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Abstract

In this thesis we study the neutron transport (Boltzmann transport equation) which is

used to model the movement of neutrons inside a nuclear reactor. More specifically we

consider the mono-energetic, time independent neutron transport equation.

The neutron transport equation has predominantly been solved numerically by em-

ploying low order discretisation methods, particularly in the case of the angular do-

main. We proceed by surveying the advantages and disadvantages of common numer-

ical methods developed for the numerical solution of the neutron transport equation

before explaining our choice of using a discontinuous Galerkin (DG) discretisation for

both the spatial and angular domain.

The bulk of the thesis describes an arbitrary order in both angle and space solver for

the neutron transport equation. We discuss some implementation issues, including the

use of an ordered solver to facilitate the solution of the linear systems resulting from

the discretisation. The resulting solver is benchmarked using both source and critical

eigenvalue computations. In the pseudo three–dimensional case we employ our solver

for the computation of the critical eigenvalue for three industrial benchmark problems.

We then employ the Dual Weighted Residual (DWR) approach to adaptivity to derive

and implement error indicators for both two–dimensional and pseudo three–dimensional

neutron transport source problems. Finally, we present some preliminary results on the

use of a DWR indicator for the eigenvalue problem.
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CHAPTER 1

Introduction

1.1 Background

As stated in a recent report by Richard Lester and Robert Rosner [103] “Many countries

around the world are taking a fresh look at nuclear power”. This remains true, even af-

ter the incident at the Japanese Fukushima Daiichi plant in March 2011. In addition to

the long established nations with a stake in nuclear power, for example; the UK, France

and the USA where there is a requirement to replace ageing reactors, developing coun-

tries such as China and India are also aiming to add to their generating capacity.

Energy use is growing, and the decisions governments make with regard to the en-

ergy supply are incredibly complex. To understand why there is a renewal of interest

in nuclear power it is useful to consider the main factors; climate change, security of

supply and economics. Currently, climate change is an important factor in government

decisions in addition to ensuring a security of supply in a world that seems increasingly

turbulent. Since the world’s population is increasing and large developing countries

such as China and India are embracing a more energy intensive ‘Western’ lifestyle it is

increasingly difficult to balance these competing factors.

Coal, the traditional fuel used for electricity generation, whilst remaining fairly cheap

is still, in terms of C02 and other waste gases, the dirtiest way to produce power, de-

spite many improvements in generation technology and treatment of the waste gases.

Oil and gas are running out, and also subject to large price spikes due to the the political

instability of many oil and gas producing countries in the Middle East. The develop-

ment of fracking techniques will go some way to reducing the reliance on fossil fuels

from the Middle East by opening up new sources of domestic gas, however, the safety

of this extraction technique remains to be proven. All European governments however,
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CHAPTER 1: INTRODUCTION

have signed up to increase the percentage of renewable energy production when pro-

ducing power to 20% by 2020 (the so called 20:20:20 target) and so there is a further

reason to focus on renewable sources of energy. Renewable technologies such as solar

power, wind turbines and tidal power are all too unpredictable to be used to provide

a reliable base load for the national grid. In contrast to this, nuclear power provides

a reliable and safe source of power that falls in to the renewable category; there have

been very few nuclear accidents since the first commercial nuclear power plant began

operation in the UK in 1956. In addition, the chief raw material for nuclear power

generation, uranium, is now known to be available in large quantities and is mined in

more stable areas of the world [164]. The cost of Uranium also contributes a relatively

small percentage to the total cost of nuclear power generation; this means there is an

inbuilt safeguard against price fluctuations.

All of these factors have led the UK government to investigate new nuclear power

stations as a way to provide low carbon energy, stating in [63] “[the UK Governement]

believes it is in the public interest that new nuclear power stations should have a role

to play in this country’s future energy mix alongside other low carbon sources”.

Despite all the above scientific, economic and environmental considerations in favour

of an increased number of nuclear power generators it is also important to gain public

acceptance of nuclear power. In the UK, even after the Fukushima incident, 42% of the

British public support the building of new nuclear power stations, see Figure 1.1, com-

piled from data collected by IpsosMori on behalf of the Nuclear Industry Association

(NIA). The impact of public opinion can clearly be seen in Germany’s recent commit-

ment to decommission all nuclear power plants, just after a publicised U turn on that

policy.

Modern reactors are incredibly complicated, (see Figure 1.2 for a diagram of a nuclear

reactor core) and to gain public acceptance of nuclear power we need to be able to

prove that they can be operated reliably and safely over a timescale of several decades.

Mathematically we model the processes occurring inside a nuclear reactor’s core by the

Neutron Transport Equation (also referred to as the Boltzmann Transport Equation).

2
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Figure 1.1: IpsosMori survey data.

1.2 The Neutron Transport Equation

When modelling the behaviour of neutrons inside a reactor, we first have to decide on

an appropriate characterisation of the neutron. Since a neutron is an atomic particle,

one option is to consider a quantum mechanical model; we could also consider it as a

relativistic particle since its mass varies over time when its speed approaches that of

light. Fortunately (since if this wasn’t possible we would have to consider a fully rela-

tivistic model) when a neutron is moving and not colliding with anything else it can be

modelled as a ballistic particle; in this case we can couple this ballistic behaviour with

some quantum mechanics to characterise the collisions with other nuclei or neutrons.

The neutron transport equation is an integro–differential equation posed in seven di-

mensions; 3 spatial dimensions x, y, z, 2 angular dimensions ϕ, θ, time t and energy E.

To state the neutron transport equation we first define the neutron density N(x,µ, E, t)

to be the number of neutrons per unit volume at position x ∈ R3 that move at time t

in direction µ ∈ S2 := {µ ∈ R3 : ‖µ‖2 = 1} with energy E. Generally, the physical

quantity that is used in the expression of the neutron transport equation is the angular

flux ψ(x,µ, E, t) which is obtained from the neutron density in the following fashion

ψ(x,µ, E, t) = v(E)N(x,µ, E, t),

where v denotes the speed of the neutron under consideration.

Remark 1. It is convenient to define µ using the spherical polar coordinate system as

µ = (sin θ cos ϕ, sin θ sin ϕ, cos θ)⊤, θ ∈ [0, π], ϕ ∈ [0, 2π),

where θ is the polar angle and ϕ the azimuthal angle. It can be seen that this satisfies the

requirement ‖µ‖2 = 1.

3



CHAPTER 1: INTRODUCTION

Figure 1.2: Pressurised Water Reactor Core

In modelling the transport of neutrons through a material we make the following as-

sumptions.

(a) Neutron as a Point Particle.

Taking the neutron as a point particle means that we consider it as a particle

which can be completely described by its position and velocity; thereby, we ne-
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glect any effects due to polarization. Polarization can occur since each neutron

has a spin and magnetic moment associated with it; this polarization affects the

subsequent scattering of the neutron. Transport theory which takes into account

polarization has in fact been developed, see for example, [35]. In principle there

are cases where the effects on neutron transport could be large (for example, fast

neutrons diffusing in helium), though in most practical situations these effects

are quite minimal.

(b) The Expected Value.

The neutron transport equation expresses the expected value of the neutron den-

sity, but does not take into account fluctuations from the mean. In a nuclear

power reactor, these fluctuations are in general small, in comparison with the

average neutron density. Furthermore, fluctuations have no effect on the average

neutron density and so the transport equation is valid for the average neutron

density no matter how large the fluctuations may be. During the startup phase

of a nuclear reaction, however, these deviations from the expected value are large

and cannot be neglected; in this case alternative models for the neutron density

must be employed. Possible approaches in this situation include stochastic mod-

els that allow for rare events such as large deviations, [34].

(c) Neglect Neutron-Neutron Collisions.

We neglect neutron-neutron collisions as the chance of them occuring is much

smaller than the chance of neutron-nuclei collisions. For example, even in a re-

actor operating at a high neutron flux of 1016 neutrons per cm2 per second, the

neutron density is less than 1011 neutrons per cm3, whereas the density of nuclei

is of the order 1022 nuclei per cm3. Due to this difference in density, neutron-

neutron collisions will occur much less frequently than neutron-nuclei collisions.

Neglecting neutron-neutron collisions ensures that the neutron transport equa-

tion is linear.

(d) Prompt Fission Products.

We assume in this thesis (indeed in much of the literature) that all neutrons pro-

duced by nuclear fission are released immediately. These are known as prompt

neutrons. In practice, some neutrons could be released up to several minutes

after a fission interaction and are known as delayed neutrons. The omission of

delayed neutrons is not significant.

With these assumptions we can derive the Neutron Transport equation shown below.

A full derivation is given in Appendix A; briefly we consider a neutron balance for a

5
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region in the full 7 dimensional space, leading to the essential form of the equation.

Change in the number of neutrons w.r.t. time = +gain from scatters in

+ gain from fissions in

+ gain from any external source

− losses from streaming

− losses from interactions

Mathematically the full time–dependent form of the neutron transport equation is ex-

pressed as:

1
v

∂

∂t
ψ(x,µ, E, t) =

∫ ∞

0

∫ 4π

0
Σs(x,µ′, E′,µ, E, t)ψ(x,µ′, E′, t) dµ′ dE′

+
χ(E)

4π

∫ ∞

0

∫ 4π

0
ν(E′)Σ f (x, E′, t)ψ(x,µ′, E′, t) dµ′ dE′

+ Q(x,µ, E, t)

− µ · ∇xψ(x,µ, E, t)

− Σt(x,µ, E, t)ψ(x,µ, E, t),

(1.1)

6
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where

x = (x, y, z)⊤ ∈ Ω ⊂ R
3 Position in 3 dimensional space.

µ ∈ S
2 = {µ ∈ R

3 : ||µ||2 = 1} Direction of neutron travel.

E ∈ R
+ Energy.

t ∈ R
+ Time.

ψ(x,µ, E, t) ∈ R Neutron flux at position x in direction µ at time t,

with energy E

∇xψ(x,µ, E, t) Spatial Gradient of the neutron flux at position x

in direction µ at time t with energy E.

Σt(x,µ, E, t) ∈ R
+ Total cross section at position x for energy E at

time t

Σs(x,µ′, E′,µ, E, t) ∈ R
+ Scatter cross section at position x from energy E′

and direction µ′ to energy E and direction µ at

time t, respectively.

Σ f (x, E′, t) ∈ R
+ Fission cross section at position x for energy E′

at time t

ν(E′) ∈ R
+ Average number of neutrons produced per fission at

energy E′.

χ(E) ∈ R
+ Fission neutron distribution.

Q(x,µ, E, t) ∈ R
+ All non–fission sources of neutrons with energy E

and direction µ at position x and time t.

We shall now briefly describe the terms appearing in equation (1.1).

Since a neutron is scattered out of a particular energy E′ and direction µ′ it must nec-

essarily be scattered into another energy E and change direction to µ: the first term on

the right hand side of (1.1) represents this contribution to the total number of neutrons.

The scatter cross section Σs(x,µ′, E,µ, E, t) loosely represents the probability of a scat-

ter occurring from energy E′ and direction µ′ to energy E and direction µ, respectively.

The second term on the right hand side of (1.1) represents the amount of neutrons that

are gained from fission events. The fission cross section Σ f (x, E′, t) is independent of

direction, since it is irrelevant what direction a nucleus that hits a nuclei is moving

in when causing a fission. However, it is dependent on the energy E of the incident

neutron since the speed of the neutron v affects the probability of a fission occurring,

7
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as well as having an influence on the number of neutrons produced per fission; this is

denoted by ν.

The term Q(x,µ, E, t) represents all non-fission sources, for example, neutrons pro-

duced by radioactive decay and any external sources.

Finally, the last two terms on the right hand side of the integro–differential equation

(1.1) describe the loss of neutrons from the volume. The term µ · ∇xψ is the loss due

to neutrons streaming out of the volume and the Σtψ term accounts for the loss of neu-

trons that occurs when a neutron is scattered to a different energy and direction or

absorbed by a nucleus. This is a loss because after a collision the neutron will not be

moving in the same direction µ or with the same energy E as before the collision and

so must be removed from the expression for the angular flux ψ(x,µ, E, t).

In industrial applications the scalar flux is normally of more importance than a detailed

knowledge of the angular flux. The scalar flux φ, is defined to be the integral over angle

of the angular flux, resulting in a quantity with spatial, energy and time dependence,

i.e.,

φ(x, E, t) =
∫ 4π

0
ψ(x,µ, E, t) dµ.

1.2.1 Cross Sections

A reactor core contains many different materials that neutrons travel through, the prop-

erties of the material are described by the cross terms Σt, Σs, Σ f and ν in (1.1). These

are known as the macroscopic cross sections of a material. The cross sections model the

three possibilities, scatter, capture and fission that can occur when a neutron collides

with a nucleus:

• A neutron travelling at some energy may impact the nucleus at an angle and be

scattered or deflected away, in general with a different energy and at a different

angle.

• A neutron may be captured by a nucleus, increasing the mass number of the

nucleus.

• A neutron that has been captured by a nucleus may destabilise the nucleus, caus-

ing it to split into smaller fragments. This releases additional neutrons that then

go on to have interactions themselves with different nuclei. The process of fission

releases a lot of energy; this is what drives a nuclear reactor.

The capture and fission interactions are often combined and termed absorption.

The various cross sections for a nuclear fuel exhibit wide oscillations over the whole

8
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energy range and so careful modelling is required to ensure that numerical codes give

meaningful results. Cross sections are normally obtained by experiment and stored in

nuclear data libraries such as JEFF [132] and JENDL [137] so that they don’t have to be

repeated.

To be more precise, the cross sections appearing in (1.1) are in fact the macroscopic

cross sections and are derived from the microscopic cross sections, see [145] for fur-

ther details. The corresponding microscopic cross sections, σt, σs and σf are properties

of a single isotope of one particular nucleus; physically they can be thought of as the

‘characteristic area’ presented to a neutron incident to that nucleus. Microscopic cross

sections are usually measured in barns (= 10−24cm2). Let

σij(E) = microscopic cross section for an interaction i at energy E between nuclide j

and a neutron,

where i is one of s (scatter), c (capture) or f (fission).

We can now work out the macroscopic cross sections for a material made up of various

nuclides (J of them) with volume fractions vj, j = 1, . . . , J using the following formulae

Σi(x, E, t) =
J

∑
j=1

vjNj(x, t)σij(E), i = s, c, f ,

where Nj(x, t) is the nuclear atomic density for a nuclei of species j at a point x and

time t. The nuclear atomic density of a nuclide j is related to the density ρ and atomic

number A by Avogadro’s number N0 (N0 = 6.022× 1023), hence Nj = N0(ρ/A).

Remark 2. As an example, consider a material composed of 50% carbon and 50% 239Plutonium,

using data tabulated in [145]. Then the macroscopic fission cross section can be calculated to

be:

Σ f (x, E, t) =
J

∑
j=1

vj Nj(x, t)σij(E)

= 0.5(1.6/12.011)(6.022 × 1023)(0)

+ 0.5× (19.74/239.0)(6.022E23)(698× 10−24)

= 17.359.

1.2.2 Common Boundary Conditions

For a problem to be well–posed, in addition to the governing neutron transport equa-

tion and knowledge of all the material cross sections throughout the domain we must

9
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also provide some suitable boundary conditions. There are many possible choices in

the literature, although here we only concern ourselves with the two that we use later

on in the thesis for the benchmarks we employ to validate our numerical method.

Vacuum Boundary Conditions

When designing a nuclear reactor we wish to ensure that neutrons do not pass from

the reactor core to the surrounding area. This requirement can be modelled mathe-

matically with vacuum boundary conditions. These are probably the easiest type of

boundary conditions to impose since they state that the angular flux on the boundary

Γ := ∂Ω of the spatial domain is zero for all incoming directions. Mathematically this

can be written as

ψ(x,µ, E, t) = 0 for x ∈ Γ−µ = {x ∈ Γ : µ ·n(x) < 0}, (1.2)

for a point x ∈ Γ. Here, n(x) denotes the unit outward normal vector to the boundary

at the point x ∈ Γ. The subscript µ on the inflow boundary Γµ is used to highlight the

dependence of Γ−µ on the direction µ.

External Boundary Sources

These are used when we have an artificial source on the boundary, meaning that that

the angular flux entering the domain is pre–described, these are mainly used later in

the thesis in a validation approach to verify the correctness of the numerical method.

Mathematically these are expressed as

ψ(x,µ, E, t) = g0(x,µ, E, t)∀t ≥ 0 for x ∈ Γ−
µ

Remark 3. It is worth noting that, in industrial calculations despite not being considered here,

reflective boundary conditions are commonly used. There is often a great degree of spatial sym-

metry present in the domain in the case of a reactor core, for example. Because of this, reflective

boundary conditions can be used to reduce the amount of computational effort required. For

some industrial benchmarks, such as the C5G7 benchmark [106] this is necessary as the domain

is so complex. A quarter of the core comprising two UO2 and two MOX fuel assemblies, where

there are three different levels of enrinchment in the MOX assemblies is shown in Figure 1.3

When you consider that each of these four fuel assemblies is composed of a 17 by 17 grid of pin

cells it is clear that significant savings can be made by using reflective boundary conditions.

10
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Figure 1.3: Configuration of the quarter core for the C5G7 benchmark problem.

1.3 Simplified Forms of the Neutron Transport Equarion

The full neutron transport equation is an integro–differential equation of 7 dimensions;

in general it is not possible to obtain a solution to this analytically and is very time

consuming to solve numerically, even with modern multi core computers. Due to the

limited power of computers in the early days of the study of the neutron transport

equation many simplified forms have been considered. We briefly state some of these

in this section, as they will appear in the next chapter.

1.3.1 The Steady State Neutron Transport Equation

Since nuclear reactors are designed to operate for long periods of time they spend a

large portion of that in the same ’operational phase’ and so there is little change in the

angular flux with respect to time. A more interesting question is to determine the flux

at a particular point in space and angle; this motivates the study of the steady state

neutron transport equation where there is no change in the angular flux over time.

consider

µ · ∇xψ(x,µ, E) + σt(x,µ, E, t)ψ(x,µ, E) =
∫ ∞

0

∫ 4π

0
σs(x,µ′, E′,µ, E)ψ(x,µ′, E′) dµ′ dE′

+
χ(E)

4π

∫ ∞

0

∫ 4π

0
ν(E′)σf (x, E′)ψ(x,µ′, E′) dµ′ dE′

+ Q(x,µ, E).

(1.3)

11
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Remark 4. As stated above this equation is valid for modelling most operational phases of a

nuclear reactor, however a different model must be used during the start up phases.

Remark 5. The integral over energy appearing in (1.3) is normally converted into a proper

integral by considering energies that range from 0 to some appropriate Emax.

1.3.2 The Mono energetic Neutron Transport Equation

An additional common simplification is to remove the energy dependence in (1.3). De-

spite neutrons varying wildly in energy this simplification remains well used and is

typically employed for a couple of reasons. Firstly, numerical methods developed for

the mono energetic (sometimes also referred to as one speed) transport equation can be

extended to model the varying energies of neutrons by multi group methods (see [145])

where neutron fluxes are considered in group wise averaged energy bands. Secondly,

in certain restrictive geometries it is possible to solve the mono energetic equation an-

alytically, from these solutions benchmarks can be developed, such as those in [74] for

the verification of numerical solvers.

To derive the mono energetic neutron transport equation from (1.3) we make the fol-

lowing assumptions.

• There is no energy loss when neutrons undergo a scattering interaction.

• All fission neutrons are born at the same characteristic energy, and so the angular

flux only contains neutrons of this energy.

• Any boundary and external sources must be mono energetic.

With these assumptions we can state the mono energetic steady state neutron transport

equation as follows:

µ · ∇xψ(x,µ) + σt(x,µ)ψ(x,µ) =
∫ 4π

0
σs(x,µ′,µ)ψ(x,µ′) dµ′

+
νσf (x)

4π

∫ 4π

0
ψ(x,µ′) dµ′ + Q(x,µ).

Assuming isotropic scattering (which in fact we shall do throughout this thesis), the

above can be further simplified to

µ · ∇xψ(x,µ) + σt(x,µ)ψ(x,µ) =
σs(x)νσf (x)

4π

∫ 4π

0
ψ(x,µ′) dµ′

+ Q(x,µ).

(1.4)
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1.3.3 Reducing Spatial Dimensionality

The last simplification that is commonly made is the restriction of the three dimensional

problem in space to one or two spatial dimensions.

One Dimensional Neutron Transport

For completeness we present the one dimensional neutron transport equation as pre-

sented in [34], we do this as the first papers where many of the numerical methods

described in the next chapter were derived using this formulation.

Here we reduce the spatial variable x to the first component 1 only and assume that

there is no variation in the x2 or x3 directions. Because of this restriction this model

is usually referred to as the ‘infinite slab’ model where the slab has arbitrary width.

For the angular component we consider the angle between the normal to the slab and

the trajectory of the neutron, it is usual to use the cosine, η = cos θ of this angle. The

infinite slab neutron transport equation is as follows:

η
∂

∂x1
ψ(x1, η) + σt(x1)ψ(x1, η) =

σs(x1) + νσf (x1)

2

∫ 1

−1
ψ(x1, η′) dη′ (1.5)

Two Dimensional Neutron Transport

The two dimensional neutron transport equation will be the starting point for much of

our work.

For this we restrict our spatial domain to two variables, x1, x2, this also means that we

only need to consider one angular variable ϕ, the azimuthal angle. This is because all

neutrons are confined to moving on a plane. In this case;

µ = (cos ϕ, sin ϕ)⊤

With this definition we have the two dimensional mono energetic steady state neutron

transport equation:

µ · ∇xψ(x, ϕ) + Σtψ(x, ϕ) =
1

2π

∫ 2π

0
(Σs + νΣ f )ψ(x, ϕ′) dϕ′+ Q(x, ϕ) in Ω× I

(1.6)

Remark 6. Note the integration in angle is over the interval [0, 2π] now as we are integrating

over the surface of a circle (it’s edge) instead of the surface of a sphere.
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The Pseudo 3D Neutron Transport Equation

The two dimensional mono energetic steady state transport equation can be extended

simply to model a situation where we assume an infinite homogeneous domain in the

z direction. This shall be derived in a later chapter, but for completeness the resulting

problem as stated in [15]is shown below.

µ · ∇xψ(x,µ) + σtψ(x,µ) =
1

4π

∫

D
(σs + νσf )ψ(x,µ′)

(
1− |µ′|2)−1/2

dµ′ (1.7)

+ Q(x,µ) in Ω× D, (1.8)

ψ(x,µ) = g(x,µ) on Γ−µ . (1.9)

In the above Ω remains the spatial domain but now the angular domain D is the unit

disc, D := {µ ∈ R2 : |µ| ≤ 1}. Instead of µ = (cos(ϕ), sin(ϕ))⊤ which we had in

Equation (1.6) we instead have the following advective direction

µ =

(

sin(θ) cos(ϕ)

sin(θ) cos(ϕ)

)

where ϕ is the azimuthal angle such that 0 ≤ ϕ ≤ 2π and θ is the polar angle we have

just introduced such that 0 ≤ θ ≤ π
2 .

1.3.4 The Underlying Eigenvalue Problem

Whilst descriptive knowledge of the angular flux and scalar flux is important, in the

industrial setting computation of a particular critical eigenvalue is significantly more

important. The operational safety of a nuclear reactor can be determined with reference

to this eigenvalue. Here we describe the underlying eigenvalue problem that gives

rise to this critical eigenvalue. In subsequent chapters we will consider the numerical

determination of the critical eigenvalue.

To derive the underlying eigenvalue problem we return to the full neutron transport

equation as defined in (1.1). Firstly we consider the steady-state equation considered

previously; then splitting up the integral on the right hand side of (1.1) into separate

scattering and fission components and taking the scattering integral onto the left hand

side yields

µ · ∇xψ(x,µ, E) + Σt(x,µ)ψ(x,µ, E)

−
∫ ∞

0

∫

4π
Σs(x,µ′, E′,µ, E)ψ(x,µ′, E′) dµ′ dE′

=
χ(E)

4π

∫ ∞

0

∫ 4π

0
ν(E′)Σ f (x, E′)ψ(x,µ′, E′) dµ′ dE′

14
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Note, also, that in the above we have neglected the presence of any external sources

Q(x,µ, E); this is a reasonable assumption as in practice reactors are designed to pre-

vent leakage. Defining the transport, scattering and fission operators, respectively, by

Tψ = µ · ∇xψ(x,µ, E) + σt(x,µ)ψ(x,µ, E),

Sψ =
∫ ∞

0

∫ 4π

0
σs(x,µ′, E′,µ, E)ψ(x,µ′, E′) dµ′ dE′,

Fψ =
χ(E)

4π

∫ ∞

0

∫ 4π

0
ν(E′)σf (x, E′)ψ(x,µ′, E′) dµ′ dE′

the neutron transport equation can be rewritten in the following operator form

(T− S)ψ = Fψ. (1.10)

The solution ψ to this equation exists if there is an exact balance between the loss and

gain of neutrons (as described above). A nuclear reactor satisfying this condition is

known as critical. In most cases such a solution will not exist, and we seek some kind

of measurement of ‘how close’ to critical the reactor is. To this end, we transform the

problem into a generalised eigenvalue problem by introducing an eigenvalue λ in front

of the fission integral; this corresponds to an artificial up-scaling or down-scaling of the

fission source. The eigenvalue problem is then defined as follows: find an eigenvalue-

eigenfunction pair (λ, ψ) such that

(T− S)ψ = λFψ, (1.11)

where λ = 1
ke f f

. Here, ke f f denotes the so–called k-effective value; this is the average

number of neutrons entering the system per neutron leaving the system.

There are of course multiple pairs (ψ, λ) that satisfy this equation, but we seek the

smallest such λ and consequently the highest value of ke f f , as this will determine the

overall criticality of the system. In particular, we note that

• λ < 1 : The reaction is supercritical. This means that more neutrons are being

produced than being removed. Physically this means that the system is becoming

more reactive; a situation that nuclear reactor operators wish to avoid as it could

lead to a reactor meltdown.

• λ = 1 : The reaction is critical. In this case, for every neutron that leaves the

system exactly one enters. In terms of a nuclear reactor, this means that the chain

reaction is sustainable over a long period of time.

• λ > 1 : The reaction is subcritical. In this case more neutrons are leaving the

system (through absorption, etc) than entering the system and so the system is

becoming less reactive. A reaction of this type typically does not lead to a sus-

tained chain reaction and so cannot be used for power generation.
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1.4 Discontinuous Galerkin Methods

As we shall see in the next chapter there are many numerical methods available for

solving the neutron transport equation. The focus of this thesis will be on using a

high order discontinuous Galerkin (DG) discretisation in both angle and space. Despite

being first introduced in 1973 as a potential method for the spatial discretisation of the

neutron transport equation [127] and the growth of research in DG, cf Figure 1.4, there

has been very little work on applying DG methods to the neutron transport equation.

Notable exceptions are considered in the following chapter.

1.4.1 The History of Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) methods are a comparatively recent invention and in

this section we provide a brief history of their application to various problems. We re-

fer the reader to the excellent papers of Arnold, Brezzi, Cockburn and Marini [14] and

Cockburn, Karniadakis and Shu [54] for further details of some aspects. These discreti-

sation methods can be thought of as a generalisation of the idea of weak imposition of
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boundary conditions [108] and can be considered as a generalisation of finite volume

methods. (In fact, the analysis of the two has recently been explicitly combined with

the so called PN PM schemes of Dumbser [67, 68] for space–time discretisations.)

As already mentioned discontinuous Galerkin methods were first explicitly proposed

in 1973 in relation to the neutron transport equation by Reed and Hill [127]. In their

paper, Reed and Hill employ a discrete ordinates discretisation (see Section 2.11) and

then propose two discretisations in space: one continuous and one discontinuous for

the advection problem

∇ · (µψ) + Σtψ = f in Ω, (1.12)

ψ(x,µ) = 0 on Γ−µ ,

where Ω is the spatial domain and, as before, Γ−µ denotes the inflow portion of the

boundary Γ of the domain Ω. The advective direction µ is considered to be one par-

ticular direction from the set of ordinates used to discretise the angular domain of the

neutron transport equation. The standard DG method may then be constructed as fol-

lows: first a triangulation Th = {κ} of the domain Ω is constructed. Then for all κ ∈ Th,

ψh|κ is the unique solution of the following problem: find ψh|κ ∈ Pp(κ) such that

−
∫

κ
ψh(µ · ∇vh) dx+

∫

∂κ
ĥvh ds + Σt

∫

κ
ψhvh dx =

∫

κ
f vh dx ∀ vh ∈ Pp(κ).

Here, Pp(κ) is the space of polynomials of degree at most p on element κ, ∂κ is the

boundary of κ and ĥ denotes an appropriate numerical flux function which handles the

numerical jumps in solution values across element boundaries. In this case a suitable

choice of numerical flux function would be,

ĥ(x) = µ ·nκ(x) lim
sց0

ψh(x− sµ),

where nκ(x) is the unit outward normal to ∂κ at the point x. Using this definition

of the numerical flux it is possible (as pointed out in [100]) to compute the numerical

solution ψh element by element if the elements have been ordered in the characteristic

direction µ; this is because limsց0 ψh(x− sµ) is simply the value of ψh upwind in the

characteristic direction.

In their paper Reed and Hill perform numerical experiments that demonstrate the effi-

ciency of the method; the first analysis was published in the following year by LeSaint

and Raviart [100]. In this paper they first study a discontinuous Galerkin method ap-

plied to an ordinary differential equation before analysing the DG method for the neu-

tron transport equation (1.12) in the L2(Ω) norm. Under the condition that f ∈ L2(Ω)
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existence and uniqueness of the discrete solution ψh is established; moreover they

show that the convergence order of the scheme is O(hp) where h is the mesh function

h := max{hκ} , hκ denoting the diameter of the element κ. The rate of O(hp) is known

to be suboptimal; for a Cartesian grid with tensor product polynomial basis functions

LeSaint and Raviart derive a higher rate of convergence, namely O(hp+1). The sub-

optimal rate of LeSaint and Raviart was improved in 1986 by Johnson and Pitkäranta

[93] who showed a rate of convergence of O(hp+ 1
2 ) in the L2 -norm for arbitrary order

polynomials on locally regular triangulations, namely

‖ψ− ψh‖L2(Ω) ≤ Chp+ 1
2 ‖u‖Hp+1(Ω)

Analogous results in Lk were also derived, though these were only valid for p = 1 and

on uniform or piecewise uniform triangulations. As for the case of rectangular meshes,

Richter [129] also obtained the bound,

‖ψ− ψh‖L2(Ω) ≤ Chp+1‖u‖
Hp+ 1

2 (Ω)
,

on structured triangular meshes by utilising exact representations of uh on the bound-

aries of elements. The above bound only holds on semiuniform meshes, where the

edges of the triangular elements are bounded away from the edges of the domain. It

was not known at the time whether the rate due to Johnson and Pitkäranta [93] was

the best possible without assuming further structure on the triangulation; however, in

1991 Peterson [124] numerically showed that this was indeed the case. Peterson also

provides a proof that for a piecewise constant approximation and inflow boundary

data g(x) = x, the point wise error is O(h
1
2 ) (since, in this case p = 0) for a particular

triangular mesh. All of the papers mentioned above assume that the exact solution ψ

is smooth in Ω; some work has been carried out towards proving error estimates in

situations where this assumption does not hold. For example, in 1993, Lin and Zhou

[107] showed convergence to the weak solution assuming that the analytical solution

ψ belongs to H
1
2 (Ω).

It is also possible to attain convergence to the weak solution by increasing the poly-

nomial degree p used in the approximation, as well as reducing the mesh size h. In

1996, Bey and Oden [36] introduced the hp–version discontinuous Galerkin method

(developing earlier work on the hp–finite element method, such as [24]) for hyperbolic

conservation laws. They developed a priori and a posteriori error bounds on quadri-

lateral meshes. The a priori bounds possess the property that for a fixed p and as h → 0

they reduce to those derived in [93]. The corresponding a posteriori error estimate led

to the development of the adaptive parallelization strategies discussed in [37]. It is
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worth noting that the first a posteriori error estimates for the discontinuous Galerkin

method were established in 1990 by Strouboulis and Oden [146] where time dependent

problems are considered.

The paper of Houston, Schwab and Süli [88] extended the results of [36] to stabilised

hp–finite element methods, including both the streamline diffusion and stabilised DG

methods. On quadrilateral meshes their error bounds depended explicitly on the ele-

mental solution regularity which allowed exponential convergence to be established,

as the polynomial degree p → ∞. These results were extended, using a different anal-

ysis to the non–stabilised DG method by the same authors in [89]. For solutions in L2

but which are locally smoother, Cockburn, Luskin, Shu and Suli [55] have shown that

a post processing of the numerical solution of a transient hyperbolic equation can re-

cover the order O(hp+ 1
2 ) in Ω0 where Ω0 ⊂ Ω with the solution smooth in Ω. They also

show that this post processing can improve the rate of convergence in the cases where

the analytical solution ψ is smooth to O(h2p+1) over the established rate O(hp+ 1
2 ) cf.[93].

The extension of the original DG method to nonlinear scalar hyperbolic conservation

laws was first attempted in 1982 by Chavent and Solzano [49]. They considered a sys-

tem of the form

ut +
d

∑
i=1

(fi(u))xi
= 0.

As before, multiplying by a test function and integrating formally by parts we obtain

the following weak formulation: find u such that

∫

κ
utv dx−

d

∑
i=1

∫

κ
fi(u)

∂v

∂xi
dx+

d

∑
i=1

∫

∂κ
fi(u)nκv ds = 0,

for all v. Then the approximate solution uh is defined as the solution of the following

problem: find u|κ ∈ Pp(κ) such that

∫

κ
(uh)tv dx−

d

∑
i=1

∫

κ
fi(uh)

∂v

∂xi
dx+

d

∑
i=1

∫

∂κ
ĥv ds = 0. ∀v ∈ Pp(κ)

where as before ĥ is some numerical flux function used to handle the jumps in the nu-

merical solution uh across element boundaries. Chavent and Solzano use the above

discretisation in space with linear polynomials and employ a forward Euler method

to step forward in time. The use of the forward Euler method resulted in an unstable

method unless a very restrictive time step, of the order
√

h was used. In 1989 this in-

stability was overcome in [48] by using techniques borrowed from the finite volume

community and introducing a projection based slope limiter. The resulting scheme
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was proven to be total variation diminishing in the means (TVDM) and total variation

bounded (TVB); however, this leads to only a first order method in both space and time.

In 1988 Shu [138] (also see [139, 140]) introduced an explicit TVD second order Runge-

Kutta type time discretisation. This was used by Cockburn and Shu in their 1991

article [52] in conjunction with a piecewise linear DG discretisation in space with an

improved slope limiter which maintains formal accuracy of the scheme at extremal

points. The numerical results for this method show second order convergence in both

space and time and effective resolution of sharp shocks. This approach was generalised

to higher order schemes in [51] by employing a DG discretisation in space of order p

and a TVD RK method in time with order p + 1 to obtain an overall RKDG method

of order O(hp+1). Extending the above methods to the multidimensional case was un-

dertaken for scalar problems in [53] and extended to systems in 1998 in the paper [56].

Time discretisations for DG methods is an active area of research; the local nature of the

DG method suggest the possibility of local time stepping, where the time step varies

on different spatial elements. Building on the work of Toro, Milligan and Nejad [153]

and Toro and Titarev [152] in developing the arbitrary high order derivative (ADER)

schemes, Kaser and Dumbser presented an arbitrary high order in both time and space

method for the solution of elastic problems [96]. In 1997 this was extended by Dumb-

ser, Kaser and Toro [69] to a method incorporating p adaptivity and local time stepping.

The above developments have led to many applications of DG methods for hyperbolic

systems, for example; Maxwell’s Equations, gas dynamics, acoustics and elasticity, see

[84] and the references therein for further details.

Richter performed a direct extension of the original DG method to linear convection

diffusion equations in 1992 [130] which he showed possessed an order of convergence

of O(hp+ 1
2 ) when convection was dominant. Since then many other methods have been

proposed for solving problems of this type. By rewriting second order operators into

systems of first order equations the classic DG approach was extended to second or-

der operators by Bassi and Rebay in 1997 [30]. This has since led to the development

of local discontinuous Galerkin (LDG) methods which posses O(hp) convergence with

respect to the L∞–norm, which is sharp in this setting, see, for example, Cockburn and

Shu in [57]. LDG methods can be seen as an extension of the purely hyperbolic RKDG

methods. A comparison of three different approaches to discretising a diffusion equa-

tion is contained in [165] where the LDG approach is shown to be stable.

Independent of the development of DG methods for hyperbolic problems, discontinu-
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ous Galerkin finite element methods were also developed for elliptic problems, though

they were not recognised as DG methods at the time. In 1963 Lions (see [108] for a re-

cent reprint of the original paper) considered solving elliptic problems with very rough

boundary data. He considered solving, for example,

−∆u = f in Ω

u = g on ∂Ω

where f is taken to be in L2(Ω) and g in H−
1
2 (∂Ω). Lions introduced the regularisation

g = u + γ−1 ∂u
∂n for γ a large positive parameter and considered the following weak

form of the regularised problem: find u ∈ H1(Ω) such that
∫

Ω
∇u · ∇v dx+

∫

∂Ω
γ(u− g)v ds =

∫

Ω
f v dx ∀ v ∈ H1(Ω)

Lions showed that for any γ > 0 there exists a unique solution to the above problem

and also that as γ → ∞ the solution u converges to the solution w of the original

problem. In 1973 Babuška [18] applied this method to a finite element method for the

first time, proving an order of convergence of O(h
2p+1

3 ) for a degree p approximation.

This suboptimal rate is due to the lack of consistency in the formulation. Nitsche, in

1971 [117] considered the alternative consistent formulation: find u ∈ H1(Ω) such that
∫

Ω
∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds−

∫

∂Ω

∂v

∂n
u ds +

∫

∂Ω
γ(u− g)v ds =

∫

Ω
f v dx,

The second term on the left hand side arises naturally when you apply Green’s iden-

tity and ensures the consistency of the method; the third time ensures the method is

symmetric; the last term guarantees stability. Stability is guaranteed as the last term pe-

nalises how far the trace of the numerical solution on the boundary is from the dirichlet

data g. In this paper Nitsche showed that if γ ∼ η
h for a sufficiently large constant η

and h being the mesh function as before, then the numerical solution converges to the

analytical solution with an optimal order with respect to the H1 and L2 norms.

