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The 700-1500 cm−1 region of the S1 (Ã1B2) state of toluene studied with
resonance-enhanced multiphoton ionization (REMPI), zero-kinetic-energy
(ZEKE) spectroscopy, and time-resolved slow-electron velocity-map
imaging (tr-SEVI) spectroscopy

Adrian M. Gardner,a) Alistair M. Green, Victor M. Tamé-Reyes, Katharine L. Reid,
Julia A. Davies,b) Victoria H. K. Parkes,c) and Timothy G. Wrightd)

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

(Received 20 December 2013; accepted 25 February 2014; published online 19 March 2014)

We report (nanosecond) resonance-enhanced multiphoton ionization (REMPI), (nanosecond)

zero-kinetic-energy (ZEKE) and (picosecond) time-resolved slow-electron velocity map imaging (tr-

SEVI) spectra of fully hydrogenated toluene (Tol-h8) and the deuterated-methyl group isotopologue

(α3-Tol-d3). Vibrational assignments are made making use of the activity observed in the ZEKE and

tr-SEVI spectra, together with the results from quantum chemical and previous experimental results.

Here, we examine the 700–1500 cm−1 region of the REMPI spectrum, extending our previous work

on the region ≤700 cm−1. We provide assignments for the majority of the S1 and cation bands

observed, and in particular we gain insight regarding a number of regions where vibrations are

coupled via Fermi resonance. We also gain insight into intramolecular vibrational redistribution in

this molecule. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867970]

I. INTRODUCTION

A. Background to the spectroscopy

Toluene (methylbenzene) is the simplest substituted ben-

zene to contain a methyl group. Formally, it possesses 39 nor-

mal vibrational modes, although one of these may be more

properly considered as an internal rotation, or “torsion,” of

the methyl group. In a previous paper,1 we have discussed the

vibrational wavenumbers of the ground electronic state, for

which values for most modes have been established, but sev-

eral are still uncertain. The assignment employed a vibrational

mode labeling scheme for the non-substituent-localized vibra-

tions of the monosubstituted benzenes.2 This scheme treats

the substituent as a point mass and allows the identification

of the ring-localized vibrations by a label, Mi, where the label

indicates the vibration of fluorobenzene which most closely

resembles the monosubstituted benzene vibration: this can be

done “by eye,” or via a Duschinsky matrix approach—the

reader is referred to Ref. 1 and particularly to Ref. 2 for fur-

ther details. (Note that in Refs. 1 and 2, we used a script M

to label the vibrational labels, but it has proven difficult to

maintain consistency between journal text and figures, so we

shall switch to the more straightforward italicized M here and

in future publications.) For clarity, in Table I we present the

correspondence between the common labeling schemes used

for toluene; we note that the actual forms of the vibrations

a)Present address: Department of Chemistry, Chemistry Building, Emory
University, Atlanta, Georgia 30322, USA.

b)Present address: Department of Chemistry, Imperial College London, Ex-
hibition Road, London SW7 2AZ, United Kingdom.

c)née Wilton.
d)Author to whom correspondence should be addressed. Electronic mail:

Tim.Wright@nottingham.ac.uk

are presented in Figure 5 of Ref. 2. We note that Hickman

et al.3 based their numbering on the Herzberg4 (or Mulliken5)

scheme, assuming a C2v molecule (i.e., assuming the methyl

group is a point mass). The numbering is not clear however,

as the methyl vibrations have been included in the list, and

these cannot be described in terms of C2v labels. (In fact, the

Cs group should more properly be used, but then all of these

labels would change.) Varsányi6 based his labels on those of

Wilson,7 but used different labels for the same vibrational

motion, depending on whether a substituent was “heavy” or

“light.” Additionally, the actual motion was often very differ-

ent from the benzene mode with the same label—this is indi-

cated by the very mixed character of these modes (see Ref. 2).

These points have been discussed in detail in Ref. 2 and are

not rehearsed further in the present work.

Assuming C2v symmetry, the electronic transition

S1 ← S0 corresponds to the promotion of an electron

from the highest occupied molecular orbital with b1 sym-

metry, to the lowest unoccupied orbital of a2 symmetry,

and so the transition can also be written . . . (b1)1(a2)1Ã1B2

← · · · (b1)2(a2)0X̃1A1. Hickman et al.3 have recorded a flu-

orescence excitation spectrum for toluene in a jet-cooled

molecular beam, extending to ∼2000 cm−1 internal energy

for the S1 state. The majority of the observed absorption fea-

tures were identified with the aid of dispersed fluorescence,

making use of the known S0 frequencies to support these as-

signments. These measurements yielded frequencies for 13

normal modes in the S1 excited state. When exciting via

higher-wavenumber features, rather than the well-structured

spectra recorded via lower wavenumber levels, several of the

spectra showed considerable loss of structure, which was con-

cluded to be a result of intramolecular vibrational redistribu-

tion (IVR)—see Subsection I B.

0021-9606/2014/140(11)/114308/22/$30.00 © 2014 AIP Publishing LLC140, 114308-1
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TABLE I. Correspondence between the Mi labeling scheme and those used

by previous workers.

Mi
a Ref. 3 Varsányi6,b

a1

1 1 20a

2 2 2

3 3 7a

4 5 9a

5 6 18a

6 8 13

7 9 8a

8 10 19a

9 11 12

10 12 1

11 13 6a

a2

12 14 17a

13 15 10a

14 16 16a

b1

15 20 5

16 21 17b

17 22 11

18 23 4

19 24 16b

20 25 10b

b2

21 26 7b

22 27 20b

23 29 9b

24 31 18b

25 32 3

26 33 8b

27 34 14

28 35 19b

29 37 6b

30 38 15

Methyl-localized

. . . 17 νas

. . . 28 νas

. . . 4 νs

. . . 30 δas
+

. . . 18 δas
+

. . . 7 δs

. . . 19 δas
−

. . . 36 δas
−

aThe actual forms of the vibrations are presented in Figure 5 of Ref. 2.
bThe motions of the Varsányi modes are not the same as the Wilson modes, nor are they

the same as the Mi motions (see Fig. 5 of Ref. 2); the latter give a more realistic picture

of the actual vibrational modes, and hence which atoms are moving, and so how one

expects vibrations to shift upon deuteration.

In an early study, Meek et al.8 recorded a one-colour,

two-photon multiphoton ionization photoelectron spectrum,

MPI-PES, of Tol-h8 seeded in an effusive molecular beam us-

ing an intermediate level lying 932 cm−1 above the S1 ori-

gin, labelled as mode 12 in the Wilson notation used therein

(assigned to M8 in the below). The two-photon photoelectron

spectrum was considerably congested, as a consequence of

simultaneous excitation of sequence bands, along with the tar-

geted S1 vibration. Whiteside et al.9 have used both nanosec-

ond and picosecond lasers to record photoelectron spectra via

several intermediate vibrations in this wavenumber range of

the S1 electronic state of Tol-h8. In the nanosecond experi-

ments, the photoelectron spectra were very congested, show-

ing very little structure. Using two spatially and temporally

overlapped picosecond pulses to excite and ionize toluene

seeded in a molecular beam, some structure was retained in

the photoelectron spectra; however, considerable congestion

was still observed, concluded to be a result of very fast IVR

processes occurring at the wavenumbers employed.

In the present work, one-colour (1 + 1) resonance-

enhanced multiphoton ionization (REMPI) spectra between

700 and 1500 cm−1 for both the fully hydrogenated toluene

(Tol-h8) and the deuterated-methyl group isotopologue

(Tol-d3) are presented, and the assignment discussed. As in

our previous paper,1 two-colour zero-kinetic-energy (ZEKE)

spectra were also recorded via several of the observed levels

in order both to aid assignment of the S1 vibrations, and to

investigate the previously reported loss of structure observed,

particularly in the photoelectron spectra recorded via these

levels. In a recent publication,10 we reported the results of pi-

cosecond time-resolved slow electron velocity map imaging

(tr-SEVI), investigating a Fermi resonance at ∼1190 cm−1.

The latter paper will be discussed further below when con-

sidering the results of the present paper; additionally, further

tr-SEVI results are presented for other features observed in

the S1 ← S0 REMPI spectra.

B. Background to intramolecular vibrational
redistribution

In this section, we outline the process of intramolecular

IVR in toluene, first clarifying the nomenclature used and

the nature of the coherent excitation process in the tr-SEVI

experiments. We shall also provide some remarks on the

different IVR regimes. As will be seen below, and also in

recent previous work1, 10, 18 there are regions of the toluene

REMPI spectrum that have a number of vibrational features

close together in wavenumber. As such, it is possible that

these arise as a result of Fermi resonance (FR), whereby

two so-called zero-order states (ZOSs) interact and form

two new vibrational eigenstates. Potentially, FR can occur

between any two states of the correct symmetry, which

are close together; however, it is particularly interesting

when one of the states is optically dark, while the other is

optically bright (indeed, this is the strict definition of a Fermi

resonance). In this case, the states interact and yield two

vibrational eigenstates which both have bright character, and

so an “extra” band appears in the spectrum; additionally, the

vibrational eigenstates will be shifted from the expected ZOS

positions. The two ZOSs can be termed the zero-order bright

state (ZOB) and the zero-order dark state (ZOD). If the two

eigenstates are sufficiently close in wavenumber that they can

be excited coherently, then a wavepacket is formed that is a

superposition of the two vibrational eigenstates. Under these

circumstances, time-dependent behavior can be observed as

the resulting wavepacket evolves. At t = 0, this wavepacket

will look like the ZOB, while later on it will look like the
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ZOD and if no other processes occur, then this oscillation

in wavepacket character will continue with an angular fre-

quency of 2πν rad s−1, where ν = �E/h and �E is the energy

difference between the two eigenstates. It is this temporal

change in vibrational character that leads to the term IVR, as

it may be viewed as energy moving between different ZOSs;

although it is important to stress that the population of the vi-

brational eigenstates does not change during the IVR process

(assuming no additional photophysical processes occur).

Of course, if more than two ZOSs are in close proximity

and are of the correct symmetry, then these can all interact—

this may be termed a complex Fermi resonance. In this case, it

may be that two or more of the ZOSs are bright/dark and vari-

ous “extra” bands may appear in the spectrum and, of course,

be shifted from the expected ZOS positions.

In our nanosecond ZEKE experiments, we are always ex-

citing with a narrow bandwidth and so can generally pick

out the individual vibrational eigenstates. If the correspond-

ing cation vibrational states are well separated in energy (i.e.,

the corresponding ZOSs in the cation are not interacting), then

the ZEKE spectrum will show clearly separated features orig-

inating from both the S1 bright and dark states, since both are

contributing to the vibrational eigenstate excited. In this way,

the assignment of the ZEKE spectrum allows insight into the

make-up of the vibrational eigenstates.

In our picosecond experiments, a coherent vibrational

wavepacket is created if the Fermi resonance components lie

within the laser bandwidth (FWHM ∼13 cm−1). Ionization

using a second picosecond pulse at a series of delays allows

time-dependent behavior to be observed by recording photo-

electron spectra, which are “snapshots” of the wavepacket at

the instant of ionization. Monitoring changes in the photo-

electron spectrum with time can then give insight into the

S1 vibrational eigenstate make-up, provided the spectrome-

ter’s resolution is sufficient to observe individual vibrationally

resolved photoelectron bands, and provided these can be as-

signed. In the present work, the required resolution is met by

recording tr-SEVI – see below for further details. Of course, if

the Fermi resonance components do not lie within the band-

width of the laser, single vibrational eigenstates are excited,

as in the nanosecond experiments, and therefore no time de-

pendence is expected in the photoelectron spectrum, ignor-

ing other possible population depletion pathways such as

intersystem crossings, internal conversion or fluorescence.

Fermi resonances between a small number of ZOSs are

the simplest type of IVR process; however, as the density of

vibrational states increases, then it is possible for different

tiers of interactions to be identified.11 Once the density of vi-

brational states becomes high, then these form a bath of states

which can couple the ZOSs via various mechanisms; so any

ZOB, for example, can couple to this bath. Some states will

be more efficiently coupled to the bath than others, and can

then provide a route for other ZOSs to become coupled to

the bath: such states have been termed doorway states (see

Ref. 11 and references therein).

As will be seen in the below, the ZEKE and tr-SEVI

results are complementary in the present work and the

combined results give detailed insight into the IVR processes,

including the identification of doorway states.

