
Nguyen, Hoang Nga and Alechina, Natasha and Logan,
Brian and Rakib, Abdur (2015) Alternating-time temporal
logic with resource bounds. Journal of Logic and
Computation . pp. 1-33. ISSN 0955-792X

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28943/1/jlc-rbatl.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/33573842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Alternating-time temporal logic with resource

bounds

Hoang Nga Nguyen*, Natasha Alechina*,

Brian Logan*, and Abdur Rakib**

*School of Computer Science, The University of Nottingham, UK,

{nza,bsl,hnn}@cs.nott.ac.uk
**School of Computer Science, The University of Nottingham Malaysia

Campus, Malaysia , Abdur.Rakib@nottingham.edu.my

June 1, 2015

Abstract

Many problems in AI and multi-agent systems research are most natu-

rally formulated in terms of the abilities of a coalition of agents. There exist

several excellent logical tools for reasoning about coalitional ability. How-

ever, coalitional ability can be affected by the availability of resources, and

there is no straightforward way of reasoning about resource requirements in

logics such as Coalition Logic (CL) and Alternating-time Temporal Logic

(ATL). In this paper, we describe a logic for reasoning about coalitional abil-

ity under resource constraints. We extend ATL with costs of actions and

hence of strategies. We give a complete and sound axiomatisation of the

resulting logic, Resource-Bounded ATL (RB-ATL), and a model-checking

algorithm for it.

1 Introduction

In many situations, a group of agents can cooperate to achieve an outcome which

cannot be achieved by any agent in the group acting individually. For example,

in the prisoners dilemma, a single prisoner cannot ensure the optimal outcome,

while a coalition of two prisoners can. Similarly, it may be possible for a set

of cooperating agents to solve a difficult computational problem by distributing it,

while a single agent may not have sufficient memory or processor power to solve it.

In the latter case, there is an interaction between the amount of resources available

1

to the agents (or the amount of resources which they are willing to contribute), and

their ability to jointly achieve a goal.

In this paper we describe a logic, Resource-Bounded ATL (RB-ATL), for rea-

soning about coalitional ability under resource constraints. RB-ATL allows us to

express and verify properties such as

(1) ‘a coalition of agents A has a strategy to achieve a property ϕ provided they

have resources b, but they cannot enforce ϕ under a tighter resource bound

b1’,

(2) ‘A has a strategy to maintain the property ϕ, provided they have resources b’,

(3) ‘A has a strategy to maintain ϕ until ψ becomes true, providedA has resources

b’.

In Section 2.4, we illustrate the expressive power of RB-ATL on a simple example

of a sensor network, where the agents (sensor nodes) require two resources: energy

and memory.

In previous work, we studied a version of Coalition Logic with resource bounds,

RBCL [5]. RBCL can express properties of the form (1) above, but not of the form

(2) and (3). Other work on temporal logics and logics of coalitional ability with

resource constraints includes [7, 8, 10, 11, 2]. However this work concentrates on

model-checking complexity, rather than axiomatisation, which is the focus of this

paper.

This paper is a revised and extended version of [4]. In [4], we gave a sound and

complete axiomatisation and a model-checking algorithm for a version of RB-ATL

without infinite resource bounds. The main differences from [4] are the addition of

an infinite resource bound (to make the logic a conservative extension of ATL), and

the addition of complete proofs and an illustrative example.1 The remainder of this

paper is organised as follows. In section 2, we present the syntax and semantics

of RB-ATL and show how RB-ATL can be used to express properties of a simple

sensor network. In section 3 we provide a sound and complete axiomatisation of

RB-ATL. In section 4, we give a model-checking algorithm for RB-ATL. Finally,

we survey related work in section 5 and conclude in section 6.

2 Syntax and semantics of RB-ATL

Consider a system of agents which can perform actions to change the state (we

assume concurrent execution of actions by all agents). We denote the set of agents

1A preliminary version of RB-ATL with infinite bounds was introduced in [14].

2

by N . In order to reason about resources, we assume that actions have costs. Let

R be a set of resources (such as money, energy, or anything else which may be

required by an agent for performing an action). We assume that a cost of an action,

for each of the resources, is a non-negative integer. The set of resource bounds B

over R is defined as B = (N∪{∞})r, where r = |R|. We denote by 0̄ the smallest

resource bound (0, . . . , 0) and ∞̄ the greatest resource bound (∞, . . . ,∞).

2.1 Syntax of RB-ATL

The syntax of RB-ATL is defined as follows, where A is a non-empty subset of N
and b ∈ B.

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈〈Ab〉〉 © ϕ | 〈〈Ab〉〉�ϕ | 〈〈Ab〉〉ϕUψ

Here, 〈〈Ab〉〉© ϕ means that a coalition A can ensure that the next state satisfies ϕ
under resource bound b. 〈〈Ab〉〉�ϕ means that A has a strategy to make sure that

ϕ is always true, and the cost of this strategy is at most b. Similarly, 〈〈Ab〉〉ϕ Uψ
means that A has a strategy to enforce ψ while maintaining the truth of ϕ, and

the cost of this strategy is at most b. Notice the meaning of these operators when

b = ∞̄ is the same as their counterparts in ATL; in other words, the ATL operator

〈〈A〉〉 corresponds to 〈〈A∞̄〉〉 for A 6= ∅ and 〈〈∅〉〉 to the dual of 〈〈N∞̄〉〉.

2.2 Semantics of RB-ATL

To interpret this language, we extend the definition of concurrent game structures

[6] with resource requirements for executing actions. For consistency with [6], in

what follows we refer to agents as ‘players’ and actions as ‘moves’.

Definition 1. A Resource-bounded Concurrent Game Structure (RB-CGS) is a tu-

ple S = (n, r,Q,Π, π, d, c, δ) where:

• n ≥ 1 is the number of players (agents), we denote the set of players

{1, . . . , n} by N ;

• r is the number of resources;

• Q is a non-empty set of states;

• Π is a finite set of propositional variables;

• π : Π→ ℘(Q) is a function which assigns to each variable in Π a subset of

Q;

3

• d : Q×N → N is a function which indicates the number of available moves

(actions) for each player a ∈ N at a state q ∈ Q such that d(q, a) ≥ 1. At

each state q ∈ Q, we denote the set of joint moves available for all players

in N by D(q). That is

D(q) = {1, . . . , d(q, 1)} × . . .× {1, . . . , d(q, n)}

• c : Q × N × N → B is a partial function which indicates the minimal

amount of resources required by each move available to each agent at a

specific state;

• δ : Q× N
|N | → Q is a partial function where δ(q,m) is the next state from

q if the players execute the move m ∈ D(q).

We assume that each agent in each state has an available action with 0̄ cost (intu-

itively, it has the option of doing nothing).

Given a RB-CGS S, we denote by Q∗ the set of finite sequences of states or

finite computations and by Qω the set of infinite sequences of states or infinite

computations. For a finite or infinite computation λ = q1q2 . . . ∈ Q
∗ ∪Qω, we use

the notation λ[i] = qi and λ[i, j] = qi . . . qj . We denote the set of finite non-empty

sequences of states by Q+.

Definition 2. Given a RB-CGS S and a state q ∈ Q, a move (or a joint action) for

a coalition A ⊆ N is a tuple σA = (σa)a∈A such that 1 ≤ σa ≤ d(q, a).

By DA(q) we denote the set of all moves for A at state q. Given a move

m ∈ D(q), we denote by mA the actions executed by A, mA = (ma)a∈A. We

define the set of all possible outcomes of a move σA ∈ DA(q) at state q as follows:

out(q, σA) = {q
′ ∈ Q | ∃m ∈ D(q) : mA = σA ∧ q

′ = δ(q,m)}

For convenience, we define the projection of ∞ components of a resource

bound b on another bound d as d
∞
← b where for all i ∈ {1, . . . , r}:

(d
∞
← b)i =

{

di if bi 6=∞

∞ if bi =∞

For example, (2, 3,∞, 6)
∞
← (1,∞, 3,∞) = (2,∞,∞,∞) and 0̄

∞
← (1,∞, 3,∞) =

(0,∞, 0,∞). To compare costs and resource bounds, we use the usual point-

wise vector comparison, that is, (b1, . . . , br) ≤ (d1, . . . , dr) iff bi ≤ di for i ∈
{1, . . . , r} where n ≤ ∞ for all n ∈ N. We also use pointwise vector addition:

(b1, . . . , br) + (d1, . . . , dr) = (b1 + d1, . . . , br + dr) where n +∞ = ∞ for all

n ∈ N ∪ {∞}. Conversely, we also split a resource bound b into pairs of resource

bounds (d, d′) such that:

4

(i) d+ d′ = b,

(ii) di = d′i =∞ for all i ∈ {1, . . . , r} such that bi =∞, and

(iii) d 6= 0̄
∞
← b.

The set of all such pairs (d, d′) is denoted by split(b). Obviously, split(b) is finite.

The cost of a move σA ∈ DA(q) is defined as cost(q, σA) = Σa∈Ac(q, a, σa).
(Note that we use c for the cost of single actions and cost for the cost of joint

actions).

Definition 3. Given a RB-CGS S, a strategy for a subset of players A ⊆ N is a

mapping FA which associates each sequence λq ∈ Q+ to a move in DA(q).

A computation λ ∈ Qω is consistent with FA iff for all i ≥ 1, λ[i + 1] ∈
out(λ[i], FA(λ[1, i])). We denote by out(q, FA) the set of all such sequences λ
starting from q, i.e. λ[1] = q. Given a non-empty finite prefix λ of a computation

which is consistent with a strategy FA, we define the cost of FA with respect to λ
as cost(λ, FA) =

∑

i=1,...,|λ|−1 cost(λ[i], FA(λ[1, i])).

Definition 4. Given a bound b, a computation λ ∈ out(q, FA) is b-consistent with

FA iff, for every finite prefix λ′ of λ, cost(λ′, FA) ≤ b. We denote by out(q0, FA, b)
the set of all b-consistent computations. A strategyFA is a b-strategy iff out(q, FA) =
out(q, FA, b) for any q ∈ Q.

In other words, all executions of a b-strategy cost at most b resources. Note

that this means that each computation of such a strategy starts with a finite prefix

where some non-(0̄
∞
← b) cost actions are executed, and continues with an infinite

sequence of (0̄
∞
← b)-cost actions.

2.3 Truth definition for RB-ATL

Given a RB-CGS S = (n, r,Q,Π, π, d, c, δ), the truth definition for RB-ATL is

given inductively as follows:

• S, q |= p iff q ∈ π(p);

• S, q |= ¬ϕ iff S, q 6|= ϕ;

• S, q |= ϕ ∨ ψ iff S, q |= ϕ or S, q |= ψ;

• S, q |= 〈〈Ab〉〉 © ϕ iff there exists a b-strategy FA such that for all λ ∈
out(q, FA), S, λ[2] |= ϕ iff there is a move σA ∈ DA(q) such that for all

q′ ∈ out(σA), S, q
′ |= ϕ;

5

• S, q |= 〈〈Ab〉〉�ϕ iff there exists a b-strategy FA for any λ ∈ out(q, FA),
S, λ[i] |= ϕ for all i ≥ 1;

• S, q |= 〈〈Ab〉〉ϕ Uψ iff there exists a b-strategy FA such that for all λ ∈
out(q, FA), there exists i ≥ 1 such that S, λ[i] |= ψ and S, λ[j] |= ϕ for all

j ∈ {1, . . . , i− 1}.

Notice that the truth definition of 〈〈A∞̄〉〉 is the same as that of 〈〈A〉〉 in ATL.

2.4 Example

To conclude this section, we describe a concrete scenario to illustrate the notions

introduced above, and give some examples of the expressive power of RB-ATL.

Consider a sensor network consisting of two agents (sensor nodes), 1 and 2.

The agents monitor for movement. If they detect movement, they can inform their

neighbour. If an agent receives a communication from its neighbour, it can save

it. If an agent has more than one record of movement, the agent can report this

to the base station. We assume that 2 is closer to the base station than 1. We

consider two resources, energy and memory. Sending a message requires energy

(depending on the distance to the receiver) and saving a communication requires

memory. Sending from 1 to 2 (send12) and from 2 to 1 (send21) both require 2

units of energy and 0 memory. Saving a record requires 0 units of energy and 1 unit

of memory. Sending from 1 to the base station (send1b) requires 3 units of energy,

and sending from 2 to the base (send2b) requires 1 unit of energy. The option of

doing nothing (idle) is always available and costs nothing. In the initial state q0,

each agent has a record of having itself seen movement. The system is shown in

Figure 1, where transitions between states are annotated with tuples of actions (the

first element is an action by agent 1, and the second is an action by agent 2). We

omit self-loops in each state by the joint action (idle, idle) for readability.

In this scenario, both agents together can enforce the outcome q6, where we

assume that a proposition p (which means that the base station has been informed)

holds. Moreover, they can achieve this by spending 3 units of energy and 1 unit

of memory by choosing the following actions: (send12, idle) in q0, (idle, save) in

q1, and (idle, send2b) in q4. This can be expressed in RB-ATL as 〈〈{1, 2}(3,1)〉〉⊤Up.

It is also the case that the agents cannot achieve this without using some memory,

even if they use unlimited energy: ¬〈〈{1, 2}(∞,0)〉〉⊤ Up. Clearly, neither of the

agents can single-handedly enforce q6; however once the system is in q6, either

agent can trivially maintain p forever, since the only choice of action available to

each agent there is idle. This can be expressed as 〈〈{1, 2}(3,1)〉〉⊤U〈〈{1}0,0〉〉�p.

