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Behaviour of the extended Toda lattice
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Abstract

We consider the first member of an extended Toda lattice fuieya This system of equations isfidirential with
respect to one independent variable an@ledgéntial-delay with respect to a second independent Jarialye use
asymptotic analysis to consider the long wavelength limftshe system. By considering various magnitudes for
the parameters involved, we derive reduced equationserklat the Korteweg-de Vries and potential Boussinesq
equations.

Highlights:

e we analyse the behaviour of solutions of the extended Tdteda

e we derive PDEs which are asymptotic approximations of thieéa

¢ we find similarity solutions of these limiting PDEs

¢ we show that in certain cases the PDEs can be transformed Bothssinesq ayior KdV equations
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1. Introduction

In [1] an integrable non-isospectral £21)-dimensional extension of the Toda lattice hierarchy e@sstructed,
this consisting of a sequence of pairs of equation®mt, y) andq(n, t, y) with n being discrete andandy continuous.
The reductions of this hierarchy were found to include & ()-dimensional dterential-delay Toda lattice hierarchy,

a sequence of evolution equationsafx, t) andq(x, t) with both x andt continuous but where the equations involved
derivatives with respect teas well as shifts irx. It is the first member of this extended Toda lattice hiergitiat is
the subject of the present paper.

In earlier papers [2, 3] a (2 1)-dimensional dferential-delay Volterra lattice hierarchy had been detrivEhe
autonomous versions of such equations were placed withintabse modification of the usual algebraic structure
associated with completely integrable evolution equation[4]. The first member of the (2 1)-dimensional
differential-delay \Volterra lattice hierarchy was studied5h fvhere we considered various amplitudes for param-
eters, and obtained a number of asymptotic reductions tergémations of the Korteweg-de Vries (KdV) equation,
amongst others. In the present paper, for the first membdreoéttended Toda lattice hierarchy, again by consid-
ering various magnitudes for the parameters involved, wiveleeduced equations related to the KdV and potential
Boussinesq equations.

Section 2 contains an introduction to the relevant redadiehniques we use and the equations under study. We
start by using small amplitude weakly nonlinear asympteiitiniques to reduce the Toda lattice [6] to the Boussinesq
equation, and outline its reduction to the KdV equation. W8e aeformulate the extended Toda system [1] to make it
more amenable to the asymptotic techniques used subsgquent

URL: Jonathan.Wattis@nottingham.ac.uk (Jonathan AD Wattislpilar.gordoa@urjc.es (Pilar R Gordoa),
andrew.pickering@urjc.es (Andrew Pickering)

Preprint submitted to Comm Nonlin Sci and Num Sim March 27, 2015



In sections 3 and 4, we focus on a pair of parameters in tha@etesystem and sequentially consider theat
on small amplitude slowly-varying solutions of the extedidgstem. We show that when these parameters are small,
the system behaves as the pure Toda lattice, whilst at laadiges of these parameters other phenomena are exhibited.
In Section 3 we derive various generalisations of the p@kBbussinesq equation, and in Section 4 we consider
behaviour on the longer timescale, where the appropriaeriion is the KdV equation. Finally, in section 5 we
summarise the main results and draw conclusions.

2. Background theory — the Toda lattice and its dfferential-delay extension

In this section we introduce the basic Toda lattice, andpcay, through asymptotic expansions, it can be reduced
to the Boussinesq equation, and the Korteweg-de-Vriestegudrinally, we introduce and reformulate the extended
Toda system (a system which is both non-isospectral affieireitial-delay), which is the focus of the remainder of
the paper.

2.1. The pure Toda system

The Toda Lattice is usually obtained from the Hamiltoniasteyn for the Fermi-Pasta-Ulam lattice [7], with a
particular choice for the interaction potentidl, namely

H= Y 32+ V(i —f).  V(9) =3 (6~ L+ exp(-o)). 2.1)

wheref,(t) is the positions of particle at timet andg,(t) is its momentum. The particles interact through the padént
energy functiorV(:) which, in the original system studied by Fermi, Pasta arehUhad a simple polynomial form
V(g) = 34% + a¢® or V(g) = 3¢° + 2B¢*. In the Toda lattice, this potential is given By’ (¢) = 3 (1 — exp(9)).
Hamilton’s equations lead to

d?f
Tzn = V/(fn+]_ - fn) - V,(fn - fnfl) = '}/(2) exp(fn71 - fn) - 'y% exp(fn - fn+1). (2.2)
The substitutiorp(x, t) = ¢n(t) = fri1 — fn with x = nleads to
d2¢n ’ ’ ’
9z - V(1) = 2V (¢n) + V' (¢n-1). (2.3)

The substitutionu = —¢ leads to
Yol (X, 1) = expu(x + 1,t) — 2 expu(x, t) + expu(x — 1,t) = 62e"*, (2.4)

wheres? is the second centralfiérence irx. The parametey, can be eliminated by rescaling time.
The Toda soliton is given by

1- e 4+ pexp2un + 2tsinhy)

fn(t) = Fo +log{ 7— .~ nexp2un— 2u + 2tsinhy) )

(2.5)
which implies
expen(t) = exp(fua(t) — fa(t)) = 1 + sintf(u)sech(t sinhy — un + v), (2.6)
for some constant wavenumberand phase shift in €, related to the phase shiftin f,. By symmetryg,(-t) is
also a solution. This seélshape occurs in the KdV equation as well as the Boussinesatiequln the limit of small
amplitude, that igt < 1, the wave is wide and travels close to the limiting speecyef 1.
The pure Toda system [6] can also be derived from the system