II. EXPERIMENT

The REMPI and ZEKE apparatus employed has been

described previously in detail elsewhere,1, 12, 13 and so only

a brief description is given here. The second (532 nm) and

third (355 nm) harmonics of a neodymium-doped yttrium

aluminium garnet laser (Nd:YAG, Surelite III, 10 Hz) were

each used to pump one of two tunable dye lasers (Sirah Co-

bra Stretch). The pump dye laser was operated on Coumarin

503 (355 nm pump), while Pyrromethene 597 (532 nm pump)

was used in the ionization laser. The fundamental output of

each dye laser was frequency doubled using β-barium borate

(BBO) and potassium dihydrogen phosphate (KDP) crystals

for the pump and probe lasers, respectively.

Tol-h8 (Acros, 99.5% purity) or Tol-d3 (Aldrich, 99

atom% D) vapour was seeded in ∼2 bars of Ar and the

gaseous mixture passed through a General Valve pulsed noz-

zle (750 μm, 10 Hz, opening time of 210 μs) to create a

free jet expansion. The focused, frequency-doubled output of

both dye lasers were overlapped spatially and temporally and

passed through a vacuum chamber coaxially and counterprop-

agating. Here, they intersected the free jet expansion between

two biased electrical grids located in the extraction region of

a time-of-flight mass spectrometer.

One-colour, (1 + 1) REMPI spectroscopy was utilized in

order to determine the pump frequencies required to prepare

each vibrational level in the S1 state of toluene selectively.

When moving to the two-colour experiments, the intensities

of the two overlapped laser beams were then adjusted by mon-

itoring the large enhancement of the ion signal arising from

the (1 + 1′) process. The voltages on the lens assembly were

then changed for the pulsed-field ionization, zero-electron-

kinetic energy (PFI-ZEKE) photoelectron spectroscopy. The

upper lens element was terminated to ground, while a fast ris-

ing pulsed positive potential was applied to the lower plate,

both to pulse-field ionize high-lying Rydberg states and also

to extract the resulting ZEKE electrons. For the present exper-

iments, it was found that a field of 5 V cm−1 resulted in the

most intense ZEKE signals. The electrons were detected via

a second dual microchannel plate detector, which was located

∼2 cm below the electrical extraction grids.

As noted in the previous experiments,1 it was confirmed

that, in line with conclusions reached by Bacon and Hollas,14

the photoionization cross-section for toluene was about an or-

der of magnitude lower than that of the para-fluorotoluene

(pFT) molecule we have studied previously;15 as such, there

was a continual compromise between resolution and signal-

to-noise ratios in the ZEKE spectra and this limited the range

of S1 resonances we could employ as intermediates. In most

cases in the present work, we estimate a typical ZEKE resolu-

tion of ∼8-10 cm−1, and from approximate rotational simula-

tions of the S1 bands observed we estimate a typical rotational

temperature of ∼5 K, although under the best conditions,

rotational temperatures of ∼2 K could be obtained.

The excitation laser has been calibrated with an absolute

error of ±1 cm−1 by comparison of the bands observed in

the (1 + 1) REMPI spectrum in the present work and the flu-

orescence excitation spectrum reported by Hickman et al.,3

with the origin position calibrated to that reported by Borst
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and Pratt.16 Use was also made of the known positions of

the S1 origin of pFT,15 observed in a recent series of exper-

iments. We estimate our relative error to be approximately

±0.5 cm−1. Calibration of the ionization laser has been per-

formed through comparison of the ZEKE bands observed in

the present and previous work,1 and those seen for toluene by

Lu et al.17 and we estimate an absolute and relative error of

±1 cm−1 in the ZEKE peak positions.

For the tr-SEVI experiments, the picosecond laser sys-

tem (Coherent), velocity-map imaging (VMI) photoelectron

spectrometer, experimental procedures and data analysis tech-

niques used in the picosecond experiments have been de-

scribed elsewhere18, 19 and are not reproduced in detail here.

Briefly, the two UV outputs from the laser system have pulse

durations of 1 ps and bandwidths of ∼13 cm−1. The co-

propagating laser beams were focused into the VMI cham-

ber using a 1.0 m focal length lens, resulting in typical

pump and probe pulse intensities of 5 × 109 W/cm2 and

1 × 1011 W/cm2, respectively. The wavelength of the pump

beam was tuned to be resonant with features of interest in the

S1 spectrum; the probe wavelength was then tuned in steps

to access ranges of the cation internal states of interest. The

samples of Tol-h8 and Tol-d3 were seeded in 3 bars He and

expanded through a pulsed nozzle (General Valve) operat-

ing at a repetition rate of 40 Hz. The supersonic expansion

was skimmed leading to a molecular beam with a rotational

temperature of ∼10 K. Inside the spectrometer chamber, the

laser beams were spatially and temporally overlapped with

the pulsed molecular beam; the typical operating pressure

was 4 × 10−8 mbar. A delay stage enabled the selection of

chosen time intervals between the pump excitation pulse and

the probe ionization pulse in order to monitor time-dependent

behavior. A three-element electrostatic lens focused the elec-

trons onto a vacuum imaging detector (VID, Photek) to create

a two-dimensional image, which was captured using a CCD

camera and recorded using IFS32 software (Photek). Using

this technique we were able to record photoelectron images

as a function of both pump-probe time delay and probe wave-

length. These images were converted to give photoelectron

spectra as discussed in earlier work.18 Photoelectron angu-

lar distributions were also obtained from the images but they

showed no significant changes with time delay and will not

be discussed further. The imaging detector can also be oper-

ated in ion detection mode to measure mass-resolved REMPI

spectra via the S1 state of each molecule.

III. RESULTS AND ASSIGNMENT

A. General remarks

As we highlighted in Ref. 2, there have been a number of

inconsistencies in applying Wilson labels7 to some of the vi-

brational modes in benzene, which has been propagated into

work on substituted benzenes. We do not reproduce the de-

tails here, but note that some or all of the following switches

in Wilson mode numbering for benzene are often required in

order to assign the correct wavenumber to the correct vibra-

tional motion: 8a ↔ 9a, 8b ↔ 9b, 18a ↔ 19a, 18b ↔ 19b,

and 3 ↔ 14. Our new nomenclature2 employs the Mulliken

labeling scheme5 for fluorobenzene, but then maintains the

same label across different monosubstituted benzenes, even

when the symmetry of the molecule and overall number of

vibrations has changed. This leads to a much clearer under-

standing of the vibrational activity in these species. To aid the

reader, in Table I we present the numbering used in Ref. 3,

which is not strictly Herzberg (Mulliken) numbering as the

methyl-localized vibrations have been mistakenly included in

the list, and also the Varsányi labels, whose motion does not

always correspond to the actual motion – see Ref. 2 for further

discussion.

The (1 + 1) REMPI spectra of Tol-h8 and Tol-d3

< ∼1460 cm−1 above the S1 origin are shown in Figure 1.

The large number of vibrations observed above 700 cm−1

is striking. As in the lower wavenumber range, the overall

appearance of the Tol-h8 spectrum is similar to previously

reported jet-cooled spectra.3, 20, 21 There are several intense

bands observed above 700 cm−1, which have mainly been as-

signed to vibrations of a1 symmetry; however, several combi-

nation bands of overall b2 symmetry are observed, which owe

their intensity to Herzberg-Teller coupling to the S2 electronic

state.

In the following, the assignments of the Tol-h8 and Tol-d3

(1 + 1) REMPI spectra in the range 700–1500 cm−1 will be

discussed simultaneously, separating the discussion into dif-

ferent wavenumber ranges. The assignment will employ the

results of quantum chemical calculations, plus the concomi-

tant discussion of the ZEKE spectra recorded in the present

work, exciting through features in the above wavenumber

range. The identification of overtones and combination bands

will benefit from the assignments of features <700 cm−1 per-

formed in our previous work.1 In Ref. 1, we presented har-

monic and anharmonic values for the S0 and D0
+ states, plus

the harmonic values for the S1 states; all calculated using the

B3LYP functional and the aug-cc-pVTZ basis set, with time-

dependent density functional theory (TD-DFT) employed for

the S1 state. In the present work, in Table II, we present the

anharmonic results for the S0 and D0
+ states, together with

scaled harmonic results (×0.97) for all three states. In fact,

we find that often the scaled harmonic values are more reli-

able than the anharmonic ones. Additionally, where available,

we also give the experimentally determined values.

In the below, we present the assignments of the spec-

tra, separated into convenient wavenumber ranges. We base

the assignments on different pieces of experimental evi-

dence: the experimentally derived values from our previous

work,1 the assignments made in the dispersed fluorescence

study of Ref. 3, and the calculated vibrational frequencies in

Table II. We obviously favour the experimentally derived val-

ues where they exist, but in many cases we have to rely on the

calculated values. For the S0 and D0
+ states, the agreement

between the anharmonic and scaled vibrational wavenumbers

is generally very good; in the cases where the agreement is

not so good, we consider both values, and exercise caution,

but generally favour the scaled value. (We assume that in

some cases the anharmonic values, obtained from perturba-

tion methods, are affected by close degeneracies.)

We now consider the assignment of the REMPI spec-

tra, separating the discussion into different spectral ranges. In
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FIG. 1. (1 + 1) REMPI spectra of Tol-h8 (upright) and Tol-d3 (inverted) in the range 0–1500 cm−1 for Tol-h8 and 0–1450 cm−1 for Tol-d3. The dotted lines

indicate the intensity of the UV radiation across the region.

each of these ranges, we shall consider both Tol-h8 and Tol-d3

REMPI spectra, and the resulting ZEKE spectra.

B. 680–880 cm−1 region

The expanded REMPI spectra in this wavenumber region

for both Tol-h8 and Tol-d3, are shown in Figure 2(a). Two fea-

tures are observed at 734.4 and 753.2 cm−1 for Tol-h8, which

are labeled “M” and “N”; these have been previously assigned

as a Fermi resonance between two ZOS vibrations.21, 22 The

assignment of the higher wavenumber vibrational eigenstate

has been long-established as having a major contribution from

the M10 fundamental,3, 21, 22 while Hickman et al.3 assigned

the other ZOS of the Fermi resonance to the M18M19 combi-

nation. This assignment was based on the vibrational activity

in the dispersed fluorescence spectrum recorded from these

intermediate levels, and is expected to form the major con-

tribution to the lower wavenumber component of the Fermi

resonance. This situation is largely reminiscent of the ma-

jor aspect of the Fermi resonance observed at ∼460 cm−1

in the S1 electronic state of Tol-h8: a combination of two

out-of-plane vibrations interacting with an a1 fundamental vi-

bration. The 460 cm−1 feature has been discussed in depth

by ourselves1, 18 and by Gascooke and Lawrance23 in their

two-dimensional laser-induced fluorescence (2D-LIF) study

concentrating on the same feature. Owing to the expected sig-

nificant contributions of each of the two ZOSs to the vibra-

tional eigenstates giving rise to M and N, the bands are not

given explicit mode labels in Figure 2(a).

By visual inspection of the REMPI spectra in Fig. 2(a),

bands O and P in the Tol-d3 REMPI spectrum can be expected

to be made up of the same ZOSs as those that contribute to

the vibrational eigenstates that give rise to bands M and N for

Tol-h8, although we would expect the ZOS weightings to be

different.

ZEKE spectra have been recorded via bands M and N

for Tol-h8 and via bands O and P for Tol-d3, and these are

shown in Figures 2(b) and 2(c), respectively. These spectra

are somewhat noisy, with the vibrational features appearing

to be superimposed on an underlying background; the origin

of the latter observation will be discussed below.

The ZEKE spectrum recorded via band M, shows two

clear bands, with the lower wavenumber, weaker band at

768 cm−1 being assignable to M10
+, based on the assignment

of this fundamental wavenumber in Ref. 1 and the calculated

vibrational wavenumbers in Table II; the more intense band

at 941 cm−1 is assignable to (M18M19)+; both combination

bands with the M11
+ vibration are also observed weakly.

The ZEKE spectrum recorded via N shows the same two

features, now having similar intensities to each other. The

assignments of the cationic vibrations are consistent with the

S1 assignments of Hickman et al.3 based on their DF spectra,

to a pair of Fermi resonance components involving the M10

and M18M19 vibrations. Using the experimentally derived

fundamental wavenumber of the M18
+ vibration of Tol-h8,

566 cm−1 and the 377 cm−1 value for the M19
+ fundamental,

then a combination wavenumber of 943 cm−1 is obtained, in

excellent agreement with the experimental value.

The earlier reported photoelectron spectrum of Tol-h8,

recorded using laser pulses of ∼5 ns by Whiteside et al.9 and

exciting via band N (based on the cited wavenumber) contains

limited structure and is very congested; this is in contrast to

the present spectra and the DF spectra of Ref. 3.