The interior penalty methods are a natural extension of the above approach based on

weakly imposing continuity across element boundaries, leading to the use of spaces of

piecewise discontinuous polynomials in the finite dimensional approximation spaces.

In 1973 Babuška and Zlàmal [25] used the formulation of Lions to weakly impose C1

continuity for fourth order problems. The normal derivatives of C0 elements were pe-

nalised by Douglas and Dupont [64] with the aim of enforcing an idea of continuity,

in some sense between the spaces C0 and C1 with an application to second order ellip-

tic and parabolic problems. Nitsche’s method was generalised to second order elliptic

problems in 1977 by Baker [28] where the biharmonic equation was studied. Wheeler
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[160] also studied second order elliptic problems in 1978. The interior penalty methods

for linear and nonlinear elliptic and parabolic problems were rigorously analysed by

Arnold in his thesis of 1979 [10] and the paper [11].

The similarity of the interior penalty methods and for example the flux formulation of

Bassi and Rebay [30] has resulted in work which attempts to unify the analysis of vari-

ous methods in a consistent way. To this end, Brezzi, Manzini, Marini, Pietra and Russo

have considered a different formulation of the original method of Bassi and Rebay

which was more amenable to mathematical analysis in their paper [40]. The original

IP methods were usually presented in their primal form such as in [147], whereas the

methods inspired by finite volume techniques and derived for the original DG method

of Reed and Hill are often presented in terms of suitably chosen numerical fluxes as in

[30]. Arnold, Brezzi, Cockburn and Marini analysed all of the elliptic DG methods in

a unified framework and present a detailed overview of their similarities, differences

and properties in [12] and [14].

1.4.2 The Advantages of Discontinuous Galerkin Methods

DG methods possess a number of key advantages over conventional finite element

methods (FEMs). Firstly DG methods are are locally conservative; this is pertinent to

the application considered in this thesis. This is a desirable property for a numerical

method to possess when applied to problems that model the transport of some mate-

rial, for example, the transport of neutrons throughout the domain as in our case. For

problems containing interior or boundary layers it is known that conventional contin-

uous FEMs suffer difficulties; namely, the growth of non-physical oscillations, when

used on meshes too coarse to resolve the layer. Due to this difficulty, stabilised fi-

nite element methods such as the streamline upwind Petrov Galerkin (SUPG) method

have been developed which add artificial diffusion in the streamwise direction to damp

these oscillations. DG methods do not require this extra stabilisation as the discontin-

uous nature of the method allows the oscillations to be damped by natural numerical

dissipation. An example comparing a DG method with a non stabilised continuous

FEM for a simple one dimensional problem with a boundary layer is shown in [79].

The standard FEM exhibits global spurious oscillations, whereas, for the DG method

these oscillations are localised around the boundary layer.

As explained in the reference by Solin, Segeth and Dolezel [142] conforming CG meth-

ods use finite element spaces that satisfy the underlying continuity properties of the
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physical problem, for example the spaces H(div) and H(curl). When locally refining

the mesh, hanging nodes (element vertices that lie on the face of another element) can

be created; for a conforming discretisation inter–element projection operators must be

applied to maintain the underlying continuity requirements. We could also subdivide

the neighbouring elements, however, this subdivision may create new hanging nodes

and this procedure will have to be repeated until no hanging nodes remain. With

discontinuous Galerkin methods, due to the weak enforcement of continuity we ad-

mit multiple hanging nodes on a face without causing any computational difficulties.

Similarly, a DG method naturally permits the use of different polynomial degrees on

neighbouring elements; this is harder to perform for a CGFEM method and normally

the minimal polynomial rule is applied.

Additionally, without the need for inter-element continuity, there is less communica-

tion between elements resulting in sparser matrices than those obtained from a con-

ventional FEM. The major disadvantage with DG methods is the increased number of

degrees of freedom when compared to the conventional finite element methods. This

can be mitigated somewhat by utilising parallel algorithms, however to be competitive

for large problems further work is required. As a consequence of this, there has been a

lot of research into efficient linear solvers for matrices arising from DG discretisations

of partial differential equations. The increased sparsity and block structure of the linear

systems resulting from a DG discretisation goes someway to providing a faster solu-

tion procedure than for a similar order FEM, however, for large real world problems

a solution using a direct linear solver is unfeasible, due to both the amount of mem-

ory required and the time taken to obtain a solution. This leads to the use of iterative

solvers such as the conjugate gradient (CG) method or the Generalised Minimal Resid-

ual (GMRES) method. The convergence of these solvers is strongly dependent on the

condition number κ(A) of the underlying system. For a Poisson problem with a linear

system arising from a DG discretisation, as shown in [8] the condition number satisfies

κ(A) . αp4h−2 for a globally quasi uniform triangulation and polynomial approxima-

tion orders. This has led to interest in robust preconditioners that lower the condition

number of the system before the application of an iterative solver. The approach of

multi level preconditioning using domain decomposition has received significant at-

tention recently see for instance [72] and [39] where two level additive Schwarz meth-

ods are employed for the solution of elliptic problems where the domain Ω has been

split into a collection of overlapping domains. Recent work undertaken by Antonietti,

and Ayuso [5–7] concerns the use of Schwarz type pre–conditioners on non overlap-

ping subdomains. They demonstrate that it is possible to achieve uniform scalability
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(meaning that the number of iterations needed to compute a solution is uniform as

the mesh is refined) for a DG discretisation, this is in contrast to CGFEM discretisa-

tions where the subdomains must overlap. The disjoint nature of the sub domains is

desirable as in parallel implementation this reduces the need for communication be-

tween processor nodes. To achieve uniform scalability a suitable coarse solution must

be computed on coarse mesh where the ratio of the mesh size H on the coarse mesh

and h on the fine mesh is kept constant. They obtain spectral bounds of order H/h for

the preconditioned system. There has also been some work on developing multi–grid

solvers for problems that have been discretised by the DG method, see for example,

[115] where successive coarser grids have not only a larger mesh size but a lower de-

gree of approximating polynomial. As an aside it is worth noting that a similar solution

method has been employed for a conforming finite element discretisation with hierar-

chical basis functions [116].

One further advantage is the ease with which orthogonal basis functions can be con-

structed, including the Dubiner orthogonal basis as detailed in [66] and employed in

AptoFEM, FENICS [97] and the solvers of Warburton [158]. Orthogonal bases are ad-

vantageous as they lead to diagonal mass matrices, for time dependent schemes the

local nature of the mass matrix combined with the fact that diagonal matrices are triv-

ial to invert can lead to explicit semi-discrete schemes [84].

1.5 Thesis Outline

This thesis is structured as follows. Chapter 2 provides a survey of the numerical meth-

ods that have been used to solve the neutron transport equation over the last 60 or so

years.

In Chapter 3 we first briefly discuss a discontinuous Galerkin approximation for the

advection equation before deriving and developing the discretisation of the two di-

mensional steady state neutron transport equation. We then extend this to a pseudo

three dimensional problem that can be used in conjunction with industrial benchmarks

to validate the code produced.

Chapter 4 contains a discussion of various implementational aspects of the two solvers

discussed in the previous chapter, including the development of an ordered solver, and

a neutron transport specific mesh for the angular dimension in the pseudo three dimen-

sional case.

Following the previous two chapters, Chapter 5 contains numerical results for the two

dimensional and pseudo three dimensional solvers. In addition to presenting results

24



CHAPTER 1: INTRODUCTION

from some test problems derived for benchmarking the source solvers we also present

results for various eigenvalue test problems.

In Chapter 6 we introduce the concept of dual weighted residual (DWR) error esti-

mation by applying it to an advection problem. We then apply it to the source and

eigenvalue neutron transport problems. We complete the thesis in Chapter 6 by sum-

marising our results and drawing conclusions, before discussing the numerous future

areas of research that could follow on from this work.
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Numerical Methods for Solving The

Neutron Transport Equation

Closed form analytical solutions to equation (1.1) only exist in certain restricted, unre-

alistic cases and so, for industrial calculations, numerical methods are essential. Many

factors contribute to the neutron transport problem being hard to solve numerically.

Firstly ψ, the solution to equation (1.1), is a function of three spatial dimensions x,

angular variables µ, energy E and the time t - making a total of seven variables. In

addition to the challenge posed by the high dimensionality, the neutrons being mod-

elled can range in energy from a fraction of an eV to up to 10 MeV. The geometry of

the spatial domain Ω also contributes to the challenge of obtaining accurate numerical

solutions. When modelling a nuclear reactor there are often many regions of the do-

main with differing properties, geometries with curved boundaries and for example,

many small regions of the domain that need to be resolved accurately. Because of these

difficulties various methods have been proposed and implemented during the last 60

or so years. Each of these make different approximations to mitigate the difficulties

described above and so have varying degrees of success depending on the situation

being modelled. In this chapter we provide a brief overview of the literature concern-

ing the numerical solution of the neutron transport equation and provide a description

of the common methods employed. We first look at a common simplification to the

transport equation before considering two approaches to discretising the angular com-

ponent. We then consider two techniques that have been used to discretise the spatial

component of the angular flux before briefly discussing a stochastic approach that is

often used in practice to obtain benchmark solutions. We conclude by justifying the

choices made in discretisation methods for the work contained in this thesis.
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2.1 Diffusion Approximations

Due to the difficulties discussed above, when the neutron transport equation was first

studied researchers looked for a simpler model to understand first. This led to the de-

velopment of the diffusion approximations which we discuss here.

Chapter 3 of Stacey’s Nuclear Reactor Physics book [145] provides a good introduc-

tion to the theory of neutron diffusion approximate solutions to the neutron transport

equation. In the 1940s Eddington showed that the transport equation could be recast as

a single diffusion equation for the scalar flux, provided that the angular flux possessed

certain properties. These properties and their applicability to modern reactor cores are

outlined in the following bullet points:

• Assume there is a linear spatial variation of the neutron distribution. This is satis-

fied a few mean free paths away from the boundary of large homogenous media

with relatively uniform source distributions.

• Assume isotropic scattering. This condition is satisfied for scattering from nuclei

with a large atomic mass.

• Finally, assume that absorption is much less likely than scattering. This condition

is satisfied for most of the structural and moderating materials in a reactor, but

not for the control rods and fuel elements.

2.1.1 One Speed Diffusion Theory

In order to outline the theory of the diffusion approximation, below we present the one

speed diffusion approximation following the derivation outlined in [145].

Referring to Figure 2.1 consider a point x ∈ R3 elevated in the half space somewhere

above a small area ∆A located about the origin. A differential volume element dx is

placed about the point x. We can calculate the fraction of isotropically scattered neu-

trons leaving the volume element dx in the direction of ∆A to be −(x/|x|) · ∆A/4πr2,

where |x| is the distance from x to the origin. However, not all of these scattered neu-

trons will actually reach ∆A since some can be scattered again or absorbed during their

journey. Thereby, we can derive an expression for the differential current of neutrons

passing downward through ∆A which had their last scattering collision in the small
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Figure 2.1: The Coordinate System for the Diffusion Derivation.

volume dx surrounding x:

j−(0 : |x|, µ, ρ) dr dA =
µe−Σt|x|Σsφ(|x|, µ, ρ) dx dA

4π|x|2 ,

where ρ is the azimuthal angle, µ is the cosine of the polar angle and φ is the scalar

flux as defined previously. Integrating over the upper half plane x > 0 we obtain an

expression for the total current passing downward through ∆A ,i.e.,

j0(0) dA = Σs

∫ ∞

0

∫ 2π

0

∫ 1

0
µe−Σt|x|φ(|x|, µ, ρ)

dA

4π
dµ dρ. (2.1)

Expanding the scalar flux φ in a Taylor series about the origin gives

φ(r) = φ(0) + r · ∇φ(0) +
1
2
[r2∇2φ(0)] + · · · .

We assume that the flux varies sufficiently slowly in space for us to only retain the

first two terms, that is we assume we can write φ(r) ≈ φ(0) + r · ∇φ(0). Using the

trigonometric identity cos(β) = cos(θx) cos(θ) + sin(θx) sin(θ) cos(ρy − ρ) and also the

approximation that absorption is small relative to scattering, so that Σt ∼ Σs, equation

(2.1) can be integrated to obtain the diffusion theory expression for the partial down-
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ward density, namely,

j0(0) =
1
4

φ(0) +
1

6Σs
|∇φ(0)| cos(θx)

=
1
4

φ(0) +
1

6Σs

dφ(0)
dx

≡ 1
4

φ(0) +
1
2

D
dφ(0)

dx
.

In the above D is known as the diffusion coefficient. Similarly, we can derive the fol-

lowing expression for the partial upward current density,

j=(0) =
1
4

φ(0)− 1
2

D
dφ(0)

dx
.

These two expressions can then be combined to give the diffusion theory expression

for the net current at the origin (with the convention that postive sign is upwards),

Jx(0) = j+(0)− j−(0)

=
1

3Σs

dφ(0)
dx

= −D
dφ(0)

dx
.

We now perform similar derivations in the x− y and x− z planes, then combining the

three equations we obtain the three dimensional generalisation,

J(0) = −D∇φ(0).

This equation is known as Fick’s law and governs the diffusion of many other quanti-

ties, not just neutrons.

In deriving this equation we have also assumed that the scattering is isotropic; it is

possible to derive a more realistic diffusion approximation that takes into account

anisotropic scattering. In this latter case the diffusion coefficient will be given by

D =
1

3(Σt − µoΣs)
,

with µo being the average cosine of the scattering angle. This is approximately

µo ≈ 2
3m , where m is the atomic mass of the scattering nuclei.

Solutions to the diffusion problem are well documented and so this offers a fast nu-

merical solution to the transport problem. This method, however, has relatively low

accuracy for real world applications due to the applicability of the assumptions out-

lined above. In addition, the approximation also becomes significantly less accurate
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near boundaries of the domain since the angular flux is not isotropic within the vicinity

of a boundary. The solution will also break down when solving in a space containing

voids due to the diffusion coefficients possessing a term involving the factor 1/σt , cf.

[43] .

Some of these problems can be mitigated by using more accurate transport theory to

improve the estimates provided by diffusion theory. For example, the many small el-

ements inside a nuclear reactor can be replaced by a homogenized mixture with aver-

aged cross sections and diffusion coefficients. Control rods which are highly absorb-

ing can be represented by effective diffusion theory cross sections which replicate the

transport theory absorption rates. Despite these improvements to diffusion theory the

difficulties described above have meant that these techniques have in general, been

superseded by other alternative methods in recent years.

2.2 Spherical Harmonic Techniques

The first of the techniques that are used to discretise the angular variables in the neu-

tron transport equation are the spherical harmonic techniques. These are more com-

monly known as the PN–methods and are another class of solution methods that first

appeared in the 1940s [111, 112]. The name is derived from the functions used to build

the approximation.

Spherical harmonic functions are used to approximate the angular variable in the trans-

port equation; these are the angular portion of the solution to the homogeneous Laplace’s

equation ∇2u = 0 when solved in spherical coordinates. The spherical harmonics

form a set of complete orthonormal functions and so can be used as a basis in which

to expand the angular variables (θ, ϕ) where θ is the polar angle and ρ is the az-

imuthal angle in spherical coordinates. They can be defined in the complex plane,

but there is an equivalent definition for real valued spherical harmonics ([43]). Indeed,

in this latter setting the spherical harmonic basis is defined to be the set {Yc
l,m, Ys

l,m} for

l = 0, 1, . . . , ∞ and m = 0, 1, . . . , l, where Yc
l,m and Ys

l,m denote the real valued sine and

cosine spherical harmonics, respectively, i.e.,

Yc
l,m = cos(mρ)Pm

l (µ),

Ys
l,m = sin(mρ)Pm

l (µ),

where Pm
l are the associated Legendre polynomials. These are the canonical solutions

of the general Legendre equation, and are most easily defined in terms of derivatives
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of the usual Legendre polynomials,

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
(Pl(x)).

Restricting the expansion to only include all harmonic functions up to order N gives

rise to the PN–approximation. It can be shown that the approximation converges to the

analytical solution in the limit as N → ∞.

The spherical harmonic method is fairly accurate in most cases and since it is rotation-

ally invariant ray effects (unphysical oscillations in the angular distribution) are guar-

anteed not to form in the scalar flux solution unlike when using the Discrete Ordinates

method which is described in the next section. For scattering dominated problems and

where the angular flux is isotropic, low order expansions are generally sufficient to

yield accurate approximations [43].

Regardless of the dimensionality of the problem, obtaining a spherical harmonic ap-

proximation to the angular variable in the neutron transport equation proceeds in the

same way:

1) Expansion of the angular flux into an infinite expansion in terms of spherical

harmonic functions.

2) Substitution of the above expansion into the neutron transport equation.

3) Use of the addition theorem, orthogonality conditions and the recurrence relation

associated with Legendre polynomials to form an infinite system of equations in

space to be solved.

4) Keep the first N + 1 equations to leave a system of N + 1 equations with N + 2

unknowns.

5) The spatial derivative of the highest order spherical harmonic (i.e. the N + 1

term) is set to zero, leading to a solvable system of equations in space.

We now illustrate this approach in the case of one dimensional plane geometry.

2.2.1 The One Dimensional Spherical Harmonic Expansion

To illustrate the method we consider the following one dimensional, steady state, mo-

noenergetic transport equation in plane geometry, i.e.,

µ
∂ψ(x, µ)

∂x
+ Σtψ(x, µ) =

Σs + νΣ f

2

∫ 1

−1
ψ(x, µ′) dµ′, (2.2)
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where µ is the cosine of the angle between the direction of neutron travel and the x

axis. Here it is assumed that Σt and Σs + νΣ f are constant.

Since ψ is a function of x and µ only, ψ(x, ·) can be expanded in a convergent series of

Legendre polynomials. The set of Legendre polynomials are defined by the following

expressions

P0(µ) = 1, (2.3)

P1(µ) = µ, (2.4)

(2n + 1)µPn(µ) = (n + 1)Pn+1(µ) + nPn−1(µ) for n ≥ 1, (2.5)

and they satisfy the following orthogonality condition on the interval [−1, 1],

∫ 1

−1
Pm(µ)Pn(µ) dµ =

2
2n + 1

δmn,

where δmn is the Kronecker delta, i.e., δmn = 1 if m = n and δmn = 0, otherwise.

We now expand ψ(x, ·) as a series of Legendre polynomials in the following fashion

ψ(x, µ) =
∞

∑
n=0

2n + 1
4π

ψn(x)Pn(µ), (2.6)

where the expansion coefficients ψn are given by

ψn(x) = 2π
∫ 1

−1
ψ(x, µ)Pn(µ) dµ. (2.7)

We substitute this expansion into (2.2) to obtain, on multiplication by 4π,

µ
∞

∑
n=0

(2n + 1)
∂ψn(x)

∂x
Pn(µ) + Σt

∞

∑
n=0

(2n + 1)Pn(µ)ψn(x) = (Σs + νΣ f )ψ0(x). (2.8)

So that we can use the recurrence relation stated above we remove the terms corre-

sponding to n = 0 from the summations leading to,

µ
∂ψ0(x)

∂x
+

∞

∑
n=1

(2n + 1)
∂ψn(x)

∂x
Pn(µ) + Σtψ0(x)

+Σt

∞

∑
n=0

(2n + 1)Pn(µ)ψn(x) = (Σs + νΣ f )ψ0(x)

We can now use the recurrence relation (2.5) in the first summation on the left to give,

µ
∂ψ0(x)

∂x
+

∞

∑
n=1

((n + 1)Pn+1(µ) + nPn(µ))
∂ψn(x)

∂x
+ Σtψ0(x)

+Σt

∞

∑
n=0

(2n + 1)Pn(µ)ψn(x) = (Σs + νΣ f )ψ0(x)
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Finally, for all m ∈ R multiplying the above by 1
2(2m + 1)Pm(µ), integrating over the

range −1 ≤ µ ≤ 1, and using the orthogonality property it is found that the following

system of equations must be satisfied,






∂ψ1(x)

∂x
+ Σtψ0(x) = (Σs + νΣ f )ψ0(x)

(m + 1)
∂ψm+1(x)

∂x
+ m

∂ψm−1(x)

∂x
+ (2m + 1)Σtψm(x) = (2m + 1)(Σs + νΣ f )δ0mψm(x),

(2.9)

for m = 0, 1, 2, . . ..

Here, is an infinite set of equations in an infinite number of unknowns. We now intro-

duce an approximation by truncating this set of equations so that we only consider the

first M + 1 of them (that is m = 1, 2, . . . , M). However these involve M + 2 unknowns,

so to make the problem solvable we must remove one of the unknowns.To this end

assume
dψM+1(x)

dx
= 0.

Note that

ψM+1(x) = 2π
∫ 1

−1
ψ(x, µ)PM+1(µ) dµ

and by the definition PM+1(µ) changes sign M + 1 times in the interval [−1, 1] and so

for large M will oscillate rapidly. This leads us to believe that ψM+1 will be very small

for large M and so justifies our assumption [34]. In making this assumption we have

obtained the PN approximation to the neutron transport problem.

Now we must solve this system of N + 1 differential equations. For x 6= 0 we ob-

tain a set of homogeneous first order constant coefficient differential equations from

equations (2.9). To this end, we seek solutions of the form,

ψm(x) = gmevxΣt , m = 0, 1, . . . , M,

Substituting this into (2.9) we have,






vg1 + Σtg0 = 0

v((m + 1)gm+1 + ngm−1) + (2m + 1)(Σt − (Σs + νΣ f )δ0m)gm = 0,

since dgmevxΣt

dx = vΣtgmevxΣt .

For these equations to be compatible it is necessary for the determinant of the matrix

of coefficients to vanish; this is achieved by manipulating the value of v. It can be seen

that gm depends on v, so if vj are all the values of v that make the determinant of the

coefficient matrix equal to zero then the general solution can be expressed as

ψm(x) = ∑
j

Ajgm(vj)e
vjxΣt , m = 0, 1, . . . , M. (2.10)
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In the above the Aj are arbitrary constants that depend on the boundary conditions of

the problem.

It is expected that the PN–approximation will be quite accurate for large N. As stated

in [34] it is possible to easily obtain an indication of the error made in applying the

PN–approximation in this 1D case: the PN equations would be exact for a problem in

which the source term is modified by the addition of the term,

N + 1
4π

dψn(x)

dx
PN(µ).

Thereby, the error could be approximated as arising from a source of the above form.

In practice, however, to get an idea of the error made it is better to compare the PN

approximation with an analytical solution for a test case where this is known.

Physical Interpretation of the Legendre Expansion of the Flux

The first two terms in the Legendre expansion of the angular flux given in (2.6) have

physical meaning. For m = 0 we have by definition P0(µ) = 1, and so equation (2.7)

implies that ψ0(x) is the total flux at the point x.

Similarly, for m = 1 we have that P1(µ) = µ and so

ψ1(x) = 2π
∫ 1

−1
µψ(x, µ) dµ,

which is the current J(x) at x in the direction µ.

It is possible to expand the flux in a different set of orthogonal polynomials, and in

some cases this may make it easier to fit boundary conditions, however this physical

meaning of the first two terms in the expansion would not remain.

2.2.2 Simplified Spherical Harmonic Methods

The use of Spherical Harmonic methods for practical problems has been hampered by

the fact that the multidimensional PN sets of equations are expensive to solve, as well

as the fact that they also grow rapidly in the order of (N + 1)2 due to the two vari-

ables associated with each basis function. There are other problems associated with

the method [43], including sharp gradients in the scalar flux being smoothed out by

low order expansions and a difficulty in approximating vacuum boundary conditions

because of the continuous variation in the approximated flux.

These difficulties in solving the multidimensional PN equations led Gelbard [75] in

the early 1960s to consider expanding the 1–dimensional spherical harmonic equations
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(which are simple and grow at a rate of (N + 1) as opposed to (N + 1)2) into the multi-

dimensional setting. He did this by replacing the spatial derivatives with Laplacian

and divergence operators, leading to the Simplified Spherical Harmonic (SPN) approx-

imation. Despite this method performing well for the initial test problems tried by

Gelbard, his derivation was ad-hoc and so interest in this method remained relatively

small until the 1980s. In 1981, Lemanska [102] observed that using the simplified third

order approximation led to a dramatic improvement in accuracy compared to when

diffusion theory is applied. Smith in his paper of 1986 [141] independently introduced

the SPN equations and showed them to produce superior results to a diffusion approx-

imation when applied to two dimensional lattice and core applications. However, he

also states that: “Attempts to derive these equations directly from the multidimen-

sional transport equation have been unsuccessful.” .

The SPN method was put on a more sound theoretical footing in 1992 when Larson,

McGhee and Morel [99] showed that the SPN expansion was a high order approxima-

tion to the transport equation in cases where the P1 expansion was the leading term.

2.3 Discrete Ordinates Methods

Discrete ordinates methods (also known as SN–methods) are another method for dis-

cretising the angular variable and were proposed by Wick in 1943 [161]. They were

subsequently developed further in the 1950s by Carlson and Chandrasekhar, see [47].

Carlson, whilst working at Los Alamos is credited with much of their development

during the 1960s.

In Discrete Ordinates the angular distribution of the neutron flux is evaluated in a dis-

crete number of directions (the ordinates) and quadrature rules are used to replace the

scattering and fission neutron source integrals with respect to the angle with summa-

tions over the ordinates.

2.3.1 An Illustration of the Method

For ease of explanation we consider the 1D version (2.2) of the neutron transport equa-

tion, as we did for the consideration of the spherical harmonic methods.

We discretise the continuous variable µ which in this case varies in the range

−1 ≤ µ ≤ 1 into a set of discrete directions (these are the ordinates in the name of

the method) {µi}N
i=1, we then approximate the integral of the angular flux using an
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appropriate quadrature rule to obtain the approximation,

∫ 1

−1
ψ(x, µ′) dµ′ ≈

N

∑
i=1

ωiψ(x, µi).

This yields a set of coupled differential equations that can be solved using any appro-

priate technique, for example, Finite Differences, when coupled with boundary condi-

tions. Namely, we have

µj

dψ(x, µj)

dx
+ Σtψ(x, µj) =

Σs + νΣ f

2

N

∑
i=1

ωiψ(x, µi) j = 1, 2, . . . , N. (2.11)

The choice of ordinates and weights is highly influential on the accuracy of the un-

derlying method for a given N; they should nevertheless satisfy the following simple

conditions:

(a) The weights are normalised so that

N

∑
i=1

ωi = 2.

(b) It is usually sensible to choose quadrature weights and ordinates that are sym-

metric about µ = 0. This is achieved by selecting

µi = µN+1−i,

ωi = ωN+1−i.

We do this so that we have equal resolution in the backward and forward fluxes.

(c) The quadrature weights should all satisfy ωi > 0 i = 1, 2, . . . N.

(d) We would like the approximation to the integral to be exact in cases where ψ(x, ·)
is a low order polynomial in µ. This implies the following conditions

N

∑
i=1

ωiµ
n
i =

2
n + 1

for n even,

N

∑
i=1

ωiµ
n
i = 0 for n odd.

In fact, the condition for n odd is guaranteed by property (b).

2.3.2 The Relation to PN Methods

It can be shown that a discrete ordinates method using two ordinates is equivalent to a

P1–approximation. From (2.7) we have that the integrals involved in the approximation

are

ψn(x) = 2π
∫ 1

−1
ψ(x, µ)Pn(µ) dµ.
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In the discrete ordinates method these are approximated using the quadrature rule, so

we have

ψ̃n(x) = 2π
N

∑
i=1

ωiψ(x, µi)PN(µi),

where ψ̃n(x) denotes the approximation to ψn(x) made by using the quadrature rule.

To obtain a set of equations satisfied by ψ̃n(x) we multiply (2.11) by 2π(2n+ 1)ωjPn(µj)

and sum over j. Now using the recurrence relation for the Legendre polynomials (2.5)

and the final requirement placed on the quadrature rule outlined above we obtain the

following set of equations,

(n + 1)
dψ̃n+1

dx
+ n

dψ̃n−1

dx
+ (2n + 1)(Σt − (Σs + νΣ f )δ0n)ψ̃n = 0 (2.12)

for n = 0, 1, 2, . . . , N − 1.

This is exactly the same set of equations as derived for the spherical harmonics tech-

nique in equation (2.9). There is however one important difference: when using spher-

ical harmonics, to obtain a finite set of equations we set dψN+1(x)
dx = 0. We cannot simply

do this for the system of equations (2.12) since dψ̃N

dx is already determined as it has been

defined by the quantities ψ(x, µ) using the quadrature rule. Instead we choose the or-

dinates {µi} to be the N roots of the nth Legendre polynomial PN(µ); this ensures that
dψN+1(x)

dx is automatically zero. Thereby, the set of equations (2.12) is identical to those

of the truncated Spherical Harmonic expansion.

2.3.3 Advantages and Disadvantages of the SN discretisation

Discrete ordinates methods are widely used for calculating the neutron flux distribu-

tion in a nuclear reactor core when diffusion approximations lack sufficient accuracy.

However, the choice of ordinates and quadrature weights are important, and affect

the accuracy and convergence properties. In addition, the spatial discretisation that is

chosen to be used in conjunction with the SN method plays an important role in de-

termining the overall effectiveness of the method. Suppose a finite difference method

has been used in one dimensional space with a distance ∆ between points, then if ∆ is

large in comparison with |2µi|/Σt for any direction µi, i = 1, . . . N then it is possible

for the angular flux to take unphysical negative values. Consequently, if you increase

the number of angular ordinates then the spatial mesh must be refined also as some of

the ordinates will become increasingly close to zero. This leads to a condition on the

relative discretisation sizes somewhat similar to the Courant-Friedrichs-Lewy (CFL)

condition. Lathrop developed differencing schemes that avoided this problem by en-

suring positive values of the flux [101].
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µi

Q

P

Ω

Figure 2.2: With a source placed at point Q and ordinates as shown, no absorption will

take place in the direction towards the point P, leading to large oscillations

in the angular flux.

For problems involving localised neutron sources and very little scattering (and so high

absorption rates), the well documented problem of unphysical oscillations in the angu-

lar distribution, known as ray effects can occur [41, 46]. This happens because the solu-

tion is only calculated in discrete directions. Looking at Figure 2.2 at the point P there

will no absorption as this only occurs in the directions µi. To obtain a good approx-

imation to the flux at the point P the discrete ordinates approximation relies on their

being enough scattering collisions to re distribute the neutron distribution. For low

scattering materials this does not happen and so large oscillations between the fluxes

at different directions can occur. One simple remedy is to add more ordinates, but

this clearly increases the computational cost. An alternative approach is to perform a

semi-analytical calculation of a first collision source to be used in a subsequent discrete

ordinates calculation resulting in a conversion from the discrete ordinates equations to

spherical harmonic equations which do not exhibit ray effects. It is also possible to de-

sign quadrature schemes particular to the neutron transport equation [1] in an attempt

to eliminate ray effects.
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2.4 Method of Characteristics

In conjunction with discretisations of the angular dimension spatial discretisations

must be considered; one of the most popular of these is the method of characteris-

tics. The method of characteristics (MoC) was first proposed by Riemann in his article

of 1859 “Über die Fortpflanzung ebener Luftwallen von endlicher Schwingungsweite”

(which can be found in German in the collection [131]).This is a general method ap-

plicable to many partial differential equations (PDEs) with a hyperbolic part. In this

method, one seeks to change the coordinate system in which the PDE is defined to an-

other where the PDE reduces to an ordinary differential equation (ODE). In discretising

this method and applying it to the neutron transport problem one finds the charac-

teristic directions of this PDE are, conveniently straight lines (since µ does not vary

spatially). These straight lines, referred to as tracks, can then be shifted through the

domain. This enables one to build up a solution across the entire domain by solving

the ODEs along these tracks.

The method was first applied to neutron transport in the 1950s, but it was not until the

early 1970s that it was applied to more realistic geometries within the technical report

[17]. The first large computer code that made use of the method of characteristics was

CACTUS developed in 1980 at Winfrith, Dorset; this code is still being developed and

is now one of the main packages included in Serco’s commercial WIMS software.

In the original CACTUS implementation a 2D region is covered with a regular grid and

then tracking lines begin from a point on the boundary at various angles. When these

tracking lines hit another boundary they are reflected; a process which continues until

the tracking lines meet their respective starting points again. This results in the region

being evenly covered by tracking lines. However, certain conditions on the location of

the starting point and the angle chosen have to be met to ensure this constraint is satis-

fied. Each tracking line approximates the flux at a certain angle, then the values of the

scalar flux density are stored for each of the discretised values of energy at each mesh

point. This results in a system with complete spatial, angular and energy discretisation.

It should be noted that Serco’s software has been further developed since 1980 so that

it can now also handle 3D domains.

This traditional implementation of ray tracing for the method of characteristics is re-

stricted to relatively simple geometries because tracking lines must return to their start-

ing point. Problems also occur in 3D; in particular, some regions may not be adequately

covered by tracking lines, whilst others are covered too densely. To overcome this dif-

ficulty Serco have now implemented methods that use so-called “once-through” track-

ing, where tracking lines are not reflected back through the domain. The difference

39



CHAPTER 2: NUMERICAL METHODS FOR SOLVING THE NEUTRON TRANSPORT

EQUATION

between these types of tracking procedures is depicted in Figure 2.3 below and dis-

cussed further in [27, 151]..

1

23

4

Ω

(a) Reflected tracking.

Ω

(b) Once through tracking.

Figure 2.3: Reflected tracking (a) and Once-through tracking (b)

2.4.1 The Method of Characteristics in 2D

As an example of the application of the method of characteristics, consider (1.6) which

for clarity we reproduce here

µ · ∇xψ(x, ϕ) + Σtψ(x, ϕ) =
Σs + νΣ f

2π

∫ 2π

0
ψ(x, ϕ′) dϕ′. (2.13)

To solve this using a characteristics based approach, first, we perform a discrete ordi-

nates discretisation in angle. Thereby, the scalar flux is calculated by a weighted sum

of the angular flux evaluated at specific discrete ordinate directions, i.e.,

φ(x) =
∫ 2π

0
ψ(x, ϕ′) dϕ′

≈
N

∑
k=1

ωkψk(x, ϕk).

Here, N is the number of directions, ϕk are the discrete ordinate directions and ωk are

the weights. If the directions are linearly spaced then ωk = 2π
N . The weights ωk must

sum to 2π since we would like the approximation to be exact for constant functions.

For each k, ψk is the solution to an advection problem; thereby, numerically approxi-

mating the neutron transport equation reduces to the problem of solving a sequence of

coupled advection problems. Indeed, for each k = 1, . . . , N, we have that

µk · ∇xψk(x, ϕk) + Σtψk(x, ϕk) =
Σs + νΣ f

2π
=

N

∑
k=1

ωkψk(x, ϕk), (2.14)
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where µk = (cos(ϕk), sin(ϕk))
⊤. To solve systems of equations such as (2.14) we can

use a fixed source iteration technique. This will be discussed in more detail in Chapter

4, but briefly, this approach uses the scalar flux calculated at the nth level of iteration as

the source term on the RHS when solving for the angular flux at the (n + 1)st iteration

as shown below

µk · ∇xψn+1
k (x, θk) + Σtψ

n+1
k (x, θk) =

Σs + νΣ f

2π

P

∑
k=1

ωkψn
k (x, θk). (2.15)

For the first iteration (i.e., n = 0) the RHS is taken to be any function that satisfies

the boundary conditions. This iteration is then continued until the scalar flux φ has

converged with respect to some pre-set tolerance.

The method of characteristics can then be used to solve each advection problem; these

take the following form

µk · ∇xψk(x, θk) + Σtψk(x, θk) = f (x) in Ω, (2.16)

ψk(x) = g(x) on ∂−Ω, (2.17)

where as before ∂−Ω denotes the inflow boundary of the domain Ω. The inflow bound-

ary is defined by ∂−Ω = {x ∈ ∂Ω : µ · n(x) < 0}, where n(x) is the unit outward

normal at the point x.

First we split the domain Ω into a mesh Th composed of elements of diameter no greater

than h and define the following function space associated with the mesh,

Sh = {v ∈ L2(Ω) : v|k ∈ P0(κ) ∀κ ∈ Th},

where P0(κ) denotes the space of constant functions over κ.

As stated before, in this case the characteristics are straight lines and so we place a

number of parallel lines across the domain which correspond to the characteristics

propagating in the direction of the advection ϕi. Each characteristic crosses a num-

ber of elements and the flux on each element is the sum of the contributions from each

characteristic crossing that element. For this reason the track spacing is determined in

such a manner that at least one track crosses each element.

Along these characteristics, each advection problem of the form (2.16) reduces to the

following ODE
dψk(s)

ds
+ Σtψk(s) = f (s), (2.18)

where s is a variable which measures length along the characteristic. The ODE (2.18)

can be solved using the integrating factor method by writing,

d
ds

(ψkeΣts) = eΣts f (s).
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Hence,

ψk(t2) = e−Σtt2

(∫ t2

t1

eΣtr f (r) d r + ψk(t1)e
Σtt1

)

,

where t1 is the location of the inflow point and t2 is the location of the outfow point.

For every intersection of an element by a characteristic, the location of the inflow point

t1 is either known from a previous outflow point of a neighbouring element or the

boundary conditions, and then t2 can easily be calculated using the equation of the

straight line.

So far this solution along the characteristic is exact; the approximation to the integral

by ,for example, the trapezium rule gives

∫ t2

t1

eΣtr f (r) d r ≈ (t2 − t1)(e
Σtt1 f (t1) + eΣtt2 f (t2))

2
.

Since the trapezium rule is second order accurate the first order property of the approx-

imation for ψ should not be degraded.

Once we know ψk(t1) and ψk(t2) we can calculate the average angular flux ψk over the

current track/element intersection using the following approximation

ψk =
ψk(t1) + ψk(t2)

2
.

We then add this onto the already calculated angular flux in the element κ. Once we

have solved for all tracks we obtain a weighted average of the flux on an element κ:

ψh|κ =
∑

ρκ

i=1 ψi,κ li,κ

∑
ρκ

i=1 li,κ
,

where ρκ is the number of characteristics which cross the element κ and li,κ the length

of the intersection between track i and element κ. The appearance of the subscript i in

the average angular flux ψk describes the explicit dependence of the average angular

flux on the track i.

