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Abstract 

The work presented in this thesis aims to improve the performance of 

the Fundamental PWM sensorless control technique by proposing a new way 

to estimate current derivatives in the presence of high frequency oscillations. 

The Fundamental PWM technique offers performance across the entire speed 

range (including zero speed). The method requires current derivative 

measurements when certain PWM (Pulse Width Modulation) active and null 

vectors are applied to the machine.  However the switching action of the active 

devices in the inverter and the associated large dv/dt result in current and 

current derivative waveforms being affected by high frequency oscillations 

which prevent accurate measurement of the current derivative. Other 

approaches have allowed these oscillations to decay before attempting to take 

a derivative measurement. This requires that the PWM vectors are applied to 

the machine for a time sufficient to allow the oscillations to decay and a 

derivative measurement to be made (the minimum pulse width). On some 

occasions this time is longer than the time a vector would have normally been 

applied for (for example when operating at low speed) and the vectors must be 

extended and later compensated. Vector extension introduces undesirable 

current distortion, audible noise, torque ripple and vibration.  

In this thesis the high frequency oscillations and their sources are 

investigated and a method of using Artificial Neural Networks to estimate 

current derivatives using only a short window of the transient current response 

is proposed. The method is able to estimate the derivative directly from phase 

current measurements affected by high frequency oscillations and thus allows 

a reduction in the minimum pulse width to be achieved (since it is no longer 

necessary to wait for the oscillations to fully decay) without the need for 

dedicated current derivative sensors. The performance of the technique is 

validated with experimental results.  
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Chapter 1  

Introduction 

1.1 Background  

Variable frequency drives are now commonplace in industrial 

applications and with the realisation of the negative environmental effects of 

burning fossil fuels they are certain to become even more common in future 

motive applications. 

The most basic control technique of all those employed in variable 

frequency drives using AC machines is open loop control. Open loop control 

offers a simple solution but provides poor dynamic performance and suffers 

from speed droop when a load torque is applied. Whilst this is perfectly 

acceptable in many applications, there are many others where this is not 

acceptable and closed loop control is needed. Closed loop control systems 

have relied on shaft mounted encoders or resolvers to provide a rotor position 

measurement which can be used for control. These mechanical speed feedback 

devices work very well, but their reliability can be an issue, especially when 

operating in harsh environments, which can undermine the robustness and 

reliability of the entire drive system leading to potentially costly downtime. 

Other disadvantages include the additional cost, increased manufacture time 

since they must be calibrated and on small machines they represent a 

significant proportion of the entire physical package size.  
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These drawbacks have contributed towards a large research focus on 

sensorless control techniques. Such techniques rely on electrical 

measurements only to estimate the rotor position allowing closed loop control 

of the machine without the need to have a mechanical speed sensor. Many 

sensorless approaches exist, each of which has its own merits and weaknesses. 

Of the sensorless techniques, mathematical model approaches face issues at 

low speed where measurements from the machine become small and are badly 

affected by noise which prevents these methods from being able to operate at 

zero speed. Parameter sensitivity and variation also introduces errors while the 

inverter itself affects the performance by introducing non-linear behaviour 

through variations in the applied dv/dt. Saliency tracking methods seek to 

track inductance variations brought about by the variation in the effective air 

gap length.  

The saliency tracking techniques when considered from a general point 

of view (as in Chapter 2) can be applied to both permanent magnet machines 

and induction machines. The difference lies in the saliencies that are being 

tracked and their sources. For example, the saturation saliency in permanent 

magnet machines is due to the rotor magnets while in an induction machine it 

is due to the fundamental wave. Geometric effects in permanent magnet 

machines arise from magnet placement while in induction machines it is due 

to rotor design (rotor slot opening width, number of rotor bars etc). 

Saliency tracking techniques are able to operate at zero speed and are 

immune to parameter sensitivities but often require additional signals to be 

applied to the machine either by adding these to the fundamental output of the 

inverter or by directly modifying the PWM (pulse width modulation) sequence 

itself, both of which introduce current distortion, torque ripple and audible 

noise.  

One particular saliency tracking technique, the Fundamental PWM 

technique, makes use of the current derivative response of the machine to 
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pulses applied under normal SVPWM (Space Vector PWM) to track the 

machine saliency. This is in theory an ideal solution as the removal of the need 

to add special test pulses or HF (high frequency) signals also removes their 

negative side effects (current distortion, torque ripple, vibration and audible 

noise) and the technique is able to operate across the entire speed range. 

However additional sensors in the form of current derivative sensors are often 

required and the technique is limited by high frequency oscillations appearing 

in the current and current derivative waveforms due to parasitic impedances in 

the motor and cabling responding to the large dv/dt applied during switching.  

These oscillations are responsible for the major limitation affecting the 

Fundamental PWM technique – the Narrow Vector Problem, as they prevent 

immediate measurement of the current derivative and result in an enforced 

delay until measurement of the current derivative becomes possible. The 

PWM vector being applied to the machine must also be maintained throughout 

this delay; in many cases this means extending the PWM vector length beyond 

the time originally intended. This delay is known as the minimum vector time 

(tmin) and extending short vectors to the minimum vector time introduces 

undesirable current distortion into the response.  

1.2 Scope of the Thesis and Overall 

Objectives 

This thesis aims to investigate the minimum vector problem and 

propose new methods to reduce this limitation thus providing a sensorless 

technique that can operate across the entire speed range with minimal current 

distortion, torque ripple and audible noise. It will be seen that the parasitic 

impedances that cause the high frequency oscillations in the current response 

cannot be eradicated and so will always produce some unwanted ringing 
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which prevents one from overcoming the problem completely. In this work 

methods to extract the current derivative from the transient phase current 

waveform while the high frequency oscillations are still present are explored. 

This offers two distinct advantages: 

1) If the derivative can be estimated before the oscillations have decayed 

then the minimum vector time can be significantly reduced therefore 

reducing the current distortion imposed by vector extensions.  

 

2) Extracting the derivative from the phase current response removes the 

need to have additional dedicated derivative sensors in the drive as the 

standard current sensors found in a normal drive can be used instead.  

 

It should be noted that the phase current has previously been used to 

estimate the derivative but a significant minimum vector length was required 

to allow a detectable change in the current to occur [1]. In this work a new 

approach which uses the phase current and an artificial neural network to 

estimate the current derivative in a shorter time than has previously been 

possible is proposed. The Narrow Vector Problem is far from straightforward 

to solve as there are significant variations in the shape of the transient 

responses seen. The transient current response is highly dependent on the dv/dt 

of the inverter which varies according to the conducting device and operating 

condition of the inverter.  

A target for the accuracy of the derivatives estimated by the proposed 

technique is specified in this work. A maximum increase of 10% in the 

THD+N (Total Harmonic Distortion + Noise) when compared to derivatives 

found through existing methods has been defined as the acceptable limit in 

Chapter 2.  
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Noting the above arguments a number of objectives may be set out which 

include: 

 To understand the sources of main parasitic impedances which cause the 

high frequency phenomena seen in the transient current and current 

derivative responses following inverter switching 

 

 To understand the non-linear switching behaviour of the inverter, its 

effects on the transient current response and appreciate when and how 

this effects the current derivative response  

 

 To propose solutions which either have zero or a minimal effect on the 

fundamental operation of the inverter 

 

 To investigate new methods of extracting the current derivative from a 

transient current response in a reduced time, in the presence of high 

frequency oscillations. The maximum acceptable increase in the THD + 

N of the estimated derivatives (compared to derivatives obtained using 

existing methods) is limited to 10%. 

 

 To identify the saturation saliency component using the estimated 

derivatives in a time frame that is at least comparable to existing 

methods. 

 

 To implement proposed solutions in hardware in order to demonstrate 

their effectiveness in a real time situation. 
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1.3 Thesis Overview 

The following gives a brief outline of the material contained in this thesis  

Chapter 2 summarizes the common sensorless approaches beginning 

with mathematical model based approaches. The saliencies (and their origins) 

that exist in induction machines and permanent magnet machines are 

introduced before moving on to generally describe saliency tracking 

techniques. The Fundamental PWM technique and its main limitation, the 

Narrow Vector Problem, are described in detail as it is this area that this 

research is aimed at improving. The appearance of the current derivative 

waveforms that are of interest is introduced and an acceptable level of 

accuracy for a derivative estimation system is defined. 

Chapter 3 discusses the sources of the parasitic impedances that give 

rise to the oscillations seen in the current response following a switching event 

of the inverter. Electrical models which are able to reproduce the high 

frequency behaviour are investigated and simulation results are presented and 

compared with those obtained through experimental investigation. 

Discrepancies in the shape of the current transients following switching at low 

current are highlighted and the reasons behind the anomaly are identified and 

discussed; namely the non-linear switching behaviour of the inverter due to 

the parasitic capacitance of the switching devices. Simulation results are then 

presented with these parasitic capacitances included to replicate the low 

current behaviour. 

Chapter 4 introduces a number of methods implemented by researchers 

previously which lessen the high frequency current oscillations. These 

methods mostly aim to reduce the dv/dt of the inverter phase(s) following 

switching. While this does reduce the current oscillations it also has the effect 

of reducing the high frequency content of the voltage waveform applied to the 
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machine. The leakage inductances respond to this high frequency content 

allowing the position to be identified. The derivative response reduces and 

switching losses are increased.  

Since it is desirable to have a solution which has a minimal effect on 

the operation of the drive, non-intrusive techniques are investigated which 

make use of current sensors (therefore removing the need for special current 

derivative sensors). These involve sampling the current transient (including 

the high frequency oscillations) at high speed to capture the response to a 

reasonable resolution – this is often referred to as oversampling. Work by 

other researchers is introduced before a mathematical curve fitting approach is 

explored. Many variations on the curve fitting approach are presented, 

however an accurate estimate of the current derivative could not be achieved 

when using only a small portion of the current transient. This is due to the 

limited bandwidth of the current sensor, the non-linear switching behaviour of 

the inverter and difficulties in identifying key contributions in the response 

beyond the dominant high frequency component. 

Chapter 5 introduces the idea of using an artificial neural network 

(ANN) as a pattern recognition tool to associate current transients with their 

steady state derivatives. This method offers a way of dealing with both the 

non-linear switching behaviour of the inverter and the limited bandwidth of 

the current transducer. Artificial neural networks require training and so a 

methodology to achieve this is discussed before results obtained using a neural 

network implemented in Matlab supplied with experimental current transient 

data are presented.  

Chapter 6 presents the experimental system. The hardware configuration, 

control platform and FPGA (Field-Programmable Gate Array) development 

board (used to implement the proposed technique) are described. Some of the 

FPGA design methodology is also described. 
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Chapter 7 presents a set of experimental results achieved using the 

proposed technique. The derivative estimates from the neural network are 

compared with derivative measurements obtained using the two current 

sample method (which measures the change in phase current amplitude over a 

set time window to give di/dt) and those measured directly using a Rogowski 

coil. The performance of the neural network approach at various speeds and 

loads is analysed to see what effects these factors have on the ability of the 

ANN to accurately estimate the derivatives and ultimately identify the 

saturation saliency component. Finally the performance of the technique with 

a narrowed pulse width is investigated. The results show that although there is 

degradation in the accuracy of the derivative estimates, they offer an 

improvement over the traditional two current sample and derivative sensor 

techniques when operating under narrow pulse widths. 

Chapter 8 discusses the findings of the research and suggests further 

work that could be undertaken in this research area based on the findings of 

this study.  
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Chapter 2  

Sensorless Control Techniques 

2.1 Introduction 

Sensorless control techniques are particularly attractive to industry as 

they offer closed loop control without the need for a shaft mounted mechanical 

encoder or resolver. This has a number of advantages including a reduction in 

production time and costs, smaller overall physical size of the machine (this is 

particularly the case for small frame size machines where an encoder is a 

significant proportion of the overall size) and increased reliability and 

robustness given the tendency of encoders and resolvers to fail under harsh 

conditions. This Chapter will briefly introduce the main sensorless techniques 

that exist today and are applicable to both permanent magnet and induction 

machines. Sensorless techniques can be divided into two categories; 

mathematical model based methods which generally rely on measuring 

electrical inputs of the machine and supplying these to a mathematical model 

from which a speed estimate is obtained while saliency tracking techniques 

make use of the machines anisotropic properties. As each technique is 

discussed the associated shortcomings will also be highlighted. With the 

various techniques introduced, the main focus will be directed towards the 

Fundamental PWM technique and the main limitation that effects this 

technique, the Narrow Vector Problem, which this work will aim to alleviate.  
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2.2 Mathematical Methods 

2.2.1 Model Based Adaptive Reference System (MRAS) 

The MRAS approach is one of the simplest closed loop sensorless 

techniques known. It relies on two mathematical models of the machine. One 

which depends on rotor speed (the adaptive model) and one which is 

independent of rotor speed (the reference model). The models both estimate 

the same parameter with rotor flux being common [2-4], Back-EMF [5] and 

reactive power [6] have also been used. The cross product of the model 

outputs is taken and the rotor speed is adjusted such that the adaptive model 

output is changed to drive the cross product result to zero at which point the 

estimated rotor speed will match the actual rotor speed [2, 3]. The adaptive 

mechanism is designed according to the hyper-stability concept which 

guarantees convergence and suitable dynamic characteristics [7].  

 

Figure 2.1 MRAS sensorless control scheme where the rotor flux is the 

estimated parameter 
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Performance of MRAS systems at high speed is excellent. However 

they perform poorly at low speeds where the sampled values supplied to the 

models are difficult to accurately measure and have a low signal to noise ratio. 

Parameter sensitivity is also an issue as parameters need to be accurately 

defined. There is often a need to calibrate a drive to determine the exact values 

of the model parameters (instead of simply using datasheet and calculated 

values). Heating during operation causes a change in the resistances used in 

the design with a key parameters being the stator and rotor resistances, this in 

turn affects the stator and rotor time constants. Many tracking techniques have 

been proposed to limit the effects of changes in stator and rotor resistance by 

tracking the variation online [8-12]. In addition, effects from the inverter itself 

start to become significant at low speed and should be compensated. For 

example the power device voltage drop is considerable when compared to the 

voltage supplied to the machine [13]. These methods also require the use of 

integrators which introduce drift due to noise in the measurements or 

imperfect AC quantities. It is reported that low pass filters can replace the 

integrator but low speed behaviour will be affected due to the phase shift 

introduced [2, 13]. An alternative is to use a feedback integrator which 

identifies the drift component in the output and feeds a cancellation term back 

into the integrator [13, 14]. The feedback integrator modification to the 

voltage model is illustrated in Figure 2.2. 

 

 

Figure 2.2 Voltage model implemented using a feedback integrator to cancel 

the effect of integrator drift [13, 14] 
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The feedback integrator well but can be difficult to start since the 

identification of the drift component usually relies on knowledge of peak AC 

values (hence one full period of the flux waveform is required).  

2.2.2 Observer Techniques  

Observers feature a state space model of the machine operating in 

parallel with the actual machine itself. The concept involves supplying 

measured values to the model and then estimating state variables that can be 

compared with a measured value from the machine. In [15-19] the estimated 

state variables of an induction machine model were the stator current and rotor 

flux. The state space model includes the rotor speed. This is the unknown 

parameter of interest and is varied through an adaptive mechanism until the 

state space model output matches the measured value of the machine. The 

model was supplied with stator voltage measurements in the stationary 

reference frame. Design of the adaptive mechanism according to the 

Lyapunov criterion and careful selection of the gain values used ensures 

stability [16]. Figure 2.3 gives a general overview of an observer based design. 

