
Li, Nuo (2015) Quotient types in type theory. PhD thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28941/1/Nuo%20Li%27s_Thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Quotient Types in Type Theory

Nuo Li, BSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

September 2014

Abstract

Martin-Löf’s intuitionistic type theory (Type Theory) is a formal system that

serves not only as a foundation of constructive mathematics but also as a depen-

dently typed programming language. Dependent types are types that depend on

values of other types. Type Theory is based on the Curry-Howard isomorphism

which relates computer programs with mathematical proofs so that we can do

computer-aided formal reasoning and write certified programs in programming lan-

guages like Agda, Epigram etc. Martin Löf proposed two variants of Type Theory

which are differentiated by the treatment of equality. In Intensional Type Theory,

propositional equality defined by identity types does not imply definitional equal-

ity, and type checking is decidable. In Extensional Type Theory, propositional

equality is identified with definitional equality which makes type checking unde-

cidable. Because of the good computational properties, Intensional Type Theory

is more popular, however it lacks some important extensional concepts such as

functional extensionality and quotient types.

This thesis is about quotient types. A quotient type is a new type whose equality

is redefined by a given equivalence relation. However, in the usual formulation

of Intensional Type Theory, there is no type former to create a quotient. We

also lose canonicity if we add quotient types into Intensional Type Theory as

axioms. In this thesis, we first investigate the expected syntax of quotient types

and explain it with categorical notions. For quotients which can be represented

as a setoid as well as defined as a set without a quotient type former, we propose

to define an algebraic structure of quotients called definable quotients. It relates

the setoid interpretation and the set definition via a normalisation function which

returns a normal form (canonical choice) for each equivalence class. It can be

seen as a simulation of quotient types and it helps theorem proving because we

can benefit from both representations. However this approach cannot be used for

all quotients. It seems that we cannot define a normalisation function for some

quotients in Type Theory, e.g. Cauchy reals and finite multisets. Quotient types

are indeed essential for formalisation of mathematics and reasoning of programs.

Then we consider some models of Type Theory where types are interpreted as

structured objects such as setoids, groupoids or weak ω-groupoids. In these models

iii

equalities are internalised into types which means that it is possible to redefine

equalities. We present an implementation of Altenkirch’s [3] setoid model and

show that quotient types can be defined within this model. We also describe a

new extension of Martin-Löf type theory called Homotopy Type Theory where

types are interpreted as weak ω-groupoids. It can be seen as a generalisation of

the groupoid model which makes extensional concepts including quotient types

available. We also introduce a syntactic encoding of weak ω-groupoids which can

be seen as a first step towards building a weak ω-groupoids model in Intensional

Type Theory. All of these implementations were performed in the dependently

typed programming language Agda which is based on intensional Martin-Löf type

theory.

iv

Acknowledgements

The first person I would like to thank is my supervisor Thorsten Altenkirch. He

offered me a great internship opportunity about encoding numbers in Agda, which

later developed into my PhD project. He was always patient in answering questions

and taught me a lot about research. I would also like to thank him for his guidance

and feedback on this thesis. I would also thank my second supervisor Thomas

Anberrée who introduced me to functional programming and gave me precious

advice on my project. I would also like to thank Venanzio Capretta who examined

my first and second year reports and provided me with helpful feedback.

I would like to thank Ambrus Kaposi and Nicolai Kraus for their great help in writ-

ing my thesis and comments on my drafts, and correcting my grammatical errors

for the final version. My friends Nicolai Kraus, Ambrus Kaposi, Christian Sattler,

Paolo Capriotti, Florent Balestrieri, Gabe Dijkstra, Ivan Perez, Neil Sculthorpe

and all the other PhD students in our lab helped me a lot by either teaching me

mathematics, discussing research topics or playing badminton to exercise our bod-

ies. The Functional Programming Lab is like a lively family and I really enjoyed

the time here. I would like to thank everyone here. Without their kind help, the

thesis would not have been finished.

I would also like to thank the organizers and other participants of the special year

on Homotopy Type Theory at the Institute for Advanced Study where we had

many interesting discussions some of which were related to parts of this work,

especially Guillaume Brunerie whose proposal made it possible. I would also like

to thank F. Nordvall Forsberg with whom we had important discussions related

to our work.

I would also like to thank my parents and other family members. During the years

in Nottingham, my mother Guangfei Lv and my father Youyuan Li were always

very supportive of me, even though I was living far from them. They talked to me

a lot and sent my favourite foods to me many times. My aunt Guangshu Lv who

is living in Germany also helped me a lot. She gave me many advice and has sent

mails to me. Without their support I would have never achieved my goals.

v

Finally, I would like to thank the School of Computer Science and the International

Office at the University of Nottingham who financially supported this project by

providing a scholarship.

vi

Contents

1 Introduction 1

1.1 Quotient types . 2

1.2 Structure of the thesis . 6

2 Type Theory 9

2.1 A brief history of Type Theory . 10

2.2 The formal system of Type Theory 15

2.3 An implementation of Type Theory: Agda 20

2.4 Extensional concepts . 26

2.5 An Intensional Type Theory with Prop 31

2.6 Homotopy Type Theory . 32

2.7 Summary . 37

3 Quotient Types 39

3.1 Quotients in Type Theory . 39

3.2 Quotients are coequalizers . 45

3.3 Quotients as an adjunction . 48

3.4 Quotients in Homotopy Type Theory 51

3.5 Related work . 59

3.6 Summary . 63

4 Definable Quotients 65

4.1 Algebraic structures of quotients . 66

4.2 Integers . 70

4.3 Rational numbers . 73

4.4 The application of definable quotients 79

4.5 Related work . 85

4.6 Summary . 86

5 Undefinable Quotients 89

5.1 Definability via normalisation . 89

vii

Contents viii

5.2 Real numbers as Cauchy sequences 91

5.3 R0/ ∼ is undefinable via normalisation 93

5.4 Other examples . 100

5.5 Related work . 104

5.6 Summary . 104

6 The Setoid Model 107

6.1 Introduction . 108

6.2 Metatheory . 109

6.3 Categories with families . 114

6.4 Related work . 124

6.5 Summary . 125

7 Syntactic ω-groupoids 127

7.1 Syntax of weak ω-groupoids . 129

7.2 Some Important Derivable Constructions 136

7.3 Semantics . 147

7.4 Related work . 151

7.5 Summary . 151

8 Conclusion and Future Work 153

A Definable quotient structures 157

A.1 Rational numbers . 171

B Category with families of setoids 175

B.1 Metatheory . 175

B.2 Categories with families . 177

C syntactic weak ω-groupoids 193

C.1 Syntax of T∞−groupoid . 193

C.2 Some Important Derivable Constructions 205

C.3 Sematics . 222

Bibliography 225

Chapter 1

Introduction

Martin-Löf type theory (or just Type Theory) is a type theory which serves as

a foundation of constructive mathematics and is also a dependently typed pro-

gramming language. Different from other foundations like set theory, it is not

based on predicate logic but internalises the BHK interpretation of intuitionistic

logic through the Curry-Howard isomorphism. It identifies propositions with types

such that proofs of a proposition become terms of the corresponding type. Viewed

as a programming language, this means that we can express a specification as a

type, and a program of that type will satisfy the specification. Moreover, one can

write programs and reason about them in the same language resulting in certified

programs. Implementations of Type Theory include NuPRL, LEGO, Coq, Agda,

Epigram, Pi-Sigma.

Viewed as a foundation for mathematics, Type Theory is a powerful tool for con-

structively proving theorems with computerised verification. An example is the

formal proof of the four-colour theorem by Georges Gonthier [42] 1.

There are two versions of Martin-Löf type theory, the intensional version (Inten-

sional Type Theory or ITT) and the extensional version (Extensional Type The-

ory or ETT). They differ in the treatment of two notions of equality, propositional

equality and definitional equality. In ITT, if two expressions can be computed to

the same object then we make the judgement that they are definitionally equal. On

1More formalised mathematics can be found in [80].

1

2 Chapter 1 Introduction

the other hand, we have the identity type or propositional equality which is a type

expressing the equality of two terms. Definitional equality implies propositional

equality, but not the other way around which is usually called equality reflection.

In ETT, they are identified, which makes definitional equality and thereby type

checking undecidable.

In Intensional Type Theory, propositional equality is intensional. Some extensional

equality types such as the equality of two point-wise equal functions, the equality

of two logically equivalent propositions, and equality of two “equivalence classes”

of a quotient [a], [b] where a ∼ b, are not inhabited. There are several extensional

concepts (see Section 2.4) which are useful and justifiable but not available in

ITT. Nevertheless ITT is still preferable to ETT as the basis for programming

languages, because of its good computational properties. Therefore, we would like

to extend ITT with these extensional concepts, and the notion of quotient types

is one of them.

1.1 Quotient types

Quotient is a primitive notion in mathematics. In arithmetic, quotient refers to

the result of a division:

8÷ 4 = 2 or 8/4 = 2.

The notion is generalised in more abstract branches of mathematics, such as set

theory, group theory, topology etc. For example in set theory, given a set A and an

equivalence relation ∼, the set of all equivalence classes of ∼ is called the quotient

set of A by ∼.

An equivalence relation is a binary relation which is

• reflexive: ∀a ∈ A, a ∼ a,

• symmetric: ∀a b ∈ A, a ∼ b → b ∼ a

Chapter 1 Introduction 3

• transitive: ∀a b c ∈ A, a ∼ b → b ∼ c → a ∼ c.

The equivalence class of an element a is a subset of A which contains all elements

equivalent to a:

[a] = {x ∈ A | a ∼ x}

The quotient set of A by ∼ is just the set of equivalence classes:

A/∼= {[a] | a : A}

Similarly, we can also “divide” a group, space, category or another algebraic struc-

ture by a given structure-preserving equivalence relation on it.

Naturally one would also expect quotient types in Type Theory. Intuitively

speaking, a quotient type A/∼ is a type A whose equality is redefined by an

equivalence relation on it. In Extensional Type Theory, it is possible to redefine

the equalities of types. For example, in NuPRL which is an implementation of

Extensional Type Theory, there is a quotient operator which builds a new type

from a given type and an equivalence relation on it [30]. However it is not possible

to recover the witness of the equality between two equal elements in quotient types

[71].

Because of the good computational properties, we would like to have quotient

types in Intensional Type Theory as well. However in the traditional formulation

of Intensional Type Theory, such a type former does not exist because there is no

attached equivalence on each type except definitional equality which can not be

changed. Instead setoids are usually used to represent quotients:

Definition 1.1. Setoid. A setoid (A,∼, eqv∼) (usually written as just (A,∼))

consists of

1. a set (type) A : Set,

2. a binary relation ∼: A → A → Prop, and

4 Chapter 1 Introduction

3. a proof that it is an equivalence, i.e. reflexive, symmetric and transitive.

Notice that this notion is also called a total setoid. If the relation of the setoid is

not required to be reflexive it is called a partial setoid. In this thesis, the word

"setoid" refers to a total setoid.

A function f : A → B is well-defined on a setoid (A,∼) only if it respects ∼:

Definition 1.2. We say a function f : A → B respects ∼ if

∀(x, y : A) → x ∼ y → f(x) =B f(y)

However using setoids to represent quotients is not an ideal solution. Since it is an

alternative representation of sets, everything defined on Set has to be redefined

on Setoid again. Examples are functions between setoids, equalities on setoids,

products on setoids, etc. In fact, in other branches of mathematics, the quotient

object is essentially the same kind of object as the base one. Therefore, it is better

to have a representation of the quotient A/∼ which is in the same sort as A is.

In fact not all quotients have to be defined using a quotient type former. For ex-

ample integers are usually represented as pairs of natural numbers N×N which are

equivalent if subtracting first number from the second gives the same result. This

gives rise to a quotient. However the set of integers can also be defined inductively

from the observation that Z ≃ N + N. For such quotients, the set definition can

be seen as a normal form of the equivalence classes. There is a mapping from the

setoid representation to the set representation called the normalisation func-

tion. In this thesis we say that such quotients are definable via a normalisation

(function) (see Chapter 4).

Some quotients are not definable via normalisation, for example the set of real

numbers represented by Cauchy sequences of rational numbers, the finite mul-

tisets represented as lists quotiented by permutation equivalence (or bag equiv-

alence [36]), the non-terminating programs represented by the partiality monad

quotiented by weak bisimilarity and so on. In these cases, a general schema to

define quotient types is essential.

Chapter 1 Introduction 5

If we simply introduce quotient types as axioms in Intensional Type Theory, we

lose the canonicity property, in other words, we can construct non-canonical terms

of N which can not be reduced to numerals (see Theorem 3.4). In fact, similar

issues arise when adding other extensional concepts as axioms e.g. functional ex-

tensionality. Therefore it is essential to find a computational interpretation of

these extensional concepts including quotient types.

To achieve these goals, we have to "refine" our interpretation of types. Usually

a type is treated as a set without attached equality. If a type is interpreted as a

setoid, in other words internalising propositional equality, quotient types can be

defined simply by replacing “internal” equality. This is called setoid interpreta-

tion which is inspired by Bishop’s [20] definition of sets and has been studied by

Martin Hofmann [47, 48] and Thorsten Altenkirch [3, 8]. Based on this interpre-

tation, we can build a setoid model in Intensional Type Theory which gives us the

computational interpretation of quotient types.

For a long time, the nature of identity types was mysterious in Intensional Type

Theory. Intuitively, the uniqueness of identity proofs (UIP), stating that two terms

of the same identity type are always propositionally equal, is valid because there is

at most one canonical element expressing the equality between two objects. How-

ever UIP is not derivable from the eliminator for identity type J (see Section 2.2.1)

but needs an extra eliminator K suggested by Thomas Streicher [78]. Furthermore,

Hofmann and Streicher [51] propose a groupoid interpretation of Intensional Type

Theory where K is refuted, hence UIP fails. The groupoid interpretation can be

seen as a generalisation of the setoid one, where the identity type is not a propo-

sition but a set. It means that there can be several proofs of the same identity

which are not equal.

In fact, the groupoid interpretation of types can be extended to ω-groupoids which

are generalisations of groupoids. Roughly speaking, an ω-groupoid consists of ob-

jects, morphisms between objects, morphisms between morphisms and so on, hav-

ing infinite levels of morphisms. All of these morphisms are isomorphisms which

hold up to higher isomorphisms. These isomorphisms are called equivalences. An

introduction to ω-groupoids is given in Section 2.6.2. Since Grothendieck’s homo-

topy hypothesis states that ω-groupoids are spaces [14], we can interpret types as

6 Chapter 1 Introduction

spaces indeed. In recent years, such an interpretation has been developed into a

new field called Homotopy Type Theory. In Homotopy Type Theory, types are

interpreted as spaces (abstractly) or as weak ω-groupoids. However, it is very

difficult to describe all levels of coherence conditions of weak ω-groupoid such

as groupoid laws. A more commonly used approach is therefore to define them

in terms of Kan simplicial sets or cubical sets (See Section 2.6.5). Nevertheless,

it is possible to build a syntactic type theory to describe weak ω-groupoids in

Intensional Type Theory (see Chapter 7).

In Homotopy Type Theory, the most important axiom is univalence which was

suggested by Voevodsky [88]. Roughly speaking, univalence states that identity of

types corresponds to equivalence. Many extensional concepts are derivable from

this axiom, including functional extensionality, propositional extensionality, quo-

tient types. For example, Voevodsky has proposed an impredicative encoding of

quotient types (see Section 3.4.1). The computational interpretation of univalence

remains an open problem, but it is likely to be solved by a recently proposed model

called cubical sets model (Bezem, Coquand and Huber [18]).

Quotient types can be applied in the formalisation of mathematics and in pro-

gram verification. As we mentioned before, one of the fundamental mathematical

notions, real numbers can be defined as a quotient where the base set is the set

of Cauchy sequences of rational numbers. From a programming perspective, they

provide more algebraic datatypes and enables us to reason about infinite types and

semantics-based verification of concurrent programs as suggested by Hofmann [48].

1.2 Structure of the thesis

In Chapter 2, we introduce Martin-Löf type theory as the basis of our study.

We briefly describe its history and present its basic rules. We also introduce

our main technical tool – Agda, a dependently typed functional programming

language based on the intensional version of Martin-Löf type theory. Then we

discuss the missing extensional concepts in Intensional Type Theory excluding

quotient types. We also describe Homotopy Type Theory which is an extension of

Martin-Löf type theory by the univalence axiom and higher inductive types which

Chapter 1 Introduction 7

allow constructors for internal equalities. We discuss how this theory gives rise to

extensional concepts.

In Chapter 3, we provide the syntactic rules of quotient types together with a dis-

cussion of effectiveness. Categorically speaking, a quotient type is a coequalizer.

We also explain the rules of quotient types given by an adjunction. In Homo-

topy Type Theory, our quotient types become quotient sets. We first introduce

Voevodsky’s impredicative encoding of quotient sets together with proofs that all

essential rules are derivable. We also introduce quotient inductive types (QITs)

i.e. quotient sets defined using higher inductive types.

In Chapter 4, we introduce one of our original developments, the definable quotient

structure. We observe that there are some quotients which are definable induc-

tively in Martin-Löf type theory without adding a new quotient type formation

rule. A definable quotient consists of a setoid representation (A,∼), a set repre-

sentation Q and a normalisation function [_] : A → Q which gives the normal

form for each "equivalence class". As an example, integers can be encoded as the

quotient types of paired natural numbers over the equivalence relation that two

pairs are equal if they share the same result of subtraction. Integers can also be

defined inductively as a set. The definable quotients structure is an abstraction of

the relation between the two representations and provides a flexible way of con-

versing between them. In fact, it can be seen as a manual construction of quotient

types.

In Chapter 5, we discuss quotients that are not definable as an inductive type

with a normalisation function, such as the real numbers, finite multisets and the

partiality monad. We present a proof of the undefinability of real numbers as

Cauchy sequences (R0/∼) with a normalisation function. The proof was mainly

conducted by Nicolai Kraus. The proof is based on Brouwer’s continuity prin-

ciple – all definable functions are continuous, which is inconsistent if we have

it within Martin-Löf type theory as shown by Escardo and Xu [40] but holds

meta-theoretically. We prove that R0/∼ is connected, and it implies that all func-

tions R0 → R0/∼ that respect the equivalence relation of Cauchy sequences are

constant. Therefore there is no definable normalisation endofunction for Cauchy

sequences. Similarly we also prove that non-terminating programs encoded using

8 Chapter 1 Introduction

the partiality monad quotiented by weak bisimilarity, are also undefinable with a

normalisation function. For unordered tuples such as unordered pairs and finite

multisets represented by lists quotiented by permutation, it is also impossible for

to find a canonical normalisation function unless the underlying set has a decidable

total order.

In Chapter 6, we discuss several models of Type Theory where quotient types are

available. We present an implementation of the setoid model encoding extensional

concepts. The work is an extension of the setoid model by Altenkirch [3] with

quotient types. Some other models including models of Homotopy Type Theory

are also discussed.

In Chapter 7, we present a new formalisation of the syntax of weak ω-groupoids in

Agda using heterogeneous equality. We show how to recover basic constructions

on ω-groupoids using suspension and replacement. In particular we show that any

type forms a groupoid and we outline how to derive higher dimensional composi-

tion. We present a possible semantics using globular sets and discuss the issues

which arise when using globular types instead. The work in the chapter has been

published in [11] together with Thorsten Altenkirch and Ondřej Rypáček.

In the Appendices, we show our Agda code corresponding to the work in Chapter 4,

Chapter 6 and Chapter 7.

Chapter 2

Type Theory

Type theory usually refers to a formal system in which terms always have a type.

It was initially invented as a foundation of mathematics as an alternative to set

theory, but it also works well in computer science as a programming language in

which we can write certified programs. There are a variety of type theories, like

Russell’s theory of types, simply typed λ-calculus, Gödel’s System T [41] etc. In

this thesis we mainly focus on Per Martin-Löf’s intuitionistic type theory. There

are also different versions of Martin-Löf type theory and the intensional version

(Intensional Type Theory for short) has better computational behaviour and is

widely used in programming languages like Agda, Epigram etc. However, several

desirable extensional concepts such as functional extensionality and quotient types

are not available in Intensional Type Theory. Much research has been done to

extend Type Theory with these concepts and new interpretations of type theory

are popular and reasonable solutions. Homotopy Type Theory is one of them and

is also a variant of Martin-Löf type theory and connected to homotopy theory.

In this chapter we will first briefly introduce the original motivation and evolution

of type theory. Then we explain important notions in Martin-Löf type theory,

and a list of extensional concepts will be presented. Finally we will describe the

programming language Agda which is an implementation of the intensional version

of Martin-Löf type theory.

9

10 Chapter 2 Type Theory

2.1 A brief history of Type Theory

Type theory was first introduced as a refinement of set theory. In the 1870s, Georg

Cantor and Richard Dedekind founded set theory as a branch of mathematical

logic and started to use set theory as a language to describe definitions of various

mathematical objects. In the 1900s, Bertrand Russell discovered a paradox in this

system. In naïve set theory, there was no distinction between small sets like the

set of natural numbers and "larger" sets like the set of all sets.

Example 2.1 (Russell’s Paradox). Let R be the set of all sets which do not contain

themselves R = {x | x 6∈ x}. Then we get a contradiction R ∈ R ⇐⇒ R 6∈ R.

To avoid this paradox, Russell found that we have to make a distinction between

objects, predicates, predicates of predicates, etc. Then Russell proposed the theory

of types [76] where the distinction is internalised by types. In this simple type

theory, each mathematical object is assigned a type. This is done in a hierarchical

structure such that "larger" sets and small sets reside in different levels. The "set"

of all sets is no longer a small set, hence the paradox disappears.

In type theory, The elementary notion type plays a similar role to set in set theory,

but differs fundamentally. Every term comes with its unique type while in set

theory, an element can belong to multiple sets. For example to introduce a term

of natural number 2, we have to use a typing judgement 2 : N, where N is the set

of natural numbers. The terms are usually constructed using a list of constructors

belonging to a type. Hence an integer term 2 : Z is constructively different to 2 : N

in type theory.

Following the idea of theories of types, various type theories have been developed.

Simply typed lambda calculus (or Church’s theory of types) is the first type theory

to introduce functions as primitive objects [33]. It was originally introduced by

Alonzo Church in 1940 to avoid the Kleene-Rosser paradox [56] in his untyped

lambda calculus.

Example 2.2 (Kleene-Rosser paradox). Suppose we have a function f = λx.¬(x x),

then we can deduce a contradiction by applying it to itself:

ff = (λx.¬(x x))f = ¬(f f)

Chapter 2 Type Theory 11

Type theory is applied in various fields including computer science. For instance,

Haskell was originally based on one of the variants of lambda calculus called System

F1.

In 1970s, Per Martin-Löf [64, 68] developed his profound intuitionistic type theory

(also called Martin-Löf type theory). In this thesis, we will refer to this system

when using the term Type Theory. Type Theory serves as a foundation for con-

structive mathematics [66] and can also be used as a functional programming

language [81] in which the evaluation of a well-typed program always terminates

[72].

From early type theories like that of Russell and Church to modern type theories

like de Bruijn’s Automath, Martin-Löf type theory and Coquand’s Calculus of

Constructions (CoC), one of the most important extensions and discoveries is the

correspondence between mathematical proofs and computer programs (terms).

Different to set theory whose axioms are based on first-order logic, in modern

type theories, intuitionistic logic concepts can be encoded as types through the

Curry-Howard isomorphism (correspondence). The American mathemati-

cian Haskell Curry and logician William Alvin Howard first discovered a corre-

spondence between logic and computation. They found that propositions can be

encoded as types and proofs can be given by constructing terms (programs). The

idea also relates to the Brouwer–Heyting–Kolmogorov (BHK) interpretation of in-

tuitionistic logic. For example, a proof of P ∧ Q can be encoded as the product

type P × Q which contains a proof of p : P and a proof of q : Q. Computation-

ally, implications are function types, conjunctions are product types, true is the

unit type, false is the empty type etc. With dependent types (introduced below),

the correspondence extends to predicate logic: the universal and existential quan-

tification correspond to dependent functions and dependent sums. This feature

turns Type Theory into a programming language where we can formalise proofs as

computer programs. We can do computer-aided reasoning about mathematics as

well as programs. From a programmer’s perspective, it provides a programming

language where we can write certified programs.

1It has evolved into System FC recently.

12 Chapter 2 Type Theory

Another central concept in Martin-Löf type theory is Dependent types. A

dependent type is a type which depends on values of other types [21]. It provides

us with the means for defining families of types, for example the family of lists

with explicit length called Vector, for example Vec N 3 stands for a three element

list of type N. Since the type carries more information, the program specifications

can be expressed more accurately. In the example of vectors, we can write a look-

up function without "index out of range" problems. It is much simpler to write

matrix multiplication with dependent types.

The 1971 version of Martin-Löf type theory [64] was impredicative and turned out

to be inconsistent due to Girard’s paradox [53]. It is impredicative in the sense

that the universe of types is impredicative. The notion of a universe of types

was first used by Martin-Löf [65] to describe the type of all types and usually

denoted as U. An impredicative universe U has an axiom U : U. Starting from

the 1972 version [67], a predicative hierarchy of universes was adopted. Briefly

speaking, we start with a universe of small types called U0 and for each n : N we

have Un : Un+1 which forms a cumulative hierarchy of universe. There is a more

detailed introduction to the notion of universe written by Erik Palmgren [74].

Equality is one of the most contentious topics in Type Theory. In everyday

mathematics the notion of equality is used to describe sameness and taken as

granted. But in Type Theory, we have different notions of equality or equivalence

of the terms. First of all definitional equality (or judgemental equality [66])

denoted a ≡ b is a meta-theoretic equality, which holds when two terms have the

same normal forms [72]. Usually it already includes computational equality

which is the congruence on terms generated from reduction rules like β-reduction

and η-expansion.

Since equalities are also propositions, they can be encoded as types. In the 1972

version of Martin-Löf type theory, there is a type for the equality of natural

numbers. It is defined by pattern matching on the two numbers and eventually

reduces to unit type or empty type.

In the 1973 version [65], Martin Löf introduced an equality type which works for

every type, not only for natural numbers. It is called identity type or inten-

sional propositional equality or intensional equality. It is denoted e.g. for

Chapter 2 Type Theory 13

natural numbers by IdN(a, b) or a =N b (see subsection 2.2.1).

In Intensional Type Theory (ITT or TTI for short), like the 1973 version or Agda,

propositional equality is different from definitional equality. The definitional equal-

ity is always decidable hence type checking that depends on definitional equality

is decidable as well [3].

In Extensional Type Theory (ETT or TTE for short), like the 1980 version [66] or

NuPRL, propositional equality is reflected in definitional equality, in other words,

two propositionally equal objects are judgementally equal. This is achieved by the

equality reflection rule:

a = b

a ≡ b
ID-DEFEQ

(2.1)

and the uniqueness of identity proofs:

p : a = b

p ≡ refl
ID-UNI

(2.2)

Notice that this version of UIP type checks only if we have equality reflection.

In some versions of Intensional Type Theory, UIP also holds in other forms, see

Section 2.4.

Due to the addition of equality reflection, type checking becomes undecidable

because it has to respect propositional equality which is not decidable in general.

For example, the equality reflection rule implies functional extensionality which is

not decidable.

Intensional Type Theory is more widely used as a programming language (exam-

ples are Coq, Agda, Epigram), because its definitional equality is decidable, hence

its type checking is decidable and programs written in it are terminating.

However in Intensional Type Theory, extensional concepts are not available.

For example extensional equality of functions, equality of different proofs for the

same proposition, and quotient types. Simply adding these concepts as axioms

14 Chapter 2 Type Theory

can result in non-canonical objects e.g. a term of N which does not reduce to a

numeral (see Theorem 2.4).

To add these extensional concepts into Intensional Type Theory without losing

decidable type checking and canonicity, it seems that types have to be inter-

preted with more complicated structures than sets. In the 1990s, some models

of Type Theory were proposed such as Hofmann’s setoid model, Altenkirch’s se-

toid model, Hofmann and Streicher’s groupoid model etc. The idea of viewing

types as groupoids later inspired other mathematicians. For example, Warren [93]

interprets types as strict ω-groupoids.

Recently, Voevodsky proposed a new interpretation of intensional Martin-Löf type

theory by homotopy-theoretic notions [55, 89] called Homotopy Type Theory (see

Section 2.6), or univalent foundations of mathematics. Type are treated as spaces

or higher groupoids, and terms are points of this space, and more generally, func-

tions between types are continuous maps. Identity types are paths, identity types

of identity types are homotopies. Although these notions are originally defined

with topological notions, in Type Theory they are treated purely homotopically.

Equality is internalised as a type so that types have infinite levels of higher struc-

tures as weak ω-groupoids.

The new interpretation clarifies the nature of equality in Type Theory. The central

idea of Homotopy Type Theory is univalence which can be understood as the

property that isomorphic types are equal. In regular mathematics we usually do

abstract reasoning on structures which applies to all isomorphic structures, because

they can not be distinguished from other objects, hence isomorphic structures can

be identified. Univalence can be seen as a formal acceptance of this idea in Type

Theory such that we can do abstract reasoning about types. Moreover, many

extensional concepts arise from it automatically. The interpretation also helps

mathematicians to reason about homotopy theory in programming languages.

To summarise, we present a list of different versions of Martin-Löf type theory:

1. The 1971 version [64] has an impredicative universe, i.e. U : U, and it turned

out to be inconsistent by Girard’s paradox.

Chapter 2 Type Theory 15

2. The 1972 version which was published in 1996 [67] abandons the impred-

icative universe and all later versions are predicative. It does not have an

inductive identity type but recursively defines equality for given types e.g.

N.

3. The 1973 version [65] introduced the inductively defined identity type inter-

nalising equality as a type.

4. The 1980 version which is summarised by Giovanni Sambin in 1984 [66] is

extensional. It adopts equality reflection, namely an inhabitant of an identity

type implies definitionally equality.

5. In the homotopic version [82], Vladimir Voevodsky extends it with univalence

axiom and provides a homotopic interpretation of it.

2.2 The formal system of Type Theory

The formal type system of Type Theory is given by a list of judgements and a

sequence of rules deriving such judgements. We will use the following judgements

in this thesis:

Γ ⊢ Γ is a well formed context

Γ ⊢ A A is a well formed type

Γ ⊢ a : A a is a well typed term of type A in context Γ

δ : Γ ⇒ ∆ δ is a substitution from context Γ to ∆

We also have equality judgements for contexts, types, terms and substitution. For

instance,

Γ ⊢ a ≡ a′ : A a and a′ are definitionally equal terms of type A in context Γ

In Intensional Type Theory the judgemental equality ≡ is the same as definitional

equality, while propositional equality is usually expressed by an inhabitant of the

identity type Γ ⊢ p : a =A a′.

Throughout the thesis, we use the following notational conventions:

16 Chapter 2 Type Theory

• Γ,∆ for contexts

• γ, σ for substitutions

• A,B,C for types

• a, b, c, t, x for terms

• :≡ for definitions

• Set or Set0 for the universe of small types, Set1, Set2, ... for higher universes

2.2.1 Rules for types

The rules describe how one can derive the judgements above. They are syntactic

rules but the semantic meaning may be revealed from the construction. The rules

for each type former are usually classified as a formation rule, introduction rule,

elimination rule, computation rule (β) and uniqueness rule (η). Here we will

only show the rules for the most important types. The substitution rules are not

discussed here but a good reference is [48]).

First of all, a context is either empty (denoted as ()) or extended by context

comprehension:

Γ ⊢ Γ ⊢ A

Γ, x : A ⊢
(comprehension)

In practice, the empty context is usually not written, for example ⊢ N.

Π-types (dependent function type)

Γ ⊢ A Γ, x : A ⊢ B

Γ ⊢ Π (x : A) B
(Π-form)

Γ, x : A ⊢ b : B

Γ ⊢ λ(x : A).b : Π (x : A) B
(Π-intro)

Γ ⊢ f : Π (x : A) B Γ ⊢ a : A

Γ ⊢ f(a) : B[a/x]
(Π-elim)

Chapter 2 Type Theory 17

In the expressions like λ(x : A).b, λ binds the free occurrences of x in b. In the

expressions like B[a/x] or b[a/x] we do a standard substitution in type B or term

b that replaces free occurences of x by a. We will use a shorthand notation for

substitution later, for example, C[a, b] for C[a/x, b/y] where the order of arguments

corresponds to the order in the typing rule.

In this thesis, we also adopt a generalised arrow notation to write Π-types, for

example (x : A) → B, and their terms λ(x : A) → b.

computation rule

(λ(x : A) → b)(a) ≡ b[a]

uniqueness rule

f ≡ λx → f(x)

Σ-types (dependent product type)

Γ ⊢ A Γ, x : A ⊢ B

Γ ⊢ Σ A B
(Σ-form)

Γ ⊢ a : A Γ ⊢ b : B[a]

Γ ⊢ (a, b) : Σ A B
(Σ-intro)

There are two ways to eliminate a term of a Σ-type:

Γ ⊢ t : Σ A B

π1(t) : A
(Σ-proj1)

Γ ⊢ t : Σ A B

π2(t) : B[π1(t)]
(Σ-proj2)

The computation rules are

π1 (a, b) ≡ a and π2 (a, b) ≡ b

and the uniqueness rule is

t ≡ (π1 t, π2 t).

Identity type

The identity type is a notion of intensional propositional equality given by the

following rules:

18 Chapter 2 Type Theory

Γ ⊢ A Γ ⊢ a : A, Γ ⊢ a′ : A

Γ ⊢ a =A a′

(=-form)

Γ ⊢ a : A

Γ ⊢ refl(a) : a =A a
(=-intro)

We use a =A a′ instead of IdA(a, a
′) to denote the identity type, or simply a = a′.

Γ, x : A, y : A, p : x =A y ⊢ C Γ, x : A ⊢ t(x) : C[x, x, refl(x)]

Γ ⊢ a : A Γ ⊢ a′ : A Γ ⊢ p : a =A a′

Γ ⊢ J(t, a, a′, p) : C[a′, a′, p]
(J)

Its computation rule is

J(t, a, a, r(a)) ≡ t(a).

The uniqueness of identity proofs (UIP) is not a consequence of J but another

eliminator called K (see Section 2.4).

Definition 2.1. "subst" function.

Given a type family B : A → Set, and p : a =A a′, we can easily define a function

of type B(a) → B(a′) by applying J:

Let

C(x, y, p) :≡ B(x) → B(y)

t(x) :≡ id

Thus,

subst(B, p) :≡: J(t, a, a′, p) : B(a) → B(a′)

For simplicity, if we have a term b : B(a), we write the result of subst as subst(B, p, b) :

B(a′).

Chapter 2 Type Theory 19

Unit type

⊢ ⊤
(⊤-form)

⊢ tt : ⊤
(⊤-intro)

Γ, x : ⊤ ⊢ A Γ ⊢ t : A[tt]

⊢ t : A
(⊤-elim)

Empty type

⊢ ⊥
(⊥-form) Γ ⊢ A e : ⊥

Γ ⊢ abort(e) : A
(⊥-elim)

There is no term of the empty type so there is no introduction rule.

Universe types

Γ ⊢ U
(U-form) Γ ⊢ Â : U

Γ ⊢ El(Â)
(U-El)

Γ ⊢ nat : U
(U-intro-nat) Γ ⊢ Â, B̂ : U

Γ ⊢ arr(Â, B̂) : U
(U-intro-arr)

The computation rules are

El(nat) ≡ N

El(arr(Â, B̂)) ≡ El(Â) → El(B̂)

The notation of Â indicates that it is a code for a type (a term of U) rather than

a type.

Inductive types

Inductive types are a self-referential schema to define new types by specifying a

collection of constructors which can be constants or functions.

20 Chapter 2 Type Theory

The formation and introduction rules are enough to build a type inductively. Nat-

ural numbers N : Set can be defined as follows:

• 0 : N

• suc : N → N

The terms are freely generated by a finite list of these constructors, for instance,

suc (suc 0) stands for natural number 2. They are similar to data structures in

programming languages, and most implementations of Type Theory have inductive

types along with structural recursion to eliminate from them.

Coinductive types

Coinductive types can be seen as infinitary extensions of inductive types [26]. A

typical example of an infinite data structure is the type of streams (or infinite

lists). A stream of type A has one constructor:

• cons : A → Stream A → Stream A

An object of it can be destructed into an element of A and again a stream of

A, in other words, it can continuously produce terms of type A. To manipulate

coinductive types, we usually use corecursion which can be non-terminating but

has to be productive. For example a stream of 0s can be constructed by:

zeros = cons(0, zeros)

Note that the manner of using coinductive types varies in different languages. For

further reference, one can read [26].

2.3 An implementation of Type Theory: Agda

Agda is a dependently typed functional programming language which is based on

the intensional version of Martin-Löf type theory [94].

Chapter 2 Type Theory 21

• Functional programming language. As the name indicates, functional pro-

gramming languages emphasise the application of functions rather than

changing data in imperative style like C++ and Java. The basis of func-

tional programming is the lambda calculus. There are several generations of

functional programming languages, for example Lisp, Erlang, Haskell, SML

etc. Agda is a pure functional programming language which offers lazy eval-

uation (see subsection 2.3.1) like Haskell. In a pure language, side effects

are eliminated which means we ensure that the result will be the same no

matter how many times we input the same data.

• Implementing Per Martin-Löf Type Theory. Agda is based on the Curry-

Howard isomorphism [22]. It means that we can reason about mathematics

and programs by constructing proofs as programs. In many languages the

correctness of programs has to be verified on the meta-level. However in

Agda we verify programs within the same language, and express specifica-

tions and programs at the same time, as Nordström et al. [72] pointed out.

• Dependent types. As a feature of Martin-Löf intuitionistic Type Theory,

types in Agda can depend on values of other types [21], which is differ-

ent from Haskell and other Hindley-Milner style languages where types and

values are distinct. It not only helps encoding quantifiers but also allows

writing very expressive types which can be seen as program specifications

resulting in programs being less error-prone. For example, in Agda the type

of matrices comes with accurate size e.g. Matrix 3 4. Thus we can specify the

multiplication of matrices as a function of type Matrix m n → Matrix n p →

Matrix m p where m,n, p : N.

2.3.1 Features

Some features of being a functional programming language make theorem proving

easier,

• Pattern matching. The mechanism for dependently typed pattern matching

is very powerful [9]. Pattern matching is a more intuitive way to use terms

22 Chapter 2 Type Theory

than eliminators. For example, to prove symmetry of identity by pattern

matching on a term of identity type, the only possible case refl exists when

a and b are identical, hence the result type becomes a≡a.

symm : {A : Set}{a b : A} → a ≡ b → b ≡ a

symm refl = refl

Using the eliminator J is more tedious:

symm’ : {A : Set}{a b : A} → a ≡ b → b ≡ a

symm’ = J (λ a b _ → b ≡ a) (λ _ → refl) _ _

• Inductive & Recursive definition. In Agda, types are often defined induc-

tively, for example, natural numbers are defined as:

data N : Set where

zero : N

suc : (n : N) → N

Functions on inductive types can be defined recursively using pattern match-

ing. For example addition on natural numbers is defined as:

+ : N → N → N

zero + n = n

suc m + n = suc (m + n)

It also enables programmers to prove propositions in the same manner as

mathematical induction and case analysis.

• Lazy evaluation. As a pure functional programming language, Agda offers

lazy evaluation which eliminates unnecessary operation to delay a computa-

tion until we need its result. It is often used to handle infinite data structures

[95].

Chapter 2 Type Theory 23

Compared to other programming languages like Haskell, there is an interactive

Emacs interface which provides a few important functions.

• Type checker. The type checker is an essential part of Agda. It will detect

type mismatch problems when some code is loaded into Agda. It also in-

cludes a coverage checker and a termination checker. The coverage checker

ensures that the patterns cover all possible cases so that programs do not

crash [22]. The termination checker ensures that all Agda functions termi-

nate [73]. As a theorem prover, the type checker ensures that the proof is

complete and not defined by itself.

• Interactive interface. Agda has an Emacs-based interface for interactively

writing and verifying proofs. As long as code is loaded, namely type checked,

the code will be highlighted and problematic code is coloured by red for non-

termination and yellow for not inferable implicit arguments. In the interac-

tive Emacs interface, there are a few convenient short-cut keys, for example

showing the context, refining the goal with a partial program, navigating

to definitions of some functions or types. The refinement function helps

us incrementally build programs with explicit context information. Thus

type signatures are usually essential for accurate information. The code

navigation alleviates a great deal of work of programmers to look up the

documentation.

