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Behaviour of the extended Toda lattice
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Abstract

We consider the first member of an extended Toda lattice hierarchy. This system of equations is differential with
respect to one independent variable and differential-delay with respect to a second independent variable. We use
asymptotic analysis to consider the long wavelength limitsof the system. By considering various magnitudes for
the parameters involved, we derive reduced equations related to the Korteweg-de Vries and potential Boussinesq
equations.

Highlights:
• we analyse the behaviour of solutions of the extended Toda lattice
• we derive PDEs which are asymptotic approximations of the lattice
• we find similarity solutions of these limiting PDEs
• we show that in certain cases the PDEs can be transformed to the Boussinesq and/or KdV equations
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1. Introduction

In [1] an integrable non-isospectral (2+ 1)-dimensional extension of the Toda lattice hierarchy wasconstructed,
this consisting of a sequence of pairs of equations inp(n, t, y) andq(n, t, y) with n being discrete andt andy continuous.
The reductions of this hierarchy were found to include a (1+ 1)-dimensional differential-delay Toda lattice hierarchy,
a sequence of evolution equations inp(x, t) andq(x, t) with bothx andt continuous but where the equations involved
derivatives with respect tox as well as shifts inx. It is the first member of this extended Toda lattice hierarchy that is
the subject of the present paper.

In earlier papers [2, 3] a (1+ 1)-dimensional differential-delay Volterra lattice hierarchy had been derived. The
autonomous versions of such equations were placed within a suitable modification of the usual algebraic structure
associated with completely integrable evolution equations in [4]. The first member of the (1+ 1)-dimensional
differential-delay Volterra lattice hierarchy was studied in [5], where we considered various amplitudes for param-
eters, and obtained a number of asymptotic reductions to generalizations of the Korteweg-de Vries (KdV) equation,
amongst others. In the present paper, for the first member of the extended Toda lattice hierarchy, again by consid-
ering various magnitudes for the parameters involved, we derive reduced equations related to the KdV and potential
Boussinesq equations.

Section 2 contains an introduction to the relevant reduction techniques we use and the equations under study. We
start by using small amplitude weakly nonlinear asymptotictechniques to reduce the Toda lattice [6] to the Boussinesq
equation, and outline its reduction to the KdV equation. We also reformulate the extended Toda system [1] to make it
more amenable to the asymptotic techniques used subsequently.

URL: Jonathan.Wattis@nottingham.ac.uk (Jonathan AD Wattis),pilar.gordoa@urjc.es (Pilar R Gordoa),
andrew.pickering@urjc.es (Andrew Pickering)
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In sections 3 and 4, we focus on a pair of parameters in the extended system and sequentially consider their effect
on small amplitude slowly-varying solutions of the extended system. We show that when these parameters are small,
the system behaves as the pure Toda lattice, whilst at largervalues of these parameters other phenomena are exhibited.
In Section 3 we derive various generalisations of the potential Boussinesq equation, and in Section 4 we consider
behaviour on the longer timescale, where the appropriate description is the KdV equation. Finally, in section 5 we
summarise the main results and draw conclusions.

2. Background theory – the Toda lattice and its differential-delay extension

In this section we introduce the basic Toda lattice, and recap how, through asymptotic expansions, it can be reduced
to the Boussinesq equation, and the Korteweg-de-Vries equation. Finally, we introduce and reformulate the extended
Toda system (a system which is both non-isospectral and differential-delay), which is the focus of the remainder of
the paper.

2.1. The pure Toda system

The Toda Lattice is usually obtained from the Hamiltonian system for the Fermi-Pasta-Ulam lattice [7], with a
particular choice for the interaction potential,V, namely

H =
∑

n

1
2g2

n + V( fn+1 − fn), V(φ) = γ2
0
(
φ − 1+ exp(−φ)

)
, (2.1)

wherefn(t) is the positions of particlen at timet andgn(t) is its momentum. The particles interact through the potential
energy functionV(·) which, in the original system studied by Fermi, Pasta and Ulam had a simple polynomial form
V(φ) = 1

2φ
2 + 1

3αφ
3 or V(φ) = 1

2φ
2 + 1

4βφ
4. In the Toda lattice, this potential is given byV′(φ) = γ2

0

(
1− exp(−φ)

)
.

Hamilton’s equations lead to

d2 fn
dt2
= V′( fn+1 − fn) − V′( fn − fn−1) = γ2

0 exp(fn−1 − fn) − γ2
0 exp(fn − fn+1). (2.2)

The substitutionφ(x, t) = φn(t) = fn+1 − fn with x = n leads to

d2φn

dt2
= V′(φn+1) − 2V′(φn) + V′(φn−1). (2.3)

The substitutionu = −φ leads to

γ−2
0 utt(x, t) = expu(x+ 1, t) − 2 expu(x, t) + expu(x− 1, t) = δ2

xe
u(x,t), (2.4)

whereδ2
x is the second central difference inx. The parameterγ0 can be eliminated by rescaling time.

The Toda soliton is given by

fn(t) = F0 + log

(
1− e−2µ + η exp(−2µn+ 2t sinhµ)

1− e−2µ + η exp(−2µn− 2µ + 2t sinhµ)

)
. (2.5)

which implies
expφn(t) = exp(fn+1(t) − fn(t)) = 1+ sinh2(µ)sech2(t sinhµ − µn+ ν), (2.6)

for some constant wavenumberµ, and phase shiftν in eφ, related to the phase shiftη in fn. By symmetry,φn(−t) is
also a solution. This sech2 shape occurs in the KdV equation as well as the Boussinesq equation. In the limit of small
amplitude, that isµ≪ 1, the wave is wide and travels close to the limiting speed ofc0 = 1.