More details regarding the implementation can be found in [15-19].  

 

Figure 2.3 Simplified diagram of the rotor flux and speed adaptive observer 
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Observer techniques suffer from stability problems at low and zero 

speed operation. Also accurate definition of parameters is important and 

parameter tracking/identification is often required to overcome changes due to 

heating. 

2.2.3 The Extended Kalman Filter 

Where measurements are affected by noise the Kalman filter, a 

variation on the standard observer based methods, is seen as a good way to 

estimate state variables. When the rotor speed is considered as a state variable 

the system becomes non-linear and an extended Kalman filter must be used 

which involves linearizing the system about a set operating point [20, 21]. The 

system estimates the error covariance and uses this to predict states. The 

implementation of the algorithm is a recursive one and as a result adds a 

significant computation burden. The performance of the system in the 

presence of random noise however is very good.  

2.2.4 Mathematical Methods Conclusions 

The mathematical techniques described all share the common 

characteristic of performing very well at high speed but poorly at low and zero 

speed. This limitation restricts their use in many applications since variable 

speed drives must start from zero speed and often need to be able to operate at 

or close to zero speed. This has led to a concentration of research effort on an 

alternative type of approach called saliency tracking which will now be 

discussed.  

 



Chapter 2 
Sensorless Control Techniques 

 
14 

 

2.3 Saliency Tacking Techniques 

2.3.1 Introduction 

With the zero and low speed limitations of the mathematical modelling 

techniques, saliency tracking techniques have received significant attention in 

recent years. These techniques take advantage of the machines anisotropy 

which can either be natural or intentionally introduced. The anisotropic 

properties of the machine can be tracked even when operating at zero speed 

and the influence parameter dependence (which affects the mathematical 

model methods) is removed. The work presented in this research is 

implemented using a permanent magnet machine, but the saliency tracking 

techniques described are equally applicable to both permanent magnet 

machines and induction machines. Before describing the saliency tracking 

methods, the saliencies that exist in permanent magnet machines and induction 

machines are briefly described.  Several saliencies have been identified and 

can be successfully tracked in induction machines, these include: 

 Saturation saliency due to fundamental wave excitation [22-25]. The main 

flux has an associated orthogonal leakage flux which causes magnetic 

saturation around the affected stator windings. This directly affects the 

leakage inductance of affected stator windings. The stator leakage 

inductance is modulated as the saturation moves around the stator. The 

effect is similar to saturation saliency due to the magnets in permanent 

magnet machines (which will be described in more detail later). 

 Rotor slotting saliency exists due to the variation in magnetic coupling 

between the stator windings and rotor slot openings as the rotor slots pass 

the stator windings [22, 23, 25-27]. Each stator winding has a leakage flux 

associated with it which passes through the surface of the rotor (for 

explanation purposes assume that this flux does not couple with the rotor 
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bars). The rotor slots cause a variation in the effective air gap seen by the 

leakage flux. The two extremes are; 1) rotor and stator slots aligned – in 

this case the leakage flux will be at a minimum as the aligned rotor slot 

affects the leakage flux path (resulting in maximum air gap length). 2) 

Stator and rotor slots misaligned by half a rotor slot pitch – in this case the 

leakage flux is at a maximum as adjacent rotor slots have no effect on the 

leakage flux path. The variation in leakage flux modulates the stator 

leakage inductance which allows detection of the effect. The number of 

saliency cycles per rotor revolution will be equal to the number of rotor 

slots. This technique requires the use of a rotor with open or semi closed 

rotor slots.  

 Saliency can be intentionally introduced by designing the rotor with 

asymmetries introduced around its circumference. In [28] the width of the 

rotor slot openings were varied to cause a variation in the leakage 

inductance while in [29] a double cage rotor was used which incorporated 

a resistance variation in the wire used in the outer cage (achieved by 

varying the copper gauge). These methods can offer a more robust 

position signal by being independent of load but obviously require the use 

of a specially designed rotor. 

 When considering permanent magnet machines there are two main 

saliencies which naturally exist; geometric and saturation saliencies.  

Geometric saliencies arise from the magnet placement in the rotor 

construction. Three common arrangements exist; these are illustrated in Figure 

2.4 [23]. The magnets themselves have a relative permeability close to one 

meaning that the magnets appear as air gap to the flux. The main flux due to 

the permanent magnets is aligned with the d-axis. An increase in the effective 

air gap seen by the d axis leads to a reduction in the d axis inductance 

compared to the q axis inductance. The surface mount arrangement shown in 

Figure 2.4 (a), from the point of view of the rotor and effective air gap, is 

symmetrical and has a no geometric saliency. The configuration shown in 
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Figure 2.4  (b) has some saliency due to the rotor iron interpoles while the 

construction shown in Figure 2.4  (c) is a highly salient one. In addition to the 

salient nature of this design, the magnets themselves are better protected 

against centrifugal forces as they are contained within the rotor. This also 

offers better thermal protection thus reducing the risk of de-magnetisation. 

They are however more difficult to construct [23]. 

 

 

 (a)  (b)  (c) 
   

Figure 2.4 Rotor construction configurations of a permanent magnet motor 

[23]: (a) surface mount, (b) Inset and (c) Interior 

 

The other saliency that exists in permanent magnet machines is known 

as saturation saliency. The flux in the machine causes local saturation of the 

iron, therefore reducing its permeability. This reduces the inductance of any 

conductors passing through the stators saturated region. There is a large 

saturation due to the main flux. Saturation also exists due to the leakage flux 

which occurs orthogonally to the main flux. This is illustrated in Figure 2.5 

which shows the ideal no load case [23, 30].  
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Figure 2.5 Magnetic saturation due to the main flux and leakage flux in a 

surface mounted permanent magnet machine [23, 30] 

 

Under normal unloaded conditions the main flux causes a large 

saturation aligned to the d-axis. The resulting effective air gap due to the main 

flux is large [31]. The leakage flux saturation affects are aligned to the q-axis, 

hence saturation due to the leakage flux causes a reduction in the q-axis 

leakage inductance compared to the d-axis leakage inductance. The leakage 

inductances are almost unaffected by the saturation due to the main flux [32]. 

The saturation caused by the leakage flux occurs in the stator yoke and the 

teeth as shown in Figure 2.6 [30]. 
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Figure 2.6 Saturation points due to leakage flux [30] 

  

The saturation results in a reduction in the permeability of the iron 

surrounding the stator windings. This causes a reduction of the stator leakage 

inductances of the windings traversing the saturated iron. By tracking the 

variation in spatial leakage inductance around the machine the rotor position 

can be established. The stator leakage inductances themselves are positionally 

dependant and can be described by equations 2.1 - 2.3 [33]. ݈ఙ௔ ൌ ݈௢ ൅ ο݈Ǥ  ௔௡ሻߠሺ݊௔௡ݏ݋ܿ

 
(Eqn 2.1) 

  
  ݈ఙ௕ ൌ ݈௢ ൅ ο݈Ǥ ݏ݋ܿ ቆ݊௔௡ ൬ߠ௔௡ െ  ൰ቇ (Eqn 2.2)ߨ͵ʹ
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݈ఙ௖ ൌ ݈௢ ൅ ο݈Ǥ ݏ݋ܿ ቆ݊௔௡ ൬ߠ௔௡ െ Ͷ͵ߨ൰ቇ (Eqn 2.3) 

 

Where lo is the average inductance, ǻl is the inductance amplitude variation 

due to the saliency, nan is the number saliency peaks per shaft rotation (=2 for 

saturation saliency). 

In order to track the variation in stator inductance a high frequency 

voltage signal is applied to the machine and the resulting current response is 

measured to track the impedance variation. This high frequency signal 

generates a flux which is not able to flow through the main flux path and so 

the leakage effects dominate the response (providing the effects of resistance 

voltage drop and back-EMF are cancelled) [23, 31].    

When load is applied to the machine the q-axis current introduces a 

flux in the q-axis which has the effect of shifting the resultant main flux away 

from the d-axis. The resulting position estimate is aligned to the resultant flux 

and not the true d-axis of the machine and so compensation is required to 

remove the phase shift effects of q-axis flux on the position estimate [23, 30, 

34]. Naturally the level of compensation needed depends on the magnitude of 

Iq and hence load. 

Saliency tracking methods themselves can be further split into two 

groups depending on the way the high frequency signal is applied; one group 

of methods have a high frequency signal added or “injected” into the demand 

signals applied to the machine while the other group of methods make use of 

the inherent high frequency content of transient vectors applied to the machine 

under PWM. For transient vector methods, in most cases additional vectors are 

applied to the machine that would not be applied under normal PWM 

operation in order to obtain the necessary measurements required for position 

estimation. 
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2.3.2 High Frequency Injection Methods 

High frequency signal injection techniques work by adding a high 

frequency signal to the reference vector that is output by the inverter under 

normal operation. The high frequency signal itself is added during the 

implementation of the classic vector control equations and can either be added 

as a current [35] or as a voltage [28]. Voltage injection is more common since 

the bandwidth of the current controller will limit the frequency that can be 

injected. Injecting a lower frequency results in a larger torque ripple. The 

leakage inductances are modulated by the machine saliencies. This can be 

detected in the response to the high frequency signal [36]. Different high 

frequency signals have been applied to the machine in literature. A number of 

these will now be briefly discussed. 

2.3.2.1 Continuous Injection in the Įȕ Frame 

This method adds a high frequency signal to the reference vector in the 

stationary Įȕ reference frame. This is commonly injected as a voltage and so 

is added to the output of the current controller. The injected component can 

have a frequency of a few hundred Hz to a few kHz [37]. The high frequency 

current response of the machine consists of a positive sequence component 

and a negative sequence component both of which rotate at the injection 

frequency but in opposing directions. The negative sequence component also 

includes the saliency information which can be isolated to find the rotor 

position [28, 29]. A common approach to achieving this is to use a heterodyne 

demodulation strategy [28, 29].  

This technique works well and its implementation in simple but the 

injected signal has components in both the flux and torque axis and so induces 

substantial torque ripple and audible noise.  
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2.3.2.2 d-axis Injection 

This method seeks to improve the performance obtained from the Įȕ 

injection technique by injecting a signal which only has a component in the 

flux axis [38], therefore reducing the torque ripple and audible noise seen in 

the response. The signal is injected into the rotating dq reference frame. The 

true dq orientation is not known so the injected signal is applied to an 

estimated dq frame. In [38] a measurement frame was defined as being 45º 

offset from the estimated frame. Theoretically, if the estimated frame is 

aligned with the actual dq frame of the machine then the d and q axis 

impedances measured in the 45º offset frame should have the same magnitude 

(assuming the impedances are symmetrical along the d or q axis). Any 

difference between the d and q axis impedances can be used as an error signal 

to drive the estimated dq axis onto the real dq axis allowing an accurate 

position estimate to be obtained [38].  

2.3.3 Test Pulse Methods 

An alternative to adding high frequency signals to the fundamental 

output of the inverter is to use the voltage vectors themselves applied by the 

PWM strategy since they have intrinsic high frequency content. Two 

approaches will be discussed here: the INFORM method and the Fundamental 

PWM technique. The latter has been designed to make use of the voltage 

vectors applied during normal PWM operation meaning that ideally no 

modifications need to be made to the vectors applied to the machine. In reality 

this is not the case and reasons behind this will be explained. 
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2.3.3.1  INFORM 

The INFORM (Indirect Flux Detection by Online Reactance 

Measurement) method [33] uses additional test pulses applied during the null 

vector of a SVPWM period to measure the current derivatives which are 

modulated by the saliency and so contain position information. Three pulses 

must be applied in order to obtain the necessary measurements to construct a 

position vector and cancel the effects of back EMF and stator resistance 

voltage drop. For each of the pulses applied an equal but opposite pulse is 

immediately applied to cancel the effect of the initial pulse. As a result the net 

effect in terms of the additional voltage applied to the machine over a PWM 

period is zero. However the current does experience some additional distortion 

which leads to an increase in the THD (Total Harmonic Distortion) of the 

current and torque ripple. Figure 2.5 illustrates a typical INFORM pulse train. 

The additional switching of the phases increases switching losses. Also, the 

starting position for all three phases in the null vector is +VDC, this means that 

it is necessary to switch multiple phases simultaneously. This can lead to 2VDC 

being applied to the motor windings which will cause a reduction in the 

lifetime of the winding insulation [22].  

 

Figure 2.7 Test vectors applied under INFORM [22] 
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This method suffers from a limitation known as the minimum vector 

problem. The problem will be discussed in more detail later in this chapter but 

a brief description is that following a change in the switching state of the 

inverter high frequency oscillations are seen in the phase current and current 

derivative responses and these oscillations must be allowed to decay before a 

measurement of the derivative can be taken. As the oscillations can usually be 

guaranteed to have decayed after a certain amount of time, this time is the 

minimum time that a pulse must be applied to the machine for when a 

derivative measurement is required. It naturally follows that the opposite 

(compensation) pulse applied immediately after must also be applied for the 

same amount of time to fully compensate the change in the volts-seconds 

applied to the machine. As a result, the minimum pulse width limitation, apart 

from increasing current distortion, means that it is not always possible to have 

all three test pulses (and their necessary compensating pulses) in the same null 

vector. In [39] this was addressed by spreading the three test pulses over three 

consecutive PWM periods. However the mathematical derivation of the 

position vector equations assumes there is little change in the machines state 

between measurements. This assumption implies a limitation on the machines 

operating range as at high speed there is a significant change in position 

between each of the measurements. 

2.3.3.2 Fundamental PWM Technique 

The Fundamental PWM technique is another saliency tracking 

technique that uses test pulses applied to the machine in order to measure the 

modulation of the current derivative due to the leakage inductance and 

therefore track the machine saliency. The approach is designed to make use of 

the vectors applied under normal SVPWM meaning that no modifications to 

the standard PWM waveform in the form of additional test or compensation 

pulses are required [40, 41]. The method is theoretically able to work across 
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the entire speed range and is applicable to both induction machines and 

permanent magnet machines. The need to apply opposite test vectors, as with 

the INFORM method, in order to cancel the effects of back EMF and stator 

resistance voltage drop is removed by making use of the null vectors [41].  

In terms of the implementation, ideally, all that is required is the 

sampling of current derivatives under certain active and null PWM vectors. 

Figure 2.8 illustrates the timing of the derivative sampling with respect to the 

PWM waveforms.  

Once obtained, the derivative results are then used to calculate the 

position scalers Pa, Pb and Pc. The SVPWM sector in which the voltage 

reference lies determines which current derivatives should be measured and 

the results are easily utilised to obtain a position estimate. 
 

