an improvement to the model, and thus considerable work would be

required to improve this model to the point where it could be of any use. The

model described is, in fact, a hybrid model based upon the concept of a cellular

automaton; the automaton model is used to simulate the tissue and distribution of

nutrients and other chemicals throughout, with the vessel network being a graph-

based representation which sits atop the tissue automaton.

Tree-based networks

Comparisons between human vasculature and tree structures are often made. In

fact, one of the processes crucial to formation of a vascular network in a developing

embryo is known as intussusceptive arborization [35], that is formation of a branch-

ing structure (arbor meaning tree, a word whose origin is, curiously, unknown).

Thus, it is reasonable to assume that tree systems could be used to generate vi-

sually similar structures to in vivo observations of human vasculature. The use of

tree structures is attractive, as they appear to be a more efficient way of regularly

filling a space than a vessel growth algorithm. Tree generation algorithms have

24

problems of their own, however. For one, they do not form anastamoses (looping

structures), an essential characteristic of functional vasculature.

Space-filling trees are deserving of consideration when regarding the idea of

filling an arbitrary space with vasculature [36]. Space-filling trees can be regular

or random, and involve subdividing a space and branching into the new subdivi-

sions from the nearest node. Regular trees fill the space in a symmetrical fashion,

which leads to the property of having a short maximum distance from one node

to the base node. Rapidly-exploring Random Trees are created from an already

fully subdivided space. From a base node, a random point in the space is chosen

and connected to the nearest node. This process is continued until the space is

filled [37]. One problem with this initial model of formation is that the tree has a

tendency to cross itself (see figure 2.1), which would result in low-efficiency of vas-

culature. Similarly, it does little in the way of emulating real vascular structures.

In order to improve this, some considerations can be taken into account.

Figure 2.1: A Rapidly-exploring Random Tree at 100, 200, 500 and 1000 iterations.

Initially, the decision-making process behind choosing a new node to branch

into can be modified to use only a region close to existing nodes. This effectively

limits the size of each branch to a pre-defined maximum length. With appropriate

conditions, this should effectively remove the possibility of self-crossing branches.

25

Second, the system can be modified to take into account a map of perfused areas,

limiting the tree to branching only into areas of low oxygen content. Thus the

process becomes more akin to biological growth in that it is driven by biological

factors.

In considering tissue scaffold development, the idea of a space-filling tree is an

appealing one. Possibly the largest barrier to engineering large tissue structures is

the diffusion capability of oxygen. This diffusion characteristic limits the distance

between vascular segments to a maximum of 200µm (0.2mm) [7], thus limiting

the size of an engineered tissue quite severely without an effective vascular system

in place. A space-filling tree appeals through its ability to fill an arbitrary space

up to a desired threshold, for instance minimizing the distance between adjacent

branch elements.

Unlike other models of angiogenesis, this approach does not model movements

of individual cells, but instead attempts to imitate the formation of a vascular net-

work by the assessment of various factors, such as oxygen diffusion level. Rapidly-

exploring random trees were initially developed as a path planning tool, thus devel-

opment of an RRT model of scaffold design could be considered a chemodynamic

(that is, led by chemical factors) path-planning problem of sorts. In kinodynamic

RRT development, a single location is given as a goal, and once a path to that goal

is acquired the tree is considered complete [37]. In order to use a tree generation

system for production of vascular scaffolds, the ’goal’ would be two-fold: a) the

space must be filled such that all vascular tree branches are a maximum of 200µm

from any other branch, b) the the structure must produce a flow throughout the

scaffold, presumably bridging the gap between opposing sides of the structure.

Like other trees, however, rapidly-exploring random trees do not taking looping

26

and blood flow into account, and thus are not a complete substitution for a vascular

tree. Bearing this in mind, a possible solution would be to grow two opposing trees

from opposite ends of the domain, and allow them to join where interactions occur.

The advantage of this approach is the speed with which it could be generated since

the decision making process is on a per branch basis, not per cell.

2.2 Simulating blood flow

As long ago as 1830 the movement blood in microvessels was of interest to sci-

entists. The French physicist and physiologist Poiseuille took it upon himself to

investigate the problem of resistance to blood flow posed by the narrowest parts

of the vascular system. His work on the flow of liquids such as water and blood

through narrow tubes led to him describing what is now known as Poiseuille’s law

(Eq 6.3). He noted that pressure across a tube was directly proportional to the

length and radius of the tube, and the viscosity and flow-rate of the liquid within,

and more specifically that it related to the fourth power of the radius.

For the next century, or so, Poisueille’s law was generally considered the gospel

for blood vessels. In 1954 the Microcirculatory Society was formed with the no-

tion, in part, of promoting research into the form and function of microcirculation

in health and disease. At this time, relatively little was known of the rheological

behaviour of blood within microvessels [38], until the pioneering work of Fåhræus

and Lidqvist discovered the curious effect of reducing capillary diameter on the

relative viscosity of blood. Blood is a concentrated suspension of red blood cells

in plasma [39], typically comprised of approximately 40-45% red blood cells (ery-

throcytes). A single red blood cell is, normally, a biconcave disc with a diameter

27

Figure 2.2: Red blood cells traveling in larger vessels are able to maintain their
ordinary shape (a), however when passing through vessels smaller than the normal
size of a single red blood cell, they are stressed in order to fit, forming a shape
more akin to that of a bullet (b).

of 8 µm and a thickness of 2µm. During flow through the microvasculature, this

is stressed to form a more bullet-like shape [39] by the smaller diameter of the

capillaries themselves (Figure 2.2).

Fåhræus and Lidqvist reasoned that blood would not necessarily act like an

ordinary fluid when passing through the smallest of human blood vessels, and

thus began to investigate the effect of reduced vessel width on the viscosity of

blood. In their experiments they were able to simulate blood flow through tubes

of much narrower diameter than Poiseuille ever was, with values as low as 0.05mm.

They discovered that at these decreasing widths, below approximate 0.3mm, the

viscosity of blood appeared to decrease [40]. This phenomenon was termed the

Farhæus-Lindqvist effect. Unfortunately, like Poiseuille, Farhæus and Lindqvist

were limited by their equipment, and were unable to investigate anything smaller.

If they had, they would have discovered something even more strange.

Pries et al. took this research further, and studied in vivo the effect of microves-

sels in the rat mesentery (a membrane which attaches many internal organs to the

28

abdominal wall), the results of which were observed through intravital microscopy.

Pries et al. discovered that at radii of below approximately 20µm (0.02mm), there

was a sharp increase in the apparent viscosity of blood moving through them.

From their experimental data they were able to develop an equation, which they

termed the “in vivo viscosity law” [41], describing the relative apparent viscosity

of blood within these vessels.

More recently, computational fluid dynamics have evolved to be able to simulate

complex flow patterns in non-uniform environments. Lattice Boltzmann (LB)

methods have been used by many as an accurate method for simulating blood flow

in vessels reconstructed from medical images. Due to the nature of the method,

LB is able to accurately simulate fluid movement on a small scale, resulting in

accurate representation of the flow of blood for such applications.

Lattice Boltzmann methods work by subdividing the simulation volume into

a regular, axially aligned grid of nodes, each representing an area in the volume.

Each node is affected by all of its neighbors, and similarly has an effect on each of its

neighbors. In this way, the Lattice Boltzmann is a discretisation of the Boltzmann

equation in three dimensions. When simulating flow in a vascular network, the

grid created for a LB simulation is created by filling the convex space created by

the shape of the vascular network. The resultant grid is updated by calculating

the effect that each element has on each neighboring element, and the state that

leaves the element in.

The advantage of this method is that it accurately simulates the flow of liquid

within volumes of an arbitrary shape, and takes the shape into account when

performing the simulation. However, microvasculature requires special concerns

when being simulated, since the nature of blood on such a small scale is not that

29

of a uniform fluid. When considering blood on a macroscopic scale, it is easy

to consider it as a uniform fluid, but in reality it consists of several constituent

parts, including red blood cells (erythroctyes), white blood cells, and plasma. In

humans, blood has a typical haematocrit, that is the percentage of red blood cells,

of between forty and forty-five percent. So let us consider the effect this has on

the movement of blood within the microvasculature.

Red blood cells are typically 8µm across, whereas the microvessels can be as

small as 5µm in diameter. The result of this is that red blood cells are deformed

as they travel through the vessels. With this consideration in mind, let us now

consider the Lattice Boltzmann method of fluid simulation for such vessels. When

traveling through capillaries red blood cells are deformed, but also lubricated by a

thin layer of plasma on the vessel wall. This, then, is already a non-uniform fluid

that is being considered. We must also consider that the elements of the grid which

represent blood cells and those which represent plasma are undifferentiated, even

though they have different physical properties. For example, the elements which

represent a part of a blood cell should be physically connected to other elements

representing another part of the same cell. As such, LB methods are unable to

simulate the movement and deformation of red blood cells within capillaries. The

assumption of uniformity on such a small scale combined with the high level of

computational complexity suggests that a Lattice Boltzmann method would be a

poor choice for simulations of blood flow on this scale.

30

Chapter 3

Cloud medical imaging and

visualisation

The work detailed in this section was completed in the first year of study, in col-

laboration with Biotronics3D on their cloud-based medical imaging system 3DNet

Medical. The work centers around the development of a medical imaging analysis

platform, developed within a proprietary cloud-based 3D medical imaging solu-

tion. While focused primarily on the creation of the modular framework within

the cloud system, it initially involved some work on volume rendering with the in-

tention of providing a fully-featured SDK based on the core of the 3DNet rendering

software. The result was a method for rendering depth values to an image based

on the raycasting volume rending algorithm. The aim of the industrial project was

initially categorized in two parts as follows:

1. To create a flexible modular framework for medical image analysis within a

cloud environment.

31

2. To prove the framework by creating an analysis module with clinical rele-

vance which can be integrated through use of the framework.

This chapter introduces concepts in cloud computing, medical imaging and

volume rendering, as a basis for the first part. The second is covered later, in

chapter 8.

3.1 Cloud computing

The concept of cloud computing has become commonplace in modern computer

science. Ubiquitous are the adverts which claim that data is safer “in the cloud”,

or that business processes can be much improved by moving them “to the cloud”.

Of course, such a broad definition of cloud computing does little to demystify the

term for the average user, and obscures the truth of the underlying technology

involved.

In its simplest form, cloud computing can be described as moving functionality

away from desktop computers and onto remote machines. The essence of a cloud is

to have a collection of machines running as a cluster, offering an on-demand service

which users are able to interact with from their personal computers via an internet

connection. A useful example of this technology would be cloud-based storage

solutions, which allow users to create documents and take photos, among other

actions, and store them on a remote cloud. These become available for retrieval

later on any of a number of devices tied to a particular user account. Services are

typically made available through native applications on the operating system, as

well as through a web interface. To the end user this seamless interaction with one

or a number of other computers results in the appearance of functionality beyond

32

the scope of which their device is physically capable.

This ability to extend the use of a device beyond its capability is the primary

motivation behind the development of medical imaging applications which use

cloud computing. Typically, medical imaging applications require a high powered

computer to be able to run, and as such having many capable machines is often

prohibitively expensive. Being able to perform highly complex operations within

a cloud computing system is a useful advancement; the provision of such services

is usually subscription-based, under what is called the Software As A Service

(SAAS) model. SAAS moves away from software being a commodity, where each

user would own a copy, to a service provided by a company under a pay-to-use

model, be it on a per-use basis, or on a regular billing (subscription) system.

Volume rendering is the method in which projections of 3D volumes are dis-

played as 2D images. Early implementations of volume rendering techniques fo-

cused on rendering of texture data, initially as a set of blended 2D textures and

later, as the hardware permitted, utilising 3D textures, before ray casting was im-

plemented. In medical imaging, a data set is comprised of a series of images which

are the result of a patient scan. These images are of either cross-sectional slices of

the patient’s entire body, or a sub-section thereof. Traditionally, these sets of data

are viewed as single images, often as a set of consecutive slices. However, a single

study can comprise of as many as thousand images, resulting in more than 1.5

gigabytes of data. Because of this difficulties can arise when processing scans on a

slice by slice basis. The use of volumes is therefore desirable. By assigning a thick-

ness to each slice in a scan (which can be determined by the interval at which the

patient was scanned) these slices can be composited to a volume representation of

the patient’s body. This volume can then be used to produce a visualisation of the

33

patient with volume rendering. Direct Volume Rendering (DVR) generates images

without the need to create an intermediate polygonal representation of a volume.

Instead, the volume data set is projected onto an image plane. In the image-space

oriented ray casting approaches, rays are cast from the view-point through the

view-plane into the volume. The volume is equidistantly sampled along the ray

and the volume integral is computed by repeated application of the over operator

in front-to-back order. Volume rendering offers a number of challenges, especially

when scaling this to a large multi-user solution such as a cloud. Memory and

processing power are an important consideration. In a cloud environment each

user needs access to enough memory to ensure that the system continues to run

smoothly. A typical study can contain multiple series, of which an average of three

hundred images per series is common. This results in each user requiring, on aver-

age, four gigabytes of memory in order to work. Loading of large data sets takes

time, an issue which needs to be addressed in a cloud system. While processing

power is less of a problem, it is still important to ensure that every user has enough

power to perform the tasks they require. In addition, rendering of large data sets

can take time without an appropriate acceleration structure.

Pure hardware based volume rendering solutions provide real-time performance

and high quality. Consequently they are the most applied approach in practice.

However, pure hardware volume rendering solutions are are limited in their their

functionality as basic visualization systems are supported by hardware volume ren-

dering solutions. Advanced visualization systems provide pre-processing features

such as filtering, segmentation, and morphological operations, among others. If

such operations are not supported by the hardware, they have to be performed

on the CPU and data must be then be transferred back to the hardware. This

34

transfer is very time consuming, thus, interactive feedback becomes problematic.

In contrast, within a pure CPU based solution this transfer is unnecessary allow-

ing more efficient processing of data. Furthermore, in the framework of a cloud

environment dedicated hardware-based solutions become prohibitively expensive:

setup cost, maintenance, and even scalability become limited due to hardware

constraints. Thus, a pure CPU based solution is by far the most suitable, and

probably the only truly viable solution, for cloud based rendering.

To accelerate CPU based rendering and image processing, the underlying mem-

ory management has to be modified. In this case we utilise a bricked memory

layout. Cross-sectional data, e.g. CT and MRI, are large sets of individual images

which combined form a volume in space. Physical memory is typically constructed

in a sequential way, therefore the straightforward approach to loading these images

into memory is to put them one after the other using a linear layout. This layout

has several disadvantages. In a typical set of cross-sectional images, an average 30

percent of the data actually does not contain any useful information. This comes

from the fact that the human body consists of a set of tubular structures (e.g.

arms, legs, and torso). A cross-sectional cut through a tubular structure using

rectangular images does not contain the data well, leaving vast amounts of data

to represent empty space around the body. Furthermore, in the case of advanced

medical imaging application data needs to be processed in a non-sequential, ran-

dom way. Volume ray casting has a strong view-dependent data access pattern,

and consequently, taking a look at the typical cache hierarchy of today’s CPU (L1,

L2, L3) it becomes clear that storing images linearly in memory would cause com-

plete cache thrashing. In order to address the aforementioned issues a significant

improvement is gained if the cross-sectional data is arranged in a blocked manner.