6

q0

q1 q4

q6q3 q7

q2 q5

(send12, idle)

(idle, send21)

(send12, send21)

(idle, save)

(save, idle)

(idle, send2b)

(send1b, idle)

(idle, save)

(save, idle)

(save, save) (idle, send2b)

(send1b, idle)

(send1b, send2b)

Figure 1: Sensor network example

3 Axiomatisation

In this section we present the axiomatic system for RB-ATL. To make the formulas

below more readable, we define the following abbreviations:

〈〈Ab〉〉 ©�ϕ =
∨

(d,d′)∈split(b)〈〈A
d〉〉 © 〈〈Ad′〉〉�ϕ

〈〈Ab〉〉 © ϕUψ =
∨

(d,d′)∈split(b)〈〈A
d〉〉 © 〈〈Ad′〉〉ϕUψ

The axiomatic system consists of the following axiom schemas and rules of

inference, where A, A1 and A2 are non-empty subsets of N , and b, d ∈ B.

Axioms

(PL) Tautologies of Propositional Logic

(⊥) ¬〈〈Ab〉〉 © ⊥

(⊤) 〈〈Ab〉〉 © ⊤

(B) 〈〈Ab〉〉 © ϕ→ 〈〈Ad〉〉 © ϕ
where b ≤ d

(S) 〈〈Ab
1〉〉 © ϕ ∧ 〈〈Ad

2〉〉 © ψ → 〈〈(A1 ∪A2)
b+d〉〉 © (ϕ ∧ ψ)

where A1 ∩A2 = ∅

(SN) 〈〈Ab〉〉 © ϕ ∧ ¬〈〈N∞̄〉〉 © ¬ψ → 〈〈Ab〉〉 © (ϕ ∧ ψ)

(SN+) 〈〈N b〉〉 © ϕ ∧ ¬〈〈N b〉〉 © ¬ψ → 〈〈N b〉〉 © (ϕ ∧ ψ)

(SN−) ¬〈〈N b〉〉 © ¬ϕ ∧ ¬〈〈N b〉〉 © ¬ψ → ¬〈〈N b〉〉 © ¬(ϕ ∧ ψ)

7

(FP2) 〈〈Ab〉〉�ϕ↔ ϕ ∧ (〈〈Ab〉〉 ©�ϕ ∨ 〈〈A0̄
∞

←b〉〉 © (〈〈Ab〉〉�ϕ)

(FPU) 〈〈Ab〉〉ϕUψ ↔ ψ ∨ (ϕ ∧ (〈〈Ab〉〉 © ϕUψ ∨ 〈〈A0̄
∞

←b〉〉 © 〈〈Ab〉〉ϕUψ))

Inference rules

(MP)
ϕ,ϕ→ ψ

ψ

(〈〈Ab〉〉©-Monotonicity)
ϕ→ ψ

〈〈Ab〉〉 © ϕ→ 〈〈Ab〉〉 © ψ

(〈〈N b〉〉�-Necessitation)
ϕ

¬〈〈N b〉〉�¬ϕ

(〈〈Ab〉〉�-Induction)

θ → (ϕ ∧ (〈〈Ab〉〉 ©�ϕ ∨ 〈〈A0̄
∞

←b〉〉 © θ))

θ → 〈〈Ab〉〉�ϕ

(〈〈Ab〉〉U -Induction)

(ψ ∨ (ϕ ∧ (〈〈Ab〉〉 © ϕUψ ∨ 〈〈A0̄
∞

←b〉〉 © θ)))→ θ

〈〈Ab〉〉ϕUψ → θ

Before proving soundness and completeness, i.e., every formula derived by the

above system is valid and every valid formula can be derived by the above sys-

tem, we give an intuitive explanation of the axioms and compare them with the

axiomatic system for ATL given in [13].

First of all, observe that with the resource bounds removed, the axioms

(⊥), (⊤), (S), and the inference rules (〈〈Ab〉〉©-Monotonicity) and (〈〈N b〉〉�-

Necessitation) are identical to their ATL counterparts. Unlike ATL, we need sev-

eral versions of (S) since we do not have the 〈〈∅b〉〉 modality and, as a result, (SN),
(SN+) and (SN−) are not derivable from (S). The axiom (B) says that if A can

enforce ϕ under a resource bound b, then it can also enforce ϕ if it has more than

b resources. The axiom (FP2) is similar to its ATL counterpart. However, un-

like in ATL, there are two ways to ‘unwind’ 〈〈Ab〉〉�ϕ in RB-ATL: one way is to

make a move which costs a non-trivial amount of resources d, and then maintain ϕ
with b − d resources; the second way is to make a trivial (0̄

∞
← b)-cost move, and

then maintain ϕ with b resources. Similarly for (FPU). Finally, the rules (〈〈Ab〉〉�-

Induction) and (〈〈Ab〉〉 U -Induction) correspond to the ATL axioms (GFP2) and

(LFPU); the first one says that 2 corresponds to the greatest fixed point and the

second that U corresponds to the least fixed point. This will be made more precise

after we give fixed point characterisations of the temporal operators.

8

3.1 Fixed point characterisations of temporal operators

Consider an operation [〈〈Ab〉〉©] which, given a set of states X , returns the set of

states from where A can enforce an outcome to be in X under resource bound b
(this is the same as Pre(A,X, b) defined in Section 4, which is in turn similar to

Pre from [6]):

Definition 5. [〈〈Ab〉〉©] : ℘(Q)→ ℘(Q) is defined as follows: given a setX ⊆ Q,

[〈〈Ab〉〉©](X) is the set

{q | ∃σ ∈ DA(q) : cost(q, σ) ≤ b ∧ out(q, σ) ⊆ X}

Let us define ‖ϕ‖ = {q ∈ Q | S, q |= ϕ}. It is straightforward that:

‖〈〈Ab〉〉 © ϕ‖ = [〈〈Ab〉〉©](‖ϕ‖)

Recall that if f is a monotone operator 2Q −→ 2Q (that is, X ⊆ Y implies

f(X) ⊆ f(Y)), then X is a fixed point of f if f(X) = X . By the Knaster-Tarski

theorem, f has the least and the greatest fixed point. The least fixed point of f is

denoted by µX.f(X) and the greatest fixed point by νX.f(X). We are going to

show that the meanings of 2 and U correspond to the greatest and the least fixed

points of certain operations on sets of states.

Lemma 1. For all q ∈ Q, the following fixed point characterisations hold:

1. q ∈ ‖〈〈Ab〉〉�ϕ‖ iff q ∈ νX.‖ϕ‖ ∩ (‖〈〈Ab〉〉 © �ϕ‖ ∪ [〈〈A0̄
∞

←b〉〉©](X)) iff

there is a b-strategy FA for A such that for all λ ∈ out(q, FA), λ[i] ∈ ‖ϕ‖
for all i ≥ 1

2. q ∈ ‖〈〈Ab〉〉ϕ Uψ‖ iff q ∈ µX.‖ψ‖ ∪ (‖ϕ‖ ∩ (‖〈〈Ab〉〉 © ϕ Uψ‖ ∪
[〈〈A0̄

∞

←b〉〉©](X))) iff there is a b-strategy FA for A such that for all λ ∈
out(q, FA), there exists i ≥ 1 such that λ[i] ∈ ‖ψ‖ and λ[j] ∈ ‖ϕ‖ for all

j < i

Proof. We will only provide the proof for the first case as the second can be done

in a similar way. For convenience, let us denote f(X) = ‖ϕ‖ ∩ (‖〈〈Ab〉〉 ©
�ϕ‖ ∪ [〈〈A0̄

∞

←b〉〉©](X)). We firstly show that f(X) is monotone. Let X1 ⊆
X2 ⊆ Q. Let q ∈ f(X1), then q ∈ ‖ϕ‖ and either q ∈ ‖〈〈Ab〉〉 © �ϕ‖
or q ∈ [〈〈A0̄

∞

←b〉〉©](X1). From the definition of [〈〈A0̄
∞

←b〉〉©](), we have that

q ∈ [〈〈A0̄
∞

←b〉〉©](X1) implies q ∈ [〈〈A0̄
∞

←b〉〉©](X2); hence q ∈ f(X2).
Therefore, f(X) is monotone and there is the greatest fixed point νX.f(X).

We now show that Y = ‖〈〈Ab〉〉�ϕ‖ is a post-fixed point of f(X), i.e. f(Y) ⊇ Y .

Let q ∈ Y , by the semantics definition, we have that there is a b-strategy FA such

9

that for any λ ∈ out(q, FA), λ[i] ∈ ‖ϕ‖ for all i ≥ 1. Then, q = λ[1] ∈ ‖ϕ‖. As-

sume that b′ = cost(q, FA(q)), let b′′ be a resource bound such that (b′
∞
← b, b′′) ∈

split(b). For each q′ ∈ out(q, FA(q)), we define a b′′-strategy Fq′ as the remain-

der of FA from q′, i.e., Fq′,A(q
′κ) = FA(qq

′κ) for all κ ∈ Q∗. Then, for all

q′κ ∈ out(q′, Fq′,A), we have that qq′κ ∈ out(q, FA). It is straightforward that

any computation in out(q′, Fq′,A) costs at most b′′. Then, q′ ∈ ‖〈〈Ab′′〉〉�ϕ‖. Thus,

q ∈ [〈〈Ab′〉〉©](‖〈〈Ab′′〉〉�ϕ‖). If b′ 6≤ 0̄
∞
← b, we have that q ∈ ‖〈〈Ab〉〉 © �ϕ‖,

otherwise q ∈ [〈〈A0̄
∞

←b〉〉©](‖〈〈Ab〉〉�ϕ‖). This means that q ∈ f(‖〈〈Ab〉〉�ϕ‖).
In order to show that Y = ‖〈〈Ab〉〉�ϕ‖ is in fact the greatest fixed point of

f(X), we show that, for every post-fixed point Z, Z ⊆ Y .

We have f(X) = ‖ϕ‖ ∩ (‖〈〈Ab〉〉©�ϕ‖ ∪ [〈〈A0̄
∞

←b〉〉©](Z)). Assume q ∈ Z,

we have:

q ∈ Z ⇒ q ∈ ‖ϕ‖ and either q ∈ ‖〈〈Ab〉〉 ©�ϕ‖ or

q ∈ [〈〈A0̄
∞

←b〉〉©](Z)

We define a b-strategy FA which will maintain ϕ by induction on the length of

inputs for FA. Let Λi denote the set of inputs of length i ≥ 1 for FA. Initially,

Λ1 = {q}. We will define FA for input of length i and Λi+1 inductively on i ≥ 1
such that, for all λ ∈ Λi+1, either cost(λ, FA) ≤ d and λ[i+1] ∈ ‖〈〈Ad′〉〉�ϕ‖ for

some (d, d′) ∈ split(b) or cost(λ, FA) ≤ 0̄
∞
← b and λ[i+ 1] ∈ Z.

• Case i = 1, recall that q ∈ ‖ϕ‖ and either q ∈ ‖〈〈Ab〉〉 © �ϕ‖ or q ∈
[〈〈A0̄

∞

←b〉〉©](Z).

– If q ∈ ‖〈〈Ab〉〉 ©�ϕ‖, then there exists (d, d′) ∈ split(b) such that

q ∈ ‖〈〈Ad〉〉 © 〈〈Ad′〉〉�ϕ‖; then, we have:

q ∈ ‖〈〈Ad〉〉©〈〈Ad′〉〉�ϕ‖ ⇒ q ∈ [〈〈Ad〉〉©](‖〈〈Ad′〉〉�ϕ‖)

⇒ ∃σA ∈ DA(q) : cost(q, σA) ≤ d∧

out(q, σA) ⊆ ‖〈〈A
d′〉〉�ϕ‖

⇒ ∀q′ ∈ out(q, σA),

∃ d′-strategy FA,q′ ,

∀λ ∈ out(q′, FA,q′), ∀j ≥ 1 : λ[j] ∈ ‖ϕ‖

Then, we define FA(q) = σA and Λ2 = {qq′ | q′ ∈ out(q, σA)}.
Obviously, we have:

∀qq′ ∈ Λ2 : cost(qq, FA) = cost(q, σA) ≤ d ∧ q ∈ ‖〈〈A
d′〉〉�ϕ‖

10

– If q ∈ [〈〈A0̄
∞

←b〉〉©](Z), we have:

q ∈ [〈〈A0̄
∞

←b〉〉©](Z)⇒ ∃σA ∈ DA(q) : cost(q, σA) ≤ 0̄
∞
← b∧

out(q, σA) ⊆ Z

Let FA(q) = σA and Λ2 = {qq′ | q′ ∈ out(q, σA)}. Then, we have:

∀qq′ ∈ Λ2 ⇒ cost(qq′, FA) = cost(q, σA) ≤ 0̄
∞
← b ∧ q′ ∈ out(q, σA)

⇒ q′ ∈ Z as out(q, σA) ⊆ Z

• Case i > 1, let us assume that FA for inputs of length i − 1 and Λi have

been defined. By the induction hypothesis, we have, for all λ ∈ Λi, either

cost(λ, FA) ≤ d and λ[i] ∈ ‖〈〈Ad′〉〉�ϕ‖ for some (d, d′) ∈ split(b) or

cost(λ, FA) ≤ 0̄
∞
← b and λ[i] ∈ Z. Let us define FA for each input λ ∈ Λi

and Λi+1.