 
 

Figure 2.8 Illustrates the timing of the derivative measurements with respect to 

the PWM waveforms applied to the machine 

 

The table of position scalar equations for a star connected machine is 

given in Table 2.1. Details regarding the derivation of the equations shown 

and the constant, c, referred to in Table 2.1, as well as information regarding 

the calculation of a position estimate based on the position scalars can be 

found in Appendix A. A similar set of equations can be derived for a delta 

connected machine.  
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Table 2.1 Position scalars for each of the active vectors (and corresponding 

null vectors) when operating a star connected machine [40, 41] 

 

Superficially the Fundamental PWM technique appears to offer an 

ideal solution by making use of the vectors that would be applied to the 

machine with or without the addition of a sensorless control implementation. It 

simply involves sampling the necessary current derivatives, from which a 

position estimate may be obtained. The implementation of this approach in 

terms of the vectors applied to the machine and the responses that must be 

measured are confined to a single PWM period. In practice measurement of 

the current derivatives following inverter switching is prevented by high 

frequency oscillations appearing in the both the current and current derivative 

waveforms. These oscillations impose a limitation on the Fundamental PWM 

SVPWM 
Vectors Pa Pb Pc 

V1 & V0 ʹ െ  ቆ  ୟ୚ଵ  െ   ୟ୚଴  ቇ െͳ െ  ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ െͳ െ  ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ 

V2 & V7 െͳ ൅  ቆ  ୠ୚ଶ  െ   ୠ୚଻  ቇ െͳ ൅  ቆ  ୟ୚ଶ  െ   ୟ୚଻  ቇ ʹ ൅  ቆ  ୡ୚ଶ  െ   ୡ୚଻  ቇ 

V3 & V0 െͳ െ  ቆ  ୡ୚ଷ  െ   ୡ୚଴  ቇ ʹ െ  ቆ  ୠ୚ଷ  െ   ୠ୚଴  ቇ െͳ െ  ቆ  ୟ୚ଷ  െ   ୟ୚଴  ቇ 

V4 & V7 ʹ െ  ቆ  ୟ୚ସ  െ   ୟ୚଻  ቇ െͳ ൅  ቆ  ୡ୚ସ  െ   ୡ୚଻  ቇ െͳ ൅  ቆ  ୠ୚ସ  െ   ୠ୚଻  ቇ 

V5 & V0 െͳ െ  ቆ  ୠ୚ହ  െ   ୠ୚଴  ቇ െͳ െ  ቆ  ୟ୚ହ  െ   ୟ୚଴  ቇ ʹ െ  ቆ  ୡ୚ହ  െ   ୡ୚଴  ቇ 

V6 & V7 െͳ ൅  ቆ  ୡ୚଺  െ   ୡ୚଻  ቇ ʹ െ  ቆ  ୠ୚଺  െ   ୠ୚଻  ቇ െͳ ൅  ቆ  ୟ୚଺  െ   ୟ୚଻  ቇ 



Chapter 2 
Sensorless Control Techniques 

 
26 

 

technique known as the Narrow Vector Problem. This research is aimed at 

reducing this limitation which will now be described in detail. 

2.4 The Narrow Vector Problem  

2.4.1 Introduction 

For the Fundamental PWM technique to work, an accurate 

measurement of the current derivative is required under certain SVPWM 

vectors. Taking an accurate measurement of the current derivative is not 

always possible however, as following a change in the switching state of the 

inverter; the current waveform contains high frequency oscillations (up to the 

MHz range). These oscillations, whose source and behaviour are investigated 

in Chapter 3, initially prevent an accurate derivative measurement from being 

made, but decay to the point where a derivative measurement can be made 

after a short amount of time. The length of time is dependent on the drive 

setup and is determined by the frequency content of the current or current 

derivative transient response following switching; this will be discussed 

further in Chapter 3. Figure 2.9 shows a typical current (a) and current 

derivative (b) response of a machine following the switching of an inverter 

output phase. The derivative response was captured using a commercial di/dt 

sensor built by PEM UK. The response has been filtered and amplified by the 

inbuilt signal processing circuitry of the sensor which has removed some of 

the high frequency content. In this instance the PWM vector times were large 

enough to allow the transient oscillations to decay, after which a current 

derivative measurement could be made. 

Allowing the oscillations to decay before taking a measurement is 

acceptable but it requires that all vectors applied to the machine (under which 
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a derivative measurement is required) are sufficiently long enough to allow 

time for the oscillations to decay leading to a minimum PWM vector time 

threshold often called the minimum pulse width, tmin. 

 

Figure 2.9 (a) 

 

Figure 2.9 (b) 

Figure 2.9 current response (a) and current derivative response (b) to inverter 

switching 
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A problem arises when the vector time is less than the minimum pulse 

width and there is not a sufficient amount of time available to allow the 

oscillations to decay and a derivative measurement to be made. Figure 2.10 

shows an example where the vector time for the first active vector is less than 

the minimum pulse width threshold. It is clear that in this situation an accurate 

current derivative measurement cannot be obtained under this vector. 

 

Figure 2.10 phase current response under a narrow vector. The high frequency 

oscillations under the first active vector do not have time to settle before the 

second active vector is applied 

 

Minimum pulse width violations occur at low voltage references and 

when crossing SVPWM boundaries, some vectors must be extended to ensure 

that the minimum pulse width threshold is not breached. Figure 2.11 illustrates 

the areas in the SVPWM plane where pulse width extensions are required 

[42]. 
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Figure 2.11 The locations on the SVPWM plane where voltage vector 

extensions are required [42] 

2.4.2 SVPWM Pulse Width Extensions 

Under normal (ideal) SVPWM operation the demand PWM vectors are 

applied in a symmetrical manner during the PWM period as illustrated in 

Figure 2.12. 

 

Figure 2.12 An ideal PWM output waveform for sector 1, t1 – t7 are the vector 

times  
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When it is necessary to extend vector(s) due to an original demand vector 

(under which a derivative measurement is required) being less than the 

minimum pulse width (tmin) there are two possibilities that exist. To illustrate 

these scenarios it will be assumed that the first active vector time, t2, is less 

than the minimum pulse width threshold: 

 

i) t2 < tmin but t2 >= tmin/2 
 

If a PWM demand vector is less than the minimum pulse width threshold 

but still greater than half the minimum pulse width threshold then the 

minimum pulse width threshold can be met in one half of the PWM period 

(thereby allowing a derivative measurement to be made) by applying the 

vector asymmetrically, e.g. if the first active vector is too short it can be 

applied for a longer period in the first half of the PWM period than in the 

second half.  Whenever a vector is extended to satisfy the minimum pulse 

width criteria, additional current distortion is introduced. This scenario is 

illustrated in Figure 2.13.   

 

ii)  t2 < tmin and t2 < tmin/2 
 

If the demand vector is less than half the minimum pulse width threshold 

then the pulse extension to tmin will result in an increase in the volt-seconds 

being applied to the machine for a given vector. This must be compensated, 

usually by applying a different vector from the SVPWM plane, one which 

would not normally be applied in the sector the voltage reference lies in as 

il lustrated in Figure 2.14. This ensures that the reference voltage vector that 

was originally intended is maintained in each PWM period.  
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Figure 2.13 (a) PWM vectors before extension applied to t2 

 

Figure 2.13 (b) PWM vectors after extension applied to t2, now t2 = tmin 

 

Figure 2.13 (c) Typical phase current illustrating the effects of extending a 

vector, the difference between the normal (black) and extended vector case 

(red) is the current distortion introduced 

Figure 2.13 A case where vector extension is required for the first active 

vector only, with the original vector length being > tmin/2  
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Figure 2.14 (a) PWM vectors before extension applied to t2 

 

Figure 2.14 (b) PWM vectors after extension applied to t2, now t2 = tmin, V3 

is now applied in the second half of the PWM period to compensate the 

extension of V1 

 

Figure 2.14 (c) Typical phase current illustrating the effects of extending a 

vector, the difference between the normal (black) and extended vector case 

(red) is the current distortion introduced 
 

Figure 2.14 A case where vector extension is required for the first active 

vector only, with the original vector length being < tmin/2 
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It is clear that a narrower pulse requires a larger extension and 

therefore results in a larger current distortion being introduced which 

significantly effects harmonic performance. A number of compensation 

approaches have been published [23, 43, 44] some of which introduce less 

distortion than others by compensating as close to the extension as possible. 

But whenever extensions are implemented, distortion of the current waveform 

is unavoidable.  

2.4.3 Current Distortion Introduced as a Result of 

Extending Vectors – An Investigative Demonstration 

In order to highlight the level of current distortion introduced by 

extending vectors a number of experimental measurements were taken using 

different minimum pulse width thresholds at different speeds. Vector 

extensions were compensated using the methodology described in (2.4.2). The 

experimental rig described in Chapter 6 was used to collect the results. Some 

loading of the machine was required as the results were collected using a 

permanent magnet machine which only has a small fundamental current 

component at low loads. The choice of loading value used was arbitrary; a 

value of 50% load was selected. Under each speed five different minimum 

pulse widths were applied to the PWM and a measure of the total harmonic 

distortion (THD) of the phase current waveform was taken according to Eqn 

2.4.  

 ୘ୌୈ ൌ ൭ඥσ ሺ ୬ଶሻଵ଴௡ୀଶ ଵ ൱ Ǥ ͳͲͲΨ 
(Eqn 2.4) 

 

 

The THD of the phase current waveform can be plotted according to 

the speed and minimum pulse width threshold as shown in Figure 2.15. 



Chapter 2 
Sensorless Control Techniques 

 
34 

 

 

Figure 2.15 THD of the phase current waveform according to speed (electrical 

frequency) and minimum pulse width (tmin) 

 

Figure 2.15 illustrates the problem well. Firstly it can clearly be seen 

that an increase in the tmin value generally results in an increase in the THD. 

Secondly a reduction in speed also causes an increase in THD. This is because 

the low speed region corresponds to the blue region in Figure 2.11, where 

narrow pulse widths naturally occur on both active vectors. This means that 

even a small tmin value will cause a large number of vector extensions to be 

required. The bigger the tmin value the larger the distortion introduced. 

Conversely, at high speed a small value of tmin has little effect since the 

majority of the PWM vectors will already be longer than the tmin threshold. It 

should be noted that at low fundamental frequencies the THD per fundamental 

period is increased as there are an increased number of PWM periods (per 

fundamental period) where current distortion could be introduced. While 

collecting the results it was observed that the fundamental current component 

remained the same (as expected) and the increase in THD was mainly due to 

an increase in the 5th and 7th harmonic components as the tmin value was 

increased for each speed. 
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2.4.4 Narrow Vector Problem Conclusions 

The Narrow Vector Problem is one of the remaining major limitations 

affecting the implementation of the Fundamental PWM technique. It will be 

seen in Chapter 3 that the oscillations seen in the current and current 

derivative waveforms arise due to parasitic impedances in the motor, drive and 

cabling. Since these effects cannot be removed oscillations will always be 

present following switching and hence narrow vectors will need to be 

extended to allow derivative measurements to be made, at the expense of the 

additional current distortion introduced. This problem is worsened at higher 

switching frequencies where vectors are generally shorter and so will require 

extending on a more frequent basis. The problem cannot be removed. 

However, it has been established that the current distortion (and associated 

torque ripple, vibration and audible noise) introduced is significantly reduced 

with a shorter minimum pulse width threshold. If an estimate of the current 

derivative can be made in a reduced time (ideally before the high frequency 

oscillations have decayed) then the minimum pulse width threshold can be 

reduced. This is the basis of the work proposed in this thesis.   

2.5 Appearance of the Current Derivatives  

It is pertinent to introduce and explain the current derivative 

waveforms seen under the SVPWM active vectors which must be measured in 

order to track saliency. The waveforms displayed in Figure 2.16 were obtained 

using the experimental setup detailed in Chapter 6. Figure 2.16 (a) shows 

current derivative waveforms sampled under the first active vector for phases 

A, B and C while Figure 2.16 (b) shows similar waveforms sampled under the 

second active vector. Figure 2.16 (c) shows the SVPWM sector. 
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Figure 2.16 (a) Current derivatives under first active vector 

 
Figure 2.16 (b) Current derivatives under second active vector 

 
Figure 2.16 (c) SVPWM sector 

Figure 2.16 Current derivatives under the first (a) and second (b) SVPWM 

active vectors. The SVPWM sector (c) is also shown 
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When inspecting the first active vector derivatives of Figures 2.16 (a) it 

is clear that (for each phase) for one third of the fundamental period the 

derivatives have positive amplitude while for the remaining two thirds of the 

fundamental period they have negative amplitude. Similarly, in the case of the 

second active vector derivatives, the derivatives have positive amplitude for 

two thirds of the fundamental period and negative amplitude for the remaining 

one third of the fundamental period. This can be explained by using the  motor 

equivalent circuit illustrated in Figure 2.17 [22].  

 

Figure 2.17 Equivalent circuit for phase A of a PM motor 

 

Where VDC is the applied DC link voltage, rs is the stator resistance, 

Lıa is the leakage inductance and ea is the back EMF. If the back EMF and 

stator resistance are neglected (this is valid since the back EMF has small 

amplitude at low speeds and the stator resistance voltage drop is small 

compared to the DC link voltage) then Eqn 2.5 describes applied voltage.  

 

஽ܸ஼ ൌ ఙ௔ܮ  (Eqn 2.5) ݐ݀݅݀

 

Hence the current derivative (di/dt) depends on the applied DC link 

voltage and the leakage inductance (which is modulated by the motor 

saliencies). Table 2.2 shows the voltages applied to the motor by the inverter 
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under the first active and second active SVPWM vectors. It is clear from Table 

2.2 that for phase A, under the first active vector, +VDC is applied for one third 

of the fundamental period (under sectors one and six), hence a positive 

derivative is expected. While –VDC is applied for two thirds of the 

fundamental period (under sectors two to five), hence a negative derivative is 

expected. This expectation matches the observations made in Figure 2.16. 

Similar conclusions can be drawn for the second active vector.  

 
     Sector 
 
Phase 

1 2 3 4 5 6 

First 
Active 
Vector 

A +VDC -VDC -VDC -VDC -VDC +VDC 
B -VDC +VDC +VDC -VDC -VDC -VDC 
C -VDC -VDC -VDC +VDC +VDC -VDC 

Second 
Active 
Vector 

A +VDC +VDC -VDC -VDC +VDC +VDC 
B +VDC +VDC +VDC +VDC -VDC -VDC 
C -VDC -VDC +VDC +VDC +VDC +VDC 

Table 2.2 The voltages applied to each phase, in each sector of the SVPWM 

plane for both first active and second active vectors 

2.6 Accuracy Requirements of a Current 

Derivative Estimation/Calculation System 

The current benchmark in terms of the accuracy of measured current 

derivative values is set by dedicated current derivative sensors, such as 

Rogowski coils. Standard current sensor implementations (where the 

derivative is estimated using two current measurements taken over a pre-

defined time window – referred to as the two current sample approach in this 

work) have also been demonstrated and perform well provided a large 

minimum pulse width is set. Using the experimental setup described in 

Chapter 6, a 17µs minimum pulse width was found to be adequate for 
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measurement of the derivative when using both Rogowski coils and standard 

current sensors. The target of the new derivative calculation/estimation 

approach investigated in this work is to match the derivative measurement 

performance of these existing methods without the need to have the same large 

minimum pulse widths. In order to gauge what is an acceptable level of 

performance for a current derivative calculation/estimation approach, random 

noise has been added to derivatives measured using the two current sample 

approach. The THD + N (Total Harmonic Distortion + Noise) of the resulting 

position vector (calculated using the derivatives) was measured and is 

displayed in Figure 2.18. The peak amplitude of the derivatives used to 

calculate the position vector was 1x105.  

 

Figure 2.18 The THD + N (Total Harmonic Distortion + Noise) of the position 

vector when random noise is added to the derivative waveforms obtained 

using the two current sample method 

 

It was important to include the noise contribution in the distortion 

measurement as this would not be truly reflected in a standard THD 

measurement but practically would make it difficult to cleanly isolate the 
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saliency component that is of interest using standard methods such as 

synchronous filtering [22, 23]. From the results shown in Figure 2.18 it is clear 

that as the amplitude of the noise added to the derivatives is increased, the 

position vector (and therefore the position estimate that would arise) is 

adversely affected. If a limit of 10% is set on the maximum allowable THD+N 

distortion (compared to the results obtained using the two current sample 

method), then the amplitude of the noise that is acceptable in the derivative 

estimates/calculations is ±1.315e4 A/s (according to Figure 2.18). 