The pure Toda system [6] can also be derived from the system

p̂t(x, t) = γ0

[
expu(x+ 1

2 , t) − expu(x− 1
2 , t)

]
,

ut(x, t) = γ0

[
p̂(x+ 1

2 , t) − p̂(x− 1
2 , t)

]
, (2.7)

by differentiating the latter with respect tot to eliminatêp, yielding (2.4).
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2.2. Small amplitude asymptotic expansion of the pure Toda system

Equation (2.7) can be approximated using the asymptotic expansion

y = ǫx, τ = ǫt, u(x, t) = u+ ǫ2U(y, τ), p̂(x, t) = p+ ǫ2P(y, τ),

(2.8)

in which we perform a weakly nonlinear expansion of bothu andp about constant solutionsu(x, t) = u andp(x, t) = p
to obtain

ǫ3Pτ = γ0eu
[
ǫ3Uy +

1
24ǫ

5Uyyy+ ǫ
5UUy

]
, (2.9)

ǫ3Uτ = γ0

[
ǫ3Py +

1
24ǫ

5Pyyy

]
. (2.10)

EliminatingP by differentiating (2.9) with respect tozand (2.10) with respect toτ, and simplifying, yields

γ−2
0 e−uUττ = Uyy +

1
12ǫ

2Uyyyy+ ǫ
2(UUy)y, (2.11)

which is the Boussinesq equation. This is completely integrable, and has pulse soliton solutions of the form

U(y, τ) =
3(c2 − γ2

0eu)

ǫ2γ2
0eu

sech2

(y− (cγ−1
0 e−u/2)τ)

√
3(c2 − γ2

0eu)

ǫ2γ2
0eu

 . (2.12)

In order for the width and height of this soliton to beO(1) in ǫ, we requirec ∼ ±γ0eu/2 + O(ǫ2).
Above we have obtained the standard Boussinesq equation, which by rescaling can be written as

utt = uxx+ uxxxx+ 6(u2)xx. (2.13)

The reason for our derivation of the Boussinesq equation (2.13) is to understand the behaviour of the Toda system in
the long wavelength limit (k ≪ 1); we are interested in the form of slowly-varying solutions and solitary waves; we
are not concerned with any ill-posedness issues caused by considering largerk.

2.3. Reduction to the Korteweg-de-Vries equation

We now return to equations (2.9)–(2.10) and focus on just onespeed of travel and substitute

P(y, τ) = P̂(z,T), U(y, τ) = Û(z,T), z= y− cτ, T = ǫ2τ, (2.14)

so as to transform the problem to a moving coordinate frame where the speedc will be chosen strategically to sim-
plify the ensuing analysis. The scaling of the new time variable T means that we are now considering much longer
timescales than previously: takingτ = O(1) as above impliest = O(ǫ−1), whereas takingT = O(1) means that
t = O(ǫ−3). Hence (

c γ0

γ0 ce−u

) (
Ûz

P̂z

)
= ǫ2

(
ÛT −

1
24γ0P̂zzz

e−uP̂T −
1
24γ0Ûzzz− γ0ÛÛz

)
(2.15)

Herec can be viewed as an eigenvalue, and for each eigenvalue, the system has a non-trivialO(1) solution. The
eigenvalues are given by the determinant of the matrix beingzero, namely

c± = ±γ0eu/2, (2.16)

with the corresponding eigenvectors beingv+ = (Ûz, P̂z)⊤ = (−1, eu/2)⊤ andv− = (Ûz, P̂z)⊤ = (1, eu/2)⊤. Since the
matrix in (2.15) is singular, its rangeR is only a subset ofR

2
, in particular forc+, R+ = λ(eu/2, 1)T and forc−,

R− = λ(−eu/2, 1)T.
For these particular speeds, the two equations are identical at leading order, namely∂z(cÛ + γ0P̂) = 0. Hence

P(z,T) = µ(T) − (c/γ0)U(z,T). Requiring the of (2.15) to be in the range of the matrix implies

ÛT −
1
24γ0P̂zzz

e−uP̂T −
1
24γ0Ûzzz− γ0ÛÛz

=
c
γ0
, (2.17)
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which, together withP = µ − (c/γ0)U, yields

2UT +
1
12cUzzz+ cUUz =

ce−u

γ0
µT (T). (2.18)

This has the form of a perturbed KdV equation, with a general time-dependent, although spatially uniform, forcing
term. The equation (2.18) can be mapped onto the standard KdVequation by the transformation

U 7→ U + g(T), z 7→ z+ s(T), g(T) =
ce−uµ(T)

2γ0
, s(T) =

c
2

∫ T

g(T′)dT′. (2.19)

Transformations of equations of the form (2.18) to the KdV equation have been given many times previously, for
example, in [5, 8, 9].

2.4. Reformulation of the extended Toda lattice

In Gordoaet al. [1], an integrable generalisation of the Toda lattice is derived, given by
(

pt(x, t)
qt(x, t)

)
+

(
β1

0

)
=

(
−κp(x, t)px(x, t) − q(x+ 1, t)s(x+ 2, t) + q(x, t)s(x, t)

−κq(x, t)[px(x, t) + px(x− 1, t)] − q(x, t)[p(x, t)s(x+ 1, t) − p(x− 1, t)s(x, t)]

)

+γ−1

(
−p(x, t)[q(x+ 1, t) − q(x, t)] − q(x+ 1, t)p(x+ 1, t) + q(x, t)p(x− 1, t)
−q(x, t)[q(x+ 1, t) − q(x− 1, t)] − q(x, t)[p(x, t)2 − p(x− 1, t)2]

)

+γ0

(
q(x+ 1, t) − q(x, t)

q(x, t)[p(x, t) − p(x− 1, t)]

)
+ β0

(
p(x, t)
2q(x, t)

)

+β−1

(
−p(x, t)2 − 2(x+ 1)q(x+ 1, t) + 2(x− 1)q(x, t)

−q(x, t)[p(x, t) + p(x− 1, t)] − q(x, t)[2xp(x, t) − 2(x− 1)p(x− 1, t)]

)
. (2.20)

whereγ−1, γ0, β0, β1, β−1 are arbitrary functions oft, and the functions(x, t) is determined bys(x + 1, t) − s(x, t) =
κqx(x, t)/q(x, t).

Whilst there are many integrable evolution equations with acontinuous spatial variablex (eg KdV, NLS, SG), and
also many examples where the second independent variable isdiscrete (eg Toda, Volterra), there are few integrable
evolution equations which involve both derivatives and discrete differences in space. Hence any discovery of such
a system is noteworthy, and determining its relationship toother integrable systems is interesting. The basic Toda
lattice can be obtained by puttingγ−1 = κ = 0 = β1 = β0 = β−1 andγ0 constant, which impliess= s0 (constant), thus
leaving, on the right hand side of this equation, only theγ0 term, but withγ0 replaced byγ0 − s0. As we have seen
above, this lattice equation is related to both the Boussinesq and the KdV equations. The purpose of this paper is to
investigate whether including extra terms yields connections to other systems, and/or destroys the relationship with
Bq and KdV.