The assignment of the two ZOSs that give rise to

the bands observed in the REMPI spectrum at 712.6 and

729.6 cm−1 of Tol-d3, are expected to be the same as those
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TABLE II. Calculated vibrational wavenumbers of Tol-h8 and Tol-d3. These are calculated using the B3LYP/aug-cc-pVTZ level of theory, with the scaled

values being 0.97× harmonic. (The unscaled harmonic and anharmonic values are presented in Ref. 1, together with the values for the methyl-localized

vibrations.)

Tol-h8 Tol-d3

S0 S1 D0 S0 S1 D0

Mode, Mi Scaled Anharmonic Scaled Scaled Anharmonic Scaled Anharmonic Scaled Scaled Anharmonic

a1

1 3093 3045 3117 3117 3076 3093 3045 3117 3117 3076

2 3073 3036 3095 3103 3069 3073 3037 3095 3103 3077

3 3059 2999 3088 3094 3069 3059 2990 3087 3094 3060

4 1596 1604 1531 1622 1576 1596 1606 1531 1622 1568

5 1486 1499 1414 1430 1431 1486 1500 1415 1432 1444

6 1193 1202 1184 1220 1227 1212 1218 1210 1240 1253

7 1168 1191 1142 1181 1186 1168 1195 1143 1185 1189

8 1021 1035 945 958 984 1018 1033 944 952 967

9 991 1008 960 979 982 991 1008 962 974 983

10 776 786 745 753 762 750 761 718 727 740

11 513 525 452 504 508 491 501 436 476 476

a2

12 964 976 697 996 1010 965 982 697 993 1006

13 837 848 562 784 774 836 848 562 783 770

14 404 409 210 340 348 404 411 210 340 351

b1

15 983 995 797 1008 1049 984 996 806 1008 1044

16 893 902 695 919 930 839 842 675 952 969

17 728 740 581 731 736 704 710 576 681 683

18 695 705 437 564 583 683 694 417 520 541

19 464 474 312 374 388 446 452 308 366 379

20 204 210 146 147 154 189 197 138 139 146

b2

21 3081 3033 3108 3114 3046 3081 3017 3108 3114 3100

22 3060 3016 3089 3098 3065 3060 3021 3089 3098 3065

23 1575 1584 1493 1364 1380 1571 1584 1488 1364 1373

24 1428 1441 1426 1492 1499 1438 1454 1378 1492 1499

25 1321 1343 1373 1352 1352 1319 1331 1287 1350 1355

26 1287 1286 1140 1258 1264 1281 1307 1140 1259 1265

27 1146 1168 1398 1128 1147 1146 1169 1407 1120 1133

28 1079 1092 1027 1052 1069 1071 1084 995 1052 1072

29 619 633 522 485 493 618 631 520 492 500

30 333 364 329 336 330 297 310 293 299 297

of Tol-h8; i.e., these are two components of a Fermi reso-

nance with the same ZOSs. The M10
+ fundamental wavenum-

ber of Tol-d3 has been determined as 742 cm−1 from the

ZEKE spectrum recorded via the S1 00 level, discussed in

Ref. 1, which is in very good agreement with the peak po-

sition of 741 cm−1 for the more intense feature in the ZEKE

spectrum recorded via band O; this is also supported by the

calculated vibrational frequencies in Table II. The more in-

tense ZEKE band is at 893 cm−1 and is assignable to the

(M18M19)+ combination vibration through comparison with

the corresponding band observed in the spectrum recorded

via band M of Tol-h8. The same two bands are also seen

when exciting via band O, but with reversed intensities.

Using the experimentally derived fundamental wavenumber

of the M18
+ vibration of Tol-d3, 528 cm−1, a wavenum-

ber of 366 cm−1 for the M19
+ fundamental is obtained, in

very good agreement with the calculated values, shown in

Table II. We shall discuss these Fermi resonances in more de-

tail below.

A further observation may be made regarding the ZEKE

spectrum recorded via band N, in which a number of features

are present which are not observed in the corresponding spec-

trum recorded via band M; itself an interesting observation

given that M and N arise from Fermi resonance components.

Most of these are straightforwardly assigned, as shown in

Figure 2 on the basis of previously observed and calculated

vibrational wavenumbers; however, the band at 822 cm−1—

labeled “x” in the upper trace of Figure 2(c)—is less straight-

forward. It is interesting to note that an extra band at 922 cm−1

was also observed in the DF spectra reported by Hickman

et al.3 recorded via the band N. Although they were unable to

provide an assignment for this band, it was hypothesised that

its origin was another vibration, whose feature lay completely

within the unresolved rotational contour of band N. If this is
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FIG. 2. (a) Expanded view of the Fermi resonance region of the (1 + 1) REMPI spectra of Tol-h8 (upright) and Tol-d3 in the range 680–880 cm−1. Traces (b)

and (c) contain ZEKE spectra recorded via eigenstates designated by the letters in the top trace of the REMPI spectrum. Spectra for Tol-h8 and Tol-d3 have been

paired up based on their appearance and assignment: see text. The assignment of bands marked with letters are discussed in the text. The dotted lines indicate

the intensity of the UV radiation across the region.
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the case, then we should see ZEKE features arising from this

coincident vibration; the relatively intense feature “x” could

be such a feature. We now discuss whether band x could be

the analogue of the prominent band observed at 922 cm−1 in

the DF spectrum recorded via band N by Hickman et al.3 If

this was the case, then the likely assignment of both features

would be a �v = 0 transition originating from the hypoth-

esised coincident vibration in the S1 state and the vibration

would be expected to have wavenumbers of ∼922, ∼754, and

∼822 cm−1 in the S0, S1, and D0
+ electronic states, respec-

tively.

No assignment was found, in terms of fundamen-

tals, overtones, or combinations, that match the observed

wavenumbers in all three states. For example, of the pos-

sible vibrational (and vibration-torsion) levels predicted to

have S1 vibrational wavenumbers of 754 ± 10 cm−1, only

two result in cationic vibrational wavenumbers within 822

± 10 cm−1: the M14
1M29

1 and M19
1M20

3 combinations. How-

ever, neither of these possibilities has a corresponding S0 vi-

brational wavenumber which matches the unassigned band

observed at 922 cm−1 in the DF spectrum. Hence, separate

vibrational assignments of the observed bands in the S0 and

D0
+ states were sought. The (M29M30)+ combination is a pos-

sible assignment of band x and we note this combination is

also active in the S1 ← S0 transition (see upper trace of Fig-

ure 2(a), and below). A possible assignment of the 922 cm−1

band in S0 is to M19
2, based on the fundamental value of 464

cm−1 for this mode, reported in Ref. 3. Overall, there does

not seem to be strong evidence for a second feature coincident

with band N; whether such a feature exists or not, the differ-

ing observed activity in the DF and ZEKE spectra suggests

different Franck-Condon factors (FCFs) occur during the flu-

orescence and ionization processes.

The fundamental value of 695 cm−1 for the M18 mode in

S0 state (see Ref. 1) suggests a value of ∼1390 cm−1 for M18
2,

which matches well with the band observed at 1380 cm−1

in the DF spectrum recorded via the S1 753.2 cm−1

intermediate;3 this band was also observed in the DF spec-

trum recorded via the S1 734.4 cm−1 level. Assuming these

assignments are correct it is interesting that the M19
2 vibra-

tion is only observed in the dispersed fluorescence spectrum

recorded via the higher wavenumber Fermi resonance compo-

nent. This is in line with the observations of the ZEKE spec-

tra via bands M and N which also show different vibrational

activity.

In Ref. 1, we discussed the similarity of the toluene elec-

tronic spectra with those of fluorobenzene and chlorobenzene,

the observation of which was impetus for the development

of the vibrational notation used herein; as a consequence, we

looked for possible assignments from the DF spectra of those

species. In fluorobenzene,24 the eigenstate assigned to con-

tain a larger contribution from the M10 zero-order state lies at

765 cm−1, which is below the other Fermi resonance com-

ponent observed at 781 cm−1, notably the same ordering

as observed for Tol-d3. The DF spectra recorded via these

intermediate levels show similar, but interesting intensity

effects: along with the expected M18M19 and M10 vibrations

being observed, the M19
2 vibration is also clearly seen. Rather

surprisingly, the M18
2 vibration is observed only weakly in

the DF spectrum recorded via the lower wavenumber compo-

nent of the Fermi resonance, despite being observed strongly

in the DF spectrum recorded via the other Fermi resonance

component. Although the “absent” overtone is different in

the DF spectra of Tol-h8 and fluorobenzene, this observation

does suggest that the assignments of the M19
2 and M18

2 vi-

brations in the toluene DF spectra are likely correct. Unfortu-

nately, the corresponding DF spectra have not been recorded

for chlorobenzene which would allow the activity of the M18
2

and M19
2 vibrations to be investigated further.

With the above discussion in mind, we note that the

M19 and M18 fundamental vibrations have been observed in

the Tol-h8 ZEKE spectrum recorded via the S1 origin, dis-

cussed in Ref. 1, which have vibrational wavenumbers of

377 cm−1 and 566 cm−1, respectively. Utilizing these val-

ues, the (M19
2)+ and (M18

2)+ vibrations have expected vi-

brational wavenumbers of 758 and 1132 cm−1, respectively.

The (M19
2)+ value is in remarkably good agreement with the

757 cm−1 band observed in the ZEKE spectrum obtained

when exciting via band M. Owing to the close proximity of

the (M19
2)+ overtone to the M10

+ vibration, they could be

in Fermi resonance, the result of which could perturb the

Franck-Condon factors for ionization to the M10
+ vibration.

The fundamental wavenumber of 366 cm−1 for the M19
+

vibration of Tol-d3, which was derived earlier from observed

combination bands, results in a predicted wavenumber for the

(M19
2)+ overtone of 732 cm−1, which is reasonably close to

the 739 cm−1 ZEKE feature assigned to the M10
+ fundamen-

tal. The FWHM of this feature in the spectrum recorded via

band O is ∼19 cm−1, which is considerably larger than that of

the (M18M19)+ band in the same spectrum (∼10 cm−1), indi-

cating the presence of at least two unresolved vibrations and

hence supporting the overlap of these features in Tol-h8, with

the (M19
2)+ band likely being on the red side of the band.

The assignment of various other weak features in the

REMPI spectrum was considered, and brief comments are

now made on these. Two weak bands are observed for Tol-

d3 at 687.2 and 705.6 cm−1 assignable to the vibrations of

the Tol-d3–Ar complex which correspond to the transitions

denoted O and P for bare Tol-d3 (and are each labeled by

the corresponding letter, with a bar over it). The same tran-

sitions for the Tol-h8–Ar complex are not observed; however,

these experiments were carried under different conditions. A

weak band is observed at 863.2 cm−1 for Tol-h8, which is

assignable to the M29M30 combination vibration, consistent

with the assignment of a feature observed at 864 cm−1 in

the excitation spectrum reported by Hickman et al.3 Another

weak band is observed ∼54.5 cm−1 above band M, with a sec-

ond weak feature observed at the same wavenumber above N,

consistent with transitions to the 3(+) torsional level of each

of these two vibrations. Consistent with these assignments,

weak bands observed at 743.2 cm−1 and 760.4 cm−1 for Tol-

d3 are assigned to the O[3(+)] and P[3(+)] vibration-torsion

levels, respectively. See Table IV of Ref. 1 for torsional level

wavenumbers. We note that the m = ±3 torsional levels

mix to form new torsional states, which are symmetric and

antisymmetric combinations of the m = 3 basis functions,

which have a1
′′ and a2

′′ symmetry, respectively (G12 molecu-

lar symmetry group); these may be termed 3(+) and 3(−).23
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(We note that in Ref. 1, we used the incorrect notation m

= +3 and m = −3 to label these combinations, and we correct

that here.)

Attempts were made to record time-resolved spectra of

these Fermi resonances, but unfortunately they were just too

far apart to allow simultaneous overlap within the 13 cm−1

wide ps pulse width and hence no coherent wavepacket could

be prepared. As a consequence, SEVI spectra were recorded

(but are not shown) with the excitation wavelength of the ps

pulse tuned to overlap each feature separately in turn. As ex-

pected, the resulting tr-SEVI spectra exhibited no time de-

pendence and simply resembled the ZEKE ones, albeit with

slightly degraded resolution.

C. 880–1080 cm−1 region

The REMPI spectra recorded for this region for both Tol-

h8 and Tol-d3 are shown in Figure 3(a).