/ﬁt(x, t) = Yo [expu(x + lv t) - expu(x - %9 t)] 5

w(xt) = yo|Bx+3.1-Bx-31)], (2.7)
by differentiating the latter with respecttto eliminatep, yielding (2.4).
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2.2. Small amplitude asymptotic expansion of the pure Tgsi@m
Equation (2.7) can be approximated using the asymptotiaresipn

y=ex, t=¢€t, uXxt)=T+eU(y,7), PXt) =P+ eP(y,1),
(2.8)

in which we perform a weakly nonlinear expansion of botdndp about constant solutiongx, t) = Gandp(x,t) = P
to obtain

EP, = " [63Uy + 2%1€5Uyyy+ €U Uy] , (2.9)
e, = y [63Py + 2%165Pyyy]. (2.10)

Eliminating P by differentiating (2.9) with respect toand (2.10) with respect tg and simplifying, yields
Y526 WU, = Uy + £€2Uyyyy + €(UU),, (2.11)

which is the Boussinesq equation. This is completely integrable, and has pulse soliton solutidribeform

3(c* - g€ . 3(c? - v5€)
U(y, 1) = ————>"secR| (y - (cygte ¥/? — o 2.12
0= = 0= (er'e 0\ g (212)
In order for the width and height of this soliton to 8¢1) in €, we requirec ~ +yo€"? + O(€?).
Above we have obtained the standard Boussinesq equatidach Wi rescaling can be written as
Uit = Uxx + Uxxxxt+ 6(u2)xx- (2.13)

The reason for our derivation of the Boussinesq equatidrB8jds to understand the behaviour of the Toda system in
the long wavelength limit < 1); we are interested in the form of slowly-varying solusand solitary waves; we
are not concerned with any ill-posedness issues causedisjdening largek.

2.3. Reduction to the Korteweg-de-Vries equation
We now return to equations (2.9)—(2.10) and focus on justspeed of travel and substitute

Py.7)=PzT), Uk.7)=U0@zT)., z=y-cr, T=éx, (2.14)

so as to transform the problem to a moving coordinate frameravthe speed will be chosen strategically to sim-
plify the ensuing analysis. The scaling of the new time \@&d means that we are now considering much longer
timescales than previously: taking= O(1) as above implies = O(e™'), whereas taking = O(1) means that

t = O(e"%). Hence _ _ _
C 7Y U, ) 2( Ur - 2_1470Pzzz
e ‘=€ - 47 — 2.15

( vo ce )( P, e'Pr - ﬁyouzzz_ YoUU; ( )

Herec can be viewed as an eigenvalue, and for each eigenvalueystesrshas a non-trivigd(1) solution. The
eigenvalues are given by the determinant of the matrix beéng, namely
C. = +y06"2, (2.16)

with the corresponding eigenvectors being= (U, P,)™ = (-1,6"?)T andv_ = (U, P,)™ = (1,€7?)7. Since the
matrix in (2.15) is singular, its rang® is only a subset oR?, in particular forc,, R, = A(€%2,1)T and forc.,
R_ = A(—"2,1)T.

For these particular speeds, the two equations are idéatiteading order, namel§,(cU + yoP) = 0. Hence
P(z T) = u(T) — (c/y0)U(z T). Requiring therns of (2.15) to be in the range of the matrix implies

UT - %4'}’05222 _C
e_U’F;T - %4700222_ )’OUUZ Yo
3
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which, together with? = 4 — (c/yo)U, yields

—U

© (). (2.18)
Yo

2UT + %ZCUZZZ-}_ CU UZ =

This has the form of a perturbed KdV equation, with a genéna¢idependent, although spatially uniform, forcing
term. The equation (2.18) can be mapped onto the standardel§dstion by the transformation

U U+gT), zmz+sT), gT)== zgch)’ §T) = f g(T)dT". (2.19)

Transformations of equations of the form (2.18) to the Kd\Watépn have been given many times previously, for
example, in[5, 8, 9].

2.4. Reformulation of the extended Toda lattice
In Gordoaet al.[1], an integrable generalisation of the Toda lattice iswiet, given by

( p[(X, t) ) + ( ,Bl ) — ( —Kp(X, t) pX(X’ t) - q(X + 17 t)S(X + 2’ t) + q(X, t)S(X, t) )
qt(x’ t) —Kq(X, t)[ pX(X’ t) + pX(X - 1’ t)] - q(X’ t)[ p(X’ t) S(X + 1’ t) - p(X - 1’ t)S(X, t)]

+,y ( - p(X, t)[q(X + 17 t) - q(X, t)] - q(X + 1’ t) p(X + 1’ t) + q(X, t) p(X - 1’ t) )
) —q(x, Dla(x+ L) - a(x— 1,)] - q(x Y[p(x, 1) = p(x - 1, 1)?]

g(x+1,t) - q(xt) p(x, t)
( A% D[p(x. 1) — p(x— 1, 1)] ) *ﬂo( 2q(x. 1) )
—p(x, )% = 2(x + D)a(x + 1, t) + 2(x — 1)g(x 1) 290
—q(x DIP(X. 1) + px— LH] - G0 2XP(X. ) — 2(x— 1)p(x— L, 1] ) (2.20)

wherey_1, yo, Bo, B1, B-1 are arbitrary functions of and the functiors(x, t) is determined bys(x + 1,t) — s(x, t) =
KqX(X’ t)/q(X, t)

