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Abstract: This paper analyses a model of legislative bargaining in which parties form

tentative coalitions (protocoalitions) before deciding on the allocation of a resource.

Protocoalitions may fail to reach an agreement, in which case they may be dissolved

(breakdown) and a new protocoalition may form. We show that agreement is immediate

in equilibrium, and the proposer advantage disappears as the breakdown probability goes

to zero. We then turn to the special case of apex games and explore the consequences of

varying the probabilities that govern the selection of formateurs and proposers. Letting the

breakdown probability go to zero, most of the probabilities considered lead to the same

ex post pay-off division. Ex ante expected pay-offs may follow a counterintuitive pattern:

as the bargaining power of weak players within a protocoalition increases, the weak players

may expect a lower pay-off ex ante.
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1. Introduction

The Baron-Ferejohn [1] model is the most frequently used formal model of legislative bargaining.

In this model, there are n identical legislators, and decisions are made by simple majority. An agent is

selected at random (each agent with probability 1/n) to propose a division of the budget. If a majority

votes in favour of the proposal, the proposal is implemented, and the game ends (closed rule); otherwise,

a new proposer is selected at random, and the process continues until an agreement is reached.1

Even though coalitions are not explicitly formed in this model, we can think of the set of players who

vote yes as the coalition that forms. Given this interpretation of the model, players are able to agree

simultaneously on coalition formation and pay-off division.2 However, in the context of government

formation, it is natural to think of parties as forming tentative coalitions (protocoalitions)3 before

beginning negotiations over pay-off division. Alternatively, in the context of party formation, legislators

may coalesce into a majority party and subsequently decide on what policy to enforce.4

There have been several models of legislative bargaining with protocoalitions in the literature.

In Baron and Diermeier [9], once the protocoalition is agreed upon, the formateur makes a

take-it-or-leave-it offer; if this offer is rejected, an exogenously-specified status quo prevails. In

Diermeier et al. [10], bargaining continues indefinitely between the members of the protocoalition.

Breitmoser [11] allows the formateur to revise the chosen protocoalition after a rejection and also allows

players to pre-commit to accepting or rejecting certain proposals; the identity of the formateur remains

constant throughout.

The present paper analyses a variant of the Baron-Ferejohn model with protocoalition bargaining.

Proposers are randomly selected both at the protocoalition formation stage and at the pay-off division

stage. The distinctive feature of this model is that negotiations over pay-off division may break down,

in which case the protocoalition is dissolved and the process starts again from the beginning, i.e., a

formateur is selected anew. This property makes the process stationary and easier to analyse, but it also

makes the breakdown outcome endogenous.5

We show that all stationary subgame perfect equilibria of this model have immediate agreement.

The value of the breakdown probability does not affect the nature of the equilibrium, but it does affect

the proposer advantage within a protocoalition; this proposer advantage vanishes as the breakdown

probability goes to zero.

1 This model has lots of applications and extensions. A fairly comprehensive list can be found in Eraslan and

McLennan [2].
2 This property is shared by other non-cooperative models of coalition formation (see Selten [3] and Chatterjee et al. [4]).
3 Diermeier and Merlo [5] (p. 51) define a protocoalition as a set of parties that agree to talk to each other about forming a

government together.
4 Jackson and Moselle [6] examine the formation of political parties in a legislative bargaining situation, where a party is

defined as a binding agreement to make the same proposal when recognized and to vote for each other’s proposals. Other

papers that model political parties as voting blocs include Carrubba and Volden [7] and Eguia [8].
5 Jackson and Moselle [6] assume that the surplus is split among party members according to the Nash bargaining solution,

taking as disagreement outcome the situation with no political parties. In contrast, the present model has a breakdown

outcome that incorporates the possibility of forming new coalitions if the current protocoalition fails.
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We then turn to some particular classes of games, assuming that symmetric players have the same

probability of being selected as formateurs and also the same probability of being selected as proposers

within a protocoalition. Under these assumptions, games in which all players are symmetric are

straightforward to solve. Only minimal winning coalitions form, and ex post pay-off division varies with

the probability that the protocoalition breaks down. If the protocoalition breaks down with certainty after

a proposal is rejected, we are essentially back in the original Baron-Ferejohn model; if the breakdown

probability tends to zero, pay-off division within the coalition converges to the equal division.

The next case we consider is that of apex games. Apex games are games with one major player and

n − 1 minor players. A minimal winning coalition can be formed by the apex player and any one of

the minor players or by all minor players together. Apex games are one of the simplest instances of

majority games in which not all players are symmetric6; they are also empirically common7. We explore

the consequences of varying the probabilities governing the selection of proposers and formateurs8. It

turns out that there is a large parameter region with the property that the equilibrium is competitive in the

sense that all players are indifferent between proposing any of the minimal winning coalitions to which

they belong. Namely, conditional on the minor player protocoalition forming, each minor player expects
1

n−1
; conditional on the protocoalition of one minor player and the apex player forming, the apex player

expects n−2
n−1

and the minor player expects 1
n−1

. These are conditional expected pay-offs; if moreover,

we take the limit as the breakdown probability goes to zero, ex post pay-off division also converges to

these values.

Even though expected pay-offs conditional on a particular protocoalition forming are quite robust to

changes in the formateur and proposer probabilities, ex ante expected pay-offs are affected both directly

and indirectly (i.e., through changes in equilibrium strategies) by these probabilities. It turns out that

this effect does not always go in the intuitive direction. If we increase the bargaining power of a player

within a protocoalition, equilibrium strategies may adjust in such a way that this player is less likely to

be included in the protocoalition that forms and may actually be worse-off as a result.