35

In this case we subdivide and reorganize the entire volume (one 3D-image) into

smaller contiguous lightweight bricks, obtaining a structure analogous to a Rubik’s

cube.

One of the main problems faced when sharing hardware and software resources

between multiple users in an arbitrary manner is the robust and efficient admin-

istration of the hardware available. Not only must each user have secured data

storage and privacy protection, but it must also be able to exploit its resources

without having to directly control how the underlying hardware and software re-

sources are being utilized. Cloud systems are an example of a technology that

requires a managing entity that “virtualizes” the usage of hardware and software

in a way that each user has a direct and transparent interaction with the system.

The challenge is to build a lightweight instrument that allows for a seamless inter-

action efficiently. A dual strategy that not only permits automatic virtualization

of the resources but also specializes in distributing them in a coherent manner by

performing a “load balancing” of the tasks on the available resources is required.

Virtualization, as described here, is instrumental to managing secure user ses-

sions and is fundamental to the efficient distributed rendering required to perform

advanced imaging applications. In particular, virtualization is achieved by cre-

ating “sandboxes”, a concept that provides restricted resource sets to individual

users including controlled access to data storage, hardware resources and network-

ing privileges. This creates a local, virtual machine for each user and removes the

burden of requiring them to manage how their tasks are processed by the system.

In order to achieve this securely and efficiently, the cloud system is split into

the following sections: a Global Session Manager (GSM) responsible for managing

user specific session sandboxes, and a View Session Manager (VSM) responsible

36

for managing viewing session sandboxes and load-balancing. The load-balancing

itself is done by the Rendering Resource Load Balancer (RRLB), which is part

of the VSM. Both the GSM and VSM are deployed as web services and can be

mirrored for redundancy.

The scalability of the cloud is an important feature, since it inherently implies

a cost effective solution. At any time additional nodes can be added to the cloud

to make it more powerful and the cost per user is much reduced compared to that

of buying individual workstations. Users can be classified as one of three types;

casual users, who have a low level of activity, active users who have a higher level

of activity, and power users who are using the computationally expensive features

of the system. Whilst a power user may be choosing transformations, transfer

functions, and adjusting settings, casual users could be simply viewing an image

already rendered to the screen. Thus, while a 32-core machine with 64 users would

imply less than a single core per user, in reality this is not the case. It is, in fact,

memory that is the limiting factor, since even those who are not interacting with

the system will use large amounts of memory.

3.2 Medical imaging

Medical imaging covers a broad range of methodologies such as X-Ray imaging,

Magnetic Resonance Imagining (MRI), Positron Emission Tomography (PET),

Computed Axial Tomography (CAT), and many more. It also covers software

such as Patient Archiving and Communication Systems (PACS), and the Digital

Imaging and Communications In Medicine (DICOM) standard [42].

DICOM is the industry standard for the storage and interchange of medical

37

images and was put together by the American College of Radiology (ACR) and

the National Electronic Manufacturers Association (NEMA) of America, originally

under the guise of ACR-NEMA. The first definitive version was published in 1985

as ACR-NEMA Standards Publication No. 300-1985, designated version 1.0. This

was followed by two revisions, first in 1986, then in 1988, before the standard

was reworked under the guise of DICOM. The purpose of DICOM is to provide

a worldwide standard for the format of medical images and the transfer of such

images between devices, in order to provide a high-level of compatibility between

devices and systems developed by different companies.

The Insight Segmentation and Registration Toolkit is an open source toolkit

for the analysis of multi-dimensional images (2D, 3D, nD) provided by the Insight

Software Consortium. ITK is written in C++ with the intention of being cross-

platform, and provides wrappers for other languages such as Java, Python and

Tcl [43]. The Visualization Toolkit (VTK) was similarly developed to provide

common components for developing applications which require the visualization

of 3D graphical elements [44].

These have both been expanded upon in the form of the Medical Imaging

Interaction Toolkit, developed by Wolf et al, initially in 2005 and continuously to

date [45]. The Medical Imaging Interaction Toolkit (MITK) is designed to reduce

the effort involved in developing medical imaging applications which use ITK and

VTK, and as such provides a set of components which use ITK and VTK but offer

further features, such as architecture for easily combining ITK algorithms with

VTK visualization components.

38

3.3 Volume rendering

Volume rendering is a method of creating two-dimensional projections of three-

dimensional volumes. Volumes are created by compositing a series of two-dimensional

images taken in parallel planes, such as those of an MRI or CT scan. Images

are assigned a thickness (in the case of medical scans this is determined by the

scan interval) and images are ordered so as to produce a cuboid of voxels (three-

dimensional pixels). This is equivalent to the method used to construct simulation

volumes described in chapter 7.

Early implementations of volume rendering focused on blending texture data,

initially sets of 2D textures and later, as the hardware permitted, 3D textures.

These methods were later superseded by the ray casting algorithm [46]. Due to

advances in the ray casting algorithm offering greatly increased speed, ray casting

is now the standard method for volume rendering in medical imaging applications.

Here, algorithms for texture-based rendering and ray casting will be covered briefly

before discussing the modification to the ray casting algorithm for depth rendering.

3.3.1 Texture-based volume rendering

Initially, texture-based volume rendering was performed by blending a set of two-

dimensional textures. These textures are acquired by taking ’slices’ of a volume

parallel to the viewing plane. These textures are then layered in back-to-front or-

der when rendered [46]. Composition of successive color values is performed using

the ’over’ operator, in the following format:

Cfinal = Caαa + (1 - αa)Cbαb

39

Figure 3.1: Rays are traced from the viewing plane through the volume and sam-
pled equidistantly. Color values are composited until a predefined opacity thresh-
old is reached.

where Ca, αa, and Cb, αb are the color and alpha (opacity) values of the

fragments to be blended, where b is furthest from the viewing plane.

3.3.2 Ray casting

In ray casting, rays are cast from the view-point through the view-plane into the

volume (Figure 3.1). The volume is equidistantly sampled along the ray and the

volume integral is computed by repeated accumulation of colors and opacities.

At every sampling position a scalar value is interpolated between the corre-

sponding surrounding eight voxels, that is, in the logical three dimensional ex-

tension of a pixel. This value is then classified according to a transfer function

which maps density values to a colour function. If the sample is non-transparent,

40

Figure 3.2: Volume renders of the neck and skull using different transfer functions:
(a) shows the entire volume; (b) shows a render containing segmentation informa-
tion where a second transfer function has been applied; (c) displays a combination
display, defined by a planar cut-off .

a gradient is computed from the surrounding voxels in order to apply shading.

Finally, the sample is composited with the previous samples of the ray. Successive

samples along the ray are calculated until a threshold opacity level is reached, or

the ray exits the volume. Figure 3.2 shows a typical example of a volume ren-

der: (a) shows a render of the full volume; (b) and (c) show renders containing

segmentation information where a second transfer function has been applied.

3.3.3 Rendering depth

In medical imaging applications it can sometimes be desirable to know the depth

of a certain point in a volume render produced. Examples may include the need

to place markers in three-dimensions for alerting colleagues to specific features of

interest, or for picking a seed point for performing segmentation operations such

as bone removal. To achieve this, the concept of a depth render is created. The

depth render allows existing image generation and transfer protocols to be used to

41

convey another layer of information in respect to a volume being rendered.

The depth render algorithm makes use of the existing ray casting algorithm

as a basis, but in this instance does not store color information. The position

the ray is cast from (i.e. a point on the viewing plane) is recorded as an initial

condition for the depth to be calculated. The ray is then cast as normal, and

successive opacity values are accumulated. Once the opacity threshold (defined

by the current transfer function) is reached, the end point of the ray is recorded.

With these two values and some elementary vector mathematics the length of the

ray cast can be calculated, representing the distance of the pixel of interest from

the image plane.

Distances computed this way are stored in an image in the form of pixels. This

takes advantage of the correlation between storing depth values as 32-bit floating

point numbers and the image format consisting of pixels of four channels of 8 bits

per channel. The distance value is masked into four bytes, which are stored in the

four components of the respective pixel. To retrieve the distance to a particular

pixel, the red, green, blue and alpha values can be recombined to form a 32-bit

floating point distance value.

42

Figure 3.3: The depth render stores 32-bit depth values as colours to make use of
the existing imaging technology.

43

Chapter 4

Modelling angiogenesis in three

dimensions

One of the core aims of the work undertaken here was to develop a three-dimensional

model of angiogenesis. Compared with the two-dimensional model developed by

Anderson and Chaplain [3], the extra dimension introduces computational com-

plexity, which has led to the GPU implementation of the fluid dynamics to provide

a mechanism for growth factor diffusion within the bounds of the model, and sim-

ulations of blood flow and mass transfer within the vasculature, discussed in detail

in chapter 5. As a whole, the method is a combination of a Cellular Potts model

(CPM), which models cell movement, and partial differential equations (PDEs),

which are used to govern the release and subsequent diffusion of chemical at-

tractants. CPM is a well known lattice-based computational modelling technique

which represents unit sections of an arbitrary space as cells on a grid, updating

them based on a set of probabilistic rules. Typically, within a CPM an object

occupies a single grid location, although they can also occupy multiple grid cells.

44

Figure 4.1: Scanned images are thresholded and converted to binary images; these
are then used to instantiate endothelial cells making up the initial environment of
the simulation.

During the initialization step of the simulation, an environment is set up in a

way which reflects a section of human physiology. A stack of images acquired from

a microCT scan are imported. The images used are of resin casts of rat cerebral

vasculature, taken at a resolution of 15 µm, approximately the size of an individual

cell. Images are thresholded, resulting in binary images, and individual pixels are

inserted into the domain of the simulation as nascent endothelial cells. Thus,

pixels in the scans are likened to cells within the original vasculature, resulting in

sections of tubular structures from which the neovascularization arises.

To more accurately reflect the vasculature these cells represent, before the

simulation begins the domain is scanned for cells which are entirely enclosed -

that is, they have neighbours in both positive and negative directions in all three

axes. Any cell found to match these conditions is flagged for deletion before the

simulation begins. This also has the added effect of reducing the computational

complexity of the system by decreasing the number of agents to simulate. The full

methodology for initialising the environment is discussed in detail in chapter 7.

45

Figure 4.2: MicroCT scans of a resin cast of a rat brain show a high level of detail,
and so were an idea candidate as a basis for developing a vascular growth model
through the initial elimination and subsequent simulation of growth of microvas-
culature.

4.1 Endothelial tip cell movement

Typically, models of angiogenesis describe the growth of new vessels from existing

vasculature via tracking the path of migrating endothelial cells. The movement of

these cells is initiated by disruption of the basement membrane which surrounds

the endothelium of existing vessels, thus allowing for free movement of endothelial

cells. Movement is then tracked under the assumption of endothelial cells migrating

towards the source of the growth factor. The equation for endothelial tip cell

motion is defined earlier in section 2.1.1 as equation 2.1.

46

Movement of endothelial tip cells is derived from a discretized form of equa-

tion 2.1. Discretization is achieved by applying the finite difference method [47]

which yields three equations, relating to each of the components of equation 2.1.

These three equations relate to the three characteristics influencing cell migration;

movement up a gradient of growth factor, movement up a gradient of fibronectin,

and a random walk component.

Figure 4.3: When a cell moves, the required time for another move is based on
the distance it has travelled, since diagonal moves are further than axially-aligned
ones. The multiplier is based on the length of the movement vector.

Endothelial cells are modelled as agents on the CPU. Each agent is modelled

individually, and thus is aware only of itself and its immediate environment. As

a simplification measure, in terms of program structure, a grid (three-dimensional

array) of numerical values is maintained as part of the environment, indicating

whether a particular location within the simulated section is occupied by a cell

or vessel segment. The numerical value is an identifier of the cell which filled

this space - in the case of a vessel segment, the identity of the originating cell

is given. These values are used to prevent a cell looping into itself, causing early

47

termination of the simulation, which sometimes occurs due to the stochastic nature

of cell motion.

When a cell moves, the direction in which it can move is constrained to those

empty cells which are considered to be directly in front of the cell. These cells are

identified by taking the dot product of the vector from the cell’s current position

and the vector of the direction in which the cell last moved. If the result is

above a threshold value (with normalised vectors a value of 0.5 is used, implying

an angle of less than 90 degrees), the cell is a viable target direction in which

to move. Enabling this constraint removes the possibility of ECs moving in a

direction which would be physically impossible. Deciding in which direction an

endothelial cell moves is performed by distributing probabilities across the set of

cells available for movement. This involves finding both the cell in the direction

of continued movement and the cell in the direction of the overall chemotactic

gradient. The chemotactic gradient is calculated by summing the differences of

the growth factor densities across the local environment of the EC:

∑

−1<i<1
−1<j<1
−1<k<1

| χ(i, j, k)− χ(0, 0, 0) | ×(i, j, k) (4.1)

where χ(i, j, k) is the growth factor density at the displacement (i, j, k) from

the ECs location. This yields a vector which is normalized to give χ̂, describing

the direction of the growth factor gradient at the location of the EC. This vector is

used to identify the cell which is in the direction of the chemotactic gradient. The

continued movement cell is simply identified by repeating the last displacement.

The two cells identified by the chemical factor gradient and the repetition of the

48

Figure 4.4: Cells move towards the source of VEGF (pink), up a density gradient.
Motion is randomised, weighted towards an increase in growth factor density and
in the direction previously moved. Activated tip cells are drawn in blue and have
an additional visualisation element of a vector describing the direction of the local
chemotactic gradient. Red cells are those marked as complete, either through
exclusion or anastamosis.

last move are given weighted probabilities as defined by constants χ and ψ. The

values for these are adjustable by design, such that different growth patterns can

be defined, but through repeated simulations values of 0.5 and 0.25 respectively

were found to give the best results.

The remaining cells are assigned an equal portion of 1 - χ - ψ. This represents

the random portion of the movement equation, and is more apparent when the

values for the chemotactic and haptotactic biases are low (see figure 9.2).

After assigning these probabilities, they are combined to form a distribution

which ranges from 0.0 to 1.0. A random number is generated in this range, and the

cell in whose range this falls is allocated as the location to which the EC moves.

49

Figure 4.5: Endothelial cells move towards the source of VEGF up the local density
gradient. The image on the left shows a simulation run with a single source; the
middle image shows the result of defining two sources; the right image contained
no sources, but was initialised with a linear gradient from right to left.

4.2 Vessel formation

When the threshold growth factor density, ν, is reached, nascent endothelial cells

can become activated, allowing them to migrate away from their parent vessel

towards the source of the growth factor. This is the first stage in the angiogenic

process, and represents the degradation of the basement membrane caused by the

expression of VEGF under hypoxic conditions. When a nascent cell is activated,

nearby cells within a fixed distance (a zone of exclusion) are marked as complete.

This prevents overcrowding of the area due to too many cells moving towards the

source of VEGF. Programmatically, this is achieved by successively stepping away

from the activated cell until a threshold level is met, as opposed to a straight

vector length calculation which has the possible complication of affecting cells on

the opposite side of the parent vessel. This distance can be modified in order to

increase or decrease the density of vessels grown, representing a pathological factor

in some diseases, such as Alzheimer’s (figure 4.6).