Whilst there are many integrable evolution equations witbr@tinuous spatial variable(eg KdV, NLS, SG), and
also many examples where the second independent variathlecigte (eg Toda, Volterra), there are few integrable
evolution equations which involve both derivatives andcite diferences in space. Hence any discovery of such
a system is noteworthy, and determining its relationshiptter integrable systems is interesting. The basic Toda
lattice can be obtained by putting; = « = 0 = 81 = Bo = B-1 andy constant, which implies = 5 (constant), thus
leaving, on the right hand side of this equation, only fhéerm, but withyg replaced by, — 5. As we have seen
above, this lattice equation is related to both the Boussjrmad the KdV equations. The purpose of this paper is to
investigate whether including extra terms yields conmedtito other systems, giod destroys the relationship with
Bqg and KdV.

The extended Toda system that we are interested in is deviwé&brdoaet al. [1] eq (3.53) withy_; = 0 and
B-1 = 0 and has the potential

+B-1 (

s(x+ 1,1) — s(x, ) = kqx(x, )/q(x 1), (2.21)
with the other governing equations being

pi(Xt) = Bop(xt) —B1 +q(x t)s(x, t) — g(x+1, t)s(x+2,1)

—kP(X, Y Px(X. 1) + yo(a(x+1, 1) — (X, 1)), (2.22)
(1) = —ka(x OIPx(X, 1) + px(X = 1, ] + y0a(x, HIP(X, 1) = p(x = 1, 1)]
+2B09(x. 1) — (%, HIp(x, hs(x+ 1, 1) — p(x = 1, 1)s(x, 1)]. (2.23)

These equations can be transformed to a more symmetric fpeuliile changes of variables; hence we introduce the
new variables

Fxt) =s(x+ 13,1, u(xt)=logqa(xt), Pxt) =px-11), (2.24)
4



which are equivalent to

s(xt) =§x-3,1),  qxt)=e™ p(x,t) = P(x + 3, 1), (2.25)

and imply
X+ L1) =X 1) + kU(X+ 3,1),  Sx-1t) =Fx1) — k(X - 3,1). (2.26)

The problem can then be written as

Bt = BoB(x 1) — B1 — KB(X Bx(x 1) — k9 [expl(x—3. 1)) + expu(x+3.1)]
+(yo — X t))(expu(x + 1,1) — expu(x — 3,1)), (2.27)
W(xt) = 280 k[Px(x+3.1) + Bu(x—3. )] + %o [Blx+ 3. 1) - B(x - 3,1
— [ Blx+3, 8+ 3, 1) - Blx- 3. 8- 1.1 (2.28)
kU, 1) = Fx+ 3,1 -Fx-1.1). (2.29)

It is this form of the problem that we analyse in the followsmgtions.
Note that takingc = 0 = By = 81 causes (2.27)—(2.28) to be reduced to (2.7).

3. Reductions over the intermediate timescale

If 81, Bo andx are small enough, then theiffect will be negligible, and the extended Toda system willdyehin
the same manner as the basic Toda system, and we will havarttelisks with the Bq and KdV equations g, Bo
are much larger thapy and« we havep; = Bop — 81 andu; = 28, which gives linear growth im and exponential
growth or decay irp (with p — B1/Bo ast — o if By < 0). As we consider smaller magnitudegef Sy, we expect to
find transitions in behaviour between this growth and decaythe more interesting dynamics that can be observed
in Bg and KdV. Hence we analyse a sequence of magnitudgs fg, and derive the corresponding generalised Bq,
KdV equations, to see if these generalisations also exhigigrability properties.

3.1. The casgj = O(€%)

In addition to the asymptotic ansatz of (2.8), we introdsoet) = S+ 2S(y, 7). We apply the same to the general
system (2.27)—(2.29). Initially, we consider just (2.28herein (2.8) implies

/<53Uy =€ [S(y+ %E, 7)— S(y - %E, T)] ~ 638y + ﬁeSSyyy. (3.1)

This equation can be integrated once straightaway; a aaraftentegration can be absorbed igd/Vhilst the constant
Scould be a function of time; for the sake of simplicity, we always choos& be independent of time.
Since we requiré& in terms ofU, we can approximately invert this equation using

S = k(1+4ER) U ~ (1- £ER)U = «U - AeeUy, (3.2)
Choosing the constant of integration to be zero implicidgumes the boundary conditions thlat> 0 andS — 0 as

y — —oo.

We now consider equations (2.27), (2.28) and (2.8), writing

Bo = €%B. B1=€B, (3.3)
and hence we obtain
U = (yo—2c— Py + Ze2(yo — 6k — Py + 28 — kPUy — keX(PU)y, (3.4)
P, = &(yo—2c—9Uy + L2 (yo — 6k — YUyyy + (8P — B) + €26 (yo — 3 — YU Uy + Be?P — KPPy — «e?PP,.
(3.5)



From (3.4) and (3.5), together with the substitutiansy — «pr, (whilst retainingr) we obtain

Ur = (ro-2-9P; + €2 (yo—6k—)Przz+ 28 — k€*(PU),, (3.6)

Pr = (yo—2%-9€U; + 5 € (yo— 6k~ U+ (BP — B) + B?P — ke?PP, + €(y0—3«-9€"UU,.  (3.7)
We introduce the potential functiandefined byU = i, and integrate with respect o find