2. The Model

Let N = {1, 2, ..., n} be the set of players (parties). There is a budget of size one to be divided and

X = {x|xi ≥ 0 for all i, and
∑

i∈N xi ≤ 1} is the set of all possible allocations. Player i’s preferences

are described by the utility function ui(x) = xi. The voting rule is described by the set W of winning

coalitions, where a winning coalition is a coalition that can enforce any alternative in X . We assume

that W is such that, if S is winning, N\S is not winning. Furthermore, if S ∈ W , then T ∈ W for all

6 A recent paper by Karos [12] analyses coalition formation in apex games using core stability under a fixed pay-off division

rule as a solution concept.
7 The seat distribution in the German Bundestag often corresponds to an apex game. For example, after the 2013 federal

election, the seat distribution was CDU/CSU311, SPD193, Bündnis 90/Die Grünen 64 and Die Linke 63. Assuming a

majority of 316, a minimal winning coalition can be formed by CDU/CSU with either of the three other parties or by the

other three parties together.
8 The central role of proposal rights in determining expected equilibrium pay-offs in the original Baron-Ferejohn model has

been established by Kalandrakis [13].
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S ⊂ T . We also assume that there are no veto players, that is no player belongs to all winning coalitions.

A coalition S is called minimal winning if S is winning and no T  S is winning.

Bargaining proceeds as follows: Nature selects a formateur according to a probability distribution9

θ = (θi)i∈N (θi ≥ 0 for all i and
∑

i∈N θi = 1). The selected formateur i proposes a protocoalition

S ∈ W with S ∋ i. Players in S accept or reject the proposal sequentially10. If all players in S accept,

protocoalition S is formed. If one of them rejects, Nature selects a new formateur according to the

probability distribution θ.

Once protocoalition S is formed, players in S bargain over the division of the budget. The “internal”

game, played only by players in S, proceeds as follows. A player in S is selected to be the proposer

according to a probability distribution θS with θSi ≥ 0 for all i ∈ S and
∑

i∈S θ
S
i = 1.11 A proposal xS

is a division of the budget between the players in S (xi ≥ 0 for all i ∈ S and
∑

i∈S x
S
i = 1). As in other

papers on protocoalition bargaining, agreement within S on pay-off division needs to be unanimous. If

all responders in S (moving sequentially) accept the proposal, the game ends with pay-off vector xS for

players in S (players in N\S get zero). If one of the responders rejects the proposal, two things may

happen. With probability p (0 < p < 1), bargaining within S continues and a new proposer is selected

according to θS; with probability 1 − p, coalition S is dissolved. If coalition S is dissolved, Nature

selects a formateur again according to the probability distribution θ.

We denote the non-cooperative bargaining game described above as G(W, θ,
(

θS
)

S∈W
, p), or simply

G. We will be interested in stationary subgame perfect equilibria (SSPE).

We will refer to the probability distribution θ as the protocol and to θS as the internal protocol. Given

an SSPE σ∗, we will denote by y the expected equilibrium pay-off vector computed before Nature starts

the game and by yS the expected equilibrium pay-off vector computed after S has formed and before

Nature selects a proposer. Let zS be the vector of continuation values (i.e., expected pay-offs after a

proposal has been rejected) in the internal game. Notice that because of stationarity, y, yS and zS depend

on σ∗, but not on history. We start by computing the equilibrium of the internal game.

2.1. The Equilibrium of the Internal Game

Suppose we have an SSPE of the game G(W, θ,
(

θS
)

S∈W
, p) with associated expected equilibrium

pay-off vector y. We now show that, for any S ∈ W , the internal game has a unique stationary subgame

perfect equilibrium pay-off vector yS , and this pay-off vector is related to y by a simple formula.

9 Diermeier and Merlo [14] find empirical support for the random selection of formateurs in several European countries.
10 The assumption of sequential moves may be replaced by simultaneous moves with the additional assumption that players

behave as if they are pivotal (see Baron and Kalai [15]). The role of this assumption is to rule out equilibria in which

several players reject a profitable proposal just because they are not pivotal.
11 Note that proposer selection is independent of which player was the formateur. Seidmann et al. [16] also separate the

roles of the formateur and the proposer.
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Lemma 1. Let σ∗ be an SSPE of the game G with associated expected pay-off vector y. For any S ∈ W ,

expected equilibrium pay-offs in the subgame starting right after players agree to form S are given by:

ySi = yi + θSi (1−
∑

j∈S

yj).

Agreement is immediate if
∑

i∈S yi < 1.

Proof. By stationarity, continuation values after S has formed and a proposal xS has been rejected do

not depend on history and can be found in the following way. With probability p, bargaining continues

within S (so that player i expects to get ySi ); and with probability 1− p, coalition S breaks apart, and the

process continues from scratch (so that player i expects to get yi). We have the following equation for

the continuation value of player i:

zSi = pySi + (1− p)yi. (1)

Note that, if we add up the above equation over i ∈ S, we obtain
∑

i∈S z
S
i = p

∑

i∈S y
S
i +

(1 − p)
∑

i∈S yi. If
∑

i∈S yi < 1, it follows that
∑

i∈S z
S
i < 1, and the arguments in Okada [17] can

be adapted to show that the equilibrium must exhibit immediate agreement.