This methodology is then repeated until the flux converges to some pre–set tolerance.

2.4.2 Short Characteristic Methods

The method of short characteristics has been introduced by Takeuchi [133, 149, 150] in

an attempt to mitigate some of the drawbacks of the Method of Characteristics. This ap-

proach was developed further by Dedner and Vollmöller [62] into a high order method

for the radiative transport equation, and has since been analysed by Baker in his recent

PhD thesis [27]. We will briefly describe the methodology and main result from [27] in

this section. One large disadvantage of the original method of characteristics is that to

resolve fine detail in a particular region of space you must have small elements with
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µ

A B

CD

E

Figure 2.4: Spatial element for the short characteristics method

densely packed characteristics in that region. However, since these characteristics must

extend across the whole domain you greatly increase the cost of the overall computa-

tion. In the method of short characteristics the characteristics are defined locally on an

element instead of globally, and so elements in regions of interest can have character-

istics that are packed more densely than in regions of the spatial domain that are not

of interest. In Takeuchi’s method the unknowns to be determined using the method of

short characteristics were the values of the angular flux at the vertex points of a mesh

imposed on the spatial domain. Suppose the element shown in Figure 2.4 is one such

element. Flux is incident on this element in the direction µ and so faces AB and AD

are inflow faces; we therefore have values for the angular flux at the vertices A, B and

D. We wish to find the angular flux at vertex C. To do this we track back from point D

in the direction −µ to a point E on the inflow face AB and then solve the characteris-

tic ODE along this line, where the initial condition at E has been provided by a linear

interpolation of the angular flux values at A and B. This approach produced a bilinear

representation of the angular flux and was generalised by Dedner and Vollmöller [62]

to give rise to a high order spatial approximation.

Baker [27] undertook a rigorous analysis of both the standard method of (long) char-

acteristics and method of short characteristics and showed convergence results for the

application of characteristic methods in space with a discrete ordinates discretisation

in angle.
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2.5 Finite Element Methods

Finite Element Methods (FEMs) are popular for solving partial differential equations on

complex domains because of their flexibility. In a finite element method, the problem

is recast in a weak formulation where we seek a solution ψ in some function space

W. This weak formulation is then discretised by partitioning the domain into a mesh

of elements (which in two dimensions are normally triangles or quadrilaterals) and

considering a finite dimensional subspace Wh ⊂ W of polynomials of degree p. A

standard FEM can then be summarised by writing the discretised weak form as: find

ψh ∈Wh such that

A(ψh, vh) = l(vh) ∀vh ∈ Vh,

where Vh is the space in which the solution lies, V is the test space (note that Vh is

not necessarily the same space of functions as V). Here A : Vh × Vh → R is a bilin-

ear form and l : Vh → R is a linear functional Conforming Finite Element Methods

are discretisation methods which were developed out of the work of Courant [58]; in

this paper from 1943, Courant presents a variational method for the solution of certain

vibrational problems. The method was subsequently rediscovered by structural engi-

neers [166] who named it the Finite Element Method (FEM). For the neutron transport

equation finite element methods were traditionally used to discretise the spatial dimen-

sions. Conforming FEMs enforce certain continuity constraints between elements and

in the 1980s these were applied to neutron transport in conjunction with a spherical

harmonic discretisation of the angular domain by Oliveira [60], this led to the devel-

opment of the EVENT multi dimensional finite element-spherical harmonics radiation

transport code as described in [61]. Lewis, Carrico and Palmiotti have also developed

a hybrid continuous finite element method for the spatial discretisation of the neutron

transport equation (where the angular dimension is also discretised with a spherical

harmonics approach) for the code VARIANT [105, 123] which can handle cartesian and

hexagonal 2D and 3D geometries. In [157] a finite element discretisation utilising high

order conforming finite elements in the library deal.II is described for the diffusion ap-

proximation to the transport equation.

It is well known that conforming FE methods can exhibit unphysical oscillations (as

discussed in the previous chapter), because of this in their papers [121, 122] Pain et

al. advocate the use of the Streamline Upwind Petrov-Galerkin (SUPG) method as de-

veloped by Brooks and Hughes in 1982 [42] for the solution of the neutron transport

equation. This method introduces an artificial diffusion term in the stream wise direc-

tion to damp unphysical oscillations in the vicinity of sharp flux gradients. It is well
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known that even these methods do not guarantee the absence of oscillations near large

gradients of the solution and that the only way to reliably suppress these oscillations

is to introduce some type of non-linear dissipation within the numerical method. This

is achieved by adding a discontinuity capturing term to the usual SUPG formulation

that attempts to resolve sharp gradients in the solution field by adjusting the amount

of dissipation in the space-time streamline direction.

As previously mentioned conforming finite element methods enforce continuity re-

quirements across inter-element boundaries; in contrasts Discontinuous Galerkin (DG)

methods do not possess this restriction. As discussed in Section 1.4.1 DG methods

were in fact first introduced as a proposed spatial discretisation method for the neu-

tron transport equation in 1973 by Reed and Hill in the technical report [127]. Here

a spatial DG discretisation was used in conjunction with a discrete ordinates angular

discretisation. In this article they conclude that, despite the increase in computational

time due to the increased number of variables to be solved for, the DG approach offer

some clear advantages. The DG method is seen to be much more stable, not exhibiting

as pronounced unphysical oscillations. The authors also note that a solution acceler-

ation technique known as coarse mesh rebalance [126] works in conjunction with the

DG method, whereas it can lead to a divergent scheme when used with a CG discreti-

sation. The first analysis of the method of Reed and Hill was undertaken by LeSaint

and Raviart in 1974 [100] where they considered only the spatial discretisation. In ad-

dition, they discussed an element by element solution scheme for the resulting linear

equations. Subsequently in 1983, Johnson and Pitkäranta published their paper [92] in

which they prove an error estimate for a fully discrete method for the numerical so-

lution of a 2D model problem from neutron transport theory. Their work considers a

discrete ordinates discretisation for the angular variable and uses DG in the space vari-

able. The problem considered in [92] corresponds to one where the physical region is a

thin plate as defined in equation (1.6) but without the presence of the term σt and with

(σs + νσf )/2π constant. They then recast this equation in operator form.

(I − λT)φ = T f ,

where

T =
∫

S
Tµ dµ
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and for any µ ∈ S, Tµ is the solution operator for the problem: given g ∈ L2(Ω), find

w such that

µ · ∇w + w = g in Ω, (2.19)

w = 0 on Γ−
µ

, (2.20)

(this means that w = Tµg if w satisfies (2.19) and (2.20)). Finally, φ is the scalar flux,

defined as follows:

φ =
∫

S
ψ(x,µ) dµ.

For an angular discretisation consisting of N discrete ordinates and a spatial discreti-

sation with mesh width h, denoting the error due to quadrature and the error due to

the spatial discretisation by eN and eh
N respectively, the authors prove an error bound

of the form

||φ− φh
N|| ≤ C(||eN ||+ ||eh

N ||),

where φh
N denotes the approximate solution and C is a positive constant independent

of N and h. This bound can be interpreted as showing a rate of convergence of O(N−1)

with respect to the angular discrete ordinate discretisation and rate O(h1/2) with re-

spect to the mesh width h of the spatial discretisation. Using realistic regularity es-

timates and supposing that f is sufficiently smooth this can be slightly improved to

N−3/2+ε and h1−ε, respectively. The analysis of Johnson and Pitkäranta has been ex-

tended in many papers by Asadzadeh [15, 16].

Radiative transfer theory is often used to describe the radiation fields around stars and

other inter-stellar objects and is an area of research that is closely related to neutron

transport theory since their governing equations are very similar. As a consequence re-

search in this field should also be considered for its applicability to neutron transport.

Kanschat has, since his PhD thesis [95] been working (among other areas) in the area

of applying DG methods to radiative transfer problems. In their article, Führer and

Kanschat [73] consider the following problem:

µ · ∇ψ(x,µ) + (κ + λ)ψ(x,µ) =
λ

2π

∫

S
ψ(x, θ′) dµ′ + κ f (x), x ∈ (Ω× S),

where κ and λ are constants, Ω, S and µ are as defined for the two dimensional mono

energetic steady state neutron transport equation.Together with homogeneous bound-

ary conditions on the inflow boundary,

ψ(x, µ) = 0 on x ∈ Γ−µ ,

In [73] a discretisation which uses finite element methods in both angular and spatial

discretisations has been developed. In this work they use a DG(p) (i.e. a discontinuous
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Galerkin discretisation using polynomials of degree p) for the angular discretisation

and the streamline diffusion method with an additional small artificial diffusion term

for the spatial discretisation. In this article when using a DG(0) discretisation in an-

gle and using suitable dual problems, the authors derive an a posteriori error estimate

for the error in computing φ. Moreover, they present numerical experiments which

indicate the error estimator is reliable in that it can be used to guide refinement of the

spatial mesh when used on regular and quadrilateral meshes. Adaptivity is important

since the computational time would become excessively high if only global refinement

of the mesh was employed. Despite this success, the authors emphasise that the indica-

tor they present may over-estimate the true error on grids that are not regular. Führer

and Kanschat [73] also note that using a DG(0) (i.e. piecewise constants) discretisation

in angle is essentially the same as performing a discrete ordinates discretisation, which

enables existing, well developed iteration and parallelisation techniques to be used in

the solution of the discrete problem.

Such techniques are described in more detail in an article by Richling et al. [128] where

the three dimensional radiative transfer problem is considered. Described in this paper

is the use of an iterative solver that exploits the structure of the matrix resulting from

the discretisation. They also perform a number of numerical tests which produce re-

sults that strongly favour the use of finite element methods in solving this problem.

It is worth noting that despite the original paper of Reed and Hill considering higher or-

der DG discretisations, since then there has been minimal work on applying high order

polynomial DG approximations to the neutron transport problem. One notable excep-

tion is the work of Wang and collaborators [125, 155, 156]. They consider a high order

DG spatial discretisation in conjunction with a discrete ordinates angular discretisation

for the solution of the multi group neutron transport equations. In [155] two error in-

dicators, one projection based and the other jump based, are proposed for the adaptive

refinement of the spatial mesh. Wang points out that these indicators do not perform

well for goal oriented calculations, indeed for a boundary flux calculation the solution

using adaptively refined meshes is less accurate than that obtained when using uni-

form refined meshes with less degrees of freedom. Issues concerning parallelisation

and the acceleration of the solution process using discrete synthetic acceleration (DSA)

are also discussed.
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2.6 Monte Carlo Methods

All of the discretisation methods that we have discussed previously are deterministic

in nature, it is also possible to use stochastic methods for the solution of neutron trans-

port problems. Indeed, historically benchmark results used to compare solvers have

been obtained using Monte Carlo methods.

It is possible to“follow” an individual neutron through a domain, using statistical dis-

tributions to model interaction rates with other neutrons; the information generated

for each neutron is known as a trial. Monte Carlo Methods exploit a large number of

trials and the name is generally credited to Stanislaw Ulam, Enrico Fermi, John von

Neumann and Nicholas Metropolis while working at Los Alamos in the 1940s.

Spanier and Gelbard’s book [144] provide a good introduction to Monte Carlo meth-

ods as applied to Neutron Transport. Monte Carlo methods are stochastic methods

and as such will not lead to a fixed deterministic outcome but, if enough simulations

are run, very accurate modelling of the problem can be achieved with results to the

accuracy required by nuclear engineers obtained. Essentially, the idea is to simulate a

large number of particles (significantly less than the total number though) and follow

them through time and space. Each particle has values that determine the position, en-

ergy and direction at time t associated with it. These values are then used to determine

the set of values at time t + ∆t for each particle, using probability density functions.

Each neutron of energy E will have associated probabilities of scattering, absorption,

causing fission and continuation (which sum to unity) that are dependent on E. In the

instance of scatter and fission, additional probabilities will determine the paths and en-

ergies of the emerging neutrons. An entire set of so called ‘histories’ can be generated

by a random number generator which produces uniformly distributed values between

0 and 1. This procedure is carried out as many times as necessary to produce realistic

solutions.

The Monte Carlo method is often used in practical applications as it can be used to

model complex geometries. However, the method is very computationally intensive,

due to the large number of particles that must be simulated to generate reliable results.

It also converges slowly, more precisely for N realisations, the error is proportional to

1/N1/2, so to halve the error requires 4 times as many realisations to be generated.

2.6.1 Variance Reduction

Many techniques have been developed to try and reduce the computational load and

increase the efficiency of the Monte Carlo method and several fit into a class known

48



CHAPTER 2: NUMERICAL METHODS FOR SOLVING THE NEUTRON TRANSPORT

EQUATION

as“variance reduction” [145]. In general the first moment of a function h(x) is defined

as the following integral

〈h〉 =
∫ b

a
h(x)p(x) dx,

where a ≤ x ≤ b and p(x) is the probability density function of the random variable x.

The first moment is know as the expectation of the function h(x). The second moment

is defined to be

〈h2〉 =
∫ b

a
h2(x)p(x) dx.

Using these two moments we can define the variance of h(x) to be

V(h) =
∫ b

a
(h(x)− 〈h〉)2 p(x) dx

= 〈h2〉 − 〈h〉2.

Finally the standard deviation is defined to be the square root of the variance, i.e.,

std(h) =
√

V(h).

Suppose that we choose N random values of the variable x from the cumulative dis-

tribution function (defined to be F(x) =
∫ x

a p(x′) dx′) we can estimate the mean value

〈h〉 to be

h̄ =
1
N

N

∑
i=1

h(xn)

The error in the estimate above can be bounded using the central limit theorem for large

N. This states that if many estimates h of 〈h〉 are obtained in the above way where each

estimate involves N trials then the variable h is normally distributed about 〈h〉 to terms

of accuracy O(1/N1/2).

Usually the first and second moments of h(x) are unknown, but the statistical data can

be used to calculate the following approximations:

〈h〉 = 1
N

N

∑
i=1

〈h〉 = 〈h〉

and

〈h2〉 = 1
N

[
N〈h2〉+ N(N − 1)〈h〉2

]
=
〈h2〉
N
− N1

N
〈h〉2

Using these we can approximate the variance in the statistical estimate of h̄ by

V(h) =
1
N

(
〈h2〉 − 〈h〉2

)

=
V(h)

N

≈ 1
N − 1

(

h2 − h
2
)

.
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We can also approximate the mean squared fractional error associated with the statis-

tical estimate of h̄ to be

ε2 =
1
N

( 〈h2〉
〈h〉2 − 1

)

≈ 1
N − 1

(

h2

h
2 − 1

)

. (2.21)

To increase the confidence in the Monte Carlo calculation it is important to reduce the

mean squared error; from (2.21) it is easily seen that one way of doing this is to run more

histories. However, this increases the computational cost, hence alternative methods

have been introduced to reduce this error.

One common approach is known as importance sampling: if a priori we know that we

are more interested in some regions of the domain than others we can use importance

sampling [41] to resolve more detail in the region of high interest. In regions of high

importance each neutron can be split into two neutrons, each having half the weight

of the original neutron. This allows a more detailed investigation of the region than

would be possible without doing this. Similarly, in regions of low importance we can

remove neutrons, by giving each neutron a fifty-fifty chance of survival, with the pro-

viso that if it survives its weight is doubled.

Another method to reduce the computational load needed is to implement Woodcock

tracking [41, 163]. Woodcock tracking is implemented in Serco’s MONK code. If the do-

main is composed of subdomains of different materials with vastly different properties

then every particle’s track must be divided into sections with the distances between

section boundaries known. This is very expensive to implement in practice, and so

Woodcock introduced the idea of a “hole region” in which the complex geometry is

contained. In this “hole” region all materials are given the same total cross section and

so a particle can track through as if it was in a uniform medium ignoring the complex

geometry. The value chosen for the total cross section σt is chosen to be the largest Σt

for any material in the region. For the remaining materials (which have a lower Σt)

there is the addition of a new cross section denoted byΣ0, which is the probability of a

particle scattering forwards with no change in energy and so moving on as if no colli-

sion occurred. Using “hole” regions reduces the difficulty in programming the method

to solve the transport equation on complex regions. It is possible that routines imple-

menting “hole regions” may be slower than normal regions [41], but this isn’t always

the case.

2.6.2 The Method of Perturbations

In neutron transport problems it is often required to understand the effect that a small

perturbation to the system has on the solution, for example, the change caused by mov-

50



CHAPTER 2: NUMERICAL METHODS FOR SOLVING THE NEUTRON TRANSPORT

EQUATION

ing a control rod in or out of the system. When employing conventional Monte Carlo

methods it would be necessary to completely re-calculate the solution with the new

perturbation. In addition to this taking time, it may also not allow the user to see the

change due to the perturbation because of the inherent uncertainties in the Monte Carlo

method. The Method of Perturbations has been investigated for many years [78, 81]

and seeks to circumvent this problem by solving a simple problem on a homogeneous

geometry using a deterministic method, before introducing a perturbation to the sys-

tem and applying Monte Carlo to calculate a new solution. Classical perturbation the-

ory generally ignores higher order terms, an alternative method of perturbations has

been developed by Serco Assurance (now AMEC) and is incorporated into their MAX

module which is part of the WIMS software [90]. By performing a sequence of pertur-

bations a solution to a “real life” complex geometry problem can be obtained, using

the original deterministic solution as a starting point. In doing this there is also the

advantage that the affect of each perturbation can be analysed separately.

To illustrate this method we follow the approach of [134] and consider the following

rearrangement of equation (1.10),

Tψ = Sψ + λFψ. (2.22)

We assume that we have a solution to the unperturbed problem given by the pair

(ψ0, λ0), that is we have the solution to the following problem:

T0ψ0 = S0ψ0 + λ0F0ψ0. (2.23)

We now introduce a perturbation to the system and define the following new operators,

T = T0 + ∆T,

S = S0 + ∆S,

F = F0 + ∆F.

These perturbations will yield a new solution pair (ψ, λ) such that ψ = ψ0 + ∆ψ and

λ = λ0 + ∆λ and so we therefore have the equation,

T(ψ0 + ∆ψ) = S(ψ0 + ∆ψ) + (λ0 + ∆λ)F(ψ0 + ∆ψ). (2.24)

We now rearrange (using the full expressions for T, S and F) to collect terms involving

∆ψ on the left hand side and all other terms on the right hand side

[(T0 + ∆T)− (S0 + ∆S)−(λ0F0 + λ0∆F + ∆λF0 + ∆λ∆F)]∆ψ

= [(S0 + ∆S)− (T0 + ∆T) + λ0(F0 + ∆F)]ψ0

+ ∆λ( f0 + ∆F)ψ0.

51



CHAPTER 2: NUMERICAL METHODS FOR SOLVING THE NEUTRON TRANSPORT

EQUATION

Using the definitions for the perturbed operators and equation (2.23) we obtain the

following

(T − S− (λ0 + ∆λ)F)∆ψ = (∆S + λ0∆F − ∆T)ψ0 + ∆λFψ0. (2.25)

To proceed further and obtain an expression for ∆λ we require the adjoint (or dual)

solution (ψ∗0 , λ0) of the unperturbed problem

T∗0 ψ∗0 = S∗0ψ∗0 + λ0F∗0 ψ∗0 .

We now multiply (2.25) by the adjoint angular flux and integrate over all the spatial,

angular and energy domains to obtain (on re-expanding the left hand side and rear-

ranging),
∫ 4π

0

∫ ∞

0

∫

Ω
ψ∗0(T0 − S0 − λ0F0)∆ψ dx dE dµ =

∫ 4π

0

∫ ∞

0

∫

Ω
ψ∗0(∆S + λ0∆F− ∆T)(ψ0 + ∆ψ) dx dE dµ

+ ∆λ
∫ 4π

0

∫ ∞

0

∫

Ω
ψ∗0 F(ψ0 + ∆ψ) dx dE dµ,

where Ω is the spatial domain. Due to the nature of the adjoint problem, the left hand

side of the above is zero and so we can rearrange the above equation to obtain an

expression for the perturbation in the eigenvalue

∆λ =

∫ 4π
0

∫ ∞

0

∫

Ω
ψ∗0(−∆S− λ0∆F + ∆T)(ψ0 + ∆ψ) dx dE dµ
∫ 4π

0

∫ ∞

0

∫

Ω
ψ∗0 F(ψ0 + ∆ψ) dx dE dµ

. (2.26)

This together with (2.25) can be used to define an iterative scheme to “build up to” the

final solution, since if we substitute the expression for ∆λ back into (2.25) we have the

following fixed-source equation

(T − S− (λ0 + ∆λ)F)∆ψ = (∆S + λ0∆F − ∆T)ψ0

+

∫ 4π
0

∫ ∞

0

∫

Ω
ψ∗0(−∆S− λ0∆F + ∆T)(ψ0 + ∆ψ) dx dE dµ
∫ 4π

0

∫ ∞

0

∫

Ω
ψ∗0 F(ψ0 + ∆ψ) dx dE dµ

Fψ0.

By relating the method discussed above to the method of (shifted) inverse iteration (an

approach for computing eigenvalues and eigenvaectors of a matrix or operator [91],

which we shall see later) Scheben shows a linear rate of convergence for the method of

perturbations.

2.7 A Comparison of the Methods Discussed

In this concluding section we briefly compare the numerical methods discussed and

explain the choice of using a discontinuous Galerkin method for both the angular and
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spatial discretisation.

Stochastic Monte Carlo methods are often used to generate benchmark eigenvalue

computations but as the focus of this work is adaptive deterministic discretisations

they shall not be considered here.

Diffusion methods have the advantage that they produce solutions quickly (this would

have been more important when computers were in their infancy), however due to the

assumptions on the scalar flux that are required when re-casting as a diffusion problem

they have limited applicability. In particular a straight forward diffusion approxima-

tion is not suitable for a reactor core eigenvalue computation.

To evaluate the remaining methods discussed in this chapter it is useful to consider

angular and spatial discretisations separately.

2.7.1 Angular Discretisation of the Neutron Transport Equation

Historically the most popular angular discretisation was the discrete ordinates method

due to it’s conceptual simplicity. It can be seen, however, that careful choice of ordi-

nates is important to ensure the accuracy and convergence of the method if this dis-

cretisation is chosen. The choice of spatial discretisation used in conjunction with a

discrete ordinates method is also important. The primary disadvantage with the dis-

crete ordinates method is the possible presence of ray effects (un physical oscillations)

which occur due to the ordinates only sampling specific angular directions. Despite

work on methods to mitigate these ray effects they remain a problem for industrial

benchmark computations and here the use of spherical harmonic methods as the an-

gular discretisation of choice possess advantages. Spherical harmonic methods do not

suffer from ray effects, though in their purest sense they are computationally expen-

sive for three dimensional benchmark problems. Due to this difficulty present when

solving the multidimensional SN equations the simplified spherical harmonic method

were proposed, however, despite the work of Larson et. al. [99] the theoretical footing

of these methods is still limited.

As mentioned, in his work on the radiative transfer problem [95] Kanschat employed a

discontinuous Galerkin method for the angular discretisation, limiting the order of dis-

cretisation to piecewise constants. As explained earlier this can be shown to be equiv-

alent to a discrete ordinates (since a one point angular quadrature rule can be used for

each angular element) and so ray effects could be present in the numerical solution. A

higher order discontinuous Galerkin method in the angular domain shouldn’t possess

these problems, yet still enable parallelisation in the angular domain. For this reason,
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and because we are aiming to develop an a–posteriori adaptive method the work in this

thesis utilises an arbitrary order discontinuous Galerkin method in angle.

2.7.2 Spatial Discretisation of the Neutron Transport Equation

Finite element methods are eminently suited to the spatial discretisation of the neutron

transport equation since they can be of arbitrary order and are also able to handle com-

plicated domains with curved boundaries. Higher order methods have been shown to

be beneficial over low order methods since they converge at a higher rate.

The method of characteristics is popular method, though since it is of low order and

the implementations often limit the geometries that can be considered the method of

short characteristics (as studied in Baker [27] and others) has been developed. One

shortcoming of this method is that rigorous analysis is hard.

Because of the desire to implement a high order method with adaptivity the analy-

sis techniques available when using a variational method were attractive and so for

this work a finite element discretisation of the spatial domain was proposed. A dis-

continuous Galerkin method was favoured over a conforming finite element method

because of the relative ease of implementing adaptive algorithms. The use of discontin-

uous Galerkin methods in both angle and space will allow for a unified computational

treatment of both discretisations in addition to affording a unified theoretical analysis

of the method.
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In this chapter we derive discontinuous Galerkin discretisations of the neutron trans-

port equation. We begin by discretising a linear advection problem and providing a

brief survey of associated a priori convergence results. We then turn our attention to

the two dimensional mono energetic steady state neutron transport equation, firstly

discretising the spatial variable using a DG method and employing a discrete ordinates

approximation in angle, before detailing an arbitrary order discontinuous Galerkin dis-

cretisation of both the angular and spatial domains. Finally, we discuss some modifica-

tions to the problem and discretisation to enable us to consider problems in a specific

restriction of the full three dimensional angular space.

3.1 The Linear Advection Problem

Let Ω be a bounded open polyhedral domain in Rd with smooth boundary Γ. In this

section we consider the following linear advection reaction equation

Lau ≡ b · ∇xu + Σtu = f in Ω

u = g on Γ−,






(3.1)

where f ∈ L2(Ω), Σt ∈ L∞(Ω) are real valued functions and b = {bi}d
i=1 is vector

function whose entries bi are Lipschitz continuous real valued functions on the closure

of Ω. Writing n(x) to denote the unit outward normal vector to Γ at a point x ∈ Γ,

on introducing the so called Fichera function b · n (as used in [120]), we can define the

following splitting of Γ:

Γ− = {x ∈ Γ : b(x) · n(x) < 0}, (3.2)

Γ+ = {x ∈ Γ : b(x) · n(x) ≥ 0}. (3.3)
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A hanging node

Figure 3.1: A mesh patch with one hanging node on a face

with Γ = Γ− ∪ Γ+. We refer to Γ− as the inflow boundary and Γ+ as the outflow bound-

ary.

Now we let T denote a subdivision of Ω into disjoint open element domains κ such

that

Ω̄ =
⋃

κ∈T
κ̄,

where T is at most 1-irregular, i.e., we allow at most one hanging node on each face of

an element κ ∈ T as shown in Figure 3.1. By hκ we denote the diameter of the element

κ ∈ T . We assume that the family of subdivisions T is shape regular (see [65] for

example for further details), meaning that there exists some number d > 0 such that

every κ ∈ T contains a circle of radius ρκ with

ρκ ≥
hκ/2

d
.

We assume that each element κ can be expressed as a mapping of a fixed reference

element κ̂, that is κ = Fκ(κ̂), where Fκ is smooth and bijective, for each κ ∈ T . For

simplicity we will now restrict ourselves to the situation d = 2, that is our domain Ω is

a portion of R2. The reference element κ̂, in this case can be either the open unit triangle

κ̂T = {x̂ = (x̂1, x̂2) ∈ R
2 : 0 < x̂1 + x̂2 < 1, x̂i > 0, i = 1, 2},

or the open hypercube κ̂C = (−1, 1)2 in R2.

On κ̂ we define the following spaces of polynomials of degree p ≥ 0, with the conven-

tion that α is a multi-index:

Pp = span{x̂α : 0 < |α| ≤ p},
Qp = span{x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ 2}.

For each κ ∈ T we denote by pκ ≥ 0 the polynomial approximation degree employed

on κ. Forming the vectors p = {pκ : κ ∈ T } and FΩ = {Fκ : κ ∈ T }, we introduce the

discontinuous hp-finite element space

Vh,p = Sp(Ω, T ,FΩ) = {u ∈ L2(Ω) : u|κ ◦ Fκ ∈ Spκ , κ ∈ T }, (3.4)
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where

Spκ =







Ppκ(κ̂) if F−1
κ (κ) = κ̂T,

Qpκ(κ̂) if F−1
κ (κ) = κ̂C.

Remark 7. The extra degrees of freedom present in the space Qp are required to maintain the

optimality of the approximation properties on a general quadrilateral mesh, see [13] for details.

If the polynomial degree is uniform, i.e., pκ = p for all κ ∈ Th then we simply write

Sp(Ω, T ,FΩ). For any element κ ∈ T , we let ∂κ be the union of 1–dimensional open

faces of κ. Similarly, for any x ∈ ∂κ, nκ(x) denotes the unit outward normal vector

to ∂κ at x. Using these definitions, we can define, the inflow and outflow parts of ∂κ,

respectively, by

∂−κ = {x ∈ ∂κ : b(x) · nκ(x) < 0},
∂+κ = {x ∈ ∂κ : b(x) · nκ(x) ≥ 0}.

where nκ(x) now denotes the unit outward normal vector to ∂κ at x ∈ ∂κ. For any

κ ∈ T we denote the interior trace of v ∈ H1(κ) by v+κ . For an element κ ∈ T such that

∂−κ \ Γ is non empty then for every x ∈ ∂−κ \ Γ there exists a unique element κ′ ∈ T
such that x ∈ ∂+µκ′Ω. Then, assuming that v ∈ H1(κ) for all elements κ ∈ T , we can also

define the outer trace v− of v on ∂−µκ \ Γ− relative to κ as the interior trace v+ relative

to the element κ′. This is shown in Figure 3.2.

b

x

κκ′

Figure 3.2: A point x such that x ∈ ∂−κΩ and x ∈ ∂+κ′Ω

3.1.1 hp DGFEM Discretisation

To define the hp discontinuous Galerkin finite element discretisation we consider an

alternative form of the advection equation (3.1), namely the conservative form.

b · ∇xu + Σtu = f in Ω

u = g on Γ−,






(3.5)
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We seek a solution u ∈ V where V is a suitable function space.To this end, multiplying

(3.5) by a smooth test function v and integrating over an arbitrary element κ, utilising

integration by parts to give

−
∫

κ
(bu) · ∇v dx+

∫

∂κ
(bu+) ·nκv+ ds = 0.

We can weakly enforce inter element continuity and boundary conditions with the use

of a suitable numerical flux function H(·, ·,nκ) to obtain,

−
∫

κ
(bu) · ∇v dx+

∫

∂κ
H(u+, u−,nκ)nκv+ ds =

∫

κ
f v dx,

finally, summing over all elements κ ∈ T we obtain the following continuous weak

formulation: find u ∈ V such that

∑
κ∈T

(

−
∫

κ
(bu) · ∇v dx+

∫

∂κ
H(u+, u−,nκ)nκv+ ds

)

= ∑
κ∈T

∫

κ
f v dx,

for all v ∈ V. to obtain the DG discretisation we simply restrict to the finite dimensional

space Vh,p and replace u with its discontinuous Galerkin approximation uDG and v with

vh. This leads us to our discretised weak formulation to be solved: find uDG ∈ Vh,p such

that,

∑
κ∈T

(

−
∫

κ
(buDG) · ∇vh dx+

∫

∂κ
H(u+

DG, u−DG,nκ)v
+
h ds

)

= ∑
κ∈T

∫

κ
f vh dx, (3.6)

for all vh ∈ Vh,p.

Remark 8. Note that all integrals in the above are elemental and we have not performed an

integration by parts globally

The numerical flux function H(·, ·, ·) handles the jumps in solution values across ele-

ment boundaries. There are many choices of numerical flux function, see for example

[104], however any chosen should possess the following properties:

• Consistency

For each κ ∈ T we have that

H(v, v,nκ |∂κ = (bv) ·nκ ∀ κ ∈ T

• Conservation

For any two neighbouring elements κ and κ′ from the partition T , at each point

x ∈ ∂κ ∩ ∂κ′ 6= ∅, noting that nκ′ = −nκ we have that

H(v, w,nκ) = −H(w, v,−nκ)

58



CHAPTER 3: DG METHODS FOR NEUTRON TRANSPORT

The simplest choice would be the upwind numerical flux

H(u+
DG, u−DG,nκ) = b ·nκ lim

s→0+
uh(x− sb) forκ ∈ T ,

however, to be consistent with later chapters we choose the Lax–Friedrichs flux

H(u+
DG, u−DG,nκ) =

1
2
(b · n+ |b ·n|)u+

DG +
1
2
(b ·n− |b ·n|)u−DG. (3.7)

This flux needs to be augmented with a definition on the boundary, since for element

faces coincident with the boundary u−DG has no meaning. Instead, the second argument

is replaced by uΓ, defined in the following way

uΓ(u
+
DG) = u+

DG forx ∈ Γ+

uΓ(u
+
DG) = g forx ∈ Γ−

Note, that for linear problems the upwind numerical flux and the Lax–Friedrichs flux

are equivalent.

3.1.2 Error Analysis of the hp–DGFEM for the Advection Equation

In their paper of 1996 [36], K. Bey and J.T. Oden introduce hp–discontinuous Galerkin

methods and establish a priori and a posteriori error bounds on quadrilateral meshes.

For fixed p and as h → 0 the results derived in this paper reduce to the classical opti-

mal order estimates of Johnson et al. [93, 94] in a mesh dependent norm.

The results of [36] were generalised by P. Houston, Ch. Schwab and E. Süli [88], where

they established a unified framework for the analysis of the streamline diffusion fi-

nite element method and the stabilized discontinuous Galerkin finite element methods.

These error estimates are sharp as h → 0 and p → ∞. In deriving these estimates for

the case of quadrilateral meshes, one dimensional approximation results established

in [135] are employed to derive tensor product approximation results on quadrilater-

als. In addition, when quadrilateral meshes are used the estimates depend explicitly

on the elemental regularity of the solution; this allows exponential convergence rates

with respect to the polynomial order p to be deduced for solutions that are piecewise

analytic. Whilst not shown in [88], the authors remark that analogous results can be

obtained for simplicial meshes using the approximation results stated in [24]; however,

these bounds are no longer explicit respect to the local regularity.

In [89] P. Houston, Ch. Schwab and E. Süli extended the analysis of [88] to general
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advection-diffusion-reaction problems without the addition of streamline diffusion sta-

bilisation. Indeed, employing alternative approximation results, optimal order error

bounds in both h and p are derived for the hyperbolic advection reaction equation.

Define the mesh dependent DG norm ||| · |||DG by

|||w|||DG = ∑
κ∈T

(

‖c0w‖2
L2(κ)

+
1
2
‖w+‖2

∂−κ∩Γ− +
1
2
‖w+ −w−‖2

∂−κ\Γ +
1
2
‖w+‖2

∂+κ∩Γ

)

.

(3.8)

With Πp denoting the orthogonal L2 projector into the finite element space, such that

(u−Πpu, v) = 0 ∀v ∈ Sp(Ω, T ,F )

the error in the approximation u− uDG can be expressed as

u− uDG = (u−Πpu) + (Πpu− uDG) = η + ξ. (3.9)

With this decomposition [88] established the following a priori bound.

Theorem 3.1.1. Let Ω ⊂ Rd be a bounded polyhedral domain and let T = {κ} be a shape

regular subdivision of Ω into d-parallelepipeds κ with diameter hκ . Let uDG ∈ Sp(Ω, T ,F ) be

the DG approximation to u and suppose that u|κ ∈ Hkκ for each κ ∈ T for integers kκ ≥ 1.

Then, assuming a suitable positivity condition holds and that b · ∇vh ∈ Sp(Ω, T ,F ) ∀vh ∈
Sp(Ω, T ,F ) the following error bound holds:

|||u− uDG|||DG ≤ |||ξ|||DG + |||η|||DG

≤
(

C ∑
κ∈T

h2sκ−1
κ

(
βκΦ2

1(pκ , sκ) + γκhκΦ2
2(pκ , sκ)

) |u|2Hsκ (κ)

) 1
2

for integers sκ , 1 ≤ sκ ≤ min(pκ + 1, kκ), and pκ ≥ 0. In the above C, βκ and γκ are positive

constants. The constant C depends only on the dimension d and shape regularity of T . The

functions Φ1(p, s) and Φ2(p, s) are defined as follows:

Φ1(p, s) = (2p + 1)−
1
2

[

Gp(2− s, s)
1
2 + Gp(3− s, 1 + s)

1
2

]

+ Gp(2− s, 2s)
1
4 Gp(3− s, 1 + s)

1
4 + Gp(2− s, 2 + s)

1
2 ,

Φ2(p, s) = Gp(2− s, 2 + s)
1
2 ,

where Gp(s, t) = Γ(p + s)/Γ(p + t), with Γ signifying the gamma function.

In the case of uniform polynomial orders pκ = p ≥ 0, h = maxκ∈T hκ and sκ = s,

1 ≤ s ≤ min(p + 1, k), k ≥ 1 the above error bound reduces to

|||u− uDG|||DG ≤ C(h/(p + 1))s− 1
2 |u|s,T (3.10)
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Table 3.1: Results for the advection discretisation with p = 0

Mesh No No Dofs ‖u− uDG‖L2(Ω) Order J(u)− J(uDG) Order

1 4 2.522607E-01 -4.246733E-02

2 16 1.374662E-01 0.88 -2.616338E-02 0.70

3 64 7.336309E-02 0.91 -1.482783E-02 0.82

4 256 3.833225E-02 0.94 -7.976484E-03 0.89

5 1024 1.970891E-02 0.96 -4.155732E-03 0.94

6 4096 1.002805E-02 0.97 -2.125016E-03 0.97

Table 3.2: Results for the advection discretisation with p = 1

Mesh No No Dofs ‖u− uDG‖L2(Ω) Order J(u)− J(uDG) Order

1 16 2.269749E-02 -3.092564E-03

2 64 5.994330E-03 1.92 -4.130726E-04 2.90

3 256 1.539235E-03 1.96 -5.368232E-05 2.94

4 1024 3.899229E-04 1.98 -6.854942E-06 2.97

5 4096 9.812421E-05 1.99 -8.667161E-07 2.98

6 16384 2.461198E-05 2.00 -1.089987E-07 2.99

3.1.3 Numerical Examples

Consider the advection problem (3.5) with a discontinuous Galerkin discretisation given

by (3.6). Prescribing the solution u = exp(x− y) we can consider the error in the L2–

norm, ‖u− uDG‖L2(Ω). We let Ω = [0, 1]× [0, 1] with boundary conditions on the inflow

boundary Γ− given by the analytical solution u. We also consider the linear mean value

functional

J(u) =
∫

Ω
ωu dx,

with weighting ω = 1. The results of performing uniform refinement of the mesh (we

start with a mesh of 4 quadrilateral elements) with polynomial degrees p = 0, 1, 2 are

given in Tables 3.1, 3.2 and 3.3 respectively. For a quadrilateral mesh of this type the

mesh size h =
√

2/N, N = 2, 4, 8, 16, 32, 64 and the order of convergence can then be

computed as

order =
log(‖u− un+1

DG ‖L2(Ω))− log(‖u− un
DG‖L2(Ω))

log(h(n + 1))− log(h(n))
, n = 1, . . . 5.