• Unicode and mixfix support. In Haskell and Coq, unicode support is not

an essential part. The name of operations can be very complicated without

enough symbols. Agda handles unicode characters and is able to handle

unicode symbols like β, ∀ and ∃.

It also uses a flexible mixfix notation where the positions of arguments are

indicated by underscores. E.g. _ ⇒ _ is one identifier which can be applied

to two arguments as in A ⇒ B.

In the following type signature of the commutativity theorem for addition

of natural numbers, N and ≡ are unicode characters, + and ≡ are mixfix

operators.

comm : ∀ (a b : N) → a + b ≡ b + a

24 Chapter 2 Type Theory

Note that in Agda ≡ is used for the identity type. See discussion in Sec-

tion 2.3.2.

Unicode symbols and the mixfix notation improves the readability and pro-

vides familiar symbols used in mathematics. Interestingly we could use some

characters of other languages to define functions such as Chinese characters.

• Implicit arguments and wildcards. Sometimes it is unnecessary to state an

argument. If an argument can be inferred from other arguments we can

mark it as implicit with curly brackets. For example, whenever we feed an

argument a to function id, the implicit type A is inferable:

id : {A : Set} → A → A

id a = a

If an explicit argument can be automatically inferred or not used in the

program definition, we can replace it with underscores as wildcards (see the

code on symm’ above in Section 2.3.1).

In practice, the use of implicit arguments and wildcards makes the code more

readable.

• Module system. The mechanism of parametrised modules makes it possible

to define generic operations and prove a whole set of generic properties.

• Coinduction. We can define coinductive types such as streams in Agda:

data Stream (A : Set) : Set where

:: : A → ∞ (Stream A) → Stream A

The coinductive occurrences in the definition are labelled with the delay

operator ∞. To manipulate coinductive types and more generally mixed

inductive/coinductive types [37], we use the delay operation ♯ and the force

operation ♭ defined in module Coinduction:

♯ : ∀{A : Set} → A → ∞ A

♭ : ∀{A : Set} → ∞ A → A

Chapter 2 Type Theory 25

As an example, to add one to every object of a stream of natural numbers,

we define the function using corecursion as follows:

plus1 : Stream N → Stream N

plus1 (n :: ns) = suc n :: ♯ plus1 (♭ ns)

• Ring solver. Compared to Coq, Agda has no tactics providing automated

proof generation although it has a ring solver which plays a similar role to

the tactic ring. It is easy to use for people who are familiar with constructive

mathematics.

2.3.2 Agda conventions

The syntax of Agda has some similarities to Haskell or Martin-Löf type theory,

but there are some important differences which may cause confusion:

• The meaning of = is swapped with the one of ≡. The symbol "=" is reserved

for function definition following the convention in programming languages.

The congruence symbol "≡” is used for the identity type. This is inconsistent

with our conventional choice of symbols in articles.

• : is used for typing judgement, for example a:A, while double colon :: is the

cons constructor for list. It is different from the usual notational conventions

in Haskell.

• The universe of small types is Set0 or Set instead of Type, even though it

is not a set in set-theoretical sense.

• The universe of propositions Prop (Prop ⊂ Set) is not available. Proposi-

tions are also in the universe Set. If necessary, we will postulate the proof-

irrelevance property for a given proposition P : Set.

• Agda has a more liberal way to define Π-types. Π-types are written in a

generalized arrow notation (x : A) → B for Πx : A.B. Together with

implicit arguments, it is valid to write a type signature as ∀{A : Set}(x :

A) → {y : A} → x ≡ y.

26 Chapter 2 Type Theory

• Σ-types are defined in Agda standard library. There are also generalised

Σ-types called dependent record types which can be defined with keyword

record.

• In Agda, we use the Paulin-Mohring style identity type:

data _≡_ {A : Set} (x : A) : A → Set where

refl : x ≡ x

It is parametrised by the left side of the identity and is equivalent to the

original version.

2.4 Extensional concepts

In Intensional Type Theory, extensional (propositional) equality is not captured

by the identity type which is intensional.

However, the identity type in intensional type theory is not powerful enough for

formalisation of mathematics and program development. Notably, it does not iden-

tify pointwise equal functions (functional extensionality) and provides no means

of redefining equality on a type as a given relation, i.e. quotient types. We call

such capabilities extensional concepts.

Objects are extensionally equal if they have the same observable behaviour. In

other words, they can be substituted by one another in any context without chang-

ing the output of the program. For example point-wise equal functions, different

proofs of the same proposition etc. Extensional (propositional) equality is not

captured by the identity type which is intensional. Thus in the traditional formu-

lation of Intensional Type Theory, extensionality and some other related features

of propositional equality like quotient types are not available. These extensional

concepts have been summarised and comprehensively studied by Martin Hofmann

[48]; a list of them are given as follows:

• Functional extensionality

Chapter 2 Type Theory 27

Γ ⊢ A Γ, x : A ⊢ B Γ ⊢ f, g : (x : A) → B(x)

Γ, a : A ⊢ p : f(a) = g(a)

Γ ⊢ ext(a, p) : f = g
(fun-ext)

If two (dependent) functions are point-wise propositionally equal, they are

(extensionally) propositionally equal. This is called functional extensionality

which is not inhabited in the traditional formulation of Intensional Type

Theory [3]. For example, two functions of type N → N, λn → n and λn →

n+ 0 are point-wise propositionally equal, but the intensional propositional

equality of them is not inhabited due to the fact that n+ 0 does not reduce

to n (assuming that _ + _ is defined as the one in Section 2.3.1).

In Extensional Type Theory, functional extensionality is inhabited:

Theorem 2.2. Functional extensionality is derivable from the equality re-

flection rule.

Proof. Suppose Γ, a : A ⊢ p : f a = g a, with the reflection rule we have

Γ, a : A ⊢ f a ≡ g a. Then using ξ-rule, we know that Γ ⊢ λa.f a ≡ λa.g a.

From the η-rule of Π-types and the transitivity of ≡, we know that Γ ⊢ f ≡ g.

Finally we can conclude that Γ ⊢ refl(f) : f = g.

In Intensional Type Theory, since propositional equality is not identified with

definitional equality, it is not inhabited. If we postulate FUN-EXT, the N-

canonicity property by Hofmann (see Definition 2.1.9 in [48]) of Intensional

Type Theory is lost, or we can say the theory in no longer adequate [3].

Definition 2.3. A type theory has the N-canonicity property if every closed

term of N is definitionally equal to a numeral, i.e. either 0 or in the form of

suc(. . .).

Theorem 2.4. If we introduce functional extensionality into Intensional

Type Theory, the N-canonicity property is lost.

Proof. Suppose we define two functions of type N → N

id :≡ λx → x and id′ :≡ λx → x+ 0

28 Chapter 2 Type Theory

where + is defined recursively as

0 + n :≡ n

(suc m) + n :≡ suc (m+ n)

The propositional equality p : ∀(x : N) → id(x) = id′(x) is provable by

induction on x. By functional extensionality, these two functions are propo-

sitionally equal

ext(p) : id = id′

Assume B : (N → N) → Set which is defined as

B(f) :≡ N

It is easy to see that 0 is an element for B(id). By applying subst function

(see Definition 2.1), we can construct an element of B(id′) as

subst(B, (ext(p), 0) : B(id′)

which is also a term of N by definition of B. Because the proof ext(p) is not

canonical, namely it can not be reduced to refl, this closed term of natural

number is not reduced to either 0 or in the form of suc(. . .).

In fact, with this term, we can construct irreducible terms of arbitrary type

A by a mapping f : N → A.

• Uniqueness of Identity Proof (UIP)

Γ ⊢ A Γ ⊢ x, y : A Γ ⊢ p, q : x = y

Γ ⊢ uip(p, q) : p = q
(UIP)

UIP is not a consequence of the eliminator for the identity type J as shown

in Hofmann and Streicher’s groupoid interpretation of Type Theory [51].

It holds if we add another eliminator K introduced by Streicher in [78] as

follows:

Chapter 2 Type Theory 29

Γ ⊢ a : A Γ, x : a = a ⊢ C(x)

Γ ⊢ t : C(refl(a)) Γ ⊢ p : a = a

Γ ⊢ K(t, p) : C(p)
(K)

Computation rule:

K(t, refl(a)) ≡ t

In programming languages such as Agda and Epigram, UIP and K are prov-

able using dependent pattern matching. We can add an Agda flag “–without-

K” to deny pattern matching on a = a if we do not accept UIP in general.

Although UIP for arbitrary types is not derivable, types equipped with de-

cidable equality have the property UIP as shown by Michael Hedberg [45].

A construction of the proof can be found in [35].

In Homotopy Type Theory, an h-set is a type which has UIP e.g. N (See

Section 2.6).

• Proof irrelevance

In traditional Intensional Type Theory, there is no universe of propositions

Prop which has proof irrelevance:

Γ ⊢ P : Prop Γ ⊢ p, q : P

Γ ⊢ p ≡ q : P
(proof-irr)

We usually use Set instead which does not automatically give us a proof

that (p, q : P) → p = q.

An example of Intensional Type Theory extended with Prop is the metathe-

ory of Altenkirch’s setoid model (see Section 6.1).

In Homotopy Type Theory, Prop is usually treated as the universe of h-

propositions which are types of h-level 1 (see Section 2.6.1). One can think

of h-propositions as the sets which have the proof-irrelevance property, hence

HProp = Σ(A : Set) ((a, b : A) → a = b)

.

30 Chapter 2 Type Theory

It is different from a universe of propositions because not every set that

behaves like a proposition must be in Prop, while it is the case for HProp.

If we have proof irrelevance, we can simply define identity types for sets as

x = y : Prop and UIP is provable.

• Propositional extensionality

∀P,Q : Prop → (P ⇐⇒ Q) → (P = Q) (2.3)

Propositional equality between two propositions is given by logical equiva-

lence. Note that this only make senses if there is a universe Prop.

• Quotient types

A quotient type is a type formed by redefining its equality by a given equiv-

alence relation on it. It is the main topic of this thesis and is discussed in

detail in Chapter 3.

• Univalence

Univalence is an extensional principle from homotopy theory which is an

axiom in Homotopy Type Theory. It states:

Given any two types A,B, the canonical mapping (A = B) → (A ≃ B) is

an equivalence.

Equivalence can be thought of a refinement of isomorphism in higher cate-

gories. The notions of Homotopy Type Theory are discussed in Section 2.6.

Propositional extensionality is just the univalence for propositions.

2.4.1 Conservativity of TTE over TTI with extensional con-

cepts

In Extensional Type Theory where we accept equality reflection and UIP, many

extensional concepts are derivable, for example functional extensionality is deriv-

able from equality reflection with η-rule for Π-types, see Theorem 2.2. Compared

to Intensional Type Theory it seems to be more appealing to mathematicians

Chapter 2 Type Theory 31

who are more familiar with Set Theory. However type checking is undecidable

which has been formally proved by Hofmann in [48]. This makes Intensional Type

Theory more favourable, so adding extensional principles into Intensional Type

Theory is one of the most important topics in Type Theory. It is preferable if the

decidability of type-checking and canonicity are not sacrificed.

The following theorem proved by Hofmann in [49] states that TTE is conservative

over TTI with functional extensionality and uniqueness of identity proofs added.

‖_‖ is an interpretation of TTI into TTE and the judgements are differentiated

by the subscript of ⊢.

Theorem 2.5. If Γ ⊢I A : Set and ‖Γ‖ ⊢E a : ‖A‖ for some a then there exists

a′ such that Γ ⊢I a
′ : A

Briefly speaking it is proved by using a model Q of TTI , for example categories

with families (see Definition 6.2) in the sense of Dybjer which is also a model of

TTE due to the mapping ‖_‖ discussed above. The interpretation of the term a

in this model gives a term of type A by fullness in TTI , hence a′. The detailed

proof can be found in [49]. In the model Q, types and contexts are propositionally

equal if they are isomorphic, which becomes definitional equal in TTE. The proof

is also applied to quotient types which has been shown in [48]. However, the proof

is non-constructive i.e. it does not provide an algorithm to compute the term a′.

2.5 An Intensional Type Theory with Prop

Altenkirch has introduced an extension of Intensional Type Theory by a universe

of proof-irrelevant propositions and η-rules for Π-types and Σ-types [3]. It is used

as a metatheory for his setoid model (see Chapter 6).

The proof-irrelevant universe of propositions Prop is a subuniverse of Set i.e.

p : Prop implies p : Set. It only contains sets with at most one inhabitant:

Γ ⊢ P : Prop Γ ⊢ p, q : P

Γ ⊢ p ≡ q : P
(proof-irr)

32 Chapter 2 Type Theory

We also introduce ⊤,⊥ : Prop as basic propositions which are similar to the unit

types and empty types, namely we have tt : ⊤, and abort(e) : A for any type A

and any e : ⊥.

Notice that it is not a definition of types, which means that given a proof that all

inhabitants of it are definitionally equal we cannot conclude that a type is of type

Prop.

The propositional universe is closed under Π-types and Σ-types:

Γ ⊢ A : Set Γ, x : A ⊢ P : Prop

Γ ⊢ Π (x : A) P : Prop
(Π-Prop)

Γ ⊢ P : Prop Γ, x : P ⊢ Q : Prop

Γ ⊢ Σ (x : P) Q : Prop
(Σ-Prop)

The metatheory is then proved to be:

• Decidable. The definitional equality is decidable, hence type checking is

decidable.

• Consistent. Not all types are inhabited and not all well typed definitional

equalities hold.

• N-canonical. All terms of type N are reducible to numerals.

The proof can be found in [3].

2.6 Homotopy Type Theory

Homotopy Type Theory (HoTT) refers to a new interpretation of intensional

Martin-Löf type theory into abstract homotopy theory. It accepts Vladimir Vo-

evodsky’s univalence axiom and a new schema to define types called higher

inductive types, which make many extensional concepts derivable including quo-

tient types.

Chapter 2 Type Theory 33

2.6.1 Homotopical interpretation

Types are usually interpreted as sets in Martin-Löf type theory, but the identity

type of types enforces a more sophisticated structure on types compared to the

one on sets due to the missing Axiom K that asserts that all inhabitants are equal

to the only constructor refl.

Inspired by the groupoid model of (intensional) Martin-Löf type theory due to Hof-

mann and Streicher, Awodey, Warren [13] and Voevodsky [88] developed Homotopy

Type Theory which is a homotopic interpretation of Martin-Löf type theory.

In Homotopy Type Theory, types are regarded as spaces (or higher groupoids)

instead of sets, terms are "points" of types. A function f : A → B is a continuous

map between spaces A and B.

• Types are interpreted as spaces. a : A can be viewed as a being a point of

space A.

• Terms are continuous functions, for example, f : A → B is a continuous

function between spaces and it is equivalent to say that a is a point of the

space or a : 1 → A is a continuous function.

• Identity types are path spaces.

• Identity types of identity types are homotopies (if a path is considered as a

continuous function p : [0, 1] → X).

• Identity types of identity types of identity types and more iterated identity

types are 3-homotopies, 4-homotopies etc. They form an infinite structure

called ω-groupoids in higher category theory.

Remark 2.6. It has to be emphasised that notions like space are purely homotopi-

cal, in other words, there are no topological notions like open sets in Homotopy

Type Theory.

34 Chapter 2 Type Theory

2.6.2 Types as weak ω-groupoids

We can also interpret types as weak ω-groupoids. The notion of ω-groupoid is a

generalisation of groupoid which has infinite levels of "isomorphisms" correspond-

ing to the infinite tower of iterated identity types, i.e. the identity type of identity

type, the identity type of identity type of identity type etc.

Formally speaking, a weak ω-groupoid (or weak ∞-groupoid) is a weak ω-category

where all k-morphisms between (k − 1)-morphisms for all k ∈ N are equivalences.

An ordinary category only has objects and morphisms. A 2-category includes

2-morphisms between the 1-morphisms and equalities in ordinary category are

replaced by explicit arrows. We can continue this generalisation up to n-morphisms

between (n−1)-morphisms which gives an n-category. An ω-category is an infinite

generalisation of this. Objects are also called 0-cells, morphisms between objects

are called 1-cells, and morphisms between n-cells are called (n+ 1)-cells.

An equivalence is a morphism which is invertible up to all higher equivalences.

The notion of equivalence can be seen as a refinement of isomorphism in a setting

without UIP [7]. In the higher-categorical setting, equivalence can be thought of

as arising from isomorphisms by systematically replacing equalities by higher cells

(morphisms). For example, an equivalence between two objects A and B in a

2-category is a morphism f : A → B which has a corresponding inverse morphism

g : B → A, but instead of the equalities f ◦ g = 1B and g ◦ f = 1A we have

2-cell isomorphisms f ◦ g ∼= 1B and g ◦ f ∼= 1A. In an ω-category, these later

isomorphisms are equivalences again. These equivalences are weak in the sense

that they only hold up to higher equivalences. As all equivalences here are weak

equivalences, from now on we just say equivalence.

In fact the ω-groupoids used to model the identity types are also weak, which

means that the equalities such as associativity of compositions in the ω-groupoid

do not hold strictly. Therefore we should call them weak ω-groupoids.

There are several versions of algebraic definitions of weak ω-groupoids (and also

weak ω-categories), one of them is the Grothendieck-Maltsiniotis ω-groupoid which

has been formalised in [63].

Chapter 2 Type Theory 35

In Homotopy Type Theory the notion of homotopy n-types are analogous to

n-groupoids in higher category theory. A set can be seen as a discrete space which

is a 0-groupoid. Thus a set is called a homotopy 0-type or h-set which is of

homotopy level (or h-level) 2. It is a fact that the identity type of an (n + 1)-

type is an n-type, for example, the identity type of a groupoid is a set. It can

be extended to lower levels: a (- 1)-type is a proposition (mere proposition or

h-proposition in Homotopy Type Theory) and a (- 2)-type is a contractible type.

Because the identity type of a (- 2)-type is also a (- 2)-type, the hierarchy does not

extend further.

2.6.3 Univalence Axiom

Voevodsky recognised that the homotopic interpretation is univalent which means

isomorphic types are equal, which does not usually hold in Intensional Type The-

ory. It is one of the fundamental axioms of Homotopy Type Theory and is central

to the Voevodsky’s proposal of Univalent Foundation Project [87].

For any two types A,B, there is a canonical mapping

f : X = Y → X ≃ Y

derived by induction on the identity type. The univalence axiom just claims that

this mapping is an equivalence.

It can be viewed as a strong extensionality principle which does imply functional

extensionality (a Coq proof of this can be found in [17]). Since isomorphic types

are considered the same, all constructions and proofs can be transported between

them, and it actually makes reasoning more abstract.

2.6.4 Higher inductive types

In Intensional Type Theory, types are treated as sets and we use inductive types

to define sets which have only "points". However, in Homotopy Type Theory, due

to the enriched structures of types, inductive types can be generalised.

36 Chapter 2 Type Theory

A more general schema to define types including higher paths is required which

is higher inductive types (HITs). Higher inductive types allow constructors not

only for points of the type being defined, but also for elements of its iterated

identity types. One commonly used example is the circle S1 (1-sphere) which can

be inductively defined as:

• A point base : S1, and

• A path loop : base =S1 base.

It is also essential to provide the elimination rule for the paths as well. Cate-

gorically speaking, it means that the functions have to be functorial on paths.

That is to say, to define a function f : S1 → B, assuming f(base) = b, we

have to map loop to an identity path l : b = b, namely we have an operation

apf : (x =S1 y) → (f(x) =B f(y)) satisfying apf (loop) = l .

In Homotopy Type Theory, many extensional concepts are derivable. As we have

seen, functional and propositional extensionality and are both implied by univa-

lence, UIP for h-sets, proof irrelevance for h-propositions are also available.

Quotient types or more precisely quotient sets (because of the different interpre-

tation of types) are also available. We will discuss them in detail in Section 3.4.

For further explanation of Homotopy Type Theory, a well-written text book elab-

orated by a group of mathematicians and computer scientists is available online

[82]. In this thesis, we refer to it by “the HoTT book”.

2.6.5 Towards a computational interpretation of HoTT

One of the most important challenges in Homotopy Type Theory is to build a con-

structive model which would give us a computational interpretation of univalence,

so that the good computational properties of Type Theory are preserved [18].

To interpret types as weak ω-groupoids, one main problem is the complexity of

its definition. The coherence conditions are very difficult to specify so that people

Chapter 2 Type Theory 37

usually choose to use Kan simplicial sets, cubical sets to specify weak ω-groupoids.

Nevertheless there are some attempts of encoding weak ω-groupoids in Type The-

ory. A syntactic approach has been implemented in Agda by the author, Altenkirch

and Rypáček (see Chapter 7).

It is much simpler to interpret types as Kan simplicial sets. Voevodsky’s univalent

model [55] is based on Kan simplicial sets. There is a concise introduction written

by Streicher [79]. However the simplicial set model is not constructive as Coquand

showed that it requires classical logic in an essential way [32]. To avoid the use of

classical logic, types can be interpreted as semi-simplicial sets. We have not yet

implemented the notion of semi-simplicial sets in an Intensional Type Theory like

Agda. Some relevant discussion of it can be found online [92].

Recently, Bezem, Coquand and Huber [18] proposed another model of dependent

type theory in cubical sets. It is expressed in a constructive metalogic which

makes it a candidate for obtaining a computational interpretation of univalence.

The model seems plausible but some details still need to be verified.

2.7 Summary

The theory of types was originally invented to resolve an inconsistency in set

theory in the 1900s. After that, mathematicians developed it by adding more

properties, for example functions as primitive types, dependent sum and product

types. Type theory is related to type systems in programming languages through

the Curry-Howard isomorphisms, and some type theories like the simply-typed

lambda calculus, Per Martin Löf’s intuitionistic type theory and the calculus of

constructions are used as cores of programming languages.

Martin-Löf type theory is one of the most modern type theories which is closely

related to constructive mathematics and computer science. It is a formal system

given by a sequence of rules written as derivations of judgements. Because of

the Curry-Howard isomorphism and dependent types, it is also a system for intu-

itionistic logic. This means that we can do constructive reasoning by constructing

programs. From a mathematician’s point of view, this provides computer-aided

38 Chapter 2 Type Theory

formal reasoning. From a a programmer’s point of view, this provides program

verification in itself and a more expressive way to write specifications for programs.

Programming languages like Agda, Coq or Epigram exploit these properties.

The intensional version of Martin-Löf type theory has decidable type checking

which is essential for a programming language. Agda is a language based on this

theory providing numerous features supporting mathematical constructions and

reasoning. It is widely used in academia by theoretical computer scientists and

mathematicians, for example the Homotopy Type Theory community.

Despite the good properties of Intensional Type Theory, it lacks some extensional

concepts like functional extensionality and quotient types. Much research has been

done to add them into Type Theory without losing the computational properties.

This thesis is one attempt in this direction.

Finally we discussed Homotopy Type Theory where many extensional concepts

including quotient types (see Section 3.4) are available. We briefly compared

different models of Homotopy Type Theory where types are interpreted as different

forms of weak ω-groupoids. However only constructive models can possibly provide

computational interpretations of univalence. It is still an open problem to find such

a computational interpretation, but a potential solution could be the cubical set

model.

Chapter 3

Quotient Types

In this chapter, we present a definition of quotient types in an Intensional Type

Theory extended with a proof-irrelevant universe of propositions in the sense of

Section 2.5. We prove that, given propositional extensionality, all quotients are

effective. We also explain the rules of quotient types categorically. A quotient is

essentially a coequalizer or given by an adjunction with equality predicate functor

[54]. Quotient types in our definition are essentially quotient sets. In Homotopy

Type Theory, where types are not interpreted as sets, we discuss Voevodsky’s

impredicative encoding of quotient sets with all essential rules, and also quotient

sets defined using higher inductive types.

3.1 Quotients in Type Theory

3.1.1 Rules for quotients

Quotient types can be defined by the following rules as described in [47, 54].

Γ ⊢ A Γ, x : A, y : A ⊢ x ∼ y : Prop ∼ is an equivalence

Γ ⊢ A/∼
(Q-Form)

Given a type A with a binary equivalence relation ∼ on A, we can form the quotient

A/∼ . Here, we use infix notation for readability.

39

40 Chapter 3 Quotient Types

The equivalence properties are

• Reflexivity ref∼ : ∀(a : A) → a ∼ a

• Symmetry sym∼ : ∀(a, b : A) → a ∼ b → b ∼ a

• Transitivity trn∼ : ∀(a, b, c : A) → a ∼ b →→ b ∼ c → a ∼ c

Remark 3.1. Notice that the formation rule is different to Hofmann’s version [47]

where ∼ is not required to be an equivalence relation. In fact his version is just

more general which accepts non-equivalence relations R : A → A → Prop, but

A/R has to be understood as the quotient of A by the equivalence closure of R.

Γ ⊢ a : A

Γ ⊢ [a] : A/∼
(Q-Intro)

Γ ⊢ a, b : A Γ ⊢ p : a ∼ b

Γ ⊢ Qax(p) : [a] =A/∼ [b]
(Q-Ax)

We introduce an “equivalence class” for each element of A. It is usually denoted

as [a], or [a]∼ for ∼ if it is unclear which relation it refers to. Qax states that

the “equivalence classes” of two terms which are related by ∼ are (propositionally)

equal.

Notice that the notation of terms [a] should not be confused with notation for

substitution such as B[a] or B[a/x]. For a Π-type B : (x : A) → Set and a : A,

we therefore write B(a) : Set for B[a/x] where order of the arguments in brackets

matches its definition.

In Hofmann’s [47] definition, it comes with an eliminator (also called lifting) with

a computation rule (β-rule) and an induction principle (equivalent to a η-rule): 1

Γ ⊢ B Γ ⊢ f : A → B

Γ, a : A, b : A, p : a ∼ b ⊢ f∼(a, b, p) : f(a) =B f(b) Γ ⊢ q : A/∼

Γ ⊢ f̂(q) : B
(Q-elim)

Γ ⊢ a : A

Γ ⊢ Qcomp(a) : f̂([a]) = f(a)
(Q-comp)

1We use shorthand notationˆfor lifting here

Chapter 3 Quotient Types 41

Γ, x : A/∼⊢ P : Prop Γ, a : A ⊢ h(a) : P ([a]) Γ ⊢ q : A/∼

Γ ⊢ Qind(h, q) : P (q)
(Q-ind)

Given a function f : A → B which respects ∼, we can lift it to be a function on

A/∼ as f̂ : A/∼→ B such that for any element a : A, f̂([a]) computes to the

same value as f(a). It allows us to define functions on quotient types by functions

on base types (representatives). Notice that we omit f= since the computation

rule already implies that it is proof-irrelevant.

The induction principle states that for any proposition P : A/∼→ Prop, it is

enough to just consider cases P ([a]) for all a : A. In other words, A/∼ only

consists of "equivalence classes" i.e. [a].

An alternative definition in Hofmann’s thesis [48] includes a dependent eliminator

(dependent lifting) serves the same purpose:

Γ, x : A/∼⊢ B Γ ⊢ f : (a : A) → B([a])

Γ, a : A, b : A, p : a ∼ b ⊢ f=(a, b, p) : f(a)
p
= f(b) Γ ⊢ q : A/∼

Γ ⊢ f̂(q) : B(q)
(Q-dep-elim)

Γ ⊢ a : A

Γ ⊢ Qdcomp(a) : f̂([a]) = f(a)
(Q-dep-comp)

Notice that
p
= is an abbreviation for propositional equality which requires substi-

tution in the type of the left hand side by Qax(p) so that both sides have the same

type. We use the same notation for the two versions of eliminators because they

are in fact equivalent.

Proposition 3.2. The non-dependent eliminator with the induction principle is

equivalent to the dependent eliminator.

Proof. 1. Assume we have the non-dependent eliminator and the induction prin-

ciple, B is a dependent type on A/∼ , f is a dependent function of type (a : A) →

B([a]) and it respects ∼ under substitution (i.e. f=), q is an element of A/∼ .

Set B′ as a dependent product Σ(r : A/∼) B(r),

42 Chapter 3 Quotient Types

Then a non-dependent version of f which has type A → B′ can be defined as

f ′(a) :≡ [a], f(a)

Given p : a ∼ b, we can conclude that f ′(a) =B′ f ′(b) is inhabited from Qax and

f=.

It allows us to lift the non-dependent function f ′ as f̂ ′ such that

f̂ ′([a]) ≡ [a], f(a) (3.1)

Applying first projection on both sides of 3.1, the following propositional equality

is inhabited:

π1(f̂ ′([a])) = [a]

By induction principle, the predicate P : A/∼→ Prop defined as

P (q) :≡ π1 (f̂ ′(q)) =A/∼ q

is inhabited for all q : A/∼ .

Finally, to complete the dependent eliminator, we can construct an element of

type B(q) by

π2 (f̂ ′(q))

which has the correct type because P (q) holds. The computation rule is simply

derivable from 3.1.

2. It is easy to check that the non-dependent eliminator and induction principle

are just special cases of the dependent eliminator.

A formalised version of this proof in Agda can be found in Appendix A.

Chapter 3 Quotient Types 43

Additionally, a quotient is effective (or exact) if an "equivalence class" only con-

tains terms that are related by ∼.

Γ ⊢ a : A Γ ⊢ b : A p : [a] =A/∼ [b]

eff(p) : a ∼ b
(Q-effective)

In fact all quotients defined with equivalence relations are effective if we have

propositional extensionality. This has been proved by Hofmann (See Section

5.1.6.4 in [48]).

Theorem 3.3. With propositional extensionality, we can prove that all quotient

types are effective.

Proof. Suppose we have a quotient type A/∼ , two elements a, b : A and [a] = [b]

Set a predicate Pa : A → Prop as

Pa(x) :≡ a ∼ x

Pa respects ∼ since

x ∼ y

⇒ a ∼ x ⇐⇒ a ∼ y (symmetry and transitivity)

≡ Pa(x) ⇐⇒ Pa(y) (propositional extensionality)

⇒ Pa(x) = Pa(y)

Therefore we can lift Pa
2 such that for any x : A

P̂ ([x]) ≡ a ∼ x

We can simply deduce P̂ ([a]) = P̂ ([b]) from assumption [a] = [b] which by defini-

tion is just

2The elimination rule applies to large types

44 Chapter 3 Quotient Types

a ∼ a = a ∼ b

Finally, with the eliminator J and refl(a) : a ∼ a, we can easily prove

a ∼ b.

Similar to other extensional concepts like functional extensionality, simply adding

quotient types to Intensional Type Theory as axioms can also result in non-

canonical constructions.

Theorem 3.4. If we postulate the rules of quotient types, the N-canonicity prop-

erty is lost.

Proof. Given a type A and an equivalence relation ∼, we postulate A/∼ exists

with all the rules above.

Suppose we have two elements a, b : A such that p : a ∼ b, we have

Qax(p) : [a] = [b]

Define B : A/∼→ Set as

B(q) :≡ N

We can observe that 0 : B([a]), thus by using subst function (see Definition 2.1),

we can obtain a term of B([b]):

subst(B,Qax(p), 0) : B([b])

Chapter 3 Quotient Types 45

which is also a term of N by definition of B. This term is irreducible to any numeral

because Qax(p) can not be reduced to the canonical term of the identity type (i.e.

refl). Moreover, one can not postulate propositional equality Qax(p) = refl[a] or

Qax(p) = refl[b] because their types are not definitionally equal.

3.2 Quotients are coequalizers

The rules of quotient types can be characterised in a category-theoretical way.

Categorically speaking, a quotient is a coequalizer in the category Set. Let us

recall the definition.

Definition 3.5. Coequalizer. Given two objects X and Y and two parallel mor-

phisms f, g : X → Y , a coequalizer is an object Q with a morphism q : Y → Q

such that q ◦ f = q ◦ g and it is universal: any pair (Q′, q′) satisfying q′ ◦ f = q′ ◦ g

has a unique factorisation u such that q′ = u ◦ q:

X
f

//

g
// Y

q
//

q′

��

Q

u

��

Q′

Now, we show that in Set, assuming

R :≡ Σ(a1, a2 : A) a1 ∼ a2

46 Chapter 3 Quotient Types

with the two projections being two parallel morphisms π1, π2 : R → A, a quotient

corresponds to the coequalizer (A/∼ , [_]):

R
π1

//

π2

// A
[_]

//

f

!!

A/∼

f̂

��

B

The factorisation _̂ is just the eliminator, the computation rule and induction

principle correspond to the universal property of it.

Proposition 3.6. The induction principle implies uniqueness, and is also deriv-

able from the definition of coequalizer.

Proof. It is easy to see that induction principle implies the uniqueness of f̂ :

Given any g : A/∼→ B fulfils the same property as f̂ , applying induction principle

on

∀(a : A) → g([a]) = f̂([a])

we can deduce that

∀(q : A/∼) → g(q) = f̂(q)

hence g = f̂ .

The other way is more difficult:

Given P : A → Prop, h : (x : A) → P (x) define

P ′ :≡ Σ(x : A) P (x) and h′(x) = ([x], h(x))

we can observe that

π1 ◦ h
′ = [_] (3.2)

Chapter 3 Quotient Types 47

By the universal property, there is a unique ĥ′ s.t.

ĥ′ ◦ [_] = h′ (3.3)

By replacing 3.3 in 3.2

π1 ◦ ĥ′ ◦ [_] = [_] (3.4)

From uniqueness we can easily prove that [_] is an epimorphism.

Thus from 3.4, we prove that

π1 ◦ ĥ′ = id

which implies that for any q : A/∼ , the type of π2(ĥ′(q)) is

P (π1(ĥ′(q))) = P (q)

as expected, hence we derive the induction principle. In fact, following the same

procedure, the dependent eliminator is also derivable.

The coequalizer (quotient) is effective if the following diagram is a pullback

R
π1

//

π2

��

A

[_]

��

A
[_]

// Q

Proof. Assume we have two points a, b : 1 → A satisfying [a] = [b].

From the pullback property, there is a unique point r : 1 → R such that

π1(r) = a

48 Chapter 3 Quotient Types

and

π2(r) = b

Hence (a, b) is an element of R, by definition it means

a ∼ b

In Chapter 4, we also introduce two other notions: prequotient and definable

quotient.

Cateogorically speaking, a prequotient is just a fork which is just a morphism [_]

such that the following diagram commutes:

R
π0

//

π1

// A
[_]

// Q

and a definable quotient corresponds to a split coequalizer which is a fork with two

morphisms emb : Q → A and t : A → R such that emb chooses a representative

in every equivalence class:

• [_] ◦ emb = 1Q

• emb ◦[_] = π0 ◦ t and

• π1 ◦ t = 1A

Further, we can deduce that t(a) = (emb[a], a), which gives the proof that each

element is related to the representative of its class, namely the "completeness"

property of definable quotients.

3.3 Quotients as an adjunction

As Jacobs [54] suggests, quotients can be described as a left adjoint to an equality

functor.

Chapter 3 Quotient Types 49

Let us recall the definition first.

Definition 3.7. Adjunction. Given two categories A and B, a functor F :

A → B is left adjoint to G : B → A if we have a natural isomorphism Φ :

homB(F _,_) → homA(_, G _)

Given the category of setoids Setoid and category of sets Set, there is an equality

functor ∇ : Set → Setoid defined as

∇A :≡ (A,=A)

where the morphism part is trivial embedding.

Quotients can be seen as a functor Q : Setoid → Set which is left-adjoint to a

equality functor ∇A :≡ (A,=A)

The object part of this functor corresponds to the formation rule of quotients,

hence we can use B/∼ to represent Q (B,∼).

The adjunction can be described by a natural isomorphism

Φ : homSet(Q _,_) → homSetoid(_,∇ _)

or a diagram for each (Y,∼) : Setoid and X : Set:

Y /∼ → X

(Y,∼) → (X,=X)

which consists of Φ(Y,∼),X and its inverse Φ−1
(Y,∼),X (the subscripts are omitted later).

Given an identity morphism id : A/∼→ A/∼ ,

Φ(id) : (A,∼) → (A/∼ ,=A/∼)

is just the introduction rule [_] : A → A/∼ with the property that it respects ∼.

It is also called unit written as η(A,∼).

50 Chapter 3 Quotient Types

Given a morphism f : (A,∼) → (B,=B) which is a function that respects ∼,

Φ−1(f) : A/∼→ B

which corresponds to the elimination rule.

The computation rule f̂ ◦ [_] ≡ f corresponds to the following digram in the

category of setoids:

(A,∼)

η(A,∼)

��

f

%%

(A/∼ ,=A/∼)
∇(Φ−1(f))

// (B,=B)

which is commutative because

∇(Φ−1(f)) ◦ η(A,∼)

= Φ(Φ−1(f)) by adjunction law G(f) ◦ ηY = Φ(f)

= f

We can also recover the adjunction from the definition of quotients. Define

Q (Y,∼) :≡ Y /∼

The adjunction is given by

Φ(f) :≡ f ◦ [_] and Φ−1(g, g∼) :≡ ĝ

The computation rule and induction principle just express that these two mapping

are each other inverses.

Chapter 3 Quotient Types 51

3.4 Quotients in Homotopy Type Theory

As we mentioned before, quotient types (in the sense of 3.1.1) are available in

Homotopy Type Theory. Because of the different interpretations of types, it makes

less confusion to call them quotients or set quotients here.

First, let us recall that

• an h-proposition (hProp) is a type A which has the property ∀(a, b : A) →

a =A b, and

• an hSet is a type S such that forall x, y : S, x =S y are h-propositions.

For simplicity, we use the term "set" for h-sets and "proposition" for h-propositions.

Note that Prop is not the built-in universe of propositions in Coq, but the inter-

nally defined universe of h-propositions.

3.4.1 An impredicative encoding of quotient sets

Vladimir Voevodsky introduced an impredicative definition of quotients which was

formalised in Coq [86].

Assume we have a set A and an equivalence relation ∼: A → A → Prop.

Definition 3.8. An equivalence class is a predicate P : A → Prop such that

it is inhabited: ∃(a : A) P (a),

and for all x, y : A,

P (x) → P (y) → x ∼ y and

P (x) → x ∼ y → P (y).

These properties can be encoded as

EqClass(P) :≡ (∃(a : A) P (a)) ∧ (∀(x, y : A) → P (x) → (x ∼ y ⇐⇒ P (y))).

52 Chapter 3 Quotient Types

Definition 3.9. We define the set quotient as

A/∼ :≡ Σ(P : A → Prop) EqClass(P)

A/∼ is a set because A → Prop is a set and EqClass(P) is a proposition. ∧ is

the non-dependent Σ-type for propositions and ∀ is the Π-type for propositions.

Because it is in fact a triple, we use (P, p, q) : A/∼ to represent an element of

it for convenience, where P is the predicate, p is the truncated witness that P is

inhabited, and q contains the proofs of the logical equivalence.

The encoding of ∃(a : A) P (a) is given by a truncated Σ-type: ‖Σ(a : A) P (a)‖.

The (-1)-truncation ‖ − ‖ is defined impredicatively as

‖X‖ :≡ ∀(P : Prop) → (X → P) → P

with a trivial embedding function |_| : X → ‖X‖:

|x| :≡ λP f → f(x)

We can simply recover the elimination rule for truncation: given any function

f : X → P where P is a proposition, we can define a function of type ‖X‖ → P

as

f̃(x) :≡ x(P, f)

and f̃(|x|) ≡ f(x) automatically holds.

Remark 3.10. Note that ‖X‖ is in the universe of Set1, but with resizing rules

proposed by Voevodsky [90, 91], ‖X‖ is moved to the universe Set. We can apply

the resizing rule for propositions because ‖X‖ behaves like a proposition. It also

has to be noticed that it is impossible to extract an element of A from a proof of

EqClass(P) because of the truncation.

There is a canonical function [_] : A → A/∼ corresponding to the introduction

rule:

Chapter 3 Quotient Types 53

[a] :≡ (λx → a ∼ x, |a, ref(a)|, λx y p → (λq → trn(p, q), λq → trn(sym(p), q)))

which respects ∼. The verification of compatibility requires propositional ex-

tensionality and functional extensionality which are available in Homotopy Type

Theory. In fact, we can prove that [a] is a unique representation of an equivalence

class.

Lemma 3.11. Given any (P, p, q) : A/∼ , it is the unique representation of an

equivalence class, namely

∀(a : A) → P (a) → [a] =A/∼ (P, p, q)

is inhabited.

Proof. Because A/∼ is a Σ-type whose second component EqClass(P) is a propo-

sition depends on the first component, if the first components are equal, i.e.

λb → a ∼ b = P

then their second components are also equal because of proof-irrelevance.