Cell movement is only allowed when the cell has reached the threshold time for

50

cell doubling to occur, to represent the need to fill in the space behind the moving

cell. On a cellular level, capillaries are formed from single cells forming tubular

sections, chained together to form vessels, and this constraint is designed to reflect

that.

Figure 4.6: Decreasing the size of the exclusion zone around an activated endothe-
lial cell results in increasing numbers of sprouting tip cells (top), and thus increased
vessel density (bottom).

As the density of growth factor increases, so does the possibility of branching,

that is, splitting into two vessels. Branching is a vital element in the formation of

vascular networks, as it allows for the space between larger vessels to be effectively

filled. In order for a vessel to branch it must be of a threshold age. When branching

occurs, the original vessel sprout is considered to be complete and two new sprouts

produced, thus the age is reset. The net result of this is that one new agent

51

is created and added to the environment at the location of the sprouting; this

location is randomized in the locale of the original endothelial cell, and follows

the constraint of occurring perpendicular to the direction in which the original cell

last moved (cell choice is effectively determined by the dot product once again).

While random, the location of the new sprout is weighted by the density of growth

factors around the location of the old tip cell, so as to reflect the dependence of

growth on the chemical factor. The vector representing the difference between the

new cell and the original tip cell, that is the direction in which the the new cell

has sprouted, is assigned to the cell as the direction of last movement, and thus

encourages the sprout, initially at least, to move away from the parent vessel.

Anastomosis is an event which occurs when a migrating endothelial tip cell

comes into contact with another sprout. When contact occurs, the migrating tip

cell is essentially removed from the agent simulation, and the sprout becomes fixed.

However, if an EC comes into contact with its own vessel sprout, anastomosis is

ignored; this is primarily to prevent terminal anastomosis, that is early termination

of the simulation due to random motion causing an EC to loop onto itself and

stop movement. This does not remove the possibility of a new sprout, as described

above, moving into its parent sprout and anastomizing. However, due to the uptake

of growth factor by occupied spaces and the diffusion element, this is unlikely to

occur; growth factor concentrations will be lower around vessels..

4.3 Physical constraints and boundary conditions

Every model is limited by the size of the simulation, although constraints vary over

different models. Models of angiogenesis tend to be limited to a square or cuboid

52

environment, with no-flux boundary conditions imposed, such as in the model

developed by Anderson et al [3]. Some notable exapmles are that of Lemon et al

[48], who modeled angiogenesis within a virtual pore (analogous to an hourglass

shape) to simulate angiogenesis within a porous tissue engineering scaffold and

Perfahl et al [29], who employed differing sets of boundary conditions: initially

no-flux as employed by Anderson et al [3] but also periodic boundary conditions.

In this model, boundary conditions were set to be no-flux, that is, nothing

can enter or escape the confines of the simulated volume; fluids or agents. This

has the effect of simplifying the model to some extent, removing the possibility of

external influences. A constrained volume is required to prevent the simulation

growing uncontrollably and arbitrarily increasing memory and processor require-

ments. Similarly, the size of the simulation is limited to an area approximately

1-2mm3, which maintains reasonable memory requirements and execution speed.

53

Figure 4.7: A snapshot of a 1923 simulation running shows how complex the
network generated can become. Original scan data (bright red) can be seen through
the newly grown vessels (dark red) with moving tips cells higlighted in blue, and
newly generated tip cells shown in white.

54

Chapter 5

Fluid dynamics simulation

5.1 Growth factor diffusion

A key element in the simulation is the chemical factors which trigger angiogenesis

[11]. When released by the body chemical factors such as Vascular Endothe-

lial Growth Factor (VEGF), Fibroblast Growth Factor (FGF), Platelet-derived

Growth Factor (PDGF) and others, trigger the growth of the particular cells

to which they are targeted. Of notable importance in angiogenesis is the fac-

tor VEGF, first isolated in the 1970s from tumor mass, which until recently was

the only factor proven to be critical to the formation of blood vessels [49], and it

is this factor which is considered here. It is its profound effect in the progression

of cancerous tumors that has lead to such interest in terms of research, and this

is why it is still the main focus of angiogenic studies.

Such factors are released by tumors into the surrounding tissue, through which

transport is mediated by diffusion. These chemical factors are subject to both

diffusion and decay, and thus must be produced in large enough quantities to

55

create a sustained gradient in order to cause endothelial cell migration.

The most basic numerical fluid dynamics implementation involves the diffusion

or heat equation, where ρ is the quantity of some substance and d is the diffusion

coefficient controlling the rate of flow:

∂ρ

∂t
= d

∂2ρ

∂x2
(5.1)

In order to account for different rates of diffusion through varying materials we

must solve the inhomogenous diffusion equation, which can be stated as follows:

∂ρ

∂t
=

∂

∂x

(

dx
∂ρ

∂x

)

(5.2)

In a discrete model, this can approximated using the finite difference method

as described in [47], which lends itself to a GPU-based implementation since it

involves iteration of every element of an entire grid. Using the backward Euler

formulation:

ρ(t+∆t)−∆t
∂ρ(t+∆t)

∂t
= ρ(t) (5.3)

We can rephrase (5.3), where ρ(t+∆t) is unknown, in matrix terms as:

Ax = b (5.4)

Where: b represents the vector of known initial values of ρ(t) in the system;

A represents the matrix formulation of the transform; and x represents the vector

of ρ(t+∆t) values we are trying to find. We could compute the inverse of A and

multiply both sides to find x, but for a sparse matrix such as a diffusion transform

56

this is excessive. Instead we can use iterative relaxation methods that converge on

the solution to the linear system.

Let ρi = ρi(t), and ρ∗i = ρi(t+∆t), the discretization of 5.3 for the inhomoge-

nous diffusion equation in 1D then yields:

ρ∗i −
∆t

∆x2
(di+1 ρ

∗
i+1 − (di+1 + di−1) ρ

∗
i + di−1 ρ

∗
i−1) = ρi (5.5)

From this we can derive the base update equation for use in a relaxation

method:

ρ∗i (1 +
∆t

∆x2
(di+1 + di−1)) = ρi +

∆t

∆x2
(di+1 ρ

∗
i+1 + di−1 ρ

∗
i−1)

ρ∗i =
ρi +

∆t
∆x2 (di+1 ρ

∗
i+1 + di−1 ρ

∗
i−1)

1 + ∆t
∆x2 (di+1 + di−1)

ρ∗i =
∆x2 ρi +∆t (di+1 ρ

∗
i+1 + di−1 ρ

∗
i−1)

∆x2 −∆t (di+1 + di−1)
(5.6)

Setting an initial guess for ρ∗ (for example, ρ∗ = 0) and applying 5.6 over

several iterations causes ρ∗ to relax over time, converging on a stable solution

(though not necessarily an accurate solution). For the Jacobi method we would

replace ρ∗ on the left hand side with ρ(n+1) and the right hand side with ρ(n),

where n is the iteration number. That is, we would store the values of ρ(n+1)

separately from ρ(n) ready to use on the next iteration. It turns out that this is

not necessary, and in fact faster convergence is achieved when the results of the

current iteration are used immediately for computing the next grid vale along in

the lattice. This inline approach finally gives us the Gauss-Seidel method. In 3D

57

the iterative update equation becomes:

a = ∆t (di+1,j,k ρ
∗
i+1,j,k + di−1,j,k ρ

∗
i−1,j,k + di,j+1,k ρ

∗
i,j+1,k

+ di,j−1,k ρ
∗
i,j−1,k + di,j,k+1 ρ

∗
i,j,k+1 + di,j,k−1 ρ

∗
i,j,k−1)

b = ∆t (di+1,j,k + di−1,j,k + di,j+1,k + di,j−1,k + di,j,k+1 + di,j,k−1)

Then:

ρ∗i,j,k =
∆x2 ρi,j,k + a

∆x2 + b
(5.7)

Where: ρi,j,k is the known value ρi,j,k(t); ρ
∗
i,j,k is the iteratively computed solu-

tion to ρi,j,k(t+∆t); and di,j,k is the location-dependent diffusion coefficient.

5.2 Flow and pressure

The pressure model is constructed using the graph representation of the angiogen-

esis model described in chapter 4. Nodes are formed where sections of vaculature

meet, either through sprouting or anastamosis, which are connected by vessels

represented as pipes. In order to measure pressure across the graph, we must

calculate pressure values at each of the nodes. This is done by constructing an

electrical analogue model such that conductance (i.e. the inverse of the resistance)

of pipes is calculated, and pressure measured using a recursive algorithm.

The conductance, G, of a pipe is defined as:

G = α
ρA2

8πµl
(5.8)

where A is the cross-sectional area of the pipe, l the length of the pipe, rho the

58

blood density, µ the dynamic viscocity. Where α = 1, this refers to flow across a

perfect cylinder; this value was used to provide a simplification to the model.

The flow rate, F , of a pipe can be defined as the product of the conductance

of the pipe and the pressure difference, ∆p, across the pipe

F = G∆p (5.9)

This is combined with the continuity equation which states that net mass flow

through any node which is not an in- or out-flow node is zero, giving rise to the

equation for each node i, where Gij is the conductance of the pipe connecting node

i with node j :

n
∑

j

Gij(pi − pj) = qi (5.10)

where qi defines the sum of in- and out-flow rates from the node i.

By applying equation 5.10 to each node, a matrix of values can be constructed

which describes the relationship between the pressure values at each node as a

system of simultaneous equations, such that the following relationship holds:

Mp = q (5.11)

where M is the matrix of values constructed above, p is the vector of pressure

values at each node, and q is the vector of flow rates at each node.

Flow rates are set to be constant values: 0 for the majority of nodes, 1 for an

in-flow node and -1 for an out-flow node, although these values can be changed

to reflect different flow characteristics of different systems. The aim is to balance

59

in- and out-flow of the system. In- and out-flow nodes are characterized as those

derived from the original geometry which reside on the edges of the domain. By

denoting the largest edge-residing section in vascular tree as an in-flow node, the

remainder can naively be denoted as out-flow nodes, following which a balanced

flow profile can be derived.

This equation is then solved iteratively for p until a steady state is reached.

The matrix of coefficients, M, is diagonally dominant and, due to the nature of

the application, incredibly sparse for even high complexity graphs. Thus, it is

compressed before being transferred to video memory by storing only the non-zero

values and the respective row and column indices. Since nodes tend to have an

average of four pipes emerging from them, in a graph with several hundred nodes

the storage required is several orders of magnitude lower. Not only does this save

upload bandwidth and reduce memory requirements, but it also increases compu-

tational efficiency since only non-zero elements are required for computations. The

equation (5.11) is solved iteratively for p using the Gauss-Seidel method, however

other methods could be employed for larger systems such that greater efficiency

is achieved such as described in [50]. Iteration ceases once the system reaches a

steady state.

60

Chapter 6

Implementing complex computation

on the GPU

Graphics processing unit (GPU) devices devote more of their hardware to raw

data processing, rather than reserving a large amount of architecture for memory

caching and flow control, as with conventional CPUs. It is because of this that they

are best suited to data-parallel applications - linear arrays of data with each data

element processed via the same program - focusing on high arithmetic intensity

rather than memory operations. As a result, it is not a general purpose solution

to computational problems. In this work, NVIDIA’s CUDA (Compute Unified

Device Architecture) is used. This section will discuss implementation details

of both fluid dynamics systems, and how the GPU increases performance. The

decision was made that the diffusion and pressure systems would be solved on the

GPU in order to exploit the massively parallel nature of the hardware for increased

performance.

61

6.1 The parallel programming model

Programming in parallel requires an entirely different way of constructing a pro-

gram to that employed when working with a linear processor like the CPU. The

GPU is specifically designed to run smaller, computationally intense programmes

multiple times in parallel, as opposed to a longer set of instructions which would

run in series. Even a low-end GPU (by current standards) can have as many as 384

cores, with those on high-end processors numbering in the thousands [51]. Further

to this is the design of the processor; graphics processors are specifically designed

to run multiple threads, with a single core on an NVidia processor being capable

of running up to 1024 simultaneous threads.

CUDA C is an extended version of the C programming language, which allows

for the creation of kernels which are functions that, when called, are run on mul-

tiple threads simultaneously. For example, a simple programme to add vectors is

given as follows:

Listing 6.1: A simple programme written in CUDA C.

__global__ void VectorAdd(float *A, float *B, float *C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// kernel invocation with N threads

VectorAdd <<<N, 1>>>(A, B, C);

}

62

The above code adds two vectors A and B of length N and stores the result in

a third vector C. Then the programme is run, it creates as many threads (N) as

there are elements in the vector. Each of the N threads adds one component of

each vector, and hence the full vector addition is calculated. Note how the index

into the vectors (which are in this case stored as arrays) is defined as the ID of the

thread, which is accessed through the built-in threadIdx variable. This variable

is itself actually a three dimensional vector; this assists in creating programmes

which run on blocks of data in two or three dimensions as well as one. Execution

is performed with the unique «<...»> syntax, which is an extension allowing the

definition of multi-dimensional arrays of threads. This example executes one block

of N threads.

Blocks are used to group threads together with the constraint that all threads

within a block must be executed on the same core. Since a single core can execute

up to 1024 threads, this constraint is passed on to the size of a block. Thread block

dimensions are defined by passing a vector of sizes when executing a kernel, such

that the product of the sizes does not exceed the maximum limit for threads per

block. A thread block can be defined as a one, two or three dimensional vector,

which allows for identifiers to be accessed as described above.

CUDA C is not an object-oriented language, and as such any operations are

performed on shared memory assets, stored in graphics memory. With a multi-

dimensional block of threads, the thread identifier can be used as an index into an

array of the same dimension, giving a natural way to access memory from within

the kernel. Such a model of computation is ideal for modelling block calculations

as opposed to more intricate systems which require a single element to retain

information about itself.

63

Figure 6.1: Threadblocks are representative of sub-slices of the overall simulation
volume, which are layered to form a grid for the purposes of execution on the
graphics card. Grids with different coordinates are successively solved in order to
process the entire volume.

6.2 Diffusion

6.2.1 Diffusion equation

The transfer of chemicals within the tissue of the body is primarily though the

means of diffusion. For example, oxygen diffuses from the blood in the vessels,

through the endothelium, and into the surrounding tissue, up to a distance of

around 200µm (referred to as the diffusion limit of oxygen). The purpose of adding

a diffusion component to this system is to describe the motion of vascular endothe-

lial growth factor from a source, typically a tumor, in the tissue.

Diffusion is the spread of a fluid through a space in a (usually) uniform manner,

as described by the diffusion equation:

∂φ(r, t)

∂t
= ∇ · [d(φ, r)∇φ(r, t)] (6.1)

which describes the rate of change of density (φ(r, t)) at time t at location r

with respect to time, d(φ, r) is the diffusion coefficient at r, and ∇ is the vector

differential operator del.

64

The diffusion problem consists of needing to know the fluid density at a spe-

cific location within the simulation environment. Thus, the diffusion equation is

solved for each location within the three-dimensional grid simultaneously using

the forward difference scheme described in chapter 5, and a Gauss-Seidel method

of computation.