We note that once we are in the asymptotic regime we observe the expected orders of
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Table 3.3: Results for the advection discretisation with p = 2

Mesh No No Dofs ‖u− uDG‖L2(Ω) Order J(u)− J(uDG) Order

1 36 9.566985E-04 2.704227E-06

2 144 1.237145E-04 2.95 1.075672E-07 4.65

3 576 1.567134E-05 2.98 3.726066E-09 4.85

4 2304 1.970045E-06 2.99 1.230567E-10 4.92

5 9216 2.468914E-07 3.00 3.979483E-12 4.95

6 36864 3.089926E-08 3.00 1.350031E-13 4.88

convergence, namely O(hp+1) for the L2–norm and O(h2(p+1)−1) for the error made in

approximating the functional. We shall return to these results later on in this thesis.

3.2 2D Mono Energetic Steady State Neutron Transport

Before extending the discretisation of the advection–reaction problem considered pre-

viously to the discretisation of the neutron transport equation we briefly consider the

existence and uniqueness of solutions to the neutron transport equation before dis-

cretising the neutron transport equation.

3.2.1 Existence and Uniqueness of a Solution for the Neutron Transport

Equation

The book [59] by Dautray and Lions includes an extensive discussion into the existence

and uniqueness of solutions to the neutron transport problem in both the stationary

and time dependent cases. The result presented here assumes that the appropriate

boundary condition g, and the material data, i.e., the cross sections do not depend on

the angle ϕ. In addition, this result is also only valid for a subcritical source problem.

Defining the operator L, known as the transport operator in the following fashion

Lψ := −µ · ∇xψ(x, ϕ)− Σtψ(x, ϕ) +
1

2π

∫ 2π

0
(Σs + νΣ f )ψ(x, ϕ′) dϕ′,

problem (1.6) with appropriate boundary conditions can be written as

−Lψ(x, θ) = Q(x, θ) inΩ× I,

ψ(x, θ) = g(x, θ) onΓ−µ .






(3.11)

where Γ−µ is the inflow boundary with respect to the direction µ. A suitable choice of

function space in which to look for a solution must be made, we wish to investigate
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existence and uniqueness in the space Lp(Ω× I) This operator is naturally defined in

the space L1(Ω× I) since we know that the scalar flux is defined to be

φ =
∫ 2π

0
ψ(x, θ′) dθ′.

In the above the space L1(Ω× I) is defined to be the space of real-valued measurable

functions f ∈ Ω× I such that

|| f ||L1 (Ω×I) ≡
∫

Ω×I
| f (x, θ)| dx dθ < ∞

However, we take the result from [59] for the case when p = ∞. The domain of the

operator can be expressed as the set D(L) = {ψ : ψ ∈ L1(Ω× I),Lψ ∈ L1(Ω× I)}.
We now recall the result of Proposition 7, given on page 245 of [59].

Proposition Consider the following problem: find ψ satisfying (3.11) under the fol-

lowing assumptions,

• Σt ∈ L∞(Ω× I), Σt > σ0 ≥ 0,

•
∫ 2π

0
Σs+νΣ f

2π dθ ≤ βσt, 0 ≤ β < 1,

• Q ∈ L∞(Ω× I),

• g is a positive function such that g ∈ L∞(Γ−µ).

Then the problem (3.11) has a solution in L∞(Ω× I); this solution is unique and satisfies

‖ψ‖∞ ≤ sup(‖g‖∞, α‖Q‖α),

where α > 0 is a constant.

It should be noted that analogous results hold for the spaces Lp(Ω× I) with p ∈ [1, ∞)

and can be obtained by considering a lifting of the boundary conditions which reduces

the problem to the following

−Lψ(x, θ) = Q(x, θ), in Ω× I,

ψ(x, θ) = 0 on Γ−
µ

.






(3.12)

The proof is then given in [59], Theorem 4, page 241.
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3.2.2 A Discrete Ordinates Approach

We can extend the advection reaction solver described in the last section into a numer-

ical method for the Neutron Transport equation by supplementing the discretisation

of the spatial domain with an appropriate discretisation of the angular domain. The

simplest angular discretisation method is the discrete ordinates method as described

in Section 2.3.

We consider the two dimensional mono energetic steady state equation, which for con-

venience we reproduce here.

µ · ∇xψ(x, ϕ) + Σtψ(x, ϕ) =
1

2π

∫ 2π

0
(Σs + νΣ f )ψ(x, ϕ′) dϕ′+ Q(x, ϕ),

ψ(x, ϕ) = g(x, ϕ) on Γ−µ ,







(3.13)

with µ = (cos(ϕ), sin(ϕ)). As noted in the one dimensional illustration in Section

2.3, the discrete ordinates approximation is essentially the application of a quadrature

rule to compute the integral over angle of the angular flux to arrive at the scalar flux,

i.e.,
∫ 2π

0
ψ(x, ϕ) dϕ ≈

N

∑
i=1

ωiψ(x, ϕi)

resulting in N directions (or ordinates) O = {µ(ϕ1),µ(ϕ2), . . . ,µ(ϕN)} with associ-

ated positive weights ωi.

For consistency with the error analysis presented in [92] we require that our choice

of ordinates and weights possess certain properties (see [27]). Firstly, we wish to en-

sure stability of the discrete ordinates scheme by placing a limit on the non uniformity

of the distribution of the discrete ordinates. To this end, we consider a splitting of the

tensor product of the set of ordinates with itself, denoted by O2. Given an ε > 0, we

can define the following splitting:

∑
(µ,ν)∈O2

= ∑
(µ,ν)∈I′ε

+ ∑
(µ,ν)∈I′′ε

where

I ′ε =
{

(µ, ν) ∈ O2 : min
(

γ(µ, ν), γ(µ, dk), γ(ν, dk)
)

≥ ε, k = 1, . . . , M
}

,

I ′′ε =
{
(µ, ν) ∈ O2 : (µ, ν) /∈ I ′ε

}
,

and γ(µ, ν) = sin(d(µ, ν)) with d(µ, ν) being the smallest angle between µ and ν. The

values dk are defined to be the directions of the M sides (in our case 4) of Ω, the spatial
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domain. The following property ensures the stability of the discrete ordinates scheme

′′
∑

ε

ωµων → 0 as max (1/N, ε) → 0. (3.14)

Johnson and Pitkäranta also required the following approximation property to be satis-

fied for their results to hold (these results will be summarised at the end of this chapter),

namely,
∣
∣
∣
∣
∣

∫

I
u(µ) dµ− ∑

µ∈Q
u(µ)ωµ

∣
∣
∣
∣
∣
≤ C

N

∫ 2π

0

∣
∣
∣
∣

du

dϕ

∣
∣
∣
∣

dϕ, (3.15)

where C is a positive constant, independent of the number of ordinates N and µ =

(cos(ϕ), sin(ϕ)).

Here we select one of the simplest possible choices that satisfies properties (3.14) and

(3.15): namely, the uniformly spaced ordinates,

O =

{(

cos
2πi

N
, sin

2πi

N

)}N

i=1
,

resulting in a uniform weighting of ωi = 2π/N. This choice of ordinates results in

splitting the range of ϕ ∈ [0, 2π) into n equal segments with the ordinates using the

midpoint of these segments.

Remark 9. This is the simplest choice of ordinates, in fact better results may be obtained by

weighting the ordinates close to 0 and 2π; however, care must be taken to ensure the stability

property is still satisfied.

To solve the discrete ordinates problem, we now discretise the spatial problem, which

for a fixed direction µi = µ(ϕi), is an advection reaction equation of the form,

µi · ∇xψ(x, ϕi) + Σtψ(x, ϕi) = Q +
Σs + νΣ f

2π

N

∑
j=1

ωjψ(x, ϕj) in Ω,

u = g on Γ−,







(3.16)

for i = 1, . . . , N.

To this end, we use the spatial finite element space defined previously and apply the

DG discretisation (3.6) of the advection problem given in Section 3.1.1 for each fixed

ordinate µi to obtain the fully discrete problem: for each i = 1, . . . N find ψh ∈ Vh,p

such that

ANT(ψh, vh) = lNT(vh) ∀ vh ∈ Vh,p (3.17)
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with the bilinear form ANT : Vh,p ×Vh,p → R given by

∑
κ∈T

(

−
∫

κ
(µiψh) · ∇vh dx+

∫

∂κ
H(ψ+

h , ψ−h ,nκ)v
+
h ds

)

and linear functional lNT : Vh → R,

lNT(vh) = ∑
κ∈T

(
∫

κ
Qvh dx+

∫

κ

Σs + Σ f

2π

(
N

∑
j=1

ωjψh(x, ϕj)

)

dx

)

Note, in the above, the addition of the coupling term which is being approximated by

the use of the discrete ordinates quadrature. This means that we are not just solving N

discrete equations, but in fact we have to use an iterative procedure to attain converge

to the exact scalar flux, the simplest of which is the industry standard iterative proce-

dure, source iteration (SI) [2]; this will be discussed further in Chapter 4. Informally

we take some initial guess for the solution on each ordinate µi and compute an initial

approximation to the coupling integral (an approximation to the scalar flux) appearing

in the neutron transport equation. We then solve the N discretised equations corre-

sponding to each µi and update our numerical approximation of the scalar flux. We

then repeat this procedure until the differences between successive approximations to

the scalar flux are within some pre described tolerance.

Some numerical results for the combination of discrete ordinates and DG in space are

given in Chapter 5.

3.2.3 Full DG Discretisation

In the previous section we developed a Discontinuous Galerkin discretisation of the

two dimensional mono energetic steady state neutron transport equation, where we

employed a discrete ordinates method in the angular domain.

The low order of the angular approximation of the discrete ordinates approach severely

restricts the accuracy and convergence rates of the resulting method; in Chapter 5 we

will see that as we increase the polynomial order in space, even if we recover higher

order convergence at first, eventually the angular error will dominate and we will be

constrained to a first order scheme. To rectify this issue, we seek to develop a solver

that is arbitrary order in angle, as well as in space. That is a solver which is DG(p)

in space and DG(q) in angle, for p,q arbitrary non negative integers, for the neutron

transport problem

µ · ∇xψ(x, ϕ) + Σtψ(x, ϕ) =
1

2π

∫ 2π

0
(Σs + νΣ f )ψ(x, ϕ′) dϕ′+ Q(x, ϕ),

ψ(x, ϕ) = g(x, ϕ) on Γ−µ ,







(3.18)
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0

2π

Figure 3.3: The domain Ω× I as a collection of space - angle slabs.

where Γ−
µ

denotes the dependence on the advective directionµ of the inflow portion of

the boundary Γ as before. To discretise this integro–differential equation, we consider

splitting the combined domain Ω× I into space–angle slabs as shown in Figure 3.3. In

order to rigorously define the DG method, for both the spatial and angular components

we have to define an appropriate partition of the respective domain into a mesh, and

provide a definition of the finite element space in this case. To this end, we define a

finite element space on the spatial and angular domains separately; the finite element

space defined on the full domain will be constructed as the tensor product of these two

spaces. The definitions presented for the spatial domain are analogous to those pre-

sented previously, however, for completeness we repeat them here; note the presence

of a subscript Ω on the spatial definitions here to make it explicit which quantities be-

long to the spatial domain.

We define a partition of the spatial domain TΩ = {κΩ} in to a shape regular partition

of the domain Ω into open element domains κΩ which are at most 1-irregular, as in

Section 3.1

The mesh function hΩ is a piecewise constant function with hΩ(x) = hκΩ
= diam(κΩ)

when x ∈ κΩ. We assume that each element κΩ can be expressed as a mapping of a

fixed reference element κ̂, that is κΩ = FκΩ
(κ̂), where FκΩ

is smooth and bijective, for

each κΩ ∈ TΩ. The reference element κ̂, in this case can be either the open unit triangle

κ̂T = {x̂ = (x̂1, x̂2) ∈ R
2 : 0 < x̂1 + x̂2 < 1, x̂i > 0, i = 1, 2},

or the open hypercube κ̂C = (−1, 1)2 in R2.

On κ̂ we define the following spaces of polynomials of degree p ≥ 0, with the conven-

tion that α is a multi-index:

Pp = span{x̂α : 0 < |α| ≤ p},
Qp = span{x̂α : 0 ≤ αi ≤ p, 1 ≤ i ≤ 2}.
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ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

Figure 3.4: The angular domain split into 8, not necessarily uniform, angular elements

For each κΩ ∈ TΩ we denote by pκΩ
≥ 0 the polynomial approximation degree em-

ployed on κΩ. Forming the vectors p = {pκΩ
: κΩ ∈ TΩ} and FΩ = {FκΩ

: κΩ ∈ TΩ},
we introduce the discontinuous hp-finite element space

Sp(Ω, TΩ,FΩ) = {u ∈ L2(Ω) : u|κΩ
◦ FκΩ

∈ SpκΩ
, κΩ ∈ TΩ}, (3.19)

where

Spκ =







Ppκ(κ̂) if F−1
κ (κ) = κ̂T,

Qpκ(κ̂) if F−1
κ (κ) = κ̂C.

If the polynomial degree is uniform, i.e., pκΩ
= p for all κ ∈ Th then we simply write

Sp(Ω, TΩ,FΩ). For any element κΩ ∈ TΩ, we let ∂κΩ be the union of 1–dimensional

open faces of κΩ. Similarly, for any x ∈ ∂κΩ, nκΩ
(x) denotes the unit outward normal

vector to ∂κΩ at x. Using these defintions, we can define, the inflow and outflow parts

of ∂κΩ, respectively, by

∂−µκΩ = {x ∈ ∂κΩ : µ ·n(x) < 0},
∂+µκΩ = {x ∈ ∂κΩ : µ ·n(x) ≥ 0}.

Note that the inflow portion of an element boundary will be different for each angle

due to the dependence on µ.

Remark 10. In the above the subscript µ denotes the explicit dependence on the direction µ

of the inflow and outflow boundaries of an element κ. This means that on different angular

elements we obtain different matrix sparsity patterns and we shall see that in practice when we

approximate integrals over faces with a quadrature rule it is possible for a face to be classed as

both inflow and outflow.

We now consider the angular domain. As before we need to mesh the circumference

of the unit circle. An example of such a mesh is shown in Figure 3.4; here, the angular

domain is split into 8 angular elements, not necessarily uniform. To define the angular

finite element space we proceed in the same manner as for the spatial finite element

space.
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We define TI = {κI} to be a partition of the angular domain I into open intervals

κI . The mesh function corresponding to this partition is denoted by hI ; hI is a piece-

wise constant function such that hI |κI
= hκI

= diam(κI). As before, each element of the

angular mesh κI can be expressed as a mapping of a fixed reference interval J = [−1, 1],

so that κI = FκI
(J). Here, FκI

is a smooth and bijective function for each κI ∈ TI .

On J we define the space of polynomials of degree q ≥ 0, i.e.,

Pq = span{yβ : 0 ≤ β ≤ q}.

For each κI ∈ TI we assign an integer qκI
≥ 0; forming the vectors q = {qκI

: κI ∈ TI}
and FI = {FκI

: κI ∈ TI}, we introduce the discontinuous hp-finite element space

Sq(I , TI ,FI) =
{

w ∈ L2(I) : w|κI
◦ FκI

∈ PqκI
, κI ∈ TI

}

.

If the polynomial degree is uniform, i.e., qκI
= q for all κI ∈ TI , then as before, we

simply write Sq(Ω, Th,FI).

To define the full discontinuous hp-finite element space we tensor product the spatial

discontinuous hp-finite element space with the angular discontinuous hp-finite element

space, giving

VhΩ,hI = Sp(Ω, TΩ,FΩ)× Sq(I, TI ,FI). (3.20)

Then all v ∈ VhΩ,hI can be expressed as v = vΩvI such that vΩ ∈ Sp(Ω, TΩ,FΩ) and

vI ∈ Sq(I, TI ,FI).

The Two Dimensional DG Discretisation

First we make that observation that µ is spatially independent; i.e., we can write

µ · ∇xψ(x, ϕ) = ∇x · (µψ(x, ϕ)).

Thereby we arrive at the following equivalent formulation for the integro–differential

equation

∇x · (µψ(x, ϕ)) + Σtψ(x, ϕ) =
Σs + νΣ f

2π

∫ 2π

0
ψ(x, ϕ′) dϕ′+ Q(x, ϕ) in Ω× I

(3.21)

To solve (3.21) numerically we shall discretise in both space and angle using a Discon-

tinuous Galerkin method; the resulting system of equations will be solved based on

employing an iterative scheme.
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To this end, we multiply (3.21) by a smooth test function and integrate over space then

angle, where we have used integration by parts in the spatial domain to give the fol-

lowing

∑
κI∈TI

∑
κΩ∈TΩ

[ ∫

κI

∫

κΩ

{−ψµ · ∇xv + Σtψv} dx dϕ +
∫

κI

∫

∂κΩ

(µψ ·nκΩ
)v ds dϕ

]

= ∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σs + νΣ f

2π

∫ 2π

0
ψ(x, ϕ′)v dϕ′ dx dϕ

]

+ ∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Q(x, ϕ)v dx dϕ

]

.

(3.22)

To discretise (3.22) we replace ψ by the Discontinuous Galerkin finite element approx-

imation ψh and the test function v by vh, where both ψh and vh belong to the finite

element space VhΩ,hθ as defined above. As before we introduce the Lax–Friedrichs flux:

H(ψ+
h , ψ−h ,n) =

1
2
(µ ·nκΩ

+ |µ ·nκΩ
|)ψ+

h +
1
2
(µ ·nκΩ

− |µ · nκΩ
|)ψ−h ,

to deal with the elemental boundary integrals. The Lax–Friedrichs flux with the argu-

ments given above can be used on elemental faces that are in the interior of the spatial

domain. For elemental faces coincident with the domain boundary the concept of ψ−

does not make sense since there is only an element on one side of the face. Instead, the

second argument is replaced by ψΓµ , which is defined as follows

ψΓµ(ψ
+
h ) = ψ+

h for x ∈ Γ+
µ ,

ψΓµ(ψ
+
h ) = g for x ∈ Γ−µ .

It should be noted that this numerical flux implicitly depends on the angle ϕ since µ

is a function of ϕ; similarly, the inflow and outflow domain boundaries depend on the

direction µ. Using this numerical flux function we arrive at the following DG scheme:

find ψh ∈ VhΩ,hI such that

∑
κI∈TI

∑
κΩ∈TΩ

[ ∫

κI

∫

κΩ

{−ψhµ · ∇xvh + Σtψhvh} dx dθ +
∫

κI

∫

∂κΩ\Γ
H(ψ+

h , ψ−h ,n)v+h ds dθ

+
∫

κI

∫

∂κΩ∩Γ
H(ψ+

h , ψµ

Γ (ψ
+
h ),n)v

+
h ds dθ

]

= ∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σs + νΣ f

2π

∫ 2π

0
ψh(x, θ′)vh dθ′ dx dθ

]

+ ∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Q(x, θ)vh dx dθ

]

∀vh ∈ VhΩ,hI .

(3.23)

Here, the subscript h appearing in ψh and vh denotes the pairing h = (hΩ, hI).

Note that the left hand side of (3.23) is an advection–reaction problem. This infinite
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(there are infinite possible values for µ) set of advection–reaction equations is coupled

together by the integral operator on the right hand side. The resulting set of linear

equations arising from the Discontinuous Galerkin discretisation will be solved by em-

ploying the source iteration that was employed for the discrete ordinates discretisation.

3.3 The "Pseudo-3D" Neutron Transport Discretisation

So far we have considered the model problem posed in [92] among others. This prob-

lem however, has limited applicability in the real world: in the full form of the neutron

transport equation there are three spatial dimensions. We now develop the discretisa-

tion of a problem that can be applied to real world industrial benchmarks.

3.3.1 Derivation of the Pseudo 3D Neutron Transport Problem

We now consider the spatial domain considered previously as a slice through a three

dimensional domain that has been constructed subject to some conditions. The first of

these conditions is that when the full domain is cut across the xy plane at any point zi,

then the resulting two dimensional plane must have the same dimensions and prop-

erties as that obtained by slicing at a different point zj. This means that the physical

plane will look the same regardless of where the slice has been taken, and so the spa-

tial domain of our discretisation remains two dimensional; this leads to a significant

computational saving when compared to solving the full three dimensional problem.

A further condition is that the three dimensional domain extends to infinity in both di-

rections in x3. These approximations are valid for many reactor physics computations,

such as determining criticality, as there is little variation in the x3 spatial component in

these situations and so a reactor core geometry can be safely assumed to be constant

and infinite in x3. These two conditions ensure that the angular flux on any infinitesi-

mally thin slice of the three dimensional domain is the same as that on any other.

As we are now considering three dimensional problems, modelling the direction of

a neutron’s travel becomes harder since it is no longer constrained to a planar surface.

Because of this, in addition to the azimuthal angle, ϕ, we introduce the polar angle, θ.
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µ̃

µ D

S

Figure 3.5: Projection of unit vector µ̃ ∈ S onto a vector µ ∈ D.

Below, we pose the new model problem, as stated in [15]:

µ · ∇xψ(x,µ) + σtψ(x,µ) =
1

4π

∫

D
(σs + νσf )ψ(x,µ′)

(
1− |µ′|2

)−1/2
dµ′

+ Q(x,µ) in Ω× D, (3.24)

ψ(x,µ) = g(x,µ) on Γ−µ . (3.25)

In the above Ω remains the spatial domain but now the angular domain D is the unit

disc, D := {µ ∈ R2 : |µ| ≤ 1}. Instead of µ = (cos(ϕ), sin(ϕ))⊤ which we had in

equation (1.6) we now have the following advective direction

µ =

(

sin(θ) cos(ϕ)

sin(θ) sin(ϕ)

)

,

where ϕ is the azimuthal angle, such that 0 ≤ ϕ ≤ 2π and θ is the polar angle, such

that 0 ≤ θ ≤ π
2 (since we consider only the top hemisphere). The angular domain is

the unit disc, since this is the projection of all points on the unit sphere down on to R2

as shown in Figure 3.5.

One further difference between our original problem and the ’pseudo 3D’ problem

we are now investigating is the addition of the term
(
1− |µ′|2

)−1/2
in the coupling in-

tegral on the right hand side of equation (3.24). Following the explanation in [15] it can

be seen that this is due solely to the geometry of the problem being considered.

Working in a spherical coordinate system we have that the area element of the unit

sphere is given by

dA = sin(θ) dθ dϕ, for 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π.
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Now using the definition of µ previously stated we have

|µ| =
√

(sin(θ) cos(ϕ))2 + (sin(θ) sin(ϕ))2

=
√

sin2(θ) cos2(ϕ) + sin2(θ) sin2(ϕ)

=
√

sin2(θ)
(
cos2(ϕ) + sin2(ϕ)

)

= sin(θ).

As a consequence of this

d |µ|
dθ

= cos(θ) ⇒ dθ =
d|µ|

cos(θ)
.

Hence, by way of a standard trigonometric identity,

sin(θ) dθ =
sin(θ)
cos(θ)

d|µ|

=
|µ|

cos(θ)
d|µ|

=
|µ|

(1− |µ|2)1/2
d|µ|.

Now using this, together with the fact (obtained by converting from cartesian to polar

coordinates) that,

dµ = dµ1dµ2

= |µ|d|µ|dϕ,

we can deduce,

dA = sin(θ)dθdϕ

=
|µ|

(1− |µ|2)1/2 d|µ|dϕ

=
1

(1− |µ|2)1/2 dµ

The derivation of the scheme proceeds in the same manner as for the two dimensional

case; the only changes being the addition of the weighting
(
1− |µ′|2)−1/2 to the com-

putation of the scalar flux and coupling term, and the different definition of the advec-

tive directionµ. The mesh in the angular domain is now a triangulation of the unit disc

as opposed to a discretisation of the surface of the unit circle; this is described in detail

in Section 4.2.1
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We, therefore, have the following DG scheme for the pseudo 3D problem: find ψh ∈
VhΩ,hI such that

∑
κD∈TD

∑
κΩ∈TΩ

[∫

κD

∫

κΩ

{−ψhµ · ∇xvh + Σtψhvh} dx dθdϕ

+
∫

κD

∫

∂κΩ\Γ
H(ψ+

h , ψ−h ,n)v+h ds dθ dϕ

+
∫

κD

∫

∂κΩ∩Γ
H(ψ+

h , ψµ

Γ (ψ
+
h ),n)v

+
h ds dθdϕ

]

= ∑
κD∈TD

∑
κΩ∈TΩ

[∫

κD

∫

κΩ

(
Σs(x) + ν(x)Σ f (x)

2π

∫ 2π

0

∫ π/2

0
ψh(x, θ′, ϕ′)

1
cos(θ)

dθ′ dϕ′
)

dx dθ dϕ

]

+ ∑
κD∈TD

∑
κΩ∈TΩ

[∫

κD

∫

κΩ

Q(x, θ, ϕ)vh dx dθ dϕ

]

∀vh ∈ VhΩ,hI .

(3.26)

In the next chapter we discuss some implementation issues that are pertinent to this

pseudo 3D discretisation.

3.4 A priori Results for the Neutron Transport Equation

We end this chapter by briefly summarising the a priori results for finite element dis-

cretisations of the neutron transport equation that are in the literature. One of the

relevant articles in this field is the paper by Johnson and Pitkäranta [92] in which they

consider a discretisation of the two dimensional mono energetic steady state neutron

transport equation. The authors derive error bounds on the scalar flux, employing

results contained in [93]. Here, to discretise the problem they employ a discrete or-

dinates discretisation in angle with a discontinuous Galerkin method in space. For

convenience, we state the two dimensional problem in the notation that is used

µ · u(x,µ)) + u(x,µ) = λ
∫

S
u(x,µ′) dµ′ + f (x) (x, µ) ∈ Ω× S, (3.27)

u(x, µ) = 0 on Γ−µ ,

where Ω is a bounded convex polyhedral domain in R2, S is the boundary of the unit

disc S = {µ ∈ R2 : |µ| = 1} and Γ−µ is the inflow boundary of Ω with respect to the

direction µ defined in the usual way.

Defining the scalar flux U(x) =
∫

S
u(x, µ) dµ then with the use of a solution opera-

tor Tµ for the advection problem, by integrating over S they reformulate the neutron

transport problem as an integral equation in U

(I − λT)U = T f . (3.28)
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In the above T : L2(Ω) → H1(Ω) is a Fredholm equation of the second form. With

a discrete ordinates quadrature (satisfying the conditions discussed previously) and a

DG spatial discretisation the error in the scalar flux is given by the following decompo-

sition

(I − λTh
N)(U −Uh

N) = (T− TN)(λU + f ) + (TN − Th
N)(λU + f )

= eN + eh
N ,

where Uh
N is the full discrete approximation to the scalar flux U, TN is the semi discrete

equivalent of the operator T (where an angular discretisation only has been performed)

and Th
N is the fully discretised operator. The final error bound given in the paper is the

following

‖U −Uh
N‖ ≤ C(N−1 + h1/2)(‖U‖1 + ‖ f‖1), (3.29)

where ‖ · ‖ denotes the L2 norm and ‖ · ‖1 is the norm in the Sobolev space H1(Ω).

This bound indicates that the error decays with order 1/2 with respect to the spatial

discretisation, which is suboptimal. Using realistic regularity assumptions this can be

improved to O(1− ε) in space and O(3/2 + ε) in angle, for any ε > 0.

Defining a quadrature scheme for the angular variable in this setting is more involved,

with the ordinates defined to be

O = {µkj ∈ D : µkj = rk(cos ϕj, sin ϕj), k = 1, . . . , N, j = 1, . . . , M}

where ϕj =
2π j
M and rk are the zeros of the Chebyshev polynomials which are orthog-

onal polynomials with respect to the distribution dα(r) = (1 − r2)−1/2 on the inter-

val [0, 1] (see [148], the classical reference for orthogonal polynomials for further de-

tails). This leads to a quadrature rule with MN points, there is also an assumption that

M ∼ N.

With this discretisation of the angular domain and a discontinuous Galerkin method

(with linear approximation) discretising the spatial domain, performing an analysis

analogous to that of [92], making suitable modifications to the definition of the opera-

tor T appearing in (3.28) to include the weighting (1− |µ′|2)−1/2), Asadzadeh obtains

the estimate for U, f ∈ H1(Ω).

‖U −Uh
N‖ ≤ C

(
1
M

+
1
N

+ h1/2
)

(λ‖U‖1 + ‖ f‖1) (3.30)

Again this bound is sub optimal in h.
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In 1998 M. Asadzadeh returned to the neutron transport equation [16] with improve-

ments to the bounds given in [15]. The analysis of Johnson and Pitkäranta is again

broadly followed, but with the addition of the application of some Sobolev and Besov

(interpolation spaces between two Sobolev spaces) space embedding relations. As in

the previous paper, a discrete ordinates discretisation is used for the angular dimension

and a DG discretisation with linear polynomials used for the spatial discretisation. For

the analysis to hold the following compatibility conditions must be satisfied between h

the maximum diameter of an element κ ∈ T , where T is a triangulation of the spatial

domain and n:

h−1(n) ∼ √n =
√

MN and M ∼ N. (3.31)

If this condition is not satisfied then the contributions of ‘bad directions’ to the spatial

error will not be of the desired order of ∼ h. The discrete ordinates are split into many

‘good directions’ and a few ’bad directions’ so that each split part contributes the same

order of convergence. The ’bad directions’ are those such that µ is small, or those

directions which are closely aligned to the directions of the sides of the spatial domain

Ω.

Assuming that the constant λ /∈ σ(T), where σ(T) is the spectrum of the linear operator

T as used in [15], U being the scalar flux, and Uh
n being the full discrete approximation

to U the following error bound is proved

‖U −Uh
n‖ ≤ C| log h|h1−ε′‖g‖H3/2−ε(Ω)

where C is a constant, g ∈ H3/2−ε(Ω) and ε′, ε are small satisfying 0 < ε < ε′. The

above error estimate only holds supposing that h is sufficiently small. This is an optimal

estimate with respect to h, [93].
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Implementation Aspects

Here we discuss some issues arising in the implementation of the neutron transport

solvers discussed in the previous chapter. Some aspects are general and applicable

to both the two dimensional solver and the pseudo 3D solver; we treat these general

issues first.

4.1 Implementation Issues for Both Solvers

Firstly we will develop an understanding of the matrix structure of the linear at tech-

niques used to solve the linear systems resulting from the full DG discretisation con-

sidered in the last chapter before examining solution techniques. We consider the use

of an outer source iteration to incorporate the coupling across angular elements due

to the integral present on the right hand side of (1.6) before considering a novel solu-

tion strategy to solve the linear systems on each angular element. Finally we look at a

method to solve the critical eigenvalue problem.

4.1.1 Developing the Discretisation

To further examine the scheme, recall that both the numerical solution ψh and the test

function vh belong to the space VhΩ,hI . As VhΩ,hI is constructed as the tensor product

of the two spaces Sp(Ω, TΩ,FΩ) and Sq(I, TI ,FI), the functions which span VhΩ,hI are

comprised of products of the basis functions which span these separate spaces. To this

end, let

Sp(Ω, TΩ,FΩ) = span{ζi(x)}, i = 1, . . . , n,

Sq(I, TI ,FI) = span{ξk(ϕ)}, k = 1, . . . , m.
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Then the full DG space can be expressed in the following fashion,

VhΩ,hθ = span{ζi(x)ξk(ϕ)} i = 1, . . . , n, k = 1, . . . , m. (4.1)

Therefore, any function wh ∈ VhΩ,hI can be expressed as a linear combination of basis

functions, i.e.,

wh =
n

∑
j=1

m

∑
l=1

Wj,lζ j(x)ξl(ϕ),

where Wj,l is the corresponding degree of freedom.

The angular basis functions ξk(ϕ) are defined so that each of them only have support

on a particular angular element. As each angular element κI is a real interval, the ξk(ϕ)

appearing in (4.1) can be chosen to be mapped orthogonal Legendre polynomials (as

defined on the reference element I = [−1, 1]) to κI . The first few Legendre polynomials

on the interval [−1, 1] are as follows:

l0(y) = 1,

l1(y) = y,

l2(y) =
3
2

y2 − 1
2

,

l3(y) =
5
2

y3 − 3
2

y.

These polynomials are orthogonal on the reference interval [−1, 1] and since the map-

ping to the angular element κI is linear, their mappings will be orthogonal on κI . For

consistency of indexing with the spatial basis functions in the discretisation that fol-

lows, ξk will represent the (k− 1)th Legendre polynomial after it has been mapped to

the present angular element κI .

On each angular element we let n denote the number of spatial degrees of freedom

(that is the number of spatial basis functions). We also let

m = ∑
κI

mκI
,

where mκI
= qκI

+ 1 denotes the local number of angular degrees of freedom on the an-

gular element κI . Using these definitions, we make the observation that on a particular

angular element κI , we can express the numerical approximation ψh to the angular flux

ψ on κI in terms of basis functions in the following way

ψh|κI
=

n

∑
j=1

mκI

∑
l=1

Ψ
κI

j,lζ j(x)ξl(ϕ).

Note that the superscript κI may later be omitted from Ψ
κI

j,l , when considering an expan-

sion of the solution restricted to a particular angular element. For example, If we choose
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a piecewise linear approximation in angle on an element κI , then any ψh ∈ VhΩ,hI can

be expressed as

ψh|κI =
n

∑
j=1

Ψj,1ζ j(x)ξ1(ϕ) +
n

∑
j=1

Ψj,2ζ j(x)ξ2(ϕ).

For later use, given two angular basis functions of degree k and l, respectively, we

define the scaled direction µ̄k,l by,

µ̄k,l =
∫

κI

ξk(ϕ)ξl(ϕ)µ dϕ. (4.2)

The discretisation (3.23) results in a linear system to be solved for the coefficients {ΨκI

j,l}, j =

1, . . . , n, l = 1, . . . , mκI
of the angular flux on each angular element κI . With this in mind

we solve a linear system on each angular element, then using these solutions, compute

the scalar flux which couples the angular elements together. The change in scalar flux

between these outer iterations will be used as a measure of convergence of the source

iteration.

We have the following system to investigate:

∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

−ψhµ · ∇xvh dx dϕ

]

︸ ︷︷ ︸

Term 1

+ ∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

σtψhvh dx dϕ

]

︸ ︷︷ ︸

Term 2

+ ∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

(∫

∂κΩ\Γ
H(ψ+

h , ψ−h ,n)v+h ds dϕ +
∫

∂κΩ∩Γ
H(ψ+

h , ψµ

Γ (ψ
+
h ),n)v

+
h ds dϕ

)]

︸ ︷︷ ︸

Term3

= ∑
κI∈TI

∑
κΩ∈T Ω

[∫

κI

∫

κΩ

Σs + νΣ f

2π

∫ 2π

0
ψh(x, ϕ′)vh dϕ′ dx dϕ

]

︸ ︷︷ ︸

Term 4

+ ∑
κI∈TI

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

F(x, θ)vh dx dϕ

]

.

︸ ︷︷ ︸

Term 5
(4.3)

Remark 11. The underbraces above do not include the sum over angular elements since when

the scalar flux is known each angular element may be considered as an independent linear

system.

After considering the scalar flux, we will consider each term appearing above sepa-

rately, making use of the expression of the angular flux as the weighted sum of the

aforementioned spatial and angular basis functions.
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By definition, the scalar flux for a problem with two spatial and one angular dimen-

sion is given by

φ(x) =
∫ 2π

0
ψ(x, ϕ′) dϕ′.

We let φh(x) denoting our discretised scalar flux, it can be evaluated from the discre-

tised angular flux ψh(x, ϕ) in the following manner

φh(x) = ∑
κI∈TI

∫

κI

n

∑
j=1

mκI

∑
l=1

Ψ
κI
j,lζ j(x)ξl(ϕ′) dϕ′

= ∑
κI∈TI

n

∑
j=1

mκI

∑
l=1

Ψ
κI

j,lζ j(x)
∫

κI

ξl(ϕ′) dϕ′.

We make the following observation
∫

κI

ξl(ϕ) dϕ =
∫ 1

−1
ll(y)× Jac(F−1

κI
(κI)) dy =

|κI |
2

∫ 1

−1
ll(y) dy,

and use the property of Legendre polynomials,

∫ 1

−1
li(y) dy =







2, i = 0,

0, otherwise,

to write the integral of the angular basis function as

∫

κI

ξl(θ) dθ =







|κI |, if l = 0,

0, otherwise.

Hence, the scalar flux can be written as

φh(x) =
n

∑
j=1

(

∑
κI∈TI

Ψ
κI
j,0|κI |

)

ζ j(x),

where ∑κI∈TI
Ψ

κI
j,0|κI | is the coefficient of the jth spatial basis function in the expansion

of the discrete scalar flux.

Figure 4.1 illustrates the relative storage required for the solution vectors of the an-

gular flux and scalar flux. Each black rectangle is a vector containing coefficients cor-

responding to all spatial degrees of freedom.

Remark 12. We note that this means that information corresponding to the higher order an-

gular modes does not contribute to the scalar flux.

Term 1:

Here, we are interested in expanding the first term of the discretisation, namely,

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

−ψhµ · ∇xvh dx dϕ

]

.
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κθ1 κθ1 κθ1

ξ0

ξ1

ξ2

Scalar Flux

Figure 4.1: Combining angular flux on 3 angular elements to give the scalar flux.

As stated before, since we are working in the two dimensional case,µ = (cos(ϕ), sin(ϕ))⊤,

and using the expansion of ψh in terms of the basis functions of the space VhΩ,hθ , to-

gether with letting a test function be represented as vh = ζi(x)ξk(ϕ), we obtain the

following

∑
κΩ∈TΩ

∫

κI

∫

κΩ

−ψhµ · ∇vh dx dϕ

= ∑
κΩ∈TΩ

[∫

κI

∫

κΩ

−
n

∑
j=1

m

∑
l=1

Ψ
κI

j,lζ j(x)ξl(ϕ)

(

cos(ϕ)

sin(ϕ)

)

· ∇x(ζi(x)ξk(ϕ))dx dϕ.