By functional extensionality, we only need to prove that

∀(b : A) → a ∼ b = P (b) (3.5)

Recall that the type of q is ∀(x, y : A) → P (x) → (x ∼ y ⇐⇒ (P (y))), from

assumption ex : P (a), we can prove that

∀(b : A) → a ∼ b ⇐⇒ P (b)

Then we can simply prove 3.5 by applying propositional extensionality. Therefore

54 Chapter 3 Quotient Types

[a] = (P, p, q)

A lifting function (non-dependent eliminator) for functions respecting ∼ is also

expected. Since we cannot extract a element of A, it has to be defined in a more

complicated way.

Lemma 3.12. Given a function f : A → B into a set B which respects ∼, there

exists a unique function f̂ = A/∼→ B such that f̂([a]) ≡ f(a).

Proof. Assuming we have an element (P, p, q) : A/∼ , we can define a function

fP : (Σ(x : A) P (x)) → B simply by

fP :≡ f ◦ π1

but our witness p : ‖Σ(x : A) P (x)‖ is truncated which cannot be applied to fP .

However we can generate a function

f̄P : ‖(Σ(x : A) P (x))‖ → B

applying lemma 3.13, which needs that fP is a constant function:

for any two elements (x1, p1) and (x2, p2) of type Σ(x : A) P (x), by applying the

property

∀(x, y : A) → P (x) → P (y) → x ∼ y

contained in q to p1 : P (x1) and p2 : P (x2), we have that

x1 ∼ x2.

Then because f respects ∼,

f(x1) = f(x2).

By definition of fP ,

fP (x1, p1) ≡ f(x1) = f(x2) ≡ fP (x2, p2),

Chapter 3 Quotient Types 55

hence fP is a constant function.

To summarise, the lifting function can be defined as

f̂(P, p, q) :≡ f̄P (p)

The computational rule can be verified easily:

f̂([a]) ≡ f̄λx→a∼x(|a|) ≡ f(a)

The induction principle can be generated as follows:

suppose we have Q : A/∼→ Prop, h : (a : A) → Q([a]) and (P, p, q) : A/∼ ,

we expect the proposition Q(P, p, q) to hold. Since p : ‖Σ(a : A) P (a)‖, from the

elimination rule for truncation, we only need to construct a function of type

Σ(a : A) P (a) → Q(P, p, q).

Given (a, ex) : Σ(a : A) P (a), we know

[a] = (P, p, q)

from 3.11. Thus we can substitute into h(a) : Q([a]) to generate a term of type

Q(P, p, q). Therefore we have the induction principle. The uniqueness of f̂ is

simply implied by the induction principle.

The following lemma is suggested by Nicolai Kraus and can be found in [58].

Lemma 3.13. Given a constant function g : X → Y where Y is a set, i.e. it

satisfies

∀(x, y : X) → g(x) = g(y),

there exists a function ḡ : ‖X‖ → Y such that ḡ(|x|) ≡ g(x).

Proof. Define the subset

Y ′ :≡ Σ(y : Y) ‖Σ(x : X) g(x) = y‖

56 Chapter 3 Quotient Types

Intuitively, Y ′ only contains the image of the constant function i.e. Y ′ is propo-

sitional:

For any (y1, p1) : Y
′ and (y2, p2) : Y

′,

we can first generate the proofs

p1((g(x) = y1), π2) : g(x) = y1 and

p2((g(x) = y2), π2) : g(x) = y2.

By symmetry and transitivity we can prove that y1 = y2.

From the fact that a truncated type is always propositional, we can also deduce

that p1 = p2, then (y1, p1) = (y2, p2). Hence we can conclude that Y ′ is proposi-

tional.

We can simply define a function g′ : X → Y ′ using g as

g′(x) :≡ (g(x), λQ f → f(x, refl=(g(x)))).

Because Y ′ is propositional, it is possible to lift g′ to a function g̃′ : ‖X‖ → Y ′

which is defined as

g̃′(x) :≡ x(Y ′, g′).

Finally we define

ḡ :≡ π1 ◦ g̃′

which fulfils the computation rule

ḡ(|x|) ≡ π1(|x|(Y
′, g′)) ≡ π1(g

′(x)) ≡ g(x).

Furthermore, since propositional extensionality is a special case of univalence, by

Theorem 3.3, we can prove that the impredicative quotients are effective.

Chapter 3 Quotient Types 57

Theorem 3.14. In Homotopy Type Theory, the impredicative encoding of quo-

tient sets gives rise to all the rules of quotients in the sense of 3.1.1 including

effectiveness.

3.4.2 Quotient inductive types

An alternative way to define quotients in Homotopy Type Theory is using higher

inductive types.

Assume that A is a set and _ ∼ _ : A → A → Prop is an equivalence relation.

To build a quotient, we can simply impose level-1 morphisms in the structure of

the given set according to the equivalence relation. Thus, a quotient A/∼ can be

defined as a higher inductive type with the following contstructors:

• [_] : A → A/∼

• eqv : (a, b : A) → a ∼ b → [a] = [b]

• isSet : (x, y : A/∼) → (p1, p2 : x = y) → p1 = p2

It is also a set so we call it set-quotient or quotient inductive types (QITs).

Some examples suggest that QITs are more powerful than quotient types.

One of the examples is the definition of real numbers R which will be discussed

in Chapter 5. Briefly speaking, our construction of reals by Cauchy sequences of

rational numbers is not Cauchy complete because not all equivalence classes have

a limit. However, the Cauchy approximation approach (see Subsection 11.3.1 in

[82]) using quotient inductive types is Cauchy complete due to the fact that the

equivalence relation and limits are included in its definition.

Another example is unordered trees (rooted trees) which are trees connected to a

multiset of subtrees, hence there is no ordering on subtrees.

First we define ordered trees as:

• a leaf l : Tree, or

58 Chapter 3 Quotient Types

• an indexed family of subtrees indexed by a set I, st : (I → Tree) → Tree

with the following equivalence relation:

• leq : l ∼ l,

• steq : (f, g : I → Tree) → f ∼p g → st(f) ∼ st(g),

where f ∼p g stands for f is a permutation of g. The permutation can be defined

using a bijective map p : I → I which relates equivalent subtrees recursively.

If we define unordered trees as a quotient type Tree∼ := Tree/∼ , it is problematic

to lift the constructor st, i.e. to define ŝt. For trees with finite subtrees such as

binary trees where I :≡ 2, it can be lifted by nesting lifting functions,

ŝt(a, b) = ̂̂st(a)(b)

because its type is isomorphic to BTree → BTree → BTree. Intuitively this ap-

proach can be applied to trees with finite subtrees. However it fails if have infinite

subtrees, for example when I :≡ N.

However if we use QITs to define unordered trees, we can define the equivalence

relation simultaneously with the constructors by the higher inductive type having

the following constructors:

• l : Tree,

• st : (I → Tree) → Tree,

and a set of paths relating two permuted trees:

• leq : l =Tree l,

• steq : ∀(f, g : I → Tree) → f ∼p g → st(f) =Tree st(g).

Thus we avoid the problem of lifting st because the equivalence relation has become

the internal equality of this type.

Chapter 3 Quotient Types 59

Similarly the cumulative hierarchy of all sets introduced in [82] (see section 10.5)

suggests that quotient types have some weaknesses compared to quotient inductive

types.

A cumulative hierarchy can be given by constructors

{_} : (I : Set) → (I → M0) → M0

along with a subset relation

_ ∈ _ : M0 → M0 → Prop

which is inhabited if f(i) ∈ {I, f}.

Then we can easily define the equivalence relation on "sets" using the set-theoretical

definition A ∼ B :≡ ∀m : M0,m ∈ A ⇐⇒ m ∈ B.

Similarly to unordered trees, we cannot obtain the constructor {̂_} because the

indexing set I can be infinite.

To summarise, it seems that quotient inductive types are more powerful than

quotient types due to the ability of defining term constructors and equivalence re-

lations simultaneously. However, quotient inductive types are not available in type

theories other than Homotopy Type Theory and the computational interpretation

of them is still an open problem. Moreover, there can be more general quotients

in Homotopy Type Theory, for example a quotient of a type by a 1-groupoid (See

section 9.9 in [82]). It is interesting to investigate real quotient types in Homotopy

Type Theory, but it is beyond the scope of this thesis.

3.5 Related work

The introduction of quotient types in Type Theory has been studied by several au-

thors in different versions of Martin-Löf type theory and using various approaches.

60 Chapter 3 Quotient Types

• In [29], Mendler et al. considered building new types from a given type

using a quotient operator //. Their work is done in an implementation of

Extensional Type Theory, NuPRL.

In NuPRL, given the base type A and an equivalence relation E, the quotient

is denoted as A//E. Since every type comes with its own equality relation

in NuPRL, the quotient operator can be seen as a way of redefining equality

for a type.

They also discuss problems that arise from defining functions on the new

type which can be illustrated by a simple example:

when we want to define a function f : (x, y) : A//E → 2, it is in fact defining

a function on A. Assume a, b : A such that E(a, b) but f(a) 6= f(b). This

will lead to an inconsistency since E(a, b) implies that a converts to b in

Extensional Type Theory, hence the left hand side f(a) can be converted

to f(b), namely we get f(b) 6= f(b) which contradicts the equality reflection

rule.

Therefore a function is well-defined [29] on the new type only if it respects

the equivalence relation E, namely

∀(a, b : A) → E(a, b) → f(a) = f(b)

After the introduction of quotient types, Mendler further investigates this

topic from a categorical perspective in [70]. He uses the correspondence

between quotient types in Martin-Löf type theory and coequalizers in a cate-

gory of types to define a notion called squash types, which is further discussed

by Nogin [71].

• Nogin [71] considers a modular approach to axiomatizing quotient types in

NuPRL. He discusses some problems with quotient types. For example,

since equality is extensional, we cannot recover the witness of equality. He

suggests including more axioms to conceptualise quotients. He decomposes

the formalisation of a quotient type into several smaller primitives which are

easier to manipulate.

Chapter 3 Quotient Types 61

• Jacobs [54] introduces a syntax for quotient types based on predicate logic

within simple type theory. He discusses quotient types from a categorical

perspective. In fact the syntax of quotient types arises from an adjunction

as we mentioned before.

• To add quotient types to Martin-Löf type theory, Hofmann proposes three

models for quotient types in [48]. The first one is a setoid model for quotient

types. In this model all types are attached with partial equivalence relations,

namely all types are partial setoids rather than sets. It does not provide

dependency at the level of types but only at the level of the relations. The

second one is the groupoid model which supports most features required but

it is not definable in Intensional Type Theory. He also proposes a third

model as an attempt to overcome problems in the previous two models.

More type dependency is provided and quotient types are believed to be

definable in this model, however it also has some disadvantages. He also

shows that Extensional Type Theory is conservative over Intensional Type

Theory extended with quotient types [49].

• Altenkirch [3] also provides a different setoid model which is built in an Inten-

sional Type Theory extended with a proof-irrelevant universe of propositions

and η-rules for Π-types and Σ-types. It is decidable, N-canonical and per-

mits large eliminations. We implemented this setoid model and interpreted

quotient types in it (see Chapter 6).

• Homeier [52] axiomatises quotient types in Higher Order Logic (HOL) which

is also a theorem prover. He creates a tool package to construct quotient

types as a conservative extension of HOL so that users are able to define new

types in HOL. Then he defines the normalisation functions and proves several

properties of them. Finally he discusses the issues arising when quotienting

on aggregate types such as lists and pairs.

• Courtieu [34] extends of the Calculus of Inductive Constructions with Nor-

malised Types which are similar to quotient types, but equivalence relations

are replaced by normalisation functions which select a canonical element for

each equivalence class. In fact normalised types can be seen as a proper

62 Chapter 3 Quotient Types

subset of quotient types. We can easily recover a quotient type from a nor-

malised type as below

a ∼ b :≡ [a] = [b]

However not all quotient types have normal forms, for example, the set of

real numbers (see Chapter 5). The notion definable quotients we proposed in

Chapter 4 is also similar to it, but does not provide a new type automatically.

• Barthe and Geuvers [15] propose a new notion called congruence types, which

is also a special class of quotient types in which the base type is inductively

defined and comes with a set of reduction rules called the term-rewriting

system. The idea is that β-equivalence is replaced by a set of β-conversion

rules. Congruence types can be treated as an alternative to pattern matching

introduced in [31]. The main purpose of introducing congruence types is to

solve problems in term rewriting systems rather than to implement quotient

types. Congruence types are not inductive but have good computational

behaviour because we can use the term-rewriting system to link a term of

the base type with a unique term of the congruence type which is its normal

form. However this approach has some problems in termination criteria and

interaction between rewriting systems [34].

• Barthe, Capretta and Pons [16] compare different ways of defining setoids in

Type Theory. Setoids are classified as partial setoids or total setoids depend-

ing on whether the equality relation is reflexive or not. They also consider

obtaining quotients for different kinds of setoids, especially for partial se-

toids. In their framework of partial setoids, suppose we have a partial setoid

(A,∼), an element x : A such that x ∼ x is called a defined element, the

others are undefined. In this case if we simply define a quotient by replacing

the underlying partial equivalence relation with a new one R, undefined ele-

ments in the base setoid may be incorrectly introduced in the quotient. The

reason is that there possibly exist some undefined elements x : A satisfying

R(x, y). They solve the problem by defining a restricted version of R which

only relates defined elements.

Chapter 3 Quotient Types 63

• Abbott, Altenkirch et al. [2] provides the basis for programming with quo-

tient datatypes polymorphically based on their works on containers which

are datatypes whose instances are collections of objects, such as arrays, trees

and so on. Generalising the notion of container, they define quotient con-

tainers as the containers quotiented by a collection of isomorphisms on the

positions within the containers.

• Voevodsky [86] implements quotients in Coq based on a set of axioms of

Homotopy Type Theory. He first implements the notion of equivalence class

and uses it to implement quotients which is analogous to the construction of

quotient sets in set theory. The details are given in Section 3.4.1.

3.6 Summary

We gave the syntax of quotient types in this chapter. The underlying relation is

required to be an equivalence in our definition which is different from [47]. In fact,

the equivalence condition does not affect the construction of quotient types. Jacobs

[54] has shown that, for an arbitrary relation R, the same constructions can be

interpreted as set theoretical quotient sets of A/R≡, where R≡ is the equivalence

closure of R.

Two approaches of defining elimination rules were given, one having a combination

of non-dependent eliminator with an induction principle as in Hofmann’s defini-

tion and another having a dependent eliminator. We also showed that they are

equivalent.

We showed that propositional extensionality implies the effectiveness of quotients.

We characterised quotients in category theory. They do not only correspond to

coequalizers but also can be generated from a left adjoint functor to the equality

functor ∇ : Set → Setoid. We concluded with a literature review about quotient

types.

Chapter 4

Definable Quotients

In Intensional Type Theory, the quotient type former is not necessary to define

all quotients as sets. One of the most basic examples is the set of integers Z. On

one hand it can be interpreted as a quotient set Z0 :≡ N×N/∼ in which we use a

pair of natural numbers (a, b) to represent the integer as the result of subtraction

a−b. On the other hand, from the usual notation of integers, Z can be inductively

defined as natural numbers together with a sign. Given any element (a, b) : N×N,

there must be an element of c : Z which can be seen as the name of the equivalence

class or normal form of (a, b), thereby we can define a normalisation function

denoted as [_] : Z0 → Z.

Another example is the set of rational numbers Q. Usually, rational numbers are

represented as fractions, e.g. 1
2
. However different fractions can refer to the same

rational numbers, e.g. 1
2
= 2

4
. It naturally gives us a quotient definition of rational

numbers as fractions (or unreduced fractions). As we know, for one rational

number, different fractions for it can always be reduced to a unique one called

reduced fraction. Therefore, the set Q can also be defined as a Σ-type consisting

of a fraction together with a proof of the property that it is reduced. Thus, a

normalisation function in this case is just an implementation of the reduction

process.

For these quotients which are definable as a set without being treated as quotients,

it seems unnecessary to interpret them as setoids. However in practice, the setoid

65

66 Chapter 4 Definable Quotients

definitions have some advantages compared to the set definition. For example, we

can define operations on Z like addition and multiplication and prove algebraic

properties, such as verifying that the structure is a ring. However, this is quite

complicated and uses many unnecessary case distinctions due to the cases in the set

definition. E.g. the proving of distributivity within this setting is not satisfactory

since too many cases have to be proven from scratch. In the setoid definition

Z0, there is only one case and the algebraic properties are direct consequences of

the semiring structure of the natural numbers. For rational numbers, it is also

conceivable that operations on unreduced functions are simpler to define because

there is no need to make sure the result is reduced in every step.

Although the setoid definitions have some nice features in these cases, they require

us to redefine all operations on sets again on setoids, for example List(A,∼).

Hence, we propose to use both the setoid and the associated set, but to use the

setoid structure to define operations on the quotient set and to reason about it.

The setoid definition and set definition can be related by the normalisation function

so that we can lift operations and properties in the same manner as quotient types.

In this chapter we introduce the formal framework to do this, i.e. we provide the

definition of quotients as algebraic structures specifying the normalisation func-

tion with necessary properties. Indeed, it can be seen as a “manual construction”

of quotient types, in other words, instead of automatically creating a type given

a setoid, we prove another given type is the quotient. It provides us with con-

versions between two representations and so combines the nice features of both

representations.

4.1 Algebraic structures of quotients

We first define several algebraic structures for quotients corresponding to the rules

of quotient types (see Section 3.1.1).

Definition 4.1. Prequotient. Given a setoid (A,∼), a prequotient over that

setoid consists of

1. a set Q,

Chapter 4 Definable Quotients 67

2. a function [_] : A → Q,

3. a proof sound that the function [_] respects the relation ∼, that is

sound: (a, b : A) → a ∼ b → [a] = [b],

Roughly speaking, 1 corresponds to the formation rule, 2 corresponds to the in-

troduction rule and 3 corresponds to Q-Ax. The function [_] is intended to be

the normalisation function with respect to the equivalence relation, however it is

not enough to determine it now.

To complete a quotient, we also need the elimination rule and the computation

rule.

Definition 4.2. Quotient. A prequotient (Q, [_], sound) is a quotient if we also

have

4. for any B : Q → Set, an eliminator

qelimB : (f : (a : A) → B [a])

→ ((p : a ∼ b) → f(a) ≃sound(p) f(b))

→ ((q : Q) → B(q))

such that qelim-β : qelimB(f, p, [a]) = f(a).

This definition has a dependent eliminator. An alternative equivalent definition

given by Martin Hofmann has a non-dependent eliminator and an induction

principle.

Definition 4.3. Quotient (Hofmann’s). A prequotient (Q, [_], sound) is a quo-

tient (Hofmann’s) if we also have

lift : (f : A → B) → (∀a, b → a ∼ b → f(a) = f(b)) → (Q → B)

together with an induction principle. Suppose B is a predicate, i.e. B : Q → Prop,

qind: ((a : A) → B([a])) → ((q : Q) → B(q))

68 Chapter 4 Definable Quotients

Definition 4.4. Effective quotient. A quotient is effective (or exact) if we have

the property that

effective : (∀a, b : A) → [a] = [b] → a ∼ b

We now consider a specific group of quotients which have a canonical choice in

each equivalence class.

Definition 4.5. Definable quotient.

Given a setoid (A,∼), a definable quotient is a prequotient (Q, [_], sound) with

emb : Q → A

complete : (a : A) → emb[a] ∼ a

stable : (q : Q) → [emb(q)] = q.

It is exactly the specification of [_] as a normalisation function with respect to

emb (see [5]). It is also related to the choice operator for quotient types in Martin

Hofmann’s definition[47].

Proposition 4.6. All definable quotients are effective quotients.

Proof. Assume B : Set, given any function f : A → B such that p : a ∼ b →

f(a) = f(b), define

liftB(f, p, q) :≡ f(emb(q))

To verify the computation rule, assume a : A,

liftB(f, p, [a]) ≡ f(emb([a]))

By completeness, we get

Chapter 4 Definable Quotients 69

emb([a]) ∼ a

Then by p : a ∼ b → f(a) = f(b), we can prove that

f(emb([a])) = f(a)

For induction principle, suppose B : Q → Prop, let f : (a : A) → B([a]) and

q : Q.

By stabiliy, we get

[emb(q)] = q

Thereby from

f(emb(q)) : B([emb(q)])

we can derive a proof of B(q).

It follows from Proposition 3.2 that this also gives rise to a quotient.

Finally, assume [a] = [b] for given a, b : A, by completeness property, we obtain

that

a ∼ emb[a] = emb[b] ∼ b

and hence a ∼ b, i.e. the quotient is effective.

However, a quotient is not enough to build a definable quotient because we can

not extract a canonical choice for each equivalence class q : Q.

70 Chapter 4 Definable Quotients

The definitions of these algebraic structures and proofs about the relations between

them have been encoded in Agda (see Appendix A).

Let us investigate some examples of definable quotients.

4.2 Integers

4.2.1 The setoid definition (Z0,∼)

Negative whole numbers can be understood as the results of subtraction of a larger

natural number from a smaller one. In fact, any integer can be seen as a result

of subtraction of a natural number from another. It implies that integers can be

represented by pairs of natural numbers

Z0 :≡ N× N

for example, from the equation 1− 4 = −3, we learn that −3 can be represented

by (1, 4).

However, from the equation

n1 − n2 = n3 − n4,

it is easy to see that one integer can be represented by different pairs.

The equivalence relation can not be simply defined as this because subtraction is

not closed on natural numbers. We only need to transform the equation as

n1 + n4 = n3 + n2.

This gives rise to an equivalence relation:

Chapter 4 Definable Quotients 71

(n1, n2) ∼ (n3, n4) :≡ n1 + n4 = n3 + n2.

We can easily verify that it is reflexive, symmetric and transitive by equation

transformations, so the proof is omitted here.

Thereby the setoid of integers can be formed as:

Z-Setoid : Setoid

Z-Setoid = record

{ Carrier = Z0

; _≈_ = _∼_

; isEquivalence = _∼_isEquivalence

}

4.2.2 The set definition Z

The usual notation for an integer is a natural number with a positive or negative

sign in front:

• +_ : N → Z

• −_ : N → Z

If we define Z in this way, 0 has two intensionally different representations, which

is considered harmful because we lose canonicity and it will result in unnecessary

troubles. We can fix this problem by giving a special constructor for 0:

• +suc_ : N → Z

• zero : Z

• −suc_ : N → Z

72 Chapter 4 Definable Quotients

In principle, it is preferable to use fewer constructors, because there will be fewer

cases to analyse when doing pattern matching. Taking into account the embedding

of natural numbers into integers, it makes sense to combine the positive integers

with 0:

data Z : Set where

+_ : N → Z

-suc_ : N → Z

Although it is a not symmetric, we achieve both canonicity and simplicity.

4.2.3 The definable quotient of integers

The basic ingredients for the definable quotient of integers have been given. One

essential component of the quotient structure which relates the base type and quo-

tient type is a normalisation function which can be recursively defined as follows:

[_] : Z0 → Z

[m , 0] = + m

[0 , suc n] = -suc n

[suc m , suc n] = [m , n]

The soundness property of [_] can be proved by case analysis, but it turns out to

be too complicated.

It is plausible define the embedding function written as p_q. In fact the first two

cases in definition of [_] already gives us the answer:

p_q : Z → Z0

p + n q = n , 0

p -suc n q = 0 , suc n

Chapter 4 Definable Quotients 73

To complete the definition of definable quotient, there are several properties to

prove. The stability and completeness can simply be proved by recursion. To

prove soundness, we can first prove an equivalent lemma:

sound′ : ∀(a, b : Z) → paq ∼ pbq → a = b

Given a ∼ b, by transitivity and symmetry of ∼ and completeness, we can prove

that

p[a]q ∼ a ∼ b ∼ p[b]q

Applying the lemma sound′, we get

[a] = [b]

hence [_] is sound (it respects ∼).

These properties have been verified in Agda (see Appendix A), we omit the detailed

proofs here.

4.3 Rational numbers

4.3.1 Setoid: fractions

In Type Theory, we usually choose fractions to represent rational numbers because

the decimal expansion of a rational number can be infinite. Any rational number

can be expressed as a fraction m
n

consists of an integer m called numerator and a

non-zero integer n called denominator.

There are different ways to interpret a fraction: two natural numbers together

with a sign; two integers with a condition that the denominator is non-zero; an

74 Chapter 4 Definable Quotients

integer for numerator and a natural number for denominator. It is clear that the

last one is the simplest,

Q0 = Z× N,

where the sign of rational number is contained in numerator and it is easy to

exclude 0 by viewing n as a denominator n + 1. This means that we encode

rational numbers as follows:

data Q0 : Set where

/suc : (n : Z) → (d : N) → Q0

such that 2/suc 2 stands for 2
3
.

Different fractions can represent the same rational numbers.

a

b
=

c

d

However since integers are not closed under division, we have to transform the

equation into

a× d = c× b

in order to encode it as an equivalence relation as follows:

∼ : Q0 → Q0 → Set

n1 /suc d1 ∼ n2 /suc d2 = n1 Z* (+ suc d2) ≡ n2 Z* (+ suc d1)

Chapter 4 Definable Quotients 75

4.3.2 Set: reduced fractions

A fraction a
b

is reduced if and only if a and b are coprime which means if their

greatest common divisor is 1. Equivalently, we can say that their absolute values

are coprime, thus we can define a predicate of Q0 as

IsReduced : Q0 → Set

IsReduced (n /suc d) = True (coprime? | n | (suc d))

which decides whether they are coprime or not, if it is the case, it becomes ⊤,

otherwise it becomes ⊥. Therefore, it is a propositional set (there is at most one

inhabitant).

The reduced fractions are canonical representations of rational numbers. It is a

subset of fractions, so we only need to add the property above to it:

Q : Set

Q = Σ[q : Q0] IsReduced q

This is equivalent to the definition of Q in Agda standard library which uses record

types.

4.3.3 The definable quotient of rational numbers

The set definition Q ensures the canonicity of representations, but it complicates

the manipulation of rational numbers.

To calculate rational numbers using Q, we have to reduce fractions in every step

which is unnecessary from our usual experience because operations can be carried

76 Chapter 4 Definable Quotients

out correctly on unreduced forms. In fact someone complained about this problem1

in practical use of unreduced fractions in Agda standard library.

Therefore a definable quotient of rational numbers consisting of both Q0 and Q

and conversions between them is very useful. We can carry out calculations and

prove properties using Q0 and reduce fraction when a canonical form is required.

We believe that it can also improve the computational efficiency, even though some

people claim that the unreduced numbers can be too large to make it efficient.

We only need to implement the reduction process to be the normalisation function.

We first define an auxiliary function calQ. It calculates a reduced fraction for a

positive rational represented by a pair of natural numbers x, y : N with a condition

that y is not zero. It uses a library function gcd′ which computes the greatest

common divisor di, the the new numerator q1, the new denominator q2 such that

q1 ∗ di = x, q2 ∗ di = y and q1 and q2 are coprime.

calQ : ∀(x y : N) → y 6≡ 0 → Q

calQ x y neo with gcd′ x y

calQ .(q1 N* di) .(q2 N* di) neo

| di , gcd-* q1 q2 c = (numr /suc pred q2) , iscoprime

where

numr = + q1

deno = suc (pred q2)

lzero : ∀ x y → x ≡ 0 → x N* y ≡ 0

lzero .0 y refl = refl

q2 6≡0 : q2 6≡ 0

q2 6≡0 qe = neo (lzero q2 di qe)

invsuc : ∀ n → n 6≡ 0 → n ≡ suc (pred n)

invsuc zero nz with nz refl

... | ()

1Discussion on the Agda mailing list: http://comments.gmane.org/gmane.comp.lang.agda/6372

Chapter 4 Definable Quotients 77

invsuc (suc n) nz = refl

deno≡q2 : q2 ≡ deno

deno≡q2 = invsuc q2 q2 6≡0

copnd : Coprime q1 deno

copnd = subst (λ x → Coprime q1 x) deno≡q2 c

witProp : ∀ a b → GCD a b 1

→ True (coprime? a b)

witProp a b gcd1 with gcd a b

witProp a b gcd1 | zero , y with GCD.unique gcd1 y

witProp a b gcd1 | zero , y | ()

witProp a b gcd1 | suc zero , y = tt

witProp a b gcd1 | suc (suc n) , y

with GCD.unique gcd1 y

witProp a b gcd1 | suc (suc n) , y | ()

iscoprime : True (coprime? | numr | deno)

iscoprime = witProp _ _ (coprime-gcd copnd)

To apply this function to negative rational numbers, we only need to define the

negation as

-_ : Q → Q

-_ ((n /suc d) , isC) = ((Z- n) /suc d) ,

subst (λ x → True (coprime? x (suc d)))

(forgetSign n) isC

where

forgetSign : ∀ x → | x | ≡ | Z- x |

forgetSign (-suc n) = refl

forgetSign (+ zero) = refl

78 Chapter 4 Definable Quotients

forgetSign (+ (suc n)) = refl

Then it is natural to define the normalisation function as

[_] : Q0 → Q

[(+ n) /suc d] = calQ n (suc d) (λ ())

[(-suc n) /suc d] = - calQ (suc n) (suc d) (λ ())

Because Q is just a subset of Q0, the embedding function is just the first projection

of the Σ-types.

p_q : Q → Q0

p_q = proj1

To complete the definable quotient, we have to prove all essential properties. Be-

cause of the complicated definitions, we only sketch proofs here:

• The soundness can be understood as the uniqueness of reduced forms which

can be proved from the unique prime factorization of integers. Given the

equation a1 ∗ b2 = b1 ∗ a2, we can cancel the two greatest common divisors,

and the equation becomes q1 ∗ r2 = r1 ∗ q2 where (q1, q2) and (r1, r2) are

the reduced pairs of (a1, a2) and (b1, b2), and both pairs are coprime. The

coprime property implies that there are no common prime factors, thus we

can deduce that the set of prime factors of q1 is a subset of r1 and vice

versa, hence q1 = r1 and q2 = r2 for the same reason. In fact this has been

implemented in Agda standard library for rational numbers.

• The stability means that given a reduced fraction, if we reduce it again, it

stays the same. It is the case because from the coprime property we can

deduce that their greatest common divisor is 1, thus the new numerator and

denominator are the same as the old ones.

Chapter 4 Definable Quotients 79

• The completeness means that if we reduce a fraction x
y
, the reduced one

is equivalent to it. This is also easy to verify because in the reduction

process we have the explicit proofs of q1 ∗ di = x, q2 ∗ di = y, to prove

q1 ∗ (q2 ∗di) = (q1 ∗di)∗ q2 we can simply cancel the greatest common divisor

di. We ignore the sign of the fractions because it can be cancelled in those

equations.

4.4 The application of definable quotients

Usually the definable quotient structure is useful when the base type (or carrier)

is easier to use. For example, compared to Z, Z0 has only one pattern which leads

to less case distinctions. In the case of rational numbers, Q0 does not have the

coprime property, which also reduces complexity. Thus we can define operators

and prove properties on setoid representation. Then, we can easily lift them by

two ways of conversions.

Operators We can lift a unary operator f by

liftop1(f) :≡ [_] ◦ f ◦ p_q

This approach can be generalised to n-ary operators. An operator respects ∼ if

a ∼ b → f(a) ∼ f(b)

It has to be noticed that this property is not required to verify before lifting. It

allows unsafe lifting but it is simpler. We can verify the properties separately.

For integers, most of the definitions for operators on Z0 can be induced from

mathematical equations. Because we can only do valid operations on natural

numbers (+ or ∗) except − which is replaced by pairing operation. For instance,

to define the addition operator

80 Chapter 4 Definable Quotients

(a1 − b1) + (a2 − b2) = (a1 + a2)− (b1 + b2)

provides a clear way to define it, which respects ∼.

+ : Z0 → Z0 → Z0

(x+ , x-) + (y+ , y-) = (x+ N+ y+) , (x- N+ y-)

There is only one case, which means that we usually do not need to do case

analysis when proving properties about additions. In fact, the same is true for

other operators.

Properties Properties about setoids and operators defined on setoids can be

lifted by using soundness of [_] and operators, completeness, stability and equiv-

alence properties. For example, given a unary operator f : A → A such that ∀(a :

A) → f(f(a)) ∼ a, we can prove that ∀(q : Q) → liftop1(f)(liftop1(f)(q)) = q as

follows:

Proof. By definitional expansion, the property can be rewritten as:

([_] ◦ f ◦ p_q ◦ [_] ◦ f ◦ p_q)(q) = q

Applying the assumption ∀(a : A) → f(f(a)) ∼ a on pqq, we get

(f ◦ f ◦ p_q)(q) ∼ pqq

By completeness on (f ◦ p_q)(q), we can prove that

(p_q ◦ [_] ◦ f ◦ p_q)(q) ∼ (f ◦ p_q)(q)

Because f respects ∼,

Chapter 4 Definable Quotients 81

(f ◦ p_q ◦ [_] ◦ f ◦ p_q)(q) ∼ (f ◦ f ◦ p_q)(q)

By transitivity of ∼

(f ◦ p_q ◦ [_] ◦ f ◦ p_q)(q) ∼ pqq

Because [_] respects ∼,

([_] ◦ f ◦ p_q ◦ [_] ◦ f ◦ p_q)(q) = ([_] ◦ p_q)(q)

Finally, by applying stability on the right hand side, we prove that

([_] ◦ f ◦ p_q ◦ [_] ◦ f ◦ p_q)(q) = q

As we mentioned, one of the important motivations of definable quotients is that

the setoid form is simpler and therefore properties can be proved with less case

distinctions. Another advantage is that usually there are functions and properties

available for the setoid form that are very useful.

In [59], the author has proved all necessary properties to form a commutative ring

of integers in Agda. In practice, for the set definition of integers, most of the basic

operations and simple theorems are not unbearably complicated. However, the

number of cases grows exponentially when case analysis is unavoidable. Although

it is possible to prove lemmas which cover several cases, it is still very inefficient

in general. We have experienced extreme difficulty in proving the distributivity

law within the ring of integers.

Case: distributivity proof As an example we only discuss the left distribu-

tivity

82 Chapter 4 Definable Quotients

x× (y + z) = x× y + x× z

We use the multiplication defined in the standard library which calculates signs

and absolute values separately:

Z* : Z → Z → Z

i Z* j = sign i S* sign j ⊳ | i | N* | j |

If we split all cases, we will have 2∗2∗2 cases in total, which is rather complicated

and inconvenient. Therefore, we decide to combine several cases.

When all of them are non-negative integers, we can apply apply the left distribu-

tivity law of natural numbers which we assume is available. In fact, it can be

applied in all cases in which y and z have the same sign, because signs can be

moved out. Thus we can write some parts of the proof (Note: DistributesOverl

means that the first operator distributes over the second one):

distl : _Z*_ DistributesOverl _Z+_

distl x y z with sign y S
?
= sign z

distl x y z | yes p

rewrite p

| lem1 y z p

| lem2 y z p =

trans (cong (λ n → sign x S* sign z ⊳ n)

(Ndistl | x | | y | (| z |)))

(lem3 (| x | N* | y |) (| x | N* | z |) _)

distl x y z | no ¬p = ...

To prove these simpler cases we need three lemmas,

Chapter 4 Definable Quotients 83

lem1 : ∀ x y → sign x ≡ sign y → | x Z+ y | ≡ | x | N+ | y |

lem1 (-suc x) (-suc y) e = cong suc (sym (m+1+n≡1+m+n x y))

lem1 (-suc x) (+ y) ()

lem1 (+ x) (-suc y) ()

lem1 (+ x) (+ y) e = refl

lem2 : ∀ x y → sign x ≡ sign y → sign (x Z+ y) ≡ sign y

lem2 (-suc x) (-suc y) e = refl

lem2 (-suc x) (+ y) ()

lem2 (+ x) (-suc y) ()

lem2 (+ x) (+ y) e = refl

lem3 : ∀ x y s → s ⊳ (x N+ y) ≡ (s ⊳ x) Z+ (s ⊳ y)

lem3 0 0 s = refl

lem3 0 (suc y) s = sym (Z-id-l _)

lem3 (suc x) y s = trans (h s (x N+ y)) (

trans (cong (λ n → (s ⊳ suc 0) Z+ n) (lem3 x y s)) (

trans (sym (Z-+-assoc (s ⊳ suc 0) (s ⊳ x) (s ⊳ y))) (

cong (λ n → n Z+ (s ⊳ y)) (sym (h s x)))))

where

h : ∀ s y → s ⊳ suc y ≡ (s ⊳ (suc 0)) Z+ (s ⊳ y)

h s 0 = sym (Z-id-r _)

h Sign.- (suc y) = refl

h Sign.+ (suc y) = refl

However, intuitively speaking, if y and z have different signs, it is impossible to

apply the left distributivity law for natural numbers. There is no rule to turn

x ∗ (y − z) into an expression which only contains natural numbers. The case

analysis is unavoidable here, and we have to prove it from scratch. From the

author’s experience, this is very complicated and inefficient because we can not

refer to proved theorems in a meaningful way.

84 Chapter 4 Definable Quotients

It is much simpler to prove distributivity for Z0. As we have mentioned, the defini-

tions of these operators only involve operators for natural numbers. Therefore all

these properties which only involve plus, minus and multiplication, are intensional

equations about natural numbers with the operators which forms a commutative

semiring of natural numbers. We can use these laws to prove distributivity easily.

In fact with the help of the ring solver, it can be proved automatically. The ring

solver is an automatic equation checker for rings, e.g. the ring of integers. It is

implemented based on the theory described in [43].

distl : _*_ DistributesOverl _+_

distl (a , b) (c , d) (e , f) = solve 6

(λ a b c d e f → a :* (c :+ e) :+ b :* (d :+ f) :+

(a :* d :+ b :* c :+ (a :* f :+ b :* e))

:=

a :* c :+ b :* d :+ (a :* e :+ b :* f) :+

(a :* (d :+ f) :+ b :* (c :+ e))) refl a b c d e f

It is not the simplest way to use the ring solver since we have to feed the type (i.e.

the equation) to the solver. In fact Agda has a feature called "reflection" which

helps us to quote the type of the current goal so that the application of the ring

solver can be automated. There is already some work done by van der Walt [85].

It can be seen as an analogy of the "ring" tactic from Coq.

To form the commutative ring of integers, we can prove all properties using the

ring solver. However, the ring solver has to calculate the proof which takes a very

long time to type check from our experience. As these basic laws are used a lot in

complicated theorems, pragmatically speaking, it is better not to prove them using

the ring solver. Instead, we can manually construct the proof terms to improve

efficiency of library code, sacrificing some conveniences.

Luckily, it is still much simpler than the ones for the set of integers Z. First, there

is only one case of integer and as we know the equations are indeed equations of

natural numbers which can be proved using only the properties in the commutative

Chapter 4 Definable Quotients 85

semiring of natural numbers. There is no need to prove some properties for Z from

scratch like in the proof of distributivity.

dist-leml : ∀ a b c d e f →

a N* (c N+ e) N+ b N* (d N+ f) ≡

(a N* c N+ b N* d) N+ (a N* e N+ b N* f)

dist-leml a b c d e f = trans

(cong2 _N+_ (Ndistl a c e) (Ndistl b d f))

(swap23 (a N* c) (a N* e) (b N* d) (b N* f))

distl : _Z0*_ DistributesOverl _Z0+_

distl (a , b) (c , d) (e , f) =

cong2 _N+_ (dist-leml a b c d e f)

(sym (dist-leml a b d c f e))

We only need one special lemma which can be proved by applying distributivity

laws for natural numbers. The swap23 is a commonly used equation rewriting

lemma

(m+ n) + (p+ q) = (m+ p) + (n+ q)

After all, the application of the quotient structure in the integer case provides a

general approach to defining functions and prove theorems when the base types

are simpler to deal with. When working with the field of rational numbers, we can

benefit from the setoid representation. We use Z and N for the definition of Q,

and Z itself uses only N. Therefore, any equation of rational numbers amounts to

an equation of natural numbers, allowing us to apply the ring solver.

4.5 Related work

Courtieu [34] considers an extension of the calculus of inductive constructions

(CIC), an intensional type theory, by normalized types. Those can be seen as

86 Chapter 4 Definable Quotients

type formers for definable quotients in our sense, namely quotients which have

a normalisation function. Therefore, to form a normalised type, a normalisation

function is required instead of an equivalence relation. He also provides an example

of integers, where the base type has three constructors 0, S for successors and P

for predecessors.

Cohen [28] also defines a quotient structure in Coq, which consists of Q as a

quotient type, T as base type, two mapping pi : T → Q and repr : Q → T and

a proof that pi is a left inverse of repr. It is similar to our algebraic structure of

definable quotients without an equivalence relation involved, pi corresponds to [_],

repr corresponds to emb, and the equivalence relation can be recovered simply: if

for any two s, t : T such that pi(s) = pi(t), then they are equivalent.