As a responder, player i must accept any offer strictly above zSi . As a proposer, if player i offers

each j ∈ N\{i} xS
j = zSj + ǫ for a sufficiently small ǫ, this would be more than zSi , so player i strictly

prefers to make a proposal that will be immediately accepted rather than one that would be rejected, and

agreement occurs in the first round. Each responder must be offered exactly zSj in equilibrium (otherwise,

the proposer could cut the responder’s pay-off).

Taking this into account, if
∑

i∈S yi < 1, ySi is given by the probability that i is selected to be a

proposer in the internal game times his expected pay-off as a proposer plus the probability that he is

selected to be the responder (which is 1 − θSi because agreement must be unanimous in the internal

game) times his continuation value.

ySi = θSi [1−
∑

j∈S\{i}

zSj ] + (1− θSi )z
S
i . (2)

If agreement does not occur immediately, the equations above are still valid. Because
∑

i∈S z
S
i can be

at most one, we have 1−
∑

j∈S\{i} z
S
j ≥ zSi , that is player i may strictly prefer to make a proposal that will

be accepted or may be indifferent, but never strictly prefers to create delay by making an unacceptable

proposal. The equality 1 −
∑

j∈S\{i} z
S
j = zSi occurs when

∑

j∈S z
S
j = 1, which, in turn, requires

∑

i∈S y
S
i = 1 and

∑

i∈S yi = 1. In this case, we can write the proposer pay-off as 1 −
∑

j∈S\{i} z
S
j

irrespective of whether the proposal is accepted or not; likewise, the equilibrium pay-off as a responder

is zSi irrespective of whether the proposal is accepted or rejected. All players in S would be indifferent

between agreeing and not agreeing.

From this system of equations (and taking into account that
∑

j∈S y
S
j = 1), we see that:

ySi = θSi (1−
∑

j∈S

yj) + yi. (3)
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This is a well-known result in bargaining games with breakdown probability: player i’s expected

pay-off equals the breakdown pay-off (in this case, yi) plus a share of the surplus proportional to the

probability of being the proposer (cf. Binmore [18] and Binmore et al. [19]). Note that in this case, the

breakdown outcome is endogenous, as in Rubinstein and Wolinsky [20].

Lemma 1 applies to any protocoalition S, including those that are never formed on the

equilibrium path.

Except for some degenerate cases (such as S = N , in which players would be indifferent between

agreeing and disagreeing), agreement within the protocoalition occurs immediately.

The proposer’s advantage is the difference between the pay-off a player would get as a proposer and

the pay-off the same player would get as a responder. The proposer’s advantage is a decreasing function

of p. As p → 1, the proposer advantage vanishes. As in [19], the possibility of breakdown provides

an incentive for the players to reach an agreement. It reduces a player’s continuation value, since, if a

proposal is rejected and breakdown occurs, the player will have to start over the bargaining process with

the set of players N rather than continue with the smaller set S. The proposer can then offer a lower

pay-off to the responders and benefits as a result. As the breakdown probability goes to zero, responders

have less to lose by rejecting a proposal, and the proposer advantage vanishes.

Lemma 2. The proposer’s advantage is decreasing in the continuation probability p and vanishes

as p → 1.

Proof. Player i gets 1 −
∑

j∈S\{i} z
S
j as a proposer and zSi as a responder. Using (1), we have

1−
∑

j∈S\{i} z
S
j −zSi = 1−

∑

j∈S zj = 1−p
∑

j∈S y
S
i − (1−p)

∑

j∈S yj . Since
∑

j∈S y
S
i = 1 regardless

of whether agreement occurs immediately, the proposer advantage equals (1− p)(1−
∑

j∈S yj).

Note that p only affects the results through the proposer advantage. The average pay-offs conditional

on S forming, yS , are unaffected by p.

2.2. The Equilibrium of the Game

Under relatively weak conditions, agreement is reached immediately (cf. [17]).

Proposition 3. If θi < 1 for all i, θSi > 0 for all winning coalitions S ∋ i and there are no veto players,

then in any SSPE of G, all proposals are accepted, and a protocoalition forms immediately.

Proof. The rules of the game ensure that yi ≥ 0. A proposal to form a protocoalition S with
∑

k∈S yk < 1 is

always accepted, because the expected pay-off from accepting the proposal, yj + θSj (1 −
∑

k∈S yk), is

strictly greater than the expected pay-off from rejecting it, yj , for all j ∈ N .12 Consider the situation of

i as the formateur. There is always a coalition that i can propose with 1 >
∑

k∈S yk. This is because

N\{j} is winning for all j; thus, player i can propose any N\{j} where j is such that yj > 0. The

only case in which this would not be possible is if yi = 1, but clearly, this cannot happen in equilibrium,

12 Notice that equilibria in which several responders reject just because S is going to be rejected anyhow are ruled out by

the fact that the players in S respond sequentially.



Games 2015, 6 45

because all other players would propose coalitions without i (and such coalitions would be accepted),

resulting in i getting zero with a positive probability, contradicting yi = 1.

On the equilibrium path, i proposes a winning coalition S with
∑

k∈S yk < 1, and bargaining between

players in S results in immediate agreement.

Corollary 4. If in addition θi > 0 for all i, then in any SSPE of G, we have yi > 0 for all i.

Proof. This is because there is a coalition S ∋ i with 1 >
∑

k∈S yk, and a proposal by i to form S would

be accepted. Since θSi > 0, player i expects a positive pay-off when S is formed.