Now since the ∇x operator acts spatially we can move the term ξk(ϕ) outside of the

gradient operator, and combine ξl(ϕ), ξk(ϕ) and µ together to give

∑
κΩ∈TΩ

[ ∫

κI

∫

κΩ

−ψhµ · ∇vh dx dϕ

]

= ∑
κΩ∈TΩ

n

∑
j=1

m

∑
l=1

∫

κΩ

Ψ
κI

j,lζ j(x)uj(x)

(
∫

κI

(

cos(ϕ)

sin(ϕ)

)

ξl(ϕ)ξk(ϕ) dϕ

)

· ∇xζi(x) dx

= ∑
κΩ∈TΩ

n

∑
j=1

m

∑
l=1

∫

κΩ

Ψ
κI

j,lζ j(x)

(
∫

κI

(

cos(ϕ)

sin(ϕ)

)

ξl(ϕ)ξk(ϕ) dϕ

)

·




∂
∂x ζi(x)
∂

∂y ζi(x)



 dx

Now, we make use of the definition for µ̄k,l given in (4.2), indeed we can write

∑
κΩ∈TΩ

n

∑
j=1

m

∑
l=1

∫

κΩ

Ψ
κI

j,lζ j(x)

(
∫

κI

(

cos(ϕ)

sin(ϕ)

)

ξl(ϕ)ξk(ϕ) dϕ

)

·




∂
∂x ζi(x)
∂

∂y ζi(x)



 dx

=
n

∑
j=1

m

∑
l=1

[

∑
κΩ

∫

κΩ

ζ j(x) (µ̄k,l · ∇xζi(x)) dx

]

Ψ
κI

j,l , j = 1, . . . , n, k = 1, . . . mκI
.

Finally, for later we define

Ak,l
i,j = ∑

κΩ

∫

κΩ

ζ j(x) (µ̄k,l · ∇xζi(x)) dx. (4.4)
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Term 2:

In this section we expand and simplify the matrices arising from the discretisation of

the reaction term

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σtψhvh dx dϕ

]

.

Note that Σt is a function of x, i.e., Σt = Σt(x). So using the same expansion of the

angular flux and representation of a test function vh, we have

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σtψhvh dx dϕ

]

= ∑
κΩ∈TΩ

n

∑
j=1

m

∑
l=1

[∫

κI

∫

κΩ

Σt(x)Ψ
κI

j,lζ j(x)ξl(ϕ)ζi(x)ξk(ϕ) dx dϕ

]

=
n

∑
j=1

m

∑
l=1

[

∑
κΩ∈TΩ

∫

κΩ

Σt(x)Ψ
κI

j,lζ j(x)ζi(x)

(∫

κI

ξl(ϕ)ξk(ϕ) dϕ

)

dx
]

.

By the orthogonality of the scaled Legendre polynomials on the angular element κI , we

have
∫

κI

ξl(ϕ)ξk(ϕ) dθ =







2|κI |
2l + 1

if l = k,

0 otherwise.
(4.5)

Thus, on each angular element, term 2 only appears when the angular degrees of free-

dom k and l are equal, i.e., in the large diagonal blocks of the matrix corresponding to

that angular element.

Thereby, we arrive at

n

∑
j=1

m

∑
l=1

[

∑
κΩ∈TΩ

∫

κΩ

Σt(x)Ψ
κI

j,lζ j(x)ζi(x)

(∫

κI

ξl(ϕ)ξk(ϕ) dϕ

)

dx
]

=
n

∑
j=1

m

∑
l=1

[

∑
κΩ∈TΩ

2|κI |
2l + 1

∫

κΩ

Σt(x)ζ j(x)ζi(x) dx
]

Ψ
κI

j,l , j = 1, . . . n.

We define

Bk,k
i,j := ∑

κΩ∈TΩ

2|κI |
2l + 1

∫

κΩ

Σt(x)ζ j(x)ζi(x) dx.

Term 3:

This is the term that deals with the discontinuities in the solution across elemental

boundaries. For simplicity, in calculations we decompose the integral around the bound-

ary of a spatial element into the sum of the integrals along each face of the element. For
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clarity we only show this for the first part of Term 3; the part that corresponds to inte-

rior element boundaries. Hence, we obtain

∑
κΩ∈TΩ

∫

κI

∫

∂κΩ

H(ψ+
h , ψ−h ,nκΩ

) vh ds = ∑
κΩ∈TΩ

∫

κI

∑
e∈EκΩ

∫

e
H(ψ+

h , ψ−h ,nκΩ
) vh ds

= ∑
κΩ∈TΩ

∑
e∈EκΩ

∫

κI

∫

e
H(ψ+

h , ψ−h ,nκΩ
) vh ds,

where EκΩ
is the set of faces of the element κΩ.

Since µ(ϕ) = (cos(ϕ), sin(ϕ))⊤, µ ·nκΩ
(recall that the numerical flux depends on this

quantity) will have a dependence on ϕ (as will ψh and vh). This dependence implies

that on any given face of a spatial element, for a particular angular element,µ ·nκΩ
may

not be exclusively greater than or less than zero. As a consequence, for a combination

of a general spatial mesh and a general angular mesh we cannot make one categori-

sation of spatial faces into inflow or outflow edges that holds for the integration over

angle.

Instead, we approximate the volume integral over the angular element κI by a quadra-

ture rule with nqκI
quadrature points ϕr and associated weights ωr:

∑
κΩ∈TΩ

∑
e∈EκΩ

∫

κI

∫

e
H(ψ+

h , ψ−h ,nκΩ
) vh ds

≈ ∑
κΩ∈TΩ

∑
e∈EκΩ

nqκI

∑
r=1

ωr

∫

e
H(ψ+

h , ψ−h ,nκΩ
, ϕr) vh(s, ϕr) ds,

where H(ψ+
h , ψ−h ,nκΩ

, ϕr) denotes the numerical flux H(ψ+
h , ψ−h ,nκΩ

) evaluated at the

angular quadrature point ϕr. For clarity of presentation (and also in practice), we con-

sider looping over all faces in the spatial mesh and consider at first the expression

ωr

∫

e
H(ψ+

h , ψ−h ,nκΩ
, ϕr) vh(s, ϕr) ds. (4.6)

This represents the evaluation of the integral over the spatial face e for one quadrature

point ϕr in the angular quadrature. When evaluating (4.6), for each angular quadrature

point ϕr, we evaluate (µ ·nκΩ
) and depending on whether it is positive or negative we

perform different operations. We then sum over the quadrature points on each face

before summing over the faces to perform the integral over angle and then summing

over all spatial elements to define the matrix and right hand–side vector entries. We

consider each term of the flux seperately.

Interior Element Faces For every quadrature point θr and its associated quadrature

weight ωr, we evaluate (µ(ϕr) · nκΩ
(s)), where s is a point on the face. There are two

possibilities: we shall consider first the case where
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(µ(ϕr) ·nκΩ
(s)) < 0.

When (µ(ϕr) ·nκΩ
(s)) < 0, we have

H(ψ+
h , ψ−h ,nκΩ

, ϕr) = −|µ ·nκΩ
|ψ−h .

Since ψ−h = ∑
n
j=1 ∑

mκI

l=1 Ψ−j,lζ j(s)ξl(ϕ) and vh = ζi(x)ξk(ϕ) our expression for a face

integral becomes

ωr

∫

e
H(ψ+

h , ψ−h ,nκΩ
, ϕr) vh(s, ϕr) ds

= ωr

∫

e
−|µ(ϕr) ·nκΩ

(s)|ψ−vh(s, ϕr) ds

= ωr

∫

e
−|µ(ϕr) ·nκΩ

(s)|
n

∑
j=1

m

∑
l=1

Ψ−j,lζ j(s)ξl(ϕr)ζi(s)ξk(ϕr) ds

=
n

∑
j=1

m

∑
l=1

ωrξl(ϕr)ξk(ϕr)
∫

e
−|µ(ϕr) ·nκΩ

(s)|Ψ−j,lζ j(s)ζi(s) ds,

for i = 1, . . . , n, k = 1, . . . , mκI
. Now, with t indexing the set of all quadrature points ϕr

such that (µ(θr) ·nκΩ
(x)) < 0, we can sum over the edges, over quadrature points and

then over spatial elements to define the matrix entries

Ck,l
i,j := ∑

κΩ∈TΩ

∑
t

ωtξl(ϕt)ξk(ϕt) ∑
e∈EκΩ

∫

e
−|µ(ϕr) ·nκΩ

(s)|ζ j(s)ζi(s) ds.

Here, the angular degrees of freedom k and l index matrix blocks for the particular

angular element κI , κΩ runs over the nested blocks and the spatial indices i and j run

over entries in nested blocks. The structure of the matrix will be discussed in more

detail in Section 4.1.1.

Similarly, if µ(ϕr) ·nκΩ
(s)) > 0, we have

H(ψ+
h , ψ−h ,nκΩ

, ϕr) = |µ ·nκΩ
|ψ+

h ,

and consequently, following the same steps as above we have

ωr

∫

e
H(ψh(s, ϕr),nκΩ

,ϕr) vh(s, ϕr) ds

=
n

∑
j=1

m

∑
l=1

ωrξl(ϕr)ξk(ϕr)
∫

e
|µ(ϕr) ·nκΩ

(s)|Ψ+
j,lζ j(s)ζi(s) ds .

So, with an abuse of notation and with u indexing the set of all quadrature points ϕr

such that (µ(ϕr) ·nκΩ
(x)) > 0, we have the following expression for the matrix entries

Ck,l
i,j := ∑

κΩ∈TΩ

∑
u

ωuξl(ϕu)ξk(ϕu) ∑
e∈EκΩ

∫

e
−|µ(ϕr) · nκΩ

(s)|ζ j(s)ζi(s) ds.
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Outflow Domain Boundaries Coincident with an Elemental Face

In this case we know that the face e is a face on the spatial domain boundary and that

(µ(ϕr) · nκΩ
(s)) > 0. Since on an outflow boundary we do not have any information

regarding the angular flux, we make use of the following expansion of the interior trace

of the numerical solution

ψ+
h =

n

∑
j=1

mκI

∑
l=1

Ψ+
j,lζ j(s)ξl(ϕ).

Using this expression and that vh = ζi(s)ξk(ϕ), we write

ωr

∫

e
H(ψ+

h , ψ−h ,nκΩ
, ϕr) vh(s, ϕr) ds = ωr

∫

e
(µ(ϕr) ·nκΩ

(s))
n

∑
j=1

m

∑
l=1

Ψ+
j,lζ j(s)ξl(ϕr)ζi(s)ξk(ϕr)ds

=
n

∑
j=1

m

∑
l=1

ωrξl(θr)ξk(θr)
∫

e
(µ(ϕr) ·nκΩ

(x))Ψ+
j,lζ j(s)ζi(s)ds ,

for i = 1, . . . , n, k = 1, . . . , mκI
.

We define the matrix entry Dk,l
i,j , where u indexes the set of all quadrature points ϕr

such that (µ(ϕr) ·nκΩ
(s)) > 0, by

Dk,l
i,j := ∑

κΩ∈TΩ

∑
u

ωtξl(ϕu)ξk(ϕu) ∑
e∈EκΩ

∫

e
(µ(ϕu) · nκΩ

(s))Ψ+
j,lζ j(s)ζi(s)ds.

Inflow Domain Boundaries Coincident with an Elemental Face

In this case, at a quadrature point ϕr, we necessarily have that (µ(ϕr) ·nκΩ
(s)) < 0 and

that the face e is therefore a face on the inflow spatial domain boundary Γ−
µ

.

From the formulation of the problem, we know that the flux entering the element at

this point is given by g(s, θr), hence the present term appears in the right hand–side

vector of the linear system. Thus, we have

ωr

∫

e
H(ψh(s, ϕr),nκΩ

, ϕr) vh(s, ϕr) ds = ωr

∫

e
(µ(ϕr) ·nκΩ

(s))g(s, ϕr) vh(s, ϕr) ds

= ωr

∫

e
(µ(ϕr) ·nκΩ

(s))g(x, ϕr) ζi(s)ξk(ϕr) ds,

on replacing vh with the usual expansion in terms of basis functions.

We extract such a term for each l for every angular degree of freedom k on each angular

element when (µ(ϕr) · nκΩ
(x)) < 0, thus the corresponding vector entry for a given

angular element will be a sum over l. Hence, we define, with t again indexing the set

of all quadrature points ϕr such that (µ(ϕr) ·nκΩ
(x)) < 0

Ek
i :=

m

∑
l=1

∑
κΩ∈TΩ

∑
t

ωt ∑
e∈EκΩ

∫

e
(µ(ϕt) ·nκΩ

(s))g(x, ϕt) ζi(s)ξk(ϕt) ds.

Term 4:
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Since by definition
∫ 2π

0 ψh(x, ϕ′) is the discretised scalar flux, Term 4 can be re-written

as

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σs + νΣ f

2π

∫ 2π

0
ψh(x, ϕ′)vh dϕ′ dx dϕ

]

= ∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σs(x) + ν(x)Σ f (x)

2π
φhvh dx dϕ

]

.

Now, expanding φh in terms of spatial basis functions i.e.,

φh =
n

∑
j=1

Φjζ j(x),

and setting vh = ζi(x)ξk(ϕ) i = 1, . . . , n, k = 1, . . . , mκI
, we have,

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σs(x) + ν(x)Σ f (x)

2π
φh(x)vh(x, ϕ) dx dϕ

]

= ∑
κΩ∈TΩ

∫

κI

∫

κΩ

Σs(x) + ν(x)Σ f (x)

2π

n

∑
j=1

Φjζ j(x)ζi(x)ξk(ϕ)dx dϕ

= ∑
κΩ∈TΩ

∫

κΩ

Σs(x) + ν(x)Σ f (x)

2π

(
n

∑
j=1

Φjζ j(x)

)

ζi(x)

(∫

κI

ξk(ϕ) dϕ

)

dx .

Since
∫

κI
ξk(ϕ)dϕ = 0 unless k = 0, when it equals |κI |, we have that

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Σs(x) + ν(x)Σ f (x)

2π
φhvh dx dϕ

]

= |κI | ∑
κΩ∈TΩ

∫

κΩ

Σs(x) + ν(x)Σ f (x)

2π

(
n

∑
j=1

Φjζ j(x)

)

ζi(x)dx, i = 1, . . . , n

Finally, we define

R0
i = |κI | ∑

κΩ∈TΩ

∫

κΩ

Σs(x) + ν(x)Σ f (x)

2π

(
n

∑
j=1

Φjζ j(x)

)

ζi(x)dx.

Term 5:

Here, we consider the final term appearing in the discretisation, that is the term aris-

ing due to the presence of an external forcing function Q(x, ϕ), which importantly is a

function of both x and ϕ. This term is given by

∑
κΩ∈TΩ

[∫

κI

∫

κΩ

Q(x, ϕ)vh dx dϕ

]

.

We need to test for all possible test functions vh, and in doing so (on substituting our

usual expression for a test function) we obtain every entry of the right hand side vector

F, indexed by angular degree of freedom k, and spatial degree of freedom i, i.e.,

Qk
i = ∑

κΩ∈TΩ

∫

κI

∫

κΩ

F(x, ϕ)ζi(x)ξk(ϕ) dx dϕ.
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Unfortunately this has to be evaluated as a true double integral since the integrand

includes the function Q(x, ϕ) so we cannot take advantage of any orthogonality prop-

erties of the underlying basis functions.

Assembling the Linear System

First, we introduce the following definitions:

Qk = (Ql
1, Ql

2, . . . , Ql
n)
⊤,

R0 = (Ul
k, Uk

2, . . . , Uk
n)
⊤,

Ek = (El
k, Ek

2, . . . , Ek
n)
⊤,

Ak,l =














Ak,l
1,1 Ak,l

1,2 · · · Ak,l
1,n−1 Ak,l

1,n

Ak,l
2,1

. . . . . . . . . Ak,l
2,n

...
. . . . . . . . .

...
...

. . . . . . . . .
...

Ak,l
n,1 Ak,l

n,2 · · · Ak,l
n,n−1 Ak,l

n,n














,

Bk,k =














Bk,k
1,1 Bk,k

1,2 · · · Bk,k
1,n−1 Bk,k

1,n

Bk,k
2,1

. . . . . . . . . Bk,k
2,n

...
. . . . . . . . .

...
...

. . . . . . . . .
...

Bk,k
n,1 Bk,k

n,2 · · · Bk,k
n,n−1 Bk,k

n,n














,

Ck,l =














Ck,l
1,1 Ck,l

1,2 · · · Ck,l
1,n−1 Ck,l

1,n

Ck,l
2,1

. . . . . . . . . Ck,l
2,n

...
. . . . . . . . .

...
...

. . . . . . . . .
...

Ck,l
n,1 Ck,l

n,2 · · · Ck,l
n,n−1 Ck,l

n,n














,

Dk,l =














Dk,l
1,1 Dk,l

1,2 · · · Dk,l
1,n−1 Dk,l

1,n

Dk,l
2,1

. . . . . . . . . Dk,l
2,n

...
. . . . . . . . .

...
...

. . . . . . . . .
...

Dk,l
n,1 Dk,l

n,2 · · · Dk,l
n,n−1 Dk,l

n,n














.

Using these definitions a block linear system is formed; this is best illustrated with a

concrete example. Consider a quadratic approximation in angle; there is, therefore,

(in the two dimensional problem) 3 angular degrees of freedom. We then have the
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following linear system to solve:

A







U0

U1

U2







=







Q0 + E0 + R0

Q1 + E1

Q2 + E2







,

where the matrix A is given by

A =







D0 O0,1 O0,2

O1,0 D1 O1,2

O2,0 O2,1 D2







,

with diagonal blocks given by

Dk = Ak,k + Bk,k + Ck,k + Dk,k,

and the off diagonal blocks

Ok,l = Ak,l + Ck,l + Dk,l.

These matrices quickly become large, especially as we increase the approximation de-

gree in angle; we shall discuss efficient methods to solve systems of this form in the

next chapter.

Remark 13. It is worth noting that a discontinuous Galerkin discretisation with piecewise

constants in angle (that is, q = 0) can be shown to be equivalent to a discrete ordinates discreti-

sation in angle.

4.1.2 Outer Source Iteration

As briefly mentioned in the previous chapter we solve the coupled neutron transport

equations with a method known as Source Iteration (SI). We shall now discuss this in

more detail. Consider the continuous problem,

µ · ∇xψ(x, ϕ) + Σtψ(x, ϕ) =
1

2π

∫ 2π

0
(Σs + νΣ f )ψ(x, ϕ′) dϕ′,

with no external sources and assuming vacuum boundary conditions. Defining the

operators

T(ψ(x, ϕ) = (µ · ∇x + Σt)(ψ(x, ϕ))

R(ψ(x, ϕ) =
1

2π

∫ 2π

0
(Σs + νΣ f )(ψ(x, ϕ′) dϕ′

the continuous problem can be expressed as

Tψ = Sψ.
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Mathematically the SI scheme is defined to b

Tψl = Sψl−1, l ≥ 1, (4.7)

where ψ0 is some initial guess. A suitable choice is to pick ψ0 = 0. In this case there

is a physical interpretation of the lth estimate to the angular flux ψl ; it is the the an-

gular flux due to neutrons that have scattered at most l − 1 times [2]. Assuming that

Σt > Σs everywhere in the domain this iteration is guaranteed to converge, although

the speed of convergence will depend on the relative sizes of the two material cross

sections. Adams and Larsen [2] provide a convergence analysis of the source iteration

technique using Fourier modes and note that the rate of convergence for Source iter-

ation is heavily dependent on the spatial discretisation method used but only weakly

dependent on the angular discretisation used. Indeed, we observe no difference in the

rate of convergence observed when using a discrete ordinates or DG angular discreti-

sation.

We now consider the use of this iteration technique in practice. As the source itera-

tion is independent of our discretisation procedure, for simplicity we recall the dis-

crete ordinates in angle, DG in space (DO-DG) discretisation: for each i = 1, . . . N find

ψh ∈ Vh,p such that

ANT(ψh, vh) = lNT(vh) ∀ vh ∈ Vh,p (4.8)

with the bilinear form ANT : Vh,p ×Vh,p → R given by

∑
κ∈T

(

−
∫

κ
(µiψ

l
h) · ∇vh dx+

∫

∂κ
H(ψl,+

h , ψl,−
h ,nκ)v

+
h ds

)

and linear functional lNT : Vh → R,

lNT(vh) = ∑
κ∈T

(
∫

κ
Qvh dx+

∫

κ

Σs + Σ f

2π

(
N

∑
j=1

ωjψ
l−1
h (x, ϕj)

)

dx

)

Let ψl
h denote the lth iterate of the source iteration. To start the SI procedure we have

to choose an initial ψ0
h for each ordinate µi, the most natural would be ψ0

h = 0, since in

general we have no a priori information about the angular flux. Then using ψ0
h in the

right hand side of the discretisation we compute the solution ψ1
h for every ordinate µi

and then update the scalar flux, thus updating the right hand side of the discretisation.

This process is repeated until successive approximations to the scalar flux are within

some tolerance.

Despite using this iterative procedure, it is possible to consider the full linear system

that would be obtained if you solve all angles at the same time. The full linear system
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considered in this thesis comprises the stiffness matrix corresponding to each angular

element together with terms corresponding to the quadrature rule with which φ(x) is

calculated from ψ(x, ϕ). This will be a blocked system with (number of angles)2 blocks.

The diagonal blocks will contain the stiffness matrices corresponding to the application

of the operator T on each angle; the off diagonal blocks will contain the coupling terms.

When we consider this situation, we note that the SI scheme is a Jacobi iteration. We

note that it is possible to consider other splittings of the full discretisation matrix and

hence obtain other iterative schemes; however the Jacobi iteration is by far the easiest

to implement and is an industry standard approach which for all practical problems

converges in a reasonable number of iterations.

If the source iteration fails to converge (which has not been observed this for any of

the problems considered in this thesis) then other iterative solution methods could be

employed. One possible choice is the Generalised Minimal Residual (GMRES) method

would be a suitable choice as this does not require the strict conditions for convergence

that a Jacobi method requires. In the literature, multi grid [110, 118, 119] methods have

been applied, however, not to our knowledge, for general discretisations on unstruc-

tured grids. Techniques to accelerate the convergence of the source iteration have been

considered; coarse mesh rebalancing is also a common choice of acceleration technique

for discrete ordinate solvers. For discontinuous Galerkin discretisations, some work

has been performed on applying diffusion synthetic acceleration (DSA) [155]. Diffu-

sion synthetic acceleration is essentially a form of preconditioner which is commonly

used to accelerate convergence of the source iteration when materials are highly diffu-

sive (i.e. they have a high scattering cross section). Here a diffusion solver is employed

to accelerate the transport solver.

Remark 14. We note that the size of the coefficient (σs + νσf )/2π, appearing in the coupling

term of the neutron transport equation, significantly affects the number of outer iterations that

are required. This due to the increase in size of the coupling terms in the full matrix of the

system. As this factor is increased the diagonal dominance of the diagonal blocks that stem

from each angular element. Some numerical experiments which show this will be presented in

Chapter 5. Based on these experiments the increase in the number of outer iterations only be-

comes significant when (Σs + νΣ f )/2π becomes unphysically large, although we do see slower

convergence in one particular eigenvalue benchmark we consider in Chapter 5.
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Figure 4.2: Matrix for one angular element corresponding to p = 0, q = 0 with 16

spatial elements.

4.1.3 The Solution on Each Angular Element

To implement our discretisation with an outer source iteration we need to solve a large

linear system on each angular element.

In Section 4.1.1, we described the block linear structure of the linear systems on each

angular element, taking advantage of the orthogonality of the basis functions we have

used. It is, however, instructive to visualise the sparsity patterns of the matrices in

the linear systems that we must solve on each angular element. For a discretisation

where the degree of approximation in both angle and space is zero and we have 16

spatial elements the maximum sparsity pattern will be as shown in Figure 4.2 This is a

much smaller matrix than would be solved in practice, as the system only contains 16

degrees of freedom with potentially 64 non–zero entries. Increasing the spatial degree

of approximation p by 1, increases the number of degrees of freedom on each spatial

element to 4 (when using quadrilateral elements in 2D with a Qp basis) and so the to-

tal number of degrees of freedom grows to 64 (16 elements with 4 degrees of freedom

each), however the overall structure of the matrix remains as shown in Figure 4.2. If,

however, we wished to increase the degree of angular approximation to q = 1 as well,

we end up with already a much larger matrix. For the two dimensional problem we

obtain a matrix comprised of 4 large blocks, each of which has the same structure as

shown in Figure 4.2. The sparsity pattern for a p = q = 1 approximation on 16 spatial

elements is shown in Figure 4.3; here we have 128 degrees of freedom with potentially
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Figure 4.3: Matrix for one angular element corresponding to p = 1, q = 1 with 16

spatial elements.

4096 non zero entries. If we were considering the pseudo 3D discretisation, because of

the increase in number of angular degrees of freedom for each element in moving from

a one dimensional angular element to a two dimensional triangular angular element

the full matrix is in fact larger comprising 9 large blocks arranged in a 3× 3 grid.

These matrices could of course be solved with an available package such as MUMPS

[4] or SPARSKIT, however when implementing the discretisations discussed in the pre-

vious chapter it became obvious that large memory use was a limiting factor in the

accuracy that could be obtained when solving the neutron transport equation. For dis-

cretisations with very fine meshes in both space and angle, storing (even when using a

sparse form of storage) and solving the linear system becomes prohibitive; for example

in some of the finest discretisations used to obtain the results from the test cases con-

sidered in the next chapter over 90 gigabytes of RAM would be required when using

MUMPS. When MUMPS can be used, it is very fast, and in fact can’t be beaten by the

ordered solver we ascribe here, however of large problems the use of an ordered solver

becomes critical. In collaboration with S. Murphy a low memory solver for advection

equations where the use of a re-odering strategy for the spatial elements eliminates the

need to store the full linear system has been developed. Here we discuss the ordered

solver that has been implemented for the neutron transport equation; further details

will be presented S. Murphy’s PhD thesis [114].
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Figure 4.4: A general mesh over some domain with its associated directed graph.

Element Ordering for the Advection Equation

The idea of making use of an ordering of the spatial elements in the solution of a neu-

tron transport discretisation appears to have first been suggested, in a fairly informal

way, by LeSaint and Raviart in their paper of 1974 [100]. As mentioned above, for each

iterate of the outer source Iteration, we need to solve an advection type equation. In

this section, we summarise some results from [114] and discuss the ordering procedure

for the linear solves required on each angular element.

Firstly, we remind ourselves of some basic concepts from graph theory [38]. A di-

rected graph G = (V, E), is composed of a set of vertices V, and a set of ordered pairs

of vertices called edges, (m, n) = e ∈ E where m, n ∈ V. A cycle is a set C

C = {(n1, n2), (n2, n3), ..., (nN, n1)} ⊂ E.

A graph is said to be acyclic if there does not exist such a subset.

We now consider how to find an ordering of the elements given an advective direction.

The goal is to order the elements in such a way that the discretisation matrix becomes

lower triangular and so is amenable to being solved by block back substitution without

the need to store, in memory, the whole matrix. Any spatial finite element mesh TΩ can

be represented as a directed graph G. Each element κΩ in the mesh TΩ is represented

by a vertex V and then every elemental face (that is non characteristic) corresponds to

an edge E in G. The direction in which the edge points (that is which vertex it points

from and to) depends on the direction of the flow across that face. An example of an

irregular mesh and its associated directed graph is shown in Figure 4.4.

In [114], S. Murphy proves the following result

Lemma 4.1.1. Consider the advection problem

µ · ∇u + bu = f
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with constant µ and inflow boundary condition u = g on Γ−. Then, there exists an element or-

dering such that the discontinuous Galerkin method will yield a block lower triangular stiffness

matrix for any mesh TΩ, if for all κ ∈ TΩ , the inflow boundary ∂−κ is a connected set.

The proof can be applied for all meshes with convex elements. For the ordering to yield

a lower triangular linear system, the graph representing the mesh must be acyclic. In

the case of a fixed µ, this will be the case; however, we have previously seen that in-

tegrating over the angular element with respect to ϕ (ϕ and θ in the pseudo 3D case)

introduces a slight difficulty.

Depending on the structure of the spatial and angular meshes it is possible, when in-

tegrating over the angular element, for µ · n, where n is a unit outward normal to a

particular face, to take both positive and negative values on that face. This is due to the

approximation to the angular integral we make by using a quadrature rule. At each

angular quadrature point, θr, we compute µ(θr) · n(x) which may be greater than or

less than zero for differing θr; in this case some of the faces can be characterised as both

inflow and outflow faces. This introduces a cycle into the graph and so the resulting

matrix will not be lower triangular, since there may also be blocks above the diagonal.

Instead it can be described as a block lower triangular matrix where not all blocks are

the same size (see the next sub section for an example of this). However, it is still pos-

sible to find an ordering, we consider two separate algorithms, below.

For the acyclic case, that is when all faces in the spatial mesh are uniquely inflow or

outflow, we may use the Topological Sort algorithm. This works by gradually remov-

ing vertices which have no incoming edges from the graph, placing them in the or-

dering and then deleting the outgoing edges associated with the vertex. This process

continues until all that remains is the empty graph. The Topological sort algorithm

takes O(|V| + |E|) operations since it considers each vertex and edge once. Below is

the pseudo code for this algorithm:

Algorithm 4.1.2. (Topological Sort) For a directed acyclic graph G = (V, E), the following

pseudo-code will output on ordered list L, which gives a, possibly not unique, topological order-

ing. Let n, m be vertices in the graph, then the algorithm is as follows:

L← list to contain ordered vertices

S← set of nodes with no incoming edges

while S 6= φ do

S← S \ n

L← L + n

for m ∈ V such that (n, m) ∈ E do
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E ← E \ (n, m)

if 6 ∃ l ∈ V such that (l, m) ∈ E then

S← S + m

end if

end for

end while

output(Proposed order: ‘L’)

If instead we have the situation where there are cycles in the graph then we can use

Tarjan’s algorithm to find an ordering of the strongly connected components of the

graph. This is more complicated than the topological sort algorithm and requires more

memory but it does work at a comparable speed. To describe the pseudo code of this

algorithm we first describe a function strongconnect. This function takes as input a

vertex V and performs a depth first search of the graph finding all successors from the

node V and records all strongly connected components of that subgraph. In the fol-

lowing pseudo code the index variable is the depth first search node number counter,

S is the node stack; this will start being empty and is then filled with nodes as the

algorithm reaches them but aren’t yet committed to a strongly connected component.

Once a connected component is found the algorithm pops (removes from the stack) the

root node and all nodes connected to it. Locating the root node is done in the function

strongconnect. Each node is given a depth search index v.index which numbers the

nodes consecutively in the order in which they are discovered. Each node is also as-

signed a value V.lowlink that equals the index of some node reachable from V. This

will always be less than V.index or the same as V.index if no other node is reach-

able from V. Hence V is the root of a strongly connected component if V.index =

V.lowlink.

Algorithm 4.1.3. (Function strongconnect(V)) Given a node V the following pseudo code

outputs a strongly connected component.

v.index ← index

v.lowlink ← index

S.push(v)

for ∀(v, w) ∈ E do

if W.index is undefined then

strongconnect(v)

v.lowlink ← min(v.lowlink, w.index)

end if

if w ∈ S then
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v.lowlink ← min(v.lowlink, w.idex)

end if

end for

if v.lowlink = v.index then

Start a new strongly connected component

repeat

w← S.pop()

Add w to current strongly connected component

until w = v

Output the current strongly connected component.

end if

Using the above function we can now describe the pseudo code for Tarjan’s algorithm.

Algorithm 4.1.4. (Tarjan’s Algorithm) Given a graph G(V, E) this output a set of strongly

connected components.

Input( Graph G = (V, E)

index ← 0

S← empty stack

for all v ∈ V do

if v.index is undefined then

call strongconnect(v)

end if

end for

output(A list of the strongly connected components of G)

Direct method

In this section, we aim to tackle the blocked matrix directly, re–order it so that it can be

blocked into a block lower triangular matrix before solving it by block backward sub-

stitution. For an illustration of the method, consider the stiffness matrix corresponding

to a single angular element when a linear approximation is taken in angle q = 1, for the

case with just four spatial elements. If the matrix is blocked, first according to the an-

gular degrees of freedom, then spatial degrees of freedom (ordered by spatial element)

the matrix will look like one of the following two cases.

Case 1: First, consider the case where there are no spatial element boundaries for which

µ ·nκΩ
takes both positive and negative values on the present angular element. In this
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case, each of the large matrix blocks indexed by the angular degrees of freedom can be

ordered to be lower triangular; this results in a matrix of the form M, shown below, to

solve on every angular element.

M =





















A1,1

A2,1 A2,2

A3,1 A3,2 A3,3

A4,1 A4,2 A4,3 A4,4

B1,1

B2,1 B2,2

B3,1 B3,2 B3,3

B4,1 B4,2 B4,3 B4,4

C1,1

C2,1 C2,2

C3,1 C3,2 C3,3

C4,1 C4,2 C4,3 C4,4

D1,1

D2,1 D2,2

D3,1 D3,2 D3,3

D4,1 D4,2 D4,3 D4,4





















. (4.9)

The linear system corresponding to this matrix has the form

M





















UAC1

UAC2

UAC3

UAC4

UBD1

UBD2

UBD3

UBD4





















=





















rhsAC1

rhsAC2

rhsAC3

rhsAC4

rhsBD1

rhsBD2

rhsBD3

rhsBD4





















. (4.10)

We can then in turn, re-order the block structure according to first the spatial elements,

then the angular degrees of freedom, then spatial degrees of freedom to get the follow-

ing block triangular system

Mreordered





















UAC1

UBD1

UAC2

UBD2

UAC3

UBD3

UAC4

UBD4





















=





















rhsAC1

rhsBD1

rhsAC2

rhsBD2

rhsAC3

rhsBD3

rhsAC4

rhsBD4





















, (4.11)
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where the matrix M given below is block lower triangular (where the new blocks are

highlighted by the light grey lines);

Mreordered =





















A1,1 B1,1

C1,1 D1,1

A2,1 B2,1

C2,1 D2,1

A2,2 B2,2

C2,2 D2,2

A3,1 B3,1

C3,1 D3,1

A3,2 B3,2

C3,2 D3,2

A3,3 B3,3

C3,3 D3,3

A4,1 B4,1

C4,1 D4,1

A4,2 B4,2

C4,2 D4,2

A4,3 B4,3

C4,3 D4,3

A4,4 B4,4

C4,4 D4,4





















. (4.12)

When the system is written in this form it is clear that we may progress through the

linear system first solving for UAC1 and UBD1 and subtracting the product of the face

matrices A2,1, B2,1, C2,1 and D2,1 with these solution values from the right hand side.

This will allow for the solution for the values of UAC2 and UBD2 and a back substitution

for the next set of face matrices. This procedure may then be repeated until the full

solution is determined.

Case 2:

Second, consider the case where there is a spatial element boundary for which µ ·nκΩ

takes both positive and negative values on the present angular element. In the follow-

ing example, this happens between the second and third spatial elements.

M =





















A1,1

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

A4,1 A4,2 A4,3 A4,4

B1,1

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

B4,1 B4,2 B4,3 B4,4

C1,1

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3

C4,1 C4,2 C4,3 C4,4

D1,1

D2,1 D2,2 D2,3

D3,1 D3,2 D3,3

D4,1 D4,2 D4,3 D4,4





















. (4.13)

Again, we reorder the linear system according to first the spatial elements, then the

angular degrees of freedom, then spatial degrees of freedom to obtain the following
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matrix

Mreordered =





















A1,1 B1,1

C1,1 D1,1

A2,1 B2,1

C2,1 D2,1

A2,2 B2,2

C2,2 D2,2

A2,3 B2,3

C2,3 D2,3

A3,1 B3,1

C3,1 D3,1

A3,2 B3,2

C3,2 D3,2

A3,3 B3,3

C3,3 D3,3

A4,1 B4,1

C4,1 D4,1

A4,2 B4,2

C4,2 D4,2

A4,3 B4,3

C4,3 D4,3

A4,4 B4,4

C4,4 D4,4





















. (4.14)

The same block backward substitution may be implemented, except this time the linear

solve for the solution values UAC2, UBD2, UAC3 and UBD3 must be performed as a single

solve, i.e.,










UAC2

UBD2

UAC3

UBD3










=










A2,2 B2,2

C2,2 D2,2

A2,3 B2,3

C2,3 D2,3

A3,2 B3,2

C3,2 D3,2

A3,3 B3,3

C3,3 D3,3










−1 

















rhsAC2

rhsBD2

rhsAC3

rhsBD3










−










A2,1 B2,1

C2,1 D2,1

A3,1 B3,1

C3,1 D3,1










(

UAC1

UBD1

)










(4.15)

The problem with this strategy is the possibility of having to perform extremely large

solves if several spatial elements are coupled together by these two way element bound-

aries. For example, if the number of spatial elements coupled is N, each with order of

polynomial approximation p, with order of approximation in angle q, then the size of

the system to be solved will be N(q + 1)(p + 1)2 by N(q + 1)(p + 1)2. So if p = q = 5

we have a 216N by 216N linear system to solve. We could use MUMPS to solve these

inner block systems once the size is over some prescribed tolerance.

4.1.4 Approximating the Eigenvalue Problem

The critical eigenvalue problem as introduced in Section 1.3.4 is of great interest prac-

tically; because of this we wish to extend our solver to the solution of the underlying

eigenvalue problems.

To this end, we consider the two dimensional eigenvalue problem; in this setting the
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transport, scatter and fission operators are as follows:

Tψ := µ · ∇xψ + Σtψ,

Sψ :=
∫

I

Σs

2π
ψ dϕ,

Fψ :=
∫

I

νΣ f

2π
ψdϕ.

Then recall that the generalised eigenvalue problem can be expressed as

(T − S)ψ = λFψ, (4.16)

where λ = 1/keff.