4.6 Summary

In this chapter, we have shown that, although we work in a theory in which quo-

tient types are unavailable, there are some quotients that are themselves definable

together with a normalisation function without using quotient types.

We introduced several algebraic structures for quotients which can be seen as “man-

ual construction” of quotient types. A prequotient gives the basic ingredients for

later constructions. We give two equivalent definitions of quotients, one of which

has a dependent eliminator, while the other (as given by Hofmann) adds a non-

dependent eliminator and an induction principle. A definable quotient includes

an embedding function selecting a canonical choice for each equivalence class such

that [_] is correctly specified as a normalisation function. This is very useful in

practice. It provides us with a flexible conversion between setoid representations

and set representations. We can usually benefit from the convenience of the simple

setoid form and auxiliary functions without losing canonicity of set representation,

hence it is not necessary to redefine all kinds of functions and types on sets e.g.

lists, on setoids again.

To show the application of definable quotients, we used two examples, the set of

integers and the set of rational numbers. Some concrete cases have been given

Chapter 4 Definable Quotients 87

to show how to lift operations and theorems from setoid representations. We

illustrated the advantages of definable quotients in the comparison between Z and

Z0, using the proof of distributivity for the commutative ring of integers.

Chapter 5

Undefinable Quotients

In this chapter, we will discuss some other quotients which are not definable via

normalisation, for example the set of real numbers as Cauchy sequences of rational

numbers [19] and finite multisets represented by lists. We say that a quotient is un-

definable if there is no definable normalisation function which returns a canonical

choice for each equivalence class. For the Cauchy sequences of rational numbers,

Nicolai Kraus [57] has shown that all definable endofunctions respecting the equiv-

alence relation have to be constant, hence it is impossible to define a normalisation

function. We reproduce the proof here and extend it to other cases especially, the

partiality monad. It has to be noticed that the proof is conducted in basic Martin-

Löf type theory and can be generalised to any extension as long as it admits the

Brouwer’s continuity principle, i.e. definable functions are continuous [83].

5.1 Definability via normalisation

Although we have provided the definition of definable quotients (see Definition 4.5),

it is not always the case that the quotient set can be defined inductively and we

are able to talk about a normalisation function as [_] : A → Q. Therefore, we

provide a different characterisation of the property which only talks about a setoid

(A,∼).

89

90 Chapter 5 Undefinable Quotients

Definition 5.1 (Definable via normalisation). Given a setoid (A,∼), the quo-

tient A/∼ is definable via normalisation if there is an endofunction [_]0 which is

a normalisation function:

• [_]0 : A → A

• sound : ∀(a, b : A) → a ∼ b → [a]0 = [b]0

• complete : ∀(a : A) → [a]0 ∼ a

It is actually equivalent to say the quotient is definable: First, given [_]0 : A → A

specified as above,

• The quotient set can be defined as

Q :≡ Σ(a : A), [a]0 = a

• The "normalisation function" is

[a] :≡ ([a]0, refl)

which is also sound because [_]0 is sound.

• The embedding function is just first projection

emb :≡ π1

• Stability: given (a, p) : Σ(a : A), [a]0 = a

[emb(a, p)] ≡ ([a]0, refl)

Hence we need to prove ([a]0, refl) = (a, p).

We can prove it by J,

J(t, [a]0, a, p) : ([a]0, refl) = (a, p)

where t(x) :≡ refl : (x, refl) = (x, refl)

Chapter 5 Undefinable Quotients 91

• Completeness: given a : A, we need to prove emb[a] ∼ a which turns out to

be

[a]0 ∼ a

This is exactly the completeness property in the specification of [_]0.

In the other direction, given a definable quotient,

•

[_]0 :≡ emb ◦[_]

• Soundness: given a, b : A such that a ∼ b, because [_] is sound, we know

[a] = [b]

By the congruence rule,

emb[a] = emb[b]

hence [_]0 is sound as well.

• Completeness: given a : A, emb[a] ∼ a is just the completeness property of

the definable quotient.

5.2 Real numbers as Cauchy sequences

One attempt to define the real numbers is via the set R0 of Cauchy sequences. We

can define an equivalence relation ∼ on R0 ×R0, where two Cauchy sequences are

equivalent if and only if their point-wise differences converges to 0. This defines a

setoid (R0,∼). We give the definitions in detail below:

Definition 5.2. A function f : N → Q is called a Cauchy sequence if

92 Chapter 5 Undefinable Quotients

isCauchy(f) :≡ ∀(ε : Q+) → ∃(m : N) ∀(i : N) → i > m → |fi − fm| < ε (5.1)

Hence we can define R0 as

R0 :≡ Σ(f : N → Q) isCauchy(f)

Two Cauchy sequences are equivalent if and only if their point-wise difference

converges to 0:

r ∼ s :≡ ∀(ε : Q+) → ∃(m : N) ∀(i : N) → i > m → |ri − si| < ε

To implement this definition, the existential quantifier is usually encoded as a Σ-

type so that we can guess the real number from the explicit witness m. However,

we would like to keep the proof propositional so that the property of being a

Cauchy sequence is proof-irrelevant.

To combine these two things, we can use an alternative equivalent definition of

the property, where we change the type of f to be N+ → Q so that we can write:

isCauchy(f) :≡ ∀(k : N+), ∀(m,n > k) → |fm − fn| <
1

k
(5.2)

The rate of convergence is fixed so that we can guess the number while the con-

dition is also propositional. Note that we use some shorthand notations in these

definitions.

A slight modification of the definition which is still equivalent is

isCauchy(f) :≡ ∀(n,m : N+), n < m → |fn − fm| <
1

n
(5.3)

Chapter 5 Undefinable Quotients 93

5.3 R0/ ∼ is undefinable via normalisation

In Intensional Type Theory without quotient types, we can define a setoid (R0,∼)

to represent the set of real numbers. However we can show that there is no

definable normalisation function [_]0 : R0 → R0 in the sense of 5.1.

We have made an attempt to prove that the set of reals is undefinable in the

presence of local continuity (see Section. 5 in [10]). We say that two a, b : A are

separable, if there exists a definable test P : A → 2 such that P (a) 6= P (b). Then,

we claim that a definable set A is discrete in the sense that a 6= b always implies

that a and b are separable. However, this is not the case, as Martín Escardó pointed

out. He provides a counterexample in which he shows that, for two distinguishable

terms (i.e. a 6= b), there is no definable test [39]. We sketch the proof here:

Proof. In the proof, he uses N∞ :≡ N → 2 which is a decreasing sequence of 2

called generic convergent sequence. Intuitively speaking, 11000 . . . represents 2

and the sequence of 1, namely 1111 . . . represents ∞. For simplicity, we write sk

for the sequence whose first k digits are 1 and whose remaining digits are 0.

From continuity, we know that:

given any definable function f : N∞ → 2, there exists n : N such that for all

sk : N∞ (k ≥ n) whose first n digits coincide with ∞, f(sk) = f(∞).

Set X :≡ Σu : N∞, u = ∞ → 2,

s0k :≡ (sk, λr → 0) and

s1k :≡ (sk, λr → 1),

there are two unequal terms of X, ∞0 = s0∞ and ∞1 = s1∞,

such that for all definable function f : X → 2, f(∞0) = f(∞1).

To prove it, assume f(∞0) 6= f(∞1). We can prove that for all k : N such that

(sk 6= ∞),

f(s0k) = f(s1k)

94 Chapter 5 Undefinable Quotients

because the second part is always the same due to the fact that sk 6= ∞. From

continuity, we can deduce that

f(∞0) = f(s0k) = f(s1k) = f(∞1)

which contradicts our premise.

Here we present a meta-level proof to show that all definable endofunctions are

constant, hence no normalisation function is definable.

5.3.1 Preliminaries

We use some topological notions.

Recall that a metric space is a set where a notion of distance (called a metric)

between elements of the set is defined. It is an ordered pair (M, d) where M is a

set and d is a metric on M :

1. M is a set,

2. and d : M ×M → R∗ s.t.

3. d(x, y) = 0 ⇐⇒ x = y

4. d(x, y) = d(y, x)

5. d(x, y) + d(y, z) ≥ d(x, z)

We usually give a standard topological structure for types.

For example for types with a decidable equality which are called discrete types,

e.g. 2, N, Q, we can give metric spaces as

• (2, h) where h(m,n) =

{
0 if m = n

1 if m 6= n

Chapter 5 Undefinable Quotients 95

• (N, d) where d(m,n) =

{
0 if m = n

1 if m 6= n

• (Q, e) where e(m,n) =

{
0 if m = n

1 if m 6= n

For sequences over a discrete type, especially the sequences over Q, the distance

between two functions f1, f2 : N+ → Q can be defined as

d(f1, f2) = 2−inf{k∈N+ | f1(k) 6=f2(k)} (5.4)

which makes up a metric space if we use 5.3 as the definition of Cauchy sequences.

If we define R0 using 5.2, there would be two different proof terms for the same

sequence, hence d(x, y) = 0 ⇐⇒ x = y is violated and it is not a metric space.

Given two metric spaces (X, d) and (Y, e), a function f : X → Y is continuous if

for every x : X and ǫ > 0 there exists a δ > 0 such that

∀y : X, d(x, y) < δ ⇒ e(f(x), f(y)) < ǫ

With the standard topological structures, we say that definable functions are con-

tinuous which is usually called Brouwer’s continuity principle. It may not hold

in Intensional Type Theory, but it holds meta-theoretically. Intuitively speaking,

for a function f : (N+ → Q) → 2, it only inspects finite many terms of the input

sequences to compute the result.

We define a generalised condition of isCauchy:

Definition 5.3. For a sequence f : N+ → Q, we say that f is Cauchy with factor

k, written as isCauchyk, for some k ∈ Q+, if

isCauchyk(f) :≡ ∀(n,m : N+) → n < m → |fn − fm| <
1

k · n
. (5.5)

The usual condition isCauchy is just “Cauchy with factor 1”.

The main proposition we make is:

96 Chapter 5 Undefinable Quotients

Proposition 5.4. R0/ ∼ is connected. In Type Theory, it means that any

definable (continuous) function

f : R0 → 2

which respects ∼, is constant.

Proof. Assume f which respects ∼.

Consider the “naive” set model (with “classical standard mathematics” as meta-

theory). It works for a minimalistic type theory with Π, Σ, W, =, N. The general

idea is to interpret our definitions in the set model using function J_K, and we

prove that JfK : JR0K → J2K is constant in the model, which implies it is also

constant in the theory.

By abuse of notation, we write JR0K for the set of Cauchy sequences without proof

terms which is justifiable. For simplicity, we write R for the field of real numbers

which can be defined as the quotient set JR0K / J∼K. It does not make confusion

because R is not defined in the theory. We also just write = for equality and 3 for

natural numbers in both the theory and the model.

In the model, we have a limit function · : JR0K → R, thus given a Cauchy sequence

r : R0, the real numbers it represents can be written as JrK ∈ R.

We assume JfK is non-constant, hence there are two c1, c2 : JR0K such that

JfK(c1) 6= JfK(c2)

Define

m1 :≡ sup{d ∈ R | d ∈ JR0K, d ≤ max(c1, c2), JfK(d) = J12K} (5.6)

m2 :≡ sup{d ∈ R | d ∈ JR0K, d ≤ max(c1, c2), JfK(d) = J02K} (5.7)

(note that one of these two necessarily has to be c1 or c2, whichever is bigger).

Chapter 5 Undefinable Quotients 97

Set m :≡ min(m1,m2). Because m is a supremum, we can observe that in every

neighbourhood U of m, given any t, we can always find another point x ∈ U such

that x = e (for some e) with JfK(e) 6= JfK(t).

Let c ∈ JR0K be a Cauchy sequence such that c = m. We may assume that c

satisfies the condition JisCauchy5K.

From the assumption we know f is continuous, hence JfK is also continuous. It

means that for an arbitrary ǫ < 1, there exists n0 ∈ JNK such that for any Cauchy

sequence c′ ∈ JR0K, if the first n0 sequence elements of c′ coincide with those of c,

namely the distance

g(c, c′) = 2−inf{k∈N | c(k) 6=c′(k)} < 2−n0

then

h(JfK(c), JfK(c′)) < ǫ < 1

hence JfK(c′) = JfK(c).

Write U ⊂ JR0K for the set of Cauchy sequences which fulfil this property, and

U :≡ {d | d ∈ U} for the set of reals that U corresponds to. We claim that U

is a neighbourhood of m by proving an open interval I :≡ (m − 1
2n0

,m + 1
2n0

) is

contained in U , i.e. I ⊂ U .

Let x ∈ I, there is a Cauchy sequence t : JR0K such that t = x and we may assume

that t satisfies the condition JisCauchy5n0
K.

We can concatenate the first n0 elements of the sequence c with t, hence define a

function g : JN+ → QK as

g(n) =

c(n) if n ≤ n0

t(n− n0) else.
(5.8)

98 Chapter 5 Undefinable Quotients

Observe that g is also a Cauchy sequence, i.e. JisCauchyK(g). To verify it, the only

thing that needs to be checked is whether the two “parts” of g work well together,

i.e. let 0 < n ≤ n0 and m > n0 be two natural numbers. We need to show that

|g(n)− g(m)| <
1

n
. (5.9)

Calculate

|g(n)− g(m)| (5.10)

= |c(n)− t(m− n0)| (5.11)

= |c(n)− c+ c− t+ t− t(m− n0)| (5.12)

≤ |c(n)− c|+ |c− t|+ |t− t(m− n0)| (5.13)

≤
1

5n
+

1

2n0

+
1

5n0 · (m− n0)
(5.14)

≤
1

5n
+

1

2n
+

1

5n0

(5.15)

<
1

n
(5.16)

Because the first n0 sequence elements of g coincide with those of c, we know that

JfK(g) = JfK(c).

By the definition of g, it converges to the same real number as t, i.e. g = t. It is

equivalent to say gJ∼Kt and by the condition JfK respects J∼K, we can prove that

JfK(t) = JfK(g) = JfK(c) and therefore x = t ∈ U . Now we can conclude that

I ⊂ U which is equivalent to say U is a neighbourhood of m.

However it contradicts to the definition of m: in every neighbourhood of m, and

thus in particular in (m− 1
2n0

,m+ 1
2n0

), we can always find an x such that x = e

(for some e) with JfK(e) 6= JfK(c).

This approach is also applicable to other discrete types.

Corollary 5.5. Any continuous function from R0 to any discrete type that respects

∼ is constant.

Theorem 5.6. Any continuous function f : R0 → R0 that respects ∼ is constant.

Chapter 5 Undefinable Quotients 99

Proof. Assume we have f as required.

To prove f is constant, it is enough to show that the sequence part is constant

because the proof part is propositional, so by slight abuse of notation, we write

JfK : JR0K → JR0K, omitting the proof part of f .

Given a positive natural number n : JN+K, πn : JR0K → JQK is the projection

function. Define a function hn : JR0K → JQK as

hn :≡ πn ◦ f

By Corollary 5.5, hn has to be constant. Thereby f is constant everywhere, it is

enough to show that f is constant.

Corollary 5.7. There is no definable normalisation function on R0 in the sense

of Definition 5.1, namely R0/∼ is not definable via normalisation.

Even though there is no definable endofunctions, it does not imply that we cannot

define the set of real numbers, although we believe it is the case. In fact, Kraus

has made a conjecture that for a definable type T in minimalistic type theory

with Π, Σ, W, =, N, if T does have two distinguishable elements, then it is not

connected. Because R0/∼ is connected, this conjecture implies that the the set of

real numbers are not definable.

Remark 5.8 (R0 is not Cauchy complete). Is our definition R0 Cauchy com-

plete? In other words, is there a representative Cauchy sequence as a limit for

every equivalence class (i.e. real number)? The answer is no.

Recall that if for every Cauchy sequence of real numbers there is a real number

as its limit, then we say it is Cauchy complete.

In classical logic, the Cauchy reals are Cauchy complete because the limit can be

built via a kind of diagonalization [61]. Also classically Cauchy reals are equivalent

to another definition called Dedekind Reals. However, in Type Theory both of

them are not representable. We cannot find a canonical representative for each

100 Chapter 5 Undefinable Quotients

equivalence class. Intuitively speaking it is easy to find a canonical choice for any

rational number but it is impossible to find one for any irrational number like

π. It has been proved by Robert S. Lubarsky in [61]. If we add the axiom of

Countable Choice (ACω) to Type Theory, Cauchy reals become Cauchy complete

because it provides us a choice function for equivalence classes which helps us find

a canonical choice. The ACω is a classical result which is stronger than the premise

"in classical logic”.

In the HoTT book [82] (see Section 11.3), there is a higher inductive definition of

Cauchy reals RC using Cauchy approximation. Briefly speaking, it first embeds

rational numbers, and then for each s : Q+ → RC we have lim(s) : RC as a limit of

Cauchy sequence of real numbers, hence it is Cauchy complete. Higher inductive

types allow us to define equality of terms as constructors in inductive definitions,

see Section 2.6.4.

5.4 Other examples

5.4.1 Unordered pairs

In Type Theory, given a set A, (a, b) : A × A is an ordered pair. Unordered pair

can be interpreted as the setoid (A× A,∼), where ∼ is generated by

(a, b) ∼ (b, a)

Intuitively speaking, for an arbitrary order pair (a, b), we can not decide whether

(a, b) or (b, a) should be the normal form of the unordered pair they represent. In

general, we can not define a normalisation function for (A× A,∼), unless the set

A has a decidable total order ≤: A → A → Prop equipped with

min,max : A → A → A

Chapter 5 Undefinable Quotients 101

calculating the binary minimum and maximum for that order. This allows us to

define [_]0 : A× A → A× A as

[(a, b)]0 :≡ (min(a, b),max(a, b))

Soundness and completeness can be easily verified by the properties of min and

max.

5.4.2 Finite multisets

In Type Theory, a multiset (bag) can be seen as a generalisation of unordered

pairs. Given a set A, the finite multisets of elements in A can be interpreted as

the setoid (List A,∼) where two lists are (bag) equivalent [36] if they are equal

up to reordering. For example, [1, 2, 2, 5, 1] is equivalent to [2, 2, 1, 1, 5] since they

are permutation of each other. We can observe that two such lists always have the

same length so we use length-explicit lists – Vec here.

Given two lists p, q : Vec A n of length n

p ∼ q :≡ Σ(φ : Fin n → Fin n) Bijection φ ∧ ∀(x : Fin n) → px = qφ(x)

where Fin : N → Set represents finite sets and Bijection : (Fin n → Fin n) →

Prop is the predicate that a mapping between finite sets is bijective.

Because finite multisets can be seen as unordered n-tuples, therefore, it is also not

definable via normalisation unless A has a decidable total order which gives us a

sorting function sort : Vec A n → Vec A n. It allows us to define

[vs]0 :≡ sort(vs)

which is sound and complete by the properties of the sorting function.

102 Chapter 5 Undefinable Quotients

5.4.3 Partiality monad

Given a set A, the set of partial/non-terminating computations over A can be rep-

resented by the partiality (delay) monad A⊥ (or (Delay A) introduced by Capretta

[25]. In Agda, the partiality (delay) monad can be coinductively defined as:

data Delay (A : Set) : Set where

now : A → Delay A

later : ∞ (Delay A) → Delay A

A non-terminating program can be defined by postponing computations forever:

never : {A : Set} → Delay A

never = later (♯ never)

Two computations are strongly bisimilar if they are the same after the same number

of steps delay (there can be infinite steps):

data _∼_ {A : Set} : Delay A → Delay A → Set where

now : ∀ {x} → (now x) ∼ (now x)

later : ∀ {x y} (x∼y : ∞ ((♭ x) ∼ (♭ y))) → (later x) ∼ (later y)

If we ignore the number of steps a computation is postponed, two computations

are weakly bisimilar if they terminate with the same value:

data _≈_ {A : Set} : Delay A → Delay A → Set where

now : ∀ {x y a} → x ↓ a → y ↓ a → x ≈ y

later : ∀ {x y} (x∼y : ∞ ((♭ x) ≈ (♭ y))) → (later x) ≈ (later y)

Chapter 5 Undefinable Quotients 103

where x ↓ y means "x terminates with y":

data _↓_ {A : Set} : Delay A → A → Set where

nowT : ∀{a} → (now a) ↓ a

laterT : ∀{d a} → d ↓ a → (later (♯ d)) ↓ a

Thus A⊥ together with ≈ gives rise a quotient A⊥/ ≈ which stands for the set of

partial computations.

Theorem 5.9. There is no definable normalisation function on A⊥ in the sense

of Definition 5.1.

Proof. Because there can be infinitely many later, we can not decide whether an

element a : A⊥ is equal to never or not.

We can interpret an element of a : A⊥ as a sequence, for instance, suppose a =

later (later (now x)), then by abuse of notations, a1 = later, a2 = later, and

a3 = now x (the rest an for n > 3 can be filled by later). Then a standard metric

space for A⊥ can be given by

g(a, b) = 2−inf{k∈N |a(k) 6=b(k)} (5.17)

Similar to the proof in Proposition 5.4, we can prove A⊥/ ≈ is connected, i.e. any

definable (continuous) function f : A⊥ → 2 which respects ≈ is constant.

We assume JfK is non-constant, i.e. there are x, y : JA⊥K such that JfK(x) 6= JfK(y).

We can also assume JfK(JneverK) = 1, because JfK is continuous, there exists

n0 ∈ N such that for all a ∈ JA⊥K, if the first n0 "elements" of a are laters (namely

they coincide with those of never), then JfK(a) = JfK(JneverK) = 1.

Since JfK(x) 6= JfK(y), one of them must have k < n0 laters before now, assume it

is x then JfK(x) = 0 and JfK(y) = 1. By adding n0 − k laters, we obtain x′ such

that JfK(x′) = JfK(x) = 0 because JfK respects J≈K. However, x′ has n0 laters

such that JfK(x′) = JfK(never) = 1, contradicts to the just established statement.

104 Chapter 5 Undefinable Quotients

Similarly, utilising the sequence interpretation of A⊥, we can show that any endo-

function f : A⊥ → A⊥ that repsects ≈ has to be constant on every choice of later

or now, hence f is constant, therefore, there is no definable normalisation function

on A⊥ in the sense of Definition 5.1.

5.5 Related work

Geuvers and Niqui have shown a construction of the real numbers using Cauchy

sequences of the rational numbers based on a set of axioms in Coq. They have

also the choice of different ways to define Cauchy properties. They have shown

there is a model of these axioms and any two models are isomorphic. They have

also discussed the equivalence between their axioms with the ones introduced by

Bridges [23].

The formalisation of real numbers in Homotopy Type Theory has been discussed

in the HoTT book (see Chapter 11 in [82]). Both Dedekind reals and Cauchy reals

have been considered. They define the Cauchy reals via a higher inductive type,

which makes them Cauchy complete.

Finite multisets as bag equivalent lists have been considered by Danielsson in [36].

He has mainly discussed bag equivalence for lists and has also generalised it to

arbitrary containers. He has also provided a set equivalence which means that we

can represent (finite) sets using the setoid arises from it.

5.6 Summary

To summarize, we have shown some quotients which are not definable via normal-

isation. In particular, we show that the set of real numbers as R0/∼ is connected

which means that any definable (continuous) function on R0 → 2 which respects

∼ is constant. This implies that any definable endofunction on R0 is constant,

hence there is no definable normalisation function for the setoid (R0,∼) that can

be lifted. We similarly proved that the partiality computations which are repre-

sented by partiality monad quotiented by weak bisimilarity is also not definable via

Chapter 5 Undefinable Quotients 105

normalisation. For quotients arising from permutations, such as unordered pairs

and finite multisets, a normalisation function can be defined if we have a decidable

total order. In addition, we believe that these quotients are not definable (in the

sense that there is a carrier Q with the properties stated in Definition 4.5), but

we have not yet proved it formally.

Chapter 6

The Setoid Model

To introduce extensional concepts into Intensional Type Theory, one can simply

postulate them as axioms, but this destroys the good computational properties

of Type Theory. It is crucial to construct an intensional model where these ex-

tensional concepts like functional extensionality, quotient types are automatically

derivable. In the usual set model, types are sets which do not have internal equali-

ties. Therefore it is essential to enrich the structure of types, hence we can interpret

types as setoids, groupoids, or ω-groupoids.

In this chapter, we mainly introduce an implementation of Altenkirch’s setoid

model [3] where types are interpreted as setoids. We define the model as categories

with families in Agda. There is no proof irrelevant universe Prop in Agda, but the

current version of Agda supports some proof-irrelevance features [1], for example

proof-irrelevant fields in record types, proof-irrelevant arguments in function types,

etc. It has been shown by Altenkirch [3] that functional extensionality is inhabited

in this model. More importantly, because types are interpreted as setoids, quotient

types can be defined simply by replacing equality in a given setoid. We build some

basic types from [3] including Π-types, natural numbers and the simply typed

universe. We also extend it to Σ-types and quotient types which are not discussed

in Altenkirch’s original construction.

107

108 Chapter 6 The Setoid Model

6.1 Introduction

A setoid model of Intensional Type Theory is a model where types are interpreted

as setoids i.e. every closed type comes with an equivalence relation. It is usually

used to introduce extensional concepts, for example, Martin Hofmann has defined

a setoid model in [48]. However a naïve version of the setoid model does not satisfy

all definitional equalities. A simple model for quotient types introduced in [47] is

a solution to the problem using a modified interpretation of families, but it does

not allow large eliminations.

Altenkirch [3] proposes a different approach based on the setoid model. He uses

an extension of Intensional Type Theory by a universe of propositions Prop as

metatheory, and the η-rules for Π-types and Σ-types hold.

Γ ⊢ P : Prop Γ ⊢ p, q : P

Γ ⊢ p ≡ q : P
(proof-irr)

Prop only contains "propositional” sets which have at most one inhabitant. Notice

that it is not a definition of types, which means that we cannot conclude a type is

of type Prop if we have a proof that all inhabitants of it are definitionally equal.

The propositional universe is closed under Π-types and Σ-types:

Γ ⊢ A : Set Γ, x : A ⊢ P : Prop

Γ ⊢ Π (x : A) → P : Prop
(Π-Prop)

Γ ⊢ P : Prop Γ, x : P ⊢ Q : Prop

Γ ⊢ Σ (x : P) Q : Prop
(Σ-Prop)

The metatheory has been proved [3] to be:

• Decidable. Definitional equality is decidable, hence type checking is decid-

able.

• Consistent. Not all types are inhabited and not all well-typed definitional

equalities hold.

Chapter 6 The Setoid Model 109

• N-canonical. All terms of type N are reducible to numerals.

Altenkirch further constructs an intensional setoid model within this metatheory

using categories with families as introduced by Dybjer [38] and Hofmann [50].

It is also decidable and N-canonical, functional extensionality is inhabited and it

permits large elimination. It is decidable because its definitional equalities are

interpreted by definitional equality in the metatheory which is decidable.

Remark 6.1 (The category of setoids is not LCCC). This model is the category of

setoids Std which is a full subcategory of Gpd (the category of small groupoids).

Every object of Gpd whose all homsets contain at most one morphism are in this

subcategory.

It is different from a setoid model as an E-category, for instance the one introduced

by Hofmann [46]. An E-category is a category equipped with an equivalence

relation for homsets. The E-category of setoids in Martin-Löf type theory forms a

locally Cartesian closed category (LCCC) which we call E-setoids. All morphisms

of E-setoids give rise to types and they are Cartesian closed, i.e. the category is

locally Cartesian closed.

Every LCCC can serve as a model for categories with families but not every cat-

egory with families has to be an LCCC. In our category of setoids Std, not all

morphisms give rise to types and it is not an LCCC. Altenkirch and Kraus have

written a short note that explains why Gpd and Std are Cartesian closed but not

locally Cartesian closed. As a counterexample, they give a morphism the pullback

functor of which does not have a right adjoint (see [6]).

We will introduce the model along with our implementation of it in Agda. For

readability, we will omit some unnecessary code. The complete code can be found

in Appendix B.

6.2 Metatheory

Agda does not fulfil all requirements of the metatheory, in particular, there is

no proof-irrelevant universe of propositions Prop. Instead Agda has irrelevancy

110 Chapter 6 The Setoid Model

annotations [1]. For example we can declare an argument of type A is proof-

irrelevant by putting a small dot in front of it:

f : .A → B

f a = b

It implies that f does not depend computationally on this argument, hence f(a) ≡

f(b) for any a, b : A. It can also be used in dependent function types, dependent

products (record types). For example, we can define "subset" of A with respect

to a predicate B : A → Set as follows

record Subset {a b} (A : Set a)

(B : A → Set b) : Set (a ⊔ b) where

constructor _,_

field

prj1 : A

.prj2 : B prj1

open Subset public

(In the code above, the variables a, b denote the levels of types.)

Thus, the proposition that the term fulfils the predicate is proof-irrelevant.

We can also declare that a function itself is proof-irrelevant

.g : A → B

g a = b

which creates a proof-irrelevant term of the result type B.

There are several restrictions of this annotation.

Chapter 6 The Setoid Model 111

• One cannot declare the result type of a function as irrelevant.

• The irrelevant values cannot be used in non-irrelevant contexts.

• We cannot pattern match on irrelevant terms.

In most occasions, it replaces propositions. However there is a small problem of

irrelevant fields of record types as we will see later: we can not use an irrelevant

value to construct an irrelevant field or irrelevant function. For example, we can

not simply write p in the place of ? in the following function

.ideq : ∀{A : Set}{a b : A} → .(a ≡ b) → a ≡ b

ideq p = ?

The reason is that the result type cannot be declared as irrelevant, although the

function (or field) is proof-irrelevant which means the result is expected to be

proof-irrelevant. The problem can be temporarily fixed by adding an axiom:

postulate

.irrelevant : {A : Set} → .A → A

This issue is also discussed in [1], and hopefully can be fixed in the future. Fortu-

nately, it only affects small bits of our code, e.g. the construction of natural num-

bers and universes in setoid model. Moreover, the axiom itself is proof-irrelevant

so that it will not affect the N-canonicity property.

Compared to Prop in the original metatheory, we have to make more efforts to

imitate it using this annotations. For example, we can simply write ∼: A → A →

Prop for a propositional equivalence relation in the original metatheory. However,

in our implementation, we write ∼: A → A → Set, but in every occurrence of it

we use the irrelevancy annotation, such that it behaves like a term of Prop.

112 Chapter 6 The Setoid Model

We can easily observe that it is "closed" under Σ-types, but is not “closed” under

Π-types, because we cannot declare its result type as irrelevant. Instead, we have

to declare a Π-type itself is irrelevant.

This metatheory is still decidable, consistent and should be N-canonical because

the only axiom is irrelevance which can not be used to construct non-canonical

terms of N.

6.2.1 Category of Setoids: Std

We can define a setoid as usual, but declare the equivalence properties as irrelevant:

record Setoid : Set1 where

infix 4 _≈_

field

Carrier : Set

≈ : Carrier → Carrier → Set

.refl : ∀{x} → x ≈ x

.sym : ∀{x y} → x ≈ y → y ≈ x

.trans : ∀{x y z} → x ≈ y → y ≈ z → x ≈ z

open Setoid public renaming

(Carrier to |_| ; _≈_ to [_]_≈_ ; refl to [_]refl;

trans to [_]trans; sym to [_]sym)

Notice that we rename our fields for readability of the code. Usually, to project

out the equivalence relation for a setoid S : Setoid, one has to write _≈_ A a b

which is not readable. By renaming, we can write [A] a ≈ b for better style. We

will also rename some fields for other records types later, but we may omit code

in case it is not necessary for the understanding.

A functions between setoids consists of a function between the underlying sets and

a property that it respects the equivalence relation:

Chapter 6 The Setoid Model 113

infix 5 _⇉_

record _⇉_ (A B : Setoid) : Set where

constructor fn:_resp:_

field

fn : | A | → | B |

.resp : {x y : | A |} →

([A] x ≈ y) →

[B] fn x ≈ fn y

open _⇉_ public renaming (fn to [_]fn ; resp to [_]resp)

The category Std has a terminal object, that is, a setoid which receives a unique

setoid homomorphism from any setoid:

 : Setoid

 = record {

Carrier = ⊤;

≈ = λ _ _ → ⊤;

refl = tt;

sym = λ _ → tt;

trans = λ _ _ → tt }

⋆ : {Δ : Setoid} → Δ ⇉

⋆ = record

{ fn = λ _ → tt

; resp = λ _ → tt }

uniqueHom : ∀ (Δ : Setoid)

→ (f : Δ ⇉) → f ≡ ⋆

uniqueHom Δ f = PE.refl

114 Chapter 6 The Setoid Model

Because we do not use a categorical construction to build the "categories with

families", we do not verify that it forms a setoid here.

6.3 Categories with families

The setoid model is essentially a category with families:

Definition 6.2. Categories with families.

• A category C with a terminal object.

• A functor F : Cop → Fam. Fam is a category of families whose objects

are pairs (A,A′) where A is a set and A′ is a family of sets indexed over

A. Morphisms are pairs of functions (f, f ′) such that, for any a : A and

a′ : A′(a), we have f(a) : B and f ′(a′) : B′(f(a)).

• A comprehension of Γ and A : Ty Γ, written as Γ, A (or Γ&A), is a con-

struction of a new object in C which expresses the extension of contexts.

Usually we think of the objects of the category C as contexts and morphisms as

substitutions. The types and terms are projections of the functor F : given an

object (context) Γ : C, we usually write F (Γ) :≡ Σ(A : Ty Γ) Tm Γ A, and the

substitution of types and terms are just contained in the morphism part of this

functor.

In the setoid model, the category of contexts is just Std,

Con = Setoid

Given a context Γ, types over it Ty Γ can be defined as functors from Γ to Std be-

cause types are interpreted as setoids and morphisms between setoids are functors.

However setoids here are not implemented as categories, so we build a semantic

type A : Ty Γ (a functor) as follows:

Chapter 6 The Setoid Model 115

record Ty (Γ : Con) : Set1 where

field

fm : | Γ | → Con

substT : {x y : | Γ |} →

.([Γ] x ≈ y) →

| fm x | →

| fm y |

.subst* : ∀{x y : | Γ |}

(p : ([Γ] x ≈ y))

{a b : | fm x |} →

.([fm x] a ≈ b) →

([fm y] substT p a ≈ substT p b)

.refl* : ∀{x : | Γ |}{a : | fm x |} →

[fm x] substT ([Γ]refl) a ≈ a

.trans* : ∀{x y z : | Γ |}

{p : [Γ] x ≈ y}

{q : [Γ] y ≈ z}

(a : | fm x |) →

[fm z] substT q (substT p a)

≈ substT ([Γ]trans p q) a

.tr* : ∀{x y : | Γ |}

{p : [Γ] y ≈ x}

{q : [Γ] x ≈ y}

{a : | fm x |} →

[fm x] substT p (substT q a) ≈ a

tr* = [fm _]trans (trans* _) refl*

substT-inv : {x y : | Γ |} →

.([Γ] x ≈ y) →

| fm y | →

| fm x |

116 Chapter 6 The Setoid Model

substT-inv p y = substT ([Γ]sym p) y

fm is the object part of this functor, substT is the morphism part which stands

for substitution via an equivalence x ∼ y for x, y : Γ. subst∗ states that the

functions between setoids preserve the equivalence relation. refl∗ and trans∗ are

functor laws up to the equivalence relation. We also prove a lemma tr∗ which

can be understood as the property that given arbitrary morphisms p : y ∼ x

and q : x ∼ y, the composition of them always equal to the identity morphism.

substT-inv just gives the inverse of substT.

Notice that we mark all occurrences of ∼ irrelevant. We also omit some unneces-

sary syntactic renaming of the fields.

Then, terms follow naturally as families of elements in the underlying set of types

indexed by x : Γ, and they have to respects the equivalent relation as well:

record Tm {Γ : Con}(A : Ty Γ) : Set where

constructor tm:_resp:_

field

tm : (x : | Γ |) → | [A]fm x |

.respt : ∀ {x y : | Γ |} →

(p : [Γ] x ≈ y) →

[[A]fm y] [A]subst p (tm x) ≈ tm y

The substitution of types can be defined simply by composing the underlying

objects of types and context morphisms:

[]T : ∀ {Γ Δ : Setoid} → Ty Δ → Γ ⇉ Δ → Ty Γ

[]T {Γ} {Δ} A f

= record

{ fm = λ x → fm (fn x)

; substT = λ p → substT _

Chapter 6 The Setoid Model 117

; subst* = λ p → subst* (resp p)

; refl* = refl*

; trans* = trans*

}

where

open Ty A

open _⇉_ f

refl∗ and trans∗ can also be verified easily because of proof irrelevance. We simplify

our definition by opening two record types which are not ambiguous in the scope.

The substitution of terms is similar:

[]m : ∀ {Γ Δ : Con}{A : Ty Δ} → Tm A

→ (f : Γ ⇉ Δ) → Tm (A [f]T)

[]m t f = record

{ tm = [t]tm ◦ [f]fn

; respt = [t]respt ◦ [f]resp

}

The empty context is just the terminal object of Std as we have seen before.

Given a context Γ and a type A : Ty Γ, we can form a new context Γ&A which

is usually called context comprehension. Syntactically, it corresponds to intro-

ducing a new variable of type A. We can simply construct it with a Σ-type.

& : (Γ : Setoid) → Ty Γ → Setoid

Γ & A =

record { Carrier = Σ[x : | Γ |] | fm x |

; _≈_ = λ{(x , a) (y , b) →

Σ[p : x ≈ y] [fm y] (substT p a) ≈ b }

; refl = refl , refl*

118 Chapter 6 The Setoid Model

; sym = λ {(p , q) → (sym p) ,

[fm _]trans (subst* _ ([fm _]sym q)) tr* }

; trans = λ {(p , q) (m , n) → trans p m ,

[fm _]trans ([fm _]trans

([fm _]sym (trans* _)) (subst* _ q)) n}

}

where

open Setoid Γ

open Ty A

The new relation is also an equivalence which follows from the properties of Γ as

a setoid and the properties of A. Since the context Γ and type A as record types

are opened in the scope, we can unambiguously use fields such as fm and subst∗.

We have also defined a few common operations as usual, e.g. projections and

pairing. The code of them can be found in Appendix B.

6.3.1 Type construction in the setoid model

Dependent function types (i.e. Π-types) and dependent product types (i.e. Σ-types)

are essential in a dependent type theory. Intuitively, they are just Π-types and

Σ-types in the metatheory together with the proofs that the setoid equivalence is

respected. We have implemented them according to the original construction and

reasoning in [3] with minor adaptation. For example, given a type A in Γ and a

type B in Γ&A, we define Π A B as a type in Γ. The elements of Π-types are

dependent functions which respect the equivalence relation.

Π : {Γ : Setoid}(A : Ty Γ)(B : Ty (Γ & A)) → Ty Γ

Π {Γ} A B = record

{ fm = λ x → let Ax = [A]fm x in

let Bx = λ a → [B]fm (x , a) in

record

Chapter 6 The Setoid Model 119

{ Carrier = Subset ((a : | Ax |) → | Bx a |) (λ fn →

(a b : | Ax |)

(p : [Ax] a ≈ b) →

[Bx b] [B]subst ([Γ]refl ,

[Ax]trans [A]refl* p) (fn a) ≈ fn b)

The associated equality is pointwise equality of functions. To prove that it is an

equivalence relation, we can simply exploit the corresponding rules of the equiva-

lence relation within the type B.

; _≈_ = λ{(f , _) (g , _) → ∀ a → [Bx a] f a ≈ g a }

; refl = λ a → [Bx _]refl

; sym = λ f a → [Bx _]sym (f a)

; trans = λ f g a → [Bx _]trans (f a) (g a)

}

For the rest of the construction we just follow Altenkirch’s work in [3] and keep

them in the appendix (see Appendix B).

We also construct some basic types that appeared in Altenkirch’s work, e.g. a

simply typed universe and equality types. Since they have been discussed in [3],

we just omit them here and focus on the more important one – the construction

of quotient types.

6.3.2 Quotient types

We build our quotient types in an Agda module. Given a context Γ, and a type

A : Ty Γ,

module Q (Γ : Con)(A : Ty Γ)

120 Chapter 6 The Setoid Model

we can build a quotient type if we have an equivalence relation R defined on A

which has to respect the underlying equivalence of A. In principle, the type of R

should be Tm (Π (a : A Π A+ Prop) where A+ :≡ A [fst] and fst corresponds to

weakening. However we can not define an object-level Prop because our definition

of setoids does not allow universes as underlying sets, and there is no universe Prop

in meta-theory as well.