Two conditions must be satisfied in a no-delay equilibrium: first, the proposer must behave optimally

in the sense of only proposing the most profitable coalitions given the vector of expected equilibrium

pay-offs y; second, expected equilibrium pay-offs must be consistent with the strategies played. We

state these two conditions as Corollaries 5 and 6. These corollaries will be useful in the construction of

the equilibria in Section 4.

Corollary 5. The formateur will propose a protocoalition S that solves the following problem:

max
W∋S∋i

θSi (1−
∑

k∈S

yk).

Because the solution of this problem is sure to have
∑

k∈S yk < 1, the formateur does not need to

worry about acceptance.

Corollary 6. Let λS
i be the probability that player i proposes coalition S. Under the conditions of

Proposition 3, the following must hold in any SSPE of G:

yi = θi
∑

S∋i

λS
i

[

yi + θSi (1−
∑

k∈S

yk)

]

+
∑

j∈N\{i}

θj
∑

S⊃{i,j}

λS
j

[

yi + θSi (1−
∑

k∈S

yk)

]

∑

S∋i

λS
i = 1

λS
i > 0 implies S ∈ arg max

T :T∈W,T∋i
θTi (1−

∑

k∈T

yk)

The expected equilibrium pay-off yi has two parts. With probability θi, player i is chosen to be

the formateur. As formateur, player i proposes protocoalition S with probability λS
i ; this proposal is

accepted, since we are in a no-delay equilibrium by Proposition 3, and player i expects yi + θSi (1 −
∑

k∈S yk). The second part of the pay-off refers to the case in which a player other than player i is chosen

as the formateur; player j is selected with probability θj and will propose each coalition S ⊃ {i, j} with

probability λS
j . Since all proposals are accepted, when a protocoalition S ∋ i is proposed, player i

expects a pay-off equal to yi + θSi (1−
∑

k∈S yk).
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3. Symmetric Games

Consider the case where N consists of n symmetric players and n
2
< q < n is the number of votes

needed for a coalition to be winning. If we further impose symmetry of the protocol (i.e., θi =
1
n

and

θSi = 1
|S|

for all i and S) and of the equilibrium strategies, we have yi =
1
n

and ySi = 1
|S|

for all S ∈ W .

Clearly, only protocoalitions of size q will form. The pay-off ySi = 1
|S|

is just an average conditional on

protocoalition S forming; realized pay-off division depends on the breakdown probability p.

Suppose a protocoalition S of size q has been formed and a proposal to divide the pay-off has been

rejected. The continuation value zSi for any of the members of S is calculated as follows: with probability

p, bargaining continues and player i expects 1
q
; with probability 1 − p, breakdown occurs and Nature

restarts the game from the beginning, in which case i expects 1
n

. Thus:

zSi = p
1

q
+ (1− p)

1

n
.

For p = 0, the continuation value is zSi = 1
n

, and we are effectively back in the original

Baron-Ferejohn model with a substantial proposer advantage. For p → 1, the proposer advantage

vanishes and zSi approaches 1
q
.

For example, if n = 3 and q = 2, p = 0 yields the original model in which the coalition partner

receives 1
3

and the proposer receives 1− 1
3
= 2

3
. If p = 0.5, we have zSi = 5

12
, and the proposer receives

7
12

. In the limit when p → 1, each of the two members of the coalition receives 1
2
.

4. Apex Games

Let N = {1, ..., n}. Let Player 1 be the apex player. In an apex game, the set Wm of minimal winning

coalitions contains only two types of coalitions: all coalitions of the form {1, i}, where i ∈ N\{1},

and coalition N\{1} (the minor player coalition). We will consider only protocols that treat all minor

players equally, that is θi = θj for any i, j ∈ N\{1}, θSi = θSj for any two minor players i and j

such that {i, j} ⊂ S, and θSi = θTj for any i, j ∈ N\{1} with i ∈ S, j /∈ S and T = S\{i} ∪ {j}.

For simplicity, we focus on equilibrium strategies with the property that all minor players follow the

same strategy and are treated symmetrically by the apex player strategy. We refer to such strategies as

symmetric strategies.13

Since all minor players are treated symmetrically, we will use the index m to denote an arbitrary

minor player and {1,m} to denote the coalition of the apex player and a minor player.

If we make no further assumptions on θ and (θS)S∈W , proposed coalitions are not necessarily

minimal winning.

Suppose θTi > θSi for some T ⊃ S. Then, player i is facing a trade-off: i receives a higher share of

the surplus in T , but the surplus of T is smaller. Example 7 shows that the first effect may predominate.

This is not completely obvious, because (yj)j∈N is endogenous.

13 If we relax this assumption, there may be equilibria where strategies are not symmetric (for example, the apex player may

be more likely to propose a protocoalition with specific minor players), but it is still the case that all minor players have

the same expected equilibrium pay-offs.
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Example 7. Consider the apex game with seven players [6; 5, 1, 1, 1, 1, 1, 1]. Suppose θ1 =
7
8
, θm = 1

48
,

θN\{1}
m = 1

6
and θS1 = s−1

s
, where s is the number of players in S.14 There is an equilibrium in which the

apex player forms a coalition with two minor players.

Let the apex player propose to two minor players at random; thus, each minor player has a probability
2
6

of receiving a proposal if the apex player is selected to be the formateur. Let the minor players

propose coalition N\{1}. Given these strategies, the equilibrium pay-offs can be found from the

following equations:

y1 =
7

8

[

y1 +
2

3
(1− y1 − 2ym)

]

ym =
7

8

2

6

[

ym +
1

6
(1− y1 − 2ym)

]

+
1

8

1

6

The solution is y1 = 28
37

, ym = 3
74

. Player 1 is behaving optimally, because s−1
s

[1− y1 − (s− 1)ym]

is maximized for s = 3. The minor players are also behaving optimally by proposing coalition N\{1}.