6.2.2 Memory requirements

When setting up the diffusion solver, certain memory requirements have to be met.

Initially, a three-dimensional array of fluid concentration values is required which

represents the current state of the system. The dimensions of this array must match

the dimensions of the simulation environment. Using a three-dimensional array

instead of an appropriately sized one-dimensional array allow for threads running

the diffusion kernel to index into the array using the thread identifier “threadIdx” as

described in the previous section, along with the block identity “blockIdx”. Block

identities can be indexed in much the same way as thread identities, and when

used with an invariant block size can simply be multiplied up to retrieve the full

index into the array.

As a single thread block can support up to 1024 unique threads, a reasonable

size for the block is eight in each dimension, giving a total of 512 threads. While

this may seem like a waste of computing resources, it fits nicely with the convention

of using powers of 2 in computer science. Thus, simulation environments can be set

up with sizes which are multiples of 8, allowing for easy splitting of the environment

into blocks. This also aligns well with memory, preventing the need for padding

bytes.

65

To implement the Gauss-Seidel algorithm the system is double-buffered. The

programme is able to overwrite the current value of guess with the newest guess, in

line with the operation of the Gauss-Seidel method. In order to safeguard against

incorrect values being read from memory, all read and write operations must be

atomic in nature, that is the operation is guaranteed not to be interrupted by

another thread, and the CUDA API provides this capability through a set of

dedicated functions. Thus the above memory requirement is doubled.

Further to this, diffusion constants are required for the entire simulation envi-

ronment, but since these do not change during execution of the diffusion solver,

only a single array is required. As before, a three-dimensional array is used to

allow for a natural method of indexing based on thread and block identities.

These arrays are stored in memory on the graphics card, typically referred to as

the device, however there is also the need for an array of fluid density values within

main, or host, memory, such that access to values by cells is as fast as possible.

This array will be equal in size to its counterpart on the device. Transferring data

between device and host memory is a bottleneck, however the increases gained

through the accelerated computation speed of the GPU, and local memory access

speeds for cells (as opposed to numerous individual reads from GPU memory)

more than make up for this.

6.3 Pressure

Being its primary function, the movement of blood is of key interest in studies

of vascular structure and function. At its most basic level, the vasculature can

be described as a series of tubes. These tubes vary in length, and diameter, and

66

in function. An appropriate analogy might be to compare the vascular network

to a tree; larger vessels are more akin to the trunk, which supports the smaller

branches through the transfer of water (analogous here to blood), however it is

not until the smaller branches where the water is transferred to the leaves (akin

to our tissue). It is at the microvessel level where the walls become thin enough

to allow the passing of nutrients and waste products to and from the blood.

Poisueille’s 1840 work “Recherches expérimentales sur le movement des liquides

dans les tubes de très-petits diamètres” on the movement of fluid in pipes led to

Poiseuille declaring the relationship between the flow rate (Q) of liquid through a

pipe of uniform diameter(D) and fixed length (L), and the difference in pressure

across the length of the pipe (p), as follows:

Q = k(D4p/L) (6.2)

where k is a constant. This can be rearranged to give what is commonly referred

to as Poiseuille’s Law, defined as:

∆P =
8µLQ

πr4
(6.3)

where ∆P is the pressure difference across the pipe, L is the length, Q is the

volumetric flow rate, µ is the dynamic viscosity of the fluid, and r the radius of

the pipe, π being the mathematical constant pi.

With respect to the dynamic viscosity of the blood, the work of Pries et al.[41]

comes into play, with their equation for “relative apparent viscosity”, which de-

scribes the phenomenon of a sharp increase of apparent viscosity observed in vivo

for vessels of diameter smaller than (approximately) 20µm (see diagram 6.2), and

67

Figure 6.2: Relative apparent viscosity, as described by Pries et al., shows a sharp
increase in the apparent viscosity of blood at very small vessel diameters. This
is due to the nature of blood as a fluid being not uniform, but a suspension of
particles (red blood cells, primarily) in a fluid (plasma).

is of the form

ηvivo = 1 + (η0.45 − 1) ·
(1−HD)

C − 1

(1− 0.45)C − 1
(6.4)

where HD is the discharge haematocrit for vessel diameter D ; η0.45, the relative

apparent blood viscosity for a fixed discharge haematocrit of 0.45, is given as

η0.45 = 220 · e−1.3D + 3.2− 2.44 · e−0.06D0.645

(6.5)

and C describes the velocity dependence on haematocrit as

C = (0.8 + e−0.075D) · (−1 +
1

1 + 10−11 ·D12
) (6.6)

In the range of vessels of 7µm to 100µm, the difference in apparent viscosity

of blood with discharge haematocrit 0.45 and cell-free plasma (haematocrit 0) is

68

Figure 6.3: Flow is preserved across a node. The sum of the flow into the node
(Q0) is equal to the sum of the flow out of the node (Q1 + Q2)

only 25%, indicating a weak dependence on haematocrit [52]. As such, a compu-

tational simplification can be made of assuming a discharge haematocrit of 0.45,

rendering the fractional term of equation 6.4 equal to one, leaving the viscosity to

be described by the fixed term of η0.45, equation 6.5.

If we consider once again the vascular network, and how we see it is described

by a series of tubes, we begin to form a concept of how blood flow can be described

using equation 6.3. Consider figure 6.3, which displays a simple bifurcation in a

vessel. This can be considered as three pipes, having flow rates of Q0, Q1 and Q2.

The graph topology is derived from a simplification of the vascular network

created using the algorithm described previously. Figure 6.4 shows a side by

side comparison of a simple vascular network produced by the vascular growth

algorithm, and a visualisation of the corresponding graph representation used in

the pressure calculations. Sections of microvasculature generated are treated as

straight pipes in order to reduce the complexity of the calculation. Here, a section

is any uninterrupted length of vasculature in the resulting network; where a vessel

branches, or is met by another sprout, a node is formed.

Calculating blood flow is performed by solving for pressure on the GPU, which

becomes a case of formulating the network as a large system of simultaneous equa-

tions. The problem, then, is solving a system of equations with many hundreds of

69

variables, and thus an iterative system such as Gauss-Seidel once again becomes

attractive as it allows solution of each equation in a semi-independent manner.

Equations are created for the pressure at each node, that is any location where

two or more pipes or sections of pipe meet. The pressure at a given node is given

by equation 5.10. As such, we construct equations relating the pressure values at

each node to flow rates at the in- and out-flow nodes. In this context, an equation

is a list of coefficients of conductance values of pipes which meet at the specified

node, multiplied by the pressures, such that a large, sparse, diagonally dominant

matrix A is formed which satisfies the condition:

Ax = b (6.7)

where x is the vector of node pressures, and b the vector of flow values. It is

important to note at this point that the flow values are fixed, and for the majority

are zero as they refer to the sum of in- and out-flows at a particular node. In-flow

nodes are designated a positive flow value, whereas out-flow nodes are designated

a negative flow value.

In a complex system, a square matrix of many hundreds of lines can be pro-

duced. However, due to the nature of the system, a large majority of elements in

the matrix are zero, and thus require no storage. In fact, when we consider that an

equation is required per-node, it becomes clear that the storage requirements for

the matrix can be reduced to the use of row and column indices and element values

for non-zero elements only. The choice to treat uninterrupted sections of generated

vasculature as single straight pipes further reduces the size of the matrix.

Programming the iterative scheme for the GPU requires choosing an algorithm

70

Figure 6.4: A side by side comparison of a simple vessel network grown with
the algorithm described previously and the graph representation for the pressure
calculations. The graph assumes straight pipes for conductance calculations but
uses vessel length instead of the straight line distance between nodes.

which can operate on each equation, that is each line of the matrix, independently,

in order to solve the equation Ax = b. Initially, a simple scheme such as Jacobi

seems attractive as it works on each line, iterating once each new x (pressure)

value has been computed. However, other schemes could be implemented, such as

those in [50].

This line-based method for solving the equation, along with the storage re-

quirements outlined above, define the method for storing the main matrix M in

memory. This is comprised of three arrays for storage of values as follows:

• an array, Av, of all non-zero values in the matrix, packed in sequence from

left to right, top to bottom.

• an array, Ac, of column indices for each element in the array Av - each

column index Ac[i] relates the element of the matrix M [i]

• an array, Ar, of row indices, where each element Ar[i] contains the index in

71

Av of the first element in the row i.

With this are two more arrays, one for the x vector and one for the b vector.

Additionally, an array of convergence flags can be implemented to allow early

termination of the algorithm.

Since these arrays are only populated at the beginning of the solving sequence,

elements can be read from them with the confidence that they have not been

modified by the solving function (kernel).

Figure 6.5: Example graph: flow values at nodes p1 and p3 are fixed as 1 and
-1 respectively, and given fixed pressure values. Conductances g1, g2 and g3 are
calculated for each section of vasculature.



















g12 −g12 0 0

−g12 g12 + g23 + g24 −g23 −g24

0 −g23 g23 0

0 −g24 0 g24





































p1

p2

p3

p4



















=



















q1

q2

q3

q4



















(6.8)

The equations are solved iteratively for p using the Gauss-Seidel method, how-

ever other methods could be employed for larger systems so that greater efficiency

72

Figure 6.6: Pressure is stabilised across the network after successive iterations of
the algorithm. Pressure values range from 75mmHg to 55mmHg, as defined as the
in- and out-flow pressure values, which are fixed.

is achieved, such as those described in [50]. Iteration ceases once the system reaches

a steady state.

6.4 Mass transfer

The main function of blood within the body can be characterised as the transfer

of materials from one location to another. Blood carries nutrients, such as oxy-

gen, throughout the vascular network, as well as antibodies and waste products.

However, this same transport mechanism can transfer harmful substances, such

as bacteria, or therapeutic substances, such as drugs, as well. Thus, modelling

the transfer of materials through the vascular system has wide-reaching implica-

tions in terms of planning treatment regimes or assessing the possible efficacy of

therapeutic treatments such as chemotherapy [53].

Mass transfer in vascular networks is controlled by two processes; advection

73

Figure 6.7: Modifying the graph by introducing low pressure nodes shows how the
algorithm stabilises under different conditions.

and diffusion. Advection is the transfer of mass through bulk movement of the

surrounding material. Within the vascular system, advection occurs as blood

moves through the system, causing movement of a substance dissolved within the

blood fluid. This is particularly important within the larger vessels as the blood

moves at a much faster rate than in microvasculature. Diffusion can occur in

the absence of bulk motion, and lacks a macroscopic explanation. Diffusion is

explained by motion on a molecular level, and is the result of the random motion

of particles at a microscopic scale.

6.4.1 Mass transfer by advection

When considering the effects of advection on mass transfer within a system such

as human vasculature, it is important to consider what is happening. Advec-

tion within the vasculature is the result of the motion of blood, as propelled by

the pumping action of the heart. As described above, the simulation calculates

74

pressure values for pipe intersections, thus the pressure difference across a pipe,

∆p becomes trivial to calculate. Using this pressure difference, we can apply the

formula for flow rate of fluid in a pipe

Q =
D4π∆p

128µl
(6.9)

where Q is the flow rate, D is the diameter of the pipe, µ is the specific viscosity

of the fluid and l is the length of the pipe. Flow rate is calculated in cubic metres

per second, and thus by multiplying the flow rate by the simulation time step, ∆t,

we can measure the volume of fluid moving out of, or into, a pipe in this time.

We model the node volume as opposed to pipe volume. We define node volume

as follows

N =
1

2

k
∑

i=0

Pi (6.10)

where Pi is the volume of pipe i which has one end at the node in question.

Thus the total volume of the system can be expressed as the sum of the node

volumes.

To model mass transfer by advection, we look at the transfer of liquid between

nodes. Recalling that the net flow across a node is 0 (except in boundary cases)

and considering the flow rates calculated as above, the movement of solutes is

modelled as a change in overall concentration at a node. This is discussed in more

detail in the following section, but is based on multiplying concentration fractions

at each node with the volume of fluid moving through the pipe. The whole system

is double buffered to reflect the nature of the process taking place, i.e. all elements

being calculated simultaneously.

75

Diffusion plays a role in the transfer of mass throughout the vasculature. In this

model, diffusion is limited. The concept of diffusion is used here when considering

the mass concentration within node volumes. Let us consider the result of a single

simulation step between two connected nodes; we define the higher pressure node,

nh, as having volume vh and solute concentration ch, and the lower pressure node

nl, as having volume vl and solute concentration cl. There is movement of a fixed

volume ∆v of blood from the higher pressure node to the lower pressure node, as

well as the removal of the same volume of blood from the lower pressure node.

Since we assume node volume to be constant, this results in the low pressure node

having combination solute concentration of

(vl −∆v) · cl +∆v · ch
vl

(6.11)

It is at this point that we must consider the effects of diffusion. The rep-

resentation of solute concentration as being calculated on a per-node basis is a

discretization of an inherently continuous property. It would be computationally

infeasible to expect to be able to represent a spectrum of such a property at a truly

accurate (i.e per-molecule) basis. Thus, the concentration values we calculate for

each node are in fact average concentrations, as we assume mixing due to diffusion

within a node. We consider this assumption reasonable due to the volume of the

pipes and the time scale (100ms per step) of the simulation.

There are some obvious computational simplifications in this scheme which

are ideal targets for improvement. Whereas pipes in this model are treated as

straight and rigid, the method of calculating conductance lends itself to modelling

more complex pipe geometry. Increasing the accuracy, and therefore complexity,

76

of conductance calculations would obviously result in an increase in processing

requirements, although these values change infrequently and thus need not be

recalculated often.

While the model deals with mass transfer through the vascular network, it does

not incorporate any absorption terms. Absorption of solutes through the vessel

wall is moderated by a collection of factors, including the rate of diffusion per

unit area (itself dependent on the transport mechanism and vessel wall thickness),

the surface area of the vessel, and the volume of tissue behind the vessel wall.

This can be modelled using a scheme similar to the one proposed in [54], via the

application of Fick’s Law of diffusion. While the majority of this is reasonably

trivial, association of tissue volume to vessels requires some segmentation of the

simulated volume; this can be reasonably easy to achieve in simulations of a fixed

network, but application to a growing network would be somewhat more complex.

Furthermore, it is important to remember that blood carries not one but a mul-

titude of solutes, through different transport mechanisms. Oxygen, for instance,

is transported via the red blood cells (RBCs) themselves - thus oxygen transport

is dependent on the fraction of RBCs in the blood (haematocrit) flowing through

the vessel in question. On top of this is the fact that the smallest vessels are at

times smaller than the width of a single RBC, which results in compression as

they move through. Other mechanisms of transport across the endothelium are

numerous, in particular across the blood-brain barrier [55], [56],[57], a functional

boundary between cerebral vasculature and the tissue of the brain itself.

The particular coupling of a model of angiogenesis and advection-based trans-

port lend themselves to simulation of blood-brain barrier interactions. Since we

define each unit length of vasculature generated as equivalent to a single endothelial

77

cell [58], we can make assumptions about where the tight junctions (those where

the cell bonds to itself or other endothelial cells to create tubular structures) are,

i.e. between each unit of vasculature, and to a lesser extent along one edge of each

unit.