We declare the object part and properties of the relation explicitly. As long as

we can define R properly, we can extract objects and properties of R so that this

definition of quotient types still works.

The object part of R is a family of binary relation,

(R : (γ : | Γ |) → | [A]fm γ | → | [A]fm γ | → Set)

which should be proof-irrelevant. Therefore, the internal equality of the result

type should be logical equivalence, hence the respT property can be interpreted

as: for any (γ, γ′ : |Γ|) such that (p : γ ≈Γ γ′), and (a, b : |Afm(γ)|), we have a

logical equivalence

R((Asubst(p, a)), (Asubst(p, b))) ⇐⇒ Rγ(a, b)

Here we only use one direction of this equivalence:

.(Rrespt : ∀{γ γ’ : | Γ |}

(p : [Γ] γ ≈ γ’)

(a b : | [A]fm γ |) →

.(R γ a b) →

R γ’ ([A]subst p a) ([A]subst p b))

Of course, because it is defined on the type A, it has to respect equality (equiva-

lence) of A.

Chapter 6 The Setoid Model 121

.(Rrsp : ∀ {γ a b} → .([[A]fm γ] a ≈ b) → R γ a b)

It is an equivalence relation, so we have reflexivity, symmetry and transitivity.

.(Rref : ∀ {γ a} → R γ a a)

.(Rsym : (∀ {γ a b} → .(R γ a b) → R γ b a))

.(Rtrn : (∀ {γ a b c} → .(R γ a b)

→ .(R γ b c) → R γ a c))

The quotient type Q shares the same underlying set with A, but the internal

equality is replaced by R.

JQK0 : | Γ | → Setoid

JQK0 γ = record

{ Carrier = | [A]fm γ |

; _≈_ = R γ

; refl = Rref

; sym = Rsym

; trans = Rtrn

}

The underlying substitution is the same and we can easily verify the properties of

R.

JQK : Ty Γ

JQK = record

{ fm = JQK0

; substT = [A]subst

122 Chapter 6 The Setoid Model

; subst* = λ p q → Rrespt p _ _ q

; refl* = Rrsp [A]refl*

; trans* = λ a → Rrsp ([A]trans* _)

}

Given a term of A, we can introduce a term of Q.

J[_]K : Tm A → Tm JQK

J[x]K = record

{ tm = [x]tm

; respt = λ p → Rrsp ([x]respt p)

}

We can also define a function between type A and Q inside the model.

J[_]K’ : Tm (A ⇒ JQK)

J[_]K’ = record

{ tm = λ x → (λ a → a) ,

(λ a b p →

Rrsp ([[A]fm _]trans [A]refl* p))

; respt = λ p a → Rrsp [A]tr*

}

Q-Ax can be simply proved because the new equivalence R respects the old one

in A:

.Q-Ax : ∀ γ a b → [[A]fm γ] a ≈ b → [[JQK]fm _] a ≈ b

Q-Ax γ a b = Rrsp

Chapter 6 The Setoid Model 123

The elimination rule and induction principle for quotient types are also straight-

forward. Given a function f : A → B which respects R, we can lift it as a function

of type Q → B whose underlying function is the same as f . Because it respects

R, the lifted function is well-typed. Since we still use the same substitution of A

in the definition of Q, the respt property automatically holds.

Q-elim : (B : Ty Γ)(f : Tm (A ⇒ B))

(frespR : ∀ γ a b → (R γ a b)

→ [[B]fm γ] prj1 ([f]tm γ) a

≈ prj1 ([f]tm γ) b)

→ Tm (JQK ⇒ B)

Q-elim B f frespR = record

{ tm = λ γ → prj1 ([f]tm γ) , (λ a b p →

[[B]fm _]trans [B]refl* (frespR _ _ _ p))

; respt = λ {γ} {γ’} p a → [f]respt p a

}

To prove the inductive principle, first we have to define a substitution which allows

us to apply a variable to a predicate P : Q → Set in the form of P ([a]):

substQ : (Γ & A) ⇉ (Γ & JQK)

substQ = record

{ fn = λ {(x , a) → x , a}

; resp = λ{ (p , q) → p , (Rrsp q)}

}

Given P as a predicate on Q, we assume the result type of P is propositional, i.e.

all terms of the underlying set is equivalent. h is a dependent function, or we can

say it is a proof that for all a : A, P ([a]) holds. Similar to elimination rule, we still

use the same function h in the lifted version. The assumption we made about P

helps us to prove that h is well-typed. The respect property is also inherited.

124 Chapter 6 The Setoid Model

Q-ind : (P : Ty (Γ & JQK))

→ (isProp : ∀ {x a} (r s : | [P]fm (x , a) |) →

[[P]fm (x , a)] r ≈ s)

→ (h : Tm (Π A (P [substQ]T)))

→ Tm (Π JQK P)

Q-ind P isProp h = record

{ tm = λ x → (prj1 ([h]tm x)) ,

(λ a b p → isProp {x} {b} _ _)

; respt = [h]respt

}

6.4 Related work

Barthe, Capretta and Pons [16] have considered different definitions of setoids,

and possible mathematical construction using setoids. The definition of a setoid

we used is called a total setoid, while if the internal relation is not required to be

reflexive, it is called a partial setoid. They have discussed quotients realisation

using different approaches of setoids. Palmgren and Wilander [75] have also shown

a formalisation of constructive set theory in terms of setoids in Intensional Type

Theory. They have considered it as a solution to the problem that the uniqueness

of identity proofs for sets are not derivable from J eliminator.

The categories with families (CwFs) ware introduced by Dybjer [38] as a model of

dependent types which can be defined in Intensional Type Theory. Hofmann [50]

has also explained the categorical semantics of dependent types provided by CwFs.

Clairambault [27] has shown that categories with families are locally Cartesian

closed after some additional structures are added such as Π-types, Σ-types, identity

types etc.

In [46] Hofmann has discussed building a model of dependent type theory as

categories with attributes from a locally Cartesian closed category (LCCC), for

example the E-category of setoids (see Theorem 6.1). In that interpretation every

Chapter 6 The Setoid Model 125

morphism gives rise to a function. The E-category of setoids is different to the one

used in our model which is not lccc. Hofmann [47, 48] has also proposed a setoid

model where types are interpreted as partial setoids. It is built in Intensional Type

Theory with a type of propositions Prop and a type Prf(P) for each P : Prop.

He has provided interpretations of both propositions and quotient types with a

choice operator. He has also proposed a groupoid model [48, 51] to interpret type

dependency which does not exist in his setoid model. It can be seen as a setoid

whose relation ∼ becomes proof-relevant, or more precisely a ∼ b is a set for each

a, b : A, hence we lose UIP and K eliminator. However the groupoid model uses

Extensional Type Theory as meta-theory.

6.5 Summary

In this chapter we have seen an implementation of Altenkirch’s setoid model with

a slight difference in the metatheory. We have used Agda’s irrelevance feature to

imitate the proof-irrelevant universe of propositions Prop. As we have seen it has

a problem which has to be fixed by a postulate. It does not affect most of the

implementation and we do not lose canonicity because the postulate is irrelevant

so that we cannot construct natural numbers using it. We have implemented

the model as a category with families and have introduced various types in it.

Most importantly, we have shown that to define quotient types in this model,

we can simply replace the internal equivalence of a type A as a setoid with a

given equivalence relation on it. The original constributions of this work are

the implementation of Altenkirch’s setoid model in Agda and the extension with

quotient types.

We can further simplify the construction of the setoid model by adopting McBride’s

heterogeneous approach to equality as discussed in Altenkirch, McBride and Swier-

stra’s Observational Type Theory [8]. They identify values up to observation rather

than construction which is called observational equality. It is the propositional

equality induced by the setoid model. In general we have a heterogeneous equality

which allows us to compare terms of different types. It can only be inhabited if

the types are equal. In Agda, it can be defined as

126 Chapter 6 The Setoid Model

data _∼=_ {A : Set} (x : A) : ∀{B : Set} → B → Set where

refl : x ∼= x

However, by defining equality irrelevant with the actual proof of the equality

between types, we silently claim that the types are essentially sets which have

UIP. Therefore if we do not accept K or UIP, we cannot use it in general. However

we can use heterogeneous equality for types which actually are sets, which helps us

avoid the heavy use of subst. This is fortunate, as subst complicates formalisation

and reasoning. For example, we have used this in Section 7.1.2 for syntactic terms.

Chapter 7

Syntactic ω-groupoids

As we have seen in Chapter 6, a type can be interpreted as a setoid and its

equivalence proofs, i.e. reflexivity, symmetry and transitivity, are unique. How-

ever in Homotopy Type Theory, we reject the principle of uniqueness of identity

proofs (UIP). Instead we accept the univalence axiom proposed by Voevodsky

(see Section 2.6.3) which says that equality of types is weakly equivalent to weak

equivalence (see Section 2.6.2). It can be viewed as a strong extensionality axiom

and it does imply functional extensionality. However, adding univalence as an

axiom destroys canonicity, i.e. that every closed term of type N is reducible to a

numeral. In the special case of extensionality and assuming a strong version of

UIP Altenkirch and McBride were able to eliminate this issue [3, 8] using setoids.

However, it is not clear how to generalize this in the absence of UIP to univalence

which is incompatible with UIP. To solve the problem we should generalise the

notion of setoids, namely to enrich the structure of the identity proofs.

The generalised notion is called weak ω-groupoid (see Section 2.6.2) and was pro-

posed by Grothendieck 1983 in a famous manuscript Pursuing Stacks [44]. Maltsin-

iotis continued his work and suggested a simplification of the original definition

which can be found in [63]. Later Ara also presents a slight variation of the sim-

plification of weak ω-groupoids in [12]. Categorically speaking an ω-groupoid is

an ω-category in which morphisms on all levels are equivalences. As we know that

a set can be seen as a discrete category, a setoid is a category where every mor-

phism between any two objects is unique. A groupoid is more generalised, every

127

128 Chapter 7 Syntactic ω-groupoids

morphism is an isomorphism but the proof of isomorphism is unique, namely the

composition of a morphism with its inverse is equal to the identity. Similarly, an

n-groupoid is an n-category in which morphisms on all levels are equivalences.

weak ω-groupoid (also called ∞-groupoid) is an infinite version of n-groupoid.

To model Type Theory without UIP we also allow the equalities to be non-strict,

in other words, they are propositional but not necessarily definitional equalities.

Finally we should use weak ω-groupoids to interpret types and eliminate the uni-

valence axiom.

There are several approaches to formalise weak ω-groupoids in Type Theory, for

instance, Altenkirch and Rypáček [7], and Brunerie’s notes [24].

In this chapter, our implementation of weak ω-groupoids builds on the syntactic

approach of [7] but simplifies it greatly following Brunerie’s proposal [24] by re-

placing the distinct constants for each of the higher coherence cells by a single

constant coh. In more detail, we specify when a globular set is a weak ω-groupoid

by first defining a type theory called T∞−groupoid to describe the internal language

of Grothendieck weak ω-groupoids, then interpret it with a globular set and a

dependent function to it. All coherence laws of weak ω-groupoids are derivable

from the syntax, we will present some basic ones, for example reflexivity. Every-

thing is formalised in Agda. This is the first attempt to formalise this approach

in a dependently typed language like Agda or Coq. Most of the work has been

published in [11] by the author, Altenkirch and Rypáček.

One of our main contributions is to use heterogeneous equality for terms to over-

come difficult problems encountered when using the usual homogeneous one. We

present the formalisation but omit some complicated and less important programs,

namely the proofs of some lemmas or definitions of some auxiliary functions. For

the reader who is interested in the details, you can find the complete code in

Appendix C and also online [60].

Chapter 7 Syntactic ω-groupoids 129

7.1 Syntax of weak ω-groupoids

We develop the type theory of ω-groupoids formally, following [24]. This is a

type theory with only one type former which we can view as equality type and

interpret as the homset of the ω-groupoid. There are no definitional equalities,

this corresponds to the fact that we consider weak ω-groupoids. None of the

groupoid laws on any levels are strict (i.e. definitional) but all are witnessed by

terms. Compared to [7] the definition is greatly simplified by the observation that

all laws of a weak ω-groupoid follow from the existence of coherence constants for

any contractible context.

In our formalisation we exploit the more liberal way to do mutual definitions in

Agda, which was implemented following up a suggestion by the Altenkirch. It

allows us to first introduce a type former but give its definition later.

Since we are avoiding definitional equalities, we have to define a syntactic substitu-

tion operation which we need for the general statement of the coherence constants.

However, defining these constants requires us to prove a number of substitution

laws which with the usual definition of identity types take a very complex mutu-

ally recursive form (see [7]). We address this issue by using heterogeneous equality

[69]. Although it exploits UIP, our approach is sound because UIP holds for the

syntax. See Section 7.1.2 for more details.

7.1.1 Basic Objects

We first declare the syntax of our type theory which is called T∞−groupoid namely

the internal language of weak ω-groupoids. Since the definitions of syntactic ob-

jects involve each other, it is essential to define them in an inductive-inductive

way. Agda allows us to state the types and constructors separately for involved

inductive-inductive definitions. The following declarations in order are contexts as

sets, types are sets dependent on contexts, terms and variables are sets dependent

on types, context morphisms and contractible contexts.

data Con : Set

130 Chapter 7 Syntactic ω-groupoids

data Ty (Γ : Con) : Set

data Tm : {Γ : Con}(A : Ty Γ) → Set

data Var : {Γ : Con}(A : Ty Γ) → Set

data _⇒_ : Con → Con → Set

data isContr : Con → Set

Contexts are inductively defined. The base case is an empty context ǫ, and given

a type A in a context Γ we can extend Γ with A written as Γ, A:

data Con where

ε : Con

, : (Γ : Con)(A : Ty Γ) → Con

Types are defined as either ∗ which we call 0-cells, or a equality type between two

terms of some type A. If the type A is an n-cell then we call its equality type an

(n + 1)-cell. For example, for a set N, ∗ is just the same as N and there are no

higher cells because none of any two elements in N are equal.

data Ty Γ where

* : Ty Γ

=h : {A : Ty Γ}(a b : Tm A) → Ty Γ

7.1.2 Heterogeneous Equality for Terms

One of the big challenges we encountered was the difficulty to formalise and reason

about the equalities of terms, which is essential when defining substitution. When

the usual homogeneous identity types are used one has to use substitution to unify

the types on both sides of equality types. This results in subst to appear in terms,

about which one has to state substitution lemmas. This further pollutes syntax

requiring lemmas about lemmas, lemmas about lemmas about lemmas, etc. For

Chapter 7 Syntactic ω-groupoids 131

example, we have to prove that using subst consecutively with two equalities of

types is propositionally equal to using subst with the composition of these two

equalities. As the complexity of the proofs grows more lemmas are needed. The

resulting recurrence pattern has been identified and implemented in [7] for the

special cases of coherence cells for associativity, units and interchange. However

it is not clear how that approach could be adapted to the present, much more

economical formulation of weak ω-groupoids. Moreover, the complexity brings the

Agda type checker to its limits and correctness into question.

The idea of heterogeneous equality (or JM equality) due to McBride [69] used

to resolve this issue is to define equality for terms of different types which are

supposed to be propositionally equal.

data _∼=_ {Γ : Con}{A : Ty Γ} :

{B : Ty Γ} → Tm A → Tm B → Set where

refl : (b : Tm A) → b ∼= b

Notice that it only inhabits if A and B are computationally equal. It is actually

proof-irrelevant on the equality A = B, namely the elimination rule of it relies

on UIP. As we know in Intensional Type Theory, UIP is not provable in general,

namely not all types are h-sets (homotopy 0-types) and indeed we did not assume

UIP for all types by adding the special case of heterogeneous equality. It only

requires that Ty Γ to be an h-set. In Intensional Type Theory, It is a folklore that

inductive types with finitary constructors have decidable equality. In our case, the

types which stand for syntactic objects (contexts, types, terms) are all inductive-

inductive types with finitary constructors. It follows by Hedberg’s Theorem [45]

that any type with decidable equality is an h-set, satisfies UIP and it therefore

follows that the syntax satisfies UIP. Because, the equality of syntactic types is

unique, it is safe to use heterogeneous equality for terms and proceed without

using substitution lemmas which would otherwise be necessary to match terms of

different types. From a computational perspective, it means that every equality of

types can be reduced to refl and using subst to construct terms is proof-irrelevant,

which is expressed in the following definition of heterogeneous equality for terms.

132 Chapter 7 Syntactic ω-groupoids

Once we have heterogeneous equality for terms, we can define a proof-irrelevant

substitution which we call coercion since it gives us a term of type A if we have a

term of type B and the two types are equal. We can also prove that the coerced

term is heterogeneously equal to the original term. Combining these definitions,

it is much more convenient to formalise and reason about term equations.

J〉〉 : {Γ : Con}{A B : Ty Γ}(a : Tm B)

→ A ≡ B → Tm A

a J refl 〉〉 = a

cohOp : {Γ : Con}{A B : Ty Γ}{a : Tm B}(p : A ≡ B)

→ a J p 〉〉 ∼= a

cohOp refl = refl _

7.1.3 Substitutions

In this chapter we usually define a set of functions together and we name a function

x as xC for contexts, xT for types, xV for variables xtm for terms and xS for

context morphisms (substitutions) as conventions. For example the substitutions

are declared as follows:

[]T : ∀{Γ Δ} → Ty Δ → Γ ⇒ Δ → Ty Γ

[]V : ∀{Γ Δ A} → Var A → (δ : Γ ⇒ Δ) → Tm (A [δ]T)

[]tm : ∀{Γ Δ A} → Tm A → (δ : Γ ⇒ Δ) → Tm (A [δ]T)

Indeed, compositions of context morphisms can be understood as substitutions for

context morphisms as well.

⊚ : ∀{Γ Δ Θ} → Δ ⇒ Θ → (δ : Γ ⇒ Δ) → Γ ⇒ Θ

Chapter 7 Syntactic ω-groupoids 133

Context morphisms are defined inductively similarly to contexts. A context mor-

phism is a list of terms corresponding to the list of types in the context on the

right hand side of the morphism.

data _⇒_ where

• : ∀{Γ} → Γ ⇒ ε

, : ∀{Γ Δ}(δ : Γ ⇒ Δ){A : Ty Δ}(a : Tm (A [δ]T))

→ Γ ⇒ (Δ , A)

7.1.4 Weakening

We can freely add types to the contexts of any given type judgements, term judge-

ments or context morphisms. These are the weakening rules.

+T : ∀{Γ}(A : Ty Γ)(B : Ty Γ) → Ty (Γ , B)

+tm : ∀{Γ A}(a : Tm A)(B : Ty Γ) → Tm (A +T B)

+S : ∀{Γ Δ}(δ : Γ ⇒ Δ)(B : Ty Γ) → (Γ , B) ⇒ Δ

7.1.5 Terms

A term can be either a variable or a coherence constant (coh).

We first define variables separately using the weakening rules. We use typed de

Bruijn indices to define variables as either the rightmost variable of the context,

or some variable in the context which can be found by cancelling the rightmost

variable along with each vS.

data Var where

v0 : ∀{Γ}{A : Ty Γ} → Var (A +T A)

134 Chapter 7 Syntactic ω-groupoids

vS : ∀{Γ}{A B : Ty Γ}(x : Var A) → Var (A +T B)

The coherence constants are the most important and contentious issue of weak

ω-groupoids. In this syntactic approach, they are primitive terms of the primitive

types in contractible contexts which will be introduced below. Indeed it encodes

the fact that any type in a contractible context is inhabited, and so are the types

generated by substituting into a contractible context.

data Tm where

var : ∀{Γ}{A : Ty Γ} → Var A → Tm A

coh : ∀{Γ Δ} → isContr Δ → (δ : Γ ⇒ Δ)

→ (A : Ty Δ) → Tm (A [δ]T)

7.1.6 Contractible contexts

With variables defined, it is possible to formalise another core part of the syntactic

framework, contractible contexts. Intuitively speaking, a context is contractible if

its geometric realization is contractible to a point. It either contains one variable

of the type ∗ which is the base case, or we can extend a contractible context with

a variable of an existing type and an n-cell, namely a morphism, between the

new variable and some existing variable. Contractibility of contexts is defined as

follows:

data isContr where

c* : isContr (ε , *)

ext : ∀{Γ} → isContr Γ → {A : Ty Γ}(x : Var A)

→ isContr (Γ , A , (var (vS x) =h var v0))

Chapter 7 Syntactic ω-groupoids 135

Notice that ǫ is not contractible, otherwise * is inhabited (all types in contractible

context are inhabited) which is not true in all cases.

7.1.7 Lemmas

Since contexts, types, variables and terms are all mutually defined, most of their

properties have to be proved simultaneously as well. Note that we are free to

define all the types first and all the definitions (not shown) later.

The following lemmas are essential for the constructions and theorem proving

later. The first set of lemmas states that to substitute a type, a variable, a term,

or a context morphism with two context morphisms consecutively, is equivalent to

substitute with the composition of the two context morphisms:

[⊚]T : ∀{Γ Δ Θ A}{θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ A [θ ⊚ δ]T ≡ (A [θ]T)[δ]T

[⊚]v : ∀{Γ Δ Θ A}(x : Var A){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ x [θ ⊚ δ]V ∼= (x [θ]V) [δ]tm

[⊚]tm : ∀{Γ Δ Θ A}(a : Tm A){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ a [θ ⊚ δ]tm ∼= (a [θ]tm) [δ]tm

⊚assoc : ∀{Γ Δ Θ Ω}(γ : Θ ⇒ Ω){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ (γ ⊚ θ) ⊚ δ ≡ γ ⊚ (θ ⊚ δ)

The second set states that weakening inside substitution is equivalent to weakening

outside:

[+S]T : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}

→ A [δ +S B]T ≡ (A [δ]T) +T B

136 Chapter 7 Syntactic ω-groupoids

[+S]tm : ∀{Γ Δ A B}(a : Tm A){δ : Γ ⇒ Δ}

→ a [δ +S B]tm ∼= (a [δ]tm) +tm B

[+S]S : ∀{Γ Δ Θ B}{δ : Δ ⇒ Θ}{γ : Γ ⇒ Δ}

→ δ ⊚ (γ +S B) ≡ (δ ⊚ γ) +S B

We can cancel the last term in the substitution for weakened objects since weak-

ening doesn’t introduce new variables in types and terms.

+T[,]T : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}{b : Tm (B [δ]T)}

→ (A +T B) [δ , b]T ≡ A [δ]T

+tm[,]tm : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}{c : Tm (B [δ]T)}

→ (a : Tm A)

→ (a +tm B) [δ , c]tm ∼= a [δ]tm

Most of the substitutions are defined as usual, except the one for coherence con-

stants. In this case, we substitute in the context morphism part and one of the

lemmas declared above is used.

var x [δ]tm = x [δ]V

coh cΔ γ A [δ]tm = coh cΔ (γ ⊚ δ) A J sym [⊚]T 〉〉

7.2 Some Important Derivable Constructions

In this section we show how to reconstruct the structure of a (weak) ω-groupoid

from the syntactical framework presented in Section 7.1 in the more explicit style

of [7]. To this end, let us call a term a : Tm A an n-cell if level A ≡ n, where

Chapter 7 Syntactic ω-groupoids 137

level : ∀ {Γ} → Ty Γ → N

level * = 0

level (_=h_ {A} _ _) = suc (level A)

In any ω-category, any n-cell a has a domain (source), snm a, and a codomain

(target), tnm a, for each m ≤ n. These are, of course, (n-m)-cells. For each pair

of n-cells such that for some m, snma ≡ tnmb, there must exist their composition

a ◦nm b which is an n-cell. Composition is (weakly) associative. Moreover for any

(n-m)-cell x there exists an n-cell idnm x which behaves like a (weak) identity with

respect to ◦nm. For the time being we discuss only the construction of cells and

omit the question of coherence.

For instance, in the simple case of bicategories, each 2-cell a has a horizontal source

s11 a and target t11 a, and also a vertical source s21 a and target t21a, which is also the

source and target, of the horizontal source and target, respectively, of a. There is

horizontal composition of 1-cells ◦11: x →f y →g z, and also horizontal composition

of 2-cells ◦21, and vertical composition of 2-cells ◦22. There is a horizontal identity

on a, id11 a, and vertical identity on a, id21 a = id22id
1
1 a.

Thus each ω-groupoid construction is defined with respect to a level, m, and

depth n-m and the structure of an ω-groupoid is repeated on each level. As we are

working purely syntactically we may make use of this fact and define all groupoid

structure only at level m = 1 and provide a so-called replacement operation which

allows us to lift any cell to an arbitrary type A. It is called ’replacement’ because

we are syntactically replacing the base type ∗ with an arbitrary type, A.

An important general mechanism we rely on throughout the development follows

directly from the type of the only non-trivial constructor of Tm, coh, which tells

us that to construct a new term of type Γ ⊢ A, we need a contractible context, ∆,

a type ∆ ⊢ T and a context morphism δ : Γ ⇒ ∆ such that

T [δ]T ≡ A

138 Chapter 7 Syntactic ω-groupoids

Because in a contractible context all types are inhabited we may in a way work

freely in ∆ and then pull back all terms to A using δ. To show this formally, we

must first define identity context morphisms which complete the definition of a

category of contexts and context morphisms:

IdS : ∀{Γ} → Γ ⇒ Γ

It satisfies the following property:

IC-T : ∀{Γ}{A : Ty Γ} → A [IdS]T ≡ A

The definition proceeds by structural recursion and therefore extends to terms,

variables and context morphisms with analogous properties. It allows us to define

at once:

Coh-Contr : ∀{Γ}{A : Ty Γ} → isContr Γ → Tm A

Coh-Contr isC = coh isC IdS _ J sym IC-T 〉〉

We use Coh-Contr as follows: for each kind of cell we want to define, we construct

a minimal contractible context built out of variables together with a context mor-

phism that populates the context with terms and a lemma that states an equality

between the substitution and the original type.

7.2.1 Suspension and Replacement

For an arbitrary type A in Γ of level n one can define a context with 2n variables,

called the stalk of A. Moreover one can define a morphism from Γ to the stalk of

A such that its substitution into the maximal type in the stalk of A gives back

A. The stalk of A depends only on the level of A, the terms in A define the

substitution. Here is an example of stalks of small levels: ε (the empty context)

Chapter 7 Syntactic ω-groupoids 139

for n = 0; (x0 : ∗, x1 : ∗) for n = 1; (x0 : ∗, x1 : ∗, x2 : x0 =h x1, x3 : x0 =h x1) for

n = 2, etc.

6 7

4 5 4 5

2 3 2 3 2 3

0 1 0 1 0 1 0 1

n = 0 n = 1 n = 2 n = 3 n = 4

This is the ∆ = ε case of a more general construction where in we suspend an

arbitrary context ∆ by adding 2n variables to the beginning of it, and weakening

the rest of the variables appropriately so that type ∗ becomes x2n−2 =h x2n−1. A

crucial property of suspension is that it preserves contractibility.

7.2.1.1 Suspension

Suspension is defined by iteration level-A-times the following operation of one-level

suspension. ΣC takes a context and gives a context with two new variables of type

∗ added at the beginning, and with all remaining types in the context suspended

by one level.

ΣC : Con → Con

ΣT : ∀{Γ} → Ty Γ → Ty (ΣC Γ)

ΣC ε = ε , * , *

ΣC (Γ , A) = ΣC Γ , ΣT A

The rest of the definitions are straightforward by structural recursion. In particular

we suspend variables, terms and context morphisms:

Σv : ∀{Γ}{A : Ty Γ} → Var A → Var (ΣT A)

140 Chapter 7 Syntactic ω-groupoids

Σtm : ∀{Γ}{A : Ty Γ} → Tm A → Tm (ΣT A)

Σs : ∀{Γ Δ} → Γ ⇒ Δ → ΣC Γ ⇒ ΣC Δ

The following lemma establishes preservation of contractibility by one-step sus-

pension:

ΣC-Contr : ∀ Δ → isContr Δ → isContr (ΣC Δ)

It is also essential that suspension respects weakening and substitution:

ΣT[+T] : ∀{Γ}(A B : Ty Γ)

→ ΣT (A +T B) ≡ ΣT A +T ΣT B

Σtm[+tm] : ∀{Γ A}(a : Tm A)(B : Ty Γ)

→ Σtm (a +tm B) ∼= Σtm a +tm ΣT B

ΣT[Σs]T : ∀{Γ Δ}(A : Ty Δ)(δ : Γ ⇒ Δ)

→ (ΣT A) [Σs δ]T ≡ ΣT (A [δ]T)

General suspension to the level of a type A is defined by iteration of one-level

suspension. For symmetry and ease of reading the following suspension functions

take as a parameter a type A in Γ, while they depend only on its level.

ΣC-it : ∀{Γ}(A : Ty Γ) → Con → Con

ΣT-it : ∀{Γ Δ}(A : Ty Γ) → Ty Δ → Ty (ΣC-it A Δ)

Σtm-it : ∀{Γ Δ}(A : Ty Γ){B : Ty Δ} → Tm B

→ Tm (ΣT-it A B)

Chapter 7 Syntactic ω-groupoids 141

Finally, it is clear that iterated suspension preserves contractibility.

ΣC-it-Contr : ∀ {Γ Δ}(A : Ty Γ) → isContr Δ

→ isContr (ΣC-it A Δ)

By suspending the minimal contractible context, *, we obtain a so-called span.

They are stalks with a top variable added. For example (x0 : ∗) (the one-variable

context) for n = 0; (x0 : ∗, x1 : ∗, x2 : x0 =h x1) for n = 1; (x0 : ∗, x1 : ∗, x2 :

x0 =h x1, x3 : x0 =h x1, x4 : x2 =h x3) for n = 2, etc. Spans play an important

role later in the definition of composition. Following is a picture of the first few

spans for increasing levels n of A.

8

6 6 7

4 4 5 4 5

2 2 3 2 3 2 3

0 0 1 0 1 0 1 0 1

n = 0 n = 1 n = 2 n = 3 n = 4

7.2.1.2 Replacement

After we have suspended a context by inserting an appropriate number of variables,

we may proceed to a substitution which, so to speak, fills the stalk for A with A.

The context morphism representing this substitution is called filter. In the final

step we combine it with Γ, the context of A. The new context contains two parts,

the first is the same as Γ, and the second is the suspended ∆ substituted by filter.

However, we also have to drop the stalk of A because it already exists in Γ.

This operation is called replacement because we can interpret it as replacing ∗ in

∆ by A.

As always, we define replacement for contexts, types and terms simultaneously:

142 Chapter 7 Syntactic ω-groupoids

rpl-C : ∀{Γ}(A : Ty Γ) → Con → Con

rpl-T : ∀{Γ Δ}(A : Ty Γ) → Ty Δ → Ty (rpl-C A Δ)

rpl-tm : ∀{Γ Δ}(A : Ty Γ){B : Ty Δ} → Tm B

→ Tm (rpl-T A B)

Replacement for contexts, rpl-C, defines for a type A in Γ and another context ∆

a context which begins as Γ and follows by each type of ∆ with ∗ replaced with

(pasted onto) A.

rpl-C {Γ} A ε = Γ

rpl-C A (Δ , B) = rpl-C A Δ , rpl-T A B

To this end we must define the substitution filter which pulls back each type from

suspended ∆ to the new context.

filter : ∀{Γ}(Δ : Con)(A : Ty Γ)

→ rpl-C A Δ ⇒ ΣC-it A Δ

rpl-T A B = ΣT-it A B [filter _ A]T

7.2.2 First-level Groupoid Structure

We can proceed to the definition of the groupoid structure of the syntax. We

start with the base case: 1-cells. Replacement defined above allows us to lift this

structure to an arbitrary level n (we leave most of the routine details out). This

shows that the syntax is a 1-groupoid on each level. In the next section we show

how also the higher-groupoid structure can be defined.

We start by an essential lemma which formalises the discussion at the beginning of

this section: to construct a term in a type A in an arbitrary context, we first restrict

Chapter 7 Syntactic ω-groupoids 143

attention to a suitable contractible context ∆ and use lifting and substitution –

replacement – to pull the term built by coh in ∆ back. This relies on the fact that

a lifted contractible context is also contractible, and therefore any type lifted from

a contractible context is also inhabited.

Coh-rpl : ∀{Γ Δ}(A : Ty Γ)(B : Ty Δ) → isContr Δ

→ Tm (rpl-T A B)

Coh-rpl {_} {Δ} A _ isC = coh (ΣC-it-ε-Contr A isC) _ _

Next we define the reflexivity, symmetry and transitivity terms of any type. Let

us start from some base cases. Each of the base cases is derivable in a different

contractible context with Coh-Contr which gives you a coherence constant for any

type in any contractible context.

Reflexivity (identity) It only requires a one-object context.

refl*-Tm : Tm {x:*} (var v0 =h var v0)

refl*-Tm = Coh-Contr c*

Symmetry (inverse) It is defined similarly. Note that the intricate names of

contexts, as in Ty x:*,y:*,α:x=y indicate their definitions which have been hidden.

Agda treats all sequences of characters uninterrupted by whitespace as identifiers.

For instance x:*,y:*,α:x=y is a name of a context for which we are assuming the

definition: x:*,y:*,α:x=y = ε , * , * , (var (vS v0) =h var v0).

sym*-Ty : Ty x:*,y:*,α:x=y

sym*-Ty = vY =h vX

sym*-Tm : Tm {x:*,y:*,α:x=y} sym*-Ty

sym*-Tm = Coh-Contr (ext c* v0)

144 Chapter 7 Syntactic ω-groupoids

Transitivity (composition)

trans*-Ty : Ty x:*,y:*,α:x=y,z:*,β:y=z

trans*-Ty = (vX +tm _ +tm _) =h vZ

trans*-Tm : Tm trans*-Ty

trans*-Tm = Coh-Contr (ext (ext c* v0) (vS v0))

To obtain these terms for any given type in any give context, we use replacement.

refl-Tm : {Γ : Con}(A : Ty Γ)

→ Tm (rpl-T {Δ = x:*} A (var v0 =h var v0))

refl-Tm A = rpl-tm A refl*-Tm

sym-Tm : ∀ {Γ}(A : Ty Γ) → Tm (rpl-T A sym*-Ty)

sym-Tm A = rpl-tm A sym*-Tm

trans-Tm : ∀ {Γ}(A : Ty Γ) → Tm (rpl-T A trans*-Ty)

trans-Tm A = rpl-tm A trans*-Tm

For each of reflexivity, symmetry and transitivity we can construct appropriate

coherence 2-cells witnessing the groupoid laws. The base case for variable contexts

is proved simply using contractibility as well. However the types of these laws are

not as trivial as the proving parts. We use substitution to define the application

of the three basic terms we have defined above.

Tm-right-identity* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [IdS , vY , reflY]tm

=h vα)

Tm-right-identity* = Coh-Contr (ext c* v0)

Chapter 7 Syntactic ω-groupoids 145

Tm-left-identity* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [((IdS ⊚ pr1 ⊚ pr1) , vX) ,

reflX , vY , vα]tm =h vα)

Tm-left-identity* = Coh-Contr (ext c* v0)

Tm-right-inverse* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [(IdS , vX) , sym*-Tm]tm

=h reflX)

Tm-right-inverse* = Coh-Contr (ext c* v0)

Tm-left-inverse* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [((• , vY) , vX , sym*-Tm ,

vY) , vα]tm =h reflY)

Tm-left-inverse* = Coh-Contr (ext c* v0)

Tm-G-assoc* : Tm Ty-G-assoc*

Tm-G-assoc* = Coh-Contr (ext (ext (ext c* v0) (vS v0))

(vS v0))

Their general versions are defined using replacement. For instance, for associativ-

ity, we define:

Tm-G-assoc : ∀{Γ}(A : Ty Γ)

→ Tm (rpl-T A Ty-G-assoc*)

Tm-G-assoc A = rpl-tm A Tm-G-assoc*

Following the same pattern, the n-level groupoid laws can be obtained as the

coherence constants as well.

146 Chapter 7 Syntactic ω-groupoids

7.2.3 Higher Structure

In the previous text we have shown how to define 1-groupoid structure on an

arbitrary level. Here we indicate how all levels also bear the structure of n-groupoid

for arbitrary n. The rough idea amounts to redefining telescopes of [7] in terms

of appropriate contexts, which are contractible, and the different constructors for

terms used in [7] in terms of coh.

To illustrate this we consider the simpler example of higher identities. Note that

the domain and codomain of n+1-iterated identity are n-iterated identities. Hence

we proceed by induction on n. Denote a span of depth n Sn. Then there is a chain

of context morphisms S0 ⇒ S1 ⇒ · · · ⇒ Sn. Each Sn+1 has one additional variable

standing for the identity iterated n+1-times. Because Sn+1 is contractible, one can

define a morphism Sn ⇒ Sn+1 using coh to fill the last variable and variable terms

on the first n levels. By composition of the context morphisms one defines n new

terms in the basic one variable context ∗ – the iterated identities. Finally, using

suspension one can lift the identities to an arbitrary level.

Each n-cell has n-compositions. In the case of 2-categories, 1-cells have one com-

position, 2-cells have vertical and horizontal composition. Two 2-cells are horizon-

tally composable only if their 1-cell top and bottom boundaries are composable.

The boundary of the composition is the composition of the boundaries. Thus for

arbitrary n we proceed using a chain of V -shaped contractible contexts. That

is contexts that are two spans conjoined at the base level at a common middle

variable. Each successive composition is defined using contractibility and coh.

To fully imitate the development in [7], one would also have to define all higher

coherence laws. But the sole purpose of giving an alternative type theory in this

chapter is to avoid that.

Chapter 7 Syntactic ω-groupoids 147

7.3 Semantics

7.3.1 Globular Types

To interpret the syntax, we need globular types 1 . Globular types are defined

coinductively as follows:

record Glob : Set1 where

constructor _||_

field

|_| : Set

hom : |_| → |_| → ∞ Glob

If all the object types (|_|) are indeed sets, i.e. UIP holds for them, we call this a

globular set.

As an example, we could construct the identity globular type called Idω.

Idω : (A : Set) → Glob

Idω A = A || (λ a b → ♯ Idω (a ≡ b))

Given a globular type G, we can interpret the syntactic objects.

record Semantic (G : Glob) : Set1 where

field

J_KC : Con → Set

J_KT : ∀{Γ} → Ty Γ → J Γ KC → Glob

J_Ktm : ∀{Γ A} → Tm A → (γ : J Γ KC)

→ | J A KT γ |

J_KS : ∀{Γ Δ} → Γ ⇒ Δ → J Γ KC → J Δ KC

1The Agda Set stands for an arbitrary type, not a set in the sense of Homotopy Type Theory.

148 Chapter 7 Syntactic ω-groupoids

π : ∀{Γ A} → Var A → (γ : J Γ KC)

→ | J A KT γ |

π provides the projection of the semantic variable out of a semantic context.

Following are the computation laws for the interpretations of contexts and types.

J_KC-β1 : J ε KC ≡ ⊤

J_KC-β2 : ∀ {Γ A} → J Γ , A KC ≡

Σ J Γ KC (λ γ → | J A KT γ |)

J_KT-β1 : ∀{Γ}{γ : J Γ KC} → J * KT γ ≡ G

J_KT-β2 : ∀{Γ A u v}{γ : J Γ KC}

→ J u =h v KT γ ≡

♭ (hom (J A KT γ) (J u Ktm γ) (J v Ktm γ))

Semantic substitution and semantic weakening laws are also required. The se-

mantic substitution properties are essential for dealing with substitutions inside

interpretation,

semSb-T : ∀ {Γ Δ}(A : Ty Δ)(δ : Γ ⇒ Δ)(γ : J Γ KC)

→ J A [δ]T KT γ ≡ J A KT (J δ KS γ)

semSb-tm : ∀{Γ Δ}{A : Ty Δ}(a : Tm A)(δ : Γ ⇒ Δ)

(γ : J Γ KC) → subst |_| (semSb-T A δ γ)

(J a [δ]tm Ktm γ) ≡ J a Ktm (J δ KS γ)

semSb-S : ∀ {Γ Δ Θ}(γ : J Γ KC)(δ : Γ ⇒ Δ)

(θ : Δ ⇒ Θ) → J θ ⊚ δ KS γ ≡

J θ KS (J δ KS γ)

Chapter 7 Syntactic ω-groupoids 149

Since the computation laws for the interpretations of terms and context morphisms

are well typed up to these properties.