Since we are solving this in a variational setting, the above operators are replaced by

their variational formulations T̃, S̃ and F̃:

T̃(ψ, v) =
∫

Ω

∫

I
(µ · ∇xψ + Σtψ) v dϕdx,

S̃(ψ, v) =
∫

Ω

∫

I

(∫

I

Σs

2π
ψ(x, ϕ′) dϕ′

)

v dϕ dx,

F̃(ψ, v) =
∫

Ω

∫

I

(∫

I

νΣ f

2π
ψ(x, ϕ′) dϕ′

)

v dϕ dx,

where v ∈ VhΩ,hI and VhΩ,hI is as defined in (3.20). This leads to the generalised eigen-

value problem

(T̃− S̃)(ψ, v) = λF̃(ψ, v). (4.17)

To solve these we need to be able to provide the action of the operator F̃. As an al-

ternative we transform (4.17) into a standard eigenvalue problem by performing the

following manipulations. Starting with the following,

T̃(ψ, v) = S̃(ψ, v) + λF̃(ψ, v),

moving S̃ to the other side leads to

(T̃ − S̃)(ψ, v) = λF̃(ψ, v),

now multiplying by T̃−1

(I − T̃−1S̃)(ψ, v) = λT̃−1F̃(ψ, v),

re arranging

keff(I − T̃−1S̃)(ψ, v) = T̃−1F̃(ψ, v)
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and finally applying the inverse of the operator (I − T̃−1S̃) to both sides, we obtain the

standard eigenvalue problem

keff(ψ, v) = (I − T̃−1S̃)−1T̃−1F̃(ψ, v),

where we have used the fact that the operator (I − T̃−1S̃) is always non-singular [45,

71]. As this is now a standard eigenvalue problem we can apply the power method

[162] as long as we can apply the operator (I − T̃−1S̃)−1T̃−1F̃. To this end, we make

use of the Neumann sum expansion

(I − T̃−1S̃)−1 =
∞

∑
n=0

(T̃−1S̃)n,

leading to the approximation

(I − T̃−1S̃)−1T̃−1F̃ = T̃−1F̃ψ + T̃−1S̃T̃−1F̃ψ + (T̃−1S̃)2T̃−1F̃ψ + · · ·+ (T̃−1S̃)nT̃−1F̃ψ

where we continue adding terms until the difference between successive terms is be-

low some user prescribed tolerance.

After discretisation, to compute the above Neumann sum, we start with our numer-

ical eigenfunction ψn
h from the previous step of the power method. We first wish to

compute the action of T̃−1F̃ on ψn
h . To do this we form the following linear system,

using our DG discretisation

T̃u0 = F̃ψn
h ,

solving this gives us u0 = T̃−1F̃ψn
h which is the first term of the Neumann expansion.

The second term in the Neumann expansion T̃−1S̃T̃−1F̃ψn
h , To this end we solve the

linear system

T̃u1 = S̃u0,

which results in

u1 = T̃−1S̃u0 = T̃−1S̃T̃−1F̃ψn
h

which is the second term in the expansion. This approach can be continued until we

compute the um such that the difference between um and um−1 is less than some pre-

scribed tolerance in a suitable norm. The Neumann sum is then computed as follows

(I − T̃−1S̃)−1T̃−1F̃ψn
h = u0 + u1 + u2 + . . . un

Remark 15. We remark that in this setting the eigenalue package ARPACK cannot be used

since we do not explicitly know the action of the operator F̃ appearing on the right hand side of

the generalised eigenvalue problem.

101



CHAPTER 4: IMPLEMENTATION ASPECTS

Figure 4.5: A graded mesh of the angular domain D of the pseudo 3d problem.

4.2 Implementation Issues Specific to the Pseudo 3D solver

We now discuss some implementation issues that are specific to the discretisation for

the pseudo 3D problem.

4.2.1 Angular Mesh Generation

Fo the pseudo 3D problem the angular domain is the unit disc; thereby it is necessary to

partition this into elements. Noting that when |µ| = 1, which occurs on the boundary

of the disc the following

dA =
1

(1− |µ|2)1/2 dµ,

is undefined. This leads to a singularity in the computation of the scalar flux, so we

cannot use a quadrature that contains the nodes of an element as a quadrature point.

This is easily solved as we use tensor product Gaussian quadrature where all quadra-

ture points are in the interior of an element.

When using Gaussian quadrature on a mesh composed of irregular triangles as gen-

erated by the mesh generator Triangle, however, the singularity on the boundary still

results in significant errors in the quadrature. Because of this we seek a mesh which

is graded towards the boundary, such as that shown in Figure 4.5. To achieve such a

mesh we construct a splitting of the unit disc such that the area of each element with

respect to a certain weighting is constant.

Firstly we split the disc into Na sectors, each of area 2π/Na; this gives us the radial
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lines as shown in Figure 4.5. We now must determine the graded splitting of the radii.

Let µ be denoted by r for convenience; then we have that the area element on the unit

sphere in spherical polar coordinates is

dA =
r

(1− r2)1/2 dr dϕ.

Hence the area of the unit sphere can be calculated as

Area(S2) = 2
∫ 2π

0

∫ 1

0

r

(1− r2)1/2
dr dϕ,

To find the radial splitting we perform an iterative procedure which divides the unit

disc evenly with respect to the weighting found in the integrand above. Given two

radii r1 and r2 (we start with A1 = 0 and A2 = 1) we find the radius rm such that

r1 ≤ rm ≤ r2 such that rm splits the weighted integral between r1 and r2 evenly in to

two areas. That is, we seek rm such that;
∫ rm

r1

r

(1− r2)1/2
dr =

∫ r2

rm

r

(1− r2)1/2
dr,

that is

rm =

√
√
√
√
√1−





√

1− r2
1 +

√

1 + r2
2

2





2

.

We can then perform the same procedure but on the intervals (r1, rm) and (rm, r2) to

further split the domain. This procedure can be repeated until we have generated a

mesh of sufficient resolution.

Remark 16. As an example, suppose we wish to split each of the Na sectors into 4 elements as

shown in Figure 4.5, we start with r1 = 0 and r2 = 1. Performing the above approach gives

rm =
√

3
4 ≈ 0.8660. Then using the interval (0,

√
3
4) we obtain rm =

√
7
4 ≈ 0.6614 and on

the interval (
√

3
4 , 1) we have rm =

√

1 + 1
4

(√
3

2 − 1
)

≈ 0.9831. This gives us a vector of 5

radial coordinates that can be used to define the angular elements, namely,

ri =













0

0.6614

0.8660

0.9831

1













.

It can be seen that this has the desired affect of generating a mesh that is graded towards

the boundary. To supplement this improvement of the angular mesh, we use AptoFEM

to curve the edges of the boundary elements so that we also improve the approximation

of the unit disc in this manner.
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Computation of the Scalar Flux

For the pseudo 3D problem we have to make a slight modification to the procedure

outlined before for computing the scalar flux since we have to include the scaling aris-

ing due to the change of coordinates from the surface of the unit sphere to the unit disc

in two dimensions. More precisely, we have to compute the following,

φ(x) =
∫

D
ψ(x, ϕ, θ)(1− |µ|2)1/2 dµ′,

where D is the unit disc. As noted before, this scaling can be expressed in terms of θ in

the following way,

φ(x) =
∫

D
ψ(x, ϕ, θ)(1− |µ|2)1/2 dµ′

=
∫

D
ψ(x, ϕ, θ)

1
√

1− |µ|2
dθ dϕ

=
∫

D
ψ(x, ϕ, θ)

1
sin(θ)

dθ dϕ.

As before we can expand the angular flux ψ(x, ϕ, θ) on a particular angular element in

terms of basis functions,

ψ(x, ϕ, θ) =
n

∑
j=1

mκI

∑
l=1

Ψ
κI

j,lζ j(x)ξl(θ, ϕ).

Using the above and decomposing the integral over the unit disc into the summation

of integrals over angular elements we have

φ(x) =
∫

D
ψ(x, ϕ, θ)

1
sin(θ)

dθ dϕ

= ∑
κI

∫

κI

n

∑
j=1

mκI

∑
l=1

Ψ
κI
j,lζ j(x)ξl(θ, ϕ)

1
sin(θ)

dθ dϕ

=
n

∑
j=1

(

∑
κI

∫

κI

mκI

∑
l=1

Ψ
κI

j,lζ j(x)ξl(θ, ϕ)
1

sin(θ)
dθ dϕ

)

=
n

∑
j=1








∑
κI

mκI

∑
l=1

Ψ
κI

j,l

[∫

κI

ξl(θ, ϕ)
1

sin(θ)
dθ dϕ

]

︸ ︷︷ ︸

scaling








ζ j(x).

Now, on a particular angular element the term denoted by ’scaling’ is a constant for

each angular degree of freedom. However, unlike the two dimensional problem where

the angular domain was the circumference of the unit disc every term here is poten-

tially non-zero due to the scaling, and not just the term corresponding to ξ1(θ, ϕ).

This makes the computation of the scalar flux more involved than in the two dimen-

sional steady state mono energetic case.
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Remark 17. Notice, that this means that information from the higher order modes now con-

tributes to the scalar flux.

4.2.2 Computation of µ

We note that the quadrature points for the angular domain are given in cartesian coor-

dinates, from these, we need to compute µ, ϕ and θ. Let the two dimensional angular

quadrature point be denoted by qkang = (xang, yang). This is obtained by defining a

Gaussian quadrature on every element of the angular mesh and needs to be manipu-

lated in order to compute µ. Recalling that ϕ represents the azimuthal angle we can

easily compute ϕ = arctan[0,2π](yang/xang) where arctan[0,2π] is the arc tangent func-

tion such that the range is [0, 2π] and not [−π, π]. As well as computing ϕ we need

to compute θ, or at least sin(θ) - this can also be performed in a simple manner since

|µ| =
√

x2
ang + y2

ang = sin(θ). Finally, we note that sin(θ) cos(ϕ) = xand and that

sin(θ) sin(ϕ) = yang, hence we have µ = qkang.
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Numerical Experiments With

Uniform Refinement

In this chapter we present numerical experiments for the two dimensional mono ener-

getic steady state source problem using first a discrete ordinates discretisation in angle

with an arbitrary order discontinuous Galerkin method in space. Then we present

the results from the solver employing a DG discretisation in both space and angle for

both the two dimensional mono energetic steady state problem and some critical eigen-

value computation benchmarks. Finally, we provide analogous results for the pseudo

3D source problem and some industrial eigenvalue benchmarks.

5.1 Two Dimensional Discrete Ordinates Discretisation

To demonstrate the convergence of the discrete ordinates discretisation in the angular

domain when used in conjunction with a discontinuous Galerkin spatial discretisation

we consider solving the two dimensional monoenergetic steady state neutron transport

equation (1.6). Recall that we have the discretised problem (which we solve using

Source Iteration): for each i = 1, . . . N find ψh ∈ Vh,p such that

ANT(ψh, vh) = lNT(vh) ∀ vh ∈ Vh,p (5.1)

with the bilinear form ANT : Vh,p ×Vh,p → R given by

∑
κ∈T

(

−
∫

κ
(µiψh) · ∇vh dx+

∫

∂κ
H(ψ+

h , ψ−h ,nκ)v
+
h ds

)

and linear functional lNT : Vh → R,

lNT(vh) = ∑
κ∈T

(
∫

κ
Qvh dx+

∫

κ

Σs + Σ f

2π

(
N

∑
j=1

ωjψh(x, ϕj)

)

dx

)
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Table 5.1: Convergence of a Discrete ordinates angular discretisation with a DG(0) dis-

cretisation in space.

Ordinates No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

8 32 2.531528E-01 5.135307E-01

16 256 9.961423E-02 1.35 2.468900E-01 1.06

32 2048 4.680659E-02 1.09 1.167889E-01 1.08

64 16384 2.535137E-02 0.88 5.650621E-02 1.05

128 131072 1.359664E-02 0.90 2.786843E-02 1.02

256 1048576 7.083038E-03 0.94 1.388158E-02 1.01

512 8388608 3.619629E-03 0.97 6.943199E-03 1.00

For the results presented here we assume that ψ = sin(ϕ)(x cos(y) + y sin(x)), leading

to a scalar flux φ = 0. We take the material properties to be Σt = 0.32640, Σ f =

0.081600, ν = 2.84 and Σs = 0.225216. Defining the following norms,

‖φh − φ‖L2(Ω) =

(∫

Ω
(φh − φ)2 dx

) 1
2

(5.2)

and

‖ψh − ψ‖L2(Ω×I) =

(∫

Ω

∫

I
(ψh − ψ)2 dϕ dx

) 1
2

, (5.3)

which we refer to as the L2–norm of the scalar and angular fluxes respectively, we can

investigate the convergence rate of the discrete ordinates discretisation proposed. We

also define the number of degrees of freedom, no dofs, to be

no dofs = number of ordinates× number of spatial dofs

Results for the discrete ordinates discretisation with a DG(0) (that is, a piecewise poly-

nomial approximation in space) discretisation in space are presented in Table 5.1, sim-

ilarly for a linear approximation in Table 5.2, quadratic approximation in Table 5.3 and

finally a cubic approximation in Table 5.4. These can be seen graphically in Figure 5.1

As we predicted, the rate of convergence is limited by the discrete ordinates scheme,

and the best rate we can obtain is O(h2) convergence of the scalar flux; the observed

convergence rate of the angular flux is in fact only O(h
3
2 ). We also notice, that in fact

increasing the polynomial degree in space is detrimental in this case, giving slightly

larger errors for p = 2 and p = 3 than for p = 1. These results highlight the potential

benefit a higher order discretisation in angle could bring, as we shall see in the next

section.
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Table 5.2: Convergence of a Discrete ordinates angular discretisation with a DG(1) dis-

cretisation in space.

Ordinates No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

8 128 3.663290E-01 3.531264E-01

16 1024 1.067422E-01 1.78 1.430795E-01 1.30

32 8192 2.828434E-02 1.92 5.317593E-02 1.43

64 65536 7.253903E-03 1.96 1.920836E-02 1.47

128 524288 1.835293E-03 1.98 6.859081E-03 1.49

256 4194304 4.614856E-04 1.99 2.436692E-03 1.49

512 33554432 1.157000E-04 2.00 8.635260E-04 1.50

Table 5.3: Convergence of a Discrete ordinates angular discretisation with a DG(2) dis-

cretisation in space.

Ordinates No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

8 288 3.666868E-01 3.554966E-01

16 2304 1.066189E-01 1.78 1.433719E-01 1.31

32 18432 2.824920E-02 1.92 5.322589E-02 1.43

64 147456 7.244953E-03 1.96 1.921748E-02 1.47

128 1179648 1.833026E-03 1.98 6.860736E-03 1.49

256 9437184 4.609141E-04 1.99 2.436989E-03 1.49

Table 5.4: Convergence of a Discrete ordinates angular discretisation with a DG(3) dis-

cretisation in space.

Ordinates No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

8 512 3.668677E-01 3.557192E-01

16 4096 1.066351E-01 1.78 1.434039E-01 1.31

32 32768 2.825164E-02 1.92 5.323270E-02 1.43

64 262144 7.245283E-03 1.96 1.921878E-02 1.47

128 2097152 1.833069E-03 1.98 6.860972E-03 1.49

256 16777216 4.609195E-04 1.99 2.437031E-03 1.49
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Figure 5.1: Relative convergence of the DO-DG discretisations for differing polynomi-

als degree in space.
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Table 5.5: Cross sections used for the two dimensional source problem tests

Cross section Value

Σs 0.225216

Σt 0.32640

Σ f 0.081600

ν 2.84

5.2 Two Dimensional Full DG Discretisation

5.2.1 The Source Problem

In all of these source problems we are considering the solution of the two dimensional

monoenergetic steady state neutron transport equation (1.6) which for convenience we

reproduce below.

µ · ∇xψ(x, ϕ) + Σtψ(x, ϕ) =
1

2π

∫ 2π

0
(Σs + νΣ f )ψ(x, ϕ′) dϕ′+ Q(x, ϕ) in Ω× I

(5.4)

with boundary conditions determined by the analytic solution we prescribe. The fol-

lowing results are for the full DG discretisation, i.e., DG in space and angle. In addition,

all of these results use the same physical cross sections, these are taken from the LA7

benchmark that we will come across later and are given in Table 5.5.

Test Case 1

Let the angular flux

ψ = xy sin(πx) sin(πy)θ,

with associated scalar flux

φ = 2π2xy sin(πx) sin(πy).

Using the cross sections contained in Table 5.5 we wish to investigate convergence of

the full discontinuous Galerkin discretisation. We shall again examine convergence

with respect to the scalar flux and the angular flux using norms (5.2) and (5.3). In

addition, we will also investigate the convergence rate of a linear functional, as we did

for the advection problem in Chapter 3. We shall, again, consider the mean value of the

angular flux,

J(u) =
∫

Ω

∫

I
ωψ dϕ dx,
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Figure 5.2: The analytical scalar flux for Test Case 1.

here with weight ω = xy2 ϕ2. In this case, the analytical value of the functional can be

computed in Mathematica to be J(u) = 9.205251234021861. For reference a surface plot

of the scalar flux is shown as Figure 5.2. Comparing Figure 5.2 with a pseudocolour plot

of the converged numerical scalar flux, as shown in Figure 5.3 it can be seen that qual-

itatively the code has converged to the right solution. With reference to Tables 5.6, 5.7,

5.8 and Table 5.9, we can examine the convergence of the considered method in more

detail. The full discontinuous Galerkin discretisation of the neutron transport equation

does not suffer from a restriction on the convergence rate as the method utilising a dis-

crete ordinates discretisation did. Indeed, we see optimal orders achieved; the order of

convergence for p = q = 0 is markedly worse when being measured by the L2–norm of

the angular flux than for any other approximation order. We can also investigate the

convergence of the functional J(ψ) as given in Table 5.10 For the linear approximation

it is seen that we approach the expected asymptotic rate of O(h2(p+1)−1) = O(h3). The

behaviour in the case of piecewise constants is trickier to explain, we believe that we

have not reached the asymptotic regime in this case.
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Figure 5.3: The computed scalar flux for Test Case 1.

Table 5.6: Convergence of a DG-DG discretisation with polynomial degree p = q = 0

for the first test problem.

No Angle Eles No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

2 8 2.392107145 1.148978465

4 64 1.332316108 0.84 0.851275391 0.43

8 512 6.90E-01 0.95 4.80E-01 0.83

16 4096 3.50E-01 0.98 2.59E-01 0.89

32 32768 1.78E-01 0.98 1.37E-01 0.92

64 262144 8.99E-02 0.99 7.12E-02 0.95

128 2097152 4.52E-02 0.99 4.52E-02 0.66
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Table 5.7: Convergence of a DG-DG discretisation with polynomial degree p = q = 1

for the first test problem.

No Angle Eles No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

2 64 7.500834E-01 4.687597E-01

4 512 1.770892E-01 2.08 1.181036E-01 1.99

8 4096 4.421813E-02 2.00 2.982916E-02 1.99

16 32768 1.104667E-02 2.00 7.495364E-03 1.99

32 262144 2.762745E-03 2.00 1.881478E-03 1.99

64 2097152 6.909504E-04 2.00 4.715694E-04 2.00

128 16777216 1.727789E-04 2.00 1.180650E-04 2.00

Table 5.8: Convergence of a DG-DG discretisation with polynomial degree p = q = 2

for the first test problem.

No Angle Eles No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

2 216 8.364283E-02 5.114040E-02

4 1728 1.185519E-02 2.82 7.814308E-03 2.71

8 13824 1.515062E-03 2.97 1.004594E-03 2.96

16 110592 1.904219E-04 2.99 1.260287E-04 2.99

32 884736 2.384504E-05 3.00 1.574566E-05 3.00

64 7077888 2.982771E-06 3.00 1.966753E-06 3.00

Table 5.9: Convergence of a DG-DG discretisation with polynomial degree p = q = 3

for the first test problem.

No Angle Eles No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

2 512 1.498632E-02 9.325590E-03

4 4096 9.171288E-04 4.03 5.898273E-04 3.98

8 32768 5.724592E-05 4.00 3.692886E-05 4.00

16 262144 3.579405E-06 4.00 2.311638E-06 4.00

32 2097152 2.239206E-07 4.00 1.446503E-07 4.00
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Table 5.10: Convergence of the linear functional for the first test problem, employing

a DG-DG method.

p = 0 p = 1

No Angle Eles J(ψ)− J(ψh) Order J(ψ)− J(ψh) Order

2 5.011543014 1.639331E-01

4 1.004046327 2.32 1.607784E-02 3.35

8 0.218373463 2.20 2.457070E-03 2.71

16 3.99E-02 2.45 3.294583E-04 2.90

32 4.64E-03 3.10 4.359673E-05 2.92

64 -1.25E-03 1.90 5.640226E-06 2.95

128 -1.48E-03 7.087954E-07 2.99
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The Effect of varying Σs

As mentioned in Remark 14 the value of the scattering cross section Σs can have a

dramatic influence on the convergence of the outer Source Iteration. For the problems

considered in this thesis, we typically observe that the number of source iterations is

around 25. We consider the solution of (5.4) where we prescribe ψ(x, ϕ) = x cos(y) +

y sin(x), which gives a scalar flux φ(x) = 2π(x cos(y) + y sin(x)), and source term,

Q(x, ϕ) = cos(ϕ)(y cos(x) + cos(y)) + sin(ϕ)(sin(x)− x sin(y))

+ Σt(x cos(y) + y sin(x))− (Σs + νΣ f )

2π
2π(x cos(y) + y sin(x))

For the material cross sections we let Σt = 0.32640, Σ f = 0.081600, ν = 2.84 and let Σs

vary. The effect of varying Σs is shown in Table 5.11 and graphically in Figure 5.4.

Table 5.11: How Σs effects the convergence of Source Iteration

Σs Number of Source Iterations Σs Number of Source Iterations

0.225216 20 1.45 101

0.3 22 1.5 112

0.5 28 1.55 126

0.75 37 1.6 143

1.0 50 1.65 164

1.05 53 1.75 193

1.1 57 1.8 233

1.25 71 1.85 392

1.3 77 1.9 589

1.35 84 1.95 1183

1.4 92 2.00 Does not converge
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Figure 5.4: Graphical representation of the effect that Σs has on the convergence of the

source iteration

For Σs = 2 the source iteration does not converge. This is what we would expect as in

this case since,

(Σs + νΣ f )/2π = 0.355193 > Σt = 0.32640

and so the iteration is not guaranteed to converge. Despite that large increase in the

number of iterations for small increases in the scattering cross section, in practice we

see this is not an issue for the problems considered in this thesis. If we wished to extend

the code to shielding computations it would be an issue, as then the materials used for

the shields will be optically thick.
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5.2.2 The Critical Eigenvalue Benchmarks

It is significantly quicker to solve a neutron transport eigenvalue problem in the two

dimensional case than in the pseudo 3D case, so ideally to validate the DG-DG method

further we could perform some two dimensional critical eigenvalue calculations. Un-

fortunately there are no suitable industrial benchmarks for the two dimensional prob-

lem as considered in this thesis. Because of this some two dimensional eigenvalue

benchmarks were developed in conjunction with Baker [26] and the full DG discreti-

sation can be benchmarked against the results (which we have to two decimal places)

obtained by the characteristics code of Baker [27]. This section presents results of three

of these available benchmarks.

Test Case 1

Here we consider the spatial domain to be the square (x, y) ∈ [0, 4] × [0, 4] and the

following coefficients Σt = 0.75, Σ f = 0.25, Σs = 0.25 and ν = 2.0. From David

Baker’s work we have a reference eigenvalue of ke f f 0.60 to 2 significant figures which

was computed with a discrete ordinates long characteristics code with a 32× 32 spatial

grid and 32 angular ordinates.

The results of the discontinuous Galerkin code with a piecewise constant discretisation

in both the angular and spatial domains are given in Table 5.12. These tables contain

the numerical eigenvalue obtained along with the number of iterations required by the

power method to find the dominant eigenvalue. Note that the following identity for

the total number of degrees of freedom (dofs) holds

Total number of dofs = No angles×No spatial dofs×No angular dofs per angle

We note the slow convergence of the p = q = 0 approximation with much better

results for higher order discretisations. The higher order results suggest that the eigen-

value is 0.5957 to 4 decimal places. A plot of the converged dominant eigenfunction

scalar flux is shown in Figure 5.5. We observe the expected gradual increase in flux

from the vacuum boundary conditions to a peak in the centre of the domain. It can

also be confirmed that the expected behaviour is observed if you increase Σ f and/or ν;

namely an increase in the keff eigenvalue. For example, keeping all other cross sections

the same but increasing Σ f to 0.45 results in an eigenvalue ke f f = 1.05939780, meaning

that in this case the system is supercritical.
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Table 5.12: Eigenvalues for 2D Eigenvalue Test Case 1 with p = 0, q = 0.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 4 8 0.63157894 2

4 16 64 0.55894925 27

8 64 512 0.57925861 27

16 256 4096 0.58708930 26

32 1024 32768 0.59114517 26

64 4096 262144 0.59333141 25

128 16384 2097152 0.59448243 25

256 65536 16777216 0.59507500 25

Table 5.13: Eigenvalues for 2D Eigenvalue Test Case 1 with p = 1, q = 1.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 16 64 0.58577820 32

4 64 512 0.59414683 25

8 256 4096 0.59559685 25

16 1024 32768 0.59566428 25

32 4096 262144 0.59567763 25

64 16384 2097152 0.59567971 25

Table 5.14: Eigenvalues for 2D Eigenvalue Test Case 1 with p = 2, q = 2.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 36 216 0.59915072 31

4 144 1728 0.59584716 24

8 576 13824 0.59567954 25

16 2304 110592 0.59568004 25

32 9216 884736 0.59568006 25
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Figure 5.5: Converged Scalar Flux for Test Case 1
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Table 5.15: Cross Sections for Test Case 2 and Test Case 3

Cross Section Material 1 Material 2

σt 0.75 0.9

σs 0.25 0.2

σf 0.25 0.7

ν 2 4

4 cm

4 cm

0.5 cm

0.5 cm

Material 1

Material 2

Figure 5.6: Domain for 2D Eigenvalue Test Case 2

Test Case 2

Test Case 1 considered previously is unrealistic in that the spatial domain is a single

piece of homogeneous material. In applications it is more reasonable to consider an

assembly made up of more than one material.

The simplest case is to consider a region of fissionable material surrounded by some

form of moderator. Mathematically this corresponds to assigning different cross sec-

tions to various parts of the domain. Material 1 has the same cross sections as the

homogeneous material considered in the above test case, however material 2, placed

in the centre of the domain has a larger fission cross section. The spatial domain for

Test Case 2 is shown in Figure 5.6 and the cross sections used are given in Table 5.15.

As Material 2 has a larger fission cross section and more neutrons released per fis-

sion we would expect a higher scalar flux in the region of material 2 and a higher k

effective eigenvalue. Baker provides a reference value of 0.83 for the k effective eigen-

value. Again the high order codes all converge to this eigenvalue (albeit more runs of
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Table 5.16: Eigenvalues for 2D Eigenvalue Test Case 2 with p = 0, q = 0.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 4 8 0.6315789 2

4 16 64 0.8942461 24

8 64 512 0.7085404 33

16 256 4096 0.8849276 36

32 1024 32768 0.8538860 35

64 4096 262144 0.8405874 34

128 16384 2097152 0.8348132 33

256 65536 16777216 0.83219784 32

Table 5.17: Eigenvalues for 2D Eigenvalue Test Case 2 with p = 1, q = 1.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 16 64 1.45289548 19

4 64 512 0.92966520 31

8 256 4096 0.65955428 38

16 1024 32768 0.82780334 33

32 4096 262144 0.82948193 31

64 16384 2097152 0.82974432 29

the p = q = 0 case would be desirable), and suggest that a more accurate value for the

eigenvalue would be 0.82987. A plot of the converged dominant eigenfunction scalar

Table 5.18: Eigenvalues for 2D Eigenvalue Test Case 2 with p = 2, q = 2.

No Angles Spatial Dofs Total Dofs Eigenvalue Power lterations

2 36 216 1.12083029 28

4 144 1728 0.72547460 43

8 576 13824 0.82556466 34

16 2304 110592 0.82978657 34

32 9216 884736 0.82978756 32

flux in Figure 5.7 clearly shows the expected localisation around material 2. We note

that the number of power iterations does not appear to be as stable upon refinement as

for Test Case 1.
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Figure 5.7: Converged Scalar Flux for Test Case 2

Test Case 3

As a final test case we consider a more complicated spatial domain; one that is intended

to represent an assembly of four fuel rods surrounded by a moderator. The fuel rods

are made up of material 2 and the moderator material 1, the cross sections of which are

those appearing in Table 5.15. The spatial domain is shown in Figure 5.8

Baker provides a reference eigenvalue correct to two significant figures of 0.92. The

results of the DG discretisation for varying polynomial degrees are shown in Tables

5.19, 5.20 and 5.21.

The converged dominant eigenfunction scalar flux is in some sense more interesting

than the previous cases, showing high flux in the region of the fuel rods, with low flux

elsewhere. We also provide a surface plot of the scalar flux in this case, shown in Figure

5.10.
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4 cm

4 cm

0.5 cm

0.5 cm

Material 1

Material 2

Figure 5.8: Domain for 2D Eigenvalue Test Case 3

Table 5.19: Errors for 2D Eigenvalue Test Case 3 with p = 0, q = 0.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 4 8 0.6315789 2

4 16 64 1.1412657 29

8 64 512 0.8017940 25

16 256 4096 0.9828623 26

32 1024 32768 0.9507339 25

64 4096 262144 0.9357632 24

128 16384 2097152 0.9288944 24

256 65536 16777216 0.9256823 23

Table 5.20: Errors for 2D Eigenvalue Test Case 3 with p = 1, q = 1.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 16 64 1.02773597 19

4 64 512 1.03878004 31

8 256 4096 0.75871414 38

16 1024 32768 0.92204520 33

32 4096 262144 0.92236552 31

64 16384 2097152 0.92260986 29
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Table 5.21: Errors for 2D Eigenvalue Test Case 3 with p = 2, q = 2.

No Angles Spatial Dofs Total Dofs Eigenvalue Power Iterations

2 36 216 0.59915072 31

4 144 1728 0.79323043 33

8 576 13824 0.92027850 25

16 2304 110592 0.92250089 22

32 9216 884736 0.92265734 22

Figure 5.9: Converged Scalar Flux for Test Case 3
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Figure 5.10: Converged Scalar Flux for Test Case 3
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5.3 Pseudo 3D Full DG Discretisation

Here we give a numerical method for the pseudo 3D problem, showing that with the

angular mesh discussed in Chapter 4 we can obtain optimal convergence rates for the

scalar flux and a mean value functional, however, it appears that the convergence of

the angular flux is suboptimal in that we don’t observe the O(hp+1) we would expect.

We then introduce three industrial critical eigenvalue benchmarks from the literature

that can be tackled using our code.

5.3.1 The Source Problem

Recall the pseudo 3D discontinuous Galerkin discretisation: find ψh ∈ VhΩ,hI such that

∑
κD∈TD

∑
κΩ∈TΩ

[∫

κD

∫

κΩ

{−ψhµ · ∇xvh + Σtψhvh} dx dθdϕ

+
∫

κD

∫

∂κΩ\Γ
H(ψ+

h , ψ−h ,n)v+h ds dθ dϕ

+
∫

κD

∫

∂κΩ∩Γ
H(ψ+

h , ψµ

Γ (ψ
+
h ),n)v

+
h ds dθdϕ

]

= ∑
κD∈TD

∑
κΩ∈TΩ

[∫

κD

∫

κΩ

(
Σs(x) + ν(x)Σ f (x)

2π

∫ 2π

0

∫ π/2

0
ψh(x, θ′, ϕ′)

1
cos(θ)

dθ′ dϕ′
)

dx dθ dϕ

]

+ ∑
κD∈TD

∑
κΩ∈TΩ

[∫

κD

∫

κΩ

Q(x, θ, ϕ)vh dx dθ dϕ

]

∀vh ∈ VhΩ,hI .

(5.5)

We have already discussed the difficulty posed by the 1
cos(θ) term appearing in the def-

inition of the scalar flux. In practice this manifests itself in sub optimal convergence

rates for the angular flux as we shall now demonstrate. Indeed it appears that the an-

gular flux is now limited to the same rate as for the discrete ordinates discretisation;

however the rate of convergence of the scalar flux is not limited as was the case for the

discrete ordinates discretisation of the angular dimension.

Let the angular flux be given by,

ψ = xy sin(πx) sin(πy) sin(ϕ) cos(θ),

this leads to a scalar flux of φ = 0. Using the material cross sections given in Table 5.5

and defining the source Q(x, θ, ψ) to be

Q = sin(θ) cos(ϕ)(y cos(θ)(πx cos(πx) + sin(πx)) sin(πy) sin(ϕ))

+ sin(θ) sin(ϕ)(x cos(θ) sin(πx)(πy cos(πy) + sin(πy)) sin(ϕ))

+ 0.32640xy cos(θ) sin(πx) sin(πy) sin(ϕ),
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Table 5.22: Convergence of a pseudo 3D discretisation with polynomial degree p =

q = 0

No Angle Eles No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

8 32 1.643170E-01 1.39E-01

32 512 1.144210E-01 0.5221 9.32E-02 0.5728

128 8192 6.272210E-02 0.8763 5.26E-03 4.1479

512 131072 3.262879E-02 0.9428 2.82E-02 2.4214

2048 2097152 1.665750E-02 0.97 1.47E-02 0.9381

8192 33554432 8.421851E-03 0.984 7.55E-03 0.9621

Table 5.23: Convergence of a pseudo 3D discretisation with polynomial degree p =

q = 1

No Angle Eles No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

8 512 5.907741E-02 6.130789E-02

32 8192 1.510575E-02 1.9675 1.926798E-02 1.6699

128 131072 3.764944E-03 2.0044 6.134180E-03 1.6513

512 2097152 9.388661E-04 2.0036 2.028414E-03 1.5965

2048 33554432 2.341207E-04 2.0037 6.899622E-04 1.5558

we have a well posed problem with solution ψ. As we wish to also investigate the

convergence of functionals of the solution, we consider the mean value functional

J(u) =
∫

Ω

∫

D
ωψ dθ dϕ dx,

with weighting in this case given by

ω = − sin(θ) cos(ϕ)(y cos(θ)(πx cos(πx) + sin(πx)) sin(πy) sin(ϕ))

− sin(θ) sin(ϕ)(x cos(θ) sin(πx)(πy cos(πy) + sin(πy)) sin(ϕ))

+ 0.32640xy cos(θ) sin(πx) sin(πy) sin(ϕ),

giving an analytical value J(u) = 0.00682789.

The convergence results for p = q = 0 are given in Table 5.22, similarly for p = q = 1,

these are in Table 5.23. Finally the results for p = q = 2 are contained within Table

Convergence of the linear functional is also shown in Table 5.25
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Table 5.24: Convergence of a pseudo 3D discretisation with polynomial degree p =

q = 2

No Angle Eles No Dofs ‖φh − φ‖L2(Ω) Order ‖ψh − ψ‖L2(Ω×I) Order

8 2592 6.669943E-03 1.727332E-02

32 41472 9.423997E-04 2.8233 5.143702E-03 1.7477

128 663552 1.206784E-04 2.9652 1.736031E-03 1.567

512 10616832 1.509855E-05 2.9987 6.087938E-04 1.5118

Table 5.25: Convergence of the linear functional for the pseudo 3D problem.

p = 0 p = 1

No Angle Eles J(ψ)− J(ψh) Order J(ψ)− J(ψh) Order

8 1.806410E-02 7.270140E-03

32 1.845629E-02 1.013368E-03 2.84

128 1.144982E-02 0.07 1.307158E-04 2.95

512 6.181905E-03 0.89 1.647571E-05 2.99

2048 3.192689E-03 0.95 2.061906E-06 3.00

8192 1.620306E-03 0.98

5.3.2 Industrial Critical Eigenvalue Benchmarks

Here we present three benchmark problems to solve from the neutron transport liter-

ature. Due to the geometries involved, the elements used in the spatial domains now

have to be triangles as opposed to quadrilaterals which we have used thus far. To gen-

erate the meshes required we use Shewchuk’s mesh generator Triangle [136]. When

generating meshes with triangle, one can specify a "maximum element area", this de-

termines the size of the elements generated, and so we will tabulate these with our

results. The first two benchmarks considered are posed on circular spatial geometries.

When generating meshes for these we approximate the circle by a many sided polygon.

Hence, in addition to decreasing an elements’ size, we also improve our approximation

to the circle. To this end, when we reduce the maximum area of an element by four we

also increase the number of polygonal sides by a factor of two.

LA7 Benchmark

The first benchmark we consider comes from an article by Sood, Forster and Parsons

of the Los Alamos National Laboratory [143]. In this article they collect together many
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Table 5.26: Converged Eigenvalues for LA7 Benchmark

p = 0 p = 1

Max Ele Area No faces Eigenvalue Power Iterations Eigenvalue Power Iterations

1/40 50 0.894405 26 0.928050 27

1/41 100 0.941936 18 0.964291 21

1/42 200 0.969204 20 0.982128 21

benchmarks from the literature, we shall concern ourselves with two of them. The first

is known as the LA7 benchmark (due to the numbering scheme used in the paper). The

goal, here, is to compute the k-effective eigenvalue ke f f as accurately as possible.

The LA7 benchmark is derived from an older article [159] and models an infinite cylin-

der of Plutonium, Pu-239 surrounded by vacuum boundary conditions. The spatial

domain is a circle of radius r = 4.279960cm; for this radius ke f f = 1. Some results are

shown in Table 5.26; these are promising as for both polynomial degrees the eigenvalue

appears to be converging to the expected ke f f , however more runs are required to prop-

erly observe this. It would also be desirable to investigate higher degree polynomials

as p = 1 appears to perform better than p = 0. In the table the maximum element area

is that as given to Triangle, no faces describes how many faces the polygon we use to

approximate the spatial domain has and power iterations reports how many iterations

of the power method were required to converge to the eigenvalue in this case.

Remark 18. We remark that we have computed eigenvalues for this benchmark with a discrete

ordinates DG scheme and we converge to the eigenvalue well. The accuracy of the eigenvalue at

each refinement step is in this case in line with those of Baker [27]. This confirms our observa-

tions about the difficulty quadrature is causing in the pseudo 3D setting and in fact improved

results may be obtained if we consider the full three dimensional discretisation.