Hence a target of this work will be to produce a derivative estimate 

that falls within ±1.315e4 A/s of the value obtained from the two current 

sample method whilst only using a small time window to allow a reduction in 

the minimum pulse width to be achieved.    

2.7 Hybrid Sensorless Solutions 

Hybrid approaches combine more than one sensorless technique in 

order to achieve a better overall performance. This represents the best 

possibility for a generally applicable sensorless approach that can operate 

reliably across the entire speed range. Typically a hybrid solution will employ 

a saliency tracking technique at zero and low speed and a mathematical model 

approach for medium to high speed operation [45-53]. The two different 

approaches complement each other well. Saliency tracking methods can 

provide reliable low speed operation while at higher speeds mathematical 

model based methods can be used. This also allows the saliency tracking 

technique to be disabled if desired at higher speed. This can be advantageous 

since stopping the injection of a high frequency signal or the modification of 

the switching waveforms will  significantly reduce the torque ripple and 

current distortion seen in the machines response.  
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With regards to the Fundamental PWM technique, at high speed it is 

the null vectors that become narrow and hence could require extension. Also, 

the technique cannot work in the over-modulation region as it requires that 

two active vectors and null vectors are applied [45]. Hence at high speed it 

would be beneficial to have a mathematical model based technique that could 

be relied upon to give an accurate position estimate.  

The difficulties associated with hybrid solutions are the added 

complexity of implementing two techniques, the additional computation 

power required and how to achieve the crossover of the speed and angle value 

used for control from the different techniques.    
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Chapter 3  

High Frequency Parasitic Effects in 

a Variable Speed Drive 

3.1 Introduction 

In order to allow investigation to take place into possible ways to 

reduce the minimum vector limitation, a detailed and thorough understanding 

of the sources of the high frequency current phenomena is required. It is 

widely known and accepted that the high frequency ringing observed in the 

phase current waveforms is due to parasitic capacitances and inductances that 

exist in the motor drive and cabling and the large dv/dt seen by these 

impedances when switching the active devices in the inverter. In order to 

reduce these high frequency effects (which can also cause problems with EMI) 

these impedances should be minimised through careful and considered design 

and construction techniques and if possible the dv/dt applied should be 

reduced. Figure 3.1 shows a simple drive schematic including some parasitic 

components. The main parasitic components illustrated are W) the capacitance 

to ground via the heat-sink, X) switching device parallel capacitance, Y) the 

loss and inductance of the supply cable, the capacitive coupling of the phases 

and the capacitance to ground via the shielding, Z) The turn to turn 

capacitance and the phase to frame capacitance of the windings. 
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Figure 3.1 main parasitic impedances in a standard drive setup [54] 

 

A complete and detailed description of the causes and locations of 

these parasitic impedances is lacking generally in the research literature. This 

is to some extent because the parasitic impedances are so diverse that to list 

them all and detail their quantitative effect on the machine response would be 

extremely difficult. It is however possible to pick some of the key contributing 

components which when included in a simulation model will produce a result 

which closely matches the real result. 

3.2 Modelling of the High Frequency 

Behaviour of a Drive System 

The parasitic impedances present in the drive system give rise to the 

high frequency behaviour that is of interest. Establishing the origins of these 

parasitic components and gaining a measure of the impedances themselves 

however is a complicated task. It is well known that noise conduction paths 

can be categorised into one of two types – common mode and differential 

mode [55]. Common mode conduction paths occur when there is a path 

through which current may flow between a conductor and ground while 
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differential mode paths exist when current paths are present between 

conductors. In a drive system the differential mode currents flow between 

capacitivly coupled conductors and back through the inverter and DC link 

which completes the loop. There are many sources of these paths; many of the 

components in a drive system are grounded for safety reasons and provide 

common mode paths e.g. inverter heat-sink, cable shielding and motor frame. 

Insulation materials act as a dielectric material leading to capacitive coupling 

between conductors which again creates noise paths. Most of these couplings 

only become an issue at high frequency, in this work the frequency range of 

interest is 10 kHz to 30 MHz [56]. The following sections will describe the 

key contributors to the parasitic impedance network from the perspective of 

the motor and cabling and describe the simulation models that already exist in 

literature to allow investigation into high frequency behaviour. Later it will be 

seen that in order to capture the non-linear switching behaviour of the inverter 

some of the parasitic capacitances in the inverter itself must be included in any 

simulation model. 

3.3 Motor Modelling in the High Frequency 

Range 

3.3.1 Introduction 

The creation of a high frequency motor and cabling model is achieved 

by producing an electrical model which has an identical frequency response in 

the MHz range to that of the actual motor and cabling being modelled. Such 

models are generally designed on a per phase basis and are capable of 

accurately characterising the frequency response in the 10 kHz to 30 MHz 

range [56].  Finding an appropriate model and extracting parameters for the 
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components within the model is a non trivial task and a number of methods 

exist to enable this. One such method is the Finite Element Method where the 

material properties and geometries (which can be difficult to obtain) of the 

machine being modelled are entered into modelling software which can then 

predict the parasitic impedance values for a given electrical model [57]. 

Another approach, the analytical approach, involves solving electrical circuit 

equations to find model parameters [58]. This method is more complex and 

although the resulting models can produce accurate results, they hold little 

physical meaning being constructed from several RLC branches that imitate 

the frequency response. Another alternative approach, the asymptotical 

method, was used in this work and is based on experimental measurement of 

the frequency response from which model parameters can then be derived. The 

components in the models proposed by previous investigations have been 

attributed to real physical quantities and effects in the motor or cabling. The 

component values in the models when using the asymptotical approach are 

found from equations which take their inputs from asymptotes of the 

frequency response as well as the maxima and minima values in the 

experimental frequency response.  

3.3.2 Motor Model Development 

Historically research into the high frequency behaviour of inverters 

coupled to motors began in the mid 1990‟s when it was realised that the EMI 

of such a setup was significant and could have a negative effect on 

neighbouring devices [59]. Initially the focus was directed towards 

understanding the EMI sources and producing simulation models to facilitate 

improvements in the EMC of drives. To this end, the models proposed were 

used as a tool to assist in the design of EMC filters [55, 58-60]. Many early 

high frequency models required a compromise between accuracy in the 

simulated results and a reasonable simulation run time, especially since any 
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motor model usually forms part of a larger system model rather than simply 

being simulated individually. Some models were not suitable at all for time 

domain simulations since many early models were made up of several 

segments placed in series to try and capture the distributed effects of the 

windings [55, 61]. This led to models which had high component counts and 

also made calculating model parameters difficult, while others were not 

capable of simulating both common mode and differential mode behaviour 

[60, 62]. With modern computing capability constantly improving, the run 

time restriction became less of a concern and models have more recently been 

designed for both frequency and time domain simulation and have 

incorporated both common mode and differential mode effects. This has led to 

more complex but more accurate models.  

Many different models have been proposed in the literature. In this 

work the model proposed in [63] was adopted. The principle reasons behind 

this decision were that the model was a based on the culmination of many 

years worth of research by many different authors, the relative ease of model 

parameter extraction and also because in [63] a corresponding cable model 

had been successfully used to investigate the effects of cable length – 

something which has a heavy influence on the high frequency content of the 

current waveform and is therefore extremely relevant to this research. The 

selected model proposed in [56, 63] is of a lumped parameter type. This will 

cause some loss in accuracy since some of the effects (such as turn to turn 

capacitance and winding to ground capacitance) are clearly distributed effects. 

However this reduction in accuracy has been proven to have a minimal 

detrimental effect in the final results [54, 62]. Only the stator windings are 

considered in the high frequency analysis since the high frequency flux does 

not penetrate the rotor or stator laminations [64]. The models which have been 

proposed in the literature have been based on evolution, with each new model 

incorporating an improvement compared to the previous effort. Figure 3.2 (a) 

– (d) illustrates the development of the chosen model which will now be 

introduced and discussed.  
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Figure 3.2 HF motor models proposed by a) [62], b) [60], c) [56] and d) [63] 

 

The models in Figure 3.2 (a) and (b) were not suitable for common and 

differential mode simulation owing to the way that the frequency response 

measurements were made. Also, splitting the winding to frame capacitance 

into two separate capacitance values (as in Figures 3.2 (c) and (d) allows the 

common mode and differential mode responses to be more accurately 

modelled [65]. The models in Figure 3.2 (a) and (b) however, form a 

foundation for later models and are therefore relevant in the derivation of the 

model used in this work.  
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The model proposed in Figure 3.2 (a) was one of the first to be 

designed to simulate both high and low frequency behaviour of the machine 

simultaneously in the time domain [62]. The lumped parameter model 

consisted of a resistance and inductance to represent the low frequency 

resistance and stator leakage inductance (R and Ld). Connected in parallel 

branches to this there is a resistance to represent the eddy current loss in the 

magnetic core (Re) and a capacitance for the turn to turn capacitive coupling 

(Ct). Finally there is a capacitive coupling between the winding and ground at 

both the phase and neutral ends of the winding (Cg). In this model this 

capacitance is given the same value at each end of the winding. The damping 

of the high frequency oscillations in the current was attributed to the 

impedance of the cable and input impedance of the machine. Initially the 

model failed to accurately model the damping of these current oscillations so a 

resistance was added in series with Cg at the phase input end to increase the 

damping performance.  

This model was adopted and used to produce the model illustrated in 

Figure 3.2 (b) [60]. The model featured some key additions including a 

resistance between the winding neutral and ground (Rg). The parallel turn to 

turn branch also now included a resistance (Rt) and inductance (Lt) which 

would be present in the high frequency path. These additional components 

meant that a second resonance point in the experimental result was now 

captured by the simulation. A parallel branch containing the dynamic dq 

model was suggested to capture the low frequency behaviour.  

An intermediate model not shown here was proposed by Weber [66] 

and was based on [59, 60, 62, 64]. The purpose of the work was to try and 

design a model library that could be used to simulate the high frequency 

behaviour of a given motor. The conclusion was that for accurate simulation 

performance each motor should be modelled individually. It is however of 

interest since it provided the basis for the work in [56, 63] which were the first 

models to be designed for simulating common mode and differential 

behaviour and could be used for both time and frequency domain simulation. 
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These models were not aimed at being able to capture low frequency 

behaviour. The component count of the model was relatively low and the 

parameter extraction techniques were simple and described in detail.  

The initial model illustrated in Figure 3.2 (c) [56], consisted of the 

winding to ground capacitances (Cg1 and Cg2) and resistances (Rg1 and Rg2)  as 

in Figure 3.2 (b) [60] but in line with the real machine, these were given 

different values (where as in [60] they were treated as equal). Rcu represented 

the copper loss and could be neglected for high frequency simulation and 

therefore analysis in the frequency domain but at low frequencies acted to 

limit the current and so was necessary for time domain simulation. The 

inductances represent the stray inductance (Lstr) and an inductance 

incorporating the inductive coupling between the phases (LM). Once again iron 

loss was included in the form of a parallel resistance (Re) but turn to turn 

effects were not included. The model produced good results but there was a 

resonance point not captured by the proposed model and so an additional 

capacitance and resistance were added in parallel with the phase coupled 

inductance, LM. The values for these components were found by trial and error 

and had no physical meaning. The additional resonance provided by these 

additional components resulted in an improved correlation between the 

simulated and experimental results.  

Finally the model proposed in Figure 3.2 (d) [63] was based entirely on 

Figure 3.2 (c). However the additional resonance point which was identified in 

[60] as being due to the turn to turn impedance was included. The additional 

un-attributable resistance and capacitance in [56] were replaced with a parallel 

branch containing the turn to turn impedance components (Ct, Lt and Rt). The 

method for finding these additional component values was documented in a 

similar way to [60].  

This resulted in a complete model for time and frequency domain 

simulation including both common and differential mode behaviour with a low 

component count where each component could be associated with the real 

physical effects of the machine and each component value was simple to find. 
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The model was accurate up to very high frequencies (> 30 MHz) at which 

point the impedances of the measuring equipment would begin to affect the 

measured response and so effects observed in the response could not be 

attributed to the machine [56]. It should be noted that some accuracy is lost by 

stipulating that the model must be suitable for time domain simulation as some 

of the parameters should in reality have some frequency dependence, for 

example Re in Figure 3.2 (d) which represents iron loss. As the frequency is 

increased the cross sectional area decreases due to diffusion [56].  

3.3.3 Finding the Model Parameters 

The method proposed in [56] was used to find the parameters for use in 

the motor model. This requires two measurements of the machine‟s frequency 

response – one of the common mode response and one of the differential mode 

response. The measurements are taken with the motor at standstill and all 

supply cabling detached. To measure the impedance of the differential path of 

a three phase machine, two of the three phases are connected together as 

shown in Figure 3.3. The frequency response is then measured using an 

impedance analyser or RLC meter across the two shorted phases and third 

phase 
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Figure 3.3 Measurement Setup to Determine Differential Mode Parameters 
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To measure the impedance of the common mode path all three phases 

of the stator windings are connected together and the response is measured 

between the input of the three phases and the motor frame, as shown in Figure 

3.4.  

Z(f)

FRAME

N

U

V

W

 

Figure 3.4 Measurement Setup to Determine Common Mode Parameters 

 

  Figure 3.5 shows the common mode and differential mode impedance 

responses for an ASEA 4 kW induction machine measured using a HP Agilent 

4194 Impedance analyser. To increase the accuracy of the results the 

logarithmic steps (100-1000, 1000-10000, 10000-100000...) of the 

measurement were broken up and carried out separately when taking 

measurements. 

The following derivation of the HF model parameters is based on [63]. 

Refer to Figure 3.2 (d) for the schematic of the model used. There are a 

number of points in the common and differential mode impedance response 

which are used to find the model parameters and these are marked on the plots 

in Figure 3.5.  

The points marked CHF, Ctotal and LDM  in Figure 3.5 are the points 

from which asymptotes are taken to find the value for each of the respective 

impedances. The asymptotes are assumed to have a gradient of 20dB/decade, 

capacitances are found from  ܥ ൌ ଵଶగ௙௓ while inductances are calculated using ܮ ൌ  ௓ଶగ௙. 
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Figure 3.5 The common mode (red) and differential mode (black) impedance 

responses captured from a 4 kW ASEA induction machine. Also highlighted 

are the key points that are used to find high frequency model component 

parameters 

 

Once CHF, Ctotal and LDM have been obtained the equations for the 

derivation of the electrical component values given in (Eqn 3.1) to (Eqn  3.12) 

can be used to find the remaining component values [63]. 