The extended Toda system that we are interested in is derivedby Gordoaet al. [1] eq (3.53) withγ−1 = 0 and
β−1 = 0 and has the potential

s(x+ 1, t) − s(x, t) = κqx(x, t)/q(x, t), (2.21)

with the other governing equations being

pt(x, t) = β0p(x, t) − β1 + q(x, t)s(x, t) − q(x+1, t)s(x+2, t)

−κp(x, t)px(x, t) + γ0(q(x+1, t) − q(x, t)), (2.22)

qt(x, t) = −κq(x, t)[px(x, t) + px(x− 1, t)] + γ0q(x, t)[p(x, t) − p(x− 1, t)]

+2β0q(x, t) − q(x, t)[p(x, t)s(x+ 1, t) − p(x− 1, t)s(x, t)]. (2.23)

These equations can be transformed to a more symmetric form by subtle changes of variables; hence we introduce the
new variables

ŝ(x, t) = s(x+ 1
2 , t), u(x, t) = logq(x, t), p̂(x, t) = p(x− 1

2 , t), (2.24)
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which are equivalent to

s(x, t) = ŝ(x− 1
2 , t), q(x, t) = eu(x,t), p(x, t) = p̂(x+ 1

2 , t), (2.25)

and imply
ŝ(x+ 1, t) = ŝ(x, t) + κux(x+ 1

2 , t), ŝ(x− 1, t) = ŝ(x, t) − κux(x− 1
2 , t). (2.26)

The problem can then be written as

p̂t(x, t) = β0p̂(x, t) − β1 − κ p̂(x, t)p̂x(x, t) − κ∂x

[
exp(u(x− 1

2 , t)) + exp(u(x+ 1
2 , t))

]

+(γ0 − ŝ(x, t))(expu(x+ 1
2 , t) − expu(x− 1

2 , t)), (2.27)

ut(x, t) = 2β0 − κ
[
p̂x(x+ 1

2 , t) + p̂x(x− 1
2 , t)

]
+ γ0

[
p̂(x+ 1

2 , t) − p̂(x− 1
2 , t)

]

−

[
p̂(x+ 1

2 , t)̂s(x+
1
2 , t) − p̂(x− 1

2 , t)̂s(x−
1
2 , t)

]
, (2.28)

κux(x, t) = ŝ(x+ 1
2 , t) − ŝ(x− 1

2 , t). (2.29)

It is this form of the problem that we analyse in the followingsections.
Note that takingκ = 0 = β0 = β1 causes (2.27)–(2.28) to be reduced to (2.7).

3. Reductions over the intermediate timescale

If β1, β0 andκ are small enough, then their effect will be negligible, and the extended Toda system will behave in
the same manner as the basic Toda system, and we will have the same links with the Bq and KdV equations. Ifβ1, β0

are much larger thanγ0 andκ we havept = β0p − β1 andut = 2β0, which gives linear growth inu and exponential
growth or decay inp (with p→ β1/β0 ast→ ∞ if β0 < 0). As we consider smaller magnitudes ofβ1, β0, we expect to
find transitions in behaviour between this growth and decay and the more interesting dynamics that can be observed
in Bq and KdV. Hence we analyse a sequence of magnitudes forβ1, β0, and derive the corresponding generalised Bq,
KdV equations, to see if these generalisations also exhibitintegrability properties.

3.1. The caseβ j = O(ǫ3)

In addition to the asymptotic ansatz of (2.8), we introduceŝ(x, t) = s+ ǫ2S(y, τ). We apply the same to the general
system (2.27)–(2.29). Initially, we consider just (2.29),wherein (2.8) implies

κǫ3Uy = ǫ
2
[
S(y+ 1

2ǫ, τ) − S(y− 1
2ǫ, τ)

]
∼ ǫ3Sy +

1
24ǫ

5Syyy. (3.1)

This equation can be integrated once straightaway; a constant of integration can be absorbed intos. Whilst the constant
scould be a function of time,t; for the sake of simplicity, we always chooses to be independent of time.

Since we requireS in terms ofU, we can approximately invert this equation using

S = κ
(
1+ 1

24ǫ
2∂2

y

)−1
U ∼ κ

(
1− 1

24ǫ
2∂2

y

)
U = κU − 1

24κǫ
2Uyy. (3.2)

Choosing the constant of integration to be zero implicitly assumes the boundary conditions thatU → 0 andS→ 0 as
y→ −∞.

We now consider equations (2.27), (2.28) and (2.8), writing

β0 = ǫ
3β, β1 = ǫ

3B, (3.3)

and hence we obtain

Uτ = (γ0 − 2κ − s)Py +
1
24ǫ

2(γ0 − 6κ − s)Pyyy+ 2β − κpUy − κǫ
2(PU)y, (3.4)

Pτ = eu(γ0 − 2κ − s)Uy +
1
24ǫ

2eu(γ0 − 6κ − s)Uyyy+ (βp− B) + ǫ2eu(γ0 − 3κ − s)UUy + βǫ
2P− κpPy − κǫ

2PPy.

(3.5)
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From (3.4) and (3.5), together with the substitutionsz= y− κpτ, (whilst retainingτ) we obtain

Uτ = (γ0−2κ−s)Pz +
1
24ǫ

2(γ0−6κ−s)Pzzz+ 2β − κǫ2(PU)z, (3.6)

Pτ = (γ0−2κ−s)euUz +
1
24ǫ

2(γ0−6κ−s)euUzzz+ (βp− B) + βǫ2P− κǫ2PPz+ ǫ
2(γ0−3κ−s)euUUz. (3.7)

We introduce the potential functionψ defined byU = ψz and integrate with respect toz to find

ψτ = (γ0−2κ−s)P+ 2βz+ µ(τ) + 1
24ǫ

2(γ0−6κ−s)Pzz− κǫ
2Pψz. (3.8)

We differentiate this with respect toτ and substitute in forPτ from (3.7), eliminating the higher order occurrences of
ǫ2P using the leading order approximation (γ0−2κ−s)P = ψτ − 2βz− µ(τ). Redefining the unknown asφ = ψ − f (τ)
where f ′(τ) = µ(τ) yields