In N\{1}, they expect a pay-off of 1
6
. If instead, they proposed {1, i}, they would get a pay-off of

3
74

+ 1
2

(

1− 28
37

− 3
74

)

= 21
148

< 1
6
.

If we make the additional assumption that 0 < θ1 < 1, θSi > 0 for all i ∈ S ∈ W and θSi ≥ θTi
for all S ⊂ T , adding extra players to the protocoalition can only reduce the available surplus (indeed,

since yi > 0 for all i by Corollary 4, it strictly reduces it). Hence, only protocoalitions in which all

responders are pivotal will be proposed in equilibrium. For apex games, this is equivalent to saying that

only minimal winning coalitions will be proposed.

Recall that we consider only protocols that treat minor players symmetrically, that is θi =
1−θ1
n−1

for all

i 6= 1, θ
{1,i}
1 = α for all i 6= 1 and θ

N\{1}
i = 1

n−1
for all i 6= 1, with α and θ1 ∈ (0, 1). As for coalitions

larger than minimal winning, it is enough to assume θSi ≥ θTi for all S ⊂ T , so that they will not

be optimal.

Proposition 8. Consider the game G(W, θ,
(

θS
)

S∈W
, p), where W is an apex game and θ and

(

θS
)

S∈W

satisfy the assumptions above. Then:

(1) If θ1 > (n−1)(1−α)
n−1−(n−2)α

, minor players propose coalition N\{1} in the unique symmetric SSPE.

Expected equilibrium pay-offs for the apex player, y1, are increasing in θ1 and α within this region.

(2) If θ1 <
(n−1)(1−α)
n−1−(n−2)α

, minor players randomize between proposing coalition N\{1} and proposing

coalition {1,m}. Expected pay-offs conditional on a protocoalition being formed equal y
{1,m}
1 = n−2

n−1

and y
{1,m}
m = y

N\{1}
m = 1

n−1
, irrespective of θ1 and α. Expected equilibrium pay-offs for the apex player

are invariant to θ1 and decreasing in α within this region.

Proof. See the Appendix.

14 The value s−1

s
is also the coalition structure Shapley value (Aumann and Drèze [21]) of Player 1 for any S with

{1}  S 6= N . See also Laruelle and Valenciano [22] for a model in which proposer probabilities are related to the

Shapley value.
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Our assumptions on θ and
(

θS
)

S∈W
reduce the relevant probability parameters to θ1 and α. For most

values of those parameters, the equilibrium is in mixed strategies. In the mixed strategy equilibrium

region, the probability of being selected as a formateur is not relevant, either to ex post pay-off division

or to equilibrium expected pay-offs. This has to be the case, since the indifference condition of the

minor player determines that a minor player must get 1
n−1

on average in a coalition with the apex player

irrespective of θ1, and y1 and ym can be directly found from a system of two equations, the first equation

being the indifference condition for a minor player (ym + (1− α)(1− y1 − ym) =
1

n−1
) and the second

equation being the condition that expected pay-offs add up to one (y1 + (n − 1)ym = 1); none of those

two equations features θ1. What is perhaps surprising is that the parameter region where this type of

equilibrium occurs is so large.15

The value of α affects the results in an unexpected way. A higher value of α represents a greater

bargaining power for the apex player, and we might expect the apex player to benefit. Once the

protocoalition has been formed, being selected as a proposer is good news, since the proposer still has

a proposer advantage given that p < 1. However, having a high probability of being the proposer is

harmful ex ante: given that ym+(1−α)(1−y1−ym) =
1

n−1
has to hold in a mixed strategy equilibrium,

an increase in α has to be compensated by an increase in ym and a reduction in y1. This is achieved by

a shift in the equilibrium strategies in such a way that the minor players are now more likely to propose

the minor player coalition, and this effect more than compensates for the increase in α.16,17

Two distinguished cases for α are α = n−2
n−1

and α = 1
2
. If α = n−2

n−1
, the apex player has a

proposer probability that is proportional to its importance relative to the minor player (the apex player

can replace n − 2 minor players in a minimal winning coalition). If α = 1
2
, the apex player and the

minor player are treated symmetrically if they form a protocoalition. Under the first assumption, we

find y =
(

n−2
2n−3

, 1
2n−3

, ..., 1
2n−3

)

, the nucleolus (Schmeidler [27]) of the apex game. Under the second

assumption, we find y = (n−2
n
, 2
n(n−1)

, ..., 2
n(n−1)

), the per capita nucleolus (Grotte [28]).

Remark 9. Recall that ySi is an expected pay-off conditional on S being formed. The breakdown

probability p does not affect this average, but it affects the observed pay-off division. In all cases,

the share of the apex player in coalition {1,m} is 1 − py
{1,m}
m − (1 − p)ym as a proposer and

py
{1,m}
1 + (1 − p)y1 as a responder. Likewise, the share of a minor player in the minor player coalition

is 1− (n− 2)[py
N\{1}
m + (1− p)ym] as a proposer and py

N\{1}
m + (1− p)ym as a responder.

The following example illustrates the results for apex games.