Ur = (Yo—24=9P + 282+ u(x) + 216 (yo— 6k =Pz, — ke’ Py, (3.8)

We differentiate this with respect toand substitute in foP, from (3.7), eliminating the higher order occurrences of
€2P using the leading order approximatiop & 2«—3S)P = v, — 28z — u(7). Redefining the unknown as= v — (1)
wheref’(r) = u(7) yields

e — (70_2K_§)26U¢ZZ

&2 = %2(70_ 2K_§) (70_ 6K_§)eu¢zzzz+ %(70 - 2K_§) (70_ 3K_§)eu(¢§)z
K(prepz + 2¢:¢2;) 2 2Bk
R + B¢ — 2Bz + m(@ + 22p — 232)
+(yo—2-35)(5p- B). (3.9)

In deriving this equation, we have usggh, = ¢,,,"(yo—2k—9? + O(€?).

In equation (3.9), the first two lines correspond to terméendtandard potential Boussinesq equation, and the last
three lines to the perturbations resulting from the termb@extended Toda system.

Redefining the constant cihieients, this equation can be written as one of

Pt = xx+ Dxox+ (02)x + by — K2yt + Pudpy) + aX+ CXpyy + d, (3.10)
Pt = dxx— Dxxxxt (0D)x + bpy — K(2hrxt + dudx) + aX+ Cxpyy + d. (3.11)

Applying the WTC Painlevé test [10] we find the conditions ifttegrability area = b = ¢ = k = 0, hence the only
integrable cases are the potential Boussinesq equation.

Seeking similarity solutions of (3.10) leads to two caseshe first, whera = ¢ = 0 (which impliesb = 0), we
have travelling wave solutions of the foign= ¢(2) + cot, z= x — vt wheref = ¢’ satisfies

(V- 1-2kve)f = 7 + (1 - 3xv?)(f?) + dz+ K, (3.12)

with v andcy arbitrary. This equation has solutions in the form of eligtinctions and pulses (wheah= 0) and
the Painlevé transcendeRt [11, 13] whend # 0. In the second case, wheseandc are not both zero, there are
‘stationary’ solutions, wherg(x, t) = ¢(X) + cot, andf = ¢’(x) satisfies

7+ f+ f2+ Jaxd + (boo + d)x + K = 0. (3.13)

The requirement for this equation to pass the ARS Painkestg12] isa = 0. In this case (3.13) has solutions in the
form of elliptic functions and pulses (whéxty + d = 0) and the Painlevé transcend&nf11, 13] whenbc, + d # 0.
Seeking similarity reductions of equation (3.11) leadstalar results.

The potential Boussinesq equation (3.9) describes theigonlof the extended Toda system on the- O(1)
timescale, which correspondstc= O(e™!) in the original system. The expansions derived later intises will
describe the evolution on significantly longer timescatesnely ort = O(e~3) over which the behaviour is governed
by the KdV equation.

3.2. The casgj = O(¢*)
This case is very similar to the above, although we now write

Bo=€"B,  PB1=€B. (3.14)



Hence, in place of (3.4) and (3.5) we obtain

U,
P

(Yo—2k—P; + %X (yo—6k—Przz+ 268 — ke*(PU),, (3.15)
(yo—2=U, + L X (yo— k- Uz, + €(BP - B) — kPP, + (yo-3«-9UU,.  (3.16)

As above, we introduce the potential function= y, and follow the same method as used to derive (3.9), to find

T T —ZK—_ ZeG 77 _ ~ T _ .
Lo U0m29 08— Lyo-2e- 90069 buzuct o~ 26-3(r0-3e-9 ),

 lPertha + 26:62)
(Yo—2«-9)

€

(3.17)

which is identical to (3.9) with thg terms neglected. Rescaling the fiients, this equation can be written in one
of the two simpler forms

Pt Dxx + Pxxxx + (¢>2<)x — K(2pipxt + Pridx), (3.18)
b = Pxx— Pxoxt (BDx — K(2prdx + duid)- (3.19)

As with equation (3.10), applying the WTC Painlevé tesf pi6lds that the only integrable cases of these equations
are the potential Boussinesq equations, wikete0.
These equations again have travelling wave solutions.iViiit = ¢(2) + cot, z= x—vt, ¢’ = f, in (3.18), we find

(P —1-2kva)f = 7 + (1- 202 f2 + K, (3.20)

which has solutions in the form of elliptic functions and ge#solitons forf, which correspond to kinks fa#. In this
last case, for example wheéh= 0, the solution has the form

| 3(1- V2 + 2kvay) v
f= WSGCH(EZ V2 — 2kve — 1). (3.21)

This wave exists fov satisfyingv > kcg + /1 + kzcg, orv<ke - 41+ kzcg. Hence the presence bimodifies the

range of speeds that such waves exist. Also the factokwf-32 in the denominator of the amplitude means waves of

positive and negative elevation are possible. Similarltesime obtained when seeking similarity reductions ofg3.1
Since equations (3.17) and (3.20) are already independghtomnsideringsy, 1 to be smaller thad(e*) will

not result in any new equations to be derived. Hence we do mgidergo, 81 = O(e°, €®) and instead turn to

Bo.B1 = O(€?).