LA9 Benchmark

The LA9 benchmark is more complicated than the LA7 benchmark since it is composed

of two materials. There is the same cylinder of Pu-239 used in the LA7 case, but now

it is surrounded by an reflector material, in this case water. This reflector means that

there is a good chance that neutrons leaving the Pu-239 will be reflected back in, to

cause further fissions. This leads to a smaller critical radius of Pu-239 being required.

The cross sections for the LA7 and LA9 benchmarks are shown in Table 5.27 The critical

thickness of Plutonium 239 in this case is 3.397610cm, this is then surrounded by a
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Table 5.27: Material cross sections for the LA7 and LA9 benchmarks

Pu− 239 H20

Σt 0.32640 0.32640

Σs 0.225216 0.293760

Σ f 0.081600 -

ν 2.84 -

Table 5.28: Converged Eigenvalues for LA9 Benchmark

p = 0 p = 1

Max Ele Area No faces Eigenvalue Power Iterations Eigenvalue Power Iterations

1/40 50 0.863938 22 0.919426 24

1/41 100 0.922172 20 0.955621 20

1/42 200 0.960348 19

water region of thickness 3.063725 giving a combined radius for the whole assembly

of 6.461335. A typical triangle generated mesh for the LA9 benchmark that respects

the material boundaries is shown in Figure 5.11. Some eigenvalue approximations are

shown in Table 5.28 and the scalar flux for the dominant eigenvalue is shown in Figure

5.12 Note that in this case, our eigenvalue approximations start further away from

unity than they did for the LA7 benchmark.

Maire and Talay Benchmark

The Maire and Talay benchmark is a more complicated benchmark that is more rep-

resentative of a practical nuclear assembly. This was considered by Maire and Talay

in 2006 [109]. The assembly is composed of of a rectangular domain, comprising five

materials, two of which are fissile, as shown in Figure 5.13 with cross sections as given

in Table 5.29.
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Figure 5.11: A mesh (generated by Triangle) of the spatial domain for the LA9 bench-

mark.

Table 5.29: Material cross sections for the LA7 and LA9 benchmarks

Material 1 2 3 4 5

Σt 6.0E-1 4.8E-1 7.0E-1 6.5E-1 9.0E-1

Σs 5.3E-1 2.0E-1 6.6E-1 5.0E-1 8.9E-1

νΣ f 7.9E-2 - 4.3E-2 - -
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Figure 5.12: A mesh (generated by Triangle) of the spatial domain for the LA9 bench-

mark.
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25cm
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Material 3Material 4

Material 5

Figure 5.13: The spatial domain for the Maire and Talay benchmark problem
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Table 5.30: Converged Eigenvalues for Maire and Talay Benchmark

p = 0 p = 1

Max Ele Area Eigenvalue Power Iterations Eigenvalue Power Iterations

200/40 0.563351 62

200/41 0.692246 58

200/42 0.806739 60

200/44 0.890736 55

Looking at Table 5.30 we observe slower convergence to unity than for the LA7 and

LA9 benchmarks, also note the large number of power iterations that are required to

converge to the eigenvalue in this case. This slower convergence was also noted by

Baker [27] with his discrete ordinates in angle, characteristics in space scheme and indi-

cates that an investigation into whether a method other than the power method would

produce better results for this benchmark.

It is possible to obtain further results for these benchmarks by refining both the the

angular and spatial domains. However, at present, these take a considerably long time

to produce and so are not included here. Optimisation of the code is an important fu-

ture task to enable us to solve industrial three dimensional benchmarks to a specified

accuracy and will be discussed further in the conclusion.
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CHAPTER 6

Adaptivity And A Posteriori Error

Estimation

As we have seen in the previous chapter, obtaining numerical solutions of sufficient ac-

curacy for both the neutron transport source problem and the critical eigenvalue prob-

lem is difficult at best, as a consequence we need to investigate the idea of adaptive

mesh refinement. In this section we introduce the idea of adaptivity, before specifically

investigating dual weighted residual (DWR) error estimation an its use for adaptiv-

ity. DWR error estimation is useful when we are interested in computing functionals

of the solution to a problem. We first apply this technique to the advection reaction

equation studied in Chapter 3. We then investigate DWR error estimation for the neu-

tron transport source problem before considering the DWR approach in the context of

eigenvalue problems; first for the eigenvalues of the Laplace operator and then for the

neutron transport critical eigenvalue problem.

6.1 Introduction to Adaptivity

As seen in Chapter 1, the convergence of any finite element methods is dependent

on the mesh width and also the polynomial degree. It is possible to globally refine

the mesh (which we term uniform refinement, as used for the numerical results con-

tained in the last chapter) or globally increase the polynomial degree in order to obtain

h-convergence. Unfortunately this is generally inefficient, i.e., it is very expensive in

terms of solve time and the number of degrees of freedom to obtain a solution to a pre

specified tolerance. This is because the regions in the domain where a smaller mesh is

required to resolve features such as singularities or boundary layers are likely to be a

small fraction of the total domain. In practice, the size of problem that can be solved
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is bounded by the time it takes and the amount of memory available on the computer

that is being used, this has led to the development of adaptive techniques.

Conceptually, let us consider the abstract case where we approximate the solution of

the following model problem, where A is some differential operator

Aψ = f ,

with some appropriate boundary conditions. Performing a finite element discretisation

we obtain the following weak formulation: Find ψDG such that

ADG(ψDG, v) = lDG(v) ∀ v ∈ Vh,

where Vh is a finite dimensional space on a mesh Th = {κ}N
i=1, ADG is a bilinear form

and lDG is a linear functional. We wish to design the finite dimensional space Vh in the

most efficient way so that in some norm ‖ · ‖ the following condition is satisfied

‖ψ− ψDG‖ ≤ Tol,

where Tol is some user defined tolerance. The aim is to adaptively refine the space

as we solve the problem; to do this we require some kind of indicator function that

indicates the relative error for different regions in the domain. Any a priori estimates

that have been used to indicate the rate of convergence will be useless in this case as

they will involve explicitly the analytical solution ψ and so are not computable. As a

consequence, we seek an a posteriori error estimate such that the right hand side of the

estimate is computable using only the approximate solution ψh and the data f of the

associated problem. With this indicator, we can then design an adaptive algorithm in

the style of Verfürth [154]:

1. Design an initial mesh.

2. Solve the discrete system.

3. Calculate an a posteriori error estimate.

4. If the error estimate is less than a prescribed accuracy Tol then stop, else go to 5.

5. Perform adaptive mesh refinement and go to 2.

Early adaptive algorithms used somewhat ad hoc criterions to guide refinement, such as

the size of the gradient of the physical quantity of interest. There is intuitive reasoning

behind this (regions of sharp gradient are likely to need more resolving to be accurately
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represented), however it may not lead to an optimal mesh design. In this setting opti-

mal means the most economical for achieving a certain tolerance or the most accurate

for a given maximum nuber of degrees of freedom. In 1978, Babuška and Rheinboldt

published some very influential papers ([22] , [23]) where they introduced the idea of

performing a posteriori error anlaysis with respect to a natural energy norm ‖ · ‖E that

is induced by the differential operator of the problem being investigated. When per-

forming error analysis with respect to an energy norm one can obtain error estimates

of the form

‖u− uDG‖DG ≤ CE(u, uDG, R(uh))

where R(uh) = f − Auh is the finite element residual which is computable, and E(·, ·, ·)
just denotes some formula involving the residual which will normally be some form of

norm (as there is then meaning to the relative size of the error). This norm will then be

split up into N elemental contributions (where we have N elements in out partition of

the mesh T ) that can be used to indicate regions with high and low error.

E(u, uDG, R(uh)) ≤ ∑
κ∈T

ηκ

Since the original papers of Babuška and Rheinboldt, this approach has been devel-

oped in many varied settings.

With some suitable error estimate we must then decide where to apply refinement

and which type of refinement this is to be. The decision on where to refine a mesh

is normally called a "marking strategy’" and two possible choices are:

• Fixed Fraction At each refinement step we order the elements according to the

size of the absolute value of the local error indicators ηκ . Then a fixed fraction of

the elements κ with the largest |ηk| are refined and a fixed fraction of elements κ

with the smallest |ηk| are derefined. As an example, we could choose a refinement

percentage of 20% and a derifinement percentage of 10%.

• Equidistribution Here the idea is to equilibrate the local error indicators by re-

fining or derefining the elements κ according to the criterion

ηk ≈
Tol√

N
,

where N denotes the number of elements in the current mesh.

Once we have selected elements for refinement we can then choose which refinement

type to employ from:
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• h–refinement Elements that have been marked for refinement we split into daugh-

ter elements. For elements marked for derefinement we combine neighbouring

elements.

• p–refinement We increase the degree of approximation on elements that are marked

for refinement and lower the degree on elements that are marked for derefine-

ment.

• r–refinement The nodes of the mesh are moved in such a way as to reduce the

approximation error.

Remark 19. It is also possible to regenerate the whole mesh with a suitable mesh generator

targeting the local parts where the error indicators were large, and increasing the resolution in

those regions.

As noted in Section 1.4.2 performing adaptive refinement is easier for a DG discreti-

sation than for a conforming finite element discretisation. To perform h–refinement

on a simplicial element, to prevent interior angles becoming small, one performs what

is known as red refinement and split the element into 4 daughter elements as shown

in Figure 6.1. As can be seen, this potentially leads to hanging nodes, which for a

conforming discretisation can be problematic. To remove the hanging node a green re-

finement can be made, see Figure 6.1. This green refinement is temporary in the sense

that if an element that has been green refined is selected for refinement at the next

refinement step then the green refinement is removed before performing a red refine-

ment step. When we employ a DG discretisation we can have an arbitrary number of

hanging nodes (though, based on experience, we limit the number of hanging nodes

per face to one) and so green refinement is not necessary. Performing p–refinement is

again relatively easy with a DG discretisation as there is no need to match up approxi-

mations of differing polynomial orders across element boundaries, as you would need

to for a conforming method. In 1987 Babuška & Suri [24] proved that for a function

u|Ω ∈ Hk(Ω) where Ω is a domain and Πhp is a projection onto a finite element space,

the following approximation result holds

‖u−Πhpu‖Hs(Ω) ≤ C
hmin(p+1,k)−s

pk−s
‖u‖Hk(Ω), 0 ≤ s ≤ min(p + 1, k),

where Πhpu denotes an interpolant of u. Schwab derived the following error bound for

a real analytic function u on Ω in 1998 [135],

‖u−Πhpu‖Hs(Ω) ≤ C(u) hp+1−s e−bp, b > 0.

Here uh is the finite element approximation which has been computed on a partition

of Ω into quadrilaterals. This result implies that for a smooth solution exponential
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Red Refinement

Green Refinement

Figure 6.1: Mesh Refinement Strategies

convergence can be obtained when refining the polynomial degree. This implication

could not be made using the result of Babuška & Suri since the constant C depended

on the regularity of the solution, and so increased with k; hence it is not possible to

take to the limit and obtain exponential convergence. The above result suggests that a

combination of local h and p–refinement, so called hp–refinement strategies will lead

to the "best" rates of convergence. Indeed, in practice it is possible to recover expo-

nential convergence even for solutions with singularities by utilising a hp–adaptation

stategy.The use of an hp–refinement algorithm introduces a further complexity in that

once an element has been selected for refinement we must choose whether to perform

h–refinement or p–refinement. There are various strategies for this, see the unpub-

lished paper [113] for a comparehensive survey. All the methods attempt to estimate

the smoothness [86] of the approximate solution uDG; if uDG is assessed to be smooth

we perform p–refinement, else we perform h–refinement.

In this work we consider solely h–refinement, with hp–refinement being an obvious

extension which will be discussed in the final chapter.

6.2 Dual Weighted Residual (DWR) adaptivity

Performing adaptive refinement with respect to some norm of the error will lead to

achieving a certain accuracy in that norm with fewer degrees of freedom than uniform

refinement, however we are often interested in approximating a functional of the nu-

merical solution uDG. We often refer to this functional as "the goal” or target functional.

This desire has led to the development of goal oriented error estimates.
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To this end, it is possible to employ duality arguments, similar to the common "Aubin

- Nitsche duality trick” used in deriving a priori error estimates. Babuška (in his work

with Miller) [19–21] is again credited with introducing the idea of using duality argu-

ments in a posteriori error estimation. The survey paper by Eriksson, Estep, Hansbo and

Johnson [70] provides a good introduction to this area. Becker and Rannacher [31–33]

developed this approach into the Dual Weighted Residual (DWR) method which we

describe in this section. Examples shown in [29] show the superiority of this approach

over using more heuristic error indicators, resulting in optimal meshes with less refine-

ment in areas of the domain where it is not necessary.

For completeness we introduce DWR error estimation in the setting of nonlinear prob-

lems see for example [33, 82, 83], despite both the advection problem and the neutron

transport problem being linear; we will then restrict to the linear case.

Suppose that Ω ⊂ Rd is an open bounded domain and that N is a nonlinear differ-

ential operator such that with suitable boundary conditions we can consider consider

the nonlinear problem

Nu = 0 in Ω

Discretising the problem leads to the following nonlinear problem: find uDG ∈ Vh,p

such that,

N (uDG, vh) = 0 for allvh ∈ Vh,p,

where Vh,p is a discrete function space such that Vh,p ⊂ V with V is a suitable space

containing the analytical solution u. the space Vh,p is defined on a mesh T of elements

κ which is a partition of the domain Ω. The semi linear form N : V × V → R is

nonlinear in the first argument and linear in the second argument. We assume that

N (u, v) = 0 for all v ∈ V and so the discretisation is consistent. We note that Galerkin

orthogonality holds, i.e.,

N (u, vh)−N (uDG, vh) = 0 for all vh ∈ Vh,p.

We define the mean value linearization ofN (·, v) in the standard way, namely,

M(u, uDG; u− uDG, v) = N (u, v)−N (uDG, v),

=
∫ 1

0
N ′[θu + (1− θ)uDG](u− uDG) v dθ,

where N ′[w](·, v) denotes the Fréchet derivative evaluated at some w ∈ V. Now, sup-

pose we are interested in the (possibly) nonlinear functional (which is differentiable),
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we can define the mean value linearization of J(·) analogously

J̄(u, uh; u− uh) = J(u)− J(uDG),

=
∫ 1

0
J′[θu + (1− θ)uDG](u− uDG) dθ.

We can now introduce the following formal dual problem: find z ∈ V such that

M(u, uDG; w, z) = J̄(u, uDG; w) for all w ∈ V.

Here we assume that the dual problem is well posed, this is dependent on both the

form N (·, ·) and the functional J(·). Finally, with w = u − uDG we can derive the

following error representation formula

J(u)− J(uDG) = J̄(u, uDG; u− uDG)

=M(u, uDG; u− uDG, z)

=M(u, uDG; u− uDG, z− zh)

= −N (uDG, z− zh) for all/zh ∈ Vh,p,

where we have exploited consistency and Galerkin orthogonality. DefiningR(uDG, z−
zh) = −N (uDG, z− zh) we have the following error representation formula

J(u)− J(uDG) = R(uDG, z− zh) (6.1)

where the error representation formula comprises residuals of the primal numerical

solution uDG multiplied by weightings involving the dual solution z.

The derivation of the DWR error representation formula is more straight forward than

in the nonlinear case since there is no need to perform a linearization. Let L be a linear

differential operator, we can then consider the solution u ∈ V to the following abstract

linear problem,

Lu = f in Ω, (6.2)

u = g on Γ, (6.3)

where f ∈ L2(Ω), g ∈ L2(Γ) and Ω and Γ are as defined previously. Discretising the

above, as usual we obtain the variational problem: find uDG ∈ Vh,p such that

ADG(uDG, vh) = l(vh) ∀ vh ∈ Vh,p, (6.4)

where Vh,p ⊂ V is a finite element space on the triangulation Th,p of elements of max-

imum diameter h such that the piecewise approximation polynomials are of degree p.
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ADG(·, ·) : V × V → R is a bilinear form and l(·) : V → R is a linear functional. We

also assume that the analytical solution u also satisfies (6.4); that is the discretisation is

consistent such that

ADG(u, v) = l(v) ∀ v ∈ V.

Galerkin orthogonality holds for the discretisation and so,

ADG(u, vh)− ADG(uDG, vh) = ADG(u− uDG, vh)

= 0

We suppose that the physical quantity we are interested in can be expressed as a func-

tional J(·) of the solution and introduce the following adjoint or dual problem: Find

z ∈ V such that

ADG(w, z) = J(w) ∀ w ∈ V, (6.5)

where we assume the solution z exists. Under the assumption that (6.5) is well posed

we can, following the same steps as in the nonlinear case, establish the following result

for the error in the approximation of our target functional.

J(u)− J(uDG) = J(u− uDG) by linearity

= ADG(u− uDG, z)

= ADG(u− uDG, z− zh) by Galerkin orthogonality

= l(z− zh)− ADG(uDG, z− zh)

≡ R(uDG, z− zh) (6.6)

for all zh ∈ Vh,p. We have equality at the moment, however, decomposing the above

into a sum over all elements κ ∈ Th and applying the triangle inequality we obtain the

following weighted a posteriori error bound with local error indicators ηk,

|J(u) − J(uh)| ≤ ∑
κ∈Th

|ηk| = ∑
κ∈Th

|R(uDG, z− zh)|κ |. (6.7)

The local error indicators ηκ involve the multiplication of finite element residuals de-

pending on the primal solution uDG with local weighting terms involving the differ-

ence between the dual solution z and its interpolant zh and provide useful information

concerning the global transport of error. These weights can be thought of as a repre-

sentation of the sensitivity in the functional J(·) with respect to variations of the local

element residuals.

Remark 20. We note that, due to Galerkin orthogonality, for a DG method we can formally set

the arbitrary function zh ∈ Vh,p to 0.

142



CHAPTER 6: ADAPTIVITY AND A Posteriori ERROR ESTIMATION

The dual solution in (6.7) is not usually known analytically and in practice must be

approximated numerically. In addition, due to the Galerkin orthogonality property

the dual solution cannot be computed on the same finite dimensional subspace Vh,p as

the primal solution uDG as this would lead to an error representation formula that is

identically zero. Hence, the discrete dual solution z̃h which we use to approximate z

in either error representation formula (6.1) or (6.6) must come from an enhanced space

Ṽhp. In practice we use the approach as used in [76, 77, 82] among others and increase

the degree of polynomial approximation from that used when computing the primal

solution and compute the dual solution z̃h on the same spatial mesh Th.

To be able to compare error estimation techniques it is customary to refer to the (re-

ciprocal) effectivity indicator as defined in [29]:

Ie f f =

∣
∣
∣
∣

∑κ∈Th
ηκ

J(u)− J(uh)

∣
∣
∣
∣

Ideally, this effectivity indicator will be (close to) one as it measures how much the

error representation formula over estimates the true error.

Remark 21. The above is known as a Type I error bound. It is possible to remove the unknown

dual solution from the error representation formula and derive a Type II error bound. This is

done by bounding norms of the dual solution z by bounds of the data for the dual problem by

utilising the well posedness properties of the dual problem. However, even though we would

now not have to compute an approximation to the dual problem, thus saving time, it has been

shown (in [87]) that this may lead to uneconomical meshes as the rate of convergence of the

error bound may be inferior to the rate of convergence of J(u)− J(uh).

6.2.1 DWR for the Advection Reaction Problem

We consider again the advection reaction problem introduced in Section 3.1

Lau = b · ∇xu + Σtu = f in Ω

u = g on Γ−,






(6.8)

where Ω is the domain with smooth boundary Γ, f ∈ L2(Ω), Σt ∈ R and the entries bi

of the vector b are also real constants. With the same triangulation and finite element

space as before we have the discretisation: Find uDG ∈ Sp(Ω, T ,F ) such that

A(uDG, vh) = l(vh) ∀vh ∈ Sp(Ω, T ,F ), (6.9)

where the bilinear form and linear functional are as defined in Section 3.1.
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In the DWR framework we consider two choices of functional J(·) for the above prob-

lem.

• Mean Value: For a weight function ω ∈ L2(Ω) we obtain the weighted mean

value is given by

J(u) =
∫

Ω
ωu dx

In this case the dual solution z is the solution of the following dual problem: find

z such that

−b∇xz + Σtz = ω in Ω

z = 0 on Γ+

The well posedness of this dual problem is established in [85].

• Point value: Assuming that u is a continuous function in the neighbourhood of

some point x0 ∈ Ω we can consider the evaluation of the point value

J(u) = u(x0)

with corresponding dual problem: find z such that

−b∇xz + Σtz = δx0 in Ω

z = 0 on Γ+,

where, formally, δx0 is a δ distribution centred at the point x0.

Remark 22. Note that the boundary conditions of the dual problem are defined on Γ+ since the

direction b is the reverse of that in the primal problem.

We now show some numerical results where our goal is efficient computation of a mean

value functional of the solution.

We consider the advection problem (6.8) where we prescribe the solution u to be u =

10y tanh(100(x − 1
2 )) which possesses a steep change of sign along the line x = 1

2 as

shown in Figure 6.2. We let the vector b = 1, Σt = 1 and f be defined appropriately.

With weighting ω = 1 the mean value J(u) = 0. For comparison, we first provide some

uniform refinement results, see Table 6.1 With these established we can now compare

adaptive h–refinement and adaptive hp–refinement with global refinement. The results

for h–refinement and hp–refinement are in Tables 6.2 and 6.3 respectively. Comparing

the two strategies we can see that both h and hp–refinement are preferable to uniform
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Figure 6.2: The solution u = 10y tanh(100(x− 1
2 ))

refinement in that they reduce the error by a greater degree for fewer degrees of free-

dom, as shown in Figure 6.3. In fact, it can be seen that the hp algorithm proceeds as the

h algorithm until the last two meshes. We note here, that we would ideally have effec-

tivities that are closer to one, starting the refinement algorithm on a finer initial mesh

should achieve this. Some of the meshes generated by the h–refinement algorithm are

shown in Figure 6.4, as expected, refinement is targeted along the line x = 1
2 .
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Table 6.1: Uniform results for the advection problem with u = 10y tanh(100(x− 1
2 ))

Mesh No Number of dofs J(u)− J(uDG) Error Estimate Effectivity Index

1 16 2.460939E+00 1.246649E-01 0.05

2 64 2.185174E+00 9.966457E-01 0.46

3 256 6.299934E-01 9.014820E-01 1.43

4 1024 -2.853505E-01 -2.005073E-01 0.70

5 4096 -2.420000E-02 -3.160000E-02 1.31

6 16384 2.270000E-03 2.340000E-03 1.03

7 65536 9.120000E-06 9.550000E-06 1.05

8 262144 2.140000E-08 2.140000E-08 1.00

Table 6.2: Adaptive h–refinement results for the advection problem with u =

10y tanh(100(x− 1
2 ))

Mesh No Number of dofs J(u)− J(uDG) Error Estimate Effectivity Index

1 16 2.460939E+00 1.246649E-01 0.05

2 28 2.366181E+00 3.652978E-01 0.15

3 64 1.937479E+00 7.871037E-01 0.41

4 124 1.033200E+00 9.281184E-01 0.90

5 208 2.815161E-01 3.015645E-01 1.07

6 364 -1.267146E-01 -4.640000E-02 0.37

7 628 -5.290000E-02 -5.020000E-02 0.95

8 1096 -5.920000E-03 -8.190000E-03 1.38

9 1900 9.010000E-04 7.950000E-04 0.88

10 3496 5.100000E-04 5.240000E-04 1.03
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Table 6.3: Adaptive hp–refinement results for the advection problem with u =

10y tanh(100(x− 1
2 ))

Mesh No Number of dofs J(u)− J(uDG) Error Estimate Effectivity Index

1 16 2.460939E+00 1.246649E-01 0.05

2 28 2.366181E+00 3.652978E-01 0.15

3 64 1.937479E+00 7.871037E-01 0.41

4 124 1.033200E+00 9.281184E-01 0.90

5 208 2.815161E-01 3.015645E-01 1.07

6 364 -1.267146E-01 -4.640000E-02 0.37

7 628 -5.290000E-02 -5.020000E-02 0.95

8 1096 -5.920000E-03 -8.190000E-03 1.38

9 1912 1.380000E-03 1.410000E-03 1.02

10 3700 3.900000E-05 3.990000E-05 1.02
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Figure 6.3: Comparison of refinement strategies for the advection problem.
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Figure 6.4: A sequence of adaptively refined meshes for the advection problem
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6.3 DWR for the Two Dimensional Neutron Transport Source

Problem

Like in Chapter 5 we are considering the solution of the two dimensional mono ener-

getic steady state neutron transport equation (1.6) which for convenience we reproduce

below.

µ · ∇xψ(x, ϕ) + Σtψ(x, ϕ) =
1

2π

∫ 2π

0
(Σs + νΣ f )ψ(x, ϕ′) dϕ′+ Q(x, ϕ) in Ω× I

(6.10)

with boundary conditions determined by the analytic solution we prescribe. The fol-

lowing results are for the full DG discretisation, i.e., DG in space and angle.

As for the advection problem we can obtain an error representation formula with local

error indicators ηκΩ ,κI

J(u)− J(uh) = ∑
κ∈TΩ,I

ηκΩ ,κI
,

where J(·) is some linear functional and TΩ,I = TΩ × TI . As we have the same spatial

triangulation on each angular element, conceptually we obtain M elemental error indi-

cators where M is the number of angular elements multiplied by the number of spatial

elements. From these indicators, it remains to decide, which elements in each mesh

require refining. We propose two possible approaches:

• Method 1 We either mark ηκΩ ,κI
such that

ηκΩ ,κI
>

Tol
M

for some user defined tolerance Tol or rank the ηκΩ ,κI
according to their size and

select a percentage of the largest to mark for refinement. We then refine both κΩ

and κI .

• Method 2 We mark κΩ ∈ TΩ such that

∑
κI∈TI

ηκΩ ,κI
>

TolΩ

NΩ

for some user defined tolerance TolΩ with NΩ being the number of elements in

the spatial mesh. Similarly, we mark the angular elements κI ∈ TI such that

∑
κΩ∈TΩ

ηκΩ ,κI
>

TolI

NI

for some tolerance TolI and NI being the number of angular elements. Alterna-

tively, we could perform the summation over spatial and angular elements and
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then apply the fixed fraction approach to the two vectors of indicators that we

obtain.

We find that in practice, the second method performs better; method one introduces

too much refinement. We also use the fixed fraction procedure for the results presented

here.

Remark 23. Another possiblity would be to proceed as is often done for space–time problems

and define projection operators from L2(Ω) into the finite element space associated with the

angular domain and into the finite element space associated with the spatial domain. We can

then consider a splitting of the error indicator, and use this splitting to guide refinement.

Now we have established a method to decide where to perform refinement we present

some numerical experiments.

6.3.1 Adaptive Test Problem 1

We consider applying the adaptive strategy discussed above to the two dimensional

mono energetic steady state neutron transport equation (6.10). Here we prescribe the

smooth solution u = exp(x− y)θ and our goal is to compute the weighted mean value
∫

Ω

∫

I
ωψ dϕ dx,

where the weighting, ω, is a steep Gaussian in the spatial domain centred around

(0.3, 0.3). in particular ω = exp(−50(x − 0.3)2 − 50(y− 0.3)2) which leads to an ana-

lytical value J(u) = 1.2491685936435003162. Defining the source Q(x, ϕ) appropriately

and using the material cross sections used for the source problems in the previous chap-

ter our problem is well posed.

We perform h–refinement using method 2 and polynomial degree p = 0. We set the

refinement and derefinement percentages for the spatial mesh to be 25% and 10% re-

spectively. For the angular mesh, 25% of elements will be selected for refinement and

we do not permit derefinement. The numerical results are shown in Table 6.4. The se-

quence of 12 meshes that are obtained by this method are given in Figures 6.5 - 6.7. The

figures show refinement around the centre of the Gaussian, however there appears to

be a fair amount of pollution. Despite this pollution, the adaptive algorithm compares

well with global refinement as shown in Figure 6.8. Examining Figure 6.8 in more de-

tail we observe that at first the adaptive algorithm performs a lot better than uniform

refinement, however, the rate at which the error in the functional decays soon becomes

broadly similar to that when uniform refinement is applied. This is in contrast to the
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Table 6.4: h–adaptive results for Adaptive Test Problem 1 with p = q = 0

No Angles No spatial dofs No total dofs J(ψ)− J(ψh) Error Estimate Effectivity

8 64 512 -4.564190E-02 -4.550123E-02 1.00

10 112 1120 -2.258667E-02 -2.250947E-02 1.00

12 190 2280 -1.539253E-02 -1.537331E-02 1.00

15 316 4740 -1.412665E-02 -1.412109E-02 1.00

18 538 9684 -9.699873E-03 -9.696472E-03 1.00

22 904 19888 -7.718203E-03 -7.715121E-03 1.00

27 1549 41823 -6.532702E-03 -6.531553E-03 1.00

33 2614 86262 -4.782968E-03 -4.783006E-03 1.00

41 4462 182942 -3.779713E-03 -3.779587E-03 1.00

51 7543 384693 -2.830361E-03 -2.830405E-03 1.00

63 12784 805392 -2.332112E-03 -2.332131E-03 1.00

78 22141 1726998 -1.715023E-03 -1.715019E-03 1.00

results shown in Figure 6.3 for the advection problem. Looking at the meshes shown

in Figures 6.5 - 6.7 it can be seen that after the initial targeting of refinement around

the point (0.3, 0.3) as you would expect we then see broadly uniform refinement of the

mesh with the refinement a few steps behind what you would see if uniform refine-

ment had been employed.

This pollution and probable over refinement requires more investigation. The refine-

ment and derefinement percentages have been varied and you observe the same affect

regardless of what these are. This leads us to believe that the differing advective direc-

tion on each angular element is leading to an over refinement. Separate spatial meshes

for each angular element, whilst incurring additional storage would prevent this from

happening.

Despite the over refinement the error indicator performs well, accurately predicting

the error made in the numerical approximation of the functional of interest. This leads

to effectivity indices of 1 as shown in Table 6.4.
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Figure 6.5: The first 4 spatial meshes from adaptive refinement for Adaptive Test Prob-

lem 1
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Figure 6.6: Meshes 8 - 12 from adaptive refinement for Adaptive Test Problem 1
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Figure 6.7: The final 4 meshes from adaptive refinement for Adaptive Test Problem 1
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Table 6.5: h–adaptive results for Adaptive Test Problem 2 with p = q = 0

No Angles No spatial dofs No total dofs J(ψ)− J(ψh) Error Estimate Effectivity

8 64 512 1.316075E+00 -7.747917E-01 -0.59

10 112 1120 -1.187983E-01 -6.056625E-01 5.10

12 196 2352 -7.098559E-01 -7.890739E-02 0.11

15 313 4695 -1.437588E+00 -8.170352E-01 0.57

18 526 9468 -7.454808E-01 -2.726251E-01 0.37

22 913 20086 -1.434524E-01 -1.148321E-01 0.80

27 1522 41094 -8.483920E-02 -8.828744E-02 1.04

33 2554 84282 -5.203825E-02 -5.110238E-02 0.98

41 4378 179498 -4.295347E-02 -4.314575E-02 1.00

51 7630 389130 -3.657667E-02 -3.658347E-02 1.00

63 12712 800856 -2.939368E-02 -2.940166E-02 1.00

78 21661 1689558 -1.867230E-02 -1.867768E-02 1.00

6.3.2 Adaptive Test Problem 2

Wishing to investigate the effectiveness of our adaptive algorithm in the case of solu-

tion which has the presence of sharp gradients we investigate another test problem,

Here, we prescribe that the angular flux ψ is given by

ψ(x, ϕ) = 5(1 + ϕ) tanh
(

100
(

x− 1
2

))

tanh
(

100
(

y− 1
2

))

with scalar flux

φ(x) = 10π tanh
(

100
(

x− 1
2

))

tanh
(

100
(

y− 1
2

))

+ 10π2 tanh
(

100
(

x− 1
2

))

tanh
(

100
(

y− 1
2

))

.

The source term Q(x, ϕ) is defined appropriately, and we use the same cross sections

as in Chapter 5. Using a mean value functional with weighting ω = 1, that is our

functional J(u) is of the form,

J(ψ) =
∫

Ω

∫

I
ψ(x, ϕ) dϕdx,

with analytical value J(ψ) = 0. The results are shown in Table 6.5 As can be seen in

the table we obtain effectivity indices of 1 on the last four meshes. It is interesting to

note that the sign of the error estimator doesn’t reflect the sign of the error made in the
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Figure 6.9: The first 4 spatial meshes from adaptive refinement for Adaptive Test Prob-

lem 2

approximation of the functional. With a weighting of ω = 1 for the mean value we

would expect to see the algorithm refine around the features of the domain, which in

this case are the steep gradients along the lines x = 1/2 and y = 1/2. The sequence of

meshes obtained is shown in Figures 6.9 - 6.11 These plots show that the adaptive al-

gorithm has guided refinement in the regions of sharp gradient as expected, however

there seems to be a large amount of refinement elsewhere; we believe this is dues to

the percentages (25%) of elements selected for refinement and the mesh smoothers that

have been used. As the algorithm guides refinement of the angular mesh too, it is in-

structive to visualise the angular meshes generated. For the two dimensional problem

these are just partitions of the interval [0, 2π] and so we visualise all angular meshes

on one plot, Figure 6.12. We see that the refinement of the angular mesh is broadly

uniform apart form slightly more refinement towards the 2π end. This behaviour is

potentially due to the fact that the values of the angular component of ψ at 0 and 2π

are not equal. It may, however, be solely an artefact of the algorithm, 25% of angular

elements will be refined at each step - even if the indicators on all elements are very

close to each other - the 25% that are fractionally larger will be selected for refinement.

As 1 + ϕ is smooth, we wouldn’t expect much else than uniform refinement.

155



CHAPTER 6: ADAPTIVITY AND A Posteriori ERROR ESTIMATION

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Mesh 5

x

y

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Mesh 6

x

y

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Mesh 7

x

y

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Mesh 8

x

y

Figure 6.10: Meshes 8 - 12 from adaptive refinement for Adaptive Test Problem 2
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Figure 6.11: The final 4 meshes from adaptive refinement for Adaptive Test Problem 2
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Figure 6.12: Pictorial representation of the angular mesh refinement for Test Problem

2
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Figure 6.13: Pictorial representation of the angular mesh refinement for Test Problem

3

Adaptive Test Problem 3

Both the previous test problems have had smooth angular component; this has led to

the adaptive algorithm refining, more or less, uniformly in the angular domain. To in-

vestigate how the algorithm deals with situations when this is not the case, we consider

prescribing the following solution,

ψ = 5 tanh(10(ϕ− π) tanh
(

100
(

x− 1
2

))

tanh
(

100
(

y− 1
2

))

In addition to the sharp gradients in the solution’s spatial components we also now

have a sharp gradient centered around ϕ = π in the angular variable. Because of

this sharp gradient we would hope to see increased refinement in the centre of the

angular domain. Keeping everything else the same as in the previous test problem,

we obtain the sequence of angular meshes shown in Figure 6.13 Comparing the two

angular mesh plots from adaptive test problem 2 and adaptive test problem 3 it can be

seen that mesh refinement is focussed in the middle of the domain for problem 3 as we

expected. The spatial meshes should be refined in the same fashion as the last problem,

indeed we see this to be the case; the last four spatial meshes are plotted in Figure 6.14.

For completeness the numerical results for this problem are given in Table 6.6.
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Table 6.6: h–adaptive results for Adaptive Test Problem 3 with p = q = 0

No Angles No spatial dofs No total dofs J(ψ)− J(ψh) Error Estimate Effectivity

8 64 512 2.139047E-02 7.518609E-03 0.35

10 112 1120 8.783555E-01 3.922821E-02 0.04

12 190 2280 4.752898E-02 4.562332E-02 0.96

15 304 4560 2.947588E-01 4.413628E-02 0.15

18 493 8874 -1.383348E-01 -1.937770E-02 0.14

22 832 18304 -9.260863E-03 3.371327E-03 -0.36

27 1447 39069 6.203725E-03 5.714888E-03 0.92

33 2446 80718 3.027399E-05 -2.336395E-04 -7.72

41 4207 172487 5.266135E-03 5.278894E-03 1.00

51 7360 375360 2.216210E-03 2.215768E-03 1.00

63 12403 781389 2.243352E-03 2.243001E-03 1.00

78 21016 1639248 5.547802E-04 5.555121E-04 1.00
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Figure 6.14: The final 4 meshes from adaptive refinement for Adaptive Test Problem 2
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Table 6.7: h–adaptive results for Pseudo 3D Adaptive Test Problem 1 with p = q = 0

No Angles No spatial dofs No total dofs J(ψ)− J(ψh) Error Estimate Effectivity

16 64 1024 1.237186E-02 7.817863E-03 0.63

28 112 3136 1.020056E-02 6.197600E-03 0.61

43 196 8428 7.284467E-03 4.668876E-03 0.64

73 331 24163 5.422937E-03 3.684849E-03 0.68

127 550 69850 4.197638E-03 2.899793E-03 0.69

229 898 205642 3.317066E-03 2.288969E-03 0.69

400 1456 582400 2.583040E-03 1.790475E-03 0.69

6.4 DWR for the Pseudo 3D Neutron Transport Source Prob-

lem

The approach considered previously for the two dimensional neutron transport equa-

tion extends directly to the pseudo 3D discretisation also.

Consider prescribing the following problem: find ψ such that

µ · ∇xψ(x,µ) + σtψ(x,µ) =
1

4π

∫

D
(σs + νσf )ψ(x,µ′)

(
1− |µ′|2

)−1/2
dµ′

+ Q(x,µ) in Ω× D,

ψ(x,µ) = g(x,µ) on Γ−
µ

.

Prescribing the solution

ψ = xy sin(πx) sin(πy) sin(ϕ) cos(θ) (6.11)

and defining Q(x,µ) appropriately we can apply the DWR procedure to this problem.

The numerical results we obtain are given in Table 6.7 The sequence of spatial meshes

obtained are shown in Figures 6.15 and 6.16. The corresponding angular meshes are

shown in Figures 6.17 and 6.18 Note that the code understands the faces of the outer

angular elements coincident with the boundary of the unit disc to be curved, due to the

implementation of curved boundaries.