– If cost(λ, FA) ≤ d and λ[i] ∈ ‖〈〈Ad′〉〉�ϕ‖, we have:

λ[i] ∈ ‖〈〈Ad′〉〉�ϕ‖ ⇒ ∃ d′-strategy FA,λ,

∀λ′ ∈ out(λ[i], FA,λ),

∀j ≥ 1 : λ′[j] ∈ ‖ϕ‖

Then, we define FA(λ) = FA,λ(λ[i]) and Λi+1 = {λq′ | λ ∈ Λi ∧ q′ ∈
out(λ[i], FA,λ(λ[i]))}. Let cost(λ[i], FA,λ(λ[i])) = d′′, we have, for

all λq′ ∈ Λi+1 (where λ ∈ Λi and q′ ∈ out(λ[i], FA,λ(λ[i])):

cost(λq′, FA) = cost(λ, FA) + cost(λ[i], FA(λ))

≤ d+ cost(λ[i], FA,λ(λ[i]))

= d+ d′′

Furthermore, by considering the (d′ − d′′)-strategy FA,λq′ where

FA,λq′(λ
′) = FA,λ(q

′λ′) for all λ′ ∈ Q+, we have:

∀λ′ ∈ out(q′, FA,λq′), ∀j ≥ 1 : λ′[j] ∈ ‖ϕ‖ ⇒ q′ ∈ ‖〈〈Ad′−d′′〉〉�ϕ‖

Finally, it is straightforward that ((d+ d′′), (d′ − d′′)) ∈ split(b).

– If cost(λ, FA) ≤ 0̄
∞
← b and λ[i] ∈ Z, we have

λ[i] ∈ Z ⇒ λ[i] ∈ f(Z)

⇒ λ[i] ∈ ‖ϕ‖ and either λ[i] ∈ ‖〈〈Ab〉〉 ©�ϕ‖ or

λ[i] ∈ [〈〈A0̄
∞

←b〉〉©](Z)

11

∗ If λ[i] ∈ ‖〈〈Ab〉〉 ©�ϕ‖, then there exists (d, d′) ∈ split(b) such

that λ[i] ∈ ‖〈〈Ad〉〉 © 〈〈Ad′〉〉�ϕ‖; then, we have:

λ[i] ∈ ‖〈〈Ad〉〉 © 〈〈Ad′〉〉�ϕ‖

⇒ ∃σA ∈ DA(λ[i]) : cost(λ[i], σA) ≤ d∧

out(λ[i], σA) ⊆ ‖〈〈A
d′〉〉�ϕ‖

⇒ ∀q′ ∈ out(λ[i], σA),

∃ d′-strategy FA,q′ ,

∀λ′ ∈ out(q′, FA,q′), ∀j ≥ 1 : λ′[j] ∈ ‖ϕ‖

Then, we define for every λ ∈ Λi that FA(λ) = σA and Λi+1 =
{λq′ | λ ∈ Λi ∧ q′ ∈ out(λ[i], σA)}. Obviously, we have:

∀λq′ ∈ Λi+1 : cost(λ, FA) = cost(λ, FA) + cost(λ[i], σA)

≤ (0̄
∞
← b) + d = d

∧

q′ ∈ ‖〈〈Ad′〉〉�ϕ‖

∗ If λ[i] ∈ [〈〈A0̄
∞

←b〉〉©](Z), we have:

λ[i] ∈ [〈〈A0̄
∞

←b〉〉©](Z)⇒ ∃σA,λ ∈ DA(λ[i]) : cost(λ[i], σA,λ) ≤ 0̄
∞
← b∧

out(λ[i], σA,λ) ⊆ Z

Then, we define for every λ ∈ Λi that FA(λ) = σA,λ and Λi+1 =
{λq′ | λ ∈ Λiq′ ∈ out(λ[i], σA,λ)}. Obviously, we have:

∀λq′ ∈ Λi+1 ⇒ cost(λq′, FA) = cost(λ, FA) + cost(λ[i], σA,λ)∧

q′ ∈ out(λ[i], σA,λ)

⇒ cost(λq′, FA) ≤ 0̄
∞
← b∧

q′ ∈ Z as out(λ[i], σA,λ) ⊆ Z

Given the above construction of FA, we have that

∀λ ∈ out(q, FA) and i ≥ 1 ⇒ λ ∈ Λi

⇒ either ∃(d, d′) ∈ split(b) :

cost(λ[1, i], FA) ≤ d∧

λ[i] ∈ ‖〈〈Ad′〉〉�ϕ‖

or

cost(λ[1, i] ≤ 0̄
∞
← b ∧ λ[i] ∈ Z

⇒ cost(λ[1, i], FA) ≤ b ∧ λ[i] ∈ ‖ϕ‖

12

In other words, q ∈ ‖〈〈Ab〉〉�ϕ‖, i.e., q ∈ Y .

Therefore, Z ⊆ Y ; hence, Y is the greatest post-fixed point of f(X), hence

also the greatest fixed point of f(X).

3.2 Soundness of RB-ATL

First, we prove that the axioms of RB-ATL are valid.

(⊥) is valid because there is no b-strategy FA such that for all λ ∈ out(q, FA),
λ[1] makes ⊥ true.

(⊤) is valid because A has a 0̄-strategy FA such that for all λ ∈ out(q, FA), λ[1]
makes ⊤ true.

(B) is valid because if there is a b-strategy FA such that for all λ ∈ out(q, FA),
λ[1] makes ϕ true, then the same FA is also a d-strategy which has the same

property.

(S) is valid because if there exists a strategy FA1
to enforce ϕ and a strategy FA2

to enforce ψ, then there exists a joint strategy FA1∪A2
(with the same moves

for A1 and A2 as FA1
and FA2

, respectively) to enforce both ϕ and ψ.

(SN) is valid because if there exists a b-strategy FA to enforce ϕ, and, for all

strategies of N , ψ is inevitable, then ϕ ∧ ψ can be enforced in by FA.

(SN+) is valid because if there exists a b-strategy FN to enforce ϕ, and, for all

strategies of N which cost at most b, ψ is inevitable, then ϕ ∧ ψ can be

enforced in by FN .

(SN−) is valid because if, for all strategies of N , ϕ and ψ are inevitable, then so is

ϕ ∧ ψ.

(FP2) is valid by Lemma 1(1) and (FPU) by Lemma 1(2).

Then, we prove that the inference rules preserve validity (the proof for (MP) is

standard, hence it is omitted):

(〈〈Ab〉〉©-Monotonicity), (〈〈Ab〉〉�-Monotonicity), and (〈〈Ab〉〉U -Monotonicity)

clearly preserve validity, since if ‖ϕ‖ ⊆ ‖ψ‖ and an outcome in ‖ϕ‖ can be

enforced, then an outcome in ‖ψ‖ can also be enforced by the same strategy.

(〈〈N b〉〉�-Necessitation) is valid since if ϕ is logically true, then it is inevitable in

perpetuity.

(〈〈Ab〉〉�-Induction) and (〈〈Ab〉〉U -Induction) preserve validity by Lemma 1.

13

3.3 Completeness of RB-ATL

The proof of completeness is based on [13]. We construct a satisfying model for a

formula ϕ0 which is consistent with the axiomatic system for RB-ATL.

In the proof, we assume when convenient that all formulas are in negation nor-

mal form of RB-ATL. The syntax of negation normal form RB-ATL is as follows:

ϕ ::= p | ¬p | ϕ ∨ ψ | ϕ ∧ ψ | 〈〈Ab〉〉 © ϕ | ¬〈〈Ab〉〉 © ϕ |

〈〈Ab〉〉�ϕ | ¬〈〈Ab〉〉�ϕ |

〈〈Ab〉〉ϕUψ | ¬〈〈Ab〉〉ϕUψ

where A is a non-empty coalition and b ∈ B. Given a normal form formula ϕ of

RB-ATL, we denote by ∼ ϕ the normal form negation of ϕ. Given an RB-CGS

S and a state q, the semantics of normal form RB-ATL is the same as RB-ATL,

except for formulas ¬〈〈Ab〉〉 © ϕ, ¬〈〈Ab〉〉�ϕ and ¬〈〈Ab〉〉ϕUψ which are defined

as follows:

• S, q |= ¬〈〈Ab〉〉 © ϕ iff for every b-strategy FA, there exists λ ∈ out(q, FA)
such that S, λ[1] |=∼ ϕ iff ∀σA ∈ DA(q) : cost(q, σA) ≤ b → ∃q′ ∈
out(q, σ) : S, q′ |=∼ϕ.

• S, q |= ¬〈〈Ab〉〉�ϕ iff for every b-strategy FA, there exists λ ∈ out(q, FA)
and i ≥ 1 such that S, λ[i] |=∼ϕ,

• S, q |= ¬〈〈Ab〉〉ϕUψ iff for every b-strategy FA, there exists λ ∈ out(q, FA)
such that if there exists i ≥ 1 with S, λ[i] |= ψ then there is j ∈ {1, . . . , i−1}
where S, λ[j] |=∼ϕ.

The model is constructed in a way very similar to the construction in [13]. It is

assembled from finite trees where nodes are labelled by sets of formulas. First we

define the set of formulas used in the labelling.

Definition 6. The closure cl(ϕ0) is the smallest set of formulas satisfying the fol-

lowing closure conditions:

• all sub-formulas of ϕ0 including ϕ0 itself are in cl(ϕ0);

• if 〈〈Ab〉〉�ϕ is in cl(ϕ0), then so are 〈〈Ad〉〉 © 〈〈Ad′〉〉�ϕ for all (d, d′) ∈
split(b) and also 〈〈A0̄

∞

←b〉〉 © 〈〈Ab〉〉�ϕ;

• if 〈〈Ab〉〉ϕUψ is in cl(ϕ0), then so are 〈〈Ad〉〉 © 〈〈Ad′〉〉ϕUψ for all (d, d′) ∈
split(b) and also 〈〈A0̄

∞

←b〉〉 © 〈〈Ab〉〉ϕUψ;

• if ϕ is in cl(ϕ0), then so is ∼ϕ; and

14

• cl(ϕ0) is also closed under finite positive boolean operators (∨ and ∧) up to

tautology equivalence.

Note that cl(ϕ0) is finite. Let Γ be the set of maximal consistent subsets of

cl(ϕ0). We define trees (T, V, C) over Γ in a similar way as [13] where

• T ⊆ (Nn)∗ is the set of nodes;

• V : T −→ Γ is a labelling function which assigns to each node a consistent

set; and

• C : T × N × N → N
r is a (partial) cost function which assigns a cost to

each action available at a node.

Intuitively, nodes in a tree are identified with finite words corresponding to the

sequence of joint actions by the grand coalition which leads to that node. The root

is the empty word ǫ and each node t corresponds to a finite computation the last

state of which is t. An interior node of the tree is a node but not a leaf. A formula is

in V (t) intuitively means that the formula is true in t. Finally, the cost of an action j
of an agent i at a node t is given by C(t, i, j). As in [13], the construction proceeds

in three stages. The first stage is producing locally consistent trees, namely trees

where the labelling satisfies conditions on successor nodes which makes it possible

to prove a truth lemma for the next step modalities. The second stage is proving

the existence of trees which realise eventualities (essentially, make the labelling

consistent with the truth conditions for the 2 and U modalities). Finally, the finite

trees realising eventualities are combined into one infinite tree model.

Definition 7. A tree (T, V, C) is locally consistent iff for any interior node t ∈ T :

1. If 〈〈Ab〉〉©ϕ in V (t), then there is a move σA such that cost(t, σA) ≤ b and

for any t′ ∈ out(t, σA) we have ϕ ∈ V (t′); and

2. If ¬〈〈Ab〉〉 © ϕ in V (t), then for any move σA with cost(t, σA) ≤ b, there

exists t′ ∈ out(t, σA) where ¬ϕ ∈ V (t′).

Two following lemmas are used as a crucial step in the local consistency proof.

Lemma 2. Let Φ = {〈〈Ab1
1 〉〉 © ϕ1, . . . , 〈〈A

bk
k 〉〉 © ϕk,¬〈〈N

∞̄〉〉 ©
χ1, . . . ,¬〈〈N

∞̄〉〉 © χm,¬〈〈A
b〉〉 © ψ} be a consistent set of formulas in which:

• all Ai are both non-empty and pairwise disjoint

•
⋃

iAi ⊆ A

• Σibi ≤ b

15

Then, Ψ = {ϕ1, . . . , ϕk,∼χ1, . . . ,∼χm,∼ψ} is also consistent.

Proof. When k = 0 (or m = 0), we can always add the axiom 〈〈A0̄〉〉 © ⊤ (or

¬〈〈N∞̄〉〉 © ⊥) into Φ. Hence, it is sufficient to prove this lemma with k > 0 and

m > 0.

Let A′ =
⋃

iAi, b
′ =

∑

i bi and ϕ =
∧

i ϕi and χ =
∧

j ∼χj .