3.3. The casgj = O(€?) — multiple timescales expansion
We now turn to consider larger magnitudesgegrsy, albeit still small. We define

Bo=€B.  pr=€B, (3.22)
with B, 8 = O(1); and also introduce new independent variables
T =€, Y = €X, T =€t (3.23)
The time derivative, is replaced by, + €247, and assume a multiple-scales ansatz for the dependealblesi
P=0(T)+eP(y, 7, T), u=u(T) + eU(y,7,T), S=9(T) + €S(y, 7, T). (3.24)

Note that there are severalfidirences between this case and tha®(®) analysed in section 3.1; namely the am-
plitude of the spatially-dependent componentgai are larger, to be precis€)(e) instead ofO(e?); and that the
background solution§, t now vary on the very long timescal€, instead of being constants.
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Solving the equation fog givesS(y, 7, T) = kU(y, 7, T) + O(€?), in which the higher order correction terms can
be neglected as they do not contribute to either the leaditer dalance or the first correction terms. As noted after
equation (3.1), we choo&o be a constant, that is, independent of bo#ndt. The equation fop yields

P(T) + P, + €Pr =Bp(T) — B+ e8P — «P(T)Py — kPP + ()’0—21<—§)eUUy + e(yo—3xk-9€"U Uy, (3.25)

while that foru gives

U(T) + U; + eUr = 28 + Py(yo—2«—73) — kp(T)Uy — ex(PU)y. (3.26)
Taking the spatially-independent parts of equations (3 (3526) yields the ODEs
pP(M=ppTM)-B,  T(T)=28 (3.27)

thus our spatially-uniform, but time-dependent backgrbswiution is
PT)=CeT+B/B,  TWT)=28T +To. (3.28)

Sincelp can be removed by shifting the time variablg, we takety = 0; however, it is important to retain both
components in the solutiop(T).
Transforming (3.25)—(3.26) to a moving coordinate frarize

z=y-«p(M)r, (3.29)
(whilst retainingr as the faster time variable) yields the governing equations

P, +ePr = (yo—-2«—9" MU, + B8P — kPP, + €(yo—3k—-9e"MUU,, (3.30)
U, +eUr = (yo—2«—9)P;— ex(PU).. (3.32)

We proceed to analyse this system of equations on each ofvthéirhescalesy = O(1), which corresponds to
t = O(e71), andT = O(1), which is relevant fot = O(e~?).

3.4. The casgj = O(e?) — reduction to generalised Boussinesq equation

For the shorter timescale, whetre= O(¢™1) only the r variable is relevant, an@i-dependence can be ignored,
leaving us with

P
U,

(yo—2k—9)€"U; + €8P — ekPP; + (yo—3k—9€e"UU,, (3.32)
(yo—2«—-9P; — ex(PU),. (3.33)

Following the analysis of Section 3.1, we expect this tod/eeform of the Boussinesq equation.
Introducing the potentiak defined byU = i, and by integrating (3.33) with respectzowe find

Y = (Yo—2«—9)P — exPyr, + u(7). (3.34)

Rearranging (3.34) we obtain
b e mp() | sy — ()
(ro-2-%)  (yo—2«-9?
which we substitute into (3.32). Retaining only leadingesrdndO(e) correction terms, we eventually obtain a single
equation fony

+O0(€?), (3.35)

Yrr — (70_ 2K—§)2elj¢/22

€

= (yo=2=9)(yo— k=9 gzz + Bihr — Pul) + 1 (7)/ €

+K(2/1(T)';b2‘r + ,Lt/ (T)Wz - 21//7"102‘(' - l//‘r‘rl//Z)
(Yo—2«=79) '

Writing v = ¢(z 1) + f(7) with f’(r) = u(r) yields the same equation fagr, but with all they terms removed.
This equation has some similarities with the standard Boasg equation, albeit not so many as (3.10). Due to the

8
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strongerB-forcing terms, the amplitude is larger and so the nonliitg#s stronger than the dispersion and so the
higher derivative terms have been relegated to higher sider We still have the leading-order terms from the wave
equation, and nonlinearities of the forgz], as one would expect in the potential Boussinesq equatioweler, in
addition, there are other perturbation terms which chahgédrm of the travelling wave solutions.

Seeking travelling wave solutions of (3.36) with= 0 andy = ¢(q), g = z— vr yields an equation, which can be
rewritten in the form

1¢7+¢ +¢+agq+b=0. (3.37)
Whena = 1, this equation has solutions of the form
¢=3-b-a-3@+K)?’ ¢=3-b-q (338)

Here, the first solution is a 'general solution’, whilst tlagtér is a singular, or 'envelope’ solution, which occurgdu
to the equation (3.37) not satisfying the criteria for urigass of solutions. In particula, = F(¢, g) is not Lipschitz
continuous inp.

Fora # 1, equation (3.37) has general solutions of the form

p=all-q -b+(@-1)L-L@a+(@a-1)L)% wherel = w(— (af 5 exp(q:i_lK)), (3.39)

whereW(x) is Lambert's W function [13], which satisfiaseV = x. The singular solution of (3.37) is= a(1 - q -
a/2) — b. There are no similarity reductions of (3.37) other tharséhieavelling wave solutions.