1. Tol-h8

The appearance of this region for Tol-h8 agrees well with

the LIF spectrum reported by Hickman et al.3 in which two

dominating vibrations were observed at 935 and 966 cm−1,

which were assigned as vibrations 10 and 11 in the notation

employed therein, which correspond to the present M8 and

M9 vibrations, respectively. These are in excellent agreement

with the peak positions of 933.5 and 965.1 cm−1 observed in

the present REMPI spectrum.

The ZEKE spectra for Tol-h8, recorded via each of these

two levels, are presented in the upper traces of Figs. 3(b)

and 3(d). These are seen to be similar in appearance, with

a very intense band observed in each spectrum, with peaks

at 981 and 990 cm−1 in the spectra recorded via the M8

and M9 intermediate levels, respectively, which are easily as-

signed from the �v = 0 propensity rule. The assignment of

M8
+ = 980 cm−1 is in excellent agreement with the weak

band d assigned in our previous work;1 similarly, the feature

observed at 997 cm−1 in the M8 ZEKE spectrum appears to

correspond to the previously observed band e, assigned as

the (M11
2)+ vibration.1 (Both features were observed in the

ZEKE spectra recorded via the two main components of the

∼460 cm−1 Fermi resonance.) The width of the M9
+ band,

in Fig. 3(d) suggests that it consists of more than one com-

ponent, it seems there could be an unresolved contribution

from M8
+ on the low wavenumber side, and it is also plau-

sible that there is an unresolved contribution from (M11
2)+

on the high wavenumber side. On the other hand, no contri-

bution of the M9
+ vibration is evident in the obtained ZEKE

spectrum when exciting via M8.. It seems that M8 and M9 are

not in Fermi resonance in the S1 state. Given the energetic

proximity, it is interesting to note that these vibrations also do

not seem to be coupled in the cation.

The M8 and M9 bands were too far apart to prepare these

states coherently, although SEVI spectra (not shown) with no

time delay were recorded. These closely resembled the ZEKE

spectra, but with a degraded resolution. Meek et al.8 report a

MPI-PES spectrum recorded via M8, in which progressions

with spacings of ∼480 and ∼960 cm−1 are observed (note

that a value of 940 cm−1 is given in Figure 2 of Ref. 8, but

960 cm−1 is given in the text), in reasonably good agreement

with the values of 496 cm−1 determined for M11
+ and 980

cm−1 for the M8
+ vibration, determined in the present work

and Ref. 1. In the publications of Meek et al.8 and Whiteside

et al.,9 the spectra recorded via these intermediate levels have

an unstructured spectrum, but with some structure retained in

the spectrum when overlapped picosecond pulses are used.9

This is at odds with the present ZEKE (and SEVI) spectra,

and the dispersed fluorescence spectra3 recorded via these in-

termediate levels, where the spectra are much cleaner and do

not show a significant congestion of bands.

The feature observed at 915.5 cm−1 in the present work,

has been previously assigned3 to the M12M14 combination,

based on activity in the DF spectrum, and this appears to

have a counterpart at 912.7 cm−1 observed here in the cor-

responding spectrum of Tol-d3. This is consistent with the

small shifts of a2 symmetry vibrations upon deuteration of the

methyl group calculated (see Table I), and the wavenumber

values are also consistent with the calculated values. Hickman

et al.3 suggested possible assignments for the bands observed

in the excitation spectrum of Tol-h8 reported in their work at

988 cm−1 and 997 cm−1, to the FR components arising from

the ZOSs M11M29 and M19M20M29 – i.e., M29 in combination

with each of the two most intense Fermi resonance compo-

nents in Region A (at ∼460 cm−1, see Figure 1) arising from

the ZOSs, M11 and M19M20; but these were not confirmed by

DF spectroscopy. The relative intensities of these bands dif-

fer somewhat to those observed for the parent bands, as does

the wavenumber separation; however, this may be an effect

of the differing coupling strength between these vibrations, as

observed for the vibration-torsion combinations of the same

ZOSs, each with 3(+).1, 23 A possible alternative assignment

for the band at 988 cm−1 is to the M8 [3(+)] vibration-torsion

level, with further weight added to this assignment by the ob-

servation of a band at 1019.9 cm−1, which can be assigned to

the M9[3(+)] level: these both involve torsional levels which

have been observed here for other vibrations of a1 symmetry

(also, see Ref. 1).

Two weak bands, denoted “y” and “z” in the ZEKE spec-

trum recorded via M8 require assignment. Band y, which is

observed at 1165 cm−1, might be assigned to M7
+ based on

the calculated wavenumber for this vibration (see Table II);

however, a feature at 1190 cm−1, observed in a later ZEKE

spectrum and discussed below, is assigned to that fundamen-

tal, which is in better agreement with the calculated value.

Other possible assignments are the (M11M30
2)+ combination

or the (M18
2)+ overtone, each of which has calculated val-

ues in good agreement with the observed value. The obser-

vation of the former would suggest that the (M30
2)+ band

should have been observed, but this lies outside of the re-

gion scanned. The better agreement of the (M18
2)+ calculated

value leads us to favour this assignment at the current time.

Symmetry-allowed assignments of band z at 1327 cm−1 in-

clude (M14
4)+ and (M11M29M30)+ with the absence of the

(M29M30)+ band at ∼820 cm−1 perhaps favouring the first

possibility, although the (M14
2)+ might then be expected, but

is outside the scanned region. It is not possible to favour

any one assignment strongly at the present time. Another
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FIG. 3. (a) Expanded view of the (1 + 1) REMPI spectra of Tol-h8 (upright) and Tol-d3 in the range 880–1080 cm−1. (b) contains the ZEKE spectra recorded
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discussed in the text. The dotted lines indicate the intensity of the UV light across the region.
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band is observed in the ZEKE spectrum recorded via M9 at

1296 cm−1 and is denoted “δ.” One possible assignment of

this feature is to the (M10M19M20)+ combination band; how-

ever, this has the weakness that the (M19M20)+ combination

(at ∼530 cm−1), is not observed in this spectrum, although the

UV intensity is weaker at the start of this wavenumber range.

Another possibility is the (M17M18)+ combination of two b1

symmetry vibrations, which has a calculated wavenumber in

reasonable agreement with the observed one, and is currently

favoured.

2. Tol-d3

This wavenumber range of Tol-d3 is considerably more

complicated than that of Tol-h8. In order to aid assignment of

these vibrations, ZEKE spectra were recorded via bands la-

beled “Q,” “S,” and “T,” in trace (a) of Figure 3, which occur

at 931.9, 955.9, and 972.1 cm−1, respectively. It is notable

that there are two extra main features in the REMPI spec-

trum across this wavenumber range (bands Q, R, S, and T, vs.

the M8 and M9 features), when compared to Tol-h8. One ob-

vious interpretation is that two ZOSs have shifted down in

wavenumber in Tol-d3 compared to Tol-h8; however, there

are no obvious features of this intensity slightly higher in

wavenumber, in the Tol-h8 REMPI spectrum. As such, we

work on the hypothesis that two vibrations have shifted in

wavenumber such that they are now in Fermi-resonance with

M8 and/or M9. Further, a perusal of the calculated wavenum-

bers suggests that we do not expect either of these latter two

vibrations to shift much between the two isotopologues. This

does seem to be the case if band Q, at 931.9 cm−1, is assigned

to M8 since the M8 vibration has been assigned to the band

at 933.5 cm−1 for Tol-h8. On the other hand, no intense band

in the Tol-d3 REMPI spectrum appears as close to the Tol-h8

M9 vibration, suggesting that this vibration is now in Fermi

resonance in Tol-d3 and has hence shifted in value. We shall

examine this in the below.

The ZEKE spectrum recorded via band Q closely resem-

bles that recorded via the M8 level of Tol-h8, with an intense

feature, band α, being observed at 974 cm−1, which agrees

favourably with the calculated wavenumber for Tol-d3 M8
+

(see Table II). The observed wavenumber would also be con-

sistent with an assignment to (M29
2)+, however, this does not

fit in with expectations based on the corresponding Tol-h8

spectrum. Consequently, band Q is assigned to M8 for Tol-d3,

consistent with the expected small shifts from the calculated

wavenumbers, as noted above.

There is also a shoulder on the high wavenumber side

of band Q in this ZEKE spectrum at 987 cm−1, denoted β

in the lower trace of Figure 3(b). This band dominates this

wavenumber region when exciting via band T – see inverted

trace of Fig. 3(d). A reasonable assignment of this feature

is to the M9
+ fundamental, based on the Tol-h8 spectra and

the good agreement with the calculated wavenumbers. This

is initially a little unexpected since band S is more intense

than band T and we would expect the more intense band to

be the one that arose from a vibrational eigenstate that has the

largest contribution from the ZOB and the “extra” bands in

the Tol-d3 spectrum would be expected to come from other

vibrational eigenstates that arise from Fermi resonance, and

so be of lower intensity; this will be discussed further below.

That bands are in Fermi resonance, is supported by the same

ZEKE bands being observed when exciting via different fea-

tures, but with different relative intensities.

We now discuss the assignment of the intense band γ ob-

served at 1318 cm−1 when exciting via S. If this arises from

a �v = 0 transition, then we require bands in the S1 state

that are in close energetic proximity to M8 and M9 and of the

correct symmetry to interact; further, there would have to be

a large shift in the vibrational wavenumber upon ionization,

suggesting the involvement of vibrations of a2 or b1 symme-

try, based on the trend of increasing wavenumber between the

S1 and D0
+ electronic states for vibrations with these sym-

metries (see Ref. 2 and Table II). Hence, for example, we can

dismiss the (M14
4)+ band (estimated position ∼1336 cm−1)

as an assignment for γ since, although it has the correct sym-

metry, the S1 value is far from the M8 and M9 positions. One

possible assignment we have identified is that band γ arises

from the (M16M19)+ combination vibration, which has a cal-

culated wavenumber—see Table II—in good agreement with

that of band γ . This combination also has the correct over-

all symmetry, and contains two vibrations of b1 symmetry

(and hence shifts significantly upon ionization). The calcu-

lated S1 wavenumber is somewhat higher than the wavenum-

ber of band S at 955.7 cm−1; however, we also note that if this

combination vibration is in Fermi resonance with M9, then it

will shift down in observed wavenumber; this would also be

consistent with band T being at higher wavenumber than the

M9 band in Tol-h8. It is also notable that, although band γ is

only very weak in the ZEKE spectrum obtained when exciting

via band T, band β appears strongly in both spectra. We con-

clude that the assignment of bands S and T are to vibrational

states that arise from a Fermi resonance between M16M19 and

M9. The M16M19 vibration would appear above 1000 cm−1 in

the REMPI spectrum for Tol-h8, which would be one expla-

nation as to why this vibration is not observed in this region

for that isotopologue; but also this would be consistent with

this band being “dark” and only observed in Tol-d3 by virtue

of the Fermi resonance with M9. We reiterate that the stronger

intensity of band S compared to band T is unexpected and that

this will be discussed below. It is interesting to note that band

γ appears weakly in the spectrum obtained when exciting via

band Q, suggesting that M8 may also be interacting weakly

with M16M19; this is supported by the weak band α observed

when exciting via S.

We now move onto the assignment of bands ξ and ζ in

the ZEKE spectrum at 1211 cm−1 and 1227 cm−1, respec-

tively, observed most strongly when exciting via band S, but

also seen strongly when exciting via band T. It is possible to

come up with a number of assignments for ξ based upon the

calculated vibrational values in Table II. For example, M7
+

and the combination bands (M17M18)+ and (M10M11)+ each

have reasonable calculated values, and each are of a1 symme-

try; however, neither of them have a corresponding S1 value

that suggests they would be coupled to M9 or M16M19 (see

above) and so these would be the result of Franck-Condon ac-

tivity as a result of structural changes between the S1 and D0
+

states. One other possibility for the assignment of band ξ that
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would be consistent with a ZOS that could be in Fermi reso-

nance in S1 is (M15M20)+, but M15M20 has a calculated scaled

value somewhat lower than 1211 cm−1, even though the

anharmonic value is much closer. On the other hand, the

calculated scaled S1 wavenumber for M15M20 is in excel-

lent agreement with the position of band R at 944 cm−1.