φττ − (γ0−2κ−s)2euφzz

ǫ2
= 1

12(γ0−2κ−s)(γ0−6κ−s)euφzzzz+
1
2(γ0−2κ−s)(γ0−3κ−s)eu(φ2

z)z

−
κ(φττφz + 2φτφzτ)

(γ0−2κ−s)
+ βφτ − 2β2z+

2βκ
(γ0−2κ−s)

(φτ + 2zφzτ − 2βz)

+(γ0−2κ−s)(βp− B). (3.9)

In deriving this equation, we have usedφzzττ = φzzzzeu(γ0−2κ−s)2 + O(ǫ2).
In equation (3.9), the first two lines correspond to terms in the standard potential Boussinesq equation, and the last

three lines to the perturbations resulting from the terms inthe extended Toda system.
Redefining the constant coefficients, this equation can be written as one of

φtt = φxx+ φxxxx+ (φ2
x)x + bφt − k(2φtφxt + φttφx) + ax+ cxφxt + d, (3.10)

φtt = φxx− φxxxx+ (φ2
x)x + bφt − k(2φtφxt + φttφx) + ax+ cxφxt + d. (3.11)

Applying the WTC Painlevé test [10] we find the conditions for integrability area = b = c = k = 0, hence the only
integrable cases are the potential Boussinesq equation.

Seeking similarity solutions of (3.10) leads to two cases: in the first, whena = c = 0 (which impliesb = 0), we
have travelling wave solutions of the formφ = φ(z) + c0t, z= x− vt where f = φ′ satisfies

(v2
− 1− 2kvc0) f = f ′′ + (1− 3

2κv
2)( f 2) + dz+ K, (3.12)

with v andc0 arbitrary. This equation has solutions in the form of elliptic functions and pulses (whend = 0) and
the Painlevé transcendentPI [11, 13] whend , 0. In the second case, wherea andc are not both zero, there are
‘stationary’ solutions, whereφ(x, t) = φ(x) + c0t, and f = φ′(x) satisfies

f ′′ + f + f 2 + 1
2ax2 + (bc0 + d)x+ K = 0. (3.13)

The requirement for this equation to pass the ARS Painlevé test [12] isa = 0. In this case (3.13) has solutions in the
form of elliptic functions and pulses (whenbc0 + d = 0) and the Painlevé transcendentPI [11, 13] whenbc0 + d , 0.
Seeking similarity reductions of equation (3.11) leads to similar results.

The potential Boussinesq equation (3.9) describes the evolution of the extended Toda system on theτ = O(1)
timescale, which corresponds tot = O(ǫ−1) in the original system. The expansions derived later in Section 3 will
describe the evolution on significantly longer timescales,namely ort = O(ǫ−3) over which the behaviour is governed
by the KdV equation.

3.2. The caseβ j = O(ǫ4)

This case is very similar to the above, although we now write

β0 = ǫ
4β, β1 = ǫ

4B. (3.14)
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Hence, in place of (3.4) and (3.5) we obtain

Uτ = (γ0−2κ−s)Pz +
1
24ǫ

2(γ0−6κ−s)Pzzz+ 2ǫβ − κǫ2(PU)z, (3.15)

Pτ = (γ0−2κ−s)euUz +
1
24ǫ

2(γ0−6κ−s)euUzzz+ ǫ(βp− B) − κǫ2PPz+ ǫ
2(γ0−3κ−s)euUUz. (3.16)

As above, we introduce the potential functionU = ψz, and follow the same method as used to derive (3.9), to find

φττ − (γ0−2κ−s)2euφzz

ǫ2
= 1

12(γ0−2κ−s)(γ0−6κ−s)euφzzzz+
1
2(γ0−2κ−s)(γ0−3κ−s)eu(φ2

z)z

−
κ(φττφz+ 2φτφzτ)

(γ0−2κ−s)
, (3.17)

which is identical to (3.9) with theβ terms neglected. Rescaling the coefficients, this equation can be written in one
of the two simpler forms

φtt = φxx+ φxxxx+ (φ2
x)x − k(2φtφxt + φttφx), (3.18)

φtt = φxx− φxxxx+ (φ2
x)x − k(2φtφxt + φttφx). (3.19)

As with equation (3.10), applying the WTC Painlevé test [10] yields that the only integrable cases of these equations
are the potential Boussinesq equations, wherek = 0.

These equations again have travelling wave solutions. Writing φ = φ(z)+ c0t, z= x− vt, φ′ = f , in (3.18), we find

(v2
− 1− 2kvc0) f = f ′′ + (1− 3

2κv
2) f 2 + K, (3.20)

which has solutions in the form of elliptic functions and pulse-solitons forf , which correspond to kinks forφ. In this
last case, for example whenK = 0, the solution has the form

f =
3(1− v2 + 2kvc0)

(3kv2 − 2)
sech2

(
1
2z

√
v2 − 2kvc0 − 1

)
. (3.21)

This wave exists forv satisfyingv > kc0 +

√
1+ k2c2

0, or v < kc0 −

√
1+ k2c2

0. Hence the presence ofk modifies the

range of speeds that such waves exist. Also the factor of 3kv2−2 in the denominator of the amplitude means waves of
positive and negative elevation are possible. Similar results are obtained when seeking similarity reductions of (3.19).

Since equations (3.17) and (3.20) are already independent of β, consideringβ0, β1 to be smaller thanO(ǫ4) will
not result in any new equations to be derived. Hence we do not considerβ0, β1 = O(ǫ5, ǫ6) and instead turn to
β0, β1 = O(ǫ2).