3.5. The casgj = O(€)

For this case we writgp = €8, 81 = €B, with 8, B = O(1). As above, we use the scalings given by (3.23) and now
generalise (3.24) to

P=0(T)+eP(y.7.T), u=u(r,T) +eU(y,7,T), S=Y1,T)+ €Sy, T), (3.40)
TakingsSto be constant, these assumptions result in

P, +kp(r, T)Py = PP+ (yo—2x-9"Uy — Pr — kePPy + e€”(yo—3k—HUUy — ePr (3.41)
U: +«p(r, T)Uy = (y0—2«—5)Py — ke(PU)y — Uy — eUr. (3.42)

Firstly, we consider the behaviour on the slower of the twescales, namely hence we ignoré, and transform
to a moving frame of reference given by

z=y-o(1), with  o(r) = kBr/B8 + kCE”" /3 + C,, (3.43)
so thato” () = p(r, T). Then

P
U,

BP + (yo—2k—9e¥#™U, — kePP, + e€®(yo—3k-35UU, (3.44)
(yo—2x—9)P; — ke(PU),. (3.45)

We now introduce a potential function definedygy= U, whereupon including terms d6f(e), equation (3.45) implies

P Y — p(7) LY@ | ey — p(n)
(yo—2¢=9) —exy;  (y0—2«-%)  (yo—2«—9)?

the last expression being duedex 1. Writingy = ¢+ f (1) with f/ = , and introducing = €* andz = 8z/(yg-2«-9),
yields, toO(e),

(3.46)

o (003t x (2t + b0 (3.47)

For ease of writing, we recast this equation as

e

Uit = Uyy + AUyUyy + 2DUUyt + DUy Us. (3.48)
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This equation only admits two Lie symmetry reductions, nigr(iethe travelling waveu(x, t) = v(z) wherez = x—ct,
which yields either

’ C2 -1 .
V’'(2) =0, or V(2= PRTYL (3.49)
or, (i) the similarity solutioru = tv(z2) wherez = x/t, which yields either
V'(2=0, or V(@)= z-1 (3.50)

a2 + 3b222 — 2bz’

All the opes in (3.49)—(3.50) are easily integrated.

3.6. Summary

We have considered a variety of magnitudes forghgarameters, and for each scale, we have shown that the
system can be reduced to a generalised wave equation. Féesphaalues, this has the form of a (generalised)
Boussinesq equation, whilst at larger magnitudes, theedéspn term is dropped and other forcing terms become
significant as the amplitude of the resulting evolving disaince increases frodXe?) to O(e).

In many cases the systems (3.9), (3.17), (3.36) permitsitiag waves, whose shape evolves over longer timescales,
as we shall investigate next. However, in the gaise O(e), the equation (3.47) retains a strong dependence on the
slower timescale, and preventing analysis. Although atO(e%), thes terms have no influence on the evolution of
disturbances on the = O(1) timescale, which correspondstte= O(e™?), we find that when longer timescales are
considered, that is= O(e~?) or longer, thes terms are significant.

4. Reductions over the long timescale

We now consider the longer timescales and, using asymptatimiques, we show that the evolution of small
amplitude excitations in the extended Toda lattice redodhé KdV equation. As in the section above, we make
assumptions on the sizes of tAgparameters in the extended Toda system, and show how ffe the resulting
reduced equations.

4.1. The casgj = O(€®)

We now transform (3.4)—(3.5) to a travelling wave coordin@j, and a longer timescald | via (2.14), which
yields

c-Px  yo-5-2¢)\(P.\ _(B-58P
Yo—5-2 c— Pk U )\ -28
+€2( Pr —BP + kPP, — 46" (y0 — S— 6K)Uzz2— € (y0—5-3)UU,
Ur - ﬂ(70_§_6K)Pzzz+ k(PU), .
(4.1)

As in the case of the reduction of the pure Toda system in @e2ti3, in order to obtain a single scalar equation
describing the system, we now require the matrix ontheof (4.1) to be singular. For this matrix above, which we
refer to adVl, to be singular, we require the speetb take one of two values, namely

C. = Pr = €%(y0 — 5 24). (4.2)

Given a value for, the singular matrix represents a projection, and its intsgeg a one-dimensional subspace of
R?. That therns of (4.1) has to lie in the image subspace is one conditioninglahe functiond) andP (from the
O(€?) terms), and a condition relating the constaByg, p (from theO(1) terms).

For this giverrus, since the system (4.1) is singular, it is ifiext a single equation, which we then aim to solve
to give a second relationship betwerandU, which provides the reduction of the Toda system to a sincgdas
equation.

10



4.1.1. Thecasgj = O(’),c=c,
In this case the range of the matrix in (4.11&"2, 1) for any 1 € R. Requiring therns of (4.1) to lie in this

subspace yields the condition

B _
P=— +2/2 4.3
p 3 (4.3)

We rewrite the unknownB, U in terms of the eigenvector of the matrix and a vector ortmadjto it, that is, we
put
P\ g2 1
(0] = o) )+ v ). (@.4)

whereg, ¢ are introduced to describe tzeandT dependence of the system in placePodndU. At leading order,
and using (4.3), both components of equation (4.1) become

(yo-3-2q(L + €Ny(z T) = =28, (4.5)
and¢ remains undetermined. From (4.5)
/2 -
Pore?V: =P , (4.6)
(1+¢€) (ro—35-2)(1+€")
and integrating with respect yields
P(zT) = u(T) - e2U T_i. 4.7
(zT) =pu(T) zT) P (4.7)

Now we require that thé(e?) terms on theus of (4.1) lie in the range of the matrix, that is,
€2 [Ur - (yo—6k=9Pyzz+ k(PU),| = Pr — BP + kPP, = €™(yo - S- 6K)Uzz,— €(y — 5 3UU,,  (4.8)
into which (4.7) can be inserted to obtain a final reduced gomg equation
262Ut + L€ (yo—6x-9U,z0+ €(y0 — S— 6)UU,