15 Montero [23] shows that the mixed-strategy equilibrium region is also quite large in the original Baron-Ferejohn model

for apex games.
16 A similar effect occurs in the original Baron-Ferejohn model with different discount factors. Having a high discount

factor appears to make a player stronger; however, even though continuation values are monotonic in discount factors

(Eraslan [24]), expected pay-offs are not (Kawamori [25]).
17 This comparative statics result is qualitatively similar to the donation paradox in power indices (see Felsenthal and

Machover [26], Definition 7.8.3). According to Felsenthal and Machover, a donation paradox occurs when a player

loses power as a result of a transfer of voting weight from another player. In the present paper, the minor players may be

worse-off as a result of a transfer of proposing probability from the apex player.
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Example 10. Consider an apex game with five players. If α = 0.5 (i.e., both partners in the

protocoalition have the same bargaining power), expected equilibrium pay-offs equal (3
5
, 1
10
, 1
10
, 1
10
, 1
10
)

for any 0 < θ1 ≤ 0.8. If instead α = 2
3
, expected equilibrium pay-offs equal

(

1
2
, 1
8
, 1
8
, 1
8
, 1
8

)

for any

0 < θ1 ≤
2
3
.

In both parameter regions mentioned above, expected pay-offs conditional on a protocoalition being

formed are 1
4

for each player if N\{1} forms and 3
4

for the apex player and 1
4

for the minor player

if {1,m} forms. Note that in both cases, expected pay-offs conditional on {1,m} being formed are

consistent with the formula in Lemma 1. For α = 0.5 and y1 =
3
5
, we have y

{1,m}
1 = 3

5
+0.5(1− 3

5
− 1

10
) =

3
4
; for α = 2

3
and y1 =

1
2
, we have y

{1,m}
1 = 1

2
+ 2

3
(1− 1

2
− 1

8
) = 3

4
.

The change in α from 0.5 to 2
3

leads to a reduction in the probability λ that a minor player proposes a

protocoalition involving the apex player, and this reduction more than compensates for the change in α.

When θ1 = 1
5

and α = 0.5, each minor player proposes to the apex player with probability λ = 3
4
, and

the apex player gets an expected pay-off of (θ1 + (1− θ1)λ) y
{1,m}
1 =

(

1
5
+ 4

5
3
4

)

3
4
= 3

5
. When θ1 = 1

5

and α = 2
3
, the minor players are less likely to propose to the apex player, and λ = 7

12
. Expected

equilibrium pay-offs for the apex player go down to
(

1
5
+ 4

5
7
12

)

3
4
= 1

2
.

Expected equilibrium pay-offs are invariant to changes in θ1 in these regions, because an increase in

the likelihood that Player 1 is selected as formateur is exactly compensated by a reduction in λ. After

a change in θ1, the indifference condition for the minor player (ym + (1 − α)(1 − y1 − ym) = 1
n−1

)

requires y1 and ym to be kept constant rather than to be adjusted, as was the case after a change in α.

If α = 0.5 and θ1 = 1
5
, the equilibrium value for λ is 3

4
; if θ1 = 2

3
, λ = 2

5
. In both cases, we obtain

y1 = (θ1 + (1− θ1)λ) y
{1,m}
1 =

(

1
5
+ 4

5
3
4

)

3
4
=

(

2
3
+ 1

3
2
5

)

3
4
= 3

5
.

The pay-off divisions (3
4
, 1
4
) for {1,m} and

(

1
4
, 1
4
, 1
4
, 1
4

)

for N\{1} are average values conditional

on the protocoalition formed; observed values depend on the breakdown probability p. For α = 0.5,

p = 0.5 and 0 < θ1 ≤ 0.8, the observed pay-off divisions if coalition {1,m} forms would be
(

33
40
, 7
40

)

if

the apex player is selected to be proposer and
(

27
40
, 13
40

)

if the minor player is selected to be proposer.

5. On the Egalitarian Protocol and the Per Capita Nucleolus

As we have seen in the previous section, the internal protocol (summarized by α) is more important

than the external protocol (summarized by θ1) in determining expected equilibrium pay-offs. Under

an egalitarian internal protocol, all protocoalition members are treated equally. Recall that expected

equilibrium pay-offs for a player conditional on S being formed are given as yi + θSi (1 −
∑

k∈S yk).

Under the egalitarian protocol, θSi = 1
s

for all S. Since yi is common to all coalitions, player i wants to

form a coalition that maximizes 1
|S|
(1 −

∑

k∈S yk). If we think of a characteristic function game where

v(S) = 1 ⇐⇒ S ∈ W , the expression 1
|S|
(1 −

∑

k∈S yk) is coalition S’s per capita excess at y. Each

proposer will then propose a winning coalition of maximum per capita excess to which it belongs.
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The per capita nucleolus is a solution concept from cooperative game theory that minimizes the

maximum per capita excess18. Formally, the per capita nucleolus solves the following problem:

minx e

s.t.
1−

∑
i∈S

xi

|S|
≤ e for all S ∈ W

xi ≥ 0 for all i ∈ N
∑

i∈N xi = 1

For the case of apex games, the minimization problem has a unique solution, namely x1 = n−2
n

and x2 = ... = xn = 2
n(n−1)

. These are also the values of the expected equilibrium pay-offs in the

non-cooperative game with θSi = 1
|S|

and θ1 ≤
n−1
n

.