௚ଵܥ ൌ ͳ͵ܥுி  (Eqn 3.1) 

  

௚ଶܥ ൌ ͳ͵ ሺܥ௧௢௧௔௟െܥுிሻ (Eqn  3.2) 

஼ெܮ   ൌ ൫ͳʹߨଶܥ௚ଶ݂ ௓݂ଵଶ൯ିଵ
 (Eqn  3.3) 
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ܴ௘ ൎ ʹ͵ ȁܼ௉ȁ (Eqn  3.4) 

  

ܴ௚ଵ ൌ ʹ͵ ȁܼ௓ଷȁ (Eqn  3.5) 

  

ܴ௘ ൌ ʹ͵ ȁܼ௓ଵȁ (Eqn  3.6) 

  

ௗܮ ൌ ஼ெܮ ൅ Ͷͻܮ஽ெ (Eqn  3.7) 

  

ܴ௚ଶ ൎ ͳ͵ ȁܼ௓ଵȁ (Eqn  3.8) 

  

௧ܥ ൎ ͳ͸ ൫ܥ௚ଵ൅ܥ௚ଶ൯ (Eqn  3.9) 

௭௨ܮ   ൌ ͵൫ͳ͸ߨଶܥ௚ଵ ௓݂ଷଶ൯ିଵ
 (Eqn  3.10) 

  ܴ௧ ൌ ȁܼ௭ଶȁܿݏ݋ሺߠ௓ଶሻ (Eqn  3.11) 

  

௧ܮ ൌ ͳܥ௧ ൬ ͳʹߨ ௭݂ଶ൰ଶ
 

(Eqn  3.12) 
 

 

By using the impedance responses of the ASEA machine (Figure 3.5) 

and equations (Eqn 3.1) to (Eqn 3.12) the electrical parameters shown in Table 

3.1 were calculated 
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Parameter Value 

Cg1 30.47 pF 

Cg2 16.52 pF 

Re 6.47 kȍ 

Rg1 11.66 ȍ 

Rg2 398.69 ȍ 

Lt 504.42 µH 

Ct 7.83 pF 

Rt 2.88 kȍ 

Ld 486.66 µH 

Lzu 6.525 µH 

 

Table 3.1 Model parameters found from (Eqn 3.1) – (Eqn 3.12) 

 

The Model in Figure 3.2 (d) was implemented using Matlab Simulink 

and the parameters in Table 3.1. Figure 3.6 shows the common mode 

impedance response of the model in the frequency domain with the 

experimentally derived response also shown for comparison. The results show 

that the model produces reasonable approximation.  

Figure 3.7 shows the differential mode response of the model 

implemented in simulink compared with the actual measured response of the 

machine. Again the result from the model is a reasonable approximation to the 

measured response with the resonant points occurring at the correct 

frequencies.  
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Figure 3.6 Comparison of the simulated and the experimentally captured 

common mode impedance response 

 

 

Figure 3.7 Comparison of the simulated and the experimentally captured 

differential mode impedance response 

 

In literature the result is often refined at this point (by modifying the 

electrical model parameters using trial and error) in order to acquire an 

improved approximation. Previously a Genetic algorithm has been used to 

refine the result and obtain a better fit between the simulation and 
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experimental results [67]. In this research the result was refined to a small 

degree through trial and error. This yielded a closer match for the differential 

mode response, but was a compromise since the common mode response was 

adversely affected. However it was the time domain response that was of 

interest and this was found to have good correlation with experimental data, in 

terms of its high frequency content, even before the model parameters were 

modified. 

In the case that low frequency behaviour of the machine must also be 

considered two principal methods are suggested for incorporating the high 

frequency model into simulation. The simpler of these is to run the high 

frequency model in parallel with a low frequency simulation [55, 57, 68] with 

both models being supplied from the same source as illustrated in Figure 3.8. 

The high frequency models have a low impedance at the fundamental 

frequency, so filters are placed at the input of the high frequency models to 

block fundamental components [55]. This simulation approach was used in 

this research owing to its simplicity and the lack of a need to obtain a single 

accurate response across the entire frequency range (since it is only the high 

frequency content that is of interest). 

 

 

Figure 3.8 Configuration used to simulate high and low frequency behaviour 

[55, 57, 68] 
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An alternative method involved modifying the IEEE standard 112 per 

phase equivalent circuit to include the high frequency parameters [60, 62, 69]. 

This approach was not used in this work as the inclusion of low frequency 

behaviour into the results was not required; hence the merging of the low and 

high frequency models would have unnecessarily increased the complexity of 

the model. 

3.4 Cable Modelling in the High Frequency 

Range 

3.4.1 Introduction  

Similar models to those proposed for motors have been proposed for 

predicting the high frequency behaviour of motor supply cabling. The cable 

modelled is of a shielded multi-core/conductor type and is modelled per unit 

metre. The cable conductors each have an associated inductance and loss 

across their length and are coupled through the dielectric insulating material 

between the conductors.  A number of cable models have been proposed, 

Figure 3.9 shows the most commonly adopted model, based on a standard 

transmission line model, it is a second order per unit metre model and has few 

components [70-72]. 

LsRs

RpCp

L1

L2 + L3
 

Figure 3.9 the standard transmission line model of a cable [70-72] 

 



Chapter 3 
High Frequency Parasitic Effects in a Variable Speed Drive 

 
58 

 

This model has been expanded, as illustrated in Figure 3.10 (a) [60] in 

order to increase the accuracy of the results by including dielectric effects and 

later to include skin and proximity effects as shown in Figure 3.10 (b) [63].    

LsRs

Rp1Cp1

L1

L2 + L3

Rp2

Cp2

 

Figure 3.10 (a) 

 

Ls1Rs1

Rp1Cp1

L1

L2 + L3

Rp2

Cp2

Ls2

Rs2

 

Figure 3.10 (b) 

 

Figure 3.10 expanded high frequency models of the power cable per-unit 

length. (a) includes the effects of dielectric losses [60], while (b) includes skin 

and proximity effects [63] 

 

The model proposed in Figure 3.10 (b) will be used since it is the most 

advanced model and has been used to investigate the effects of cable length 

[63].  
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3.4.2 Finding the Model Parameters 

A thorough methodology for finding parameter values for the model is 

detailed in [63]. The method for deriving the model parameters is similar to 

the method used for deriving the motor model parameters. A short circuit and 

open circuit impedance response is captured and then asymptotes of the 

response are used to calculate electrical parameters. The frequency responses 

were again captured using a HP 4194 impedance analyser. Figure 3.11 (a) 

shows the short circuit frequency response while Figure 3.11 (b) shows open 

circuit frequency response of the cable. 

 

Figure 3.11 (a) 

 

Figure 3.11 (b) 

Figure 3.11 Short (a) and open (b) circuit frequency responses of a 1m length 

of 5 core shielded cable 
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Once again a number of values were found from asymptotes taken at 

the points marked in Figure 3.11 (a) and (b). Equations (Eqn 3.13) to (Eqn 

3.21) are then used to find the values of the respective impedances in the 

model [63]. The results are given in Table 3.2. ܮ௦ଵ ൌ  ௌ஼ିுி (Eqn  3.13)ܮ

௦ଶܮ   ൌ ௌ஼ି௅ிܮ െ  ௦ଵ (Eqn  3.14)ܮ

  ܴ௦ଵ ൌ ȁ ௌܼ஼ି௅ிȁܿݏ݋ሺߠௌ஼ି௅ிሻ (Eqn  3.15) 

  ܴ௦ଶ ൌ ȁ ௌܼ஼ିுிȁܿݏ݋ሺߠௌ஼ିுிሻ െ ܴ௦ଵ (Eqn  3.16) 

௣ଵܥ   ൌ ை஼ିுிܥ  (Eqn  3.17) 

௣ଶܥ   ൌ ை஼ି௅ிܥ െ  ௣ଵ (Eqn  3.18)ܥ

  ܴ௣ଵ ൌ ȁܼை஼ି௅ிȁሾܿݏ݋ሺߠௌ஼ି௅ிሻሿିଵ (Eqn  3.19) 

  ܴ௣ଵȀȀ୮ଶ ൌ ȁܼை஼ିுிȁሾܿݏ݋ሺߠௌ஼ିுிሻሿିଵ (Eqn  3.20) 

  ܴ௣ଶ ൌ ቂ൫ܴ௣ଵȀȀ୮ଶ൯ିଵ െ ሺܴ௉ଵሻିଵቃିଵ
 (Eqn  3.21) 
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Parameter Value 

Ls1 249.75 nH 

Ls2 52.94 nH 

Rs1 16.34 mȍ 

Rs2 145.61 mȍ 

Cp1 461.03 pF 

Cp2 85.237 pF 

Rp1 79.77 kȍ 

Rp2 88.458 kȍ 

 

Table 3.2 calculated component values for the high frequency cable model 

 

The model illustrated in Figure 3.10 (b) was implemented in Matlab 

Simulink using the component values listed in Table 3.2. Open circuit and 

short circuit impedance responses could then be captured from the simulation 

model and compared with the experimental results as demonstrated in Figure 

3.12 (a) and (b). 
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Figure 3.12 (a) 

 

 

Figure 3.12 (b) 

Figure 3.12 A comparison of the measured and simulated open circuit (a) and 

short circuit (b) impedance responses 
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3.5 Time Domain Simulation Results 

With the cable and motor modelled in the high frequency range, the 

model was driven by a simulated three phase output from an inverter assuming 

ideal switching behaviour of the semiconductor devices. Figure 3.13 shows a 

typical current transient following switching. Also shown is an experimental 

transient captured at the same current level from the 4 kW ASEA machine and 

modelled cable being driven by a commercial inverter. Some minor 

adjustments were made to the model parameters through trial and error to 

improve the correlation between experimental and simulated impedance 

responses. Following these adjustments the simulated transient was found to 

be a reasonable approximation to the experimental results. There is a small 

difference in the decay rate with the experimental model having a higher 

decay rate. There is also a small discrepancy at approximately 1.5ȝs where the 

experimental result appears to be influenced by a lower frequency component. 

This is not seen in the simulated result. 

 

Figure 3.13 Simulated and experimental current transients are compared for 

their high frequency content 

Fourier transforms were performed on the simulated and experimental 

current transient results shown in Figure 3.13 to examine the frequency 
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content of the transients. Figures 3.14 (a) and (b) contain the results of the 

FFT‟s. The frequency content was very similar for both cases with large DC 

components and a large dominant high frequency component at approximately 

3.3MHz. One small difference lies at around 17 MHz where the experimental 

transient has a small component while the simulated result does not. This 

could be because the simulation model was only characterised up to 15 MHz 

as above these frequencies there is minimal current penetration into the motor 

windings [55]. The larger DC/low frequency component should not give cause 

for concern as the low frequency behaviour is not accurately modelled in this 

case. As described previously; with the present configuration low frequency 

behaviour is modelled separately.   

 
Figure 3.14 (a) Experimental  

 
Figure 3.14 (b) Simulated 

Figure 3.14 FFTs of the transients shown in Figure 3.13. (a) is FFT of the 

experimental transient while (b) is FFT of the simulated transient 
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3.6 Effects of Supply Cable Length 

While collecting experimental results it was observed that the length of 

supply cable used had a large effect on the resulting frequency content of 

current transient waveform following inverter switching. The longer the 

supply cable, the lower the dominant frequency present in the current 

transient. The transients shown in Figure 3.15 illustrate this. It should be noted 

that these results were not recorded from the motor and cabling modelled 

previously in the high frequency range. The „short‟ cable length was 24m 

while the long cable length was 125m. 

 

Figure 3.15 (a) Time domain, short cable length 

 

Figure 3.15 (b) Frequency domain, short cable length 
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Figure 3.15 (c) Time domain, long cable length 

 

 

Figure 3.15 (d) Frequency domain, long cable length 

Figure 3.15 shows the difference in current transients between short (a) (24m 

in this case) and long (b) (125m) cable lengths. The transient for the short 

cable length is dominated by a 1 MHz  component, see (c), while the transient 

corresponding to the long cable length is dominated by a component at 

approximately 250 kHz, see (d). It is clear that the transient for the short cable 

length, (a), decays much quicker than the case for a long cable length, (c) 
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It was impractical and too costly to begin a full experimental 

investigation into this effect however its behaviour must be understood in 

order to ensure that any solution arrived at in the course of this research was 

not limited to applications utilising only short supply cables. From the 

perspective of a sensorless control application using the established approach 

of allowing oscillations to decay before attempting to measure the derivative, 

the presence of a dominant lower frequency component in the current transient 

means that the oscillations will take longer to decay leading to an increase in 

the minimum pulse width. The relationship between cable length and 

dominant frequency is reported in literature [54, 63, 73] and the model used in 

this research was proven to be able to simulate the effects of increasing cable 

length on the dominant frequency. This work was able to re-produce the 

behaviour documented in [63] and the results are shown in Figure 3.16. 

 

Figure 3.16 shows the effect on the dominant frequency component of 

increasing the supply cable length (results obtained through simulation and 

show a similar behaviour to that observed in [63]) 
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Figure 3.16 illustrates the inversely proportional relationship between 

cable length and dominant frequency allowing a prediction to be made on the 

dominant frequency component for a given cable length (where the machine 

being used and the cable (per unit metre) have been characterised in the high 

frequency range). In terms of the work that is described in Chapters 4 and 5, a 

decrease in the dominant high frequency component has both positive and 

negative side effects. The techniques proposed in Chapters 4 and 5 require that 

the high frequency transient is sampled to a reasonable resolution, which for 

higher dominant frequency components requires a very high sample rate ADC 

adding cost and complexity to the hardware design and implementation. A 

lower dominant frequency relaxes the ADC sample rate requirements to the 

point where for long cable runs (e.g. > 20m) an ADC sample rate of a few 

MHz (which is a reasonably common conversion rate in industry) is sufficient.   

The major negative factor though is that the lower frequency transients 

take longer to decay and therefore require an even longer minimum pulse 

width threshold to be applied in order to allow the transients to sufficiently 

decay. Later in Chapters 4 and 5, methods which only require a fraction of the 

high frequency transient are introduced. But even these methods would require 

a significant minimum pulse width to be imposed when capturing the initial 

transient of a low frequency oscillation. The enlarged minimum pulse width 

increases current distortion, torque ripple and audible noise. While the 

methods proposed later offer an improvement over established methods they 

still result in large distortion compared to the ideal case where pulse widths 

remain unmodified. 
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3.7 High Frequency Behaviour Due to the 

Drive 

Many of the studies documented in literature do not include detailed 

models of the parasitic impedances of the switching devices themselves in 

simulation models. The IGBTs used in many of today‟s commonly found 

inverters have internal interconnections which will have some associated 

inductance and resistance. Parasitic capacitances exist between the collector 

and gate and also between the gate and the emitter. Also when the devices are 

mounted on a grounded heat sink a capacitance between the device terminals 

and ground is created forming a path through which common mode currents 

can flow. Finally the anti-parallel diode also has an equivalent high frequency 

model. A small number of authors have investigated these parasitic 

components [64, 74]. The diagram in Figure 3.17 shows the locations of some 

of the main parasitic elements including the gate capacitances, diode parasitic 

components, interconnection inductances and capacitance between the device 

and the grounded heat-sink on which the device is mounted [74]. 

 

Figure 3.17 Parasitic components present in an IGBT module [74] 
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In this research the IGBT model used was kept as simple as possible 

for two reasons. The first is that the parasitic components of the internal 

module are not easy to characterise and find model parameters for. The second 

is that the results obtained from the simulations were found to be satisfactory 

compared to the experimental waveforms. One particularly important aspect 

relating to the IGBT behaviour is the use of a realistic dv/dt during switching. 

This could be easily set within the simulation environment by means of a rate 

limiter [55]. However, the dv/dt that should be applied does not have the same 

value under all conditions as will be discussed in the next section.  

3.8 Influences of Inverter Non-linearities 

The high frequency models produced for the ASEA 4kW induction 

machine and 1m cable were able to reproduce the dominant high frequency 

oscillatory effects seen in the time domain of the experimental current 

waveform taken from the machine. However under certain operating 

conditions there were some differences observed between the response of the 

model and the real response measured from the machine.  