= ur(T)- Ao -9 2" 2y0 -9 + BE?U (yo — 5+ 2) + 4Bxe"2zU,
(ro-2«-9  (yo—2-9)? o-35-29 o=
Thewns of this equation is the standard KdV equation, whilst thenteon therus are all perturbations. However,

and somewhat surprisingly, it is possible to transform th@va equation onto the KdV equation. The transformation
described by Popovych and Vaneeva [8], shows that equadidhe form eqn (4) of [8], namely

- 2€"y(T)U,.  (4.9)

U + F(uuy + g uxxx + h()u + (p(t) + qt)x)ux + k({t)x + I(t) = 0, (4.10)

can be mapped onto the KdV equation only if their conditignh@ds; this is

(4.11)

s =295 - 305+ %( where s:= qu_h ,f9-fo

fg?
In our case the condition ogis met, so (4.9) is mapped onto KdV.

4.1.2. Thecasgj = O(’),c=c_
In this case the range of the matrix in (4.1)4&"?, —1)T for any 1. Requiring therus of (4.1) to lie in this
subspace yields

p=—-2d7 (4.12)

We write )
(Sz) = ¢(z T)(éJl/z) +y(z T)(e},lz). (4.13)
11



At leading order, from (4.1) we obtain
_ o[ €2 /2
oo - 5-29+ | T 7) - 2 T1F) (4.14)
hencey = 28/(1 + €")(yo — S— 2«). From (4.13), we obtain another equation fgrin terms ofP, U, which can be
integrated to show
2Bz

(yo-3S-2)

The final equation comes from substituting this expressiPfinto the condition that thé(e?) terms in (4.1) lie
in the range of the matrix. This calculation yields

Pz T)=u(T)+€?U(zT)- (4.15)

Zep/ZUT - %zeU(YO_GK_g)Uzzz_ eU()’O -S$-6xUU,

= —ur(T)+ puM)(v0—-9 28°Zy0-9) + BE2U(yo—S+2)  4Bke"?zU,

(28 G-z Go-5-20 " Go-z-y ¢ MU (419

As with equation (4.9), this equation can be mapped onto Ksi¥githe transformation of Popovich and Vaneeva [8].

4.2. The casgj = O(¢*)
This case is very similar to the above, noting (3.14), in elat(4.1) we obtain
c-px  &(y0-5-2)\(P: — -BP
Yo—S—2 C—px U, -2B

+62( Pr + kPP, = L% (y0 — S— 6)Uyz2— €(0—5-3K)U Uz)

> 417
Ur - 2_14(70_5_6’()Pzzz+ k(PU), ( )

Hence we have the same conditionsdpnamely (4.2), and the same equationsgpnamely (4.3) and (4.12). The
final KdV-type equations are slightly simpler than thosetgdabove, since smaller values for the paramégig @
mean that some terms are small enough to be ignor@¢a} in (4.1).

Hence for the larger speed,, in place of (4.9), we obtain

262U + 5€%(yo — 53— 6K)Uzz0+ €(y0 — S— 6k)UU, = pr(T) — 2«€™2p(T)U;; (4.18)
and for the smaller speed,, in place of (4.16) we have
0 =2Ur — 5€"2(y0 — 5= 6) Uz (70 — S— 6k)€V2UU, + 2iu(T)U, + & ¥2ur (T). (4.19)

As in the case 0B = O(€%), both these equations are perturbed forms of KdV, althdegk, the perturbations are
simpler. Both (4.18) and (4.19) can be mapped onto the stdi€lilV equation using transformations such as those
described by Popovych and Vaneeva [8] and Pickeeiray. [5].

4.3. The casg; = O(e°)
To obtain the relevant results in this case, we now write

Bo = €B. B1 = €°B, (4.20)

alternatively, we can apply the transformatiprs €28 andB — €2Bin (4.1). With this transformation, the entikas
of (4.1) isO(€?). Hence, in place of (4.1), we obtain

( c-Px  €(yo—5-2) )( Pz) 3 €2(B — BP+ Pr + kPP, — L& (yo — 53— 6k)Uzz— €"(yo—5-3x)U U, . @.21)

Yo—S-2 C— P« U]~ Ur - %4(70_§_ 6k)Pzz+ k(PU); — 28
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We have the same solutions foas in (4.2), and the leading order solutionsfotJ are
(yo - 5-2«)€"
(c-Px)

Forc,, requiring therus of (4.21) to be parallel to the range of the matrix, name¥?(4)" yields
2Ut + 56"2(y0 — S— 6k)U 0+ €/%(y0 — S— 6K)UU,
= ur(T)e™? - 2u(T)U, + 28 — e 2(Bp - B). (4.23)

This can be mapped onto the KdV equation by a suitable chahgariables. Forc_, the range of the matrix is
("2, -1)T, and the corresponding equation is

2Ur - %zeU/Z(YO -S- 6K)Uzzz_ eU/z()’O -S— 6K)U U,
= —ur(T)e"? - 2qu(T)U, + 28 + e V*(5p - B). (4.24)

Since the only dferences between these two equations are sign changessthegjlation can also be mapped on to
the KdV equation.