Further support for the involvement of M15M20 comes from

the study of Butler et al.24 on fluorobenzene. In that work

a band at 922 cm−1, previously assigned to M7 was reas-

signed to the “apparently unlikely” M15M20 band on the basis

of the dispersed fluorescence spectrum, and was deduced to

be in Fermi resonance with M8. Recalling our demonstration

that there are strong similarities of the electronic spectra of

the two toluene isotopologues to those of fluorobenzene and

chlorobenzene,1, 2 then this concurrence of assignments lends

weight to each. It is noteworthy, however, that bands ξ and ζ

are not present in the ZEKE spectrum obtained when excit-

ing via band Q, which was assigned to M8 in the above. We

conclude that the weak band R arises from a strong interaction

between M9 and M15M20. From this comparison, our favoured

assignment for band ξ is to the (M15M20)+ combination. We

note that there are weak features in the ZEKE spectrum at

∼1150 cm−1 which may be attributable to the appearance of

(M15M20)+, but this is far from definitive. It is interesting to

note that there seems to be little or no interaction of M8 with

any other vibrations, including M9, either in the S1 state or

in the ZEKE spectrum (see above). The ZEKE spectra ob-

tained when exciting via band S additionally shows band ζ

at 1227 cm−1, where an assignment to M6
+ seems reasonable

from the calculated vibrational wavenumbers (see also later).

There is also evidence for an unresolved feature on the low

wavenumber side of band ξ in the ZEKE spectrum obtained

when exciting via band T, which can be tentatively attributed

to activity in M7
+or M17M18

+.

Thus, it seems that bands R, S, and T are part of a com-

plex Fermi resonance and this is supported by the appearance

of bands β and γ in both recorded ZEKE spectra. That band

γ appears weakly when exciting via bands Q and T, and very

strongly via band S, suggests there may be some small in-

teraction of M8 in this region, but it must be very limited.

Overall, it is difficult to unpick the whole picture of the vi-

brational coupling on the basis of these results, and recording

a ZEKE spectrum via band R, as well as for other isotopo-

logues, would provide additional and valuable insight into

this spectral region. It is a shame that we did not attempt to

record spectra via band R during these experiments, but this

seemed too weak to attempt at the time. We may explore this

further in the future, although this may require improvements

to the sensitivity of our apparatus. We also note that, unlike

the ZEKE spectra recorded via the M8 and M9 intermediate

levels of Tol-h8, the spectra recorded via bands S and T show

a broad “hump” on which a structured spectrum is superim-

posed; no such hump is obvious when exciting via band Q.

We shall comment on this below. A definitive assignment of

band ε, at 985 cm−1 seen in the ZEKE spectrum recorded via

band S is difficult, but we note that the (M11M19M20)+ combi-

nation is expected to have a wavenumber of ∼980 cm−1. This

would be consistent with the tentative assignments made to

this wavenumber region of the Tol-d3 cation in Ref. 1 and fits

with experimental values determined in Ref. 1, as well as the

calculated wavenumber values.

There are several other bands observed in the Tol-d3

REMPI spectrum which require assignment. The weak fea-

ture at 905.1 cm−1 is likely due to a vibration of the toluene–

Ar complex, which corresponds to that giving rise to band Q

for bare toluene. Similarly, the very weak band at 945.1 cm−1

is assignable to the toluene–Ar complex vibration which cor-

responds to band T, with the corresponding toluene–Ar com-

plex transition of S expected to be coincident with band Q.

As we noted above, it just seems to have been “fortuitous”

that the optimized conditions for the Tol-d3 spectra also led

to the production of toluene–Ar complexes. As with other vi-

brations of a1 symmetry, the Q[3(+)] vibration-torsion is ob-

served, with the corresponding vibration-torsion bands for the

other main features seemingly being too weak to observe.

D. 1080–1450 cm−1 region

The REMPI spectra recorded for this wavenumber region

are shown in Figure 4(a) for Tol-h8 and Tol-d3.

1. Tol-h8

Concentrating initially on the Tol-h8 spectrum in the

upper trace, we can see that there is a clump of bands at

∼1190 cm−1, labeled Region D, which are reminiscent of

the Fermi resonance at ∼460 cm−1. The difference in energy

between this clump and the ∼460 cm−1 FR is ∼730 cm−1,

which is close to the wavenumber for the M10/M18M19 Fermi

resonance (see Table II and above). Hence, we initially an-

ticipate that the features at ∼1190 cm−1 may arise from

eigenstates that arise from a “Fermi resonance of Fermi res-

onances.” We refer to these eigenstates as A, B, C, and D

at 460 cm−1, and M and N at 730 cm−1. Eigenstates A–D

are made up of M14
2, M11, M19M20, and M18[3(−)] – see

Refs. 1, 18, and 23 – and, although these are all mixed, eigen-

state A is predominantly M14
2, B and C are each mostly made

up of significant contributions of M11 and M19M20, and band

D is predominantly M18[3(−)]. We have discussed eigenstates

M and N in the above, and these are also made up of signifi-

cant mixtures of two ZOSs: M18M19 and M10.

The vibrational eigenstates of the 1190 cm−1 FR can

now be viewed as combinations of the two original sets of

FR vibrational eigenstates, and lead to eight possible com-

binations: vibrational eigenstates M and N, each in combi-

nation with vibrational eigenstates A, B, C, and D (where

we are labeling the vibrational eigenstate by the same label

as the band it gives rise to). Alternatively, in terms of the

original ZOSs, these new combinations can be expressed as:

M14
2M18M19, M11M18M19, M18M19

2M20, and M18
2M19[3(−)];

and M10M14
2, M10M11, M10M19M20, and M10M18[3(−)] and

the final vibrational eigenstates will be linear combinations of

these. The calculated and expected experimental wavenum-

bers for these features are given in Table III in order of

their S1 wavenumber; it will be noticed that these sug-

gest that the first four, lowest wavenumber, features are

constituted predominantly of combinations of each of the

∼460 cm−1 FR components with M18M19 and the next four,
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FIG. 4. (a) Expanded view of the (1+1) REMPI spectra of Tol-h8 (upright) and Tol-d3 in the range 1180–1450 cm−1. Traces (b), (c), and (d) contain ZEKE

spectra recorded via eigenstates U, V, and W, respectively. The assignment of bands marked with letters is discussed in the text. The dotted lines indicate the

intensity of the UV light across the region.

highest wavenumber, features are constituted predominantly

of combinations of each of the ∼460 cm−1 FR components

with M10. These values suggest that the intense bands U, V,

and W at 1183.4, 1191.8, and 1196.2 cm−1 might be associ-

ated with the ∼460 cm−1 FR components in combination with

eigenstate M, with the ∼460 cm−1 FR components in com-

bination with eigenstate N appearing on the high wavenum-

ber side to these features. Indeed, two weaker features to the

blue of the main band at 1209.4 cm−1 and 1215.7 cm−1 could

be associated with the combinations B+N and C+N, respec-

tively (i.e., the two most intense features of the 460 cm−1 FR,

in combination with eigenstate N). We note that the expected

weak band arising from A+N could be contributing to the

red side of the 1209.4 cm−1 feature, while the expected weak

band arising from D+N could be part of the feature at 1226–

1227 cm−1, which seems to be comprised of two bands.

If the above assignments were correct, and bearing

in mind the similar intensities of the two FR features at

∼730 cm−1, the significant intensity differences of the two

sets of features at ∼1190 cm−1 seems highly anomalous. A

possible explanation comes from the DF fluorescence work

of Hickman et al.3 who report a DF spectrum from a feature

at 1193 cm−1, which would appear to be from the most in-

tense band, band V. This spectrum was assigned as having a

major contribution from M6, but also showed significant IVR

(to be discussed further below). Indeed, in our recent tr-SEVI

paper,10 we focused on the M6 mode, and this will be referred

to further in the below. If M6 does contribute to this region and

is coupled to the lower wavenumber vibrational eigenstates

listed in Table II, then this could explain the higher intensities

of the features arising from combinations of M + (A, B, C,

and D). However, the appearance of the ∼ 1190 cm−1 feature

is very similar to the one at ∼460 cm−1 and, even though this

could be coincidental, the question arises as to why another

vibrational eigenstate does not appear, owing to the additional

contributing ZOS. A careful comparison of the FR features at

∼460 cm−1 and ∼1190 cm−1 reveals that band U is more in-

tense and broader than is expected based on the 460 cm−1 FR,
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TABLE III. Calculated wavenumbers for ZOSs of Tol-h8 which are expected to have a composite value close to

the position of the FR at ∼1193 cm−1 and arise from combinations of the ZOSs that give rise to the vibrational

eigenstates of the 460 cm−1 and 730 cm−1 FRs. Scaled values, obtained from 0.97× harmonic value (Table II),

are given in parentheses and those derived from experimental values given in square brackets; the other values

are the anharmonic values (see Table II). In all cases, the energy of the 3(−) levels have been taken from Table

V of Ref. 1. The entries have been ordered in terms of their S1 values. The letters are the band labels (see figures

and text) and are also used for the corresponding vibrational eigenstates.a

S0 S1 D0
+

Band Expected major contributions Region A + band M combinations

A M14
2 M18 M19 (1967)1997 (1169) [1186] (1618) 1667 [1610]

B M11 M18 M19 (1672) 1704 (1201) [1191] (1442) 1479 [1437]

C M18 M19
2 M20 (1827) 1863 (1207) [1197] (1459) 1513 [1471]

D M18
2M19 [3(−)] (1902) 1931 (1227) [1207] (1554) 1606 [1559]

Region A + band N combinations

A M10 M14
2 (1584) 1604 (1165) [1205] (1433) 1458 [1437]

B M10M11 (1289) 1311 (1197) [1210] (1257) 1270 [1264]

C M10 M19 M20 (1444) 1470 (1203) [1215] (1274) 1304 [1298]

D M10 M18 [3(−)] (1519) 1539 (1223) [1226] (1369) 1397 [1386]

aRegion A consists of four main bands, A, B, C, and D, with the compositions of A and D being mainly M14
2 and M18[3(−)],

respectively; B and C are made up of significant amounts of both M11 and M19M20, with the majority contributions in that order

(see Refs. 1, 18, and 23). Bands M and N have been deduced to be mixtures of M18M19 and M10, with the majority contributions

in that order (see main text). Thus, the calculated values are for the expected majority ZOS contributions, while the experimental

values are obtained from adding the wavenumbers of the contributing vibrational eigenstates—these may shift slightly as a result

of the interactions in this spectral region.

and therefore band U could contain a contribution from an ad-

ditional unresolved vibrational eigenstate. At this point, it is

useful to consider the ZEKE spectra and their assignment, be-

fore returning to this point. We have recorded ZEKE spectra,

exciting separately through bands U, V, and W and we now

discuss these.

As may be seen from Figure 4(b), the ZEKE spectrum

obtained when exciting via feature U was structureless. As

such, it made the reliable recording of this spectrum some-

what problematic, as our procedure for optimizing the ZEKE

signal involves having the ionizing laser power high initially

to obtain an electron signal, and then backing off on the power

until the structured ZEKE spectrum appears (minimizing the

production of “prompt” electrons formed by multiphoton pro-

cesses, and the trapping of electrons by high ion densities).

We then optimize the relative powers of the excitation and

ionization lasers to obtain the highest quality ZEKE spectrum.

When exciting via U, we initially had to carry out this pro-

cedure exciting through V or W to optimize the structured

spectrum obtained (see below), and then scanning the excita-

tion laser back to U and recording the ZEKE spectrum. In all

cases, the spectrum was structureless, while returning back to

V or W yielded a structured spectrum. Additionally, no sub-

sequent optimization of the conditions when exciting through

U yielded any clear structure. On the other hand, as is evident

from Figures 4(c) and 4(d), excitation through V and W did

yield a structured spectrum, albeit with an underlying broad

background, and we now discuss these two spectra.

The most intense feature observed when exciting via V

and W is a band at 1233 cm−1, which matches well the calcu-

lated wavenumber for the M6
+ vibration. This confirms that

M6 is a zero-order state contributing to the Fermi resonance

at ∼1190 cm−1 in agreement with the DF results,3 and our

recent time-resolved results.10 Its intensity suggests it is a ma-

jor contributor to the eigenstates giving rise to bands V and W.

There are also a number of weaker features in the spectrum

on top of the unstructured background, and we now consider

their assignments.

We note that in the ZEKE spectrum obtained when excit-

ing through V, there is a prominent feature, κ , at 1472 cm−1.

Using the calculated wavenumbers, we see that the best agree-

ment is for the (M18M19
2M20)+ combination, which is in near

perfect agreement with the observed value. Note that we also

see a band to higher energy at 1720 cm−1, which matches the

calculated position of the (M6M11)+ band very well. The ob-

servation of the latter is in line with the presence of the strong

M6
+ band, as combinations of fundamental vibrations with

M11
(+) are prevalent in the electronic and photoelectron spec-

troscopy of monosubstituted benzenes; the absence of this

band when exciting through W is slightly surprising (since a

reasonably strong M6
+ feature is present there also); however,

we note that there is a significant unstructured background in

this region, and there are inklings of some additional features.