J_Ktm-β1 : ∀{Γ A}{x : Var A}{γ : J Γ KC}

→ J var x Ktm γ ≡ π x γ

J_KS-β1 : ∀{Γ}{γ : J Γ KC}

→ J • KS γ ≡ coerce J_KC-β1 tt

J_KS-β2 : ∀{Γ Δ}{A : Ty Δ}{δ : Γ ⇒ Δ}{γ : J Γ KC}

{a : Tm (A [δ]T)} → J δ , a KS γ

≡ coerce J_KC-β2 ((J δ KS γ) ,

subst |_| (semSb-T A δ γ) (J a Ktm γ))

The semantic weakening properties should actually be derivable since weakening

is equivalent to projection substitution.

semWk-T : ∀ {Γ A B}(γ : J Γ KC)(v : | J B KT γ |)

→ J A +T B KT (coerce J_KC-β2 (γ , v)) ≡

J A KT γ

semWk-S : ∀ {Γ Δ B}{γ : J Γ KC}{v : | J B KT γ |}

→ (δ : Γ ⇒ Δ) → J δ +S B KS

(coerce J_KC-β2 (γ , v)) ≡ J δ KS γ

semWk-tm : ∀ {Γ A B}(γ : J Γ KC)(v : | J B KT γ |)

→ (a : Tm A) → subst |_| (semWk-T γ v)

(J a +tm B Ktm (coerce J_KC-β2 (γ , v)))

≡ (J a Ktm γ)

150 Chapter 7 Syntactic ω-groupoids

Here we declare them as properties because they are essential for the computation

laws of function π.

π-β1 : ∀{Γ A}(γ : J Γ KC)(v : | J A KT γ |)

→ subst |_| (semWk-T γ v)

(π v0 (coerce J_KC-β2 (γ , v))) ≡ v

π-β2 : ∀{Γ A B}(x : Var A)(γ : J Γ KC)(v : | J B KT γ |)

→ subst |_| (semWk-T γ v) (π (vS {Γ} {A} {B} x)

(coerce J_KC-β2 (γ , v))) ≡ π x γ

The only part of the semantics where we have any freedom is the interpretation

of the coherence constants:

JcohK : ∀{Θ} → isContr Θ → (A : Ty Θ)

→ (θ : J Θ KC) → | J A KT θ |

However, we also need to require that the coherence constants are well behaved

with respect to substitution which in turn relies on the interpretation of all terms.

To address this we state the required properties in a redundant form because the

correctness for any other part of the syntax follows from the defining equations we

have already stated. There seems to be no way to avoid this.

If the underlying globular type is not a globular set, we need to add coherence

laws, which is not very well understood. On the other hand, restricting ourselves to

globular sets means that our prime example Idω is not an instance anymore because

the definition of our Idω do not have the conditions that every level is a set. We

should still be able to construct non-trivial globular sets, e.g. by encoding basic

topological notions and defining higher homotopies as in a classical framework.

However, we do not currently know a simple definition of a globular set which is

a weak ω-groupoid. One possibility would be to use the syntax of type theory

Chapter 7 Syntactic ω-groupoids 151

with equality types. Indeed we believe that this would be an alternative way to

formalize weak ω-groupoids.

Altenkirch also suggests a potential solution to fix the problem that our definition

of Idω is not a globular set by using the approach discussed in [4]. we can define a

universe with extensional equality, and use Agda’s propositional equality as strict

equality so that we can define Idω as a globular set in this universe.

7.4 Related work

The groupoid interpretation of Martin-Löf type theory was first proposed to Hof-

mann and Streicher [51]. Sozeau and Tabareau [77] have formalised it in Coq. They

have also considered to generalise their definitions to ω-groupoids in the future.

Warren [93] has shown an interpretation of Type Theory using strict ω-groupoids.

Lumsdaine [62], van den Berg and Garner [84] have shown that J eliminator gives

rise to a weak ω-groupoid, van den Berg and Garner have proved that that every

type is a weak ω-groupoid. Altenkirch and Rypáček [7] have proposed a syntactic

formalisation of weak ω-groupoids in Type Theory and a simplification of it has

been suggested by Brunerie [24].

7.5 Summary

In this chapter, we have introduced an implementation of weak ω-groupoids fol-

lowing Brunerie’s suggestion. Briefly speaking, we defined the syntax of the type

theory T∞−groupoid, then a weak ω-groupoid is a globular set with the interpreta-

tion of the syntax. To overcome some technical problems, we used heterogeneous

equality for terms, some auxiliary functions and loop context in all implementa-

tion. We constructed the identity morphisms and verified some groupoid laws in

the syntactic framework. The suspensions for all sorts of objects were also defined

for other later constructions. In the future, we would like to formalise a proof

that Idω is a weak ω-groupoid. As Altenkirch suggests, we can potentially solve

the problem that our definition of Idω is not a globular set by using the approach

152 Chapter 7 Syntactic ω-groupoids

discussed in [4]. Briefly speaking, we can define a universe with extensional equal-

ity, and use Agda’s propositional equality as strict equality so that we can define

Idω as a globular set in this universe. Finally the most challenging task would

be to model Type Theory with weak ω-groupoids and to eliminate the univalence

axiom.

Chapter 8

Conclusion and Future Work

We presented the evolution of type theories focusing on Martin-Löf type the-

ory (Type Theory) and discussed different variants. We compared two versions

of Type Theory: Extensional Type Theory (ETT) and Intensional Type The-

ory (ITT). ITT has decidable type checking but lacks some extensional concepts

such as functional extensionality and quotient types. On the other hand, ETT

has equality reflection which provides these extensional concepts but makes type

checking undecidable due to the identification of propositional and definitional

equalities.

The notion of quotient types is one of the important extensional concepts which

facilitates mathematical and programming constructions. An interesting question

is whether ITT could be extended with quotient types. We presented a definition

of quotient types in a type theory with a proof-irrelevant universe, and we showed

that simply adding the rules of quotient types to Intensional Type Theory as

axioms results in the loss of the N-canonicity property. We also clarified the

correspondence with coequalizers in Set and a left adjoint functor in category

theory.

We discussed the definability of a normalisation function for a given quotient

represented as a setoid. For quotients which can be defined inductively with a

normalisation function e.g. the set of integers and the set of rational numbers,

153

154 Chapter 8 Conclusion and Future Work

we proposed an algebraic structure to bridge the gap between the setoid repre-

sentations and the set definitions. We showed that the application of a definable

quotient structure can improve the constructions by keeping good properties of

both representations. As definable quotients can be seen as a simulation of quo-

tient types, we expect similar benefits from using quotient types.

An interesting future project is the further development of the implementation of

numbers in Agda using the definable quotient structure. It could be extended to

other definable quotients implementable in our algebraic quotient structures. This

would make the Agda standard library more convenient to use for mathematical

applications. Another possibility is the extension of Agda with normalised types

[34], that is, building a special case of quotient types with respect to a normalisa-

tion function in the sense of Definition 5.1.

Although a quotient type former is not necessary for definable quotients, it seems

indispensable for some other quotients which don’t have a definable normalisation

function. With the assumption that Brouwer’s continuity holds in the meta-theory,

we proved that there is no definable normalisation function for Cauchy reals R0/∼ .

Other examples include the partiality monad and finite multisets. In the future, we

would like to investigate the definability of quotients in general, and in particular,

we would like to find out whether the non-existence of a normalisation function

for a quotient implies that it is not definable as a set in general.

A way of introducing quotient types in Intensional Type Theory without losing

good computational properties is building models where types are interpreted as

sets with an internally defined equality, such as setoids, groupoids or weak ω-

groupoids. We have developed an implementation of Altenkirch’s setoid model in

Agda, and explained our construction of quotient types inside it.

There are more open research questions regarding the setoid model, for example

the verification of certain properties or the definition of a type of propositions for

which we can write the type of equivalence relations using Π-types. A simplifi-

cation would be the usage of heterogeneous equality as discussed in Chapter 6.

One could also consider the usage of h-propositions instead of a universe of propo-

sitions in the metatheory. However Π-closure of h-propositions needs functional

extensionality. It would be interesting to compare this approach with the one we

Chapter 8 Conclusion and Future Work 155

have presented. It is also worthwhile to extend the setoid model with examples of

quotients like the set of real numbers and finite multisets which are not definable

via normalisation. Other extensional concepts and coinductive types can also be

considered in the setoid model.

We also investigated another extension of Martin-Löf type theory– Homotopy Type

Theory. In Homotopy Type Theory, types are interpreted as weak ω-groupoids

which are generalizations of groupoids. We discussed quotients in Homotopy Type

Theory. With univalence, quotients can be defined impredicatively. We can also

define quotients using higher inductive types (HITs), and in fact HITs can be

seen as "generalized quotient types". Therefore a computational interpretation of

Homotopy Type Theory can also be seen as a way of adding quotient types to

Intensional Type Theory.

We showed a syntactic construction of weak ω-groupoids in Agda as a first step

towards building a weak ω-groupoid model of Type Theory. We defined the type

theory T∞−groupoid which describes the coherence conditions of a weak ω-groupoid

required for a globular set. Inside this theory, we showed how to reconstruct some

coherences laws, for example the groupoid laws using suspensions and replacement

techniques. Here we also used heterogeneous equality for terms to ease implemen-

tation.

There are further interesting questions regarding our syntactic framework. For

instance, we would like to investiage the relation between the T∞−groupoid and a type

theory with equality types and the J eliminator which is called Teq. One direction

is to simulate the J eliminator syntactically in T∞−groupoid as we mentioned before,

the other direction is to derive J using coh if we can prove that the Teq is a weak

ω-groupoid. The syntax could be simplified by adopting categories with families.

An alternative way may be the usage of higher inductive types to formalize the

syntax of type theory.

When attempting to prove that Idω is a weak ω-groupoid, we encountered the prob-

lem that the base set in a globular set is an h-set which is incompatible with Idω.

Altenkirch suggests [4] a solution using a universe with extensional equality, and

Agda’s propositional equality as strict equality so that we can define Idω as a glob-

ular set in this universe. Finally, modelling Type Theory with weak ω-groupoids

156 Chapter 8 Conclusion and Future Work

and thus eliminating the univalence axiom would be the most challenging task to

do in the future.

It would also be interesting to consider quotient types in Homotopy Type Theory.

The notion of quotient types we considered in this thesis refers to the quotients

with a propositional equivalence relation. However in a type theory with higher

dimensions, like Homotopy Type Theory, the notion of quotient types can be more

general and we would like to consider non-propositional quotients, for example,

the quotient of a set by a groupoid.

Appendix A

Definable quotient structures

record Setoid : Set1 where

infix 4 _~_

field

Carrier : Set

~ : Carrier → Carrier → Set

isEquivalence : IsEquivalence _~_

open IsEquivalence isEquivalence public

We first define the relation that "f respects ∼" (f is compatible with ∼)

respects : {A : Set}{B : Set}(f : A → B)

→ (_~_ : A → A → Set) → Set

f respects _~_ = ∀ {a a’} → a ~ a’ → f a ≡ f a’

Prequotient

157

158 Appendix A Definable quotient structures

record pre-Quotient (S : Setoid) : Set1 where

open Setoid S renaming (Carrier to A)

field

Q : Set

[_] : A → Q

[_]= : [_] respects _~_

We can assume UIP which will only be applied on quotient sets

≡prop : {A : Set}{a b : A} → (p q : a ≡ b) → p ≡ q

≡prop {A} {a} {.a} refl refl = refl

subIrr : {S : Set}{A : S → Set}{a b : S}(p q : a ≡ b){m : A a}

→ subst A p m ≡ subst A q m

subIrr p q with ≡prop p q

subIrr p .p | refl = refl

subIrr2 : {S : Set}{A : Set}{a b : S}(p : a ≡ b){m : A}

→ subst (λ _ → A) p m ≡ m

subIrr2 refl = refl

Quotient with dependent eliminator

record Quotient {S : Setoid}

(PQ : pre-Quotient S) : Set1 where

open pre-Quotient PQ

field

qelim : {B : Q → Set}

→ (f : (a : A) → B [a])

→ (∀ {a a’} → (p : a ~ a’)

Appendix A Definable quotient structures 159

→ subst B [p]= (f a) ≡ f a’)

→ (q : Q) → B q

qelim-β : ∀ {B a f}

(resp : (∀ {a a’} → (p : a ~ a’)

→ subst B [p]= (f a) ≡ f a’))

→ qelim {B} f resp [a] ≡ f a

Quotient (Hofmann’s)

record Hof-Quotient {S : Setoid}

(PQ : pre-Quotient S) : Set1 where

open pre-Quotient PQ

field

lift : {B : Set}

→ (f : A → B)

→ f respects _~_

→ Q → B

lift-β : ∀ {B a f}(resp : f respects _~_)

→ lift {B} f resp [a] ≡ f a

qind : ∀ (P : Q → Set)

→ (∀{x} → (p q : P x) → p ≡ q)

→ (∀ a → P [a])

→ (∀ x → P x)

record Hof-Quotient’ {S : Setoid}

(PQ : pre-Quotient S) : Set1 where

open pre-Quotient PQ

field

160 Appendix A Definable quotient structures

lift : {B : Set}

→ (f : A → B)

→ f respects _~_

→ Q → B

lift-β : ∀ {B a f}(resp : f respects _~_)

→ lift {B} f resp [a] ≡ f a

qind : ∀ (P : Q → Set)

→ (∀{x} → (p q : P x) → p ≡ q)

→ (∀ a → P [a])

→ (∀ x → P x)

Exact quotient

record exact-Quotient {S : Setoid}

(PQ : pre-Quotient S) : Set1 where

open pre-Quotient PQ

field

Qu : Quotient PQ

exact : ∀ {a b : A} → [a] ≡ [b] → a ~ b

Definable quotient

record def-Quotient {S : Setoid}

(PQ : pre-Quotient S) : Set1 where

open pre-Quotient PQ

field

emb : Q → A

complete : ∀ a → emb [a] ~ a

Appendix A Definable quotient structures 161

stable : ∀ q → [emb q] ≡ q

Proof : Definable quotients are exact.

exact : ∀{a b} → [a] ≡ [b] → a ~ b

exact {a} {b} p =

~-trans (~-sym (complete a))

(~-trans (subst (λ x →

emb [a] ~ emb x)

p ~-refl) (complete b))

Equivalences and conversions among the quotient structures

Proof : Hofmann’s definition of quotient is equivalent to Quotient.

Hof-Quotient→Quotient : {S : Setoid}{PQ : pre-Quotient S} →

(Hof-Quotient PQ) → (Quotient PQ)

Hof-Quotient→Quotient {S} {PQ} QuH =

record

{ qelim = λ {B} f resp

→ proj1 (qelim’ f resp)

; qelim-β = λ {B} {a} {f} resp

→ proj2 (qelim’ f resp)

}

where

open pre-Quotient PQ

open Hof-Quotient QuH

qelim’ : {B : Q → Set}

→ (f : (a : A) → B [a])

→ (∀ {a a’} → (p : a ~ a’)

162 Appendix A Definable quotient structures

→ subst B [p]= (f a) ≡ f a’)

→ Σ[f^ : ((q : Q) → B q)]

(∀ {a} → f^ [a] ≡ f a)

qelim’ {B} f resp = f^ , f^-β

where

f0 : A → Σ Q B

f0 a = [a] , f a

resp0 : f0 respects _~_

resp0 p = Σeq [p]= (resp p)

f’ : Q → Σ Q B

f’ = lift f0 resp0

id’ : Q → Q

id’ = proj1 ◦ f’

P : Q → Set

P q = id’ q ≡ q

f’-β : {a : A} → f’ [a] ≡ [a] , f a

f’-β = lift-β _

isIda : ∀ {a} → id’ [a] ≡ [a]

isIda = cong proj1 f’-β

isIdq : ∀ {q} → id’ q ≡ q

isIdq {q} = qind P ≡prop (λ _ → isIda) q

f^ : (q : Q) → B q

f^ q = subst B isIdq (proj2 (f’ q))

Appendix A Definable quotient structures 163

f’-sound2 : ∀ {a} →

subst B isIda (proj2 (f’ [a])) ≡ f a

f’-sound2 = cong-proj2 _ _ f’-β

f^-β : ∀ {a} → f^ [a] ≡ f a

f^-β {a} = trans (subIrr isIdq isIda) f’-sound2

Quotient→Hof-Quotient :

{S : Setoid}{PQ : pre-Quotient S}

→ (Quotient PQ)

→ (Hof-Quotient PQ)

Quotient→Hof-Quotient {S} {PQ} QU =

record

{ lift = λ f resp

→ qelim f (resp’ resp)

; lift-β = λ resp

→ qelim-β (resp’ resp)

; qind = λ P isP f

→ qelim {P} f (λ _ → isP _ _)

}

where

open pre-Quotient PQ

open Quotient QU

resp’ : {B : Set}{a a’ : A}

{f : A → B}

(resp : f respects _~_)

(p : a ~ a’)

→ subst (λ _ → B) [p]= (f a)

≡ f a’

resp’ resp p =

trans (subIrr2 [p]=)

164 Appendix A Definable quotient structures

(resp p)

Proof : A definable quotient gives rise to a quotient.

def-Quotient→Quotient :

{S : Setoid}{PQ : pre-Quotient S}

→ (def-Quotient PQ) → (Quotient PQ)

def-Quotient→Quotient {S} {PQ} QuD =

record { qelim =

λ {B} f resp q → subst B (stable q) (f (emb q))

; qelim-β =

λ {B} {a} {f} resp →

trans (subIrr (stable [a])

[complete a]=) (resp (complete a))

}

where

open pre-Quotient PQ

open def-Quotient QuD

Proof : A definable quotients gives rise to an exact (effective) quotient.

def-Quotient→exact-Quotient :

{S : Setoid}{PQ : pre-Quotient S}

→ def-Quotient PQ → exact-Quotient PQ

def-Quotient→exact-Quotient {S} {PQ} QuD =

record { Qu = def-Quotient→Quotient QuD

; exact = exact

}

where

open pre-Quotient PQ

Appendix A Definable quotient structures 165

open def-Quotient QuD

def-Quotient→Hof-Quotient

: {S : Setoid}

→ {PQ : pre-Quotient S}

→ (def-Quotient PQ)

→ (Hof-Quotient PQ)

def-Quotient→Hof-Quotient {S} {PQ} QuD =

record

{ lift = λ f _ → f ◦ emb

; lift-β = λ resp → resp (complete _)

; qind = λ P _ f _ →

subst P (stable _) (f (emb _))

}

where

open pre-Quotient PQ

open def-Quotient QuD

def-Quotient→Hof-Quotient’ :

{S : Setoid}{PQ : pre-Quotient S}

→ (def-Quotient PQ) → (Hof-Quotient PQ)

def-Quotient→Hof-Quotient’ =

Quotient→Hof-Quotient ◦ def-Quotient→Quotient

Proof : The propositional univalence (propositional extensionality) implies that

a quotient is always exact.

Assume we have the propositional univalence (the other direction trivial holds)

166 Appendix A Definable quotient structures

(PropUni1 : ∀ {p q : Set} → (p ⇔ q) → p ≡ q)

{S : Setoid}

{PQ : pre-Quotient S}

{Qu : Hof-Quotient PQ}

where

open pre-Quotient PQ

open Hof-Quotient Qu

coerce : {A B : Set} → A ≡ B → A → B

coerce refl m = m

exact : ∀ a a’ → [a] ≡ [a’] → a ~ a’

exact a a’ p = coerce P^-β (~-refl {a})

where

P : A → Set

P x = a ~ x

isEqClass : ∀ {a b} → a ~ b → P a ⇔ P b

isEqClass p = (λ q → ~-trans q p) ,

(λ q → ~-trans q (~-sym p))

P-resp : P respects _~_

P-resp p = PropUni1 (isEqClass p)

P^ : Q → Set

P^ = lift P P-resp

P^-β : P a ≡ P a’

P^-β = trans (sym (lift-β _))

(trans (cong P^ p) (lift-β _))

Setoid Integer

Appendix A Definable quotient structures 167

Base set

infix 4 _,_

data Z0 : Set where

, : N → N → Z0

Equivalence relation

infixl 2 _∼_

∼ : Z0 → Z0 → Set

(x+ , x-) ∼ (y+ , y-) = (x+ + y-) ≡ (y+ + x-)

Equivalence properties

∼refl : ∀ {a} → a ∼ a

∼refl {x+ , x-} = refl

∼sym : ∀ {a b} → a ∼ b → b ∼ a

∼sym {x+ , x-} {y+ , y-} = sym

∼trans : ∀ {a b c} → a ∼ b → b ∼ c → a ∼ c

∼trans {x+ , x-} {y+ , y-} {z+ , z-} x=y y=z =

cancel-+-left (y+ + y-)

(swap24 y+ y- x+ z-

>≡< ((y=z += x=y) >≡< swap13 z+ y- y+ x-))

_∼_isEquivalence : IsEquivalence _∼_

_∼_isEquivalence = record

168 Appendix A Definable quotient structures

{ refl = ∼refl

; sym = ∼sym

; trans = ∼trans

}

(Z0, ∼) is a setoid

Z-Setoid : Setoid

Z-Setoid = record

{ Carrier = Z0

; _~_ = _∼_

; isEquivalence = _∼_isEquivalence

}

Definition of Z

data Z : Set where

+_ : (n : N) → Z

-suc_ : (n : N) → Z

Normalisation function

[_] : Z0 → Z

[m , 0] = + m

[0 , suc n] = -suc n

[suc m , suc n] = [m , n]

Appendix A Definable quotient structures 169

Embedding function

p_q : Z → Z0

p + n q = n , 0

p -suc n q = 0 , N.suc n

Stability

stable : ∀ {n} → [p n q] ≡ n

stable {+ n} = refl

stable { -suc n } = refl

Completeness

compl : ∀ n → p [n] q ∼ n

compl (x , 0) = refl

compl (0 , suc y) = refl

compl (suc x , suc y) = ∼trans (compl (x , y))

(sym (sm+n≡m+sn x))

sound’ : ∀ {i j} → p i q ∼ p j q → i ≡ j

sound’ {+ i} {+ j} eqt = +_ ⋆ (+r-cancel 0 eqt)

sound’ {+ i} { -suc j } eqt with i +suc j 6≡0 eqt

... | ()

sound’ { -suc i } { + j } eqt with j +suc i 6≡0 〈 eqt 〉

... | ()

170 Appendix A Definable quotient structures

sound’ { -suc i } { -suc j } eqt = -suc_ ⋆ pred ⋆ 〈 eqt 〉

Soundness

sound : ∀ {x y} → x ∼ y → [x] ≡ [y]

sound { x } { y } x∼y = sound’ (∼trans (compl _)

(∼trans (x∼y) (∼sym (compl _))))

The quotient definitions for Z

Z-PreQu : pre-Quotient Z-Setoid

Z-PreQu = record

{ Q = Z

; [_] = [_]

; [_]= = sound

}

Z-QuD : def-Quotient Z-PreQu

Z-QuD = record

{ emb = p_q

; complete = λ z → compl _

; stable = λ z → stable

}

Z-Qu = def-Quotient→Quotient Z-QuD

Appendix A Definable quotient structures 171

A.1 Rational numbers

data Q0 : Set where

/suc : (n : Z) → (d : N) → Q0

Extractions

num : Q0 → Z

num (n /suc _) = n

den : Q0 → N

den (_ /suc d) = suc d

Equivalence relation

infixl 2 _∼_

∼ : Q0 → Q0 → Set

n1 /suc d1 ∼ n2 /suc d2 = n1 Z* (+ suc d2) ≡ n2 Z* (+ suc d1)

Property: a fraction is reduced

i.e. the absolute value of the numerator is comprime to the denominator

IsReduced : Q0 → Set

IsReduced (n /suc d) = True (coprime? | n | (suc d))

The Definition of Q which is equivalent to the one in standard library

172 Appendix A Definable quotient structures

Q : Set

Q = Σ[q : Q0] IsReduced q

Normalisation function:

1. Calculate a reduced fraction for x
y

with a condition that y is not zero.

calQ : ∀(x y : N) → y 6≡ 0 → Q

calQ x y neo with gcd′ x y

calQ .(q1 N* di) .(q2 N* di) neo

| di , gcd-* q1 q2 c = (numr /suc pred q2) , iscoprime

where

numr = + q1

deno = suc (pred q2)

lzero : ∀ x y → x ≡ 0 → x N* y ≡ 0

lzero .0 y refl = refl

q2 6≡0 : q2 6≡ 0

q2 6≡0 qe = neo (lzero q2 di qe)

invsuc : ∀ n → n 6≡ 0 → n ≡ suc (pred n)

invsuc zero nz with nz refl

... | ()

invsuc (suc n) nz = refl

deno≡q2 : q2 ≡ deno

deno≡q2 = invsuc q2 q2 6≡0

copnd : Coprime q1 deno

copnd = subst (λ x → Coprime q1 x) deno≡q2 c

Appendix A Definable quotient structures 173

witProp : ∀ a b → GCD a b 1

→ True (coprime? a b)

witProp a b gcd1 with gcd a b

witProp a b gcd1 | zero , y with GCD.unique gcd1 y

witProp a b gcd1 | zero , y | ()

witProp a b gcd1 | suc zero , y = tt

witProp a b gcd1 | suc (suc n) , y

with GCD.unique gcd1 y

witProp a b gcd1 | suc (suc n) , y | ()

iscoprime : True (coprime? | numr | deno)

iscoprime = witProp _ _ (coprime-gcd copnd)

2.Negation

-_ : Q → Q

-_ ((n /suc d) , isC) = ((Z- n) /suc d) ,

subst (λ x → True (coprime? x (suc d)))

(forgetSign n) isC

where

forgetSign : ∀ x → | x | ≡ | Z- x |

forgetSign (-suc n) = refl

forgetSign (+ zero) = refl

forgetSign (+ (suc n)) = refl

3.Normalisation function

[_] : Q0 → Q

[(+ n) /suc d] = calQ n (suc d) (λ ())

[(-suc n) /suc d] = - calQ (suc n) (suc d) (λ ())

174 Appendix A Definable quotient structures

Embedding function

p_q : Q → Q0

p_q = proj1

Appendix B

Category with families of setoids

B.1 Metatheory

Subset defined by a predicate B

record Subset {a b} (A : Set a)

(B : A → Set b) : Set (a ⊔ b) where

constructor _,_

field

prj1 : A

.prj2 : B prj1

open Subset public

Setoids

record Setoid : Set1 where

infix 4 _≈_

field

Carrier : Set

≈ : Carrier → Carrier → Set

175

176 Appendix B Category with families of setoids

.refl : ∀{x} → x ≈ x

.sym : ∀{x y} → x ≈ y → y ≈ x

.trans : ∀{x y z} → x ≈ y → y ≈ z → x ≈ z

open Setoid public renaming

(Carrier to |_| ; _≈_ to [_]_≈_ ; refl to [_]refl;

trans to [_]trans; sym to [_]sym)

Morphisms between Setoids (Functors)

infix 5 _⇉_

record _⇉_ (A B : Setoid) : Set where

constructor fn:_resp:_

field

fn : | A | → | B |

.resp : {x y : | A |} →

([A] x ≈ y) →

[B] fn x ≈ fn y

open _⇉_ public renaming (fn to [_]fn ; resp to [_]resp)

Terminal object

 : Setoid

 = record {

Carrier = ⊤;

≈ = λ _ _ → ⊤;

refl = tt;

sym = λ _ → tt;

trans = λ _ _ → tt }

⋆ : {Δ : Setoid} → Δ ⇉

Appendix B Category with families of setoids 177

⋆ = record

{ fn = λ _ → tt

; resp = λ _ → tt }

uniqueHom : ∀ (Δ : Setoid)

→ (f : Δ ⇉) → f ≡ ⋆

uniqueHom Δ f = PE.refl

B.2 Categories with families

Context are interpreted as setoids

Con = Setoid

Semantic Types

record Ty (Γ : Setoid) : Set1 where

field

fm : | Γ | → Setoid

substT : {x y : | Γ |} →

.([Γ] x ≈ y) →

| fm x | →

| fm y |

.subst* : ∀{x y : | Γ |}

(p : ([Γ] x ≈ y))

{a b : | fm x |} →

.([fm x] a ≈ b) →

([fm y] substT p a ≈ substT p b)

.refl* : ∀{x : | Γ |}{a : | fm x |} →

178 Appendix B Category with families of setoids

[fm x] substT ([Γ]refl) a ≈ a

.trans* : ∀{x y z : | Γ |}

{p : [Γ] x ≈ y}

{q : [Γ] y ≈ z}

(a : | fm x |) →

[fm z] substT q (substT p a)

≈ substT ([Γ]trans p q) a

.tr* : ∀{x y : | Γ |}

{p : [Γ] y ≈ x}

{q : [Γ] x ≈ y}

{a : | fm x |} →

[fm x] substT p (substT q a) ≈ a

tr* = [fm _]trans (trans* _) refl*

substT-inv : {x y : | Γ |} →

.([Γ] x ≈ y) →

| fm y | →

| fm x |

substT-inv p y = substT ([Γ]sym p) y

Type substitution

[]T : ∀ {Γ Δ : Setoid} → Ty Δ → Γ ⇉ Δ → Ty Γ

[]T {Γ} {Δ} A f

= record

{ fm = λ x → fm (fn x)

; substT = λ p → substT _

; subst* = λ p → subst* (resp p)

; refl* = refl*

; trans* = trans*

}

Appendix B Category with families of setoids 179

where

open Ty A

open _⇉_ f

Semantic Terms

record Tm {Γ : Con}(A : Ty Γ) : Set where

constructor tm:_resp:_

field

tm : (x : | Γ |) → | [A]fm x |

.respt : ∀ {x y : | Γ |} →

(p : [Γ] x ≈ y) →

[[A]fm y] [A]subst p (tm x) ≈ tm y

open Tm public renaming (tm to [_]tm ; respt to [_]respt)

Term substitution

[]m : ∀ {Γ Δ : Con}{A : Ty Δ} → Tm A

→ (f : Γ ⇉ Δ) → Tm (A [f]T)

[]m t f = record

{ tm = [t]tm ◦ [f]fn

; respt = [t]respt ◦ [f]resp

}

Context comprehension

180 Appendix B Category with families of setoids

& : (Γ : Setoid) → Ty Γ → Setoid

Γ & A =

record { Carrier = Σ[x : | Γ |] | fm x |

; _≈_ = λ{(x , a) (y , b) →

Σ[p : x ≈ y] [fm y] (substT p a) ≈ b }

; refl = refl , refl*

; sym = λ {(p , q) → (sym p) ,

[fm _]trans (subst* _ ([fm _]sym q)) tr* }

; trans = λ {(p , q) (m , n) → trans p m ,

[fm _]trans ([fm _]trans

([fm _]sym (trans* _)) (subst* _ q)) n}

}

where

open Setoid Γ

open Ty A

infixl 5 _&_

fst& : {Γ : Con}{A : Ty Γ} → Γ & A ⇉ Γ

fst& = record

{ fn = proj1

; resp = proj1

}

Pairing operation

„ : {Γ Δ : Con}{A : Ty Δ}(f : Γ ⇉ Δ)

→ (Tm (A [f]T)) → Γ ⇉ (Δ & A)

f „ t = record

{ fn = < [f]fn , [t]tm >

Appendix B Category with families of setoids 181

; resp = < [f]resp , [t]respt >

}

Projections

fst : {Γ Δ : Con}{A : Ty Δ} → Γ ⇉ (Δ & A) → Γ ⇉ Δ

fst f = record

{ fn = proj1 ◦ [f]fn

; resp = proj1 ◦ [f]resp

}

snd : {Γ Δ : Con}{A : Ty Δ} → (f : Γ ⇉ (Δ & A))

→ Tm (A [fst {A = A} f]T)

snd f = record

{ tm = proj2 ◦ [f]fn

; respt = proj2 ◦ [f]resp

}

^ : {Γ Δ : Con}(f : Γ ⇉ Δ)(A : Ty Δ)

→ Γ & A [f]T ⇉ Δ & A

f ^ A = record

{ fn = < [f]fn ◦ proj1 , proj2 >

; resp = < [f]resp ◦ proj1 , proj2 >

}

Π-types (object level)

Π : {Γ : Setoid}(A : Ty Γ)(B : Ty (Γ & A)) → Ty Γ

Π {Γ} A B = record

{ fm = λ x → let Ax = [A]fm x in

let Bx = λ a → [B]fm (x , a) in

182 Appendix B Category with families of setoids

record

{ Carrier = Subset ((a : | Ax |) → | Bx a |) (λ fn →

(a b : | Ax |)

(p : [Ax] a ≈ b) →

[Bx b] [B]subst ([Γ]refl ,

[Ax]trans [A]refl* p) (fn a) ≈ fn b)

; _≈_ = λ{(f , _) (g , _) → ∀ a → [Bx a] f a ≈ g a }

; refl = λ a → [Bx _]refl

; sym = λ f a → [Bx _]sym (f a)

; trans = λ f g a → [Bx _]trans (f a) (g a)

}

; substT = λ {x} {y} p → λ {(f , rsp) →

let y2x = λ a → [A]subst ([Γ]sym p) a in

let x2y = λ a → [A]subst p a in

(λ a → [B]subst (p , [A]tr*)

(f (y2x a))) ,

(λ a b q →

let a’ = y2x a in

let b’ = y2x b in

let q’ = [A]subst* ([Γ]sym p) q in

let H = rsp a’ b’ ([A]subst* ([Γ]sym p) q) in

let r : [Γ & A] (x , b’) ≈ (y , b) r = (p , [A]tr*) in

let pre = [B]subst* r

(rsp a’ b’ ([A]subst* ([Γ]sym p) q)) in

[[B]fm (y , b)]trans

([B]trans* _)

([[B]fm (y , b)]trans

([[B]fm (y , b)]sym ([B]trans* _))

pre))}

Appendix B Category with families of setoids 183

; subst* = λ _ q _ → [B]subst* _ (q _)

; refl* = λ {x} {a} ax

→ let rsp = prj2 a in (rsp _ _ [A]refl*)

; trans* = λ {(f , rsp) a →

[[B]fm _]trans

([[B]fm _]trans

([B]trans* _)

([[B]fm _]sym ([B]trans* _)))

([B]subst* _ (rsp _ _ ([A]trans* _))) }

}

lam : {Γ : Con}{A : Ty Γ}{B : Ty (Γ & A)} → Tm B → Tm (Π A B)

lam {Γ} {A} (tm: tm resp: respt) =

record { tm = λ x → (λ a → tm (x , a))

, (λ a b p → respt ([Γ]refl ,

[[A]fm x]trans [A]refl* p))

; respt = λ p _ → respt (p , [A]tr*)

}

app : {Γ : Con}{A : Ty Γ}{B : Ty (Γ & A)} → Tm (Π A B) → Tm B

app {Γ} {A} {B} (tm: tm resp: respt) =

record { tm = λ {(x , a) → prj1 (tm x) a}

; respt = λ {x} {y} → λ {(p , tr) →

let fresp = prj2 (tm (proj1 x)) in

[[B]fm _]trans

([B]subst* (p , tr)

([[B]fm _]sym [B]refl*))

([[B]fm _]trans

([B]trans* {p = ([Γ]refl , [A]refl*)} _)

([[B]fm _]trans

([[B]fm _]sym

184 Appendix B Category with families of setoids

([B]trans* {q = (p , [A]tr*)} _))

([[B]fm _]trans

([B]subst* _ (fresp _ _

([[A]fm _]trans ([[A]fm _]sym [A]tr*)

([A]subst* ([Γ]sym p) tr))))

(respt p _)))) }

}

⇒ : {Γ : Con}(A B : Ty Γ) → Ty Γ

A ⇒ B = Π A (B [fst& {A = A}]T)

infixr 6 _⇒_

Simpler definition for functions

[_,_]_⇒fm_ : (Γ : Con)(x : | Γ |)

→ Setoid → Setoid → Setoid

[Γ , x] Ax ⇒fm Bx

= record

{ Carrier = Σ[fn : (| Ax | → | Bx |)] ((a b : | Ax |)

(p : [Ax] a ≈ b) → [Bx] fn a ≈ fn b)

; _≈_ = λ{(f , _) (g , _) → ∀ a → [Bx] f a ≈ g a }

; refl = λ _ → [Bx]refl

; sym = λ f a → [Bx]sym (f a)

; trans = λ f g a → [Bx]trans (f a) (g a)

}

Σ-types (object level)

Σ’ : {Γ : Con}(A : Ty Γ)(B : Ty (Γ & A)) → Ty Γ

Appendix B Category with families of setoids 185

Σ’ {Γ} A B = record

{ fm = λ x → let Ax = [A]fm x in

let Bx = λ a → [B]fm (x , a) in

record

{ Carrier = Σ[a : | Ax |] | Bx a |

; _≈_ = λ{(a1 , b1) (a2 , b2) →

Subset ([Ax] a1 ≈ a2)

(λ eq1 → [Bx _] [B]subst

([Γ]refl , [[A]fm x]trans

[A]refl* eq1) b1 ≈ b2)

}

; refl = λ {t} → [Ax]refl , [B]refl*

; sym = λ {(p , q) → ([Ax]sym p) ,

[Bx _]trans ([B]subst* _

([Bx _]sym q)) [B]tr*}

; trans = λ {(p , q) (r , s) → ([Ax]trans p r) ,

[Bx _]trans ([Bx _]trans

([Bx _]sym ([B]trans* _))

([B]subst* _ q)) s}

}

; substT = λ x≈y → λ {(p , q) →

([A]subst x≈y p) , [B]subst (x≈y ,

[[A]fm _]refl) q}

; subst* = λ x≈y → λ {(p , q) → [A]subst* x≈y p ,

[[B]fm _]trans ([[B]fm _]trans

([B]trans* _)

([[B]fm _]sym ([B]trans* _)))

([B]subst* (x≈y , [[A]fm _]refl) q) }

186 Appendix B Category with families of setoids

; refl* = λ {x} {a} →

let (p , q) = a in [A]refl* , [B]tr*

; trans* = λ {(p , q) → ([A]trans* _) ,

([[B]fm _]trans

([B]trans* _) ([B]trans* _)) }

}

Binary relation

Rel : {Γ : Con} → Ty Γ → Set1

Rel {Γ} A = Ty (Γ & A & A [fst& {A = A}]T)

Natural numbers

Axiom: irrelevant:

postulate

.irrelevant : {A : Set} → .A → A

module Natural (Γ : Con) where

≈nat : N → N → Set

zero ≈nat zero = ⊤

zero ≈nat suc n = ⊥

suc m ≈nat zero = ⊥

suc m ≈nat suc n = m ≈nat n

reflNat : {x : N} → x ≈nat x

Appendix B Category with families of setoids 187

reflNat {zero} = tt

reflNat {suc n} = reflNat {n}

symNat : {x y : N} → x ≈nat y → y ≈nat x

symNat {zero} {zero} eq = tt

symNat {zero} {suc _} eq = eq

symNat {suc _} {zero} eq = eq

symNat {suc x} {suc y} eq = symNat {x} {y} eq

transNat : {x y z : N}

→ x ≈nat y → y ≈nat z → x ≈nat z

transNat {zero} {zero} xy yz = yz

transNat {zero} {suc _} () yz

transNat {suc _} {zero} () yz

transNat {suc _} {suc _} {zero} xy yz = yz

transNat {suc x} {suc y} {suc z} xy yz =

transNat {x} {y} {z} xy yz

JNatK : Ty Γ

JNatK = record

{ fm = λ γ → record

{ Carrier = N

; _≈_ = _≈nat_

; refl = λ {n} → reflNat {n}

; sym = λ {x} {y} → symNat {x} {y}

; trans = λ {x} {y} {z} → transNat {x} {y} {z}

}

; substT = λ _ n → n

; subst* = λ _ x → irrelevant x

; refl* = λ {x} {a} → reflNat {a}

; trans* = λ a → reflNat {a}

}

188 Appendix B Category with families of setoids

J0K : Tm JNatK

J0K = record

{ tm = λ _ → 0

; respt = λ p → tt

}

JsK : Tm JNatK → Tm JNatK

JsK (tm: t resp: respt)

= record

{ tm = suc ◦ t

; respt = respt

}

Simply typed universe

Quotient types

module Q (Γ : Con)(A : Ty Γ)

(R : (γ : | Γ |) → | [A]fm γ | → | [A]fm γ | → Set)

.(Rrespt : ∀{γ γ’ : | Γ |}

(p : [Γ] γ ≈ γ’)

(a b : | [A]fm γ |) →

.(R γ a b) →

R γ’ ([A]subst p a) ([A]subst p b))

.(Rrsp : ∀ {γ a b} → .([[A]fm γ] a ≈ b) → R γ a b)

.(Rref : ∀ {γ a} → R γ a a)

.(Rsym : (∀ {γ a b} → .(R γ a b) → R γ b a))