3.3. The caseβ j = O(ǫ2) – multiple timescales expansion

We now turn to consider larger magnitudes forβ0, β1, albeit still small. We define

β0 = ǫ
2β, β1 = ǫ

2B, (3.22)

with B, β = O(1); and also introduce new independent variables

τ = ǫt, y = ǫx, T = ǫ2t. (3.23)

The time derivative∂t is replaced byǫ∂τ + ǫ2∂T , and assume a multiple-scales ansatz for the dependent variables

p̂ = p(T) + ǫP(y, τ,T), u = u(T) + ǫU(y, τ,T), ŝ= s(T) + ǫS(y, τ,T). (3.24)

Note that there are several differences between this case and that ofO(β3) analysed in section 3.1; namely the am-
plitude of the spatially-dependent components ofp̂, u are larger, to be precise,O(ǫ) instead ofO(ǫ2); and that the
background solutions,p, u now vary on the very long timescale,T, instead of being constants.
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Solving the equation for̂s givesS(y, τ,T) = κU(y, τ,T) + O(ǫ2), in which the higher order correction terms can
be neglected as they do not contribute to either the leading order balance or the first correction terms. As noted after
equation (3.1), we chooses to be a constant, that is, independent of bothx andt. The equation for̂p yields

p′(T) + Pτ + ǫPT = βp(T) − B+ ǫβP− κp(T)Py − ǫκPPy + (γ0−2κ−s)euUy + ǫ(γ0−3κ−s)euUUy, (3.25)

while that foru gives
u′(T) + Uτ + ǫUT = 2β + Py(γ0−2κ−s) − κp(T)Uy − ǫκ(PU)y. (3.26)

Taking the spatially-independent parts of equations (3.25), (3.26) yields the ODEs

p′(T) = βp(T) − B, u′(T) = 2β, (3.27)

thus our spatially-uniform, but time-dependent background solution is

p(T) = CeβT + B/β, u(T) = 2βT + u0. (3.28)

Sinceu0 can be removed by shifting the time variable,T, we takeu0 = 0; however, it is important to retain both
components in the solution,p(T).

Transforming (3.25)–(3.26) to a moving coordinate framevia

z= y− κp(T)τ, (3.29)

(whilst retainingτ as the faster time variable) yields the governing equations

Pτ + ǫPT = (γ0−2κ−s)eu(T)Uz + ǫβP− ǫκPPz + ǫ(γ0−3κ−s)eu(T)UUz, (3.30)

Uτ + ǫUT = (γ0−2κ−s)Pz− ǫκ(PU)z. (3.31)

We proceed to analyse this system of equations on each of the two timescales,τ = O(1), which corresponds to
t = O(ǫ−1), andT = O(1), which is relevant fort = O(ǫ−2).

3.4. The caseβ j = O(ǫ2) – reduction to generalised Boussinesq equation

For the shorter timescale, wheret = O(ǫ−1) only theτ variable is relevant, andT-dependence can be ignored,
leaving us with

Pτ = (γ0−2κ−s)euUz + ǫβP− ǫκPPz + ǫ(γ0−3κ−s)euUUz, (3.32)

Uτ = (γ0−2κ−s)Pz − ǫκ(PU)z. (3.33)

Following the analysis of Section 3.1, we expect this to yield a form of the Boussinesq equation.
Introducing the potentialψ defined byU = ψz and by integrating (3.33) with respect toz, we find

ψτ = (γ0−2κ−s)P− ǫκPψz + µ(τ). (3.34)

Rearranging (3.34) we obtain

P =
ψτ − µ(τ)

(γ0−2κ−s)
+
ǫκψz(ψτ − µ(τ))

(γ0−2κ−s)2
+ O(ǫ2), (3.35)

which we substitute into (3.32). Retaining only leading order andO(ǫ) correction terms, we eventually obtain a single
equation forψ

ψττ − (γ0−2κ−s)2euψzz

ǫ
= (γ0−2κ−s)(γ0−3κ−s)euψzψzz+ βψτ − βµ(τ) + µ′(τ)/ǫ

+
κ(2µ(τ)ψzτ + µ

′(τ)ψz − 2ψτψzτ − ψττψz)
(γ0−2κ−s)

. (3.36)

Writing ψ = φ(z, τ) + f (τ) with f ′(τ) = µ(τ) yields the same equation forφ, but with all theµ terms removed.
This equation has some similarities with the standard Boussinesq equation, albeit not so many as (3.10). Due to the
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strongerβ-forcing terms, the amplitude is larger and so the nonlinearity is stronger than the dispersion and so the
higher derivative terms have been relegated to higher orders in ǫ. We still have the leading-order terms from the wave
equation, and nonlinearities of the form (ψ2

z)z as one would expect in the potential Boussinesq equation. However, in
addition, there are other perturbation terms which change the form of the travelling wave solutions.

Seeking travelling wave solutions of (3.36) withµ = 0 andψ = φ(q), q = z− vτ yields an equation, which can be
rewritten in the form

1
2φ
′2 + φ′ + φ + aq+ b = 0. (3.37)

Whena = 1, this equation has solutions of the form

φ = 1
2 − b− q− 1

2(q+ K)2, φ = 1
2 − b− q. (3.38)

Here, the first solution is a ’general solution’, whilst the latter is a singular, or ’envelope’ solution, which occurs due
to the equation (3.37) not satisfying the criteria for uniqueness of solutions. In particular,φ′ = F(φ, q) is not Lipschitz
continuous inφ.

Fora , 1, equation (3.37) has general solutions of the form

φ = a(1− q) − b+ (a− 1)L − 1
2(a+ (a− 1)L)2, where L =W

(
−

1
(a− 1)

exp
(q− a− K

a− 1

))
, (3.39)

whereW(x) is Lambert’s W function [13], which satisfiesWeW = x. The singular solution of (3.37) isφ = a(1− q−
a/2)− b. There are no similarity reductions of (3.37) other than these travelling wave solutions.

3.5. The caseβ j = O(ǫ1)

For this case we writeβ0 = ǫβ, β1 = ǫB, with β, B = O(1). As above, we use the scalings given by (3.23) and now
generalise (3.24) to

p̂ = p(τ,T) + ǫP(y, τ,T), u = u(τ,T) + ǫU(y, τ,T), ŝ= s(τ,T) + ǫS(y, τ,T), (3.40)

Takings to be constant, these assumptions result in

Pτ + κp(τ,T)Py = βP+ (γ0−2κ−s)euUy − pT − κǫPPy + ǫeu(γ0−3κ−s)UUy − ǫPT (3.41)

Uτ + κp(τ,T)Uy = (γ0−2κ−s)Py − κǫ(PU)y − uT − ǫUT . (3.42)

Firstly, we consider the behaviour on the slower of the two timescales, namelyτ; hence we ignoreT, and transform
to a moving frame of reference given by

z= y− σ(τ), with σ(τ) = κBτ/β + κCeβτ/β +C2, (3.43)

so thatσ′(τ) = κp(τ,T). Then

Pτ = βP+ (γ0−2κ−s)e2βτUz − κǫPPz + ǫe
2βτ(γ0−3κ−s)UUz (3.44)

Uτ = (γ0−2κ−s)Pz − κǫ(PU)z. (3.45)