6.4.2 Delivery of mass to the body

The rate at which diffusion across the capillary endothelium occurs is dependent

on the location of the vessels in the body. The cerebral vasculature are tightly

regulated to protect the brain from transfer of toxic substances (although this is

not always effective), whereas kidney and liver vessels are designed to allow for

efficient cleaning of the blood as it travels through.

There are several cases we can consider when it comes to mass transfer in

therapeutic circumstances. These include the transfer of metabolites, such as

oxygen and glucose, the removal of waste products, and the targeted transfer of

drugs. The majority of these can be categorised as the diffusion of substances

across the endothelium into the surrounding tissue.

With respect to the grid-based network described in previous chapters, calcu-

lating the rate at which solutes are transferred across the endothelium requires

knowing the surface area of vessel over which the solutes are diffusing. This can

be achieved by counting the number of empty spaces adjacent to the vessel (see

figure 6.10).

78

Figure 6.10: Counting spaces adjacent to a vessel segment - in this simplified (two-
dimensional) example, the location marked ’a’ has two adjacent spaces, whereas
the location marked ’b’ has only one.

A simple tubular section in the middle of a straight vessel will have four neigh-

bors. The surface area of this section can be calculated simply with

SurfaceArea = πr2l (6.12)

where r is the radius and l is the length of the section. Aligning this with

the grid-based representation here, it is easy to see that the surface area repre-

sented by a single neighbor is a quarter of this. This is appropriate for straight

sections, however for more complex sections computing the surface area becomes

more difficult. A few strategies are available for this problem.

The most naïve and computationally intensive solution is to calculate the sur-

face area of each section for each simulation step. While accurate, this has obvious

disadvantages. A more efficient scheme involves a simplification to the surface area

79

calculation. Based on the above measure of surface area between neighboring lo-

cations, the surface area of any section can be approximated as:

SurfaceArea = n
πr2l

4
(6.13)

where n is the number of neighboring locations which are empty.

A final solution is to create a lookup table based on the possible configurations

of pipe intersections. By limiting the calculations to the six nearest neighbors (± 1

unit in the x, y, or z dimension), this reduces the complexity of such a scheme to a

maximum of 26 possible combinations. This can be further reduced by considering

that many combinations are rotations of others.

6.5 Programming for the GPU

Given the update equation 5.7 defined in chapter 5, and the memory require-

ments outlined above, writing the kernel for the diffusion programme is reason-

ably straight forward. Computing the next iteration involves retrieving both the

diffusion constants and the fluid densities at the location to be calculated and

its neighbors in each dimension. These are accessed using the thread identifier,

threadIdx, as follows:

fluidVal = fluidArray[threadIdx.x][threadIdx.y][threadIdx.z];

here, the current value of the location is retrieved. To access the neighboring

values, the array indices are modified.

Once the diffusion constants and fluid values have been retrieved, these are

used to calculate the varying components of equation 5.7, with a time step (∆t)

80

value which is chosen at the beginning of execution, and a constant grid spacing

(∆x). The result is then written back into the fluid array, to be used to continue

execution.

Calculating the pressure values revolves around a similar set of operations,

including the execution of the kernel (although here we execute a linear array

of threads, one per line, as opposed to a three-dimensional grid), and memory

fetching operations.

Using the Jacobi iterative formula:

xk+1
i =

1

aii
(bi −

∑

j 6=i

aijx
k
j) (6.14)

we can compute iterative values of x, which represent the pressure values.

When calculating by hand, the above formula is used on each line of equation

6.7, however the GPU kernel allows for simultaneous evaluation of each line on

a separate thread. The Jacobi method requires each line to be complete before

the next iteration is calculated, but due to the very sparse nature of the matrix

A, each iteration only involves a small number of items to be summed, and thus

differences in execution time between lines will be very low.

Integrating with the main programme requires developing a set of access and

control functions to initiate execution on the GPU and deal with memory allocation

and access. The CUDA API provides a library of functions which are available

to manage memory and programme execution on the graphics card. Rather than

using the new operator as is normal in C++, we must make use of the functions

cudaMalloc and cudaMalloc3D, which allow for the allocation of one-dimensional

and three-dimensional arrays respectively, as single blocks of memory, enabling us

81

to access it in the manner described above.

Similarly, modifying or retrieving values in graphics memory from the CPU

involves using dedicated functions cudaMemset and cudaMemcpy respectively.

These functions are designed to work the same way as their C counterparts, mak-

ing memory manipulation easy for anyone with some level of C programming skill.

Use of these operations is minimised, however, since transfer between graphics

memory and main memory is slow.

6.6 Unifying a modular system

Until now, the various components of the system have been discussed as separate

systems, almost acting independently of one another. At this point it is important

to consider the functional unit of the simulation. As a discretised model of a

continuous system, the simulation environment is described as a three-dimensional

grid of adjacent locations, which reside within a cubic section of tissue. The term

functional unit refers to an abstract concept which does not represent any physical

part of the system, but instead describes any single location on the grid, and

encapsulates the properties of the cellular motion, diffusion, and pressure sub-

systems at that location.

The concept of this system abandons that of typical layered multiscale models,

which involve modelling on a variety of biological timescales [59], and instead

adopts a centralised model where each subsystem acquires information about the

others through this functional unit. This is achieved through the use of a messaging

system which has the effect of decoupling sub-systems from each other and allowing

a modular approach to simulation building.

82

The functional unit, being just a single element in the grid, is created for each

element in the grid. As such, a centralised controller is created which handles

their creation at run time. It is through the controller that a subsystem registers

which properties are available for the functional unit to retain, through a function

supplying a property name and type. This is done at the beginning of the simula-

tion, before the grid is created, so that each unit in the grid is initialised with the

same properties. Properties can be numerical values, such as chemical densities or

occupancy, or can be pointers to a larger structure elsewhere.

Each subsystem is responsible for updating the functional unit as required.

When a subsystem requests a value from the functional unit, the unit must return

whatever value it currently holds for the property requested.

83

Figure 6.8: Mass is transferred throughout the network over time as advection
takes place. The density of the solute appears to reduce in the main vessel as it
spreads throughout the system.

84

Figure 6.9: Example of growth of a capillary network over time. Initially, cells
are nascent. Introduction of a growth factor gradient (pink) activates cells (blue
cells) around which is an exclusion region (red cells). As the growth factor density
reaches a threshold level, activated cells migrate towards the source of the gradient.
New vessels are drawn differently to highlight topographical features.

85

Chapter 7

Individualised modelling

7.1 Introduction

In 1895 Wilhelm Röntgen discovered X-Ray radiation, and noted how the human

body absorbed these rays in differing amounts throughout the different types of

tissue [60]. This, combined with photographic paper, gave way to the first form

of what we recognise now as medical imaging - that is, advanced techniques which

can image the inside of the human body in a non-invasive way. In the last few

decades medical imaging has provided an increasingly accurate way of viewing the

internal state of a body (or other object, as these techniques are not limited to

living things) without the need for any invasive procedures, such as exploratory

surgery. The uses of imaging techniques are widespread, and partial or complete

body scans are common in diagnostic medicine; for example, ultrasound scans for

assessing the health of an unborn child.

The advent of new imaging techniques, and later more powerful scanners, has

offered a way of viewing more than just two-dimensional images of the inside of the

86

body, such as an X-Ray displays. Some modern scanners, such as MRI machines,

are capable of acquiring entire volumes of space as a series of 2D images, or slices,

which when composited form a three-dimensional image of the body being scanned.

Others rely on post-processing of a series of images, such as X-Ray Computed

Tomography, which takes X-Ray images acquired at specific intervals across a

180 degree rotation to reconstruct a three-dimensional image of the object being

scanned.

Thus, an accurate internal representation of the body can be obtained. It is

from this that we are lead to the idea of personalized medicine, that is the cus-

tomization of treatments to individuals based on the physical features of their

internals. Such an approach has been used already in surgical planning, for ex-

ample in measuring the width of an artery where a stent is required to provide a

personal, custom piece of equipment and personal treatment.

Beyond this, however, is the idea of predictive medicine - taking a persons

unique data and using that to provide a model of how a disease is likely to progress.

The idea that vascular structure is relevant in disease is becoming ever more preva-

lent in the research community. The need for modelling based on a persons own

unique data thus becomes more apparent.

7.2 Personalised medicine

More common these days is the idea of personalised medicine. This is the concept

of specifically tailoring treatments and diagnoses to an individual, based on not just

medical history, but actual data regarding the patients physical body. Scanners

are now a permanent fixture in every hospital, and their use in diagnosing a variety

87

of maladies is routine, such as the use of X-Ray imaging in the diagnosis of broken

bones and obstructions, to the use of Magnetic Resonance Imaging (MRI) in the

diagnosis of cancer.

In fact, MRI scans are now commonly in use during the planning stages of

cancer surgery and the design of replacement bones for those who require them.

The evolution of this is predictive medicine: personalised simulations of the pro-

gression of disease, in order to best plan treatment of a condition. As scanner

fidelity increases, and our knowledge of disease pathogenesis grows, it becomes ap-

parent that the combination of these elements could lead to improved treatment

of medical conditions. This can also be applied to simulating the effects of a given

treatment, to predict how a patient might respond over a given period of time.

7.3 Imaging

The type of images required is governed by the particular application required.

For example, design of an implant, and surgical planning for fitting, can use data

retrieved from a full body MRI scan at resolutions offered by typical strength

scanners found in many hospitals, since they offer sub-centimetre, and even sub-

millimetre accuracy. However, modelling of phenomena such as cell growth requires

a much greater resolution, in the region of micrometres, to match that of the size

of the cells being modelled and accurately represent the surrounding environment.

The images used in this work were MicroCT scans. The reason for this is that

the scanning resolution is very high, up to values as small as 5µm [61]. This value

corresponds well with the size of endothelial cells, which are the main target of

the model.

88

It is at this point that we must consider the structure of blood vessels, and

how this affects and is affected by the process of angiogenesis. Blood vessels,

particularly the microvasculature, are composed on the outer layer of a matrix

of endothelial cells. During the early events of angiogenesis, endothelial cells are

recruited from the vessel wall by the angiogenic factors, and start migrating up

the factor density gradient.

Thus, in terms of modelling this phenomenon, we must be able to model en-

dothelial cell movements on a scale at least equivalent to the size of a single cell

- that is, the domain in which we model is split into units of approximately one

endothelial cell in size. This leads to the assumption that each location in the grid

is either ’on’ or ’off’, that is occupied or empty. It allows for easier testing in terms

of whether a cell can move into a location in the simulation space, or not.

We can also consider the structure of capillaries at this stage. Because the

larger vessels are considerably wider, the circumference of such a vessel will be

composed of multiple endothelial cells. However, capillaries are not structured

this way. In fact, a capillary is similar in size to a single endothelial cell - its

circumference is created by a single cell forming a tubular section, which is then

connected to other sections to produce longer pipe structures.

The scan data is being used to create the initial conditions for the simulation.

The idea here is that the scan shows the existing vasculature, and the simulation

is run to discover how the introduction of angiogenic factors affects it. So when

images are loaded in at the beginning of the simulation, some thresholding is per-

formed to determine which locations in the simulation space are already occupied.

Since the scan data relates to vascular structure, this is then taken to mean that

an occupied space relates to an endothelial cell in the vessel lumen.

89

Following this, the diffusion coefficients for the occupied locations are set to a

higher value, which represents the decrease in permeability compared to that of the

extra-cellular matrix. Vessels are then hollowed out. This is achieved by locating

occupied cells which have occupied neighbors in all six of the principle directions

(up, down, left, right, forward, backward) as described by figure 7.1. These are

removed from the simulation, since they represent areas within the vessel, which

would be filled with blood. These locations, which now appear empty, are marked

as filled, however, to prevent the accidental movement of a cell into the vessel

space. In vivo this would be prevented by the mechanics of blood flow; pressure

of blood would push cells outward. Similarly, the migrating cells bind onto the

extra-cellular matrix, and this would be absent, and thus there would be nothing

onto which the cells could anchor themselves.

To construct the initial graph representation of the vessels for blood flow sim-

ulations slices are processed as they are imported into the simulation. For each

slices, regions are calculated using region growth, and individual regions are tagged

as sections of pipe in the graph. These are approximated as having a length equal

to the thickness of the slice (defined by the scan resolution), and are idealised

slightly by calculating a radius based on the area of the region; assuming a circu-

lar section, this is easily calculated as r = 2

√

π
A
.

Pipe sections generated in this manner are connected through detection of

overlap in successive slices, and graph nodes are created in-between these sections.

In the event that a new region overlaps more than one region in the previous slice,

this is easily handled by the graph system.

At the same time, the endothelial cells instantiated by processing the slices

are assigned to the pipe sections created from the same region. This ensures that

90

(a) An example of scanned images before hollowing is performed, sections are described
as contiguous solid blocks. A white pixel denotes space taken by the resin cast, whereas
a black pixel denotes an empty space.

(b) The green pixel is identified as having six neighbors, and thus is marked for deletion.

(c) The result after hollowing is complete. Note that pixels on the edge of the domain
are assumed to have a neighbor outside the domain which prevents formation of “caps”
on the ends.

Figure 7.1: The hollowing process removes internal pixels to provide a more natural
seeding process for endothelial cells.

91

when they begin to move, the pipes they generate are correctly connected to the

original graph.

7.4 Limitations of image based methods

It is incorrect to assume that the structure of vasculature is so regular; in vivo the

cells which form the vessel walls are not axially aligned, nor entirely uniform in

size. These assumptions, however, make the model vastly simpler to create and

interpret. A future improvement would be to work on a much smaller grid, perhaps

10 times higher resolution, such that an endothelial cell takes up a larger space in

terms of grid locations, but can move in a smoother way, or perhaps to take it a

step further through the use of a continuous space for such movement. Currently,

the model works on the Anderson and Chaplain method of checking a probability

of movement based on how much VEGF has been absorbed, along with the local

gradient of growth factor, and the contents of surrounding grid locations.

The images used in this research were MicroCT scanned images of resin cast

rat cerebral vasculature. The resin cast is created by injecting liquid resin into the

blood vessels of terminally anaesthetised rats, which is then allowed to set. Once

the resin has set, the remainder of the tissue is dissolved with acid to expose the

cast.

This allows the inspection of the vascular structures without the surrounding

tissue, which means that scans become much more binary in nature - either a

location is filled with a section of vasculature, or nothing at all. This, of course,

fits in nicely with the prescribed initial conditions of the simulation, such that

either a location is populated by an endothelial cell, or it is empty.

92

The resin casts were scanned in a SkyScan1174 compact microCT X-Ray scan-

ner in which rotational X-Ray images are taken at an interval of 0.5 degrees. These

images are then reconstructed using an implementation of the Feldkamp algorithm

[61] which results in a new set of images corresponding to horizontal slices. These

slices, when laid on top of one another in order, represent the entire volume in

three-dimensional space.

Of course, we cannot use this method to acquire images of living patients.

Typically, internal images of humans are taken using MRI scanners. In contrast

to a MicroCT scanner, which typically has a functional resolution in the range of

microns, the resolution of an MRI scanner is usually in the range of millimetres.

This scan resolution is effectively limited by the strength of the magnetic field

generated by the scanner.