As the current transients are of interest, the key difference in the 

context of the implementation of the Fundamental PWM sensorless technique 

was that at low current magnitudes some of the PWM voltage waveforms 

showed a much slower switching transition. This is only observed at low 

current magnitudes when the device commutation is from transistor to diode in 

an inverter leg and results in the transition time for the output voltage of the 

inverter leg extending from a few hundred nanoseconds up to the dead-time 

value (usually one or two ȝs). The effect is caused by the parasitic capacitance 

present in the switching device, motor and cabling [75-82]. The illustrations in 

Table 3.3 explain the steps involved in switching a phase leg and how the 

device parasitic capacitance influences the process. 
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State 1 – T1 conducting 

 

The output is +VDC. C1 is 

shorted while C2 is fully 

charged to +VDC 

State 2 - T1 and T2 off for dead time period 

 

 

 

At the beginning of the dead 

time T1 and T2 are switched off 

for the period of the dead time. 

At this point D2 should begin 

conducting to maintain a current 

path, but D2 is reverse biased 

by the voltages of C1 and C2. 

Before D2 can conduct it must 

be forward biased which 

requires C2 to be discharged 

and C1 charged to VDC. The 

time taken for this to occur is a 

function of the motor current 

State 3 – D2 conducting 

 

D2 is forward biased and begins 

conducting; the output is now –

VDC. C2 is now shorted and C1 

is fully charged to VDC 

Table 3.3 the stages involved in switching an inverter leg and how the 

parasitic capacitances of the devices effect switching 

 



Chapter 3 
High Frequency Parasitic Effects in a Variable Speed Drive 

 
72 

 

Commutations from diode to transistor are not affected by this issue 

since when a dead time period is entered and the active devices are switched 

off, if there is a non zero current the diodes continue to conduct providing a 

current path until the end of the dead time period at which point the necessary 

active device is switched on providing a current path and instant 

charging/discharging of the capacitances. However when commutation is from 

transistor to diode and the current magnitude is low the effects illustrated in 

Table 3.3 are observed.  

At high current levels the capacitances are charged/discharged at a 

high rate and the effect becomes negligible, but at low current levels the rate 

of charging or discharging of the capacitances C1 and C2 is reduced 

significantly (according to ܫ ൌ ܥ ௗ௩ௗ௧). Hence as the current magnitude 

approaches 0A the dv/dt of the phase voltage seen at the inverter leg 

decreases. There reaches a point where the dv/dt of the phase voltage 

decreases such that the transition time for the phase voltage to reach its 

intended value extends beyond the period of the dead time. At the end of the 

dead time period the corresponding active device is switched on which 

provides rapid charging/discharging of the capacitances and the phase voltage 

is brought sharply to the correct voltage.  

At extremely low current magnitudes the current is insufficient to 

cause any substantial charging or discharging of the capacitances. In this case 

hardly any change in the phase voltage is seen until the corresponding active 

device is switched on (causing the phase voltage to change) [76, 78, 80, 81]. 

This is illustrated in Figure 3.18 where illustrative switching times are plotted 

according to the phase current magnitude.  
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Figure 3.18 Effect of current level on device switching behaviour 

 

The variation in the dv/dt of the switching edge is important for the 

implementation of the Fundamental PWM sensorless technique for two 

reasons. Firstly it has the effect of removing high frequency content from the 

voltage switching edge (because of the reduction in the dv/dt) which is being 

used as an excitation pulse for position detection and secondly the dv/dt 

directly influences the shape of the current oscillations in response to 

switching. Hence if the dv/dt of the voltage waveform varies, the shape of the 

current waveform will also vary.  

Any variation in the shape of the current transient due to a variation in 

the applied dv/dt must be taken into account by any signal processing 

approach and rules out a standard “one fits all” approach. There are three 
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possible transient phase current waveforms that can be observed in an inverter 

leg when switching causes a transistor to diode commutation. These are; 
 

1) High current magnitudes: the standard HF oscillatory response is 

observed.  

2) Low phase current magnitude: the parasitic capacitances are charged or 

discharged within the dead time resulting in a slow voltage transition. 

The transient current response is distorted and has very low high 

frequency oscillatory content.  

3) Very low phase current magnitudes: the voltage transition time 

exceeds the dead-time. In this case there is current distortion 

introduced during the dead time period (while charging/discharging 

occurs) and also some HF content introduced at the end of the dead-

time due to the dv/dt of the corresponding switching device. 

 
The problem is made worse by the distributed capacitances in the 

cabling and motor which also require charging or discharging when the 

inverter switching state is changed (Once again according to  ܫ ൌ ܥ ௗ௩ௗ௧, the 

dv/dt is decreased for a given current when the capacitance is increased) [54, 

75, 78]. These additional capacitances are illustrated in Figure 3.19. 

 

 

Figure 3.19 Additional Capacitances to be considered in the drive [54, 75, 78] 
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In order to incorporate these effects into the model, additional 

capacitances were added in parallel with the active switching devices which 

previously had been IGBTs with ideal switching performance. The values 

chosen for the capacitances were arbitrary, the value used in the simulation 

results presented below was 1nF with a 2ȝs dead-time. The results shown in 

Figure 3.20 (a) and (b) clearly show the distortion added at low currents when 

the current polarity is in the direction to cause transistor to diode 

commutation. At higher currents the dv/dt closely matched the ideal switching 

case as expected.  

 

Figure 3.20 (a) 

 

Figure 3.20 (b) 

Figure 3.20 the effects on voltage and current transients of additional parasitic 

capacitances added in parallel with active switching devices to capture non-

linear switching behaviour 
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The simulation results reflect the behaviour seen in the experimental 

results with switching events involving low phase currents experiencing a 

reduced dv/dt and therefore an increased switching time. The switching time is 

proportional to the current magnitude, the smaller the current magnitude, the 

longer the switching time and the smaller the dv/dt. This is illustrated to some 

extent in Figure 3.20 where the current magnitude in (a) is smaller and results 

in a larger switching time compared to (b). The ensuing current transients are 

also affected in a similar way to those witnessed experimentally, with the 

smaller dv/dt causing a larger distortion of the current (during switching) and 

the smaller dv/dt greatly reducing ringing in the current waveform. Only 

transistor to diode commutation is affected. For very small currents the voltage 

does not completely reach its target during the dead time and the switching on 

of the transistor causes a large dv/dt at the end of the dead-time period as seen 

in the experimental results.     

3.9 Conclusions 

A model has been identified and implemented that is able to accurately 

reproduce the high frequency common mode and differential mode responses 

of an AC motor and cabling. It has also been demonstrated that the models are 

able to accurately predict the time domain behaviour. This has resulted in an 

understanding of the main parasitic impedances that are responsible for the 

high frequency oscillations seen in the current response of the machine. The 

method for finding model parameters has been described and is relatively 

simple but requires specialist equipment in the form of an impedance analyser 

or RLC meter.  

At low currents when the commutation in an inverter leg is from 

transistor to diode the parasitic capacitance of the switching devices becomes 

significant. This capacitance results in a significant variation in the dv/dt seen 
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at the output of the inverter. This variation (in dv/dt) is a function of the phase 

current amplitude and has a large effect on the transient currents following 

switching, with distortion being introduced.  

Despite the understanding gained of the high frequency sources and 

their behaviour, a solution to prevent the high frequency oscillations has not 

been realised as the sources that give rise to the high frequency behaviour are 

intrinsic in the construction of the drive and so cannot be removed. With this 

in mind the next chapter will explore what can be achieved in terms of 

reducing the high frequency oscillations and also by attempting to  extract the 

current derivative from current transients affected by high frequency 

oscillations.  
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Chapter 4  

Current Derivative Estimation in the 

Presence of HF Oscillations 

4.1 Introduction 

The current derivative values required for the implementation of 

sensorless control using the Fundamental PWM technique have traditionally 

been measured using one of two approaches; direct measurement through a 

dedicated sensor or indirect measurement by measuring the change in phase 

current over a set time window (referred to in this work as the two current 

sample method). When inspecting a transient phase current response following 

an output phase of the inverter switching, it is evident the gradient of interest 

is present but obscured (and sometimes distorted) by HF (high frequency) 

oscillations also present in the response. Hence, the first logical step would be 

to try and completely remove the high frequency oscillations from the current 

response leaving only the underlying gradient of interest. 

 It was established in Chapter 3 that it is the parasitic impedances 

responding to the high frequency content of a large dv/dt applied to the 

network during inverter switching that is responsible for the ringing seen in 

the current response of the machine. The parasitic network cannot be 

eradicated as it arises from the close proximity of numerous conductors 

separated by various dielectric materials in the drive. This is a consequence of 

the necessity to construct the drive in a certain way in order for it to function. 
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The parasitic impedances cannot be removed, nor can the dv/dt applied to the 

machine easily be reduced (unless a multilevel converter is used. This reduces 

the change in voltage applied therefore reducing the dv/dt but adds 

considerable cost and complexity) since this voltage is required to operate the 

machine.  

Numerous researchers have made attempts to reduce or eliminate these 

oscillations for a variety of applications. The next section examines some of 

these methods and explains why they are not suitable in this application. 

4.2 Removing or Reducing the High 

Frequency Content in the Transient 

Current Response  

4.2.1 Use of EMI Filters 

Many different EMI filters have been proposed for the removal of high 

frequency content in the machine response [60, 83-85]. The main basis of the 

EMI filter is to provide a matched impedance path for the high frequency 

content of the waveform allowing it to be shunted to ground and therefore 

removed from the response. Without the EMI filter the point where the motor 

is connected is seen as an open circuit at frequencies in the MHz range [55] 

and so the high frequency signals are reflected back down the transmission 

line. An issue that is difficult to address in general is matching the impedance 

of the filter to the frequency content that must be removed. This is not difficult 

on an individual drive basis but when the cable length is modified or the motor 

is changed the parasitic impedance network is also modified and this changes 

the frequency of the oscillations the EMI filter must remove [22]. Another 
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problem with this solution though is that if the PWM edge can be imagined as 

an ideal step then in the frequency domain it is described by a Fourier series of 

infinite frequency components. Removing the higher frequency components 

through filtering makes the voltage waveform appear more sinusoidal and is 

equivalent to extending the switching device turn on time (reducing dv/dt by 

increasing dt). 

 Hence this solution cannot be used in this work as the inclusion of an 

EMI filter will remove the high frequency content of the voltage pulse applied 

to the machine through PWM. This high frequency content gives rise to the 

large current derivatives seen in the response of the machine, needed to track 

saliencies. EMI filters are also costly since inductors placed in series must be 

capable of carrying large currents without saturating [55]. The use of passive 

energy storage components also means that EMI filters are physically large. 

They will also inevitably increase power losses in the drive during switching.  

4.2.2 Variation of the IGBT Gate Impedance 

Another method which can reduce the current oscillations involves 

varying the IGBT gate resistance [23, 43, 44]. Increasing the gate resistance 

reduces the current supplied to the gate of the IGBT and hence increases the 

time taken to charge the gate capacitances. This leads to an increase in the 

time taken to turn on the IGBT thus reducing the dv/dt. This has the 

disadvantage of increasing switching losses and adds distortion to the current 

waveform. However the oscillations are reduced in amplitude and duration 

and this method does provide a level of control for the designer since it is 

possible to only modify the gate resistance when a derivative measurement is 

required (in all other instances the transient is unaffected). This is achieved by 

adding a switch and resistance in parallel with the original gate resistor. The 

modified gate resistance value can easily be chosen to increase the switching 

time by the desired amount.  
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This approach while successfully reducing the high frequency content 

of the current waveform also removes high frequency components from the 

voltage waveform and therefore reduces the di/dt. Also while the approach 

provides a controllable solution that can be applied only when necessary and 

has been demonstrated successfully in conjunction with the Fundamental 

PWM technique [23], it also requires additional hardware and control (to 

switch in the additional parallel gate resistance thereby reducing the overall 

effective gate resistance).    

A variation of this technique has been presented previously.  In [86] an 

additional capacitance was added between the gate and collector of an IGBT. 

This small capacitance increased the Miller capacitance therefore increasing 

the turn on time. The technique was used to reduce overvoltage at the motor 

terminals.  

4.2.3 Injection of Low Magnitude Test Pulses 

The concept of using low magnitude pulses specifically added to allow 

the transient current response to be measured and thus track saliency was 

investigated in [22, 87-89]. During normal SVPWM operation additional test 

pulses were injected during the PWM null vector and the transient current 

response to these test pulses was used for estimating the rotor position. The 

injected pulses could be compensated immediately after their original 

application to minimise current distortion. This approach is similar to the 

INFORM method described in Chapter 2. However in this case the additional 

test pulses had much lower amplitude than the pulses that drive the motor. The 

implementation of this method involved adding H-bridges in series with the 

output phases of a standard two level inverter that could be used to generate 

the test pulses. The DC links supplying the H-bridges had a small voltage 

amplitude (150V) [22]. The DC link voltage has a large influence on the 

transient current response according to Eqn 2.5. Reducing the amplitude of the 
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DC link voltage reduces the amplitude of the transient current response of the 

motor. As a result the current ripple is reduced when applying test and 

compensation vectors. This allows a significant reduction in the THD to be 

achieved. Figure 4.1 illustrates this concept [22]. 

 

 

Figure 4.1 An illustration of how reduced amplitude test pulses result in  

smaller transient current responses and hence a smaller current ripple is 

introduced [22] 

 

The reduced amplitude of the test vectors resulted in a smaller dv/dt 

being applied to the machine (when applying test pulses) and therefore the 

amplitude of the high frequency oscillations seen in the current response was 

reduced. It was claimed that this allowed current derivative sampling to occur 

sooner and hence a reduction in the minimum pulse width could be achieved. 

The amplitude of the test pulses would have little affect the frequency, phase 

and decay rate of the high frequency oscillations and so the same amount of 

time would be required for the oscillations to decay completely to zero. 

However because of the reduced amplitude of the oscillations it may be valid 

to say that they have a small enough amplitude to have an insignificant effect 

on the current derivative at an earlier stage therefore current derivative 

sampling can occur at an earlier stage.     
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Because the minimum pulse width threshold was applied specifically 

to the test vectors, a minimum pulse width for the normal PWM vectors was 

not required and the normal PWM edges themselves were unchanged. 

This idea was developed further in [22, 90] where the same converter 

topology was used to produce a full asymmetric 7-level multi-level converter. 

The reduction in voltage magnitude between the discrete voltage levels at the 

output of the converter resulted in smaller transient current responses and the 

amplitude of the high frequency oscillations seen in the current response was 

reduced significantly thus allowing a reduction in the THD compared to 

equivalent two level designs.  

These solutions though add a significant amount of hardware, control 

complexity, cost and create additional losses. The method also still made use 

of dedicated current derivative sensors.  

4.3 Use of Mathematical Techniques  

4.3.1 Introduction 

It was established in Chapter 3 that it is not possible to remove the 

parasitic impedances that cause the high frequency oscillations in the phase 

current response. In 4.2 it was seen that it is undesirable to remove the high 

frequency content of the voltage waveforms (which would in turn reduce the 

amplitude and duration of the high frequency oscillations in the current 

response) because of the effect that would have on the ability to track saliency 

as well as the need for additional hardware. Following these observations a 

non intrusive solution which utilises signal processing appears favourable. At 

first glance this seems a relatively simple problem. The underlying gradient 

that is of interest can clearly be seen when the transient is viewed in full and 

the response appears to be dominated by a high frequency exponentially 
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decaying sinusoidal component. Due to the high frequency of the oscillations 

and the small time window that they would need to be sampled over, a very 

high speed data acquisition system would be required. Once the response has 

been captured signal processing could subsequently be applied to find the 

derivative. However, the response also includes a number of low frequency 

components which decay at different rates. Also there is a variation in the 

shape of the response depending on the inverter operating conditions. 