We now introduce a potential function defined byψz = U, whereupon including terms ofO(ǫ), equation (3.45) implies

P =
ψτ − µ(τ)

(γ0−2κ−s) − ǫκψz
∼

ψτ − µ(τ)
(γ0−2κ−s)

+
ǫκψz(ψτ − µ(τ))

(γ0−2κ−s)2
, (3.46)

the last expression being due toǫ ≪ 1. Writingψ = φ+ f (τ) with f ′ = µ, and introducinĝτ = eβτ and̂z= βz/(γ0−2κ−s),
yields, toO(ǫ),

φτ̂̂τ − φ̂ẑz =
βǫ

(γ0−2κ−s)2

[
(γ0−3κ−s)φ̂zφ̂ẑz − κ

(
2φτ̂φ̂ẑτ + φ̂zφτ̂̂τ

)]
. (3.47)

For ease of writing, we recast this equation as

utt = uxx+ auxuxx+ 2butuxt + buxutt. (3.48)
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This equation only admits two Lie symmetry reductions, namely (i) the travelling waveu(x, t) = v(z) wherez= x−ct,
which yields either

v′′(z) = 0, or v′(z) =
c2 − 1

a+ 3bc2
; (3.49)

or, (ii) the similarity solutionu = tv(z) wherez= x/t, which yields either

v′′(z) = 0, or v′(z) =
z2 − 1

a2 + 3b2z2 − 2bz
. (3.50)

All the s in (3.49)–(3.50) are easily integrated.

3.6. Summary

We have considered a variety of magnitudes for theβ-parameters, and for each scale, we have shown that the
system can be reduced to a generalised wave equation. For smaller β values, this has the form of a (generalised)
Boussinesq equation, whilst at larger magnitudes, the dispersion term is dropped and other forcing terms become
significant as the amplitude of the resulting evolving disturbance increases fromO(ǫ2) toO(ǫ).

In many cases the systems (3.9), (3.17), (3.36) permits travelling waves, whose shape evolves over longer timescales,
as we shall investigate next. However, in the caseβ = O(ǫ), the equation (3.47) retains a strong dependence on the
slower timescale, and preventing analysis. Although atβ = O(ǫ4), theβ terms have no influence on the evolution of
disturbances on theτ = O(1) timescale, which corresponds tot = O(ǫ−1), we find that when longer timescales are
considered, that ist = O(ǫ−2) or longer, theβ terms are significant.

4. Reductions over the long timescale

We now consider the longer timescales and, using asymptotictechniques, we show that the evolution of small
amplitude excitations in the extended Toda lattice reduce to the KdV equation. As in the section above, we make
assumptions on the sizes of theβ j parameters in the extended Toda system, and show how they affect the resulting
reduced equations.

4.1. The caseβ j = O(ǫ3)

We now transform (3.4)–(3.5) to a travelling wave coordinate (z), and a longer timescale (T) via (2.14), which
yields

(
c− pκ eu(γ0−s−2κ)

γ0−s−2κ c− pκ

)(
Pz

Uz

)
=

(
B− βp
−2β

)

+ǫ2

(
PT − βP+ κPPz −

1
24eu(γ0 − s− 6κ)Uzzz− eu(γ0−s−3κ)UUz

UT −
1
24(γ0−s−6κ)Pzzz+ κ(PU)z

)
.

(4.1)

As in the case of the reduction of the pure Toda system in Section 2.3, in order to obtain a single scalar equation
describing the system, we now require the matrix on the of (4.1) to be singular. For this matrix above, which we
refer to asM , to be singular, we require the speedc to take one of two values, namely

c± = pκ ± eu/2(γ0 − s− 2κ). (4.2)

Given a value forc, the singular matrix represents a projection, and its imagebeing a one-dimensional subspace of
R

2. That the of (4.1) has to lie in the image subspace is one condition relating the functionsU andP (from the
O(ǫ2) terms), and a condition relating the constantsB, β, p (from theO(1) terms).

For this given, since the system (4.1) is singular, it is in effect a single equation, which we then aim to solve
to give a second relationship betweenP andU, which provides the reduction of the Toda system to a single scalar
equation.
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4.1.1. The caseβ j = O(ǫ3), c = c+
In this case the range of the matrix in (4.1) isλ(eu/2, 1)T for anyλ ∈ R. Requiring the of (4.1) to lie in this

subspace yields the condition

p =
B
β
+ 2eu/2. (4.3)

We rewrite the unknownsP,U in terms of the eigenvector of the matrix and a vector orthogonal to it, that is, we
put (

Pz

Uz

)
= φ(z,T)

(
eu/2

−1

)
+ ψ(z,T)

(
1

eu/2

)
, (4.4)

whereφ, ψ are introduced to describe thez andT dependence of the system in place ofP andU. At leading order,
and using (4.3), both components of equation (4.1) become

(γ0 − s− 2κ)(1+ eu)ψ(z,T) = −2β, (4.5)

andφ remains undetermined. From (4.5)

Pz + eu/2Uz

(1+ eu)
= ψ =

−2β

(γ0 − s− 2κ)(1+ eu)
, (4.6)

and integrating with respect tozyields

P(z,T) = µ(T) − eu/2U(z,T) −
2βz

(γ0 − s− 2κ)
. (4.7)

Now we require that theO(ǫ2) terms on the of (4.1) lie in the range of the matrix, that is,

eu/2
[
UT −

1
24(γ0−6κ−s)Pzzz+ κ(PU)z

]
= PT − βP+ κPPz −

1
24eu(γ0 − s− 6κ)Uzzz− eu(γ0 − s− 3κ)UUz, (4.8)

into which (4.7) can be inserted to obtain a final reduced governing equation

2eu/2UT +
1
12eu(γ0−6κ−s)Uzzz+ eu(γ0 − s− 6κ)UUz

= µT (T) −
βµ(T)(γ0 − s)
(γ0−2κ−s)

+
2β2z(γ0 − s)
(γ0−2κ−s)2

+
βeu/2U(γ0 − s+ 2κ)

(γ0 − s− 2κ)
+

4βκeu/2zUz

(γ0−2κ−s)
− 2κeu/2µ(T)Uz. (4.9)

The  of this equation is the standard KdV equation, whilst the terms on the are all perturbations. However,
and somewhat surprisingly, it is possible to transform the above equation onto the KdV equation. The transformation
described by Popovych and Vaneeva [8], shows that equationsof the form eqn (4) of [8], namely

ut + f (t)uux + g(t)uxxx+ h(t)u+ (p(t) + q(t)x)ux + k(t)x+ l(t) = 0, (4.10)

can be mapped onto the KdV equation only if their condition (6) holds; this is

st = 2gs2
− 3qs+

f k
g
, where s :=

2q− h
g
+

ftg− f gt

f g2
. (4.11)

In our case the condition ons is met, so (4.9) is mapped onto KdV.