Three other features appear clearly in the spectrum ob-

tained when exciting via W, labeled λ, μ, and ν at 1299, 1375,

and 1436 cm−1, respectively. Band ν matches the expected

position for (M11M18M19)+, which is expected, based on the

above comments. The wavenumbers of bands λ and μ match

extremely well the expected positions for the combinations

(M10M19M20)+ and [M10M18 3(−)]+, respectively; addition-

ally, we note that the expected position for (M10M14
2)+ coin-

cides with that for (M11M18M19)+, but the latter is expected to

be the more intense, based on the S1 intensities.

There are two other features in the ZEKE spectrum

obtained when exciting via V: the broad band labeled ι, with

a maximum at 1321 cm−1, but with reasonable intensity

extending to lower wavenumber, suggesting more than one

contribution; and the weak feature, labeled θ , at 1190 cm−1.
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The broadband ι does not seem to come from any expected

combination from the Fermi resonance, and so likely comes

from other Franck-Condon-active bands, with the (M16M19)+

and (M17M18)+ combinations being possible, both being to-

tally symmetric combinations of two b1 modes. With this in

mind, it is interesting to note that the (M15M19)+ combination

is expected at 1437 cm−1, and so may also be contributing to

band ν. We note that band λ may also be contributing to the

red side of band ι. Finally, we note that a less distinct feature

is seen to the red of band λ, at ∼1280 cm−1, that might be

associated with (M10M11)+.

We now turn to the weak feature, band θ , which ap-

pears in the spectra obtained exciting via each of V and W:

its wavenumber of 1190 cm−1 agrees very well with the ex-

pected wavenumber for M7
+. However, the calculated value

in the S1 state suggests that M7 is unlikely to be contributing

significantly to the FR at ∼1190 cm−1, and so we conclude

M7
+ is simply Franck-Condon active.

We note that it is possible to come up with other assign-

ments of vibrations (overtones and combinations) with vari-

ous torsional excitations in this wavenumber region (a number

of which are discussed in Ref. 10), but we favour the assign-

ments given, both on the grounds of their good match to the

expected wavenumbers, but also owing to the majority being

combinations involving the component vibrational eigenstates

of the two prominent FRs at ∼460 and ∼750 cm−1.

As noted above, it has been previously concluded that

M6 is involved in this FR feature,3 and further that it is bright

and carrying the majority of the intensity (i.e., it is a ZOB).10

We have also seen that M6
+ appears strongly in the ZEKE

spectra via V and W, supporting this conclusion, but its con-

tribution to band U is indeterminable from the unstructured

ZEKE spectrum. It is therefore possible that band U contains

a considerable contribution from M6, and that severe mixing

with a large number of ZOSs (dissipative IVR) has occurred.

This is supported both by the structureless appearance of the

ZEKE spectrum recorded when exciting at this wavenumber,

and also the calculated S1 wavenumber of M6, which is in ex-

cellent agreement with that of band U. We conclude that the

broadband U is associated with a significant number of ZOSs,

but with a significant contribution from M6, with M6 also con-

tributing a significant amount to the vibrational eigenstates

that give rise to bands V and W. In addition, the ZOSs leading

to the broadness and unstructured nature of the ZEKE spec-

trum of band U also contribute to bands V and W, causing

the underlying broad background seen in their ZEKE spectra

– see below for further discussion. The appearance of cation

peaks corresponding to various expected combinations of the

∼460 cm−1 and ∼750 cm−1 FR eigenstates ties in with expec-

tations, but the fact that there is very little overlap between the

features seen when exciting via band V and W makes it dif-

ficult to make many definitive comments about the mixings

between these. What is clear is that the eigenstates V and W

(and likely U) each contain significant contributions from M6.

Additionally, eigenstate V also has a significant contribution

from the combination of FR eigenstates C+N, as judged by

the intensity of the [M18M19
2M20]+ band in the ZEKE spec-

trum. We note that this is wholly in line with the conclusion in

Ref. 10 that M18M19
2M20 is a doorway state for the transfer of

energy from the ZOB M6 to the bath of ZOSs in this region.

We also note that the assignment of band λ is consistent with

M10M19M20 being another of the doorway states identified in

Ref. 10. Notwithstanding the expected ordering of the com-

binations of the ∼460 cm−1 and ∼750 cm−1 FR eigenstates,

the mixing of the contributing ∼460 cm−1 and ∼750 cm−1

FR vibrational eigenstates with M6 is likely causing perturba-

tions that would lead to resultant vibrational eigenstates with

different energies. Thus, although the appearances of the FRs

at ∼460 cm−1 and ∼1190 cm−1 are similar, this could be co-

incidental and the highly mixed nature of the vibrations in this

narrow wavenumber range makes any detailed assignment of

contributions, over and above the comments above, somewhat

difficult. Clearly (at least), combinations of M6 and the eight

possible FR combinations are all likely to be present to some

degree.

There are several other features in the (1 + 1) REMPI

spectrum of Tol-h8—see top trace of Figure 4(a)—which

require assignment. Two reasonably intense vibrations are

observed at 1262.1 cm−1 and 1282.5 cm−1, which may be

assigned to the combination of M29 and the components

assigned to the M18M19 and M10 ZOSs [bands M and N

– see Figure 2(a) of the Fermi resonance at ∼750 cm−1].

These bands are labeled M+M29 and N+M29 in the upright

trace of Figure 4(a) and are discussed further in Sec. III E.

Corresponding features are observed at 1240.0 cm−1 and

1257.2 cm−1 in the Tol-d3 spectrum, labeled O+M29 and

P+M29, respectively, in the inverted trace of Figure 4(a).

(Both of these pairs of lines are themselves likely to arise

from components of a Fermi resonance.) A triad of features,

centred at ∼1390 cm−1, is assignable to the M8 vibration in

combination with the components of the Fermi resonance at

∼460 cm−1, which have been deduced to arise from the M14
2,

M11, and M19M20 ZOSs (Refs. 1, 18, and 23); these higher-

wavenumber vibrations are also likely in Fermi resonance.

2. Tol-d3

We attempted to record ZEKE spectra for Tol-d3 via

many of the strong features of Region E—see inverted trace

of Figure 4(a)—but none of these gave rise to a structured

spectrum. However, we did succeed in obtaining tr-SEVI

spectra, which clearly show structure at short time delays

and have allowed the ZOB for Region E to be assigned to

M10M11; this will be discussed further below. We first dis-

cuss the assignment of the resolved peaks in the complicated

REMPI feature at ∼1150 cm−1, shown in an expanded form in

Figure 5. We note that the wavenumber of Region E is

consistent with its being made up of vibrational eigenstates

composed of those that give rise to “Region B” (the Tol-d3

analogue of the ∼460 cm−1 FR feature in Tol-h8), but now in

combination with the components of the M10/M18M19 FR, in

a similar manner to the bands around ∼1190 cm−1 (Region

D) in Tol-h8. Hence, in the absence of further significant in-

teractions (such as with another vibrational level), we would

expect two sets of bands, resembling the bands in Region B,

separated by about the same spacing as bands O and P. (Recall

that the majority contributions of the vibrational eigenstates

for Tol-h8 and Tol-d3 are reversed for the M10/M18M19 pairs,
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FIG. 5. Region E of the REMPI spectrum of Tol-d3, showing an indication of the ps laser excitation pulse and hence the vibrational eigenstates excited.

if taken in wavenumber order.) The spectrum at ∼1150 cm−1,

at first sight, does not concur with this and hence we first cal-

culate the expected wavenumbers of these combination fea-

tures, and these are given in Table IV. We give most weight to

the experimental values, which have been obtained by sum-

ming the experimental wavenumbers of the two contributing

features to the combination. These, together with compari-

son with the appearance of Region B, suggest that the first

three intense features, E1, E2, and E3 at 1145.6, 1152.6, and

1160.6 cm−1 could have majority contributions from the three

ZOSs M10M18[3(−)]/M10M11, M10M19M20, and M10M14
2, re-

spectively. The two weaker features to higher wavenumber, E5

and E6, at 1174.2 cm−1 and 1180.8 cm−1 may then have ma-

jority contributions from M18M19
2M20 and M14

2M18M19, re-

spectively. The two other ZOSs expected, M18
2M19[3(−)] and

M11M18M19 are expected to contribute to vibrational eigen-

states that give rise to the 1165.0 cm−1 feature, E4. Hence,

Region E consists of a (very) complex Fermi resonance.

Note that, although we have discussed the involvement

of the M6 vibration for the ∼1190 cm−1 feature for Tol-h8, in

TABLE IV. Calculated wavenumbers for ZOSs of Tol-d3 which are expected to have a composite value close to

the position of the FR at ∼1150 cm−1 and arise from combinations of the ZOSs that give rise to the vibrational

eigenstates of the 460 cm−1 and 730 cm−1 FRs. Scaled values, obtained from 0.97× harmonic value (Table II),

are given in parentheses and those derived from experimental values given in square brackets; the other val-

ues are the anharmonic values (see Table II). In all cases, the energy of the 3(−) levels have been taken from

Table V of Ref. 1. The entries have been ordered in terms of their S1 values. The letters are the band labels (see

figures and text) and are also used for the corresponding vibrational eigenstates.a

S0 S1 D0
+

Band Expected major contributions Region B + band O combination

E M10 M18 [3(−)] (1457) 1479 (1154) {1149} (1275) 1309 {1281}

F M10M11 (1241) 1262 (1154) {1151} (1203) 1216 {1214}

G M10 M19 M20 (1385) 1410 (1164) {1156} (1232) 1265 {1247}

H M10 M14
2 (1558) 1583 (1138) {1165} (1407) 1442 {1410}

Region B + band P combinations

E M18
2M19 [3(−)] (1836) 1864 (1161) {1166} (1434) 1489{1433}

F M11 M18 M19 (1620) 1647 (1161) {1167} (1362) 1396 {1366}

G M18 M19
2 M20 (1764) 1795 (1171) {1173} (1391) 1445 {1399}

H M14
2 M18 M19 (1937) 1968 (1145) {1182} (1566) 1622 {1562}

aRegion B consists of four main bands, E, F, G, and H, with the compositions of E and H being mainly M18[3(−)] and M14
2,

respectively; F and G are made up of mixtures of M11 and M19M20, with the majority contributions in that order (see Ref. 1).

Bands O and P have been deduced to be mixtures of M10 and M18M19, with the majority contributions in that order (see main

text). Thus, the calculated values are for the expected majority ZOS contributions, while the experimental values are obtained

from adding the wavenumbers of the contributing vibrational eigenstates—these may shift slightly as a result of the interactions

in this spectral region.
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our previous work10 we have concluded that the M6 ZOS is

expected to blue shift by ∼20 cm−1 on moving from Tol-h8 to

Tol-d3, and so is associated with one of the bands labeled Y

in the inverted trace of Figure 4(a). On the other hand, other

vibrations are expected to show significant red shifts (see

Table II) when the methyl group is deuterated.

The tr-SEVI spectra were obtained by positioning the

laser pulse at 1156 cm−1 (see Figure 5), so that there was good

overlap with the most intense bands of the feature referred to

as Region E. Spectra were recorded at a number of time delays

from 0 to 500 ps and are shown in Figure 6. As may be seen, at

long delays essentially all structure is lost, consistent with the

unstructured ZEKE spectra which are recorded with nanosec-

ond lasers—this is consistent with dissipative IVR. As men-

tioned earlier, at 0 ps a structured spectrum is obtained. At

time delays up to 20 ps, band intensities are seen to be os-

cillating in intensity, indicating that there is strong coupling

between the bright state and at least one doorway state; thus,

we are in the intermediate IVR regime here. The strongest

peak in the tr-SEVI spectrum at 0 ps is measured to be at

∼1200 cm−1 which, within the error of our SEVI measure-

ments is consistent with the expected position of (M10M11)+,

from both the calculated vibrational wavenumbers, and its po-

sition in the ZEKE spectrum recorded via O, and hence this

allowed the ZOB to be assigned to M10M11. Consistent with

the appearance of bands that involve M11
+, we note there are

bands at one quantum above and below, namely, the band

at ∼740 cm−1 may be assigned to M10
+ and the band at

∼1660 cm−1 may be assigned to (M10M11
2)+; both of

these additional bands vary in intensity in the same way as

(M10M11)+. Other bands are varying in intensity in a differ-

ent way, and we will come back to these shortly. First, we

note that we can ascertain the time dependent behavior of the

ZOB, M10M11, by monitoring the intensity of the M10
+ feature

at ∼740 cm−1 as this was in a clean region of the spectrum,

and allowed the intensity variation to be followed to longer

times, when the broad underlying background obscured the

main (M10M11)+ band. We have plotted this variation in

0 ps
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5 ps

6 ps
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100 ps

0 500 1000 1500 2000

Wavenumber / cm -1

500 ps

FIG. 6. tr-SEVI spectra recorded using the excitation indicated in Figure 5, at different time delays.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.243.253.114 On: Wed, 19 Mar 2014 16:18:35



114308-18 Gardner et al. J. Chem. Phys. 140, 114308 (2014)

0 5 10 15 20 25 30 35 40 45 50

Time (ps)

In
te

n
s
it
y
/ 

a
rb

. 
u
n

it
s

FIG. 7. Trace showing the intensity variation of the M10
+ band in the tr-SEVI spectrum with time. The dots are the experimental data points, while the line is

obtained from fitting the data to Eq. (1).

intensity as data points in Figure 7; also shown in that fig-

ure is a fit to this data using the empirical equation (see Ref.