4.3.2 Work by Other Researchers in the Field 

There is a limited amount of literature documenting work similar to 

that proposed in this thesis where the current derivative is estimated through 

sampling at a high rate (oversampling) and then by subsequently applying 

signal processing techniques to extract the required information. In [1, 91, 92] 

the current derivative was established by oversampling the output from a 

Rogowski coil, following a change in the inverter switching state. Signal 

processing was then applied to the captured response to find the derivative. In 

order to reduce the minimum pulse width the current was sampled at 40MSPS 

to capture the transient response from a Rogowski coil and the derivative was 

then estimated using three different approaches applied to the captured current 

derivative data – mean value over a set time window, mean slope and also 

using a delta sigma modulator and sinc(x) filter. Use of current sensors was 

also explored in this work (from which the derivative could be found by 

measuring the change in current over a set time) but these sensors were found 

to require a large time window in order to allow a measurable change in the 

underlying gradient to occur. 

In [93] the current derivative was estimated by oversampling the 

current and subsequently applying a recursive least squares fitting algorithm to 

the result in order to obtain the derivative. Minimum pulse widths of 1µs were 

reportedly achieved. However this approach was never implemented in a real-
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time situation. The processing time for such a technique would be high and 

this is exacerbated in a sensorless application by the need to estimate several 

current derivatives within a few PWM periods in order to obtain one position 

estimate. The current waveforms used in the study were captured using a high 

bandwidth (10 MHz) Lecroy CP150 current probe which could not be used in 

a commercial drive due to the cost of such sensors. Hence low bandwidth 

sensors would have to be used instead in a commercial drive. The limited 

bandwidth of such sensors introduces further complexities into the response.  

 

In [94, 95] standard current sensors were used to measure the current 

derivative for the implementation of an injection based saliency tracking 

sensorless technique. Oversampling of the current response was performed 

and then linear regression was applied to fit a straight line to the “cloud” of 

measured points to estimate the derivative. The aim of the work was to reduce 

the effects of random and quantisation noise on the measured current 

derivative. The method allowed an increase in the accuracy and robustness of 

the derivative estimation to be achieved. In doing so the HF signal injection 

amplitude could be reduced by a factor of 7 - 10 (which also reduces the 

amplitude of the salient component in the current response) but the saliency 

component could still be accurately identified. Reducing the high frequency 

injection amplitude significantly reduced the torque ripple and audible noise 

observed in the machine response. This method however neglected the effects 

of the high frequency oscillations on the response and instead delayed the 

sampling of the current waveform until after these oscillations had decayed, 

hence these were not considered. When the PWM pulse widths reduced 

beyond the point where a delay and then oversampling could be applied, the 

method relied instead on a compromise of using the average active vector 

derivative estimated from the start and endpoints of the current in adjacent null 

vectors. Whilst this does not imply a minimum pulse width it is less than ideal 

and it was not clear if, or how, decaying high frequency transients affected the 
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results. Also no attention was paid to the non-linear switching behaviour of the 

inverter and the resulting effects this has on the current response.     

Whilst the research described above demonstrates the potential for using 

oversampling and signal processing to establish the derivative accurately and 

in a reduced time there still remains a number of limitations and factors which 

require further attention. These include:  

 

 None of the work discussed above considers the non-linear switching 

behaviour of the inverter and the effect this has on the derivative 

measurement/estimation.   

 Effects of decaying transients on subsequent derivative responses are 

not considered (i.e. if the inverter switching state is changed before the 

high frequency transients (due to a previous switching event) have 

decayed then the high frequency transients due to the previous 

switching state and the next switching state will be added together).  

 In [1, 91, 92] standard current sensors were found to require a large 

time window in order to allow a detectable change in the underlying 

gradient to occur meaning that the high frequency oscillations are not 

the only limiting factor in the use of standard current sensors. 

 In [94, 95] the high frequency transient behaviour was ignored and for 

short vectors the average derivative was estimated from adjacent 

vectors.  

 The limited sensor bandwidth is mentioned in [1, 91, 92] but no 

suggestion of how this might be overcome is provided.  

 For the solutions presented in [1, 91, 92] dedicated Rogowski coils are 

required.  

 In [93] the method proposed was only demonstrated offline and would 

be difficult to implement in a real-time sensorless application due to 

timing constraints. 
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Given the limitations of the research already completed in this field a 

mathematical curve fitting approach to approximate the high frequency current 

response to a mathematical description of the response based on prior 

knowledge of the frequency content of the response was proposed. Attempts to 

implement this proposed method however were unsuccessful. The attempts 

made and their reasons for failure will now be described. 

4.4 Estimation of the Current Derivative 

Using Curve Fitting Methods  

4.4.1 Introduction 

This proposed work is differentiated from the work of previous 

researchers by the method proposed for obtaining the current derivative and 

the way in which the current measurements are obtained. The initial proposal 

in this research was to estimate the current gradient by fitting a mathematical 

approximation to the experimental waveform using a least squares curve 

fitting approach. From the fitted waveform the current derivative could be 

extracted directly. The use of a standard closed loop current sensor is 

preferable from an industrial perspective owing to its low cost and also its 

widespread acceptance and use already within commercial drives. However 

these sensors have a limited bandwidth in which the response can be expected 

to be linear – this is usually up to a few hundred kHz. As the current data of 

interest contains frequencies in the order of MHz the measured response will 

be subject to attenuation and phase shifts. This problem complicates matters; 

however the underlying gradient information that is of interest will only 

experience limited effects due to the sensor bandwidth. As long as the 

amplitude and phase response of the sensor are repeatable in the high 
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frequency range, its effects on the expected response can be accounted for. 

The current waveform could be filtered to remove the attenuated and phase 

shifted components but this would add delay to the low frequency response 

and would not sufficiently remove all of the higher frequency components.  

In order to test the viability of the proposed current gradient estimation 

technique the method was implemented in Matlab. Scripts were written to 

evaluate the gradients offline using motor current waveform data measured 

using a Lecroy CP150 high bandwidth (10 MHz) current probe and 

oscilloscope.  

4.4.2 Curve Fitting to a First Order Linear 

Approximation 

Initial attempts were made to fit experimental current transients to a 

first order (y=mx+c) equation using a linear least squares fit. However over a 

short time window containing only transient behaviour this produced poor 

results. The two main reasons for this were complex behaviour of the current 

immediately after switching where the measured wave does not match the 

actual gradient. This is because the limited bandwidth of the sensing 

equipment results in some of the harmonics which form the straight line of 

interest being attenuated causing non-ideal behaviour around the peaks and 

troughs.  Figure 4.2 illustrates this by showing a triangle wave with a 1MHz 

exponentially decaying sinusoidal frequency component added at the peaks 

and troughs. An ideal and filtered version of this wave is also shown. Note the 

delay and shape of the filtered wave after each peak and trough. A further 

difficulty lies in the identification of the DC offset. This must be accounted for 

when performing a fit by identifying the offset and either including or 

removing the result from the fitting process. Automatically identifying the 

exact start point of the transient behaviour and therefore the DC offset proved 

very difficult but also very important as the selection of the DC offset was 
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found to have a large influence on the accuracy of the result. This was a 

problem that affected all of the mathematical curve fitting methods tested. 

 

 

Figure 4.2 An illustration of the effects of filtering the sampled current 

waveform. The ideal (red) waveform is shown, as is a realistic representation 

(blue) where a 1 MHz exponentially decaying sin wave is superimposed. This 

wave is filtered and shown (black), the filter cut off frequency is 250 kHz. The 

frequency of the ideal triangle wave is 100 kHz. Notice the delay due to the 

phase shift and the rounding of the wave around the peaks due to the removal 

of the triplen harmonics which form the triangle wave 

 

The lower frequency content present in the experimentally measured 

current waveform over a short window caused the least squares fit to deviate 

away from the actual gradient as it attempted to minimise the error between 

the fitted and actual waveforms. This is because these low frequency terms are 

not accounted for in the mathematical fit and also because of the decaying 

nature of the wave, its appearance about the underlying gradient is 

asymmetrical. Figure 4.3 illustrates this by showing an experimentally 

measured transient current waveform along with the underlying gradient. Also 

shown are the results of passing the original transient waveform through a low 
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pass filter. In order to highlight the non-symmetrical contribution (with respect 

to the underlying gradient) made by the lower frequency components. 

 

 

Figure 4.3 Experimentally measured transient current waveform (red) and 

corresponding underlying gradient (black). Also included are low pass filtered 

versions of the transient current waveform (blue and green) to show the non-

symmetrical contributions made by the lower frequency components 

4.4.3 Curve Fitting to a Single Exponentially Decaying 

Sinusoid Approximation 

Given the unacceptable performance of the straight line fitting 

approach, the performance of a non-linear least squares fit according to Eqn 

4.1 was tested.  

 ݂ሺݔሻ ൌ ܽǤ    ሺʹݐ݂ߨ ൅ ሻǤߠ ݁ି௙௧ ൅ ݔܿ ൅ ݀ (Eqn 4.1) 
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In order to simplify the synchronisation of the transient and fitted 

waveform responses the first peak of the measured transient response was 

taken as the start point and the sinusoidal component of the fitted waveform 

was modified to include a 90º phase shift (ș in Eqn 4.1). Figure 4.4 shows a 

typical result obtained when using this method. 

 

 

Figure 4.4 Experimental waveform and approximation based on (Eqn 4.1) 

 

The result in Figure 4.4 shows what appears to be a reasonable 

approximation of the measured waveform. However the estimate obtained for 

the gradient was inaccurate. Closer inspection of the result in Figure 4.4 

reveals the reasons for the inaccurate result. Firstly the large overshoot on the 

first negative peak is due to a mathematical error caused by the fact that the 

amplitude profile of the current response cannot be described by a single 

exponential component, other unaccounted for frequency components 

contribute significantly to this initial overshoot (see Figure 4.3). It is thought 

that to remove this error distortion introduced by the sensing apparatus must 

be accounted for and also other frequency components (with high decay rates 

meaning these components only appear in the initial response) must be 

included. Also the absence of lower frequency contributions results in errors in 
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the fitted waveform which can be seen clearly between approximately 0.6ȝs 

and 1ȝs in Figure 4.4 where the response appears to become in anti-phase with 

the fitted waveform. There are also further amplitude errors at around 0.6ȝs. 

When the response is supplied to a least squares fitting algorithm which has 

knowledge of the dominant frequency component the gradient is modified to 

match the response and reduce the errors between the fitted and measured 

waveforms. An inaccurate description of the high frequency elements means 

that the gradient is actually modified to account for errors added by these high 

frequency components which are more significant than the errors caused by 

the differences in the underlying gradient over such a small time window.  

Hence the next logical step is to include more frequency components. 

However this in itself is very complicated particularly in a real time 

application. Firstly the components must be known which means that the 

frequency, phase and amplitude information must be known. This is difficult, 

in the example shown in Figure 4.4 where the dominant component only was 

considered a prior knowledge of the frequency was assumed. Amplitude 

information could be obtained by direct measurement while phase information 

was easily obtained by making the first measured peak the start point (90º 

shifted sinusoid).  However all other frequency components are masked by 

this dominant term and so direct measurement is not possible. Because the 

exponentially decaying components are highly correlated it is also very 

difficult to extract the frequency component properties using a Fourier 

transform. Attempts were made to filter the response and select the dominant 

components from a number of windows but the phase shift added by the filter 

was significant and attenuation of dominant frequencies was insufficient to 

uncover other hidden components. The large number of frequency 

contributions meant that identification of one dominant frequency in particular 

was difficult. An important consideration that must also be remembered is that 

this approach is likely to require an FFT for every measured response (five per 

PWM period when implementing the Fundamental PWM sensorless 

technique) which adds significant computational requirements. 
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4.4.4 Straight Line Approximation Following Moving 

Average Filtering 

Following the unacceptable performance of the approximation 

methods described so far a more simplistic approach was attempted which did 

not rely on accurately describing the high frequency behaviour of the 

waveform. This approach involved applying a moving average filter to the 

waveform. The midpoints of each high frequency oscillation were established 

by taking the average of each two consecutive peaks. The first peak was 

omitted due to the large initial overshoot followed by a comparatively small 

undershoot; the average of these two values added a large error to the result. 

Figure 4.5 shows the current response and resulting waveform obtained using 

a moving average filter. 

 

Figure 4.5 Experimental waveform and moving average filtered waveform, a 

wave fitted to the moving average result is also shown 

 

The new wave consisting of only the average points was processed 

using a least squares curve fitting approach which tried to fit the points to a 

straight line. A benefit of this approach is the simplistic fitting required and 
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the small number of points that require processing. The results were however 

unsatisfactory. Limitations of this approach include a need to observe a 

minimum number of current peaks which will enforce a minimum pulse width 

and also that the method requires that the response is dominated by a single 

frequency (which is not always the case, as this depends on the parasitic 

impedance network which determines the high frequency response). If the 

response contains other significant frequency components and the response 

does not appear as a single decaying frequency component as in Figure 4.5 

then the average values will no longer represent the underlying gradient. This 

would be the case at low current values when the reduction in dv/dt of the 

switching device distorts the current.  

Figure 4.6 shows the results obtained when using another moving 

average filter which estimates its points using a step time given by the 

dominant frequency‟s period divided by two.  

 

Figure 4.6 Experimental waveform and resulting period moving average 

filtered waveform, a wave fitted to the moving average result is also shown 

which provides the gradient estimation 

 

This method also suffers from other high frequency contributions; the 

result is that there is not one single frequency whose period can be used to 
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accurately identify the zero crossings (neglecting the gradient and the DC 

component). This method also suffers from the same limitations as the 

previous approach which uses the peaks in that a minimum number of peaks 

must be captured and if there are other significant frequency components 

present then the result of a moving average filter will not represent the 

underlying gradient. 

4.4.5 Straight Line Approximation Following 

Dominant Sinusoid Component Cancellation and Low 

Pass Filtering of Waveform 

Because of the difficulties discussed in identifying the other high 

frequency contributions of the response a different approach was evaluated, 

the principle of which was to generate an ideal exponentially decaying 

sinusoid of the dominant frequency observed in the response and then subtract 

this from the measured current response waveform. The DC offset could also 

be removed by direct measurement and subtraction. Following this the 

response only contained the underlying gradient and unaccounted for 

frequencies. The unaccounted for frequency response consisted mainly of a 

1MHz component and a 5MHz component. A digital first-order low pass filter 

was then applied to the wave in an attempt to remove the remaining high 

frequency components leaving only the gradient of interest. The difficulty of 

this approach lay in how to select a cut-off frequency for the filter which 

would successfully reject the undesirable higher frequency content but would 

also not degrade the remaining gradient information. If the chosen cut-off 

frequency was too high then the high frequency components were not 

sufficiently attenuated and affected the result. While selecting the cut-off 

frequency to be too low removed too much information from the underlying 

gradient again affecting the result. Figure 4.7 illustrates the key stages of the 

process showing the original measured waveform, the waveform with the 
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dominant high frequency term cancelled leaving the unaccounted for 

components (or error terms) and the gradient and finally the filtered term. The 

fitted waveform is also shown but looks identical to the filtered waveform at 

this scale. 

 

Figure 4.7 The experimental current waveform is shown along with a 

waveform with dominant exponentially decaying sinusoid component 

removed; a wave fitted to this result is also shown which provides the gradient 

estimation. N.B. filtered and fitted waveforms are identical 

 

Many other options were considered in an effort to improve the results 

obtained using the mathematical curve fitting approach. However due to the 

time critical nature of the application any methods which required heavy 

additional computation were discarded. Such approaches included techniques 

which used Fourier analysis of the sampled waveform (where a very high 

sample frequency was required to get reasonable resolution in the results) and 

operating parallel HF models based on the work documented in Chapter 3 

which could predict the current waveform frequency content when supplied 



Chapter 4 
Current Derivative Estimation in the Presence of HF Oscillations 

 
97 

 

with the dv/dt applied to the machine (but required small step intervals due to 

the high frequency nature of the current waveforms). 