93

Chapter 8

Modular Analysis on the Cloud

8.1 3DNet

The 3DNet Medical cloud system was developed by Biotronics3D and was de-

signed around the idea of moving the functionality of a medical imaging software

package to a cloud-based system, removing the need for users to acquire dedicated

hardware. Medical imaging requires a considerable amount of power, and as such

makes an ideal candidate for cloud computing. Typically, medical imaging solu-

tions are high-end applications which require expensive hardware, and at times

similarly expensive software. Thus, removing the hardware component by moving

the functionality from local machines and into a cloud solution is an appealing

prospect as it will greatly reduce the cost.

As a way of ensuring the relevance of the 3DNet Medical cloud system, it has

to be capable of expanding with new technologies and techniques. To this end, a

modular system for integrating new functions was devised. Modular frameworks

have been in use for some time, often termed plugin systems, and can be seen in

94

a number of computer applications.

The cloud system described in chapter 3 forms the basis on top of which the

module integration framework was built. The framework is composed of three

separate components which communicate to each other using messages passed via

web service and DICOM association. The following sections provide an overview

of the interactions between components, followed by detailed descriptions each

component.

8.2 A flexible pipeline for medical image analysis

We developed a flexible pipeline for integrating analysis modules into the 3DNet

Medical system in the early stages of the project. This pipeline allows for the

generation of rule sets to identify incoming scans which fit the criteria for a par-

ticular module, and can be automatically submitted to the analysis subsystem for

processing. Studies can also be manually passed to the analysis subsystem at any

given time, through a UI option integrated into the main system. The framework

design is specifically tailored towards easy integration of a wide range of code mod-

ules, essentially anything which can be compiled to an executable or can exist as

a standalone DICOM node. The importance of such a scheme is that it makes

creation of novel analysis modules more attractive to developers who would not

normally have the resources to develop an entire medical imaging solution.

In the 3DNet Medical cloud, the analysis subsystem is run on a separate server,

which ensures a dedicated set of resources for analysis tasks. The overall system

is divided into four separate components, which act on the data in turn. Each

module is configured by the addition of an XML file describing the module, in

95

a specific directory the analysis server scans periodically for changes. Any new

files are parsed by the server, and the details added to an internal list of available

modules.

Data is passed to the analysis server and back via an exploitation of the DICOM

standard which allows the inclusion of metadata in unique tags. DICOM compliant

applications are allowed to only add private tags, and as such the server must

scan incoming files for the relevant tags, identified by a unique string as per the

requirements of the DICOM standard. A tag block then contains information

regarding the size and type of the file being transferred. The file itself is embedded

in the end of the DICOM carrier file, in the pixel data element - it is important

to note that the pixel data has no requirement to be only the size specified by the

DICOM header, and thus extra information can be safely added to the end of the

file.

In the current form, the Analytic Module Manager (AMM) queues incoming

studies for analysis, using a first-in-first-out scheme, and releases them to the

individual analysis modules one by one (figure 8.3). Under this scheme, each

module can be executing only once, initially, although multiple different analysis

modules can be executing simultaneously. However, this can be scaled up to

allow for multiple instances of a single analysis module to be executing in tandem.

Return values from complete analysis modules are caught by the AMM. Depending

on the return value received, the AMM can choose to run a module again, if there

were problems, discard data after a given number of failed attempts, or return

successful results to the main system for storage.

96

8.2.1 Event-driven workflow

Liu et al [62] put forward a framework for an event-driven workflow management

system, which included elements of both automatic and user-interactive image pro-

cessing [62]. Their system includes management of the image database including

standard image viewing and editing capabilities, and thus was somewhat beyond

the scope of this project. An event-driven system is a system of components which

interact with each other using messages. This method of interaction through mes-

sage passing is key in the design of such a system, in that it means that any

component can run independently, without the need for the other components to

be available. It implies a robust structure which allows elements to continue to

function in the event of a partial system failure, a desirable aspect in a system

distributed across multiple machines or sites.

The module integration framework was split into three distinct elements: the

Module Wrapper, which initiates execution of the module (Section 8.2.4), the

Analytic Module Manager, which controls data transfer between modules and the

main system (Section 8.2.3), and the Logic Engine, which defines when to execute

a module (Section 8.2.2). The flow of data between these components is shown in

figure 8.1.

The data flow can be summarized as follows:

1. Incoming images are checked against predefined rule sets for eligibility.

2. The Module Manager is informed of eligible images, and queues them for

processing.

3. The original images are stored as normal.

97

Figure 8.1: Data are checked against the Logic Engine upon import, and matches
forwarded to external modules for additional processing. The original data are
inserted into the system whether or not they are flagged for processing.

4. Eligible images are processed by the module binary.

5. Results are placed into storage.

8.2.2 Logic engine

Analysis modules can differ in operation for a variety of reasons, including the

modality of the scanned image required (for instance, CT, MRI, PET, etc.), num-

ber of images required (single image, volume stack, temporal series), and body

part scanned, to name but a few. It is necessary, therefore, that the import sys-

tem be able to differentiate between when a module should be executed. A Logic

Engine is required to perform checks on incoming data in order to decide whether

or not the images meet requirements for additional processing.

A tiered approach is required to deal with availability of modules, creation and

98

administering of rule sets (referred to as module protocols), and activation of rule

sets. Rule sets are organized in a logical tree on a per-user basis in the following

configuration:

• User

• Module

• Protocol

• Rule

Additionally, command line parameters can be defined on a per-protocol basis;

these are covered in section 8.2.4.

Rules are of the format:

(Level) Tag Qualifier Value

where Level refers to whether the information is on a study or series level, Tag

is the DICOM header tag to check (for instance, description, modality), Qualifier

is the method of comparison (for instance equals, does not equal, contains), and

Value is the particular value to check for. An example of a rule would be:

(Series) Modality Equals "CT"

Protocol evaluation is performed in two stages, first fetching, then checking.

The fetch stage consists of retrieving active module protocols for the current user

for modules which are available. Checking then evaluates each rule against data

included in the DICOM headers of the files in question.

99

Figure 8.2: Users create protocols for modules (A) they are subscribed to. For
each protocol a set of rules (B) is created, and any extra parameters (C) defined.
When a set of rules is fully met by a series, the module is run with the given series
and the associated parameters.

We identified two principle types of module, User Interface (UI) modules and

Black Box (BB) modules. A User Interface module requires input from a user in

the form of a sort of feedback loop, and can involve processing information multiple

times, for instance where a user modifies parameters after running a module to try

a new configuration. A Black Box module runs one time, and simply accepts a set

of images and some parameters, and produces some results with no interaction.

Placement of the logic engine is dependent on the type of module the system is

required to support.

In the 3DNet implementation, the logic engine is integrated into two compo-

nents of the system. To control execution of black box modules the logic engine

works on the import pipeline. Thus, as new images are being imported they are

100

assessed by the logic engine and forwarded for extra processing if the rules are

met. To control the execution of user interface modules the logic engine is inte-

grated into the module launcher, which is in this case a context menu in the study

browser.

Figure 8.2 shows the user interface developed to support creation and editing

of module protocols in 3DNet. The interface automatically populates the list of

modules (Figure 8.2, A) with all modules that the user or user’s organization is

subscribed to. The user is able to create, modify, and delete protocols for each

module, for which they define a set of rules (Figure 8.2, B) which control when

the module is run. If the module requires it, additional parameters can also be set

per protocol (Figure 8.2, C).

8.2.3 Module management

Probably the largest component in the system, the Analytic Module Manager

(AMM) was conceived to perform a controlling role in module execution and ad-

ministration. The AMM acts as a gateway between the main system, which in-

cludes the logic engine, and the modules. As such, it must maintain a record of

the connection details of every module.

Communication between the module manager and modules is performed over

DICOM association, which allows the module manager to communicate with mod-

ules within the cloud and without. Therefore, the module manager requires knowl-

edge of the AET (Application Entity Title), IP address, and port of all modules

registered with the system. It is not necessary, however, that the module man-

ager have knowledge of additional parameters that modules can accept. These

101

Figure 8.3: The module manager maintains a queue for each module and forwards
data, where it is processed. Results are returned to the module manager, into a
return queue, which inserts them into the main system.

are accepted as an extensible list structure, and placed in an XML file which is

embedded in the first image to send, using the technique described in section 8.2.5.

Concurrent processing is a requirement of the system, and one of the lead-

ing factors in the design of the module manager. It is necessary that it be able

to transmit and receive multiple data sets simultaneously; thus a multi-threaded

approach is desirable. The design proposed uses a collection of queues, one per

module (figure 8.3). Each module queue is governed by a separate thread, which

controls administration and communication. This approach also takes advantage

of multi-core and multi-processor architecture, where the operating system spreads

process threads across processors.

The module manager maintains records of processing transactions, whether

successful or not, in an attached database. These are to provide an audit trail,

102

and to allow for structured payment plans, as well as for bug tracking and fixing.

8.2.4 Module wrapper

Development methodologies can vary greatly between institutions, organizations,

and individuals. As such, there is no standard development platform or method for

creation of medical image analysis modules. Hence, provision of a unified commu-

nication interface between modules with the main management system becomes

problematic.

In order to address this issue a wrapping element was devised upon which to

mount analysis modules. Such a wrapper has the following requirements:

• Support multiple development languages. The wrapper should be able to

mount modules which are produced in a variety of forms, such as executable

or Java archive.

• DICOM connection support. The wrapper should provide DICOM connec-

tivity for modules which do not support it natively. All communication with

the module manager is performed over DICOM association.

• Customizable to be able to support different numbers and order of command

line parameters.

• Scalable instancing to allow the module to be run multiple times simultane-

ously.

• Failure recovery. The module should be able to recover from errors and

continue processing indefinitely.

103

A set of standard parameters are defined for analysis modules in order to make

integration simpler. Analysis modules must be able to accept a minimum of three

parameters which describe the location of the input data, a location in which to

place DICOM format output data, and a location in which to place other output

data. Additional parameters are also supported, and this is discussed in section

8.2.3. It is important to consider that a module may produce, or even require,

data in a proprietary format, which is not supported by the DICOM standard.

Section 8.2.5 discusses how binary file exchange was implemented over DICOM

association.

Instancing is required to allow the module to concurrently process multiple data

sets. The module wrapper maintains a queue for each instance, and distributes

processing jobs according to queue sizes; that is, a new job is added to the shortest

queue, so as to balance the load across all the queues.

Configuration of the module wrapper is achieved through a simple configuration

in the form of an XML file. This file contains the DICOM connectivity details

(application entity title, IP address, and port number), the path to the module

executable (or jar, or dll), maximum time the module should take to run, the

number of instances to create, and the order in which the three default parameters

should be supplied (Listing 8.1).

Listing 8.1: Example contents of a module configuration xml file.

<config >

<aet >MYMODULE </aet >

<ip >127.0.0.1 </ip >

<port >804</port >

<modulepath >C:\ Modules\MyModule.exe </ modulepath >

104

<maxrunningtime hours="0" minutes="10" seconds="0"/>

<initialinstances >1</ initialinstances >

<parameters input="0" outputdicom="1" outputcustom="2"/>

</config >

Failure recovery and redundancy In addressing failure recovery we have to

consider two possibilities; first, that of a module error causing an infinite loop;

second, that of a software failure which causes the module wrapper to exit unex-

pectedly. In the case of an infinite loop, the wrapper will have no way of knowing

the module is stuck, hence the maximum running time argument in the configu-

ration. This allows the wrapper to know when a module has been processing for

too long, and the process can be terminated and logged as a failure. To deal with

software failures (crashes) an extra layer of protection is in place in the form of a

module installer service, run automatically on the host machine.

Robustness of service is required in modules being run using the module wrap-

per. This is achieved through a combination of installation of the wrapper as a

Windows service, and an additional service called the Module Installer Service.

The Module Installer Service (MIS) is a unique service which controls the running

and installation of modules wrapped by the module wrapper. Because the module

wrapper requires a command line argument to start correctly, installation and set

up with a view to automatically starting the service is difficult when using the

standard Windows tools. Hence, the MIS was created as a way of automatically

starting instances of the module wrapper.

Installation of module services is simplified greatly by the inclusion of the MIS,

which is designed to run continuously. The MIS uses a similar xml-based scheme as

105

the AMM, scanning a specific location for files which it will use to populate its list

of modules. Each configuration file contains two pieces of information regarding

the installation and running of the module, the service display name (how it will

appear in the list of Windows services) and the path to the configuration file

described above.

Upon initial execution, the MIS will read each configuration file and check for

the relevant service. If a service with the given service name does not exist, the MIS

will use the Windows tools to install the service as described in the configuration

file, and start the service. If the service exists but is not running, the MIS will

restart the service, providing some redundancy against possible failure. Finally, if

a service exists and is running, the MIS will simply ignore the file. This process

is repeated periodically which both ensures that the services remain running and

that any additional modules added have a new service installed. While providing

an essential part of the 3dnet Medical cloud, the MIS is not required to run on

external hardware for obvious reasons.

8.2.5 Exploiting the DICOM standard for binary file trans-

fer

Situations can occur where binary data transfer is required. Module results, and

prerequisites, are not exclusively of the DICOM file format. It is not unusual for

proprietary file formats to be used, and thus a file exchange method for these is

required. The DICOM standard only supports transfer of DICOM format files,

and pdf files encapsulated in a DICOM file. For reasons previously mentioned, it

was desirable to make use of DICOM associations for data transfer.

106

Figure 8.4: Binary data is placed after the original image in the pixel data tag.
Information about the binary data (size, file name, type) is placed in the file header
in the form of private tags.

To allow for binary file exchange over DICOM connection it was required that

the format be exploited somewhat. The important aspect of the file format is

that the pixel data is encoded last in a file. It is possible to add extra data to

the end of a file as is required, and this can all be encoded in the pixel data tag

(figure 8.4). This does not affect reading of the pixel data, as the pixel data itself

remains unchanged.

These DICOM files then have a set of supporting private tags embedded to

identify them as carrying extra binary data (and to identify the file by name,

extension, and size); thus extraction is trivial. To accommodate the varying trans-

fer syntaxes of different files, requiring that the pixel data be either OW (Other

Word) or OB (Other Byte) value representation (VR), byte-padding is sometimes

required. While the OB VR allows the use of bytes, the OW VR requires words

107

(in this case, pairs of bytes), and thus the number of bytes present is expected to

be even. In this case, odd-numbered byte arrays are padded with one extra byte.

This added byte has no effect on the pixel data stored using the OB VR, thus it

is performed as a matter of course.

8.2.6 Inter-component communication

Each component in the system is a uniquely identified DICOM node. This allows

for a single communication system, but also allows communication with external

servers and systems which conform to the DICOM standard, and are open to

accepting DICOM connections.

This allows the invocation of remote analysis modules. If a developer decides

to host their analysis module on their own hardware, the AMM can be configured

to pass data to it via DICOM networking protocols. Given the nature of the

hosting cloud it is possible, and even likely, that extra computational resources will

become available during the lifetime of the system, either in the form of upgraded

hardware, or more likely in the form of additional servers within the cloud. The

benefit of having such a flexible system is that it can take full advantage of the

extra resources through such remote invocation schemes, without modification.