19 for further details)

I (t) = A + B exp

(
−t

τ1

)
+ C exp

(
−t

τ2

)
cos

(
2πt

τC

)
. (1)

The best fit yielded A = 24.0, B = 32.4, C = 16.5,

τ 1 = 1.7 ps, τ 2 = 16.5 ps, and τC = 4.5 ps. This formula is ap-

propriate for IVR involving one bright state, one strongly cou-

pled doorway state, and many weakly coupled bath states. The

value of τC allows the wavenumber separation of the states to

be deduced as 7.4 cm−1, which is consistent with both the

separations of the more intense features at 1160.6 cm−1 and

1152.6 cm−1 as well as between the same 1160.6 cm−1 band

and the one at 1145.6 cm−1.

Looking back at the tr-SEVI spectra, we see that some

bands are moving out of phase with the ∼1190 cm−1 band,

namely, one at ∼1230 cm−1 and one at ∼1540 cm−1. Look-

ing at the values in Table IV, it seems most likely that the

∼1230 cm−1 SEVI band is due to (M10M19M20)+, and hence

is a dark state coupled to M10M11 in the S1 state. This is

interesting as it mimics the behavior shown for Tol-h8 for

the FR at ∼460 cm−1 (see Refs. 1 and 23, and particularly

Ref. 18). We note that the ∼880 cm−1 band can be assigned

as (M18M19)+ and it is interesting to note that this is present

at t = 0, as is a band at ∼480 cm−1, which can be assigned

to M11
+, suggesting that the associated ZOS, M11M18M19

has some bright character. The appearance of these bands,

suggests that the (M11M18M19)+ band should be present,

and indeed the values in Table IV suggest that the band at

∼1370 cm−1 can be assigned to this vibration; this band is

present at 0 ps, but then increases in intensity further; this

may be a result of the M11M18M19 vibration being made up of

a combination of a bright (M11) and a (mostly) dark (M18M19)

vibration. The band at ∼1560 cm−1 is clearly a dark state

and an obvious assignment is to (M14
2M18M19)+ based on the

calculated values in Table IV; however, it is surprisingly in-

tense, given the weakness of the corresponding feature in the

REMPI spectrum (at 1180.8 cm−1). Although other features

are present in the spectrum, these are weak and/or overlapped

heavily making it difficult to distinguish them.

Similar observations for Tol-d3 regarding the complexity

of region E may be made regarding Region F (see Figures 1

and 4, inverted traces), which by comparison with the Tol-h8

spectrum, is expected to consist of combination bands formed

between the vibrations of the Fermi resonance at ∼440 cm−1

(see Ref. 1) and the intense bands at ∼950 cm−1, which were

themselves assigned to a number of ZOSs (see above). We

did not attempt to record ZEKE spectra via any of these

features.

Finally, we note that we have already mentioned the ap-

pearance of the combination bands M29+O and M29+P in

Subsection III D 1, which refer to the combination of M29

with the FR components arising from the M18M19 and M10

ZOSs.

E. Additional tr-SEVI results

tr-SEVI spectra were recorded for Tol-h8 via the two

features at 1263 cm−1 and 1284 cm−1, assigned as Fermi res-

onance component M29(M10/M18M19) (see Figure 1), in agree-

ment with Ref. 3. As before, it was not possible to excite these

two features coherently, since they are too widely spaced.

From our discussion earlier, we concluded that M10 is a ZOB,

and so in the present case, we would expect M10M29 to be the

ZOB, and M18M19M29 to be the ZOD. The wavelength of ps

pump laser pulse was tuned to excite each vibrational band

in turn and the resulting 0 ps SEVI spectra (not shown) were

found to be similar to the SEVI and ZEKE spectra recorded

for the M10/M18M19 Fermi resonance components but with the

most intense SEVI peaks shifted higher in wavenumber by

∼486 cm−1, which confirms their assignments as (M29M10)+
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and (M29M18M19)+. The relative intensities of these peaks

indicated that the lower wavenumber REMPI feature at

1263 cm−1 contains a majority contribution from the

M29M18M19 ZOD while the feature at 1284 cm−1 contains

a majority contribution from the M29M10 ZOB. This is the

same energy ordering that was observed for the (M10/M18M19)

Fermi resonance doublet at ∼750 cm−1, for which the higher

wavenumber component N contained a larger contribution

from the M10 ZOB. Recording SEVI spectra as a function

of time delay via the REMPI features at 1263 cm−1 and

1284 cm−1 showed that the SEVI band corresponding to the

ZOB simply decayed with time in each case, and there were

no oscillations in intensity; concurrently, regions of the spec-

trum that were dark initially, gained intensity over a broad re-

gion with time delay. Thus, there is rapid dissipative IVR for

these features, indicating that each REMPI feature contains

multiple eigenstates that are composed of coupled vibrational

states. This is in contrast to the M10/M18M19 Fermi resonance

components at ∼744 cm−1, where the lack of time depen-

dence in the SEVI spectra indicated that each REMPI feature

contained a single vibrational eigenstate. The IVR time con-

stants were measured to be 21 ± 5 ps for the REMPI band

at 1263 cm−1 assigned to M29M18M19 and 39 ± 11 ps for the

REMPI band at 1284 cm−1 assigned to M29M10. This conclu-

sion fits with the structureless spectra reported by Hickman

et al.,3 and we would anticipate largely structureless ZEKE

spectra in this case. No corresponding spectra for Tol-d3 were

recorded.

Similar results were obtained when exciting through the

band assigned as M8M29, which is located at ∼1463 cm−1

for Tol-h8 and ∼1459 cm−1 for Tol-d3, and the band at

1494 cm−1, assigned as M9M29 for Tol-h8 (the corresponding

Tol-d3 band was not studied). In all cases, exponential decay

of the �v = 0 SEVI band was observed, and a corresponding

growth of the “dark” region of the spectra. For M8M29, Tol-

h8 had an IVR time constant of ∼35± 6 ps, while Tol-d3 had

a value of ∼52 ± 6 ps. For M9M29, Tol-h8 had an IVR time

constant of 18 ± 6 ps.

F. IVR and the broad spectral background

1. General

As has been noted in the above, several of the ZEKE

spectra for Tol-h8 and Tol-d3 demonstrate a broad underly-

ing background. In the extreme, such as exciting via band U

for Tol-h8 or features within Region E for Tol-d3, there do

not appear to be any structured peaks; while in other cases,

structured peaks appear on top of the broad background.

Such broad backgrounds have been seen previously, in both

REMPI-PES9 and in dispersed fluorescence of toluene.3 From

quite early on, these broad backgrounds for toluene have been

associated with IVR processes;25 in particular, with wide-

scale mixing between a significant number of contributing

ZOSs in the S1 state. This leads to a vibrational eigenstate

that describes a wide range of motions such that fluorescence

or ionization occurs to a wide range of vibrational levels;

the number of these is such that almost all structure is lost in

the spectrum, owing to the number of overlapping ZOS spec-

tra. If all structure is lost, then in the time-resolved picture,

this situation is consistent with the so-called dissipative IVR

regime, whereby the number of coupled ZOSs is such that

the energy in the ZOB state is rapidly redistributed to a large

number of ZOSs and the number is such that the chances of

a recurrence of the energy solely in a bright state is negligi-

ble. It seems clear that, at sufficiently high wavenumber, the

dissipative picture will always dominate; however, for some

of the spectra recorded via lower wavenumber S1 vibrational

states, it is perhaps surprising that structure is completely lost.

Additionally, we note that the lack of structure when excit-

ing via one band does not imply a loss of structure for all

bands to higher wavenumber, as exemplified by our spectra.

Thus, in line with one of the key conclusions of our previous

paper,10 the onset of wide-ranging IVR seems to be mode-

specific, and occurs when particular states (so-called door-

way states) are accessed that provide an efficient coupling

mechanism to the bath of vibrational states whose number is

continually increasing with wavenumber. Particularly at low

wavenumber, the observation of doorway states relies on its

energetic coincidence with a bright state. (Clearly, at much

higher wavenumber, it is expected that there will be more

and more “doorway” states coupled to the increasing bath of

states as the numbers of overtones and combination vibrations

builds up; and sufficiently high in wavenumber it is likely

that essentially all states will become coupled to the bath

via some mechanism.) It also seems clear that, lower down

in wavenumber, the presence of low-frequency modes (vibra-

tions/torsions) will serve to heighten the chance of coupling

a doorway state to the increasing bath of states, owing both

to the occurrence of a larger number of eigenstates formed

from the various combinations and also by the provision of

other coupling pathways; however, at low wavenumber it is

still going to be critical that a doorway state exists that can

couple a bright state to the bath. One of our groups has iden-

tified doorway states in both pFT and toluene,10, 19 mainly us-

ing time-resolved SEVI spectroscopy; we shall refer to the

toluene work of previous studies and the present work further

in the below. We will break our discussion down to consider

the various wavenumber regions.

2. 730 cm−1 FR

We have discussed the assignment of the ZEKE spectra

that are presented in Figure 2 for excitation through the two

components of the Fermi resonances at ∼730 cm−1 for both

Tol-h8 and Tol-d3. As noted, the ZEKE spectra support the

conclusions of Hickman et al.3 with regards to the contribut-

ing ZOSs being M10 and M18M19 since the spectra show con-

tributions from each of the corresponding cation vibrations,

and these are well separated in wavenumber. In our work on

the ∼460 cm−1 FR in toluene,1, 18 we were able to make de-

ductions about the contributions of each ZOS to the FR, and

these were broadly in line with similar conclusions reached

by Gascooke and Lawrance.23 In the present case, this proves

not to be so straightforward, with the appearances of the

REMPI and ZEKE spectra apparently giving contradictory

information. The REMPI spectra clearly show that for both

isotopologues, the higher wavenumber feature is the more
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intense, and hence would have a majority contribution from

the ZOB. For Tol-d3, the ZEKE spectra indicate this feature

has a majority contribution from M18M19, while the lower

wavenumber one has a majority contribution from M10. On

the other hand, the spectrum recorded for Tol-h8 via feature M

indicates that it has a majority contribution from M18M19, with

the spectrum via N indicating more or less equal contribu-

tions. Furthermore, the 0 ps SEVI spectrum measured via fea-

ture N indicates a majority contribution from M10. The con-

clusion that band M has a majority contribution from M18M19

would suggest that M10 is the ZOB in Tol-h8, in line with the

REMPI intensities. For Tol-d3, however, the REMPI inten-

sities would suggest that the higher wavenumber band is the

ZOB, but the ZEKE intensities suggest this is M18M19. It does

not appear to be likely that the ZOB is changing between the

isotopologues.

A possible explanation of this is as follows. For Tol-h8,

although the calculated vibrational wavenumbers suggest that

the M18M19 combination should have a higher value than that

for M10, these values are very close and deficiencies in the

computational approach, such as neglect of anharmonic ef-

fects may change the order of these, so some caution is mer-

ited. Referring to the excitation spectrum of fluorobenzene,24

we note that this FR is present there also, and assigned to the

same pair of ZOSs. The lower component is the more intense

and has been assigned as consisting of a majority contribution

from M10, based on the activity observed in the DF spectrum.

Similar observations of activity have been made by Hickman

et al.3 for Tol-h8, when exciting the higher wavenumber com-

ponent, also assigned to M10. Consequently, the experimental

evidence points to band N having a majority contribution from

M10 and with M10 being the ZOB. We cannot rule out M18M19

also having some bright character, since we were unable to

excite the FR coherently. Hence, we suggest that M10 and

M18M19 are very energetically close ZOSs and then Fermi res-

onance leads to the resulting vibrational eigenstates becoming

separated in wavenumber. These conclusions are then in line

with the DF, REMPI, ZEKE, and SEVI results for Tol-h8.