PzT)=u(T)- UT). (4.22)

4.4. The casg; = O(e°)
This case is similar to the above, only now g terms are even smaller, we put
Bo=€B,  Bi=¢€B, (4.25)

The end result of this is that terms involviBgB can be completely neglected since they do not enter therlgadder
equations. Hence we observe KdV equations with fewer gartgrterms; however, the terms duesandx are still
present.

c-Pk  F(y-5-2)\( P\ _ of Pr+ kPP, — L (yo -~ S— 6x)Uyzz— € (y0—-5-30)UU,
(yo—E—ZK C— )(Uz) - ( Ut — L(y0—35-6k)Pyzz+ k(PU), : (4.26)
Forc,, requiring therus of (4.26) to be parallel to the range of the matrix, nameW&?(d)" yields
2Ut + £€"2(y0 — S 6k)Uzz2+ €/%(y0 = S- 6K)UU; = 7 (T)e™2 — 2iu(T) U, (4.27)
Forc_, the corresponding equation is
2U7 — £5€"2(y0 — 5— 6k)Uzzz— €/%(y0 — - 6)UU, = —ur(T)e ™2 - 26u(T)U.. (4.28)

Again, the only diferences between these two equations are subtle changeminBith these equations can be
mapped onto the KdV. These final equations are similar teetioSection 4.3, the only fierences being the removal
of 8, B. Hence, takingo, 51 to be smaller thad(e®) will simply result in these expressions again.

4.5. The casg; = O(€?)
We return to the full equations (3.30)—(3.31), namely
P.+ePr = (yo-2«-9€" MU, + e8P — ekPP; + e(yo—3x-9"MUU,, (4.29)
U, +eUr = (yo—2«—9)P;— ex(PU),, (4.30)
where it is now important to consider both theand theT-dependence. We treat this as a system and the evolution

on the long timescale is obtained from the Fredholm consisteriteria.
We seek travelling wave solutions of the form

Uiz, T)=Uw,T), P(z 7, T) = P(w,T), W=2z-vr, (4.31)
which transforms (4.29)—(4.30) into a system of the fdvlion = eb, specifically,
v (vo-2=9¢" | Pu | _ [ Pr—(r0—-3=9€"UUy - P(8 - kPy) (4.32)
(yo—2«x-79) v Uw Ut + «(PU)w ‘ '

At leading order, wher&lu = 0, this system only has nontrivial solutionsiif= +(yo—2«-35)€"?. We consider each
case in turn.
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4.5.1. The casgj = O(¢?), long timescale, and ¥ +&"/2(yo—2«—3).

Whenv = (yo-2«-73)€e"?, solutions ofMu = O lie in the kernel of the matridM, so must have the form
u=A(e"?, -1)".

For nonzerass of the matrix equation (4.32), we write the solution as

[ O = wtwm( ) )+ otw( G2 ) @39

wherey, ¢ are assumed to l@(1). Here, the first vector is the zero-eigenvector of therixd so whenM acts on
(Pw, Uy) the product is the zero matrix. The second vector is simpiyvector orthogonal to the zero-eigenvector;
whenM acts on this, the product is nonzero. Sincertheof (4.32) isO(e), we introduce a cd&cient of e in front of

¢, but no such ca&cient is needed in front of. Hence, to leading order we take

P(w,T) = u(T) - €TU. (4.34)

We note thati = T(T) = 28T, from (3.28).
The range of the matrid is A(€"/2,1)" for arbitrary parameten. Since (4.32) is a singular equations, the
condition that (4.32) has nontrivial solutions is that ke lies in the range of the matrid. This condition implies

Pr + kPP, — BP — €T (yp—3k-9UU,, = €Ut + kT (UP)y, (4.35)
which, using (4.34) antd = e#TQ, can be simplified to
0=2Qr + (yo—6k—9QQw + 2u(T)Qu + 28Q — ' (T) + Bu(T). (4.36)

4.5.2. The casgj = O(€?), long timescale, and ¥ —€"/?(yg—2«—79).
Whenv = —(yo—2«-9€e"?, solutions ofMu = 0 have the formu = A(€"/2,1)". For nonzerauss of the matrix
equation (4.32), we write the solution as

Py =-€TU,, hence P(w,T) = pu(T)+€TU(w,T). (4.37)
The condition that thens of (4.32) is in the range d¥l implies
Pr — BP + kPP, — (yo—3k-3e?TUU,, + €Ut + €T«(PU),, = 0. (4.38)
Using (4.37), together with) = T Q, this equation can be reduced to
0=2Qr - 28Q - (yo—6k—5QQuw + 2xu(T)Qu + ' (T) — Bu(T). (4.39)

Equation (4.39) can be solved by the method of charactsjgtr example, given initial data 6i(w, 0) = Qu(w),
in the caseu(r) = 0, the solution is given by the implicit form

(yo—6xk-9(1 - e ¥T)Qw, T)
% .
Equation (4.36) is closely related to (4.39), and can beegbby the same methods.

Qw. T) =e*TQo (w - (4.40)

5. Conclusions

In this paper we have considered the first member of the egte(rbn-isospectral andftirential-delay) Toda
hierarchy. We have analysed the evolution of small ampditdidturbances around a spatially uniform solution using
asymptotic techniques. We have considered a wide rangegitodes for thgy, 81 parameters, and found that when
these are small, the system is governed, to leading ordénggoussinesq equation. On increasing these parameters
the governingog, changes through a sequence of increasingly generalisessB@sq equations, losing the highest
derivative term, and gaining forcifpmping terms. We have outlined the forms of solutions adé¢requations.

Over the longer timescale, solutions of the extended Tod&esyare governed by the KdV equation. Although
for some magnitudes the equation initially derived has naemurbing terms, we have shown that transformations
exist which map the equation back onto the KdV.
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