Assume to the contrary that Ψ is inconsistent, we have:

(1) ⊢
∧

i

〈〈Abi
i 〉〉 © ϕi → 〈〈A

b〉〉 © ϕ

by (S), (B), A′ ⊆ A and b′ ≤ b

(2) ⊢
∧

j

¬〈〈N∞̄〉〉 © χj → ¬〈〈N
∞̄〉〉 © ¬χ

by (SN−)

(3) ⊢ 〈〈Ab〉〉 © ϕ ∧ ¬〈〈N∞̄〉〉 © ¬χ→ 〈〈Ab〉〉 © (ϕ ∧ χ)

by (SN)

(4) ⊢
∧

i

〈〈Abi
i 〉〉 © ϕi ∧

∧

j

¬〈〈N∞̄〉〉 © χj → 〈〈A
b〉〉 © (ϕ ∧ χ)

by (1), (2) and (3)

(5) ⊢ ϕ ∧ χ→ ψ

as Ψ is inconsistent

(6) ⊢ 〈〈Ab〉〉 © (ϕ ∧ χ)→ 〈〈Ab〉〉 © ψ

by (5) and 〈〈Ab〉〉©-monotonicity

(7) ⊢
∧

i

〈〈Abi
i 〉〉 © ϕi ∧

∧

j

¬〈〈N∞̄〉〉 © χj → 〈〈A
b〉〉 © ψ

by (4) and (6)

Therefore, Φ ∪ {〈〈Ab〉〉 © ψ} is consistent, which is a contradiction

Similarly, we have the following lemma:

Lemma 3. Let Φ = {〈〈Ab1
1 〉〉 © ϕ1, . . . , 〈〈A

bk
k 〉〉 © ϕk,¬〈〈N

d1〉〉 ©
χ1, . . . ,¬〈〈N

dm〉〉 © χm} be a consistent set of formulas in which:

• The Ai’s are both non-empty and pairwise disjoint

• Σibi ≤ dj for all j

Then, Ψ = {ϕ1, . . . , ϕk,∼χ1, . . . ,∼χm} is also consistent.

16

Proof. When k = 0 (or m = 0), we can always add the axiom 〈〈N 0̄〉〉 © ⊤ (or

¬〈〈N∞̄〉〉 © ⊥) into Φ. Hence, it is sufficient to prove this lemma with k > 0 and

m > 0.

Let A =
⋃

iAi, b =
∑

i bi and ϕ =
∧

i ϕi and χ =
∧

j ∼χj .

Assume to the contrary that Ψ is inconsistent, we have:

(1) ⊢
∧

i

〈〈Abi
i 〉〉 © ϕi → 〈〈A

b〉〉 © ϕ

by (S)

(2) ⊢ ¬〈〈Ndj 〉〉 © χj → ¬〈〈N
b〉〉 © χj

by B and b ≤ dj

(3) ⊢
∧

j

¬〈〈N b〉〉 © χj → ¬〈〈N
b〉〉 © ¬χ

by (SN−)

(4) ⊢ 〈〈Ab〉〉 © ϕ ∧ ¬〈〈N b〉〉 © ¬χ→ 〈〈Ab〉〉 © (ϕ ∧ χ)

by (SN+)

(5) ⊢
∧

i

〈〈Abi
i 〉〉 © ϕi ∧

∧

j

¬〈〈N b〉〉 © χj → 〈〈A
b〉〉 © (ϕ ∧ χ)

by (1), (2), (3) and (4)

(6) ⊢ ϕ ∧ χ→ ⊥

as Ψ is inconsistent

(7) ⊢ 〈〈Ab〉〉 © (ϕ ∧ χ)→ 〈〈Ab〉〉 © ⊥

by (6) and 〈〈Ab〉〉©-monotonicity

(8) ⊢
∧

i

〈〈Abi
i 〉〉 © ϕi ∧

∧

j

¬〈〈N b〉〉 © χj → 〈〈A
b〉〉 © ⊥

by (5) and (7)

Therefore, Φ ∪ {〈〈Ab〉〉 © ⊥} is consistent, which is a contradiction

Lemma 4. Let Φ be a finite consistent set of formulas. Let Φ© be the subset of Φ
which contains all formulas of the form 〈〈Ab〉〉 © ϕ or their negations. Let k ∈ N

be such that |Φ©| < k, then there is a locally consistent tree (T, V, C) of height

one where T = {ǫ} ∪ {1, . . . , k}n and V (ǫ) = Φ.

Proof. Denote T ′ = {1, . . . , k}n; hence T = {ǫ}∪̇T ′ where we denote by ∪̇ the

disjoint union operator. Furthermore, we assume that

Φ© = Φ+
© ∪̇Φ

−
© ∪̇Φ

−
N©

17

where

Φ+
© = {〈〈Ab1

1 〉〉 © ϕ1, . . . , 〈〈A
bm
m 〉〉 © ϕm},

Φ−© = {¬〈〈Bd1
1 〉〉 © ψ1, . . . ,¬〈〈B

dl
l 〉〉 © ψl} s.t. ∀i : Bi 6= N

and

Φ−N© = {¬〈〈N e1〉〉 © χ1, . . . ,¬〈〈N
eh〉〉 © χh}

First, let f ∈ N be the maximal number which occurs in e1, . . . , eh; we define

f + 1 = {f + 1}n. It is straightforward that for all e ∈ {e1, . . . , eh}, if e 6= ∞̄
then f + 1 6≤ e. We define a function deinf : B∞ → B which removes infinity

from a bound as follows: deinf(b) = b′ where for all i = 1, . . . , r

b′i =

{

bi if bi 6=∞

f + 1 otherwise

It is also straightforward that for all e ∈ {e1, . . . , eh} and b ∈ {b1, . . . , bm}, if

e 6= ∞̄ and b /∈ N
r (i.e., b contains some∞) then deinf(b) 6≤ e.

Let us construct a tree with a root labelled by Φ and kn children denoted by

t = (a1, . . . , an) ∈ {1, . . . , k}
n. Intuitively, we allow each agent to perform k

different actions where the special action k always costs 0̄. For convenience, we

denote the action of agent i in t by ti = ai and the joint move by a coalition

A in t by tA = (ti)i∈A. In the following, we define the labelling function V (t)
for each leaf t and the cost function C(ǫ, i, a) for each agent i ∈ N and action

a ∈ {1, . . . , k}:

(a) For each 〈〈A
bp
p 〉〉©ϕp ∈ Φ+

© where Ap 6= ∅, ϕp is added to V (t) for all t such

that ∀i ∈ Ap : ti = p. Let minAp be the smallest number in Ap, we assign

the cost of action p performed by minAp to be deinf(bp), i.e. C(ǫ,minAp , p) =
deinf(bp). For other agents i in Ap \ {minAp}, we assign C(ǫ, i, p) = 0̄. For

other unassigned-cost actions, their costs are assigned as follows:

C(ǫ, i, p) =

{

0̄ if p ≤ m or p = k

f + 1 if m < p < k

We define C(t, A) =
∑

i∈AC(ǫ, i, ti) as the cost of the joint action by the

coalition A and C(t) = C(t,N) as the cost of the joint action by the grand

coalition.

(b) For each ¬〈〈N ep〉〉 © χp ∈ Φ−N©, ∼χp is added to V (t) whenever C(t) ≤ ep.

18

(c) Finally, we will add at most one formula from Φ−© to V (t). Let

Φ−©(t) = {¬〈〈Bd〉〉 © ψ ∈ Φ−© | C(t, B) ≤ d}

= {¬〈〈B
di1
i1
〉〉 © ψi1 , . . . ,¬〈〈B

dlt
ilt
〉〉 © ψlt}

where 1 ≤ i1 < i2 < . . . < ilt ≤ l. Let I = {i′ | ti′ ∈ {m + 1, . . . ,m + l}}

and j =
∑

i∈I(ti−m−1) mod lt+1. Consider ¬〈〈B
dij
ij
〉〉©ψij : ifN \Bij ⊆

I , then ∼ψij is added into V (t).

We now prove that the constructed tree (T, V, C) is locally consistent. First, we

show that all labels are consistent. It is obvious that V (ǫ) = Φ is consistent. For

each child t ∈ T ′, since at most one formula ∼ψp such that ¬〈〈B
dp
p 〉〉 © ψp ∈ Φ−©

is added into V (t), we consider the following two cases:

Case ∀p ∈ {1, . . . , l} :∼ψp /∈ V (t) :

Let us assume that

V (t) = {ϕi1 , . . . , ϕimt
} ∪̇

{∼χj1 , . . . ,∼χjht
}

where 1 ≤ i1 ≤ . . . ≤ imt ≤ m and 1 ≤ j1 ≤ . . . ≤ jht
≤ m. Then, we

have:

(a) ⇒ ∀p ∈ {i1, . . . , imt}, ∀i ∈ Ap : ti = p

⇒ ∀p, p′ ∈ {i1, . . . , imt} : p 6= p′ → Ap ∩Ap′ = ∅

and if ∀p ∈ {i1, . . . , imt} : bp ∈ N
r, then

(a) ⇒ ∀p ∈ {i1, . . . , imt} : deinf(bp) = bp = C(t, Ap)

⇒
∑

p∈{i1,...,imt}

bp =
∑

p∈{i1,...,imt}

C(t, Ap) ≤ C(t)

⇒ ∀j ∈ {j1, . . . , jht
}

∑

p∈{i1,...,imt}

bp ≤ ej by (b)

19

otherwise, if ∃p ∈ {i1, . . . , imt} : bp /∈ N
r, then

(a) ⇒ ∀p ∈ {i1, . . . , imt} : deinf(bp) = C(t, Ap)

⇒ ∀j ∈ {1, . . . , h} : ej 6= ∞̄ →
∑

p∈{i1,...,imt}

deinf(bp) =
∑

p∈{i1,...,imt}

C(t, Ap) 6≤ ej

as deinf(bp) 6≤ ej

⇒ ∀j ∈ {j1, . . . , jht
} : ej = ∞̄ as C(t, Ap) ≤ C(t) ≤ ej by (b)

⇒ ∀j ∈ {j1, . . . , jht
} :

∑

p∈{i1,...,imt}

bp ≤ ej

Therefore, by Lemma 3, V (t) is consistent.

Case ∃!q ∈ {1, . . . , l} :∼ψq ∈ V (t) :

Let us assume that

V (t) = {ϕi1 , . . . , ϕimt
} ∪̇

{∼ψq} ∪̇

{∼χj1 , . . . ,∼χjht
}

where 1 ≤ i1 ≤ . . . ≤ imt ≤ m and 1 ≤ j1 ≤ . . . ≤ jht
≤ m. Recall that:

Φ−©(t) = {¬〈〈B
dq1
q1 〉〉 © ψq1 , . . . ,¬〈〈B

dlt
qlt
〉〉 © ψlt}

hence, q ∈ {q1, . . . , qlt}, and also

I = {i′ | ti′ ∈ {m+ 1, . . . ,m+ l}}

hence, ∀i ∈ {i1, . . . , imt}: I ∩Ai = ∅ since ti′ = i ≤ m for all i′ ∈ Ai.

Similar to the previous case, we have:

(a) ⇒ ∀p ∈ {i1, . . . , imt}, ∀i ∈ Ap : ti = p

⇒ ∀p, p′ ∈ {i1, . . . , imt} : p 6= p′ → Ap ∩Ap′ = ∅

Then, we have:

(c) ⇒ N \Bq ⊆ I

⇒ I 6= ∅ as Bq 6= N

⇒ C(t) ≥ C(t, I) ≥ f + 1 by (a)

⇒ ∀j ∈ {1, . . . , h} : ej 6= ∞̄ → C(t) 6≤ ej as f + 1 6≤ ej

⇒ ∀j ∈ {j1, . . . , jht
} : ej = ∞̄ by (b)

20

and

(c) ⇒ N \Bq ⊆ I

⇒ Bq ⊇ N \ I

⇒ ∀i ∈ {i1, . . . , imt} : Bq ⊇ Ai as I ∩Ai = ∅

⇒ Bq ⊇ Ai1∪̇ . . . ∪̇Aimt

⇒ C(t, Bq) ≥ C(t, Ai1∪̇ . . . ∪̇Aimt
)

⇒ C(t, Bq) ≥ C(t, Ai1) + . . .+ C(t, Aimt
)

⇒ dq ≥
∑

i∈{i1,...,imt}

bi

Therefore, by Lemma 2, V (t) is consistent.

Let us now prove that (T, V, C) satisfies the two local consistency conditions

of Definition 7.

1. Assume that 〈〈A
bp
p 〉〉 © ϕp ∈ V (ǫ). Consider the joint action σ for Ap such

that σi = p for all i ∈ Ap. We have:

out(ǫ, σ) = {t ∈ T ′ | ∀i ∈ Ap : ti = p}

and

〈〈A
bp
p 〉〉©ϕp ∈ V (ǫ) ⇒ 〈〈A

bp
p 〉〉 © ϕp ∈ Φ+

©

⇒ ∀t ∈ T ′ : (∀i ∈ Ap : ti = p)→ ϕp ∈ V (t) by (a)

⇒ ∀t ∈ out(ǫ, σ) : ϕp ∈ V (t)

2. If ¬〈〈N ep〉〉 © χp ∈ V (ǫ), let us consider the joint action t such that C(t) ≤
ep. Obviously, out(ǫ, t) = {t}. Hence, by (b), ∼χp ∈ V (t).

If ¬〈〈B
dp
p 〉〉©ψp ∈ V (ǫ) whereBp 6= N , let σ be an arbitrary joint move for

the coalition Bp such that cost(ǫ, σ) ≤ dp. We will determine an outcome

t ∈ out(ǫ, σ), such that ∼ ψp ∈ V (t). As t ∈ out(ǫ, σ), ti = σi for all

i ∈ Bp; it remains to determine ti for i /∈ Bp.

Let t′ ∈ T ′ such that

t′i =

{

σi if i ∈ Bp

m+ 1 otherwise

and

Φ−©(σ) = Φ−©(t′)

21

= {¬〈〈B
di1
i1
〉〉 © ψi1 , . . . ,¬〈〈B

dilσ
ilσ
〉〉 © ψilσ

}

Iσ = {i ∈ Bp | σi ∈ {m+ 1, . . . ,m+ l}}

jσ =
∑

i∈Iσ

(σi −m− 1)

Since C(t′, Bp) ≤ dp, ¬〈〈B
dp
p 〉〉 © ψp ∈ Φ−©(σ). Let p = ij∗ for some

j∗ ∈ {1, . . . , lσ}.