.(Rtrn : (∀ {γ a b c} → .(R γ a b)

→ .(R γ b c) → R γ a c))

Appendix B Category with families of setoids 189

where

JQK0 : | Γ | → Setoid

JQK0 γ = record

{ Carrier = | [A]fm γ |

; _≈_ = R γ

; refl = Rref

; sym = Rsym

; trans = Rtrn

}

JQK : Ty Γ

JQK = record

{ fm = JQK0

; substT = [A]subst

; subst* = λ p q → Rrespt p _ _ q

; refl* = Rrsp [A]refl*

; trans* = λ a → Rrsp ([A]trans* _)

}

J[_]K : Tm A → Tm JQK

J[x]K = record

{ tm = [x]tm

; respt = λ p → Rrsp ([x]respt p)

}

J[_]K’ : Tm (A ⇒ JQK)

J[_]K’ = record

{ tm = λ x → (λ a → a) ,

(λ a b p →

Rrsp ([[A]fm _]trans [A]refl* p))

; respt = λ p a → Rrsp [A]tr*

}

190 Appendix B Category with families of setoids

.Q-Ax : ∀ γ a b → [[A]fm γ] a ≈ b → [[JQK]fm _] a ≈ b

Q-Ax γ a b = Rrsp

Q-elim : (B : Ty Γ)(f : Tm (A ⇒ B))

(frespR : ∀ γ a b → (R γ a b)

→ [[B]fm γ] prj1 ([f]tm γ) a

≈ prj1 ([f]tm γ) b)

→ Tm (JQK ⇒ B)

Q-elim B f frespR = record

{ tm = λ γ → prj1 ([f]tm γ) , (λ a b p →

[[B]fm _]trans [B]refl* (frespR _ _ _ p))

; respt = λ {γ} {γ’} p a → [f]respt p a

}

substQ : (Γ & A) ⇉ (Γ & JQK)

substQ = record

{ fn = λ {(x , a) → x , a}

; resp = λ{ (p , q) → p , (Rrsp q)}

}

Q-ind : (P : Ty (Γ & JQK))

→ (isProp : ∀ {x a} (r s : | [P]fm (x , a) |) →

[[P]fm (x , a)] r ≈ s)

→ (h : Tm (Π A (P [substQ]T)))

→ Tm (Π JQK P)

Q-ind P isProp h = record

{ tm = λ x → (prj1 ([h]tm x)) ,

(λ a b p → isProp {x} {b} _ _)

; respt = [h]respt

Appendix B Category with families of setoids 191

}

Appendix C

syntactic weak ω-groupoids

C.1 Syntax of T∞−groupoid

data Con : Set

data Ty (Γ : Con) : Set

data Tm : {Γ : Con}(A : Ty Γ) → Set

data Var : {Γ : Con}(A : Ty Γ) → Set

data _⇒_ : Con → Con → Set

data isContr : Con → Set

Contexts

data Con where

ε : Con

, : (Γ : Con)(A : Ty Γ) → Con

Types

193

194 Appendix C syntactic weak ω-groupoids

data Ty Γ where

* : Ty Γ

=h : {A : Ty Γ}(a b : Tm A) → Ty Γ

Heterogeneous Equality for Terms

data _∼=_ {Γ : Con}{A : Ty Γ} :

{B : Ty Γ} → Tm A → Tm B → Set where

refl : (b : Tm A) → b ∼= b

_-1 : ∀{Γ : Con}{A B : Ty Γ}

{a : Tm A}{b : Tm B} → a ∼= b → b ∼= a

(refl _) -1 = refl _

infixr 4 _:_

: : {Γ : Con}

{A B C : Ty Γ}

{a : Tm A}{b : Tm B}{c : Tm C} →

a ∼= b →

b ∼= c

→ a ∼= c

: {c = c} (refl .c) (refl .c) = refl c

J〉〉 : {Γ : Con}{A B : Ty Γ}(a : Tm B)

→ A ≡ B → Tm A

a J refl 〉〉 = a

cohOp : {Γ : Con}{A B : Ty Γ}{a : Tm B}(p : A ≡ B)

→ a J p 〉〉 ∼= a

Appendix C syntactic weak ω-groupoids 195

cohOp refl = refl _

cohOp-eq : {Γ : Con}{A B : Ty Γ}{a b : Tm B}

{p : A ≡ B} → (a ∼= b)

→ (a J p 〉〉 ∼= b J p 〉〉)

cohOp-eq {Γ} {.B} {B} {a} {b} {refl} r = r

cohOp-hom : {Γ : Con}{A B : Ty Γ}{a b : Tm B}(p : A ≡ B) →

(a J p 〉〉 =h b J p 〉〉) ≡ (a =h b)

cohOp-hom refl = refl

cong∼= : {Γ Δ : Con}{A B : Ty Γ}{a : Tm A}{b : Tm B}

{D : Ty Γ → Ty Δ} → (f : {C : Ty Γ} → Tm C → Tm (D C))→

a ∼= b → f a ∼= f b

cong∼= f (refl _) = refl _

Substitutions

[]T : ∀{Γ Δ} → Ty Δ → Γ ⇒ Δ → Ty Γ

[]V : ∀{Γ Δ A} → Var A → (δ : Γ ⇒ Δ) → Tm (A [δ]T)

[]tm : ∀{Γ Δ A} → Tm A → (δ : Γ ⇒ Δ) → Tm (A [δ]T)

⊚ : ∀{Γ Δ Θ} → Δ ⇒ Θ → (δ : Γ ⇒ Δ) → Γ ⇒ Θ

Contexts morphisms

data _⇒_ where

• : ∀{Γ} → Γ ⇒ ε

, : ∀{Γ Δ}(δ : Γ ⇒ Δ){A : Ty Δ}(a : Tm (A [δ]T))

196 Appendix C syntactic weak ω-groupoids

→ Γ ⇒ (Δ , A)

Weakening

+T : ∀{Γ}(A : Ty Γ)(B : Ty Γ) → Ty (Γ , B)

+tm : ∀{Γ A}(a : Tm A)(B : Ty Γ) → Tm (A +T B)

+S : ∀{Γ Δ}(δ : Γ ⇒ Δ)(B : Ty Γ) → (Γ , B) ⇒ Δ

* +T B = *

(a =h b) +T B = a +tm B =h b +tm B

* [δ]T = *

(a =h b) [δ]T = a [δ]tm =h b [δ]tm

Variables and terms

data Var where

v0 : ∀{Γ}{A : Ty Γ} → Var (A +T A)

vS : ∀{Γ}{A B : Ty Γ}(x : Var A) → Var (A +T B)

data Tm where

var : ∀{Γ}{A : Ty Γ} → Var A → Tm A

coh : ∀{Γ Δ} → isContr Δ → (δ : Γ ⇒ Δ)

→ (A : Ty Δ) → Tm (A [δ]T)

cohOpV : {Γ : Con}{A B : Ty Γ}{x : Var A}(p : A ≡ B) →

Appendix C syntactic weak ω-groupoids 197

var (subst Var p x) ∼= var x

cohOpV {x = x} refl = refl (var x)

cohOpVs : {Γ : Con}{A B C : Ty Γ}{x : Var A}(p : A ≡ B) →

var (vS {B = C} (subst Var p x)) ∼= var (vS x)

cohOpVs {x = x} refl = refl (var (vS x))

coh-eq : {Γ Δ : Con}{isc : isContr Δ}{γ δ : Γ ⇒ Δ}

{A : Ty Δ} → γ ≡ δ → coh isc γ A ∼= coh isc δ A

coh-eq refl = refl _

Contractible contexts

data isContr where

c* : isContr (ε , *)

ext : ∀{Γ} → isContr Γ → {A : Ty Γ}(x : Var A)

→ isContr (Γ , A , (var (vS x) =h var v0))

hom≡ : {Γ : Con}{A A’ : Ty Γ}

{a : Tm A}{a’ : Tm A’}(q : a ∼= a’)

{b : Tm A}{b’ : Tm A’}(r : b ∼= b’)

→ (a =h b) ≡ (a’ =h b’)

hom≡ {Γ} {.A’} {A’} {.a’} {a’} (refl .a’) {.b’} {b’} (refl .b’) = refl

S-eq : {Γ Δ : Con}{γ δ : Γ ⇒ Δ}{A : Ty Δ}

{a : Tm (A [γ]T)}{a’ : Tm (A [δ]T)}

→ γ ≡ δ → a ∼= a’

→ _≡_ {_} {Γ ⇒ (Δ , A)} (γ , a) (δ , a’)

198 Appendix C syntactic weak ω-groupoids

S-eq refl (refl _) = refl

Some lemmas

[⊚]T : ∀{Γ Δ Θ A}{θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ A [θ ⊚ δ]T ≡ (A [θ]T)[δ]T

[⊚]v : ∀{Γ Δ Θ A}(x : Var A){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ x [θ ⊚ δ]V ∼= (x [θ]V) [δ]tm

[⊚]tm : ∀{Γ Δ Θ A}(a : Tm A){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ a [θ ⊚ δ]tm ∼= (a [θ]tm) [δ]tm

⊚assoc : ∀{Γ Δ Θ Ω}(γ : Θ ⇒ Ω){θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}

→ (γ ⊚ θ) ⊚ δ ≡ γ ⊚ (θ ⊚ δ)

• ⊚ δ = •

(δ , a) ⊚ δ’ = (δ ⊚ δ’) , a [δ’]tm J [⊚]T 〉〉

[+S]T : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}

→ A [δ +S B]T ≡ (A [δ]T) +T B

[+S]tm : ∀{Γ Δ A B}(a : Tm A){δ : Γ ⇒ Δ}

→ a [δ +S B]tm ∼= (a [δ]tm) +tm B

[+S]S : ∀{Γ Δ Θ B}{δ : Δ ⇒ Θ}{γ : Γ ⇒ Δ}

→ δ ⊚ (γ +S B) ≡ (δ ⊚ γ) +S B

wk-tm+ : {Γ Δ : Con}{A : Ty Δ}{δ : Γ ⇒ Δ}(B : Ty Γ)

→ Tm (A [δ]T +T B) → Tm (A [δ +S B]T)

Appendix C syntactic weak ω-groupoids 199

wk-tm+ B t = t J [+S]T 〉〉

• +S B = •

(δ , a) +S B = (δ +S B) , wk-tm+ B (a +tm B)

[+S]T {A = *} = refl

[+S]T {A = a =h b} = hom≡ ([+S]tm a) ([+S]tm b)

+T[,]T : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}{b : Tm (B [δ]T)}

→ (A +T B) [δ , b]T ≡ A [δ]T

+tm[,]tm : ∀{Γ Δ A B}{δ : Γ ⇒ Δ}{c : Tm (B [δ]T)}

→ (a : Tm A)

→ (a +tm B) [δ , c]tm ∼= a [δ]tm

(var x) +tm B = var (vS x)

(coh cΔ δ A) +tm B = coh cΔ (δ +S B) A J sym [+S]T 〉〉

cong+tm : {Γ : Con}{A B C : Ty Γ}{a : Tm A}{b : Tm B} →

a ∼= b

→ a +tm C ∼= b +tm C

cong+tm (refl _) = refl _

cong+tm2 : {Γ : Con}{A B C : Ty Γ}

{a : Tm B}(p : A ≡ B)

→ a +tm C ∼= a J p 〉〉 +tm C

cong+tm2 refl = refl _

wk-T : {Δ : Con}

{A B C : Ty Δ}

→ A ≡ B → A +T C ≡ B +T C

wk-T refl = refl

wk-tm : {Γ Δ : Con}

200 Appendix C syntactic weak ω-groupoids

{A : Ty Δ}{δ : Γ ⇒ Δ}

{B : Ty Δ}{b : Tm (B [δ]T)}

→ Tm (A [δ]T) → Tm ((A +T B) [δ , b]T)

wk-tm t = t J +T[,]T 〉〉

v0 [δ , a]V = wk-tm a

vS x [δ , a]V = wk-tm (x [δ]V)

wk-coh : {Γ Δ : Con}

{A : Ty Δ}{δ : Γ ⇒ Δ}

{B : Ty Δ}{b : Tm (B [δ]T)}

{t : Tm (A [δ]T)}

→ wk-tm {B = B} {b = b} t ∼= t

wk-coh = cohOp +T[,]T

wk-coh+ : {Γ Δ : Con}

{A : Ty Δ}{δ : Γ ⇒ Δ}

{B : Ty Γ}

{x : Tm (A [δ]T +T B)}

→ wk-tm+ B x ∼= x

wk-coh+ = cohOp [+S]T

wk-hom : {Γ Δ : Con}

{A : Ty Δ}{δ : Γ ⇒ Δ}

{B : Ty Δ}{b : Tm (B [δ]T)}

{x y : Tm (A [δ]T)}

→ (wk-tm {B = B} {b = b} x =h wk-tm

{B = B} {b = b} y) ≡ (x =h y)

wk-hom = hom≡ wk-coh wk-coh

wk-hom+ : {Γ Δ : Con}

{A : Ty Δ}{δ : Γ ⇒ Δ}

{B : Ty Γ}

Appendix C syntactic weak ω-groupoids 201

{x y : Tm (A [δ]T +T B)}

→ (wk-tm+ B x =h wk-tm+ B y) ≡ (x =h y)

wk-hom+ = hom≡ wk-coh+ wk-coh+

wk-⊚ : {Γ Δ Θ : Con}

{θ : Δ ⇒ Θ}{δ : Γ ⇒ Δ}{A : Ty Θ}

→ Tm ((A [θ]T)[δ]T) → Tm (A [θ ⊚ δ]T)

wk-⊚ t = t J [⊚]T 〉〉

[+S]S {δ = •} = refl

[+S]S {δ = δ , a} = S-eq [+S]S (cohOp [⊚]T :

([+S]tm a : cong+tm2 [⊚]T) : wk-coh+ -1)

wk+S+T : ∀{Γ Δ : Con}{A : Ty Γ}{B : Ty Δ}

{γ}{C} →

A [γ]T ≡ C

→ A [γ +S B]T ≡ C +T B

wk+S+T eq = trans [+S]T (wk-T eq)

wk+S+tm : {Γ Δ : Con}{A : Ty Γ}{B : Ty Δ}

(a : Tm A){C : Ty Δ}{γ : Δ ⇒ Γ}{c : Tm C} →

a [γ]tm ∼= c

→ a [γ +S B]tm ∼= c +tm B

wk+S+tm _ eq = [+S]tm _ : cong+tm eq

wk+S+S : ∀{Γ Δ Δ1 : Con}{δ : Δ ⇒ Δ1}{γ : Γ ⇒ Δ}

{ω : Γ ⇒ Δ1}{B : Ty Γ}

→ δ ⊚ γ ≡ ω

→ δ ⊚ (γ +S B) ≡ ω +S B

wk+S+S eq = trans [+S]S (cong (λ x → x +S _) eq)

202 Appendix C syntactic weak ω-groupoids

[⊚]T {A = *} = refl

[⊚]T {A = _=h_ {A} a b} = hom≡ ([⊚]tm _) ([⊚]tm _)

+T[,]T {A = *} = refl

+T[,]T {A = _=h_ {A} a b} = hom≡ (+tm[,]tm _) (+tm[,]tm _)

var x [δ]tm = x [δ]V

coh cΔ γ A [δ]tm = coh cΔ (γ ⊚ δ) A J sym [⊚]T 〉〉

congT : ∀ {Γ Δ : Con}{A B : Ty Δ}{γ : Γ ⇒ Δ} → A ≡ B → A [γ]T ≡ B [γ]T

congT refl = refl

congT2 : ∀ {Γ Δ} → {δ γ : Δ ⇒ Γ}{A : Ty Γ} → δ ≡ γ → A [δ]T ≡ A [γ]T

congT2 refl = refl

congV : {Γ Δ : Con}{A B : Ty Δ}{a : Var A}{b : Var B} →

var a ∼= var b →

{δ : Γ ⇒ Δ}

→ a [δ]V ∼= b [δ]V

congV {Γ} {Δ} {.B} {B} {.b} {b} (refl .(var b)) = refl _

congtm : {Γ Δ : Con}{A B : Ty Γ}{a : Tm A}{b : Tm B}

(p : a ∼= b) →

{δ : Δ ⇒ Γ}

→ a [δ]tm ∼= b [δ]tm

congtm (refl _) = refl _

congtm2 : {Γ Δ : Con}{A : Ty Γ}{a : Tm A}

{δ γ : Δ ⇒ Γ} →

Appendix C syntactic weak ω-groupoids 203

(p : δ ≡ γ)

→ a [δ]tm ∼= a [γ]tm

congtm2 refl = refl _

⊚assoc • = refl

⊚assoc (_,_ γ {A} a) = S-eq (⊚assoc γ)

(cohOp [⊚]T

: (congtm (cohOp [⊚]T)

: ((cohOp [⊚]T

: [⊚]tm a) -1)))

[⊚]v (v0 {Γ1} {A}) {θ , a} = wk-coh : cohOp

[⊚]T : congtm (cohOp +T[,]T -1)

[⊚]v (vS {Γ1} {A} {B} x) {θ , a} =

wk-coh : ([⊚]v x : (congtm (cohOp +T[,]T) -1))

[⊚]tm (var x) = [⊚]v x

[⊚]tm (coh c γ A) = cohOp (sym [⊚]T) : (coh-eq (sym (⊚assoc γ))

: cohOp (sym [⊚]T) -1) : congtm (cohOp (sym [⊚]T) -1)

⊚wk : ∀{Γ Δ Δ1}{B : Ty Δ}(γ : Δ ⇒ Δ1){δ : Γ ⇒ Δ}

{c : Tm (B [δ]T)} → (γ +S B) ⊚ (δ , c) ≡ γ ⊚ δ

⊚wk • = refl

⊚wk (_,_ γ {A} a) = S-eq (⊚wk γ) (cohOp [⊚]T :

(congtm (cohOp [+S]T) : +tm[,]tm a) : cohOp [⊚]T -1)

+tm[,]tm (var x) = cohOp +T[,]T

+tm[,]tm (coh x γ A) = congtm (cohOp (sym [+S]T)) :

cohOp (sym [⊚]T) : coh-eq (⊚wk γ) : cohOp (sym [⊚]T) -1

204 Appendix C syntactic weak ω-groupoids

[+S]V : {Γ Δ : Con}{A : Ty Δ}

(x : Var A){δ : Γ ⇒ Δ}

{B : Ty Γ}

→ x [δ +S B]V ∼= (x [δ]V) +tm B

[+S]V v0 {_,_ δ {A} a} = wk-coh : wk-coh+ : cong+tm2 +T[,]T

[+S]V (vS x) {δ , a} = wk-coh : [+S]V x : cong+tm2 +T[,]T

[+S]tm (var x) = [+S]V x

[+S]tm (coh x δ A) = cohOp (sym [⊚]T) : coh-eq [+S]S :

cohOp (sym [+S]T) -1 : cong+tm2 (sym [⊚]T)

Some simple contexts

x:* : Con

x:* = ε , *

x:*,y:*,α:x=y : Con

x:*,y:*,α:x=y = x:* , * , (var (vS v0) =h var v0)

vX : Tm {x:*,y:*,α:x=y} *

vX = var (vS (vS v0))

vY : Tm {x:*,y:*,α:x=y} *

vY = var (vS v0)

vα : Tm {x:*,y:*,α:x=y} (vX =h vY)

vα = var v0

x:*,y:*,α:x=y,z:*,β:y=z : Con

Appendix C syntactic weak ω-groupoids 205

x:*,y:*,α:x=y,z:*,β:y=z = x:*,y:*,α:x=y , * ,

(var (vS (vS v0)) =h var v0)

vZ : Tm {x:*,y:*,α:x=y,z:*,β:y=z} *

vZ = var (vS v0)

vβ : Tm {x:*,y:*,α:x=y,z:*,β:y=z} (vY +tm _ +tm _ =h vZ)

vβ = var v0

C.2 Some Important Derivable Constructions

Identity morphism

IdS : ∀{Γ} → Γ ⇒ Γ

IC-T : ∀{Γ}{A : Ty Γ} → A [IdS]T ≡ A

IC-v : ∀{Γ : Con}{A : Ty Γ}(x : Var A) → x [IdS]V ∼= var x

IC-S : ∀{Γ Δ : Con}(δ : Γ ⇒ Δ) → δ ⊚ IdS ≡ δ

IC-tm : ∀{Γ : Con}{A : Ty Γ}(a : Tm A) → a [IdS]tm ∼= a

Coh-Contr : ∀{Γ}{A : Ty Γ} → isContr Γ → Tm A

Coh-Contr isC = coh isC IdS _ J sym IC-T 〉〉

IdS {ε} = •

IdS {Γ , A} = IdS +S _ , var v0 J wk+S+T IC-T 〉〉

IC-T {Γ} {*} = refl

IC-T {Γ} {a =h b} = hom≡ (IC-tm a) (IC-tm b)

IC-v {.(Γ , A)} {.(A +T A)} (v0 {Γ} {A}) = wk-coh : cohOp (wk+S+T IC-T)

IC-v {.(Γ , B)} {.(A +T B)} (vS {Γ} {A} {B} x) = wk-coh :

wk+S+tm (var x) (IC-v _)

206 Appendix C syntactic weak ω-groupoids

IC-S • = refl

IC-S (δ , a) = S-eq (IC-S δ) (cohOp [⊚]T : IC-tm a)

IC-tm (var x) = IC-v x

IC-tm (coh x δ A) = cohOp (sym [⊚]T) : coh-eq (IC-S δ)

Some auxiliary functions

1-1S-same : {Γ : Con}{A B : Ty Γ} →

B ≡ A → (Γ , A) ⇒ (Γ , B)

1-1S-same eq = pr1 , pr2 J congT eq 〉〉

1-1S-same-T : {Γ : Con}{A B : Ty Γ} →

(eq : B ≡ A) → (A +T B) [1-1S-same eq]T ≡ A +T A

1-1S-same-T eq = trans +T[,]T (trans [+S]T (wk-T IC-T))

1-1S-same-tm : ∀ {Γ : Con}{A : Ty Γ}{B : Ty Γ} →

(eq : B ≡ A)(a : Tm A) →

(a +tm B) [1-1S-same eq]tm ∼= (a +tm A)

1-1S-same-tm eq a = +tm[,]tm a : [+S]tm a : cong+tm (IC-tm a)

1-1S-same-v0 : ∀ {Γ : Con}{A B : Ty Γ} →

(eq : B ≡ A) → var v0 [1-1S-same eq]tm ∼= var v0

1-1S-same-v0 eq = wk-coh : cohOp (congT eq) : pr2-v0

++ : Con → Con → Con

cor : {Γ : Con}(Δ : Con) → (Γ ++ Δ) ⇒ Δ

repeat-p1 : {Γ : Con}(Δ : Con) → (Γ ++ Δ) ⇒ Γ

Appendix C syntactic weak ω-groupoids 207

Γ ++ ε = Γ

Γ ++ (Δ , A) = Γ ++ Δ , A [cor Δ]T

repeat-p1 ε = IdS

repeat-p1 (Δ , A) = repeat-p1 Δ ⊚ pr1

cor ε = •

cor (Δ , A) = (cor Δ +S _) , var v0 J [+S]T 〉〉

++S : ∀ {Γ Δ Θ} → Γ ⇒ Δ → Γ ⇒ Θ → Γ ⇒ (Δ ++ Θ)

cor-inv : ∀ {Γ Δ Θ} → {γ : Γ ⇒ Δ}(δ : Γ ⇒ Θ) → cor Θ ⊚ (γ ++S δ) ≡ δ

γ ++S • = γ

γ ++S (δ , a) = γ ++S δ , a J trans (sym [⊚]T) (congT2 (cor-inv _)) 〉〉

cor-inv • = refl

cor-inv (δ , a) = S-eq (trans (⊚wk _) (cor-inv δ))

(cohOp [⊚]T : congtm (cohOp [+S]T)

: cohOp +T[,]T

: cohOp (trans (sym [⊚]T) (congT2 (cor-inv _))))

id-S++ : {Γ : Con}(Δ Θ : Con) → (Δ ⇒ Θ) → (Γ ++ Δ) ⇒ (Γ ++ Θ)

id-S++ Δ Θ γ = repeat-p1 Δ ++S (γ ⊚ cor _)

C.2.1 Suspension and Replacement

One-step suspension

ΣC : Con → Con

ΣT : ∀{Γ} → Ty Γ → Ty (ΣC Γ)

ΣC ε = ε , * , *

208 Appendix C syntactic weak ω-groupoids

ΣC (Γ , A) = ΣC Γ , ΣT A

Σv : ∀{Γ}{A : Ty Γ} → Var A → Var (ΣT A)

Σtm : ∀{Γ}{A : Ty Γ} → Tm A → Tm (ΣT A)

Σs : ∀{Γ Δ} → Γ ⇒ Δ → ΣC Γ ⇒ ΣC Δ

*’ : {Γ : Con} → Ty (ΣC Γ)

*’ {ε} = var (vS v0) =h var v0

*’ {Γ , A} = *’ {Γ} +T _

ΣT {Γ} * = *’ {Γ}

ΣT (a =h b) = Σtm a =h Σtm b

Σs• : (Γ : Con) → ΣC Γ ⇒ ΣC ε

Σs• ε = IdS

Σs• (Γ , A) = Σs• Γ +S _

ΣC-Contr : ∀ Δ → isContr Δ → isContr (ΣC Δ)

ΣT[+T] : ∀{Γ}(A B : Ty Γ)

→ ΣT (A +T B) ≡ ΣT A +T ΣT B

Σtm[+tm] : ∀{Γ A}(a : Tm A)(B : Ty Γ)

→ Σtm (a +tm B) ∼= Σtm a +tm ΣT B

ΣT[Σs]T : ∀{Γ Δ}(A : Ty Δ)(δ : Γ ⇒ Δ)

→ (ΣT A) [Σs δ]T ≡ ΣT (A [δ]T)

ΣT[+T] * B = refl

ΣT[+T] (_=h_ {A} a b) B = hom≡ (Σtm[+tm] a B) (Σtm[+tm] b B)

Σv {.(Γ , A)} {.(A +T A)} (v0 {Γ} {A}) = subst Var (sym (ΣT[+T] A A)) v0

Σv {.(Γ , B)} {.(A +T B)} (vS {Γ} {A} {B} x) = subst Var (sym (ΣT[+T]

{_} A B)) (vS (Σv x))

Appendix C syntactic weak ω-groupoids 209

Σtm (var x) = var (Σv x)

Σtm (coh x δ A) = coh (ΣC-Contr _ x) (Σs δ) (ΣT A) J sym (ΣT[Σs]T A δ) 〉〉

Σtm-p1 : {Γ : Con}(A : Ty Γ) → Σtm {Γ , A} (var v0) ∼= var v0

Σtm-p1 A = cohOpV (sym (ΣT[+T] A A))

Σtm-p2 : {Γ : Con}(A B : Ty Γ)(x : Var A) → var (Σv (vS {B = B} x)) ∼=

var (vS (Σv x))

Σtm-p2 {Γ} A B x = cohOpV (sym (ΣT[+T] A B))

Σtm-p2-sp : {Γ : Con}(A : Ty Γ)(B : Ty (Γ , A)) → Σtm {Γ , A , B}

(var (vS v0)) ∼= (var v0) +tm _

Σtm-p2-sp A B = Σtm-p2 (A +T A) B v0 : cong+tm (Σtm-p1 A)

Σs {Γ} {Δ , A} (γ , a) = (Σs γ) , Σtm a J ΣT[Σs]T A γ 〉〉

Σs {Γ} • = Σs• Γ

congΣtm : {Γ : Con}{A B : Ty Γ}{a : Tm A}{b : Tm B} → a ∼= b →

Σtm a ∼= Σtm b

congΣtm (refl _) = refl _

cohOpΣtm : ∀ {Δ : Con}{A B : Ty Δ}(t : Tm B)(p : A ≡ B) →

Σtm (t J p 〉〉) ∼= Σtm t

cohOpΣtm t p = congΣtm (cohOp p)

Σs⊚ : ∀ {Δ Δ1 Γ}(δ : Δ ⇒ Δ1)(γ : Γ ⇒ Δ) → Σs (δ ⊚ γ) ≡ Σs δ ⊚ Σs γ

Σv[Σs]v : ∀ {Γ Δ : Con}{A : Ty Δ}(x : Var A)(δ : Γ ⇒ Δ) →

Σv x [Σs δ]V ∼= Σtm (x [δ]V)

Σv[Σs]v (v0 {Γ} {A}) (δ , a) = congtm (Σtm-p1 A) : wk-coh :

cohOp (ΣT[Σs]T A δ) : cohOpΣtm a +T[,]T -1

Σv[Σs]v (vS {Γ} {A} {B} x) (δ , a) = congtm (Σtm-p2 A B x) :

+tm[,]tm (Σtm (var x)) :

210 Appendix C syntactic weak ω-groupoids

Σv[Σs]v x δ : cohOpΣtm (x [δ]V) +T[,]T -1

Σtm[Σs]tm : ∀ {Γ Δ : Con}{A : Ty Δ}(a : Tm A)(δ : Γ ⇒ Δ) →

(Σtm a) [Σs δ]tm ∼= Σtm (a [δ]tm)

Σtm[Σs]tm (var x) δ = Σv[Σs]v x δ

Σtm[Σs]tm {Γ} {Δ} (coh {Δ = Δ1} x δ A) δ1 = congtm (cohOp

(sym (ΣT[Σs]T A δ)))

: cohOp (sym [⊚]T)

: coh-eq (sym (Σs⊚ δ δ1))

: (cohOpΣtm (coh x (δ ⊚ δ1) A) (sym [⊚]T)

: cohOp (sym (ΣT[Σs]T A (δ ⊚ δ1)))) -1

Σs•-left-id : ∀{Γ Δ : Con}(γ : Γ ⇒ Δ) → Σs {Γ} • ≡ Σs {Δ} • ⊚ Σs γ

Σs•-left-id {ε} {ε} • = refl

Σs•-left-id {ε} {Δ , A} (γ , a) = trans (Σs•-left-id γ)

(sym (⊚wk (Σs• Δ)))

Σs•-left-id {Γ , A} {ε} • = trans (cong (λ x → x +S ΣT A)

(Σs•-left-id {Γ} {ε} •)) (S-eq (S-eq refl ([+S]V (vS v0) {Σs• Γ} -1))

([+S]V v0 {Σs• Γ} -1))

Σs•-left-id {Γ , A} {Δ , A1} (γ , a) = trans (Σs•-left-id γ)

(sym (⊚wk (Σs• Δ)))

Σs⊚ • γ = Σs•-left-id γ

Σs⊚ {Δ} (_,_ δ {A} a) γ = S-eq (Σs⊚ δ γ) (cohOp (ΣT[Σs]T A (δ ⊚ γ))

: cohOpΣtm (a [γ]tm) [⊚]T : (cohOp [⊚]T : congtm

(cohOp (ΣT[Σs]T A δ)) : Σtm[Σs]tm a γ) -1)

ΣT[+S]T : ∀{Γ Δ : Con}(A : Ty Δ)(δ : Γ ⇒ Δ)(B : Ty Γ) →

ΣT A [Σs δ +S ΣT B]T ≡ ΣT (A [δ]T) +T ΣT B

ΣT[+S]T A δ B = trans [+S]T (wk-T (ΣT[Σs]T A δ))

ΣsDis : ∀{Γ Δ : Con}{A : Ty Δ}(δ : Γ ⇒ Δ)(a : Tm (A [δ]T))

(B : Ty Γ) → (Σs {Γ} {Δ , A} (δ , a)) +S ΣT B ≡

Appendix C syntactic weak ω-groupoids 211

Σs δ +S ΣT B , ((Σtm a) +tm ΣT B) J ΣT[+S]T A δ B 〉〉

ΣsDis {Γ} {Δ} {A} δ a B = S-eq refl (wk-coh+ : (cohOp (trans [+S]T

(wk-T (ΣT[Σs]T A δ))) : cong+tm2 (ΣT[Σs]T A δ)) -1)

ΣsΣT : ∀ {Γ Δ : Con}(δ : Γ ⇒ Δ)(B : Ty Γ) → Σs (δ +S B) ≡ Σs δ +S ΣT B

ΣsΣT • _ = refl

ΣsΣT (_,_ δ {A} a) B = S-eq (ΣsΣT δ B) (cohOp (ΣT[Σs]T A (δ +S B)) :

cohOpΣtm (a +tm B) [+S]T : Σtm[+tm] a B : cong+tm2 (ΣT[Σs]T A δ) :

wk-coh+ -1)

*’[Σs]T : {Γ Δ : Con} → (δ : Γ ⇒ Δ) → *’ {Δ} [Σs δ]T ≡ *’ {Γ}

*’[Σs]T {ε} • = refl

*’[Σs]T {Γ , A} • = trans ([+S]T {A = *’ {ε}} {δ = Σs {Γ} •})

(wk-T (*’[Σs]T {Γ} •))

’[Σs]T {Γ} {Δ , A} (γ , a) = trans +T[,]T (’[Σs]T γ)

ΣT[Σs]T * δ = *’[Σs]T δ

ΣT[Σs]T (_=h_ {A} a b) δ = hom≡ (Σtm[Σs]tm a δ) (Σtm[Σs]tm b δ)

Σtm[+tm] {A = A} (var x) B = cohOpV (sym (ΣT[+T] A B))

Σtm[+tm] {Γ} (coh {Δ = Δ} x δ A) B = cohOpΣtm (coh x (δ +S B) A)

(sym [+S]T) : cohOp (sym (ΣT[Σs]T A (δ +S B))) : coh-eq (ΣsΣT δ B) :

cohOp (sym [+S]T) -1 : cong+tm2 (sym (ΣT[Σs]T A δ))

ΣC-Contr .(ε , *) c* = ext c* v0

ΣC-Contr .(Γ , A , (var (vS x) =h var v0)) (ext {Γ} r {A} x) =

subst (λ y → isContr (ΣC Γ , ΣT A , y))

(hom≡ (cohOpV (sym (ΣT[+T] A A)) -1)

(cohOpV (sym (ΣT[+T] A A)) -1))

(ext (ΣC-Contr Γ r) {ΣT A} (Σv x))

General suspension

212 Appendix C syntactic weak ω-groupoids

ΣC-it : ∀{Γ}(A : Ty Γ) → Con → Con

ΣT-it : ∀{Γ Δ}(A : Ty Γ) → Ty Δ → Ty (ΣC-it A Δ)

Σtm-it : ∀{Γ Δ}(A : Ty Γ){B : Ty Δ} → Tm B

→ Tm (ΣT-it A B)

suspend-S : {Γ Δ Θ : Con}(A : Ty Γ) → Θ ⇒ Δ →

(ΣC-it A Θ) ⇒ (ΣC-it A Δ)

ΣC-it * Δ = Δ

ΣC-it (_=h_ {A} a b) Δ = ΣC (ΣC-it A Δ)

ΣT-it * B = B

ΣT-it (_=h_ {A} a b) B = ΣT (ΣT-it A B)

Σtm-it * t = t

Σtm-it (_=h_ {A} a b) t = Σtm (Σtm-it A t)

suspend-S * γ = γ

suspend-S (_=h_ {A} a b) γ = Σs (suspend-S A γ)

minimum-S : ∀ {Γ : Con}(A : Ty Γ) → Γ ⇒ ΣC-it A ε

ΣC-p1 :{Γ : Con}(A : Ty Γ) → ΣC (Γ , A) ≡ ΣC Γ , ΣT A

ΣC-p1 * = refl

ΣC-p1 (a =h b) = refl

ΣC-it-p1 : {Γ Δ : Con}(A : Ty Γ)(B : Ty Δ) → ΣC-it A (Δ , B) ≡

(ΣC-it A Δ , ΣT-it A B)

ΣC-it-p1 * B = refl

ΣC-it-p1 (_=h_ {A} a b) B = cong ΣC (ΣC-it-p1 A B)

Appendix C syntactic weak ω-groupoids 213

ΣC-it-S-spl’ : {Γ Δ : Con}(A : Ty Γ)(B : Ty Δ) →

(ΣC-it A Δ , ΣT-it A B) ≡ ΣC-it A (Δ , B)

ΣC-it-S-spl’ * B = refl

ΣC-it-S-spl’ (_=h_ {A} a b) B = cong ΣC (ΣC-it-S-spl’ A B)

ΣC-it-S-spl : {Γ Δ : Con}(A : Ty Γ)(B : Ty Δ) →

(ΣC-it A Δ , ΣT-it A B) ⇒ ΣC-it A (Δ , B)

ΣC-it-S-spl * B = IdS

ΣC-it-S-spl (_=h_ {A} a b) B = Σs (ΣC-it-S-spl A B)

ΣC-it-S-spl-1 : {Γ Δ : Con}(A : Ty Γ)(B : Ty Δ) →

ΣC-it A (Δ , B) ⇒ (ΣC-it A Δ , ΣT-it A B)

ΣC-it-S-spl-1 * B = IdS

ΣC-it-S-spl-1 (_=h_ {A} a b) B = Σs (ΣC-it-S-spl-1 A B)

ΣC-it-S-spl2 : {Γ : Con}(A : Ty Γ)

→ (ΣC-it A ε , ΣT-it A * , ΣT-it A * +T _) ⇒

ΣC (ΣC-it A ε)

ΣC-it-S-spl2 * = IdS

ΣC-it-S-spl2 (_=h_ {A} a b) = Σs (ΣC-it-S-spl2 A) ⊚ 1-1S-same

(ΣT[+T] (ΣT-it A *) (ΣT-it A *))

ΣT-it-wk : {Γ Δ : Con}(A : Ty Γ)(B : Ty Δ) →

(ΣT-it A *) [ΣC-it-S-spl A B]T ≡ ΣT-it A * +T _

ΣT-it-wk * B = refl

ΣT-it-wk (_=h_ {A} a b) B = trans (ΣT[Σs]T (ΣT-it A *)

(ΣC-it-S-spl A B)) (trans (cong ΣT (ΣT-it-wk A B))

(ΣT[+T] (ΣT-it A *) (ΣT-it A B)))

ΣT-it-p1 : ∀ {Γ : Con}(A : Ty Γ) → ΣT-it A * [minimum-S A]T ≡ A

214 Appendix C syntactic weak ω-groupoids

ΣT-it-p2 : {Γ Δ : Con}(A : Ty Γ){B : Ty Δ}{a b : Tm B} →

ΣT-it A (a =h b) ≡ (Σtm-it A a =h Σtm-it A b)

ΣT-it-p2 * = refl

ΣT-it-p2 (_=h_ {A} _ _) = cong ΣT (ΣT-it-p2 A)

ΣT-it-p3 : {Γ Δ : Con}(A : Ty Γ){B C : Ty Δ} →

ΣT-it A (C +T B) [ΣC-it-S-spl A B]T ≡ ΣT-it A C +T _

ΣT-it-p3 * = trans +T[,]T (wk+S+T IC-T)

ΣT-it-p3 (_=h_ {A} a b) {B} {C} = trans (ΣT[Σs]T (ΣT-it A (C +T B))

(ΣC-it-S-spl A B)) (trans (cong ΣT (ΣT-it-p3 A)) (ΣT[+T]

(ΣT-it A C) (ΣT-it A B)))

minimum-S * = •

minimum-S {Γ} (_=h_ {A} a b) = ΣC-it-S-spl2 A ⊚ ((minimum-S A ,

(a J ΣT-it-p1 A 〉〉)) , (wk-tm (b J ΣT-it-p1 A 〉〉)))

ΣC-it-ε-Contr : ∀{Γ Δ : Con}(A : Ty Γ) → isContr Δ →

isContr (ΣC-it A Δ)

ΣC-it-ε-Contr * isC = isC

ΣC-it-ε-Contr (_=h_ {A} a b) isC = ΣC-Contr _ (ΣC-it-ε-Contr A isC)

wk-susp : ∀ {Γ : Con}(A : Ty Γ)(a : Tm A) → a J ΣT-it-p1 A 〉〉 ∼= a

wk-susp A a = cohOp (ΣT-it-p1 A)

fci-l1 : ∀ {Γ : Con}(A : Ty Γ) → ΣT (ΣT-it A *) [ΣC-it-S-spl2 A]T ≡

(var (vS v0) =h var v0)

fci-l1 * = refl

fci-l1 {Γ} (_=h_ {A} a b) = trans [⊚]T (trans (congT (trans (ΣT[Σs]T

(ΣT (ΣT-it A *)) (ΣC-it-S-spl2 A)) (cong ΣT (fci-l1 A)))) (hom≡

Appendix C syntactic weak ω-groupoids 215

(congtm (Σtm-p2-sp (ΣT-it A *) (ΣT-it A * +T ΣT-it A *)) :