We are still left with the slightly puzzling results from

Tol-d3. The ZEKE spectra and calculations are both consis-

tent with the ordering of the ZOSs being reversed from that in

Tol-h8, and so the vibrational eigenstates would be expected

to have reversed majority contributions; however, the REMPI

spectra have bands that are quite close to being equal. We con-

clude that the intensities of the REMPI features are each af-

fected by dissipative IVR effects to differing extents. Indeed,

to be consistent with the ZEKE spectra, band O would be ex-

pected to be more intense than band P. We note that there

are broad features in the spectrum around these two bands,

and so we hypothesise that either the M10 vibration is itself

coupled efficiently to the bath of dark states, or the lower of

the two vibrational states formed after M10 and M18M19 cou-

ple becomes more efficiently coupled to the bath than does

the higher wavenumber one. In conclusion, the above analysis

suggests that the ordering of the ZOSs has reversed between

Tol-h8 and Tol-d3, but that M10 is the ZOB in both cases.

We note that Whiteside et al.9 observed broad photoelec-

tron spectra with little structure when (likely) exciting through

band N, at odds with the present ZEKE and previous DF

results. One explanation for this would be that the beam con-

ditions were warmer in those experiments, opening up the

possibility of other IVR coupling mechanisms via Coriolis or

vibration-torsion couplings via excited torsional levels.

3. M8 and M9

At around 950 cm−1, there is a pair of bands for Tol-h8

that have been assigned to M8 and M9, which we have con-

cluded are not in Fermi resonance. On the other hand, for

Tol-d3, there are more bands, suggestive of vibrational fea-

tures having moved into resonance with one or more of M8

and M9. As we noted above, it was not possible to excite

these coherently and so no time-resolved results have been ob-

tained. In any case, for Tol-h8, we have noted that M8 and M9

do not appear to be in Fermi resonance. On the other hand, for

Tol-d3, there are extra bands which we have concluded arise

from other vibrations coming into the vicinity of M8 and M9

and then interacting with them. We have concluded that M8

does not seem to be strongly coupled to the interloping ZOS,

and that it is M9 that couples to give these new states intensity.

The latter is confirmed by the essentially similar wavenum-

bers for the M8 vibration in both Tol-h8 and Tol-d3, while the

Tol-d3 bands are all shifted from the position of M9; and also

the fact that when exciting via band Q (assigned to M8) there

is no obvious broad background to the ZEKE spectrum, while

those recorded via T and S do show such a background. The

ZEKE spectra indicate band T has the majority contribution

from M9, even though it is not the most intense, while bands

R and S arise from Fermi resonance with M9. As with the

∼730 cm−1 features just discussed, we believe the expected

REMPI intensities are affected by IVR, and it is clear from

the ZEKE spectra in Figure 3 that there is more IVR for Tol-

d3 than there is for Tol-h8. If M9 is the doorway state for

Tol-d3 to the bath of ZOSs, then this would explain the re-

duced intensity of band T from that expected, even though

it contains the largest contribution from the M9 ZOB, and the

broad background observed when exciting via T and S, but not

from Q.

4. 1190 cm−1(Tol-h8) and 1150 cm−1(Tol-d3) FRs

In the above, we have discussed these two FR regions for

Tol-h8 and Tol-d3, respectively. These are particularly note-

worthy because of their very different nature, even though the

majority of the contributing ZOSs are very similar in each

case. Recall that in these regions we expect the FRs in Re-

gions A and B to appear in combination with each of the

FR components at ∼730/750 cm−1. In the absence of any

other effects, we would therefore expect a pair of features,

resembling the Regions A and B FRs, roughly separated by

20 cm−1. However, for Tol-h8 we find one intense set of fea-

tures to lower wavenumber and a much weaker set to higher

wavenumber, with the features in about the expected posi-

tions. Together with previously published tr-SEVI results and

DF results, the explanation for this large intensity difference

in Tol-h8 can be attributed to the coincidental presence of

M6 in this spectral region. This bright state gives significant

intensity to those components that are directly coupled to
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M18M19. As such, when exciting through bands V and W, an

intense M6
+ band appears in the ZEKE spectrum. Unexpect-

edly, a clear contribution from another vibrational eigenstate

does not appear in the REMPI spectrum, and again the expla-

nation appears to rest with significant coupling to a bath of

ZOSs that reduces the intensity of band U, which is also de-

duced to contain a significant contribution from the ZOB, M6,

supported by the fact that the calculated S1 wavenumber is

in very good agreement with the wavenumber of this feature.

The significant coupling of the ZOSs that give rise to band U

with the vibrational bath in this region is supported by the lack

of structure in the ZEKE spectrum, plus the loss of intensity

of the M6
+ feature in the tr-SEVI spectra at long times.

Somewhat surprisingly, the Tol-d3 spectrum shows very

different behavior. First, the strong features in Region E are

not associated with M6, since this blue shifts, and so is too

far away in wavenumber to contribute.10 The tr-SEVI spectra

indicate that in fact M10M11 is the bright state, notwithstand-

ing the weakness of this state in the Tol-h8 spectrum. The

tr-SEVI spectrum does not show any evidence of any other

bright state contributions, and so it is surprising that Region E

is so intense, as is the fact that the bands marked Y, assigned

as involving M6 in Tol-d3, are somewhat weak; particularly

given the very bright nature of M6 in Tol-h8. We currently

have no explanation for this dramatically different behavior

of the combination bands involving M10 between the two iso-

topologues.

We note that for Tol-h8 we have considered in depth that

a potentially much tidier assignment would be that the eigen-

states with majority contributions from M10 and M18M19 are

the same way around in Tol-h8 and Tol-d3, with the strong

ZEKE band seen when exciting via bands V and W then be-

ing assignable to (M10M11)+. In turn, this would lead to the

conclusion that the bright state was the same vibration in both

isotopologues, and further, it would be the one that is the ZOB

in both contributing FRs. However, the expected wavenum-

ber for (M10M11)+, based on our previous1 experimental de-

termination of the contributing vibrations, and its observation

at 1269 cm−1 when exciting via band N in the present work,

makes it clear that the strong feature cannot be (M10M11)+, but

must be assigned to M6
+ based on the calculated wavenum-

ber, the DF results and the tr-SEVI spectra.

Finally, we note that we have recorded tr-SEVI spec-

tra of several other higher wavenumber features, which show

dissipative IVR, with the rate of IVR higher for the higher

wavenumber features. Additionally, the IVR rate might be ex-

pected to be higher for Tol-d3 than Tol-h8; however, it was

measured to be slower via the M8M29 feature in line with

comment made in Ref. 10 that the higher density of states

in Tol-d3 does not necessarily lead to enhanced IVR. Overall,

there does seem to be a general, but not monotonic, trend for

increased rates of dissipative IVR with increased density of

states at sufficiently high wavenumber; however, this is only

a very limited dataset. To lower wavenumber, however, it is

clear that whether IVR is dissipative or not depends critically

on there being both a sufficiently dense set of ZOSs avail-

able for coupling, but also that there is an available state that

can mediate the coupling of the ZOB to the bath of ZOSs –

a doorway state. It is also possible, higher in wavenumber,

TABLE V. Assigned bands observed in the 1 + 1 REMPI spectra of Tol-h8

and Tol-d3. A· · ·B indicates two levels that are in Fermi resonance.

Wavenumber/cm−1

Assignment Toluene-h8 Toluene-d3

M20
2 289.9 268.9

M30
1 331.4 294.6

M14
1 M20

1 371.0 359.2

Tol-ArM11
1 431.0 412.2

M14
2 451.8 452.4

M11
1· · ·M19

1 M20
1 456.6 437.8

M19
1 M20

1· · ·M11
1 462.2 443.0

M18
1[3(−)] 472.6 436.0

M14
2 [3(+)] . . . 480.6

Tol-ArM29
1 504.9 501.3

M11
1 [3(+)] 512.9 . . .

M29
1 531.3 529.1

M14
1 M19

1 539.3 530.5a

M19
2 628.5 612.3

M16
1 696.8 688.0

M18
1 M19

1· · ·M10
1 734.4 729.6

M10
1· · ·M18

1 M19
1 753.2 712.6

M18
1 M19

1[3(+)]· · ·M10
1[3(+)] 789.2 760.4

M10
1[3(+)]· · ·M18

1 M19
1[3(+)] 807.6 743.2

M12
1 M14

1 915.5 912.7

M8
1 933.5 931.9

M9
1 965.1 972.1

M8
1[3(+)] 988.0 962.9

M9
1 [3(+)] 1019.9 . . .

M6
1 ∼1192b 1225.6a

M18
1 M19

1M29
1· · ·M10

1M29
1 1262.6 1257.2

M10
1M29

1· · ·M18
1 M19

1M29
1 1282.5 1240.0

M8M29 1462.8 1459c

M9M29 1494.4 . . .

aPart of a Fermi resonance – see Ref. 10.
bPresent in a complicated FR, see text.
cMeasured in ps-REMPI spectrum only, with a likely error of ±5 cm−1.

for there to be states that can still show no IVR or restricted

IVR (Fermi resonance) if there is no doorway state available

to provide the coupling route.

IV. CONCLUSIONS

We have presented one-colour REMPI spectra in order to

investigate the vibrations in the S1 electronic state of Tol-h8

and Tol-d3 between 700 and 1500 cm−1. The observed vi-

brations have been assigned based on quantum chemical cal-

culations and ZEKE spectra recorded through a number of

these features. Two Fermi resonances were observed in the

S1 electronic state of Tol-h8; one at ∼750 cm−1 and a second

at ∼1190 cm−1. The zero-order states order states involved

in the lower wavenumber Fermi resonance were unravelled

for both isotopologues based on the vibrational activity ob-

served in the ZEKE spectra recorded via each level. However,

each ZEKE spectrum showed a broad “hump” in the baseline,

an effect often concluded to be a result of significant IVR;

such observations were primarily observed in the dispersed

fluorescence spectra previously recorded via these levels.3

The zero-order states involved in the higher wavenumber
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TABLE VI. Experimentally derived fundamental vibrational wavenumbers

(cm−1) of the S1 and cationic ground electronic states of Tol-h8 and Tol-d3.

S1 D0
+

Mi −h8 −d3 −h8 −d3

a1

6 ∼1190a 1232a

8 934a 932a 980a 972a

9 966a 972a 990a

10 755a 713a 767b 739b

11 457b 438b 496b 473b

a2

14 226b 225b 335b 334b

b1

18 566a 528a

19 314b 306b 377b 366b

20 145b 134b 151b 140b

B2

29 532b 530b 477/486b 477b

30 331b 295b 342b 303b

aThis work.
bReference 1.

ranges were considerably more difficult to unravel; however,

assignments of the vibrations which likely contribute to this

Fermi resonance were made based on experimentally ob-

served vibrations in both the S1 and cation electronic states,

in both this work and Ref. 1, and the results of time-resolved

investigations both here and previously reported;10 for Tol-h8,

the DF study by Hickman et al.3 was also extremely useful.

For the 1190 cm−1 FR in Tol-h8, structure persisted in the

ZEKE spectra recorded via two intermediate levels in Tol-h8,

but a broad “hump” in the baseline was again observed, while

it was not possible to record a structured spectrum via a third

intermediate level. This FR has been discussed here and in

Ref. 10, with the involvement of the M6 vibration and dissi-

pative IVR being key. Furthermore, although many vibrations

were observed in a similar wavenumber range of Tol-d3, we

were unable to record structured spectra via any of these lev-

els. Some headway on the assignment was made, however,

from the tr-SEVI spectra, which allowed a different ZOB to

be identified. Intriguingly, ZEKE spectra recorded via inter-

mediate levels lying between these two FR in Tol-h8 showed

no evidence for IVR, in support of conclusions made in a pre-

vious dispersed fluorescence study.3 Overall, the results show

that there is mode dependence of the IVR rates in these two

isotopologues, and we have noted that it is critical not only for

there to be a sufficient density of states for dissipative IVR

to occur, but there must be a vibrational state available that

facilitates coupling of the ZOB to this bath of states.

Subtle changes in wavenumbers of the vibrations of these

two isotopologues result in dramatic changes in the vibra-

tions observed in several wavenumber ranges, along with the

coupling between them, notably so in the S1 ∼1190 cm−1

region. Knowledge of the fundamental vibrational wavenum-

bers, along with expectations of their changing wavenumber

upon substitution, based upon the form of these vibrations,2

not only allows the changing interactions between these vi-

brations to be unravelled, but may be used to predict when

these vibrations are likely to fall into resonance.

Finally, in Tables V and VI, we present a summary of

assigned bands in the REMPI and ZEKE spectra, respectively.
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