This result is not coincidental. The equilibrium in the non-cooperative game is often in mixed

strategies. If players are indifferent between several coalitions, this means that there are several coalitions

that have the same maximum per capita excess. This does not automatically mean that the maximum per

capita excess is minimized, but allocations that solve the minimization problem do have the property that

several per capita excesses are equalized. For example, if there was only one coalition with maximum

per capita excess, we would be able to reduce this maximum by taking some pay-off from players outside

the coalition and giving it to players inside the coalition.

One may ask whether the protocoalition bargaining model may be used to provide non-cooperative

foundations for the per capita nucleolus, just as the original Baron–Ferejohn model can be used to

provide non-cooperative foundations for the nucleolus19. This does not seem to be possible in general.

It seems clear that the most favourable assumption for the internal protocol is θSi = 1
s

for all S; with

this internal protocol, players form coalitions of maximum per capita excess, and in a mixed strategy

equilibrium, several excesses will be equal. However, there cannot be a general result for this protocol,

as the following example illustrates.

Example 11. Consider the game with N = {1, 2, 3, 4} and minimal winning coalitions Wm =

{{1, 2}, {1, 3}, {2, 3, 4}}. Suppose θSi = 1
|S|

for all S. The per capita nucleolus cannot be achieved

for any θ.

Because Player 4 is only in one minimal winning coalition, it receives zero according to the per capita

nucleolus. Intuitively, if Player 4 was getting a positive pay-off in an allocation, that pay-off could be

transferred to Players 2 and 3 without altering the per capita excess of coalition {2, 3, 4}, but lowering

the per capita excess of coalitions {1, 2} and {1, 3}. The per capita nucleolus is
(

3
7
, 2
7
, 2
7
, 0
)

, and the

maximum per capita excess is 1
7
.

Suppose by contradiction that there is a value of θ for which equilibrium pay-offs are y =
(

3
7
, 2
7
, 2
7
, 0
)

.

Expected pay-off for Player 4 given that protocoalition {2, 3, 4} forms would be y
{2,3,4}
4 = 0+ 1

3
(1− 2

7
−

2
7
) = 1

7
. This would be the optimal coalition for Player 4 as a formateur. Hence, the only way in which

y4 can be zero is if θ4 = 0 and Players 2 and 3 never propose coalition {2, 3, 4}. However, if Players 2

18 If several allocations minimize the maximum per capita excess, the set is refined until one allocation is identified.
19 In the original Baron-Ferejohn model with general voting rules, Montero [29] shows that if the recognition probabilities

coincide with the nucleolus, expected equilibrium pay-offs coincide with the nucleolus, as well.
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and 3 never propose {2, 3, 4}, they must be proposing a coalition with Player 1 for sure. This, in turn,

implies that Player 1 is in the final coalition for sure. Player 1 would then be getting 3
7
+ 1

2
(1 − 3

7
− 2

7
)

with certainty, but then, y1 =
3
7
+ 1

2
(1− 3

7
− 2

7
) > 3

7
, a contradiction.

6. Conclusions

The Baron-Ferejohn model is the central model of legislative bargaining. One of its key predictions

is a very substantial proposer advantage. In contrast, the empirical literature finds a smaller proposer

advantage or no proposer advantage at all [30–33]. A feature of the protocoalition bargaining model

with breakdown probability is that the proposer advantage is captured by the parameter p and vanishes

in the limit when p → 1.20

In the limit when p → 1, ex post pay-off division in apex games is very robust to changes in the

probabilities, both for formateur selection and for proposer selection within a protocoalition. Except

for extreme values of those probabilities, ex post pay-off division is competitive in the sense that

minor players would be indifferent between the two types of protocoalitions that they can enter. This

prediction is consistent with cooperative solution concepts, such as the von Neumann-Morgenstern [34]

main simple solution and McKelvey et al.’s [35] competitive solution, though famously not with the

kernel (Davis and Maschler [36]); it is also consistent with the demand bargaining model of

Fréchette et al. [37].

The protocoalition bargaining model of [9] gives all of the bargaining power to the formateur. In

this alternative model, the bargaining power within the protocoalition can be distributed in any way

depending on the internal protocol. It seems natural to expect that giving the same bargaining power

to all protocoalition members would help the weaker players compared to giving a greater bargaining

power to the strong player. However, it may be the case that having a greater bargaining power within

a protocoalition hurts a player ex ante. Even though actually being chosen as a proposer within a

protocoalition is always “good news” for a player, having a high probability of being chosen is not

necessarily desirable.
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Appendix: Proof of Proposition 8

The first thing to note is that the apex player’s optimal strategy is to propose a coalition with one

minor player. This is because the apex player only belongs to one type of minimal winning coalition,

and only minimal winning coalitions can be optimal given our assumptions about the internal protocol.

Given this, there cannot be an SSPE in which minor players propose protocoalition {1, i} with

certainty. Expected pay-offs for the apex player conditional on a protocoalition of type {1,m} being

formed are y1 + α(1 − y1 − ym). If minor players propose a protocoalition with the apex player, we

would have y1 = y1 + α(1− y1 − ym), which would only be possible if α = 0 or 1− y1 − ym = 0. By

assumption α > 0 and since the two-player coalition excludes other minor players who have a positive

expected pay-off, 1− y1 − ym > 0, a contradiction.

Hence there are only two possibilities left for the minor players: proposing the minor player coalition

for sure or randomizing between the minor player coalition and a coalition with the apex player.