1-1S-same-tm (ΣT[+T] (ΣT-it A *) (ΣT-it A *)) (var v0))

(congtm (Σtm-p1 (ΣT-it A * +T ΣT-it A *)) : 1-1S-same-v0 (ΣT[+T]

(ΣT-it A *) (ΣT-it A *)))))

ΣT-it-p1 * = refl

ΣT-it-p1 (_=h_ {A} a b) = trans [⊚]T (trans (congT (fci-l1 A))

(hom≡ (prf a) (prf b)))

where

prf : (a : Tm A) → ((a J ΣT-it-p1 A 〉〉) J +T[,]T 〉〉) J +T[,]T 〉〉 ∼= a

prf a = wk-coh : wk-coh : wk-susp A a

Σtm-it-p1 : {Γ Δ : Con}(A : Ty Γ){B : Ty Δ} → Σtm-it A (var v0)

[ΣC-it-S-spl A B]tm ∼= var v0

Σtm-it-p1 * {B} = wk-coh : cohOp (wk+S+T IC-T)

Σtm-it-p1 (_=h_ {A} a b) {B} = Σtm[Σs]tm (Σtm-it A (var v0))

(ΣC-it-S-spl A B) : congΣtm (Σtm-it-p1 A) : cohOpV (sym (ΣT[+T]

(ΣT-it A B) (ΣT-it A B)))

Σtm-it-p2 : {Γ Δ : Con}(A : Ty Γ){B C : Ty Δ}(x : Var B) →

(Σtm-it A (var (vS x))) [ΣC-it-S-spl A C]tm ∼=

Σtm-it A (var x) +tm _

Σtm-it-p2 * x = wk-coh : [+S]V x : cong+tm (IC-v x)

Σtm-it-p2 {Γ} {Δ} (_=h_ {A} a b) {B} {C} x = Σtm[Σs]tm (Σtm-it A

(var (vS x))) (ΣC-it-S-spl A C) : congΣtm (Σtm-it-p2 {Γ} {Δ} A {B} x)

: Σtm[+tm] (Σtm-it A (var x)) (ΣT-it A C)

ΣC-it-Contr : ∀ {Γ Δ}(A : Ty Γ) → isContr Δ

→ isContr (ΣC-it A Δ)

ΣC-it-Contr * x = x

ΣC-it-Contr {Γ}{Δ}(_=h_ {A} a b) x = ΣC-Contr (ΣC-it A Δ) (ΣC-it-Contr A x)

Replacement

216 Appendix C syntactic weak ω-groupoids

rpl-C : ∀{Γ}(A : Ty Γ) → Con → Con

rpl-T : ∀{Γ Δ}(A : Ty Γ) → Ty Δ → Ty (rpl-C A Δ)

rpl-tm : ∀{Γ Δ}(A : Ty Γ){B : Ty Δ} → Tm B

→ Tm (rpl-T A B)

rpl-C {Γ} A ε = Γ

rpl-C A (Δ , B) = rpl-C A Δ , rpl-T A B

filter : ∀{Γ}(Δ : Con)(A : Ty Γ)

→ rpl-C A Δ ⇒ ΣC-it A Δ

rpl-T A B = ΣT-it A B [filter _ A]T

rpl-pr1 : {Γ : Con}(Δ : Con)(A : Ty Γ) → rpl-C A Δ ⇒ Γ

rpl-pr1 ε A = IdS

rpl-pr1 (Δ , A) A1 = rpl-pr1 Δ A1 +S _

filter ε A = minimum-S A

filter (Δ , A) A1 = ΣC-it-S-spl A1 A ⊚ ((filter Δ A1 +S _) ,

var v0 J [+S]T 〉〉)

rpl-T-p1 : {Γ : Con}(Δ : Con)(A : Ty Γ) → rpl-T A * ≡ A [rpl-pr1 Δ A]T

rpl-T-p1 ε A = trans (ΣT-it-p1 A) (sym IC-T)

rpl-T-p1 (Δ , A) A1 = trans [⊚]T (trans (congT (ΣT-it-wk A1 A))

(trans +T[,]T (trans [+S]T (trans (wk-T (rpl-T-p1 Δ A1))

(sym [+S]T)))))

rpl-tm A a = Σtm-it A a [filter _ A]tm

rpl-tm-id : {Γ : Con}{A : Ty Γ} → Tm A → Tm (rpl-T {Δ = ε} A *)

rpl-tm-id x = x J ΣT-it-p1 _ 〉〉

Appendix C syntactic weak ω-groupoids 217

rpl-T-p2 : {Γ : Con}(Δ : Con)(A : Ty Γ){B : Ty Δ}{a b : Tm B} →

rpl-T A (a =h b) ≡ (rpl-tm A a =h rpl-tm A b)

rpl-T-p2 Δ A = congT (ΣT-it-p2 A)

rpl-T-p3 : {Γ : Con}(Δ : Con)(A : Ty Γ){B : Ty Δ}{C : Ty Δ}

→ rpl-T A (C +T B) ≡ rpl-T A C +T _

rpl-T-p3 _ A = trans [⊚]T (trans (congT (ΣT-it-p3 A))

(trans +T[,]T [+S]T))

rpl-T-p3-wk : {Γ : Con}(Δ : Con)(A : Ty Γ){B : Ty Δ}{C : Ty Δ}

{γ : Γ ⇒ rpl-C A Δ}{b : Tm ((ΣT-it A B [filter Δ A]T) [γ]T)}

→ rpl-T A (C +T B) [γ , b]T ≡ rpl-T A C [γ]T

rpl-T-p3-wk Δ A = trans (congT (rpl-T-p3 Δ A)) +T[,]T

rpl-tm-v0’ : {Γ : Con}(Δ : Con)(A : Ty Γ){B : Ty Δ}

→ rpl-tm {Δ = Δ , B} A (var v0) ∼= var v0

rpl-tm-v0’ Δ A = [⊚]tm (Σtm-it A (var v0)) : congtm (Σtm-it-p1 A) :

wk-coh : wk-coh+

rpl-tm-v0 : {Γ : Con}(Δ : Con)(A : Ty Γ){B : Ty Δ}{γ : Γ ⇒ rpl-C A Δ}

{b : Tm A}{b’ : Tm ((ΣT-it A B [filter Δ A]T) [γ]T)}

→ (prf : b’ ∼= b)

→ rpl-tm {Δ = Δ , B} A (var v0) [γ , b’]tm ∼= b

rpl-tm-v0 Δ A prf = congtm (rpl-tm-v0’ Δ A) : wk-coh : prf

rpl-tm-vS : {Γ : Con}(Δ : Con)(A : Ty Γ){B C : Ty Δ}{γ : Γ ⇒ rpl-C A Δ}

{b : Tm (rpl-T A B [γ]T)}{x : Var C} →

rpl-tm {Δ = Δ , B} A (var (vS x)) [γ , b]tm ∼=

rpl-tm A (var x) [γ]tm

rpl-tm-vS Δ A {x = x} = congtm ([⊚]tm (Σtm-it A (var (vS x))) :

(congtm (Σtm-it-p2 A x)) : +tm[,]tm (Σtm-it A (var x)) :

([+S]tm (Σtm-it A (var x)))) : +tm[,]tm (Σtm-it A (var x)

[filter _ A]tm)

218 Appendix C syntactic weak ω-groupoids

Basic examples of replacement

base-1 : {Γ : Con}{A : Ty Γ} → rpl-C A (ε , *) ≡ (Γ , A)

base-1 = cong (λ x → _ , x) (ΣT-it-p1 _)

map-1 : {Γ : Con}{A : Ty Γ} → (Γ , A) ⇒ rpl-C A (ε , *)

map-1 = 1-1S-same (ΣT-it-p1 _)

Lemmas about replacement

rpl*-A : {Γ : Con}{A : Ty Γ} → rpl-T {Δ = ε} A * [IdS]T ≡ A

rpl*-A = trans IC-T (ΣT-it-p1 _)

rpl*-a : {Γ : Con}(A : Ty Γ){a : Tm A} → rpl-tm {Δ = ε , *} A

(var v0) [IdS , a J rpl*-A 〉〉]tm ∼= a

rpl*-a A = rpl-tm-v0 ε A (cohOp (rpl*-A {A = A}))

rpl*-A2 : {Γ : Con}(A : Ty Γ){a : Tm (rpl-T A (* {ε}) [IdS]T)}

→ rpl-T A (* {ε , *}) [IdS , a]T ≡ A

rpl*-A2 A = trans (rpl-T-p3-wk ε A) rpl*-A

rpl-xy : {Γ : Con}(A : Ty Γ)(a b : Tm A)

→ rpl-T {Δ = ε , * , *} A (var (vS v0) =h var v0)

[IdS , a J rpl*-A 〉〉 , b J rpl*-A2 A 〉〉]T ≡ (a =h b)

rpl-xy A a b = trans (congT (rpl-T-p2 (ε , * , *) A))

(hom≡ ((rpl-tm-vS (ε , *) A) : rpl*-a A)

(rpl-tm-v0 (ε , *) A (cohOp (rpl*-A2 A))))

rpl-sub : (Γ : Con)(A : Ty Γ)(a b : Tm A) → Tm (a =h b)

→ Γ ⇒ rpl-C A (ε , * , * , (var (vS v0) =h var v0))

rpl-sub Γ A a b t = IdS , a J rpl*-A 〉〉 , b J rpl*-A2 A 〉〉 , t J rpl-xy A a b 〉〉

Appendix C syntactic weak ω-groupoids 219

C.2.2 First-level Groupoid Structure

Coh-rpl : ∀{Γ Δ}(A : Ty Γ)(B : Ty Δ) → isContr Δ

→ Tm (rpl-T A B)

Coh-rpl {_} {Δ} A _ isC = coh (ΣC-it-ε-Contr A isC) _ _

Reflexivity

refl*-Tm : Tm {x:*} (var v0 =h var v0)

refl*-Tm = Coh-Contr c*

Symmetry

sym*-Ty : Ty x:*,y:*,α:x=y

sym*-Ty = vY =h vX

sym*-Tm : Tm {x:*,y:*,α:x=y} sym*-Ty

sym*-Tm = Coh-Contr (ext c* v0)

Transitivity (composition)

trans*-Ty : Ty x:*,y:*,α:x=y,z:*,β:y=z

trans*-Ty = (vX +tm _ +tm _) =h vZ

trans*-Tm : Tm trans*-Ty

trans*-Tm = Coh-Contr (ext (ext c* v0) (vS v0))

220 Appendix C syntactic weak ω-groupoids

refl-Tm : {Γ : Con}(A : Ty Γ)

→ Tm (rpl-T {Δ = x:*} A (var v0 =h var v0))

refl-Tm A = rpl-tm A refl*-Tm

sym-Tm : ∀ {Γ}(A : Ty Γ) → Tm (rpl-T A sym*-Ty)

sym-Tm A = rpl-tm A sym*-Tm

trans-Tm : ∀ {Γ}(A : Ty Γ) → Tm (rpl-T A trans*-Ty)

trans-Tm A = rpl-tm A trans*-Tm

reflX : Tm (vX =h vX)

reflX = refl-Tm * +tm _ +tm _

reflY : Tm (vY =h vY)

reflY = refl-Tm * +tm _

m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q : Con

m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q = x:*,y:*,α:x=y,z:*,β:y=z , * ,

(var (vS (vS v0)) =h var v0)

vM : Tm {m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q} *

vM = var (vS (vS (vS (vS (vS (vS v0))))))

vN : Tm {m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q} *

vN = var (vS (vS (vS (vS (vS v0)))))

vMN : Tm {m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q} (vM =h vN)

vMN = var (vS (vS (vS (vS v0))))

vP : Tm {m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q} *

Appendix C syntactic weak ω-groupoids 221

vP = var (vS (vS (vS v0)))

vNP : Tm {m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q} (vN =h vP)

vNP = var (vS (vS v0))

vQ : Tm {m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q} *

vQ = var (vS v0)

vPQ : Tm {m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q} (vP =h vQ)

vPQ = var v0

Ty-G-assoc* : Ty m:*,n:*,α:m=n,p:*,β:n=p,q:*,γ:p=q

Ty-G-assoc* = (trans*-Tm [((((• , vM) , vP) ,

(trans*-Tm [pr1 ⊚ pr1]tm)) , vQ) , vPQ]tm =h

trans*-Tm [(pr1 ⊚ pr1 ⊚ pr1 ⊚ pr1 , vQ) ,

(trans*-Tm [((((• , vN) , vP) , vNP) , vQ) ,

vPQ]tm)]tm)

Tm-right-identity* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [IdS , vY , reflY]tm

=h vα)

Tm-right-identity* = Coh-Contr (ext c* v0)

Tm-left-identity* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [((IdS ⊚ pr1 ⊚ pr1) , vX) ,

reflX , vY , vα]tm =h vα)

Tm-left-identity* = Coh-Contr (ext c* v0)

Tm-right-inverse* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [(IdS , vX) , sym*-Tm]tm

=h reflX)

Tm-right-inverse* = Coh-Contr (ext c* v0)

222 Appendix C syntactic weak ω-groupoids

Tm-left-inverse* :

Tm {x:*,y:*,α:x=y} (trans*-Tm [((• , vY) , vX , sym*-Tm ,

vY) , vα]tm =h reflY)

Tm-left-inverse* = Coh-Contr (ext c* v0)

Tm-G-assoc* : Tm Ty-G-assoc*

Tm-G-assoc* = Coh-Contr (ext (ext (ext c* v0) (vS v0))

(vS v0))

Tm-G-assoc : ∀{Γ}(A : Ty Γ)

→ Tm (rpl-T A Ty-G-assoc*)

Tm-G-assoc A = rpl-tm A Tm-G-assoc*

C.3 Sematics

Globular types

record Glob : Set1 where

constructor _||_

field

|_| : Set

hom : |_| → |_| → ∞ Glob

open Glob public

Idω : (A : Set) → Glob

Idω A = A || (λ a b → ♯ Idω (a ≡ b))

Appendix C syntactic weak ω-groupoids 223

Semantic interpretation

record Semantic (G : Glob) : Set1 where

field

J_KC : Con → Set

J_KT : ∀{Γ} → Ty Γ → J Γ KC → Glob

J_Ktm : ∀{Γ A} → Tm A → (γ : J Γ KC)

→ | J A KT γ |

J_KS : ∀{Γ Δ} → Γ ⇒ Δ → J Γ KC → J Δ KC

π : ∀{Γ A} → Var A → (γ : J Γ KC)

→ | J A KT γ |

J_KC-β1 : J ε KC ≡ ⊤

J_KC-β2 : ∀ {Γ A} → J Γ , A KC ≡

Σ J Γ KC (λ γ → | J A KT γ |)

J_KT-β1 : ∀{Γ}{γ : J Γ KC} → J * KT γ ≡ G

J_KT-β2 : ∀{Γ A u v}{γ : J Γ KC}

→ J u =h v KT γ ≡

♭ (hom (J A KT γ) (J u Ktm γ) (J v Ktm γ))

semSb-T : ∀ {Γ Δ}(A : Ty Δ)(δ : Γ ⇒ Δ)(γ : J Γ KC)

→ J A [δ]T KT γ ≡ J A KT (J δ KS γ)

semSb-tm : ∀{Γ Δ}{A : Ty Δ}(a : Tm A)(δ : Γ ⇒ Δ)

(γ : J Γ KC) → subst |_| (semSb-T A δ γ)

(J a [δ]tm Ktm γ) ≡ J a Ktm (J δ KS γ)

semSb-S : ∀ {Γ Δ Θ}(γ : J Γ KC)(δ : Γ ⇒ Δ)

(θ : Δ ⇒ Θ) → J θ ⊚ δ KS γ ≡

J θ KS (J δ KS γ)

J_Ktm-β1 : ∀{Γ A}{x : Var A}{γ : J Γ KC}

→ J var x Ktm γ ≡ π x γ

224 Appendix C syntactic weak ω-groupoids

J_KS-β1 : ∀{Γ}{γ : J Γ KC}

→ J • KS γ ≡ coerce J_KC-β1 tt

J_KS-β2 : ∀{Γ Δ}{A : Ty Δ}{δ : Γ ⇒ Δ}{γ : J Γ KC}

{a : Tm (A [δ]T)} → J δ , a KS γ

≡ coerce J_KC-β2 ((J δ KS γ) ,

subst |_| (semSb-T A δ γ) (J a Ktm γ))

semWk-T : ∀ {Γ A B}(γ : J Γ KC)(v : | J B KT γ |)

→ J A +T B KT (coerce J_KC-β2 (γ , v)) ≡

J A KT γ

semWk-S : ∀ {Γ Δ B}{γ : J Γ KC}{v : | J B KT γ |}

→ (δ : Γ ⇒ Δ) → J δ +S B KS

(coerce J_KC-β2 (γ , v)) ≡ J δ KS γ

semWk-tm : ∀ {Γ A B}(γ : J Γ KC)(v : | J B KT γ |)

→ (a : Tm A) → subst |_| (semWk-T γ v)

(J a +tm B Ktm (coerce J_KC-β2 (γ , v)))

≡ (J a Ktm γ)

π-β1 : ∀{Γ A}(γ : J Γ KC)(v : | J A KT γ |)

→ subst |_| (semWk-T γ v)

(π v0 (coerce J_KC-β2 (γ , v))) ≡ v

π-β2 : ∀{Γ A B}(x : Var A)(γ : J Γ KC)(v : | J B KT γ |)

→ subst |_| (semWk-T γ v) (π (vS {Γ} {A} {B} x)

(coerce J_KC-β2 (γ , v))) ≡ π x γ

JcohK : ∀{Θ} → isContr Θ → (A : Ty Θ)

→ (θ : J Θ KC) → | J A KT θ |

Bibliography

[1] Irrelevance – agda wiki. URL http://wiki.portal.chalmers.se/agda/

pmwiki.php?n=ReferenceManual.Irrelevance.

[2] Michael Abott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Con-

structing polymorphic programs with Quotient Types. In 7th International

Conference on Mathematics of Program Construction (MPC 2004), 2004.

[3] Thorsten Altenkirch. Extensional Equality in Intensional Type Theory. In

14th Annual IEEE Symposium on Logic in Computer Science, pages 412–420.

IEEE Computer Society, 1999. ISBN 0-7695-0158-3.

[4] Thorsten Altenkirch. The Coherence Problem in HoTT. 2014.

[5] Thorsten Altenkirch and James Chapman. Big-step normalisation. J. Funct.

Program., 19(3-4):311–333, 2009. doi: 10.1017/S0956796809007278. URL

http://dx.doi.org/10.1017/S0956796809007278.

[6] Thorsten Altenkirch and Nicolai Kraus. Setoids are not an LCCC, 2012.

[7] Thorsten Altenkirch and Ondřej Rypáček. A syntactical Approach to Weak

ω-Groupoids. In Computer Science Logic (CSL’12) - 26th International Work-

shop/21st Annual Conference of the EACSL, CSL 2012, volume 16 of LIPIcs,

pages 16–30. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. ISBN

978-3-939897-42-2.

[8] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational

equality, now! In Proceedings of the ACM Workshop Programming Languages

meets Program Verification, PLPV 2007, pages 57–68. ACM, 2007. ISBN 978-

1-59593-677-6.

225

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Irrelevance
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Irrelevance
http://dx.doi.org/10.1017/S0956796809007278

Bibliography BIBLIOGRAPHY

[9] Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and Nicolas Oury.

Pisigma: Dependent Types without the Sugar. submitted for publication,

November 2009.

[10] Thorsten Altenkirch, Thomas Anberrée, and Nuo Li. Definable Quotients in

Type Theory. 2011.

[11] Thorsten Altenkirch, Nuo Li, and Ondřej Rypáček. Some constructions on

ω-groupoids. In Proceedings of the 2014 International Workshop on Logical

Frameworks and Meta-languages: Theory and Practice, LFMTP ’14, pages

4:1–4:8, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2817-3. doi:

10.1145/2631172.2631176. URL http://doi.acm.org/10.1145/2631172.

2631176.

[12] Dimitri Ara. On the homotopy theory of grothendieck ∞-groupoids. Journal

of Pure and Applied Algebra, 217(7):1237–1278, 2013.

[13] Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity

types. Math. Proc. Cambridge Philos. Soc., 146(1):45–55, 2009. ISSN 0305-

0041. doi: 10.1017/S0305004108001783. URL http://dx.doi.org/10.1017/

S0305004108001783.

[14] John Baez. The Homotopy Hypothesis, 2007. URL http://math.ucr.edu/

home/baez/homotopy/homotopy.pdf.

[15] Gilles Barthe and Herman Geuvers. Congruence Types. In Proceedings of

CSL’95, pages 36–51. Springer-Verlag, 1996.

[16] Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory.

Journal of Functional Programming, 13(2):261–293, 2003.

[17] Andrej Bauer and Peter LeFanu Lumsdaine. A Coq proof that Univalence

Axioms implies Functional Extensionality. 2013.

[18] Marc Bezem, Thierry Coquand, and Simon Huber. A Model of Type

Theory in Cubical Sets. In Ralph Matthes and Aleksy Schubert, ed-

itors, 19th International Conference on Types for Proofs and Programs

http://doi.acm.org/10.1145/2631172.2631176
http://doi.acm.org/10.1145/2631172.2631176
http://dx.doi.org/10.1017/S0305004108001783
http://dx.doi.org/10.1017/S0305004108001783
http://math.ucr.edu/home/baez/homotopy/homotopy.pdf
http://math.ucr.edu/home/baez/homotopy/homotopy.pdf

Bibliography 227

(TYPES 2013), volume 26 of Leibniz International Proceedings in Informat-

ics (LIPIcs), pages 107–128, Dagstuhl, Germany, 2014. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-72-9. doi: http://dx.

doi.org/10.4230/LIPIcs.TYPES.2013.107. URL http://drops.dagstuhl.

de/opus/volltexte/2014/4628.

[19] Errett Bishop and Douglas Bridges. Constructive Analysis. Springer, New

York, 1985. ISBN 0-387-15066-8.

[20] Errett Bishop and Douglas Bridges. Constructive Analysis. Springer-Verlag,

Berlin, Heidelberg, 1985.

[21] Ana Bove and Peter Dybjer. Dependent Types at Work. Springer-Verlag,

Berlin, Heidelberg, 2009. ISBN 978-3-642-03152-6. doi: http://dx.doi.org/

10.1007/978-3-642-03153-3_2.

[22] Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda — a

Functional Language with Dependent Types. In TPHOLs ’09: Proceedings

of the 22nd International Conference on Theorem Proving in Higher Order

Logics, pages 73–78, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-

642-03358-2. doi: http://dx.doi.org/10.1007/978-3-642-03359-9_6.

[23] Douglas S. Bridges. Constructive mathematics: a foundation for com-

putable analysis. Theoretical Computer Science, 219(1-2):95 – 109,

1999. ISSN 0304-3975. doi: DOI:10.1016/S0304-3975(98)00285-0. URL

http://www.sciencedirect.com/science/article/B6V1G-3WXWSM9-6/2/

c1225a60fbe1d641e225bdf749181845.

[24] Guillaume Brunerie. Syntactic Grothendieck weak ∞-groupoids, 2013.

[25] Venanzio Capretta. General recursion via coinductive types. Logical Methods

in Computer Science, 1(2), 2005. doi: 10.2168/LMCS-1(2:1)2005. URL http:

//dx.doi.org/10.2168/LMCS-1(2:1)2005.

[26] Venanzio Capretta. Coalgebras in functional programming and type theory.

Theor. Comput. Sci., 412(38):5006–5024, 2011. doi: 10.1016/j.tcs.2011.04.

024. URL http://dx.doi.org/10.1016/j.tcs.2011.04.024.

http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://www.sciencedirect.com/science/article/B6V1G-3WXWSM9-6/2/c1225a60fbe1d641e225bdf749181845
http://www.sciencedirect.com/science/article/B6V1G-3WXWSM9-6/2/c1225a60fbe1d641e225bdf749181845
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.1016/j.tcs.2011.04.024

Bibliography BIBLIOGRAPHY

[27] Pierre Clairambault. From categories with families to locally cartesian closed

categories. Project Report, ENS Lyon, 2006.

[28] Cyril Cohen. Pragmatic Quotient Types in Coq. In Interactive Theorem

Proving, pages 213–228, 2013.

[29] Robert L. Constable, Stuart F. Allen, S. F. Allen, H. M. Bromley, W. R.

Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock,

N. P. Mendler, P. Panangaden, Scott F. Smith, James T. Sasaki, and S. F.

Smith. Implementing Mathematics with The Nuprl Proof Development Sys-

tem, 1986.

[30] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F.

Cremer, R. W. Harper, Douglas J. Howe, Todd B. Knoblock, N. P. Mendler,

Prakash Panangaden, James T. Sasaki, and Scott F. Smith. Implement-

ing mathematics with the Nuprl proof development system. Prentice Hall,

1986. ISBN 978-0-13-451832-9. URL http://dl.acm.org/citation.cfm?

id=10510.

[31] Thierry Coquand. Pattern Matching with Dependent Types. In Types for

Proofs and Programs, 1992.

[32] Thierry Coquand. Types as Kan Simplicial Sets. Accessed: 2014-09-10, 12

2012. URL http://www.cse.chalmers.se/~coquand/stockholm.pdf.

[33] Thierry Coquand. Type Theory. In Edward N. Zalta, editor, The Stanford

Encyclopedia of Philosophy. Summer 2014 edition, 2014. URL http://plato.

stanford.edu/archives/sum2014/entries/type-theory/.

[34] Pierre Courtieu. Normalized types. In Proceedings of CSL2001, volume

2142 of Lecture Notes in Computer Science, 2001.

[35] Nils Anders Danielsson. Sets with decidable equality have unique identity

proofs. URL http://www.cse.chalmers.se/~nad/listings/equality/

Equality.Decidable-UIP.html. Accessed: 2014-09-20.

[36] Nils Anders Danielsson. Bag equivalence via a Proof-Relevant Membership

Relation. In Lennart Beringer and Amy P. Felty, editors, Interactive Theorem

http://dl.acm.org/citation.cfm?id=10510
http://dl.acm.org/citation.cfm?id=10510
http://www.cse.chalmers.se/~coquand/stockholm.pdf
http://plato.stanford.edu/archives/sum2014/entries/type-theory/
http://plato.stanford.edu/archives/sum2014/entries/type-theory/
http://www.cse.chalmers.se/~nad/listings/equality/Equality.Decidable-UIP.html
http://www.cse.chalmers.se/~nad/listings/equality/Equality.Decidable-UIP.html

Bibliography 229

Proving - Third International Conference, ITP 2012, volume 7406 of Lecture

Notes in Computer Science, pages 149–165. Springer, 2012. ISBN 978-3-642-

32346-1.

[37] Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, Declaratively.

In Proceedings of Mathematics of Program Construction, 10th International

Conference, MPC 2010, volume 6120 of Lecture Notes in Computer Science,

pages 100–118. Springer, 2010. ISBN 978-3-642-13320-6.

[38] Peter Dybjer. Internal Type Theory. In Lecture Notes in Computer Science,

pages 120–134. Springer, 1996.

[39] Martín Escardó. Counterexample on local continuity. URL http://www.cs.

bham.ac.uk/~mhe/agda/FailureOfTotalSeparatedness.html. Accessed:

2014-08-20.

[40] Martín Escardó and Chuangjie Xu. The inconsistency of a

brouwerian continuity principle with the Curry-Howard interpre-

tation. 2014. URL http://www.cs.bham.ac.uk/~mhe/papers/

escardo-xu-inconsistency-continuity.pdf.

[41] Kurt Godel. On formally undecidable propositions of principia mathematica

and related systems. Dover, 1992.

[42] Georges Gonthier. Formal Proof the Four-Color Theorem. Notices of

the AMS, 55(11):1382–1393, December 2008. URL http://www.ams.org/

notices/200811/tx081101382p.pdf.

[43] Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative

ring done right in Coq. In Theorem Proving in Higher Order Logics, pages

98–113. Springer, 2005.

[44] Alexander Grothendieck. Pursuing Stacks. 1983. Manuscript.

[45] Michael Hedberg. A Coherence Theorem for Martin-Löf’s Type Theory. J.

Funct. Program., 8(4):413–436, 1998. URL http://journals.cambridge.

org/action/displayAbstract?aid=44199.

http://www.cs.bham.ac.uk/~mhe/agda/FailureOfTotalSeparatedness.html
http://www.cs.bham.ac.uk/~mhe/agda/FailureOfTotalSeparatedness.html
http://www.cs.bham.ac.uk/~mhe/papers/escardo-xu-inconsistency-continuity.pdf
http://www.cs.bham.ac.uk/~mhe/papers/escardo-xu-inconsistency-continuity.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
http://journals.cambridge.org/action/displayAbstract?aid=44199
http://journals.cambridge.org/action/displayAbstract?aid=44199

Bibliography BIBLIOGRAPHY

[46] Martin Hofmann. On the Interpretation of Type Theory in Locally Cartesian

Closed Categories. In Computer Science Logic, 8th International Workshop,

CSL ’94, volume 933 of Lecture Notes in Computer Science, pages 427–441.

Springer, 1994. ISBN 3-540-60017-5.

[47] Martin Hofmann. A Simple Model for Quotient Types. In Mariangiola

Dezani-Ciancaglini and Gordon D. Plotkin, editors, Typed Lambda Calculi

and Applications, volume 902 of Lecture Notes in Computer Science, pages

216–234. Springer, 1995. ISBN 3-540-59048-X. doi: 10.1007/BFb0014055.

URL http://dx.doi.org/10.1007/BFb0014055.

[48] Martin Hofmann. Extensional concepts in Intensional Type Theory. PhD

thesis, School of Informatics., 1995.

[49] Martin Hofmann. Conservativity of Equality Reflection over Intensional

Type Theory. In Selected papers from the International Workshop on

Types for Proofs and Programs, TYPES ’95, pages 153–164, London, UK,

1996. Springer-Verlag. ISBN 3-540-61780-9. URL http://portal.acm.org/

citation.cfm?id=646536.695865.

[50] Martin Hofmann. Syntax and Semantics of Dependent Types. In Semantics

and Logics of Computation, pages 79–130. Cambridge University Press, 1997.

[51] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type

theory. In Twenty-five years of constructive type theory, volume 36 of Oxford

Logic Guides, New York, 1998. Oxford University Press.

[52] Peter V. Homeier. Quotient Types. In In TPHOLs 2001: Supplemental

Proceedings, page 0046, 2001.

[53] Antonius JC Hurkens. A simplification of Girard’s paradox. In Typed Lambda

Calculi and Applications, pages 266–278. Springer, 1995.

[54] Bart Jacobs. Quotients in Simple Type Theory. Manuscript, Math. Inst,

1994.

[55] Krzysztof Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The

Simplicial Model of Univalent Foundations. arXiv:1211.2851, 2012.

http://dx.doi.org/10.1007/BFb0014055
http://portal.acm.org/citation.cfm?id=646536.695865
http://portal.acm.org/citation.cfm?id=646536.695865

Bibliography 231

[56] Stephen C Kleene and J Barkley Rosser. The inconsistency of certain formal

logics. Annals of Mathematics, pages 630–636, 1935.

[57] Nicolai Kraus. Non-Normalizability of Cauchy Sequences. 2014. URL http:

//www.cs.nott.ac.uk/~ngk/normalizability.pdf.

[58] Nicolai Kraus, Martín Escardó, Thierry Coquand, and Thorsten Altenkirch.

Notions of Anonymous Existence in Martin-Löf Type Theory. 2014.

[59] Nuo Li. Representing numbers in Agda. Technical report, School of Computer

Science, University of Nottingham, 2010. Final year dissertation.

[60] Nuo Li. Some constructions on ω-groupoids: codes, 2014.

[61] Robert S. Lubarsky. On the Cauchy Completeness of the Constructive Cauchy

Reals. Electr. Notes Theor. Comput. Sci., 167:225–254, 2007.

[62] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory.

Logical Methods in Computer Science, 6(3), 2010. doi: 10.2168/LMCS-6(3:

24)2010. URL http://dx.doi.org/10.2168/LMCS-6(3:24)2010.

[63] G. Maltsiniotis. Grothendieck ∞-groupoids, and still another definition of

∞-categories. ArXiv e-prints, September 2010.

[64] Per Martin-Löf. A Theory of Types. Technical Report 71–3, University of

Stockholm, 1971.

[65] Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E.

Rose and J.C. Shepherdson, editors, Logic Colloquium ’73, Proceedings of

the Logic Colloquium, volume 80 of Studies in Logic and the Foundations of

Mathematics, pages 73–118. North-Holland, 1975.

[66] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof The-

ory. Bibliopolis, 1984. ISBN 88-7088-105-9.

[67] Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and

Jan M. Smith, editors, Twenty-five years of constructive type theory (Venice,

1995), volume 36 of Oxford Logic Guides, pages 127–172. Oxford University

Press, 1998.

http://www.cs.nott.ac.uk/~ngk/normalizability.pdf
http://www.cs.nott.ac.uk/~ngk/normalizability.pdf
http://dx.doi.org/10.2168/LMCS-6(3:24)2010

Bibliography BIBLIOGRAPHY

[68] Per Martin-Löf. Constructive Mathematics and Computer Programming. In

Logic, Methodology and Philosophy of Science VI, Proceedings of the Sixth

International Congress of Logic, Methodology and Philosophy of Science, vol-

ume 104, pages 153 – 175. Elsevier, 1982.

[69] Conor McBride. Elimination with a Motive. In Types for Proofs and Pro-

grams, International Workshop, TYPES 2000, volume 2277 of Lecture Notes

in Computer Science, pages 197–216. Springer, 2000. ISBN 3-540-43287-6.

[70] N.P. Mendler. Quotient types via coequalizers in Martin-Löf type theory. In

Proceedings of the Logical Frameworks Workshop, pages 349–361, 1990.

[71] Aleksey Nogin. Quotient types: A Modular Approach. In ITU-T Recommen-

dation H.324, pages 263–280. Springer-Verlag, 2002.

[72] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in

Martin-Löf’s type theory: an introduction. Clarendon Press, New York, NY,

USA, 1990. ISBN 0-19-853814-6.

[73] Ulf Norell. Dependently typed programming in Agda. Available at:

http://www.cse.chalmers.se/ ulfn/papers/afp08tutorial.pdf, 2008.

[74] Erik Palmgren. On universes in type theory. In Twenty-five years of construc-

tive type theory, volume 36 of Oxford Logic Guides, New York, 1998. Oxford

University Press.

[75] Erik Palmgren and Olov Wilander. Constructing categories and setoids of

setoids in type theory. Preprint, June 2014.

[76] Bertrand Russell. The Principles of Mathematics. Cambridge University

Press, Cambridge, 1903.

[77] Matthieu Sozeau and Nicolas Tabareau. Internalization of the Groupoid In-

terpretation of Type Theory. Types 2014, 2014.

[78] Thomas Streicher. Investigations into intensional type theory. PhD thesis,

Habilitation thesis, Ludwig-Maximilians-University Munich, 1993.

[79] Thomas Streicher. A model of type theory in simplicial sets: A brief intro-

duction to Voevodsky’s homotopy type theory. pages 45–49, 2014.

Bibliography 233

[80] Laurent Théry. A selected bibliography on formalised mathemat-

ics. URL http://www-sop.inria.fr/marelle/personnel/Laurent.Thery/

math.html. Accessed: 2014-09-20.

[81] A. S. Troelstra. From Constructivism to Computer Science. pages 233–252,

1999.

[82] The Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. http://homotopytypetheory.org/book, In-

stitute for Advanced Study, 2013.

[83] Mark van Atten and Dirk van Dalen. Arguments for the continuity princi-

ple. Bulletin of Symbolic Logic, 8(3):329–347, 2002. URL http://www.math.

ucla.edu/~asl/bsl/0803/0803-001.ps.

[84] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Pro-

ceedings of the London Mathematical Society, 102(2):370–394, 2011.

[85] Paul van der Walt. Reflection in Agda. PhD thesis, Master’s thesis, Univer-

siteit Utrecht, 2012.

[86] Vladimir Voevodsky. Generalities on hSet - Coq library hSet, . URL http:

//www.math.ias.edu/~vladimir/Foundations_library/hSet.html.

[87] Vladimir Voevodsky. Univalent Foundations Project. . URL

http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_

files/univalent_foundations_project.pdf.

[88] Vladimir Voevodsky. A very short note on the homotopy λ-calculus.

2006. URL http://www.math.ias.edu/~vladimir/Site3/Univalent_

Foundations_files/Hlambda_short_current.pdf.

[89] Vladimir Voevodsky. A very short note on homotopy λ-calculus. Available

at: http://math.ucr.edu/home/baez/Voevodsky_note.ps, 2006.

[90] Vladimir Voevodsky. Resizing Rules - their use and semantic justification,

9 2011. URL http://www.math.ias.edu/~vladimir/Site3/Univalent_

Foundations_files/2011_Bergen.pdf.

http://www-sop.inria.fr/marelle/personnel/Laurent.Thery/math.html
http://www-sop.inria.fr/marelle/personnel/Laurent.Thery/math.html
http://homotopytypetheory.org/book
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
http://www.math.ias.edu/~vladimir/Foundations_library/hSet.html
http://www.math.ias.edu/~vladimir/Foundations_library/hSet.html
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2011_Bergen.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2011_Bergen.pdf

Bibliography BIBLIOGRAPHY

[91] Vladimir Voevodsky. A universe polymorphic type system. 2012.

URL http://uf-ias-2012.wikispaces.com/file/view/Universe+

polymorphic+type+sytem.pdf.

[92] Vladimir Voevodsky, Thierry Coquand, and Benno van den Berg.

Semi-simplicial types. URL https://uf-ias-2012.wikispaces.com/

Semi-simplicial+types. Accessed: 2014-09-20.

[93] Michael Warren. The strict ω-groupoid interpretation of type theory. In

Models, Logics and Higher-Dimensional Categories, CRM Proc. Lecture Notes

53, pages 291–340. Amer. Math. Soc., 2011.

[94] The Agda Wiki. Main page, 2014. URL http://wiki.portal.chalmers.

se/agda/pmwiki.php?n=Main.HomePage. [Online; accessed 15-June-2014].

[95] Wikipedia. Lazy evaluation — Wikipedia, the free encyclopedia, 2010. URL

http://en.wikipedia.org/wiki/Lazy_evaluation. [Online; accessed 20-

April-2010].

http://uf-ias-2012.wikispaces.com/file/view/Universe+polymorphic+type+sytem.pdf
http://uf-ias-2012.wikispaces.com/file/view/Universe+polymorphic+type+sytem.pdf
https://uf-ias-2012.wikispaces.com/Semi-simplicial+types
https://uf-ias-2012.wikispaces.com/Semi-simplicial+types
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.HomePage
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.HomePage
http://en.wikipedia.org/wiki/Lazy_evaluation

	1 Introduction
	1.1 Quotient types
	1.2 Structure of the thesis

	2 Type Theory
	2.1 A brief history of Type Theory
	2.2 The formal system of Type Theory
	2.3 An implementation of Type Theory: Agda
	2.4 Extensional concepts
	2.5 An Intensional Type Theory with `3́9`42`"̇613A``45`47`"603AProp
	2.6 Homotopy Type Theory
	2.7 Summary

	3 Quotient Types
	3.1 Quotients in Type Theory
	3.2 Quotients are coequalizers
	3.3 Quotients as an adjunction
	3.4 Quotients in Homotopy Type Theory
	3.5 Related work
	3.6 Summary

	4 Definable Quotients
	4.1 Algebraic structures of quotients
	4.2 Integers
	4.3 Rational numbers
	4.4 The application of definable quotients
	4.5 Related work
	4.6 Summary

	5 Undefinable Quotients
	5.1 Definability via normalisation
	5.2 Real numbers as Cauchy sequences
	5.3 R0/ is undefinable via normalisation
	5.4 Other examples
	5.5 Related work
	5.6 Summary

	6 The Setoid Model
	6.1 Introduction
	6.2 Metatheory
	6.3 Categories with families
	6.4 Related work
	6.5 Summary

	7 Syntactic -groupoids
	7.1 Syntax of weak -groupoids
	7.2 Some Important Derivable Constructions
	7.3 Semantics
	7.4 Related work
	7.5 Summary

	8 Conclusion and Future Work
	A Definable quotient structures
	A.1 Rational numbers

	B Category with families of setoids
	B.1 Metatheory
	B.2 Categories with families

	C syntactic weak -groupoids
	C.1 Syntax of T-groupoid
	C.2 Some Important Derivable Constructions
	C.3 Sematics

	Bibliography