Let ι be an arbitrary agent in N \Bp 6= ∅. We define:

ti =

{

m+ (j∗ − jσ − 1) mod lσ + 1 if i = ι

m+ 1 if i ∈ N \Bp \ {ι}

Let us prove that ∼ψp ∈ V (t).

We have:

∀i ∈ Bp : ti = σi = t′i ⇒ C(ǫ, i, ti) = C(ǫ, i, t′i)

and

∀i ∈ N \Bp : ti ∈ {m+ 1, . . . ,m+ l} ⇒ C(ǫ, i, ti) = f + 1 by (a)

⇒ C(ǫ, i, ti) = C(ǫ, i, t′i)

Therefore, Φ−©(t) = Φ−©(t′) = Φ−©(σ); hence, lt = lσ. Then,

I = {i | ti ∈ {m+ 1, . . . ,m+ l}}

= Iσ∪̇(N \Bp)

j =
∑

i∈I

(ti −m− 1) mod lt + 1

= (
∑

i∈Iσ

(ti −m− 1)+

(tι −m− 1)+
∑

i∈N\Bp\{ι}

(ti −m− 1)) mod lt + 1

= (jσ + (j∗ − jσ − 1) mod lt) mod lt + 1

= (j∗ − 1) mod lt + 1

= j∗

22

Recall that ij∗ = p. Then, we have:

N \Bp ⊆ N \Bp ∪ Iσ = I

Therefore, according to (c), ∼ψp ∈ V (t).

The next stage of the proof is to consider what conditions on tree labelling we

need to be able to prove the truth lemma for other temporal modalities. The defi-

nition of what it means to ‘realise’ formulas of the form 〈〈Ab〉〉ϕUψ, ¬〈〈Ab〉〉�ϕ,

〈〈Ab〉〉�ϕ, ¬〈〈Ab〉〉ϕUψ is similar to the one in [13] (essentially the truth conditions

for the formulas with ‘satisfied’ replaced by ‘in the labelling of’).

The following lemma and its proof are similar to the correspondings in [13],

but for formulas of RB-ATL.

Lemma 5. For any subset Y ⊆ Γ, there is a formula χY ∈ cl(ϕ0), called the

characteristic formula of Y , such that for every y ∈ Γ, χY ∈ y iff y ∈ Y .

Proof. For any maximally consistent subset y of cl(ϕ0), we define:

χ{y} =
∧

ϕ∈y

ϕ and χY =
∨

y∈Y

χ{y}

First, since cl(ϕ0) is closed under finite positive boolean operators, χ{y} ∈ y.

(⇒) : Assume that χY ∈ y. Then, we have:

χY ∈ y ⇒⊢ χ{y} → χY a PL tautology

⇒ χY ∈ y as χ{y} ∈ y and y is maximal

(⇒) : Assume that y /∈ Y . Then, for any y′ ∈ Y , we have:

∃θ ∈ cl(ϕ0) : θ ∈ y
′ and ∼θ ∈ y

⇒ χ{y′}∧ ∼θ is inconsistent

⇒ χ{y′} /∈ y

Therefore, χY /∈ y.

In what follows, Ψ© is the set of formulas of the form 〈〈Ab〉〉©ϕ or¬〈〈Ab〉〉©ϕ
from cl(ϕ0).

23

Lemma 6. Given 〈〈Ab〉〉ϕUψ and x ∈ Γ, there is finite tree (T, V, C) over Γ such

that:

• every interior node of (T, V, C) has kn children where k = |Ψ©|+ 1,

• (T, V, C) is locally consistent,

• V (ǫ) = x, and

• if 〈〈Ab〉〉ϕUψ ∈ x then (T, V, C) realises 〈〈Ab〉〉ϕUψ from ǫ

Proof. The proof is similar to the corresponding proof in [13], but also uses induc-

tion on the bound b.
Let Z ⊆ Γ such that, for any x ∈ Z, there is a finite tree obeying all conditions

of Lemma 6. We shall prove the lemma by showing that Z = Γ. In the following,

assume that x ∈ Γ.

• If 〈〈Ab〉〉ϕ Uψ /∈ x, let us construct a simple tree (T, V, C) where T = {ǫ}
and V (ǫ) = x. Since (T, V, C) satisfies all conditions of Lemma 6, x ∈ Z.

• If 〈〈Ab〉〉ϕ Uψ ∈ x, we first show that η = (ψ ∨ (ϕ ∧ (〈〈Ab〉〉 © ϕ Uψ ∨
〈〈A0̄

∞

←b〉〉 © χZ)))→ χZ is a theorem. Then, we have that:

(1) ⊢ (ψ ∨ (ϕ ∧ (〈〈Ab〉〉 © ϕUψ ∨ (〈〈A0̄
∞

←b〉〉 © χZ)))→ χZ

(2) ⊢ 〈〈Ab〉〉ϕUψ → χZ by (〈〈Ab〉〉U -Induction)

Therefore,

〈〈Ab〉〉ϕUψ ∈ x⇒ χZ ∈ x as x is maximal

⇒ x ∈ Z by Lemma 5

However, it remains to prove that η is a theorem. This is done by showing that

η belongs to any maximal consistent set q of RB-ATL in three cases:

• If 〈〈Ab〉〉ϕ Uψ /∈ q, let us construct a simple tree (T, V, C) where T = {ǫ}
and V (ǫ) = q∩cl(ϕ0). Since (T, V, C) satisfies all conditions of the lemma,

q ∩ cl(ϕ0) ∈ Z. Then, we have:

q ∩ cl(ϕ0) ∈ Z ⇒ χZ ∈ q ∩ cl(ϕ0) by Lemma 5

⇒ χZ ∈ q

⇒ η ∈ q as q is maximal

24

• If ψ∨(ϕ∧(〈〈Ab〉〉©ϕUψ∨(〈〈A0̄
∞

←b〉〉©χZ)) /∈ q, then it is straightforward

that η ∈ q since q is maximal.

• If 〈〈Ab〉〉ϕUψ ∈ q and ψ ∨ (ϕ ∧ (〈〈Ab〉〉 © ϕUψ ∨ (〈〈A0̄
∞

←b〉〉 © χZ))) ∈ q,

we prove that η ∈ q by induction on b.

Base case: Assume that b = 0̄
∞
← b. As ψ ∨ (ϕ ∧ 〈〈A0̄

∞

←b〉〉 © χZ) ∈ q, we

have either ψ ∈ q or ϕ ∧ 〈〈A0̄
∞

←b〉〉 © χZ ∈ q. Let us consider the following

two sub-cases:

– if ψ ∈ q, let us construct a simple tree (T, V, C) where T = {ǫ}
and V (ǫ) = q ∩ cl(ϕ0) ∋ ψ. Then, (T, V, C) satisfies all conditions

of Lemma 5; hence, q ∩ cl(ϕ0) ∈ Z; therefore, similar to the above

argument of the case 〈〈Ab〉〉ϕUψ /∈ q, η ∈ Z.

– if ϕ ∧ 〈〈A0̄
∞

←b〉〉 © χZ ∈ q, then both ϕ and 〈〈A0̄
∞

←b〉〉 © χZ ∈ q. Let

Φ = q∩cl(ϕ0). Obviously, Φ© ⊆ Ψ©; therefore, |Φ©| < k. Then, by

Lemma 4, there exists a locally consistent tree (T0, V0, C0) of height

one where T0 = {ǫ}∪̇{1, . . . , k}
n and V0(ǫ) = q ∩ cl(ϕ0).

For each c ∈ {1, . . . , k}n, let Φc be an arbitrary set from Γ such that

Φc ⊇ V0(c). Let (T1, V1, C1) be a finite tree such that T1 = T0, C1 =
C0, V1(ǫ) = V0(ǫ) and V1(c) = Φc for all c ∈ {1, . . . , k}n. Since

(T0, V0, C0) is locally consistent, so is (T1, V1, C1).

For every child c ∈ {1, . . . , k}n such that χZ ∈ V1(c), we have:

χZ ∈ V1(c) ⇒ V1(c) ∈ Z by Lemma 5

⇒ ∃ a local consistent tree (Tc, Vc, Cc)

which satisfies all conditions of Lemma 6

Let us consider a finite tree (T, V, C) where

T = {ǫ} ∪ {c ∈ {1, . . . , k}n | χZ /∈ V1(c)}

{ct | c ∈ {1, . . . , k}n, t ∈ Tc, χZ ∈ V1(c)}

for all t ∈ T :

V (t) =































V1(ǫ) if t = ǫ

V1(c) if t = c where

c ∈ {1, . . . , k}n, χZ /∈ V1(c)

Vc(ct
′) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc, χZ ∈ V1(c)

25

for all t ∈ T , i ∈ N and j ∈ {1, . . . , k}:

C(t, i, j) =











C1(ǫ, i, j) if t = ǫ

Cc(ct
′, i, j) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc, χZ ∈ V1(c)

It is straightforward that (T, V, C) is also locally consistent and all of

its interior nodes have kn children.

Let us show that (T, V, C) realises 〈〈A0̄
∞

←b〉〉ϕ Uψ at ǫ. Let c ∈
{1, . . . , k}n such that C(c, A) ≤ 0̄

∞
← b, i.e., cA is a joint move which

costs at most 0̄
∞
← b,we have:

〈〈A0̄
∞

←b〉〉 © χZ ∈ V1(ǫ) = V (ǫ)

⇒ ∀c′ ∈ {1, . . . , k}n : c′A = cA → χZ ∈ V (c)

⇒ ∀c′ ∈ {1, . . . , k}n : c′A = cA → V (c′) = Vc′(ǫ) ∈ Z

⇒ ∀c′ ∈ {1, . . . , k}n : c′A = cA → 〈〈A
0̄
∞

←b〉〉ϕUψ

is realised at the root of (Tc′ , Vc′ , Cc′)

⇒ ∀c′ ∈ {1, . . . , k}n : c′A = cA → ∃0̄
∞
← b-strategyFA,c′

realises 〈〈A0̄
∞

←b〉〉ϕUψ at the root of (Tc′ , Vc′ , Cc′)

Let us consider a 0̄
∞
← b-strategy FA where

FA(λ) =

{

cA if λ = ǫ

FA,c′(c
′t) if c′ ∈ {1, . . . , k}n, t ∈ Tc′ , χZ ∈ V1(c

′)

It is straightforward that FA realises 〈〈A0̄
∞

←b〉〉ϕUψ from the root ǫ of

(T, V, C). Hence, as T (ǫ) = q ∩ cl(ϕ0), we have:

q ∩ cl(ϕ0) ∈ Z ⇒ χZ ∈ q ∩ cl(ϕ0) by Lemma 5

⇒ χZ ∈ q

⇒ η ∈ q as q is maximal

Induction step: Assume that b > 0̄
∞
← b. Similar to the base case, as ψ ∨

(ϕ∧ (〈〈Ab〉〉©ϕUψ∨ (〈〈A0̄
∞

←b〉〉©χZ))) ∈ q, let us consider the following

three sub-cases:

– if ψ ∈ q, the proof is the repetition of that for the base case.

– if ϕ and 〈〈A0̄
∞

←b〉〉 © χZ ∈ q, the proof is the repetition of that for the

base case.

26

– if ϕ and 〈〈Ab1〉〉 © 〈〈Ab2〉〉ϕ Uψ ∈ q for some (b1, b2) ∈ split(b), let

Φ = q ∩ cl(ϕ0). Obviously, Φ© ⊆ Ψ©; therefore, Φ© < k. By

Lemma 4, there exists a locally consistent tree (T0, V0, C0) of height

one where T0 = {ǫ}∪̇{1, . . . , k}
n and V0(ǫ) = Φ.

For each c ∈ {1, . . . , k}n, let Φc be an arbitrary set from Γ such that

Φc ⊇ V0(c). Let (T1, V1, C1) be a finite tree such that T1 = T0, C1 =
C0, V1(ǫ) = V0(ǫ) and V1(c) = Φc for all c ∈ {1, . . . , k}n. Since

(T0, V0, C0) is locally consistent, so is (T1, V1, C1)

For each c ∈ {1, . . . , k}n such that 〈〈Ab2〉〉ϕUψ ∈ V (c), as b2 < b, we

have:

〈〈Ab2〉〉ϕUψ ∈ V (c)⇒ ∃ a locally consistent tree (Tc, Vc, Cc)

which realises 〈〈Ab2〉〉ϕUψ

by induction hypothesis

Let us consider a finite tree (T, V, C) where

T = {ǫ} ∪ {c ∈ {1, . . . , k}n | 〈〈Ab2〉〉ϕUψ /∈ V1(c)}

{ct | c ∈ {1, . . . , k}n, t ∈ Tc, 〈〈A
b2〉〉ϕUψ ∈ V1(c)}

for all t ∈ T :

V (t) =











































V1(ǫ) if t = ǫ

V1(c) if t = c where

c ∈ {1, . . . , k}n, 〈〈Ab2〉〉ϕUψ /∈ V1(c)

Vc(ct
′) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc,

〈〈Ab2〉〉ϕUψ ∈ V1(c)

for all t ∈ T , i ∈ N and j ∈ {1, . . . , k}:

C(t, i, j) =























C1(ǫ, i, j) if t = ǫ

Cc(ct
′, i, j) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc,

〈〈Ab2〉〉ϕUψ ∈ V1(c)

It is straightforward that (T, V, C) is also locally consistent and all of

its interior nodes have kn children.