Because the internal protocol treats all minor players symmetrically, y
N\{1}
i = 1

n−1
(recall that

the value of p affects the proposer advantage, but not the expected pay-off conditional on a coalition

forming). In an SSPE where all minor players propose the minor player coalition, the following

conditions must hold:

y1 = θ1 [y1 + α (1− y1 − ym)]

ym =
θ1

n− 1
(ym + (1− α)(1− y1 − ym)) + (1− θ1)

1

n− 1
1

n− 1
≥ ym + (1− α)(1− y1 − ym)

The first two equations calculate expected equilibrium pay-offs for each type of player, given that

the apex player is equally likely to propose to each of the n − 1 minor players and the minor players

always propose the minor player coalition (see Corollary 6). The last inequality ensures that it is optimal

for the minor players to propose the minor player coalition, since, if y1 is sufficiently small or 1 − α is

sufficiently large, it would not be optimal for them to do so (see Corollary 5). This type of equilibrium

exists if θ1 and α are sufficiently large.

The solution to the system of the first two equations is:

y1 =
αθ1(n− 2)

αθ1(n− 2) + (1− θ1)(n− 1)

ym =
1− θ1

αθ1(n− 2) + (1− θ1)(n− 1)

Clearly, both y1 and ym are between zero and one. It can also be checked that in this region ∂y1
∂θ1

> 0,
∂y1
∂α

> 0 and ∂y1
∂n

> 0 (the opposite is true for ym); hence, comparative statics are as expected.

In order for this strategy combination to be an equilibrium, it must be the case that ym + (1− α)(1−

y1 − ym) ≤
1

n−1
. Given the found values for y1 and ym, this is the case if α ≥ (n−1)(1−θ1)

n−1−(n−2)θ1
:= f(θ1, n),

or equivalently if θ1 ≥
(n−1)(1−α)
n−1−(n−2)α

:= f(α, n). Note that f(.) is always between zero and one, given that

0 < θ1 < 1. Figure 1 shows the parameter region where this equilibrium exists for n = 5; it consists of

all of the combinations (α, θ1) above the curve.
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Figure 1. Parameter regions (mixed-strategy equilibrium below curve).

Note that ∂f

∂n
> 0; hence, if we fix one of the parameters α or θ1, the condition on the other parameter

becomes more demanding as n increases.

The second type of equilibrium occurs when the minor players play a mixed strategy. In order for

this to happen, ySi for a minor player i must be the same for S = N\{1} and for S = {1, i}

(Corollary 5); hence:

ym + (1− α)(1− y1 − ym) =
1

n− 1
Expected pay-offs computed at the beginning of the game depend on the mixed strategy of the

minor players. Let λ be the probability that a minor player m proposes protocoalition {1,m} (our

symmetry assumption implies that all minor players must use the same λ). The expression for y1 is quite

simple, since the expected pay-off for Player 1 conditional on being in a protocoalition of type {1,m} is

y1 + α(1− y1 − ym) irrespective of who proposed it.

y1 = (θ1 + (1− θ1)λ) (y1 + α(1− y1 − ym))

ym =
1− θ1
n− 1

[

λ (ym + (1− α)(1− y1 − ym)) + (1− λ)
1

n− 1

]

+

+
θ1

n− 1
[ym + (1− α)(1− y1 − ym)] +

1− θ1
n− 1

(n− 2)(1− λ)
1

n− 1

The equation for ym is in principle more lengthy, but can easily be simplified. Each minor player is

selected with probability 1−θ1
n−1

to be formateur, and then proposes coalition {1,m} with probability λ (in

which case, its pay-off is ym+(1−α)(1−y1−ym)) and coalition N\{1} with probability 1−λ (in which

case, its pay-off is 1
n−1

). The minor player also receives proposals from the apex player with probability
θ1
n−1

(given that the apex player is selected to be formateur with probability θ1 and proposes to each of the

n− 1 available minor players with the same probability) and from other minor players with probability
1−θ1
n−1

(n−2)(1−λ) (given that each minor player is selected as formateur with probability 1−θ1
n−1

, there are

n− 2 other minor players, and each of them proposes the minor player coalition with probability 1−λ).

If we note that expected pay-offs given that a protocoalition is formed do not depend on which member

of the coalition was the formateur, and that, by assumption, in this type of equilibrium, minor players are

indifferent between the two types of minimal winning coalitions available, collecting terms and using

the indifference condition ym + (1 − α)(1 − y1 − ym) = 1
n−1

, a minor player’s expected pay-off is
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reduced to its probability of being in the coalition times its expected pay-off conditional on being in the

coalition, 1
n−1

.

ym =

(

1− θ1
n− 1

+
θ1

n− 1
+

1− θ1
n− 1

(n− 2)(1− λ)

)

1

n− 1
.

Solving the system of three equations, we find:

y1 =
(n− 2)(1− α)

n− 1− α(n− 2)

ym =
1

(n− 1)(n− 1− α(n− 2))

λ = 1−
α

(1− θ1)(n− 1− α(n− 2))
.

Since θ1 < 1 and n− 1 > α(n− 2), the expression for λ is always less than one. In order for λ ≥ 0,

we need α ≤ (n−1)(1−θ1)
n−1−(n−2)θ1

= f(θ1, n) (when α = (n−1)(1−θ1)
n−1−(n−2)θ1

, we have λ = 0, and the minor players

never propose to the apex player, even though a protocoalition with the apex player is just as desirable

as a protocoalition with the other minor players).

One thing to note is that y1 and ym do not depend on θ1. As for α, ∂y1
∂α

= 2−n
(n−1−α(n−2))2

< 0 (the

opposite is true for ym, since y1 + (n− 1)ym = 1).
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