4.1.2. The caseβ j = O(ǫ3), c = c−
In this case the range of the matrix in (4.1) isλ(eu/2,−1)⊤ for any λ. Requiring the of (4.1) to lie in this

subspace yields

p =
B
β
− 2eu/2, (4.12)

We write (
Pz

Uz

)
= φ(z,T)

(
eu/2

1

)
+ ψ(z,T)

(
−1
eu/2

)
. (4.13)
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At leading order, from (4.1) we obtain

ψ(γ0 − s− 2κ)(1+ eu)

(
eu/2
−1

)
= 2β

(
eu/2
−1

)
, (4.14)

henceψ = 2β/(1+ eu)(γ0 − s− 2κ). From (4.13), we obtain another equation forψ, in terms ofP,U, which can be
integrated to show

P(z,T) = µ(T) + eu/2U(z,T) −
2βz

(γ0 − s− 2κ)
. (4.15)

The final equation comes from substituting this expression for P into the condition that theO(ǫ2) terms in (4.1) lie
in the range of the matrix. This calculation yields

2eu/2UT −
1
12eu(γ0−6κ−s)Uzzz− eu(γ0 − s− 6κ)UUz

= −µT(T) +
βµ(T)(γ0 − s)
(γ0−2κ−s)

−
2β2z(γ0 − s)
(γ0−2κ−s)2

+
βeu/2U(γ0 − s+ 2κ)

(γ0 − s− 2κ)
+

4βκeu/2zUz

(γ0−2κ−s)
− 2κeu/2µ(T)Uz. (4.16)

As with equation (4.9), this equation can be mapped onto KdV using the transformation of Popovich and Vaneeva [8].

4.2. The caseβ j = O(ǫ4)

This case is very similar to the above, noting (3.14), in place of (4.1) we obtain
(

c− pκ eu(γ0−s−2κ)
γ0−s−2κ c− pκ

)(
Pz

Uz

)
= ǫ

(
B− βp
−2β

)

+ǫ2

(
PT + κPPz −

1
24eu(γ0 − s− 6κ)Uzzz− eu(γ0−s−3κ)UUz

UT −
1
24(γ0−s−6κ)Pzzz+ κ(PU)z

)
. (4.17)

Hence we have the same conditions forc, namely (4.2), and the same equations forp, namely (4.3) and (4.12). The
final KdV-type equations are slightly simpler than those quoted above, since smaller values for the parametersβ0, β1

mean that some terms are small enough to be ignored atO(ǫ2) in (4.1).
Hence for the larger speed,c+, in place of (4.9), we obtain

2eu/2UT +
1
12eu(γ0 − s− 6κ)Uzzz+ eu(γ0 − s− 6κ)UUz = µT(T) − 2κeu/2µ(T)Uz; (4.18)

and for the smaller speed,c−, in place of (4.16) we have

0 = 2UT −
1
12eu/2(γ0 − s− 6κ)Uzzz− (γ0 − s− 6κ)eu/2UUz + 2κµ(T)Uz + e−u/2µT (T). (4.19)

As in the case ofβ = O(ǫ3), both these equations are perturbed forms of KdV, althoughhere, the perturbations are
simpler. Both (4.18) and (4.19) can be mapped onto the standard KdV equation using transformations such as those
described by Popovych and Vaneeva [8] and Pickeringet al. [5].

4.3. The caseβ j = O(ǫ5)

To obtain the relevant results in this case, we now write

β0 = ǫ
5β, β1 = ǫ

5B, (4.20)

alternatively, we can apply the transformationβ 7→ ǫ2β andB 7→ ǫ2B in (4.1). With this transformation, the entire
of (4.1) isO(ǫ2). Hence, in place of (4.1), we obtain
(

c− pκ eu(γ0−s−2κ)
γ0−s−2κ c− pκ

)(
Pz

Uz

)
= ǫ2

(
B− βp+ PT + κPPz −

1
24eu(γ0 − s− 6κ)Uzzz− eu(γ0−s−3κ)UUz

UT −
1
24(γ0−s−6κ)Pzzz+ κ(PU)z− 2β

)
. (4.21)
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We have the same solutions forc as in (4.2), and the leading order solutions forP, U are

P(z,T) = µ(T) −
(γ0 − s− 2κ)eu

(c− pκ)
U(z,T). (4.22)

Forc+, requiring the of (4.21) to be parallel to the range of the matrix, namely (eu/2, 1)T yields

2UT +
1
12eu/2(γ0 − s− 6κ)Uzzz+ eu/2(γ0 − s− 6κ)UUz

= µT (T)e−u/2
− 2κµ(T)Uz+ 2β − e−u/2(βp− B). (4.23)

This can be mapped onto the KdV equation by a suitable change of variables. Forc−, the range of the matrix is
(eu/2,−1)T, and the corresponding equation is

2UT −
1
12eu/2(γ0 − s− 6κ)Uzzz− eu/2(γ0 − s− 6κ)UUz

= −µT (T)e−u/2
− 2κµ(T)Uz + 2β + e−u/2(βp− B). (4.24)

Since the only differences between these two equations are sign changes, this last equation can also be mapped on to
the KdV equation.