27

Let us show that (T, V, C) realises 〈〈Ab〉〉ϕ Uψ at ǫ. Let c ∈
{1, . . . , k}n such that C(c, A) ≤ b1, i.e., cA is a joint move which

costs at most b1,we have:

〈〈Ab1〉〉 © 〈〈Ab2〉〉ϕUψ ∈ V1(ǫ) = V (ǫ)

⇒ ∀c′ ∈ {1, . . . , k}n : c′A = cA → 〈〈A
b2〉〉ϕUψ ∈ V (c′)

⇒ ∀c′ ∈ {1, . . . , k}n : c′A = cA → V (c′) = Vc′(ǫ) ∈ Z

⇒ ∀c′ ∈ {1, . . . , k}n : c′A = cA → 〈〈A
b2〉〉ϕUψ

is realised at the root of (Tc′ , Vc′ , Cc′)

⇒ ∀c′ ∈ {1, . . . , k}n :, ∃b̄2-strategyFA,c′

realises 〈〈Ab2〉〉ϕUψ at the root of (Tc′ , Vc′ , Cc′)

Let us consider a b-strategy FA where

FA(λ) =

{

cA if λ = ǫ

FA,c′(c
′t) if c′ ∈ {1, . . . , k}n, t ∈ Tc′ , χZ ∈ V1(c

′)

It is straightforward that FA realises 〈〈Ab〉〉ϕ Uψ from the root ǫ of

(T, V, C). Hence, as T (ǫ) = q ∩ cl(ϕ0), we have:

q ∩ cl(ϕ0) ∈ Z ⇒ χZ ∈ q ∩ cl(ϕ0) by Lemma 5

⇒ χZ ∈ q

⇒ φ ∈ q as q is maximal

Similarly, we have the following result:

Lemma 7. Given ¬〈〈Ab〉〉�ϕ and x ∈ Γ, there is finite tree (T, V, C) over Γ such

that:

• every interior node of (T, V, C) has kn children where k = |Ψ©|+ 1

• (T, V, C) is locally consistent

• V (ǫ) = x

• if ¬〈〈Ab〉〉�ϕ ∈ x then (T, V, C) realises ¬〈〈Ab〉〉�ϕ from ǫ

Proof. The proof is similar to that of the previous lemma. Let Z ⊆ Γ such that,

for any x ∈ Z, there is a finite tree obeying all conditions of Lemma 7. We shall

prove the lemma by showing that Z = Γ. In the following, assume that x ∈ Γ.

28

• If ¬〈〈Ab〉〉�ϕ /∈ x, construct a simple tree (T, V, C) where T = {ǫ} and

V (ǫ) = x. Since (T, V, C) satisfies all conditions of Lemma 7, x ∈ Z.

• If ¬〈〈Ab〉〉�ϕ ∈ x, we first show that η = (¬ϕ ∨ (¬〈〈Ab〉〉 © �ϕ ∧
¬〈〈A0̄

∞

←b〉〉 © ¬χZ))→ χZ is a theorem. Then, we have:

(1) ⊢ (¬ϕ ∨ (¬〈〈Ab〉〉 ©�ϕ ∧ ¬〈〈A0̄
∞

←b〉〉 © ¬χZ))→ χZ

(2) ⊢ ¬〈〈Ab〉〉�ϕ→ χZ by (〈〈Ab〉〉�-Induction)

Therefore,

¬〈〈Ab〉〉�ϕ ∈ x⇒ χZ ∈ x as x is maximal

⇒ x ∈ Z by Lemma 5

However, it remains to prove that η is a theorem. Again, this is done by showing

that η belongs to any maximal consistent set q of RB-ATL in three cases:

• If ¬〈〈Ab〉〉�ϕ /∈ q, let us construct a simple tree (T, V, C) where T = {ǫ}
and V (ǫ) = q∩cl(ϕ0). Since (T, V, C) satisfies all conditions of the lemma,

q ∩ cl(ϕ0) ∈ Z. Then, we have:

q ∩ cl(ϕ0) ∈ Z ⇒ χZ ∈ q ∩ cl(ϕ0) by Lemma 5

⇒ χZ ∈ q

⇒ η ∈ q as q is maximal

• If ¬ϕ∨ (¬〈〈Ab〉〉©�ϕ∧¬〈〈A0̄
∞

←b〉〉©¬χZ) /∈ q, then it is straightforward

that η ∈ q since q is maximal.

• If ¬〈〈Ab〉〉�ϕ and ¬ϕ∨ (¬〈〈Ab〉〉©�ϕ∧¬〈〈A0̄
∞

←b〉〉©¬χZ) ∈ q, we prove

that η ∈ q by induction on b.

Base case: Assume that b = 0̄
∞
← b. As ¬ϕ ∨ ¬〈〈A0̄

∞

←b〉〉 © ¬χZ ∈ q, we

have either ¬ϕ ∈ q or ¬〈〈A0̄
∞

←b〉〉©¬χZ ∈ q. Let us consider the following

two sub-cases:

– if ¬ϕ ∈ q, let us construct a simple tree (T, V, C) where T = {ǫ}
and V (ǫ) = q ∩ cl(ϕ0) ∋ ¬ϕ. Then, (T, V, C) satisfies all conditions

of Lemma 5; hence, q ∩ cl(ϕ0) ∈ Z; therefore, similar to the above

argument of the case ¬〈〈Ab〉〉�ϕ /∈ q, η ∈ Z.

29

– if ¬〈〈A0̄
∞

←b〉〉 © ¬χZ , let Φ = q ∩ cl(ϕ0). Obviously, Φ© ⊆ Ψ©;

therefore, |Φ©| < k. Then, by Lemma 4, there exists a locally consis-

tent tree (T0, V0, C0) of height one where T0 = {ǫ}∪̇{1, . . . , k}n and

V0(ǫ) = q ∩ cl(ϕ0).

For each c ∈ {1, . . . , k}n, let Φc be an arbitrary set from Γ such that

Φc ⊇ V0(c). Let (T1, V1, C1) be a finite tree such that T1 = T0, C1 =
C0, V1(ǫ) = V0(ǫ) and V1(c) = Φc for all c ∈ {1, . . . , k}n. Since

(T0, V0, C0) is locally consistent, so is (T1, V1, C1). Then, for every

c ∈ {1, . . . , k}n such that C(c, A) ≤ 0̄
∞
← b, i.e., cA is a joint move

which costs at most 0̄
∞
← b, we have:

C(c, A) ≤ 0̄
∞
← b ⇒ ∃c′{1, . . . , k}n : c′A = cA∧

¬¬χZ = χZ ∈ V1(c
′)

⇒ V1(c
′) ∈ Z by Lemma 5

⇒ ∃ a locally consistent tree (Tc′ , Vc′ , Cc′)

which satisfies all conditions of Lemma 7

Let us consider a finite tree (T, V, C) where

T = {ǫ} ∪ {c ∈ {1, . . . , k}n | χZ /∈ V1(c)}

{ct | c ∈ {1, . . . , k}n, t ∈ Tc, χZ ∈ V1(c)}

for all t ∈ T :

V (t) =































V1(ǫ) if t = ǫ

V1(c) if t = c where

c ∈ {1, . . . , k}n, χZ /∈ V1(c)

Vc(ct
′) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc, χZ ∈ V1(c)

for all t ∈ T , i ∈ N and j ∈ {1, . . . , k}:

C(t, i, j) =











C1(ǫ, i, j) if t = ǫ

Cc(ct
′, i, j) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc, χZ ∈ V1(c)

It is straightforward that (T, V, C) is also locally consistent and all of

its interior nodes have kn children.

30

Let us show that (T, V, C) realises 〈〈A0̄
∞

←b〉〉�ϕ at ǫ. Let c ∈
{1, . . . , k}n such that C(c, A) ≤ 0̄

∞
← b, i.e., a joint move which costs

at most 0̄
∞
← b, we have:

¬〈〈A0̄
∞

←b〉〉 © ¬χZ ∈ V1(ǫ) = V (ǫ)

⇒ ∃c′ ∈ {1, . . . , k}n : c′A = cA → χZ ∈ V (c′)

⇒ V (c′) = Vc′(ǫ) ∈ Z

⇒ ¬〈〈A0̄
∞

←b〉〉�ϕ

is realised at the root of (Tc′ , Vc′ , Cc′)

⇒ ¬〈〈A0̄
∞

←b〉〉�ϕ

is realised at the root of (T, V, C)

Hence, as T (ǫ) = q ∩ cl(ϕ0), we have:

q ∩ cl(ϕ0) ∈ Z ⇒ χZ ∈ q ∩ cl(ϕ0) by Lemma 5

⇒ χZ ∈ q

⇒ η ∈ q as q is maximal

Induction step: Assume that b > 0̄
∞
← b. Similar to the base case, as ¬ϕ ∨

(¬〈〈Ab〉〉©�ϕ∧¬〈〈A0̄
∞

←b〉〉©¬χZ) ∈ q, let us consider the following two

sub-cases:

– if ¬ϕ ∈ q, the proof is the repetition of that for the base case.

– if ¬〈〈Ab〉〉©�ϕ∧¬〈〈A0̄
∞

←b〉〉©¬χZ ∈ q, then ¬〈〈A0̄
∞

←b〉〉©¬χZ ∈ q
and ¬〈〈Ab1〉〉 © 〈〈Ab2〉〉�ϕ ∈ q for all (b1, b2) ∈ split(b). Let Φ =
q ∩ cl(ϕ0). Obviously, Φ© ⊆ Ψ©; therefore, Φ© < k. By Lemma 4,

there exists a local consistent tree (T0, V0, C0) of height one where

T0 = {ǫ}∪̇{1, . . . , k}
n and V0(ǫ) = Φ.

For each c ∈ {1, . . . , k}n, let Φc be an arbitrary set from Γ such that

Φc ⊇ V0(c). Let (T1, V1, C1) be a finite tree such that T1 = T0, C1 =
C0, V1(ǫ) = V0(ǫ) and V1(c) = Φc for all c ∈ {1, . . . , k}n. Since

(T0, V0, C0) is locally consistent, so is (T1, V1, C1). Then, for every

c ∈ {1, . . . , k}n such that C(c, A) ≤ b̄, i.e., cA is a joint move which

costs at most b̄, we have:

31

if C(c, A) ≤ 0̄
∞
← b:

C(c, A) ≤ b̄ ⇒ ∃c′{1, . . . , k}n : c′A = cA ∧ ¬¬χZ = χZ ∈ V1(c
′)

⇒ V1(c
′) ∈ Z by Lemma 5

⇒ ∃ a locally consistent tree (Tc′ , Vc′ , Cc′)

which satisfies all conditions of Lemma 7

if 0̄
∞
← b < C(c, A) ≤ b1 for some (b1, b2) ∈ split(b):

C(c, A) ≤ b̄ ⇒ ∃c′{1, . . . , k}n : c′A = cA ∧ ¬〈〈A
b2〉〉�ϕ ∈ V1(c

′)

⇒ V1(c
′) ∈ Z induction hypothesis

⇒ ∃ a locally consistent tree (Tc′ , Vc′ , Cc′)

which satisfies all conditions of Lemma 7

Let us consider a finite tree (T, V, C) where

T = {ǫ} ∪ {c ∈ {1, . . . , k}n | χZ /∈ V1(c)} ∪

{ct | c ∈ {1, . . . , k}n, t ∈ Tc, χZ ∈ V1(c) or

∃(b1, b2) ∈ split(b) : ¬〈〈A
b2〉〉�ϕ ∈ V1(c)}

for all t ∈ T :

V (t) =











































V1(ǫ) if t = ǫ

V1(c) if t = c where

c ∈ {1, . . . , k}n, χZ /∈ V1(c)

Vc(ct
′) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc, χZ ∈ V1(c) or

∃(b1, b2) ∈ split(b) : ¬〈〈A
b2〉〉�ϕ ∈ V1(c)

and for all t ∈ T , i ∈ N and j ∈ {1, . . . , k}:

C(t, i, j) =























C1(ǫ, i, j) if t = ǫ

Cc(ct
′, i, j) if t = ct′ where

c ∈ {1, . . . , k}n, t′ ∈ Tc, χZ ∈ V1(c) or

∃(b1, b2) ∈ split(b) : ¬〈〈A
b2〉〉�ϕ ∈ V1(c)

It is straightforward that (T, V, C) is also locally consistent and all of

its interior nodes have kn children.

32

Let us show that (T, V, C) realises 〈〈Ab〉〉�ϕ at ǫ. Let c ∈ {1, . . . , k}n

such that C(c, A) ≤ b̄, i.e., a joint move which costs at most b, we

have:

if C(c, A) ≤ 0̄
∞
← b:

¬〈〈A0̄
∞

←b〉〉 © ¬χZ ∈ V1(ǫ) = V (ǫ)

⇒ ∃c′ ∈ {1, . . . , k}n : c′A = cA → χZ ∈ V (c′)

⇒ V (c′) = Vc′(ǫ) ∈ Z

⇒ ¬〈〈A0̄
∞

←b〉〉�ϕ is realised at the root of (Tc′ , Vc′ , Cc′)

⇒ ¬〈〈A0̄
∞

←b〉〉�ϕ is realised at the root of (T, V, C)

if 0̄
∞
← b < C(c, A) ≤ b1 for some (b1, b2) ∈ split(b):

¬〈〈Ab1〉〉 © 〈〈Ab2〉〉�ϕ ∈ V1(ǫ) = V (ǫ)

⇒ ∃c′ ∈ {1, . . . , k}n : c′A = cA → ¬〈〈A
b2〉〉�ϕ ∈ V (c′)

⇒ V (c′) = Vc′(ǫ) ∈ Z

⇒ ¬〈〈A0̄
∞

←b〉〉�ϕ is realised at the root of (Tc′ , Vc′ , Cc′)

⇒ ¬〈〈A0̄
∞

←b〉〉�ϕ is realised at the root of (T, V, C)

Hence, as T (ǫ) = q ∩ cl(ϕ0), we have:

q ∩ cl(ϕ0) ∈ Z ⇒ χZ ∈ q ∩ cl(ϕ0) by Lemma 5

⇒ χZ ∈ q

⇒ η ∈ q as q is maximal

Now we have almost all the ingredients for constructing the model for ϕ0. For

each consistent set x in Γ and an eventuality ϕ of cl(ϕ0), we have a finite tree

(Tx,ϕ, Vx,ϕ, Cx,ϕ) with the root having label x which realises ϕ. Let the eventuali-

ties in cl(ϕ0) be listed as ϕe
1, . . . , ϕ

e
m. Next, we define the final tree.