As the spatial component of ψ is the same as that considered in Test Case 1 of Sec-

tion 5.2.1 we would expect refinement to occur in the top right corner as this is where

the solution rises to a peak, indeed we do observe this Figure 6.16. The effectivites are

not as close to one as they were for the two dimensional problems; in fact they seem
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Figure 6.15: The first 4 spatial meshes from adaptive refinement for Pseudo 3D Adap-

tive Test Problem 1

to have settled at 0.69. This could be due to the difficulty we have experienced per-

forming the quadrature in the angular domain and also the fact that when refining the

angular mesh we lose the graded structure which we have observed to be important

for convergence. Also, the sub optimal convergence of the angular flux may play a role.
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Figure 6.16: The final 3 spatial meshes from adaptive refinement for Pseudo 3D Adap-

tive Test Problem 1
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Figure 6.17: The first 4 angular meshes from adaptive refinement for Pseudo 3D Adap-

tive Test Problem 1
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Figure 6.18: The final 3 angular meshes from adaptive refinement for Pseudo 3D

Adaptive Test Problem 1
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6.5 DWR for Eigenvalue Problems

As discussed in [29, 50, 80] we can also apply the dual weighted residual approach to

functionals arising from a variational discretisation of an eigenvalue problem.

We consider the following generalised eigenvalue problem: find (uP, λP) ∈ V × R

such that

AuP = λPBuP

with the corresponding variational form: find (uP, λP)

A(uP, v) = λpB(uP, v) (6.12)

for some operators A and B. If we require that the eigenfunction uP is normalised so

that for some nonlinear operator C, C(u) = 1 then we can rewrite (6.12) in the following

way: find uP = (uP, λP) ∈ V ×R such that

N(u,v) = 0 ∀v = (v, χ) ∈ V ×R (6.13)

with

N(u,v) = −A(u, v) + λpB(u, v) + χ(C(u)− 1).

Performing a discontinuous Galerkin discretisation we obtain the discretised form of

the above: find uh,P = (buh,P, λh,P) such that

N(uh,P,vh) = 0 ∀vh = (vh, χh) ∈ V ×R (6.14)

As before, suppose that we wish to compute the error J(uP)− J(uh,P) in approximating

some functional J(·) of the eigenfunction and eigenvalue. Let the functional be defined

to be J(u) = λPC(uP), then the approximation error in the functional is:

J(uP)− J(uh,P) = λPC(uP)− λh,PC(uh,P) = λP − λh,P,

where the eigenfunction and approximate eigenfunction have been normalised so that

C(uP) = C(uh,P) = 1. Hence, the functional gives us a measure of how closely the

approximate eigenvalue estimates the true eigenvalue. Now, computing the Fréchet

derivative of N(·, z) for z = (z, λz) in the direction v evaluated at uwe obtain

N′[u](v, z) = −A(v, z) + χB(u, z) + λpB(v, z) + λzC′[u](v).

Similarly we can compute the Fréchet derivative of the functional J(·),

J′[u](v) = χC(u) + λpC′[u](v).
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With the above we can now state the associated dual problem: Find zD = (zD, λD)

such that

N′[u](v, zD) = J′[u](v) ∀v ∈ R×Vh

That is,

−A(v, zD)+χB(u, zD)+λPB(v, zD)+λDC′[u](v) = χC(u)+λPC′[u](v) ∀v ∈ R×V,

(6.15)

with the obvious discretised equivalent. Notice, however, that if instead we find zD

such that

A(v, zD) = λDB(v, zD) ∀v ∈ V

where we have normalised zD such that B(u, zD) = C(u), then, since λP = λD (where

we have ensured that the dual and primal eigenvalues correspond with each other),

zD = (zD, λD) also solves (6.15).

With this dual solution we can obtain an error estimator of the same form as before,

namely,

|J(u)− J(uh)| ≤ ∑
κ∈Th

|ηk| = ∑
κ∈Th

R(uh,P, z− zh)|κ (6.16)

Remark 24. It is possible to solve (6.15) directly by considering an augmented system, this is

the approach taken in [80] for example. Due to the setting of the neutron transport problem,

we wish to compute the dual solution as an eigenvalue problem in the same way as the primal

eigenvalue problem.

6.5.1 Adaptivity For The Neutron Transport Eigenvalue Problem

Following the above success of dual weighted residual error estimation for the Laplace

eigenvalue problem, we return to the underlying critical eigenvalue problem of the

neutron transport equation. The numerical results from Chapter 5 show that it can be

difficult, in practice, to obtain good approximations to the critical eigenvalue, despite

requiring only the first couple of decimal digits to be accurate. The convergence of

the pseudo 3D eigenvalue code was seen to be fairly slow, with the initial approxima-

tions far from the true eigenvalues, this was primarily due to the difficulty of using

quadrature to resolve the singularity on the boundary of the angular mesh. A code

with adaptive mesh refinement in both the spatial and angular mesh should go some

way to mitigating this problem. With this in mind, we return to the two dimensional

steady state eigenvalue problem considered previously.
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Recall that we have the following eigenvalue problem to solve: find ψ = (ψ, ke f f ) ∈
V ×R such that

(T̃− S̃)(ψ, v) =
1

ke f f
F̃(ψ, v) (6.17)

where the transport, fission and scattering operators are defined to be

T̃(ψ, v) =
∫

Ω

∫

I
(µ · ∇xψ + Σtψ) v dϕdx, (6.18)

F̃(ψ, v) =
∫

Ω

∫

I

(∫

I

νΣ f

2π
ψ(x, ϕ′) dϕ′

)

v dϕ dx, (6.19)

S̃(ψ, v) =
∫

Ω

∫

I

(∫

I

Σs

2π
ψ(x, ϕ′) dϕ′

)

v dϕ dx. (6.20)

Problem (6.17) is of the form for a generalised eigenvalue problem (6.12) with,

A = (T̃ − S̃)(·, v),

and

B = F̃(·, v).

We can use the same approach as for the Laplacian operator to derive an error repre-

sentation formula for the neutron transport equation and use this to guide mesh refine-

ment. As before, we normalise the eigenfunction ψ so that for some operator C(ψ) = 1;

in practice we require that (ψ, ψ) = 1, i.e., the L2–norm squared of ψ is equal to one.

Defining, in this case,

N(ψ,v) = −(T̃ − S̃)(ψ, v) +
1

ke f f
F̃(ψ, v) + χ(C(u)− 1),

the neutron transport eigenvalue problem is recast to be: find ψ = (ψ, ke f f ) ∈ V ×R

such that

N(ψ,v) = 0 ∀v = (v, χ) ∈ V ×R

With our linear functional J(·) defined in the same way as before, namely J(ψ) =
1

ke f f
C(ψ) we obtain, on taking Fréchet derivatives as previously, the associated dual

eigenvalue problem: find z = (z, λD) such that

−(T̃ − S̃)(v, z) + χF̃(ψ, z) +
1

ke f f
F̃(v, z) + λDC′[ψ](v) = χC(ψ) +

1
ke f f

C′[ψ](v)

for all v ∈ R×V. Normalising the dual eigenfunction such that F̃(ψ, z) = 1, we again

obtain a dual eigenvalue problem of the same form as the primal eigenvalue problem:

find z = (z, λz) such that

(T̃ − F̃)(v, z) = λD F̃(v, z) ∀v ∈ V
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For the error representation formula to accurately represent the true error it is crucial

that we normalise the dual eigenfunction as above, which in the full form can be written

as,

1 = F̃(ψ, z)

=
∫

Ω

∫

I

(∫

I

νΣ f

2π
ψ(x, ϕ′) dϕ′

)

z dϕ dx

As discussed previously, in practice we perform a sequence of manipulations to refor-

mulate (6.17) as the standard eigenvalue problem: find ψ = (ψ, ke f f ) such that

(I − T̃−1S̃)−1T̃−1F̃(ψ, v) = keff(ψ, v). (6.21)

To find the largest eigenvalue, ke f f we employ the power method where we apply a

Neumann sum to approximate the operator (I − T̃−1S̃)−1T̃−1F̃. This Neumann sum

requires the solution of many linear systems where the right hand side is obtained by

applying either the fission or scattering operator to the solution of the previous linear

system. We typically find we need to use∼ 30 terms in the Neumann sum, and so each

application of the operator requires the solution of 30 linear systems.

When solving the dual eigenvalue problem the eigenfunction that we seek is in the

second argument of the continuous bilinear forms (T̃(v, z) − F̃) and F̃. To investigate

the difference this makes to our practical solution procedure it is useful to consider

how the scattering operator, for instance, acts over the whole tensor product space–

angle domain. It helps to consider a concrete example in this setting; we consider a

discretisation with three angular elements, a polynomial approximation order in an-

gle of q = 1 and a spatial mesh containing four elements with approximation degree in

space of p = 0. This means, that on each angular element we have 8 degrees of freedom

and 24 degrees of freedom for the entire space–angle domain.

Remark 25. We note here that we are assuming the use of one spatial mesh for all angular

elements; the situation is more complex if we allow a different spatial mesh for each angular

element.

We express the full numerical solution as

ψh =
3

∑
κI=1

4

∑
j=1

2

∑
l=1

ΨκI ,j,lζ j(x)ξl(ϕ),

with coefficients ΨκI ,j,l where it is understood that that on κI the support of the angular

basis functions ξ is only κI . Forming the vector U from the coefficients appearing in
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the expansion we can write,

U =
(

U1,U2,U3

)

=
(

Ψ1,1,1, Ψ1,1,2, Ψ1,1,3, Ψ1,1,4, Ψ1,2,1, Ψ1,2,2, Ψ1,2,3, Ψ1,2,4, Ψ2,1,1, . . . , Ψ3,2,3,, Ψ3,2,4

)

where U1 is the vector corresponding to the first angular element for example. Then,

considering the scattering operator we have the following

S̃(ψ, v) =
∫

Ω

∫

I

(∫

I

Σs

2π
ψ(x, ϕ′) dϕ′

)

v dϕ dx,

=
Σs

2π

∫

Ω

∫

I

(∫

I
ψ(x, ϕ′) dϕ′

)

v dϕ dx,

=
Σs

2π

∫

Ω

∫

I

(
∫

I

3

∑
κI=1

4

∑
j=1

2

∑
l=1

ΨκI ,j,lζ j(x)ξl(ϕ′) dϕ′
)

ζi(x)ξk(ϕ) dϕ dx,

=
3

∑
κI=1

4

∑
j=1

2

∑
l=1

Σs

2π

∫

Ω

∫

I
ΨκI ,j,lζ j(x)

(∫

I
ξl(ϕ′) dϕ′

)

ζi(x)ξk(ϕ) dϕ dx,

=
3

∑
κI=1

4

∑
j=1

2

∑
l=1

Σs

2π

∫

Ω

∫

I
ΨκI ,j,lζ j(x)

(
3

∑
κI=1

∫

κI

ξl(ϕ′) dϕ′
)

ζi(x)ξk(ϕ) dϕ dx,

for i=1,. . . 4, k = 1,2. With the definition bl =
∫

κI
ξl(ϕ′) we can define Ψ̂κI ,j,l = ΨκI ,j,lbl,

hence

S̃(ψ, v) =
3

∑
κI=1

4

∑
j=1

2

∑
l=1

Σs

2π

∫

Ω

∫

I
Ψ̂κI ,j,lζ j(x)ζi(x)ξk(ϕ) dϕ dx,

=
3

∑
κI=1

4

∑
j=1

2

∑
l=1

Σs

2π

∫

Ω
Ψ̂2κI ,j,lblζ j(x)ζi(x)ξk(ϕ) dx.

We conclude that the application of the scattering operator may be expressed, in the

discretised case as the action of three matrices on the vector U , namely

S(ψh, vh) =
Σs

2π
BMBU

In the expression above B is a block diagonal matrix such that each sub block is diago-

nal;

B =







B1 0 0

0 B2 0

0 0 B3







,

where each of the Br are of size number of spatial degrees of freedom × number of
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angular degrees of freedom per angular element and have the form,

Br =





















br,1 0 0 0 0 0 0 0

0 br,1 0 0 0 0 0 0

0 0 br,1 0 0 0 0 0

0 0 0 br,1 0 0 0 0

0 0 0 0 br,2 0 0 0

0 0 0 0 0 br,2 0 0

0 0 0 0 0 0 br,2 0

0 0 0 0 0 0 0 br,2





















,

where br,l is the integral of the lth angular basis function over the angular element κI,r ,

br,l =
∫

κI,r
ξl(ϕ) dϕ. The matrix M is composed of a collection of mass matrices m of the

spatial basis functions,

M =







m m m

m m m

m m m







,

with each m also of size number of spatial degrees of freedom × number of angular

degrees of freedom per angular element such that

m =





















m1,1 m1,2 m1,3 m1,4 m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4 m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4 m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4 m4,1 m4,2 m4,3 m4,4

m1,1 m1,2 m1,3 m1,4 m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4 m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4 m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4 m4,1 m4,2 m4,3 m4,4





















with

mi,j =
∫

Ω
ζi(x)ζ j(x) dx, i, j = 1, . . . 4.

Recall that the support of the basis functions ζi(x) is not global, and so the sub block

matrices m are sparse. As one would expect, after application of the scattering operator

the vectors U1,U2,U3 are the same.

In the primal problem we apply the operators as stated above, S(ψh, vh) =
Σs
2π BMBU ,
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Table 6.8: Uniform Refinement Results for the first 2d Eigenvalue Test Case

Mesh ke f f 1/ke f f Error Estimate Error from reference value Effectivity

1 0.5761772 1.7355773 -2.8446492E-02 -5.6822759E-02 0.50

2 0.5885543 1.6990785 -1.5992837E-02 -2.0323974E-02 0.79

3 0.5869781 1.7036410 -2.4652957E-02 -2.4886500E-02 0.99

4 0.5890949 1.6975193 -1.8721338E-02 -1.8764826E-02 1.00

5 0.5916588 1.6901634 -1.1403086E-02 -1.1408939E-02 1.00

6 0.5934615 1.6850292 -6.2746814E-03 -6.2746814E-03 1.00

however for the dual eigenvalue problem we must evaluate

S(vh, zh) = (BMB)⊤U

= B⊤(BM)⊤U

= B⊤M⊤B⊤U ,

where we note that the transposition is simple since both B and M are symmetric. The

same approach can be used for the fission operator. It now remains to consider the

transport operator; this is straightforward, as all coupling between angular elements is

performed by the fission and scattering operators. Hence, the full linear system due to

the transport operator is block diagonal and thus easily transposed:

T =







T1 0 0

0 T2 0

0 0 T3







,

where the Tr is the application of the transport operator on the angular element r.

With these constructions in place, the dual eigenvalue solver can be implemented giv-

ing an error indicator which can be used to guide adaptive mesh refinement for the

eigenvalue problem.

In Table 6.8 we present preliminary results for the error indicator. These results are

for the first two dimensional eigenvalue problem as presented in Chapter 5 under uni-

form refinement with the polynomial degree in space and polynomial degree in space

both zero. As can be seen when we take the reference value to be the final eigenvalue

approximation plus the associated error estimate (since we have no analytical value

to take) we see good effectivities of 1.00. Work is ongoing to establish that this error

estimate works as an indicator to guide refinement for the eigenvalue problem.
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Conclusions And Further Work

7.1 Conclusions

In this thesis we have investigated discretisation methods for the neutron transport

equation which are high order in both the spatial domain and the angular domain. The

work has been heavily computational, with much time devoted to code development

and the derivation of novel solution techniques. The techniques developed here have

wide ranging practical applications, indeed we have used the solver to compute critical

eigenvalues for three industrial benchmark problems from the literature.

Following a detailed review of common angular and spatial discretisation techniques

contained in Chapter 2, we began work on developing a high order discretisation of

the neutron transport equation employing discontinuous Galerkin methods in both the

spatial and angular domains. We began this development in Chapter 3; here we first

employed the popular and intuitive approach to discretise the angular domain and

the coupling due to the integral on the right hand side of the neutron transport equa-

tion, namely the discrete ordinates method. In conjunction with the discrete ordinates

angular discretisation we discretised the spatial domain with a DG method, utilising

suitable numerical flux functions to handle the inter-element discontinuities. We have

shown, in practice, that there is little point in coupling an arbitrary order discretisation

with the discrete ordinates approach as the rate of convergence of the full scheme (re-

ferred to as DO-DG scheme) will be limited by the rate of convergence of the discrete

ordinates scheme. Note, that this rate has been observed to be O(h2) with respect to the

L2–norm of the error in the approximation of the scalar flux but O(h3/2) with respect

to the L2–norm of the angular flux error. The Source Iteration (SI) technique has been

applied in the solution of our discretised scheme and the convergence with respect to

varying physical material properties has been investigated. An advantage of the SI is
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its ease of use, and for the reactor core calculations that we are primarily interested in,

has been demonstrated to be practical, converging in a reasonable number of iterations.

However, we note that this aspect of the solvers developed in this work could be con-

siderably improved, and is a topic for further research as there has been little work on

acceleration schemes for unstructured grids in the in the literature.

Once the limited rate of convergence of the DO-DG scheme had been established, we

derived an arbitrary order scheme employing a DG(p) discretisation the spatial do-

main and a DG(q) discretisation in the angular domain. This discretisation performs

well in the two dimensional case, attaining optimal orders of convergence for linear

functionals of the numerical solution in addition to the scalar flux and angular flux.

However, when extended to the more difficult pseudo 3D case the presence of a sin-

gularity on the boundary of the angular domain limits the convergence of the angular

flux, like that which occurred for a discrete ordinates discretisation. Following testing

of the source problem, we implemented a critical eigenvalue solver for both the two

dimensional and pseudo 3D neutron transport equations. This eigenvalue solver per-

forms well for arbitrary orders of polynomial approximation in both angle and space

for the three two dimensional eigenvalue problems considered in this thesis. For the

pseudo 3D case, however, the situation is less satisfactory; we note that the eigenvalue

code converges to the correct k–effective eigenvalue, however the time taken to com-

pute these at present is a difficulty. Further work is required for the solver to be com-

petitive when performing industrial computations.

Chapter 4 looks closely at the proposed discretisations; examining the matrix struc-

ture of the resulting linear systems. We then exploit this structure to develop a linear

solver that orders the elements according to the advective direction and then solves

for each element one at a time. This new solver, whilst being slower than employing

MUMPS on the resulting linear systems, can handle larger problems as the memory

requirements are minimal. We have also implemented a mesh generator for the gener-

ation of suitable computational meshes for the angular domain.

In Chapter 6, the dual weighted residual error estimation approach was applied to the

neutron transport problem. To our knowledge this is the first time that an arbitrary or-

der in the angular dimension solver with adaptivity in both space and angle has been

developed. The adaptive code performs well in two dimensional tests, regularly at-

taining effectivity indices of one; in the Pseudo 3D case we obtain effectivities close to

one, however the results aren’t as strong as in the two dimensional case. We believe

this again is due to the quadrature issues present for integration over the angular do-
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main and the suboptimal convergence of the angular flux that this leads to. We note

that the results presented in this thesis indicate that h adaptivity in the angular dimen-

sion does not present a large benefit over uniform refinement. This is probably due

to the relative smoothness of the angular component in the solution of neutron trans-

port source problems and may be different for the industrial eigenvalue computations

which are the ultimate goal of this work. The use of the same spatial mesh on each

angular element also appears to introduce more refinement than is necessary, however

a separate mesh for each angular element dramatically increases the memory storage

requirements of the solver. An error estimate for eigenvalue computation has also been

derived, and is currently being tested in order to perform adaptive computations. This

will be the focus of further work in collaboration with colleagues at the University of

Nottingham and the University of Leicester.

7.2 Further Work

Following the original work considered in this thesis, we believe that there is consid-

erable scope for future work to extend and develop the ideas discussed here. In this

concluding section of the thesis we make some suggestions for future work, together

with a brief discussion for each suggestion.

7.2.1 Increasing the Neutronics Capability

At present, the code is heavily restricted to certain individual benchmarks. We pro-

pose two, minor, modifications that will ease these restrictions. The first is imple-

mentation of the multigroup discretisation for the energy dimension of the neutron

transport equation [74, 145]. Here the energy spectrum [E0, Emax] is partitioned into G

non-overlapping groups. We then solve a neutron transport equation in each energy

group; where the coupling between energy groups is taken care of by the integral oper-

ator on the right hand side of the neutron transport equation and suitable cross sections

describing the scattering from one energy group to another. This will increase the run

time of the solver, but will enable more realistic benchmarks such as the C5G7, Larsen

and Alcouffe [98] and the KNK fast reactor benchmark [155]. The second modifica-

tion would be to incorporate reflective boundary conditions to reduce the work load

required for these more complicated benchmarks.

173



CHAPTER 7: CONCLUSIONS AND FURTHER WORK

Table 7.1: Preliminary results for the LA7 benchmark with exact angular integration.

Mesh number Computed Eigenvalue

1 1.063158

2 1.008232

3 0.984436

4 0.975196

7.2.2 Extension of the h–Adaptivity Procedures

For the neutron transport problems considered we have been restricted to performing

h–refinement. This is due to the absence of an appropriate "smoothness indicator" for

a numerical solution living in the tensor product space derived from the spatial finite

element space and angular finite element space. The adaptivity results for both the

advection problem and the Laplace eigenvalue problem suggest that performing hp–

adaptivity would be advantageous.

Furthermore, the extension to anisotropic mesh refinement [79] could be beneficial in

some practical situations. For example, some industrial benchmarks have moderator

regions that are significantly thinner in one direction than the other. Due to the pres-

ence of materials with varying properties it is important that such features are resolved;

being able to perform refinement targeted in one direction should lead to a reduction

in the overall number of degrees of freedom required for solution to a given accuracy.

7.2.3 Improved Quadrature for Pseudo 3D Discretisation

We have seen that for the pseudo 3D eigenvalue benchmarks, even when using a

graded angular mesh, the difficulty of performing quadrature in the presence of the

boundary singularity of the angular domain severely restricts the accuracy of the com-

puted eigenvalues. We propose two approaches to mitigate this. The first is to perform

any angular integration exactly by changing from Cartesian coordinates to polar coor-

dinates so that integrals over angular elements can be computed exactly. This has al-

ready been implemented for piecewise constant approximations (q = 0) in angle with

the preliminary results shown in Table 7.1 for the computation of the critical eigenvalue

for the LA7 benchmark considered previously. Noting that the error has not necessarily

increased on the fourth mesh as we only know that the k effective eigenvalue should be

close to 1 (we don’t have an exact value), these results look promising. Ideally, however,

for maintaining generality of the code, the integration in the angular domain would be

accomplished by the use of some suitable quadrature. We propose the investigation of
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adaptive quadratures that are designed to deal effectively with singularities.

7.2.4 Extension to a True 3D Discretisation

In this work, we have only considered the discretisation of a pseudo 3–dimensional

problem. As we have observed, this can lead to computational difficulties arising from

the projection of the surface of the unit sphere down on to the unit disc. In addition

to this, the physical model breaks down where there is a large degree of heterogeneity

on the z axis. An obvious remedy would be to discretise the full 3D problem directly.

To do this, one would need to triangulate the surface of a sphere, this is harder than

discretising a disc, however there is a brief discussion of a suitable approach obtained

by successive subdivision of an icosahedron in [95]. The ordered solver that has been

discussed in this work would also have to be generalised for this problem.

7.2.5 The Use of Composite and Polygonal Finite Element Methods

Two recent developments in the field of discontinuous Galerkin methods, namely, com-

posite DG methods and DG methods on general polygonal domains, lend themselves

well to application for the neutron transport problem.

Many industrial benchmarks such as the C5G7 benchmark discussed in the introduc-

tion to this work contain geometrical features that are small compared to the domain.

To obtain accurate solutions these features need to be resolved by the underlying finite

element mesh; this leads to a large number of degrees of freedom, resulting in a long

computational time. The composite DG finite element methods, (as an extension to

composite FEMS) are described in the article of Antonietti, Giani and Houston [9] and

rely on the construction of a hierarchy of meshes such that the finest mesh represents

the geometrical structure. The finite element spaces are then naturally defined in terms

of prolongation operators.

Another approach that could be useful for benchmarks, such as the KNK-II fast reactor

benchmark whose domain is made up of rings of hexagonal elements is the application

of a DG method on general polygonal domains. This has been developed by Cangiani,

Georgoulis and Houston [44]. In their paper they employ polynomial basis functions

which are defined in the physical space (by the placing of a bounding box around an

element, on which basis functions are defined); this technique eliminates the need for

a mapping from a reference element. An interesting consequence of this is that spaces
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of total degree p can be used on general elements whilst still obtaining optimal conver-

gence, further reducing the number of degrees of freedom employed. We believe this

is a promising avenue of research with applications for the neutron transport equation.

7.2.6 Parallelisation

Commercial neutron transport codes make use of parallel programming paradigms to

ensure complicated problems can be solved in a reasonable amount of time. This is

an obvious extension of the work presented in the thesis since the construction of the

method lends itself well to parallelisation. The solution on each angular element could

be solved on a different processor node, before being collected together for computa-

tion of the coupling integral. In addition, the DG method itself is highly parallelisable,

adding a further level of possible parallelisation.
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APPENDIX A

Derivation of The Neutron

Transport Equation

The derivation presented here largely follows the outline given by Barry Ganapol at

the Course on Analytical Benchmarks: Case Studies in Neutron Transport Theory in

Paris, 16-19th March 2009 (details of which can be found in [74]).

Before we proceed with the derivation we need to introduce the concept of a solid

angle: consider an object and a point in space pn. If you imagine standing at the point

pn, then the object takes up a certain amount of your “total view”. This amount of

“total view” can be quantified by projecting every point on the surface of the object to

the point pn. This creates a shape on the surface of an imaginary sphere of radius 1 cm

such that pn is the centre of the sphere. The area of this shape will be in the range 0 to

4π (the total surface area of the sphere) and this is referred to as the solid angle of the

object subtended at the point pn. This quantity is measured in steradians.

The derivation considers a neutron to be a point particle and takes advantage of the

statistics of large numbers. For convenience, we define P := (x,µ, E). Point colli-

sions occur in a statistically averaged phase space continuum, realized by defining the

phase volume element ∆P = ∆x∆µ∆E about P . Here, ∆µ is the solid angle, where

4π steradians account for all possible directions on a unit sphere, ∆x is a small region

in space and ∆E is a small interval in the energy range. By defining the neutron den-

sity distribution to be N(x,µ, E, t), the number of neutrons in ∆P at time t is given

by N(x,µ, E, t)∆P . If the neutron track length is defined to be v∆t, (i.e., the distance

travelled per neutron of speed v), then the total track length of all neutrons in ∆P is
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equal to vN(x,µ, E, t)∆P∆t. Finally, we define the angular flux at time t as

ψ(x,µ, E, t) = vN(x,µ, E, t).

Neutrons experience three types of interaction: scattering (s), fission ( f ), and absorp-

tion (a). We assume neutrons interact with stationary nuclei (interactions with other

moving neutrons are neglected).

The cross section for an interaction of type i with the nucleus of nuclide j is:

σij(x, E, t) = Fractional probability of neutron interaction i

with nuclide j per path length travelled,

where i = s, f , a. Therefore, the reaction rate for interaction i in ∆P with nuclide j is

equal to σij(x, E, t)ψ(x,µ, E, t)∆P . Assuming interactions are independent events, the

total interaction rate of type i is the sum over all participating nuclear species giving

the total macroscopic cross section

σi(x, E, t) = ∑
j

σij(x, E, t).

This interaction rate depends only on the motion of neutrons between collisions. How-

ever, for scattering we must also consider the direction in which neutrons are scattered.

We do this by defining the scattering kernel

fs(µ
′,µ, E′, E)∆µ∆E = Fractional probability of scattering from

direction µ′ and energy E′ to direction

µ and energy E.

This scattering kernel is normalised so that
∫ ∞

0

∫

4π
fs(µ

′,µ, E′, E) dµ dE = 1 ∀µ′, E′.

Similarly, we define the fractional probability of a fission neutron appearing in the di-

rection range ∆µ and energy range ∆E to be

χ(E)

4π
∆µ∆E,

where χ(E) is a distribution, together with normalisation
∫ ∞

0 χ(E) dE = 1. The aver-

age number of neutrons produced per fission is denoted by ν(E).

Now we can consider the total neutron balance in the entire volume V and partial

phase space element ∆µ∆E during a time ∆t as follows

Number at time t + ∆t = Number at time t + Number gained during ∆t

−Number lost during ∆t.
(A.1)

178



APPENDIX A: DERIVATION OF THE NEUTRON TRANSPORT EQUATION

Number of neutrons in a specific volume

By integrating the neutron density distribution over the volume, the total number of

neutrons in V∆µ∆E at a given time s is given by
∫

V
∆µ∆EN(x,µ, E, s) dx. (A.2)

Gain due to scattering

Neutrons from any points within V can be scattered into the element ∆µ∆E. The total

number scattered during ∆t from any element ∆E′∆µ′ is given by the total scattering

rate in V multiplied by ∆t, i.e.,
∫

V
σs(x, E′, t)ψ(x,µ′, E′, t)∆t dE′ dµ′ dx.

However, only fs(µ′,µ, E′, E)∆µ∆E reach ∆µ∆E. Therefore the total number of neu-

trons scattering into ∆µ∆E during ∆t within V is given by integrating over all possible

differential phase space elements ∆E′∆µ′:

∫

V

∫ ∞

0

∫ 4π

0
fs(µ

′, E′,µ, E)σs(x, E′, t)ψ(x,µ′, E′, t)∆µ∆E∆t dµ′ dE′ dx. (A.3)

Gain due to fission production

For every fission occuring within V during ∆t in a differential element ∆E′∆µ′,
χ(E)
4π ν(E′)∆µ∆E neutrons appear in ∆µ∆E. This gives a total gain due to fission in

V∆µ∆E of

∫

V

χ(E)

4π

∫ ∞

0

∫ 4π

0
ν(E′)σf (x, E′, t)ψ(x,µ′, E′, t)∆µ∆E∆t dµ′ dE′ dx. (A.4)

Loss due to leaving V

Neutrons can leave the volume V; consider an elemental area dA on the surface of V

with unit outward normal n. Then the number of neutrons leaving through dA from

the element ∆µ∆E during ∆t is:

∆µ∆E∆t n · vµN(x,µ, E, t) dA.

Therefore, over the entire surface of V, the total number of neutrons leaving is (after

applying the divergence theorem):
∫

A
n · vµN(x,µ, E, t)∆µ∆E∆t dA =

∫

V
∇x · vµN(x,µ, E, t)∆µ∆E∆t dx. (A.5)
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Loss due to absorption and scattering

The number of neutrons lost due to absorption in V∆µ∆E is given by:
∫

V
σa(x, E, t)ψ(x,µ, E, t)∆µ∆E∆t dx.

Neutrons will also be lost when they scatter out of the energy range ∆E or the direction

range ∆µ. Since the scattering kernel has been normalised, the number of neutrons lost

due to scattering out of V∆µ∆E is:
∫

V
σs(x, E, t)φ(x,µ, e, t)∆µ∆E∆t dx.

Putting it all together

Combining all the above contributions (by following equation (A.1)), dividing through

by ∆µ∆E∆t and taking the limit as ∆µ, ∆E, ∆t tend to 0, we get
∫

V

[
1
v

∂

∂t
+ µ · ∇x + σt(x, E, t)

]

ψ(x,µ, E, t)dx

−
∫

V

∫ ∞

0

∫

4π
σs(x,µ′, E′,µ, E, t)ψ(x,µ′, E′, t) dµ′ dE′dx

−
∫

V

χ(E)

4π

∫ ∞

0

∫

4π
ν(E′)σf (x, E′, t)ψ(x,µ′, E′, t) dµ′ dE′dx = 0,

where

σt(x, E, t) = σa(x, E, t) + σs(x, E, t),

σs(x,µ′, E′,µ, E, t) = σs(x, E′, t) fs(µ
′,µ, E′, E).

Since the volume is arbitrary, the integral is only zero if the integrand is zero, and so

we arrive at
[

1
v

∂

∂t
+µ · ∇x + σt(x, E, t)

]

ψ(x,µ, E, t) =
∫ ∞

0

∫ 4π

0
σs(x,µ′, E′,µ, E, t)ψ(x,µ′, E′, t) dµ′ dE′

+
χ(E)

4π

∫ ∞

0

∫ 4π

0
ν(E′)σf (x, E′, t)ψ(x,µ′, E′, t) dµ′ dE′.

Which, on combining the terms in the RHS, becomes

1
v

∂

∂t
ψ(x,µ, E, t) +µ · ∇xψ(x,µ, E, t) + σt(x,µ)φ(x,µ, E, t)

=
∫ ∞

0

∫ 4π

0
f (x,µ′, E′,µ, E)ψ(x,µ′, E′, t) dµ′ dE′,

(A.6)

where the function f (x,µ′, E′,µ, E) is defined by

f (x,µ′, E′,µ, E) = σs(x,µ′, E′,µ, E) +
χ(E)

4π
ν(E′)σf (x, E′, t).

This is the same as that stated in equation (1.1).
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Notes on the Computer

Programming for this Work

The extensive computer programming for this work was performed in Fortran, specif-

ically Fortran conforming to the 2003 standard. The aim of this appendix is to briefly

describe some of the main design decisions made when implementing this neutron

transport solver. Further details are available on request.

Some external packages have been used in conjunction with original code and we now

provide a brief listing of these. The general purpose Delaunay mesh generator Triangle

[136] was used to triangulate domains which were not easily broken into quadrilateral

elements, for example the spatial meshes for the LA7 and LA9 eigenvalue benchmarks

considered in Chapter 5. As mentioned in Chapter 4 Triangle was initially used for the

generation of the angular mesh for the pseudo 3D code before a custom mesh genera-

tor was written to produce the graded meshes required to ensure convergence.

To solve the sparse linear systems arising from the finite element discretisation, when

an ordered solver has not been used we have used the MUMPS (MUltifrontal Massively

Parallel sparse direct Solver) [3] direct solver. This is a direct (as opposed to iterative)

sparse linear system solver developed by a team working primarily at CERFACS and

INRIA in France. In addition gotoBLAS has been used as the BLAS implementation of

choice.

The computer code is structured in such a way to make use of routines available in

the finite element package AptoFEM (www.aptofem.com) developed at the University

of Nottingham under Paul Houston. This package contains routines for the compu-

tation of finite element basis functions, interfaces to the aforementioned linear solver

MUMPS and data types for the storage of a finite element mesh and discontinuous

Galerkin finite element solution. The use of these routines has meant that the focus
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of programming time could be directed towards the neutron transport problem as op-

posed to the programming of generic finite element routines.

We shall now briefly provide an introduction to some of the considerations made when

developing the neutron transport software.

The discontinuous Galerkin discretisation of the neutron transport equation requires

the storage of a finite element solution on each angular element. This information

needs to be accessed by many different routines (for example when computing the

scalar flux, computing an interpolant of the angular flux and computing norms of the

solution) and so the decision was made to define a data type nt_data_type that was

stored in a module neutron_transport_type.f90 and so was globally accessible. The

attributes of this data type are shown in the code fragment shown below.

type nt_data_type

in teg er : : no_angles

type ( mesh) : : spat ial_mesh

type ( s o l u t i o n ) , dimension ( : ) , a l l o c a t a b l e : : s o l u t i o n _ a r r a y

integer , dimension ( : ) , a l l o c a t a b l e : : angle_poly_degree

integer , dimension ( : ) , a l l o c a t a b l e : : ang le _e le _d ofs

integer , dimension ( : ) , a l l o c a t a b l e : : s p a t i a l _ e l e _ d o f s

type ( s o l u t i o n ) : : s c a l a r _ f l u x

r e a l ( db ) , dimension ( : ) , a l l o c a t a b l e : : angular_mesh_coordinates

end type nt_data_type

This data type stores the spatial mesh (which is the same for all angular meshes) and an

array of type solution (an AptoFEM data type) which stores the finite element solution

for each angular element. The code fragment shown above is for the data type associ-

ated with the two dimensional problem and so the angular mesh is stored as an array

of real numbers which store the coordinates of the mesh nodes. For the pseudo 3D

case there is an attribute angular_mesh which stores an angular mesh as the AptoFEM

data type mesh in the same way that the spatial mesh is stored. In addition to these

this data type also stores information regarding the polynomial degree, the number of

spatial degrees of freedom and the number of angular degrees of freedom on each an-

gular element. This information is used when allocating storage for and constructing
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the discretisation matrices arising from the discontinuous Galerkin discretisation.

In addition to defining the data type nt_data_type this module also contains numer-

ous routines for setting up, modifying and deleting attributes of the data type.

As this neutron transport solver is primarily a research code the decision was made to

split up the computation of mesh refinement indicators from the refinement and mod-

ification of the spatial and angular meshes and associated solutions. For this reason

the routine in the neutron_transport_type module which implements the refinement

of both the angular and spatial meshes has, as an input, integer valued arrays of re-

finement indicators. These arrays are of length the number of angular elements and

the number of spatial elements respectively. If an entry is labelled one it indicates that

the corresponding angular or spatial element is to be refined. The generation of these

refinement indicators is accomplished elsewhere in the code and is based on one of the

various marking strategies described in Section 6.3. The choice of refinement strategies

can be made at run time by the user with the selection of appropriate keys in the control

file.

The specific nature of the neutron transport discretisation meant that many key rou-

tines in AptoFEM could not be used. The primary example of this would be the matrix

set–up and population routines. The tensor product nature of the finite element basis

used leads to the blocked matrix structure discussed in Chapter 4 which in turn led to

the development of specific matrix population routines which could access particular

blocks of the full matrix. Similarly routines were developed which implemented the

coupling terms appearing on the right hand side of the neutron transport equation.

As discussed previously, it became apparent when working on the pseudo 3D prob-

lem that an arbitrary triangular mesh of the angular domain, which in this case is the

unit disc, adversely affected the convergence rates of the solver (even if an approxi-

mation to the circle with hundreds of line segments was used). A mesh generator that

produced a mesh of simplices and quadrilaterals which were graded towards the edge

of the unit disc - the area of singularity - was developed. The method to produce this

grading was chosen so that the angular meshes were analogous with the discrete ordi-

nate splitting used by Baker [27] so that the methods could be easily compared. This

mesh generator was also written to interface with the mesh representation required by

AptoFEM for ease of use.
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