4.4. The caseβ j = O(ǫ6)
This case is similar to the above, only now theβ, B terms are even smaller, we put

β0 = ǫ
6β, β1 = ǫ

6B, (4.25)

The end result of this is that terms involvingB, β can be completely neglected since they do not enter the leading order
equations. Hence we observe KdV equations with fewer perturbing terms; however, the terms due tos andκ are still
present.
(

c− pκ eu(γ0−s−2κ)
γ0−s−2κ c− pκ

)(
Pz

Uz

)
= ǫ2

(
PT + κPPz −

1
24eu(γ0 − s− 6κ)Uzzz− eu(γ0−s−3κ)UUz

UT −
1
24(γ0−s−6κ)Pzzz+ κ(PU)z

)
. (4.26)

Forc+, requiring the of (4.26) to be parallel to the range of the matrix, namely (eu/2, 1)T yields

2UT +
1
12eu/2(γ0 − s− 6κ)Uzzz+ eu/2(γ0 − s− 6κ)UUz = µT(T)e−u/2

− 2κµ(T)Uz. (4.27)

Forc−, the corresponding equation is

2UT −
1
12eu/2(γ0 − s− 6κ)Uzzz− eu/2(γ0 − s− 6κ)UUz = −µT (T)e−u/2

− 2κµ(T)Uz. (4.28)

Again, the only differences between these two equations are subtle changes in sign. Both these equations can be
mapped onto the KdV. These final equations are similar to those in Section 4.3, the only differences being the removal
of β, B. Hence, takingβ0, β1 to be smaller thanO(ǫ6) will simply result in these expressions again.

4.5. The caseβ j = O(ǫ2)
We return to the full equations (3.30)–(3.31), namely

Pτ + ǫPT = (γ0−2κ−s)eu(T)Uz + ǫβP− ǫκPPz + ǫ(γ0−3κ−s)eu(T)UUz, (4.29)

Uτ + ǫUT = (γ0−2κ−s)Pz− ǫκ(PU)z, (4.30)

where it is now important to consider both theτ- and theT-dependence. We treat this as a system and the evolution
on the long timescale is obtained from the Fredholm consistency criteria.

We seek travelling wave solutions of the form

U(z, τ,T) = U(w,T), P(z, τ,T) = P(w,T), w = z− vτ, (4.31)

which transforms (4.29)–(4.30) into a system of the formMu = ǫb, specifically,
(

v (γ0−2κ−s)eu

(γ0−2κ−s) v

) (
Pw

Uw

)
= ǫ

(
PT − (γ0−3κ−s)euUUw − P(β − κPw)

UT + κ(PU)w

)
. (4.32)

At leading order, whereMu = 0, this system only has nontrivial solutions ifv = ±(γ0−2κ−s)eu/2. We consider each
case in turn.
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4.5.1. The caseβ j = O(ǫ2), long timescale, and v= +eu/2(γ0−2κ−s).
When v = (γ0−2κ− s)eu/2, solutions ofMu = 0 lie in the kernel of the matrixM , so must have the form

u = λ(eu/2,−1)T.
For nonzeros of the matrix equation (4.32), we write the solution as

(
Pw

Uw

)
= ψw(w,T)

(
eu/2

−1

)
+ φw(w,T)

(
1

eu/2

)
, (4.33)

whereψ, φ are assumed to beO(1). Here, the first vector is the zero-eigenvector of the matrix M so whenM acts on
(Pw,Uw) the product is the zero matrix. The second vector is simply the vector orthogonal to the zero-eigenvector;
whenM acts on this, the product is nonzero. Since the of (4.32) isO(ǫ), we introduce a coefficient ofǫ in front of
φ, but no such coefficient is needed in front ofψ. Hence, to leading order we take

P(w,T) = µ(T) − eβTU. (4.34)

We note thatu = u(T) = 2βT, from (3.28).
The range of the matrixM is λ(eu/2, 1)T for arbitrary parameterλ. Since (4.32) is a singular equations, the

condition that (4.32) has nontrivial solutions is that the lies in the range of the matrixM . This condition implies

PT + κPPw − βP− e2βT(γ0−3κ−s)UUw = eβTUT + κeβT(UP)w, (4.35)

which, using (4.34) andU = e−βTQ, can be simplified to

0 = 2QT + (γ0−6κ−s)QQw + 2κµ(T)Qw + 2βQ− µ′(T) + βµ(T). (4.36)

4.5.2. The caseβ j = O(ǫ2), long timescale, and v= −eu/2(γ0−2κ−s).
Whenv = −(γ0−2κ−s)eu/2, solutions ofMu = 0 have the formu = λ(eu/2, 1)T. For nonzeros of the matrix

equation (4.32), we write the solution as

Pw = −eβTUw, hence P(w,T) = µ(T) + eβTU(w,T). (4.37)

The condition that the of (4.32) is in the range ofM implies

PT − βP+ κPPz− (γ0−3κ−s)e2βTUUw + eβTUT + eβTκ(PU)w = 0. (4.38)

Using (4.37), together withU = e−βTQ, this equation can be reduced to

0 = 2QT − 2βQ− (γ0−6κ−s)QQw + 2κµ(T)Qw + µ
′(T) − βµ(T). (4.39)

Equation (4.39) can be solved by the method of characteristics; for example, given initial data ofQ(w, 0) = Q0(w),
in the caseµ(τ) = 0, the solution is given by the implicit form

Q(w,T) = e2βTQ0

(
w−

(γ0−6κ−s)(1− e−2βT)Q(w,T)
2β

)
. (4.40)

Equation (4.36) is closely related to (4.39), and can be solved by the same methods.

5. Conclusions

In this paper we have considered the first member of the extended (non-isospectral and differential-delay) Toda
hierarchy. We have analysed the evolution of small amplitude disturbances around a spatially uniform solution using
asymptotic techniques. We have considered a wide range of magnitudes for theβ0, β1 parameters, and found that when
these are small, the system is governed, to leading order, bythe Boussinesq equation. On increasing these parameters
the governing, changes through a sequence of increasingly generalised Boussinesq equations, losing the highest
derivative term, and gaining forcing/damping terms. We have outlined the forms of solutions of these equations.

Over the longer timescale, solutions of the extended Toda system are governed by the KdV equation. Although
for some magnitudes the equation initially derived has manyperturbing terms, we have shown that transformations
exist which map the equation back onto the KdV.
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[10] Weiss, J, Tabor, M, Carnevale, G. The Painlevé property for partial differential equations.J Math Phys. 24, 522–6 (1983).
[11] Ince EL. Ordinary differential equations. New York: Dover; (1956), (Chapter 14).
[12] Ablowitz, MJ, Ramani, A and Segur, H. A connection between nonlinear evolution equations and ordinary differential equations of P-Type I,

J. Math. Phys.21, 715–721, (1980).
[13] Olver FWJ, Lozier DW, Boisvert RF, Clark CW. NIST Handbook of Mathematical Functions, CUP, New York, 2010.

http://dlmf.nist.gov

15