Definition 8. The final tree (Tϕ0
, Vϕ0

, Cϕ0
) is constructed inductively as follows.

• Initially, select an arbitrary x ∈ Γ such that ϕ0 ∈ x. As that formula is

consistent, such a set exists. Let (Tx,ϕe
1
, Vx,ϕe

1
, Cx,ϕe

1
) be the initial tree.

33

• Given the tree constructed so far and the last used eventuality ϕe
i . We replace

every leaf labelled by y ∈ Γ of the currently constructed tree with the tree

(Ty,ϕe
j
, Vy,ϕe

j
, Cy,ϕe

j
) where j = i mod m+ 1.

Let Sϕ0
be the model which is based on (Tϕ0

, Vϕ0
, Cϕ0

). (It is easy to define

the assignment π using V .)

Lemma 8. If 〈〈Ab〉〉ϕ Uψ (or ¬〈〈Ab〉〉�ϕ) is in the label of some t of

(Tϕ0
, Vϕ0

, Cϕ0
), 〈〈Ab〉〉ϕUψ (or ¬〈〈Ab〉〉�ϕ) is realised from t.

Proof. Let us consider the first case when ϕe
i = 〈〈Ab〉〉ϕ Uψ ∈ V (t) where t is a

node of (Tϕ0
, Vϕ0

, Cϕ0
). The proof for the case of ϕe

i = ¬〈〈Ab〉〉�ϕ is also done

similarly.

• If t happens to be the root of the sub-tree (Tt,ϕe
i
, Vt,ϕe

i
, Ct,ϕe

i
), then the proof

is done as ϕe
i is realised within this sub-tree at t, hence also in the final tree.

• Otherwise, we define inductively on b a b-strategy as follows:

Base case: Assume that b = 0̄
∞
← b, since 〈〈A0̄

∞

←b〉〉ϕ Uψ ∈ V (t), as

V (t) is a maximally consistent set, we have that ψ ∨ (ϕ ∧ 〈〈A0̄
∞

←b〉〉 ©
〈〈A0̄

∞

←b〉〉ϕUψ) ∈ V (t):

– If ψ ∈ V (t), the proof is done as 〈〈A0̄
∞

←b〉〉ϕUψ is immediately realised

at t.

– Otherwise, we have ϕ ∧ 〈〈A0̄
∞

←b〉〉 © 〈〈A0̄
∞

←b〉〉ϕ Uψ ∈ V (t). Then

ϕ ∈ V (t) and by Lemma 4, there exists c ∈ {1, . . . , k}n such that

C(tc, A) ≤ 0̄
∞
← b and for all c ∈ {1, . . . , k}n with c′A = cA, we have

〈〈A0̄
∞

←b〉〉ϕUψ ∈ V (tc′). Let FA(t) = cA. Then, we can continue with

the same argument to define the strategy FA until a node t′ labelled

by y in (Tϕ0
, Vϕ0

, Cϕ0
) is reached where t′ is the root of some sub-

tree (Ty,ϕe
i
, Vy,ϕe

i
, Cy,ϕe

i
). Such a node must exist because, according

to the construction of the (Tϕ0
, Vϕ0

, Cϕ0
), eventual formulas in cl(ϕ0)

are cycled through. As (Ty,ϕe
i
, Vy,ϕe

i
, Cy,ϕe

i
) realises ϕe

i , we can extend

FA to a b-strategy to realise ϕe
i .

Induction Step: Assume that b > 0̄
∞
← b, since 〈〈Ab〉〉ϕ Uψ ∈ V (t), and

V (t) is a maximally consistent set, we have that ψ ∨ (ϕ∧ (〈〈Ab〉〉©ϕUψ ∨
〈〈A0̄

∞

←b〉〉 © 〈〈Ab〉〉ϕUψ)) ∈ V (t).

– If ψ ∈ V (t), the proof is done as 〈〈Ab〉〉ϕUψ is immediately realised at

t.

34

– If ϕ and 〈〈Ab1〉〉 © 〈〈Ab2〉〉ϕUψ ∈ V (t) for some (b1, b2) = b (hence,

b2 < b), we have that ϕ ∈ V (t) and by Lemma 4 and there exists

c ∈ {1, . . . , k}n such that C(tc, A) ≤ b1 and for all c′ ∈ {1, . . . , k}n

with c′A = cA, we have 〈〈Ab2〉〉ϕ Uψ ∈ V (tc′). Let FA(t) = cA.

As b2 < b, by the induction hypothesis, there is a strategy FA,c which

realises 〈〈Ab2〉〉ϕUψ from tc. Hence, we just need to define FA(tcλ) =
FA,c(cλ). This simply gives us a b-strategy which realises 〈〈Ab〉〉ϕUψ
from t.

– Otherwise, we have ϕ and 〈〈A0̄
∞

←b〉〉 © 〈〈Ab〉〉ϕ Uψ ∈ V (t). Let

us repeat the argument in the base case where ϕ ∈ V (t) and by

Lemma 4 and we have that there exists c ∈ {1, . . . , k}n such that

C(tc, A) ≤ 0̄
∞
← b and for all c ∈ {1, . . . , k}n with c′A = cA, we have

〈〈Ab〉〉ϕ Uψ ∈ V (tc). Let FA(t) = cA. Then, we can continue with

the same argument to define the strategy FA until a node t′ labelled by

y in (Tϕ0
, Vϕ0

, Cϕ0
) is reached where t′ is the root of some sub-tree

(Ty,ϕe
i
, Vy,ϕe

i
, Cy,ϕe

i
). Such a node must exist because, according to the

construction of the (Tϕ0
, Vϕ0

, Cϕ0
), eventualities in cl(ϕ0) are cycled

through. As (Ty,ϕe
i
, Vy,ϕe

i
, Cy,ϕe

i
) realises ϕe

i , we can extend FA to a

b-strategy to realise ϕe
i .

Lemma 9. If ¬〈〈Ab〉〉ϕ Uψ (or 〈〈Ab〉〉�ϕ) is in the label of some t of

(Tϕ0
, Vϕ0

, Cϕ0
), ¬〈〈Ab〉〉ϕUψ (or 〈〈Ab〉〉�ϕ) is realised from t.

Proof. Let us consider the case 〈〈Ab〉〉�ϕ ∈ V (t). The proof for ¬〈〈Ab〉〉ϕ Uψ is

similar.

In the following, let T ′ = {1, . . . , k}n. We shall define a b-strategy FA which

realises 〈〈Ab〉〉�ϕ by induction on the length of inputs. Let Λi denote the set of

inputs of length i. Initially, Λ1 = {t}. We define F (A) for inputs of length i and

Λi+1 of inputs of length i + 1 inductively on i ≥ 1 such that for all λ ∈ Λi+1,

cost(λ, FA) ≤ b1 and 〈〈Ab2〉〉�ϕ ∈ V (λ[i + 1]) for some (b1, b2) ∈ split(b) ∪
{(0̄

∞
← b, b)}.
Base case: Assume that i = 1. We have

〈〈Ab〉〉�ϕ ∈ V (t) ⇒ ϕ ∈ V (t) ∧ 〈〈Ab1〉〉 © 〈〈Ab2〉〉�ϕ ∈ V (t)

for some (b1, b2) ∈ split(b) ∪ {(0̄
∞
← b, b)}

⇒ ∃c ∈ T ′ : C(tc, A) ≤ b1

⇒ ∀c′ ∈ T ′ : c′A = cA → 〈〈A
b2〉〉�ϕ ∈ V (tc′)

35

Then, we define FA(t) = cA and Λ2 = {tc′ | c′ ∈ T ′ : c′A = cA}. Obviously,

we have cost(tc′, FA) = C(tc′, A) ≤ b1 and 〈〈Ab2〉〉�ϕ ∈ V (tc′) for all tc′ ∈ Λ2.

Induction step: Assume that i > 1 and we have defined FA for inputs of

length i and Λi+1 such that for all λ ∈ Λi+1, cost(λ, FA) ≤ b1 and 〈〈Ab2〉〉�ϕ ∈
V (λ[i+1]) for some (b1, b2) ∈ split(b)∪{(0̄

∞
← b, b)}. Let us define FA for inputs

of length i+ 1 and Λi+2. We have, for all λ ∈ Λi+ 1

〈〈Ab2〉〉�ϕ ∈ V (λ[i+ 1]) ⇒ ϕ ∈ V (λ[i+ 1]) ∧ 〈〈Ab3〉〉 © 〈〈Ab4〉〉�ϕ ∈ V (t)

for some (b3, b4) ∈ split(b2) ∪ {(0̄
∞
← b2, b2)}

⇒ ∃cλ ∈ T
′ : C(λc,A) ≤ b3

⇒ ∀c′ ∈ T ′ : c′A = cλA → 〈〈A
b4〉〉�ϕ ∈ V (λc′)

Then, we define FA(λ) = cλA for all λ ∈ Λi+1 and Λi+2 = {λc′ | λ ∈ Λi+1, c′ ∈
T ′ : c′A = cA}. Obviously, we have, (b1 + b3, b4) ∈ split(b) ∪ {(0̄

∞
← b, b)},

cost(λc′, FA) = cost(λ, FA) + C(λc′, A) ≤ b1 + b3 and 〈〈Ab4〉〉�ϕ ∈ V (λc′) for

all λc′ ∈ Λ2.

Let Λ =
⋃

i≥0 Λ
i, we have

∀λ ∈ Λ ⇒ ϕ ∈ V (λ[i]) ∧ ∃i ≥ 0 : λ ∈ Λi

⇒ ϕ ∈ V (λ[i])∧

∃(b1, b2) ∈ split(b) ∪ {(0̄
∞
← b, b)}cost(λ, FA) ≤ b1

⇒ ϕ ∈ V (λ[i]) ∧ cost(λ, FA) ≤ b

Given the constructed strategy FA, we have that out(t, FA) = Λ. As

cost(λ, FA) ≤ b for all λ ∈ Λ, FA is a b-strategy. Furthermore, as ϕ ∈ V (λ[|λ|])
for all λ ∈ Λ, it is straightforward that FA realises 〈〈Ab〉〉�ϕ.

Finally, we show the following truth lemma.

Lemma 10. For every node t of (Tϕ0
, Vϕ0

, Cϕ0
) and every formula ϕ ∈ cl(ϕ0), if

ϕ ∈ Vϕ0
(t) then Sϕ0

, t |= ϕ.

Proof. The proof is done by induction on the structure of ϕ.

• For the cases of propositions, negative proposition and disjunction, the

proofs are trivial.

• Assume ϕ = 〈〈Ab〉〉©ψ, Lemma 4 ensures that there is a move cA for some

c ∈ {1, . . . , k}n where C(c, A) ≤ b such that for all c′ ∈ {1, . . . , k}n, we

have ψ ∈ V (tc′). Then by the induction hypothesis, we have that Sϕ0
, tc′ |=

ψ. Then, Sϕ0
, t |= 〈〈Ab〉〉 © ψ.

36

• Assume ϕ = ¬〈〈Ab〉〉 © ψ, Lemma 4 ensures that for all c ∈ {1, . . . , k}n

such that C(c, A) ≤ b, there exists c′ ∈ {1, . . . , k}n such that c′A = cA and

∼ψ ∈ V (tc′). Then by the induction hypothesis, we have that Sϕ0
, tc′ |=∼

ψ. Then, Sϕ0
, t |= ¬〈〈Ab〉〉 © ψ.

• For the cases of 〈〈Ab〉〉ψ1 Uψ2, ¬〈〈Ab〉〉�ψ, ¬〈〈Ab〉〉ψ1 Uψ2 and 〈〈Ab〉〉�ψ,

the proofs are trivial due to Lemmas 8 and 9.

Finally, we have the following theorem.

Theorem 1. The axiom system for RB-ATL is sound and complete.

4 Model-checking RB-ATL

In this section we describe a model-checking algorithm for RB-ATL which runs

in time polynomial in the size of the formula (if resource bounds are encoded in

unary) and the structure, and is exponential in the number of resources. The algo-

rithm is similar to the model-checking algorithm for ATL given in [6]. The main

differences from the algorithm for ATL are that we need to take the costs of strate-

gies into account, and, instead of working with a straightforward set of subformu-

las Sub(ϕ) of a given formula ϕ, we work with an extended set of subformulas

Sub+(ϕ). Sub+(ϕ) includes Sub(ϕ), and in addition:

• if 〈〈Ab〉〉�ψ ∈ Sub(ϕ), then 〈〈Ad′〉〉�ψ ∈ Sub+(ϕ) for all d′ such that

(d, d′) ∈ split(b);

• if 〈〈Ab〉〉ψ1 Uψ2 ∈ Sub(ϕ), then 〈〈Ad′〉〉ψ1 Uψ2 ∈ Sub
+(ϕ) for all d′ such

that (d, d′) ∈ split(b).