8.2.7 Individualised modelling in the cloud

The clinical relevance of the angiogenic process in human pathology makes an

individualised simulation of angiogenesis an ideal candidate for an analysis module

within the 3DNet Medical imaging system. As the goal of this work is to provide a

basis for an element of personalised medicine, a cloud system like 3DNet Medical

108

provides a way of increasing accessibility to the technology, and availability to a

large range of possible data sources.

In real terms, the hardware of the 3DNet cloud is inadequate to support a GPU-

based analysis module for two reasons. First, the cost of even off the shelf graphics

cards can be a large portion of setup costs, restricting choices. However, more

importantly, a cloud needs to be as reliable as possible, and the life-span of graphics

hardware is typically shorter than that of CPUs. However, the module system was

designed with external as well as internal connections in mind, and so this could

easily be hosted on an external server, wrapped in a DICOM connectivity layer -

indeed, the MWS could happily run on an external server to allow communication

with the AMM, and integration with 3dnet as a whole.

109

Chapter 9

Conclusions and Future Work

Probabilistic models of cell motion are an excellent method of simulating the

growth of microvasculature under the given circumstances. The model of cell

motion presented here describes cell motion as movement between grid cells (see

figure 9.1), whereas previous efforts have limited motion to grid lines, such as the

work of Anderson and Chaplain [3]. The decision to use grid cells instead of lines

allows for cell motion across diagonal elements, which produces smoother transi-

tions across chemical gradients, and more natural curves. This is further enhanced

by the decision to limit the curvature of emerging vascular segments by preventing

endothelial tip cells from doubling back upon themselves.

This approach has many degrees of flexibility. One interpretation of this could

be that the model is uncertain, in need of refinement. However, limiting options

for simulation will only limit the applications of a model. This model seeks to

provide a flexible base for simulating a variety of angiogenic pathologies, enabling

further customisation if required.

Building upon this, the decision to use scan data is an entirely new way of

110

Figure 9.1: Previous models have limited motility of cells by constraining motion
to grid lines (left). This model uses grid cells instead, adding an extra degree of
freedom in the form of diagonal motion (right). In three dimensions, this increases
the number of potential movement sites from eight to twenty-seven.

setting up an environment for angiogenic simulations. This technique allows the

simulation of angiogenesis in a considerably more realistic environment than pre-

vious efforts. As opposed to other simulations which have focused on reproducing

the results of in vitro models, this technique was designed with the aim of repro-

ducing in vivo growth patterns in silico, which is key in closing the gap between

simulations and reality.

The structure built from the scans is aligned along a regular grid, which appears

naïve given the irregular, and in fact continuous, environment the body exists in,

however this is an assumption made for two very important reasons. Regarding the

motion of the endothelial cells themselves, this provides a computationally efficient

way of organising the simulated motion and fits in neatly with other elements of

the simulation. In respect to the images used and the physical structure of the

111

vascular network, the truth is that an exact cell-by-cell map of even a small piece

of vasculature is virtually impossible to acquire. In this respect, the simulation

makes an assumption about the regularity of cells in the endothelium, which is well

documented, and what results is a best guess to describe the starting conditions

of the vasculature, which in reality is not that far removed from the truth.

Due to the nature of the system, it being a three-dimensional environment, it

takes large amounts of memory to set up the simulation environment. As such,

it was a requirement at the time that the functional units were allocated in main

memory. This could theoretically be moved into graphics memory given sufficient

hardware capabilities. Current top-of-the-range graphics cards are available with

as much as twelve gigabytes of memory, providing adequate capability for storage

of the entire simulation environment.

Diffusion and fluid flow are both integral to the function of human vasculature.

To obtain any level of realism, the fundamentals of the function of the vascular

system need to be understood and correctly implemented. Incorporating elements

such as these into a simulation of vessel growth and function is essential in achieving

a degree of realism which provides and meaningful representation of the systems

at work in the human body.

The graph-based method of flow calculations offers an efficient way of solving a

complex system. A considerable sacrifice in terms of accuracy is the treatment of

blood as a uniform fluid, which it is not. It is arguable that a more realistic solution

should be used, however it is important to remember that the goal of this work

is to find an acceptable balance between speed and realism. While, as discussed

previously, a Lattice-Boltzmann approach offers much higher spacial resolution,

the assumed increase in realism is lacking due to its treatment of blood as a uni-

112

Size of Grid CPU GPU
64 0.49s 0.16s
96 1.99s 0.63s
128 10.88s 1.527s
160 17.16s 3.01
192 37.87s 5.27s

Table 9.1: Comparing the execution times of a diffusion solver in CPU- and GPU-
based solutions. The GPU produces markedly faster execution times, even when
the number of cores available is exceeded.

form fluid. As such, the additional increased demand in power and time required

offers little in the way of benefit. Conversely, systems which seek to simulate ery-

throcite movement within vessels will indeed offer more realistic results, however

the increased complexity of such a system makes it undesirable here, especially

considering the goal of increasing simulation sizes.

An issue which arises with this system is the need to regularly transfer data

between graphics memory and main memory. Typically, in applications that make

heavy use of graphics hardware, this is minimised wherever possible as it is a

performance bottleneck.

When running like-for-like simulations on the GPU and on the CPU, it is easy

to see that the GPU solution is preferable. Table 9.1 shows the difference in execu-

tion times for 100 iterations over a different sizes of grid of the diffusion algorithm.

The increasing simulation times for the GPU may seem counter-intuitive, however

this is due to a limitation in the hardware used. Three-dimensional grids of thread

blocks are available in later versions of CUDA, however the hardware in use did

not support this. To maintain the three-dimensional analogue, three-dimensional

threadblocks were used in a two-dimensional grid. Thus, the simulation domain is

split into thick slices, which are processed sequentially one section after another.

113

Due to the nature of the Gauss-Seidel method for solving the equation, this split

becomes unimportant as it simply uses the latest values available.

When the concept of using scan data for instantiating the simulation environ-

ment was initially conceived, it was with the goal of mimicking the fine details of

the scan data itself. The finest vessels would be removed, a result which tended to

occur anyway through the use of thresholding, and simulations results would be

directly compared to see if the same original vessel pattern was regrown. However,

due to the stochastic nature of the simulation process, and early simulation results,

it became apparent that this was not a feasible goal to have. A more appropriate

method of comparison was thus sought.

To this end, a measure of tortuosity, or deviation from a straight path, was

used. This can easily be measured by comparing the end to end length of a vessel

segment, i.e. the straight-line distance between the start and end nodes, with the

actual length of the vessel segment generated.

When analysing scan images, processing is in three stages: first, the images

are converted to binary images; second the resulting binary images are reduced to

a skeleton using a thinning system; finally the skeleton is analysed to find node

points and vessel lengths. This analysis was performed using the free tool ImageJ.

Analysis of generated vasculature was somewhat simpler, as it was stored in terms

of geometric information, and not as images.

There will always be outliers in a simulation which is guided, at least in part,

by random motion. Figure 9.3 compares the distributions of real scan data with

simulated results: the best results were obtained using a chemotactic bias of 0.6.

114

9.1 Future work

This work seeks to provide a method for simulating a biological phenomenon with

immediate clinical relevance in a realistic manner in real time. An important goal,

therefore, was to find a balance between the requirements of realism, requirements

in terms of power, and completing the simulation within a reasonable time frame.

The method presented here is entirely scalable, limited only by hardware fac-

tors, notably memory and processor speed. As such, there is no technical limit

to the size of the simulation, however there are practical limits to how useful an

enormous simulation could be. An angiogenesis simulation across the entire body,

for example, would be of little use in studying the effect of a tumor site in one

isolated location, as well as being infeasible in terms of memory, processor and

graphics card requirements.

Current simulation sizes are between 1 - 2 millimeters cubed, which are a

useful starting point for simulation efforts, but not of much use in terms of clinical

relevance. The combination of parallel processing and CPU techniques is a useful

way of spreading the load across available hardware, however, and bearing in mind

current trends, increased simulation sizes are far from impossible. Running this

simulation with a grid size of two millimetres per side takes approximately two

point four gigabytes of memory. Of course, the memory requirements rise at a

cubic rate, and can be obtained using an assumption of three hundred megabytes

per cubic millimetre.

Even conventional home-user systems have gigabytes of memory available, and

high-end workstation graphics cards offer as much as twelve gigabytes of video

memory, so it is not outside the realms of possibility that such simulations will

115

soon become feasible for sizes measured in centimetres, not millimetres.

Simulating angiogenesis is not a new subject, although it is one of continuing

research. However, this is the first time graphics hardware has been used to accel-

erate the simulation environment. The use of parallel processing in this context is

key in balancing the resource requirements. By moving the mathematically heavy

fluid dynamics equations to the graphics hardware, the CPU is freed to concentrate

resources on the cellular motion and supporting functions, such as graph building.

Coding for the GPU and CPU uses two distinct models of programming. The

parallel programming model as described in chapter 6 is not suited to the kind

of individualised decision making process of a Cellular Potts Model. An object

oriented approach to coding is much more flexible. The ability to create member

variables for each object means that accessing personal data is much easier than

with a parallel model where memory is shared and must be specifically indexed

to be accessed. To emulate this kind of functionality on the GPU would require

creating a buffer for each variable and populating via an index representing the

identity of each “object”. This has two distinct disadvantages.

Allocating memory dynamically during programme execution on the graphics

card is undesirable, as it requires the reallocation of entire buffers, followed by

copying memory, which is a costly procedure in terms of time. For the pressure

system, which changes as the vascular network grows, buffers are doubled when

more space is required in an effort to reduce the frequency of rebuffering data (up

to a point - when the buffer exceeds a certain size, further rebuffers are of a fixed

size to reduce the likelihood of running out of memory).

In addition to this, accessing data which might belong to another “object” could

feasibly cause conflicts in access. In an object oriented model this is much safer

116

with the use of accessor methods which provide a safe way of retrieving information

from other objects.

As an additional consideration, it is worth bearing in mind the increased de-

velopment cost versus the potential gains of having an all-GPU solution. Doing

so negates the benefits of having a centralised unit which distributes information

if all subsystems reside on the graphics card, but the flexibility of such a modular

system is lost.

Aside from size, a major barrier at present to the use of the techniques out-

lined here in a predictive capacity lies in the limitations of scanning technology

available. The images used were microCT scans of resin casts, which provide a

very good spacial resolution. Unfortunately, this technique is inappropriate for hu-

man use. Scanner technology is field of continuing research, however, and spacial

resolutions similar to those of microCT scanners are sure to be available in less

invasive methods (such as MRI) before too long.

9.2 Tissue engineering

The need for studying microvasculature is not limited to clinical diagnosis of dis-

eases. A major difficulty in engineering tissues in vitro is engineering vascularised

tissues. Any tissue that is more than a few hundred microns thick needs a proper

vascular system because every cell in a tissue needs to be close enough to cap-

illaries to absorb the oxygen and nutrients. This is why skin and cartilage were

among the first to be ready for human testing, since they do not require extensive

internal vasculature. An engineered tissue implant will have to connect quickly

with the host vascular system. Creating appropriate environments/scaffolds to

117

promote vascular growth, especially those that mimic vasculatures in real tissues,

and imaging of this growth in vivo are therefore also important aspects of tissue

engineering. However, vasculatures engineered in vitro are at present governed

by, at best, information gathered from the literature or, at worst, by uninformed

trial and error. They lack the functional properties of real vasculatures, espe-

cially microvessels or capillary beds. Though there has been active research using

mathematical models of angiogenesis to generate vascular structures , these cannot

match the microvascular patterns in real tissues.

In their 2011 paper, Novosel et al. [7] stated that the key challenge in tissue

engineering is vascularisation . Current methods for tissue engineering involve

growing tissue in an oxygenated solution, in order to simulate perfusion by blood

vessels. This, however, means the tissue is not grown with a network of blood ves-

sels of its own. One application of simulations of angiogenesis would be to design

blood vessel scaffolds which not only successfully perfuse a region of tissue, but also

mimic the natural formation of vascular networks. An individual-based model for

angiogenesis means that the network can be tailored to any domain specified. Re-

cently, Miller et al [20] described a modified three-dimensional printing technique

for creating pre-vascularised scaffolds for tissue engineering, which combined with

a realistic generation method for vascular networks could aid the advancement of

tissue engineering by allowing the growth of pre-vascularized structures.

9.3 Cloud computing

Future research will be to go back to where this PhD project started. The project

was sponsored by an EPSRC Industrial Case Award, working with Biotronics3D

118

on medical imaging on the Cloud.

Continuing the work here naturally leads to the concept of developing the

simulation in such a capacity as to be incorporated In as a module in the 3DNet

Medical cloud. In developing this solution as a module for the cloud certain ending

conditions need to be specified. These could, realistically, be temporal, i.e. setting

a limit for simulation time, or cell-based, i.e. when there are no more cells eligible

for migration the simulation is over. Providing both as optional parameters would

give researchers a flexible way of ensuring that simulation times do not get out of

hand.

There has been interest in the effectiveness of anti-angiogenic therapies in the

treatment of cancer. Some work has been performed in this area which shows

that anti-angiogenics, whilst decreasing the active blood vessel network around a

tumour, impede the delivery of other treatments such as chemotherapy. This is a

promising area of research, and an ideal candidate for future developments in this

system. This would incorporate additional elements of the pathology, starting with

the introduction of growth factor producing tumour cells, which would then grow

based upon the delivery of oxygen through induced vessel growth, or demonstrating

how this is impeded by the introduction of anti-angiogenic substances.

9.4 A more general scheme for modular develop-

ment

Building on the current work, one could assume the goal of designing an entirely

modular system and toolkit for the development of medical simulations. The work

119

here already describes a basis for how such a system can be achieved, combining

both CPU and GPU techniques towards the creation of a single unified system.

While image processing and visualisation efforts have become unified over the

years, there is still a considerable distance between medical simulation developers

and researchers. The Biotronics3D solution is a step in the right direction, en-

couraging developers to share their work on a unified platform, but in order to

improve research efforts in simulation such a system is still lacking. While, as

previously discussed, visualisation and imaging toolkits are widely available, there

is a distinct lack of any such framework for simulations, making this avenue ideal

for future work.

120

Figure 9.2: Increasing the chemotactic bias produces straighter vessels, whereas
decreasing produces more random, tortuous results. Shown here are results with
bias values of 0.2, 0.4, 0.6, and 0.8, in descending order. Identifying factors which
affect the endothelial cell’s response to the chemical gradient could be beneficial
in early diagnosis of disease.

121

Figure 9.3: The distribution of actual length divided by end to end length. First
is the distribution from scan data; second is using a low chemotactic bias; bottom
uses a high chemotactic bias.

122

Figure 9.4: A complete simulation shown from four distinct view points. New ves-
sels are coloured based on the blood pressure, solved using the algorithm described
in 6.

123

Figure 9.5: By creating a stack of images to reflect a manufactured tube and
initialising a gradient of growth factor, this method can be used to fill an arbitrary
space with vasculature. Changing the parameters (decreasing chemotactic bias
from left to right) produces different densities of vessels.

124

Publications

A list of the papers published during the course of this project is give here.