We assume that Sub+(ϕ) is ordered in the increasing order of complexity and of

resource bounds (so e.g., if b ≤ b′, then 〈〈Ab〉〉�ψ precedes 〈〈Ab′〉〉�ψ).

Theorem 2. Given a structure S = (n, r,Q,Π, π, d, c, δ) and a formula ϕ, there is

an algorithm which returns the set of states [ϕ]S satisfying ϕ: [ϕ]S = {q | S, q |=
ϕ}, which runs in time O(|ϕ|2r+1 × |S|), assuming resource bounds are encoded

in unary.

Proof. Consider the following model-checking algorithm:

for every ϕ′ in Sub+(ϕ):

case ϕ′ == p: [ϕ′]S = π(p)

37

case ϕ′ == ¬ψ: [ϕ′]S = Q \ [ψ]S

case ϕ′ == ψ1 ∧ ψ2: [ϕ′]S = [ψ1]S ∩ [ψ2]S

case ϕ′ == 〈〈Ab〉〉 © ψ: [ϕ′]S = Pre(A, [ψ]S , b)

case ϕ′ == 〈〈Ab〉〉�ψ for b where for all i, bi ∈ {0,∞}:
ρ := [true]S ; τ := [ψ]S ;

while ρ 6⊆ τ do ρ := τ ; τ := Pre(A, ρ, b) ∩ [ψ]S od;

[ϕ′]S := ρ

case ϕ′ == 〈〈Ab〉〉�ψ for b where for some i, bi 6∈ {0,∞}:
ρ := [false]S ; τ := [false]S ;

foreach d′ ∈ {d′ | (d, d′) ∈ split(b)} do
τ := Pre(A, [〈〈Ad′〉〉�ψ]S , d) ∩ [ψ]S
while τ 6⊆ ρ do
ρ := ρ ∪ τ ; τ := Pre(A, ρ, 0̄

∞
← b) ∩ [ψ]S

od

od;

[ϕ′]S := ρ

case ϕ′ == 〈〈Ab〉〉ψ1Uψ2 for b where for all i, bi ∈ {0,∞}:
ρ := [false]S ; τ := [ψ2]S ;

while τ 6⊆ ρ do ρ := ρ ∪ τ ; τ := Pre(A, ρ, b) ∩ [ψ1]S od;

[ϕ′]S := ρ

case ϕ′ == 〈〈Ab〉〉ψ1Uψ2 where for some i, bi 6∈ {0,∞}:
ρ := [false]S ; τ := [false]S ;

foreach d′ ∈ {d′ | (d, d′) ∈ split(b)} do
τ := Pre(A, [〈〈Ad′〉〉ψ1Uψ2]S , d) ∩ [ψ1]S
while τ 6⊆ ρ do
ρ := ρ ∪ τ ; τ := Pre(A, ρ, 0̄

∞
← b) ∩ [ψ1]S

od

od;

[ϕ′]S := ρ

Pre is a function which, given a coalition A, a set ρ ⊆ Q, and a bound b, returns

a set of states q in which A has a move σA with cost cost(q, σA) ≤ b such that

out(q, σA) ⊆ ρ. Observe that Pre(A, ρ, ∞̄) is just Pre(A, ρ) from [6].

The cases for propositional variables, negation, conjunction and 〈〈Ab〉〉©ψ are

straightforward. The cases where the resource bound consists of 0 and∞ are also

similar to [6]. However the cases for 〈〈Ab〉〉�ψ and 〈〈Ab〉〉ψ1Uψ2 where b does not

38

contain only 0 and ∞ have no counterpart in the ATL algorithm, and we explain

these in some detail. First, note that the cases for 〈〈Ab〉〉�ψ and 〈〈Ab〉〉ψ1Uψ2 where

b consists of 0 and∞ are the standard greatest and least fixed point computations

respectively, which consider only 0 cost moves for i with bi = 0 or any moves for

i with bi =∞. In particular,

[〈〈A0̄
∞

←b〉〉�ψ]S = Pre(A, [〈〈A0̄
∞

←b〉〉�ψ]S , 0̄
∞
← b) ∩ [ψ]S

and

[〈〈A0̄
∞

←b〉〉ψ1Uψ2]S = Pre(A, [〈〈A0̄
∞

←b〉〉ψ1Uψ2]S , 0̄
∞
← b) ∩ [ψ2]S

[〈〈A0̄
∞

←b〉〉�ψ]S contains all states where A has a 0̄
∞
← b-cost strategy to main-

tain ψ forever. Note that A has a b-cost strategy to maintain ψ forever if and

only if it has a b-cost strategy to force the system into one of the [〈〈A0̄
∞

←b〉〉�ψ]S
states, while maintaining ψ. In other words, in order to compute 〈〈Ab〉〉�ψ for

b containing bi 6∈ {0,∞}, we need to compute 〈〈Ab〉〉ψ U〈〈A0̄
∞

←b〉〉�ψ. This

explains the similarity between the cases of 〈〈Ab〉〉�ψ and 〈〈Ab〉〉ψ1 Uψ2 for

the case of b not consisting solely of 0 and ∞. In the case of 〈〈Ab〉〉�ψ, in

the first execution of the foreach d′ ∈ {d′ | (d, d′) ∈ split(b)} loop, we

have d′ = 0̄
∞
← b and τ = Pre(A, [〈〈A0̄

∞

←b〉〉�ψ]S , b) ∩ [ψ]S , which includes

Pre(A, [〈〈A0̄
∞

←b〉〉�ψ]S , 0̄
∞
← b) ∩ [ψ]S , hence it also includes [〈〈A0̄

∞

←b〉〉�ψ]S . In

the nested while loop, ρ accumulates the results and τ adds the ψ-states from

where A has a 0̄
∞
← b strategy to enforce the outcome to be in ρ. In the outer

loop, d′ bounds are used in some order consistent with <, namely satisfying the

condition that if bi < bj then bi is used before bj .
In the case for 〈〈Ab〉〉ψ1 Uψ2 where b does not consist only of 0 and ∞, af-

ter the first iteration of the foreach d′ ∈ {d′ | (d, d′) ∈ split(b)} loop, τ is

[〈〈A0̄
∞

←b〉〉ψ1 Uψ2]S which includes [ψ2]S . The rest is very similar to the case for

〈〈Ab〉〉�ψ where b does not consist solely of 0 and∞.

Note that |split(b)| is O(br). If ϕ contains operators with bounds other than 0
and∞, |Sub+(ϕ)| isO(|ϕ|×|ϕ|r), assuming resource bounds are written in unary.

In the 〈〈Ab〉〉�ψ and 〈〈Ab〉〉ψ1 Uψ2 cases, the outer loop is executed O(|ϕ|r) times

and the inner loop is executed in total at most |S| times. This gives us complexity

O(|ϕ| × |ϕ|r × |ϕ|r × |S|), or O(|ϕ|2r+1 × |S|). Note that the lower bound for

model-checking complexity is given by the model-checking complexity of ATL,

which is polynomial time in the size of the model and the formula.

5 Related work

Recent work on Alternating-Time Temporal Logic and Coalition Logic (for exam-

ple, [15, 12, 16, 6, 13, 1]) has allowed the expression of many interesting properties

39

of coalitions and strategies. However, there is no natural way of expressing re-

source requirements in these logics. The only work in this tradition that considered

resources is [17], which introduced Coalitional Resource Games and studied com-

plexity of decision problems for these games. A logic for describing Coalitional

resource Games and a model-checking procedure for the logic were proposed in

[3]; however the only modality that logic has is 〈〈Ab〉〉© (only one step games

were considered).

More recently, several extensions of temporal logics and logics of coalitional

ability which are capable of expressing resource bounds have been proposed in

the literature, for example, [7, 8, 10, 11, 2]. All of these papers consider only

the model-checking problem, and some of the logics allow both consumption and

production of resources by actions. There are many different proposals for the

syntax and semantics of resource logics. In [8] several versions are given, for

example, considering resource bounds both on the coalition A and the rest of the

agents in the system, considering a fixed resource endowment of A in the initial

state which affects their endowment after executing some actions, etc. In [10, 11] a

different syntax and semantics are considered, also involving resource endowment

of the whole system when evaluating a statement concerning a group of agents A.

As observed in [8], subtle differences in truth conditions for resource logics result

in the difference between decidability and undecidabiliity of the model-checking

problem. In [8], undecidability of the model-checking problem for several versions

of the logics is proved. The only decidable cases considered in [8] are an extension

of Computation Tree Logic (CTL) [9] with resources (essentially one-agent ATL)

and the version where on every path only a fixed finite amount of resources can be

produced. Similarly, [10] gives a logic PRB-ATL (Priced Resource-Bounded ATL)

with a decidable model-checking problem where the total amount of resources in

the system has a fixed bound. The model-checking algorithm for PRB-ATL runs in

time polynomial in the size of the model and exponential in the number of resources

and the resource bound on the system. In [11] an EXPTIME lower bound in the

number resources is shown. Recently, it has also been shown that if a zero-cost

action is always available, the model-checking problem for RB-ATL with both

production and consumption of resources is decidable, however it is EXPSPACE-

hard [2].

6 Conclusions

We have provided a complete and sound axiomatisation of RB-ATL, a logic which

extends ATL with resource bounds. The resulting logic can express interesting

properties of coalitions of agents involving resource limitations. For example, it

40

can express that a coalition can maintain the system in a ϕ-state indefinitely given

a finite amount of resources (this essentially means that after a whileϕ can be main-

tained for free). We have also presented a model-checking algorithm for RB-ATL,

which runs in time polynomial in the size of the model and the formula (assum-

ing that resource bounds are encoded in unary) and exponential in the number of

resources.

The semantics for RB-ATL presented in this paper, in particular the assumption

that actions only consume but never produce resources, is motivated by verifying

resource requirements for systems of agents where resources of interest are time,

memory, bandwidth etc., which cannot be generated by agents. In future work,

we plan to study axiomatisations of variants of RB-ATL where actions can have a

negative cost, such as in [7, 2].

7 Acknowledgments

This work was supported by the Engineering and Physical Sciences Research

Council [grant EP/E031226/1]. We thank the anonymous referees for their com-

ments which helped to improve the paper.

References

[1] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Reasoning about coali-

tional games. Artificial Intelligence, 173(1):45–79, 2009.

[2] N. Alechina, B. Logan, H. N. Nguyen, and F. Raimondi. Decidable model-

checking for a resource logic with production of resources. In Proceedings of

the 21st European Conference on Artificial Intelligence (ECAI 2014), pages

9–14. IOS Press, 2014.

[3] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib. Expressing proper-

ties of coalitional ability under resource bounds. In X. He, J. F. Horty, and

E. Pacuit, editors, Logic, Rationality, and Interaction, Second International

Workshop, LORI 2009, Proceedings, volume 5834 of Lecture Notes in Com-

puter Science, pages 1–14. Springer, 2009.

[4] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib. Resource-bounded

alternating-time temporal logic. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),

pages 481–488. IFAAMAS, 2010.

41

[5] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib. Logic for coalitions

with bounded resources. Journal of Logic and Computation, 21(6):907–937,

December 2011.

[6] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49(5):672–713, 2002.

[7] N. Bulling and B. Farwer. RTL and RTL∗: Expressing abilities of resource-

bounded agents. In J. Dix, M. Fisher, and P. Novák, editors, Proceedings

of the 10th International Workshop on Computational Logic in Multi-Agent

Systems, pages 2–19, 2009.

[8] N. Bulling and B. Farwer. On the (un-)decidability of model checking

resource-bounded agents. In Proceedings of the 19th European Conference

on Artificial Intelligence (ECAI 2010), volume 215 of Frontiers in Artificial

Intelligence and Applications, pages 567–572. IOS Press, 2010.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transac-

tions on Programming Languages and Systems, 8(2):244–263, 1986.

[10] D. Della Monica, M. Napoli, and M. Parente. On a logic for coalitional

games with priced-resource agents. Electronic Notes in Theoretical Computer

Science, 278:215–228, 2011.

[11] D. Della Monica, M. Napoli, and M. Parente. Model checking coalitional

games in shortage resource scenarios. In Proceedings of the 4th International

Symposium on Games, Automata, Logics and Formal Verification (GandALF

2013), volume 119 of EPTCS, pages 240–255, 2013.

[12] V. Goranko. Coalition games and alternating temporal logics. In Proceeding

of the Eighth Conference on Theoretical Aspects of R ationality and Knowl-

edge (TARK VIII), pages 259–272. Morgan Kaufmann, 2001.

[13] V. Goranko and G. van Drimmelen. Complete axiomatization and decidabil-

ity of alternating-time temporal logic. Theor. Comput. Sci., 353(1-3):93–117,

2006.

[14] H. N. Nguyen. An extension of RB-ATL. In O. Boissier, A. E. Fallah-

Seghrouchni, S. Hassas, and N. Maudet, editors, Proceedings of The Multi-

Agent Logics, Languages, and Organisations Federated Workshops (MAL-

LOW 2010), volume 627 of CEUR Workshop Proceedings. CEUR-WS.org,

2010.

42

[15] M. Pauly. Logic for Social Software. Ph.D. thesis, ILLC, University of Ams-

terdam, 2001.

[16] M. Pauly. A modal logic for coalitional power in games. Journal of Logic

and Computation, 12(1):149–166, 2002.

[17] M. Wooldridge and P. E. Dunne. On the computational complexity of coali-

tional resource games. Artificial Intelligence, 170(10):835–871, 2006.

43