Medical Imaging in a Cloud Computing Environment, L. Parsonson, L. Bai, L.

Bourne, A. Bajwa, S. Grimm, Closer, 2011

3DNET - An ecosystem for the development, evaluation, and sharing of visual-

ization workflows, S. Grimm, A. Paluszny, L. Parsonson, R.Andrian, W. Hernan-

dez, L. Bourn, A. Bajwa, H. Hatzakis, L. Bai, WorldComp, 2012

Individual Based Modelling of Angiogenesis on the Graphics Processing Unit,

L. Parsonson, L. Bai, Advances in Fluid Mechanics, Wessex Institute, 2014

3D Angiogenesis Modelling on the GPU, L. Parsonson, L. Bai, Accepted for

publication in The 2014 7th International Conference on BioMedical Engineering

and Informatics (BMEI 2014),

125

List of Figures

2.1 A Rapidly-exploring Random Tree 25

2.2 Deformation of red blood cells in capillaries 28

3.1 Ray casting through a volume . 40

3.2 Volume renders with different transfer functions 41

3.3 The depth render . 43

4.1 Converting scanned images to endothelial cells 45

4.2 A volume render of a scanned resin cast 46

4.3 Distances in three dimensions . 47

4.4 Cell motion towards the source of growth factor 49

4.5 Differing growth factor distributions and the effect on cell motion . 50

4.6 The effect of different sized exclusion zones 51

4.7 A simulation of size 1923 . 54

6.1 How threadblocks relate to the simulation volume 64

6.2 Relative apparent viscocity . 68

6.3 A vessel bifurcation and preservation of flow 69

6.4 A comparison of a vessel network and it’s graph representation . . . 71

126

6.5 An example graph for the pressure model 72

6.6 Pressure stabilised across a generated network of vessels 73

6.7 Introducing low pressure areas to the graph 74

6.10 Counting spaces around a vessel segment 79

6.8 Mass transfer across a network . 84

6.9 Timeline of the growth of capillaries in the simulation 85

7.1 Hollwing imported vasculature . 91

8.1 The flow of data being imported into the cloud 98

8.2 The user interface for creation and administration of module protocols100

8.3 Queuing studies for processing via the AMM 102

8.4 Using DICOM files as a vehicle for binary data transfer 107

9.1 Degrees of freedom in cellular motion 111

9.2 The result of modifying the chemotactic bias 121

9.3 Distributions of vessel actual length divided by end to end length . 122

9.4 A completed simulation showing vessels and pressure values 123

9.5 Using the model to fill an arbitrary space 124

127

References

[1] Judah Folkman. Angiogenesis in cancer, vascular, rheumatoid and other dis-

ease. Nat Med, 1(1):27–30, 01 1995.

[2] Costantino Iadecola. Rescuing troubled vessels in alzheimer disease. Nat Med,

11(9):923–924, 09 2005.

[3] Alexander RA Anderson and MAJ Chaplain. Continuous and discrete math-

ematical models of tumor-induced angiogenesis. Bulletin of mathematical bi-

ology, 60(5):857–899, 1998.

[4] L Arakelyan, V Vainstein, and Z Agur. A computer algorithm describing

the process of vessel formation and maturation, and its use for predicting

the effects of anti-angiogenic and anti-maturation therapy on vascular tumor

growth. Angiogenesis, 5(3):203–214, 2002.

[5] Markus R Owen, I Johanna Stamper, Munitta Muthana, Giles W Richardson,

Jon Dobson, Claire E Lewis, and Helen M Byrne. Mathematical modeling pre-

dicts synergistic antitumor effects of combining a macrophage-based, hypoxia-

targeted gene therapy with chemotherapy. Cancer research, 71(8):2826–2837,

2011.

128

[6] François Graner and James A. Glazier. Simulation of biological cell sort-

ing using a two-dimensional extended potts model. Physical Review Letters,

69(13):2013–2016, 09 1992.

[7] Esther C. Novosel, Claudia Kleinhans, and Petra J. Kluger. Vascularization

is the key challenge in tissue engineering. Advanced Drug Delivery Reviews,

63(4–5):300 – 311, 2011.

[8] Talia N Crawford, III Alfaro, John B Kerrison, and Eric P Jablon. Diabetic

retinopathy and angiogenesis. Current diabetes reviews, 5(1):8–13, 2009.

[9] Rohit Khurana, Michael Simons, John F Martin, and Ian C Zachary. Role

of angiogenesis in cardiovascular disease a critical appraisal. Circulation,

112(12):1813–1824, 2005.

[10] Anthony H Vagnucci and William W Li. Alzheimer’s disease and angiogenesis.

The Lancet, 361(9357):605–608, 2003.

[11] Judah Folkman and Michael Klagsbrun. Angiogenic factors. Science,

235(4787):442–447, 1987.

[12] Judith H Harmey and David Bouchier-Hayes. Vascular endothelial growth fac-

tor (vegf), a survival factor for tumour cells: Implications for anti-angiogenic

therapy. Bioessays, 24(3):280–283, 2002.

[13] N. Howlader, A. M. Noone, M. Krapcho, J. Garshell, N. Neyman, S. F. Al-

tekruse, C. L. Kosary, M. Yu, J. Ruhl, Z. Tatalovich, Cho, A. Mariotto, D. R.

Lewis, : Feuer E. J. Chen, H. S., K. A. Cronin, and (eds). Seer cancer statistics

review, 1975-2010. Technical report, Bethesda, MD, 2013.

129

[14] Ruman Rahman, Stuart Smith, Cheryl Rahman, and Richard Grundy. An-

tiangiogenic therapy and mechanisms of tumor resistance in malignant glioma.

Journal of oncology, 2010, 2010.

[15] Rakesh K Jain. Normalization of tumor vasculature: an emerging concept in

antiangiogenic therapy. Science, 307(5706):58–62, 2005.

[16] Gabriele Bergers and Douglas Hanahan. Modes of resistance to anti-

angiogenic therapy. Nature Reviews Cancer, 8(8):592–603, 2008.

[17] Urszula Ledzewicz, John Marriott, Helmut Maurer, and Heinz Schättler. Re-

alizable protocols for optimal administration of drugs in mathematical models

for anti-angiogenic treatment. Mathematical Medicine and Biology, 27(2):157–

179, 2010.

[18] Marianne O. Stefanini, Amina A. Qutub, Feilim Mac Gabhann, and Alek-

sander S. Popel. Computational models of vegf-associated angiogenic pro-

cesses in cancer. Mathematical Medicine and Biology, 29(1):85–94, 03 2012.

[19] Sébastien Benzekry, Guillemette Chapuisat, Joseph Ciccolini, Alice Erlinger,

and Florence Hubert. A new mathematical model for optimizing the com-

bination between antiangiogenic and cytotoxic drugs in oncology. Comptes

Rendus Mathematique, 350(1):23–28, 2012.

[20] Jordan S Miller, Kelly R Stevens, Michael T Yang, Brendon M Baker, Duc-

Huy T Nguyen, Daniel M Cohen, Esteban Toro, Alice A Chen, Peter A Galie,

and Xiang Yu. Rapid casting of patterned vascular networks for perfusable

engineered three-dimensional tissues. Nature materials, 11(9):768–774, 2012.

130

[21] William Lafayette Mondy, Don Cameron, Jean-Pierre Timmermans, Nora

De Clerck, Alexander Sasov, Christophe Casteleyn, and Les A Piegl.

Computer-aided design of microvasculature systems for use in vascular scaf-

fold production. Biofabrication, 1(3):035002, 2009.

[22] Volodymyr V Kindratenko, Jeremy J Enos, Guochun Shi, Michael T Shower-

man, Galen W Arnold, John E Stone, James C Phillips, and Wen-mei Hwu.

Gpu clusters for high-performance computing. pages 1–8. IEEE, 2009.

[23] Sli best practices, February 2011.

[24] Rui D M Travasso, Eugenia Corvera Poiré, Mario Castro, Juan Carlos

Rodrguez-Manzaneque, and A Hernández-Machado. Tumor angiogenesis and

vascular patterning: A mathematical model. PLoS ONE, 6(5):e19989, 2011.

[25] MG Watson, SR McDougall, MAJ Chaplain, AH Devlin, and CA Mitchell.

Dynamics of angiogenesis during murine retinal development: a coupled

in vivo and in silico study. Journal of The Royal Society Interface, page

rsif20120067, 2012.

[26] Luigi Preziosi and Sergey Astanin. Modelling the formation of capillaries,

pages 109–145. Springer, 2006.

[27] Andreas Linninger and Nicholas Vaicaitis. Computational modeling of cere-

bral vasculature. 2011.

[28] S Moore and T David. A model of autoregulated blood flow in the cerebral

vasculature. Proceedings of the Institution of Mechanical Engineers, Part H:

Journal of Engineering in Medicine, 222(4):513–530, 2008.

131

[29] Holger Perfahl, Helen M Byrne, Tingan Chen, Veronica Estrella, Tomás Alar-

cón, Alexei Lapin, Robert A Gatenby, Robert J Gillies, Mark C Lloyd, and

Philip K Maini. Multiscale modelling of vascular tumour growth in 3d: the

roles of domain size and boundary conditions. PloS one, 6(4):e14790, 2011.

[30] Ralf Gödde and Haymo Kurz. Structural and biophysical simulation of angio-

genesis and vascular remodeling. Developmental Dynamics, 220(4):387–401,

2001.

[31] Markus R Owen, Tomás Alarcón, Philip K Maini, and Helen M Byrne. An-

giogenesis and vascular remodelling in normal and cancerous tissues. Journal

of mathematical biology, 58(4-5):689–721, 2009.

[32] John Conway. The game of life. Scientific American, 223(4):4, 1970.

[33] Martin Gardner. Mathematical games: The fantastic combinations of john

conway’s new solitaire game “life”. Scientific American, 223(4):120–123, 1970.

[34] Paweł Topa. Towards a two-scale cellular automata model of tumour-induced

angiogenesis, pages 337–346. Springer, 2006.

[35] Haymo Kurz, Peter H Burri, and Valentin G Djonov. Angiogenesis and

vascular remodeling by intussusception: from form to function. Physiology,

18(2):65–70, 2003.

[36] James J Kuffner and Steven M LaValle. Space-filling trees. RI, Pittsburgh,

PA, Tech. Rep. CMU-RI-TR-09-47, 2009.

[37] Steven M LaValle. Rapidly-exploring random trees a new tool for path plan-

ning. 1998.

132

[38] Herbert H Lipowsky. Microvascular rheology and hemodynamics. Microcir-

culation, 12(1):5–15, 2005.

[39] Timothy W Secomb. Mechanics of blood flow in capillaries. 2009.

[40] Robin Fåhræus and Torsten and Lindqvist. The viscosity of the blood in

narrow capillary tubes. American Journal of Physiology – Legacy Content,

96(3):562–568, 03 1931.

[41] AR Pries, A Fritzsche, K Ley, and P Gaehtgens. Redistribution of red blood

cell flow in microcirculatory networks by hemodilution. Circulation research,

70(6):1113–1121, 1992.

[42] ACR-NEMA. Digital imaging and communications in medicine, 2014.

[43] Kitware. Insight segmentation and registration toolkit, 2011.

[44] Kitware. Visualization toolkit, 2014.

[45] Ivo Wolf, Marcus Vetter, Ingmar Wegner, Thomas Böttger, Marco Nolden,

Max Schöbinger, Mark Hastenteufel, Tobias Kunert, and Hans-Peter Meinzer.

The medical imaging interaction toolkit. Medical Image Analysis, 9(6):594–

604, 2015/02/08.

[46] Jens Kruger and Rüdiger Westermann. Acceleration techniques for gpu-based

volume rendering. page 38. IEEE Computer Society, 2003.

[47] G. Lippold. Mitchell, a. r./griffiths, d. f., the finite difference method in par-

tial differential equations. chichester-new york-brisbane-toronto, john wiley &

sons 1980 xii, 272 s., £8.95. isbn 0-471-27641-3. ZAMM - Journal of Applied

133

Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und

Mechanik, 60(12):741–741, 1980.

[48] Greg Lemon, Daniel Howard, Felicity RAJ Rose, and John R King. Individual-

based modelling of angiogenesis inside three-dimensional porous biomaterials.

Biosystems, 103(3):372–383, 2011.

[49] Harold F Dvorak, Lawrence F Brown, Michael Detmar, and Ann M Dvorak.

Vascular permeability factor/vascular endothelial growth factor, microvascu-

lar hyperpermeability, and angiogenesis. The American journal of pathology,

146(5):1029, 1995.

[50] Rashid Mehmood and Jon Crowcroft. Parallel iterative solution method for

large sparse linear equation systems. Computer Laboratory: University of

Cambridge, 2005.

[51] NVidia. Nvidia quadro processor specification, 2014.

[52] AR Pries, TW Secomb, and P Gaehtgens. Biophysical aspects of blood flow

in the microvasculature. Cardiovascular research, 32(4):654–667, 1996.

[53] Angelique Stephanou, Steven R McDougall, Alexander RA Anderson, and

Mark AJ Chaplain. Mathematical modelling of flow in 2d and 3d vascular

networks: applications to anti-angiogenic and chemotherapeutic drug strate-

gies. Mathematical and Computer Modelling, 41(10):1137–1156, 2005.

[54] Qianqian Fang, Sava Sakadzic, Lana Ruvinskaya, Anna Devor, Anders M

Dale, and David A Boas. Oxygen advection and diffusion in a three-

134

dimensional vascular anatomical network. Optics express, 16(22):17530–

17541, 2008.

[55] Mark S McAllister, Ljiljana Krizanac-Bengez, Francesco Macchia, Richard J

Naftalin, Kevin C Pedley, Marc R Mayberg, Matteo Marroni, Susan Leaman,

Kathe A Stanness, and Damir Janigro. Mechanisms of glucose transport at

the blood–brain barrier: an in vitro study. Brain research, 904(1):20–30, 2001.

[56] Sean HJ Kim, Sunwoo Park, Amina A Qutub, and C Anthony Hunt. In silico

modeling of blood-brain barrier: Agent-based simulation of cerebral glucose

transport. pages 2–8, 2005.

[57] N Joan Abbott, Lars Rönnbäck, and Elisabeth Hansson. Astrocyte–

endothelial interactions at the blood–brain barrier. Nature Reviews Neuro-

science, 7(1):41–53, 2006.

[58] Louis Parsonson and Li Bai. Three-dimensional angiogenesis modelling on

the gpu. pages 1–6. IEEE, 2014.

[59] Amina A Qutub, Feilim Mac Gabhann, Emmanouil D Karagiannis, Prakash

Vempati, and Aleksander S Popel. Multiscale models of angiogenesis. Engi-

neering in Medicine and Biology Magazine, IEEE, 28(2):14–31, 2009.

[60] Wilhelm Conrad Röntgen. On a new kind of rays. Science, pages 227–231,

1896.

[61] Skyscan NV. Nrecon user manual, April 2011.

[62] L Liu, D Meier, M Polgar-Turcsanyi, P Karkocha, R Bakshi, and C Gutter-

man. Event-driven workflow management for medical image processing and

135

analysis in a large image database. Medical Image Computing and Computer

Assisted Intervention Society, 2004.

136