In addition, a problem suffered by all of the proposed mathematical 

techniques is that to offer a significant improvement to the field of sensorless 

control the proposed solution must be capable of determining the current 

gradient in a limited time. The mathematical approximation approaches when 

using a standard current sensor all rely on measuring the change in the 

underlying amplitude and extracting that information but the small change that 

is of interest is impractically small in measurement terms over a short time 

window (of a few µs). From experimental investigation work it is known that 

current derivatives in the range 105 are expected. If a gradient of 105 is 

assumed and a time window of 2µs is chosen then the change in current 

amplitude (through a change in the underlying gradient) that needs to be 

measured is 0.2A which is difficult due to noise contributions from external 

sources, the measurement equipment itself and also the accuracy of the 

sensors. Hence in order for the method to work satisfactorily the time window 

may need to be extended in which case little benefit would be offered over 

simply measuring the current after the high frequency oscillations have 

passed.  

The issue of needing to see a measurable change in the underlying 

current is combined with the fact that the curve fitting methods investigated all 

rely on an iterative process to arrive at the derivative result which is inefficient 

in terms of overall derivative calculation time. This could be critical in a 

sensorless application where a position estimate is required at least once every 

few PWM periods.  
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4.5 Difficulties Associated with 

Mathematical Curve Fitting Methods 

To summarise, for the methods which rely on applying least squares curve 

fitting to the measured response the following major issues exist  

 

 Approximation of the response to a single dominant frequency 

component produces unacceptable results as during the least squares 

fitting the gradient is adjusted to minimise the least squared error. This 

error is mainly due to other frequencies not included in the curve 

fitting approximation rather than errors between the estimated and 

actual gradient. 

 To get an accurate result the approximation must include as many 

frequency contributions as possible which adds computing complexity 

and also means all frequency components to be included need to be 

identified prior to implementation. 

 If frequency components other than the dominant component are to be 

included, establishing their amplitude, decay rate and phase 

information is very difficult. It requires the use of an FFT, adding 

further complexity to real time implementation. 

 The frequency spectrum of the response contains many other 

significant contributions which are very difficult to identify due to the 

high correlation between the exponentially decaying components. This 

is compounded by the fact that when trying to establish the key 

frequency components, what is a good window for one component for 

the FFT is a poor window for another component.  

 A problem affecting all of these approaches is the high dependence on 

the accurate determination of the initial offset. If this is incorrect it can 

have a larger influence on the least squares curve fitting process than 
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the actual gradient that is of interest, causing an erroneous gradient 

estimate result. Establishing the initial offset is also very challenging 

as knowing which point in time to select as the start point and 

measuring the current accurately at that point is not straightforward. 

 The transient current response varies according to the dv/dt applied by 

the inverter. The mechanisms and variables that influence the applied 

dv/dt have been identified (allowing a level of predictability about 

when these responses will occur). However, applying an 

approximation that describes all possible responses would be difficult 

due to the number of different possible variations of the waveform. An 

option would be to delay the defined start of the oscillatory waveform 

until the initial distortion has passed, however knowing how much 

delay is required and what the initial offset should be (since the start 

point is offset by the distortion) would present further challenges.  

 

The work in this chapter has shown that it is not possible to simply apply a 

curve fitting approach to the transient current response and obtain an accurate 

result for the current derivative. The complex mathematical description of the 

waveform, the effects of limited sensor bandwidth and non linear inverter 

switching (which distorts the current waveform) all present significant 

challenges to curve fitting methods. Hence an alternative solution is required. 

An ideal solution would be one where it is not necessary to define all 

contributing frequency components and one which is able to deal with the 

effects of limited sensor bandwidth and non-linear inverter switching. The 

next chapter introduces a solution that meets these requirements by using 

artificial neural networks to estimate the derivative from a transient current 

response.  
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Chapter 5  

Derivative Estimation Using 

Artificial Neural Networks 

5.1 Introduction 

The limitations associated with using a mathematical approach to 

estimate the current derivatives prompted investigation into an alternative 

solution. Artificial neural networks (ANNs) are employed as pattern 

recognition tools to associate measured transient current responses with steady 

state derivative values based on prior knowledge obtained during the offline 

training of the neural network (performed in a pre-commissioning phase).  

An attractive feature of artificial neural networks is their ability to 

work on problems affected by non-linear behaviour. Neural networks can be 

trained to deal with factors which present major problems for the 

mathematical approaches detailed in Chapter 4 including low dv/dt transients 

and the limited bandwidth of the sensing circuitry, both of which distort the 

measured current response. This removes the need for special handling 

procedures for low dv/dt cases providing the neural network is adequately 

trained to deal with such scenarios. They are particularly well suited to this 

application as no knowledge of the specific mathematical details of the 

transient response are required (which are difficult to measure as indicated 

previously and the description of the response mathematically is complex). 
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 Another advantage is the reduced dependence on accurately 

determining the start of the transient. It has been seen that this has a large 

effect on the accuracy of the results obtained from least squares fitting 

techniques. In the case of neural networks, what is more important is the 

similarity between the training data used and real data encountered by the 

network. Triggering the sampling of the current waveform to start from the 

same point with respect the PWM edges (when collecting data for training or 

when operating in real-time) ensures that this is the case.  

A further benefit is that using this approach it is not necessary to 

physically measure the derivative. This is especially advantageous when 

standard current sensors are to be used as in a normal implementation the use 

of standard current sensors dictates that a longer minimum pulse width is 

maintained to allow a measurable change in the current gradient to occur [1]. 

As the approach used here is concerned only with the transient response and 

associating this to a steady state derivative, standard current sensors can be 

used for very short sampling windows (a few µs). These sensors could be 

shared to also measure the current for control purposes and hence no 

additional sensors are required compared to the standard industrial inverter.  

Neural networks can also offer the possibility of adaptive learning 

which could be useful in this case since the high frequency impedance 

network can change as the winding insulation breaks down which in turn 

effects the current response [96]. 

In this chapter neural networks are introduced and their 

implementation in this work is discussed. Simulation results are presented 

which demonstrate the ability of neural networks to estimate the current 

derivative from a transient current response affected by high frequency 

oscillations. All simulation work was performed using Matlab, initially using 

the Matlab neural network tool. This provides an easy to use graphical user 

interface (GUI) which simplifies the implementation. Once the work had 

reached an advanced stage the networks were implemented using Matlab 
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commands directly (instead of through the GUI) which provided more control 

over the network configuration and allowed automation in the processing of 

data and network training process. 

5.2 Artificial Neural Networks and Their 

General Operation 

The design used in this work was based on a feed-forward neural 

network which features no form of feedback during operation. The neural 

network consists of several layers; the initial layer (the input layer) is formed 

by a collection of nodes which accept vector elements as the input. In this 

application the vector applied to the input contains the points of the sampled 

current transient. The next layer is known as the hidden layer and contains 

neurons, the number of which is defined by the network‟s designer. Each 

neuron has weighted connections to all input nodes and also receives a bias 

input. Each neuron sums the weighted and bias at the inputs and then passes 

the result through a transfer function to obtain a final result. In this work a 

tansig() transfer function, given by Eqn 5.1, was used. 

ݕ  ൌ ሻݔሺ݃݅ݏ݊ܽݐ ൌ ʹͳ ൅ ݁ିଶ௫ െ ͳ (Eqn 5.1) 

 

 It is possible to have multiple hidden layers, each with a number of 

neurons and transfer function selected by the designer. In this work one hidden 

layer consisting of ten neurons was found to be sufficient. The neuron outputs 

are then supplied to a final layer called the output layer. The output layer also 

consists of neurons which are connected to each of the hidden layer‟s neurons 

via weighted connections and also have a bias input. Once again the inputs are 

summed and passed through a transfer function. The number of neurons in the 
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output layer is set to provide the number of elements required to form the 

output vector, 1 in this case. Figure 5.1 illustrates the structure of a feed-

forward ANN. 

 

 

Figure 5.1 The structure of a feed-forward neural network. The inter 

connections between the inputs and hidden layer neurons and also between the 

hidden layer neurons and output layer neuron are weighted (I=input, B= bias 

and O=output) 
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5.3 Use of Neural Networks in Sensorless 

Control Applications 

The use of neural networks for sensorless control applications has so 

far been mostly focused on the mathematical modelling approaches where 

parameter variation can have a large effect on the accuracy of the system. 

Artificial neural networks have been employed in many applications to track 

stator and/or rotor resistance variation [8, 97]. They can also be used in place 

of the conventional adaptive model [98, 99]. In [100] a neural network stator 

current observer was used as the adaptive model. The estimated stator current 

is compared with the measured stator current to obtain an error which is 

minimised by altering the speed estimate. The new method  removes the drift 

and parameter variation associated errors but suffers from instability under 

regeneration mode [100]. In [101] an ANN was used as a flux observer, 

replacing the voltage model as the MRAS reference model and removing the  

integration operation.  

Artificial neural networks have also previously been employed in 

saliency tracking sensorless control methods [102-104]. However the reason 

for applying neural networks in the case of [102-104] was to try and identify 

through pre commissioning the variations in the various saliencies due to load 

and flux. At low speeds a problem arises with saliency components 

overlapping in the frequency domain making them inseparable by filtering 

methods. Instead the neural network with prior knowledge of the saliencies 

and their conditionally dependant behaviour gained during the pre-

commissioning could cancel the influences and interactions of the undesirable 

frequencies without the need for filtering or compensation by lookup values. 

This work did not consider the way in which the current derivative 

measurements might be obtained and was not concerned with reducing 

minimum PWM vector time limitations.     
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5.4 Estimation of Current Derivatives Using 

Neural Networks 

5.4.1 Training a Neural Network for Derivative 

Estimation 

Given that the neural network must be trained prior to use, this 

approach would necessitate pre-commissioning when used in any motor drive 

application. To achieve this, the drive could be operated in open loop mode to 

apply (extended) PWM vectors to the machine and view the current response 

over a large time period such that the measured current data contains a 

significant amount of steady state behaviour. The current transients are 

captured and the steady state portion of the response is supplied to a  

mathematical least squares algorithm. A first order equation is fitted to the 

response and from the results the gradients are established. For every transient 

captured there is an associated steady state derivative value that could be used 

to train the neural network. This training process is outlined in Figure 5.2. 

 

Figure 5.2 (a) Capture the current transient including some „steady state‟ 

data after the high frequency oscillations have decayed 
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Figure 5.2 (b) Neglect portion of the waveform which contains high frequency 

transient and apply a least squares curve fit to the steady state section 

according to y=mx+c. The value obtained for m can be used as the target data 

for this particular transient while the initial part of the current transient (e.g, 

the first 2µs) is used as the training data. 

Figure 5.2 The proposed method for obtaining training data for the neural 

network 

 

The network was trained in Matlab using the feed-forward back-

propagation algorithm. In this algorithm a set of input and target data is 

provided. The input data is split into three groups, training, validation and 

testing. Training data is supplied to the network which generates an output for 

the given input. This result is then compared with the desired output provided 

by the target data and an error value is determined. The algorithm then works 

backwards through the network adjusting the weights of the interconnections 

between the neurons in each layer to minimise the error. Performance of the 

neural network is evaluated by performing a mean square error comparison 

with the output of the neural network and the target data, training continues 

until the error falls within acceptable levels. In order to avoid a phenomenon 

known as over-fitting, validation data is also supplied to the neural network to 

obtain an error estimate. This result is not used to adjust the network 
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interconnection weights but by monitoring the error when using the validation 

data this does provide an indication of when the network is over-fitting the 

training data as a change in inter connection weights shows no improvement in 

the error function for validation data but does however show an improvement 

for the training data. The testing data is used as a means of validating the final 

resulting neural network performance on independent data.    

5.4.2 Data Normalisation 

All sampled data must first be normalised before it is supplied to the 

neural network to ensure that the neural network receives data within a set 

range. Normalising the network inputs allows reduced training times. In this 

work the tansig() transfer function was used as the neuron transfer function in 

both the hidden layer and the output layer. In this case when the input to the 

transfer function is greater than approximately 1.5 the neuron output becomes 

saturated. This can cause small gradients which leads to a slow training 

process [105], normalisation avoids this. The target data is also normalised 

during the training process such that the network will give an output in the 

range ±1. Once trained, following a successful execution of the neural network 

the output data must be de-normalised (which just involves a simple 

multiplication) to ensure that the output is correctly scaled. The image in 

Figure 5.3 illustrates the normalisation and de-normalisation process. In this 

work the input to the system prior to normalisation is the current in Amps and 

the output post de-normalisation is the current derivative in A/s. 

 

Figure 5.3 Data normalisation required pre and post neural network [105] 
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5.5 Simulation Results 

The approach was tested using current data which was sampled at 62.5 

MHz. The platform used to achieve this is described in Chapter 6. A neural 

network was configured to have 128 inputs (which represents approximately 

2µs of data when sampled at 16ns intervals (62.5 MSPS)), one hidden layer 

containing 10 neurons each of which used a tansig() transfer function and an 

output layer which consisted of one neuron which also used the tansig() 

function. A number of other feed forward network designs were evaluated by 

varying the number of hidden layers, the number of neuron(s) contained in 

hidden layer(s) and the transfer function(s) used in the hidden layer(s). The 

described ANN was found to give the best overall performance in terms of 

accuracy when tested on training data and new experimental data, training 

time and also neuron count (which translates into resource usage when 

implementing the design). The results presented are representative of the 

performance level that can reasonably be expected to be achievable using this 

method since it cannot be expected that identical results can be reproduced 

using this approach given the tolerance and sensitivities of ANNs.     

5.5.1 Phase A, First Active Vector 

Following a successful training operation the neural network was 

supplied with current transient data. For all of the following tests current 

transients were collected using the permanent magnet motor drive described in 

Chapter 6. In each case the machine was operated at 30Hz (600RPM) with 

83% of the rated load applied since this was a point used to collect ANN 

training data and so was expected to give good performance. Initially current 

transients were collected from the first PWM active vector and supplied to the 

ANN. In the case illustrated below half of the data supplied to the neural 
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network had been used to train the neural network while the remaining 50% of 

the data was previously unseen by the neural network. The plots shown in 

Figure 5.4 (a) and (b) show the ANN derivative estimates along with the least 

squares fit result applied to the steady state portion of same current transients. 

A derivative result was obtained once every PWM period and the switching 

frequency was 5 kHz. Hence with a fundamental frequency of 30Hz, one 

fundamental period is represented by 167 samples. In case (a) the transient 

data was seen by the neural net during training while in case (b) the transients 

had not been encountered by the ANN previously. Note that there is little 

difference in the accuracy of the ANN‟s estimates between cases (a) and (b). 

 

 

Figure 5.4 (a) 
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Figure 5.4 (b) 

 

Figure 5.4 The estimated first active vector derivatives from the ANN are 

shown with the derivatives calculated from a least squares fit for comparison. 

In (a) the transients supplied to the ANN had been seen during the training 

process while in (b) the transients supplied to the ANN had not be used 

previously 

 

In order to quantify the accuracy of the ANN estimated derivative 

compared to the actual derivative obtained from a least squares fit performed 

on steady state data, the error between the least squares fit result and the ANN 

estimate was analysed. Figure 5.5 shows the instantaneous error in each 

estimate (comparing the ANN estimate the least squares fit result). The RMS 

error and standard deviation calculated from the instantaneous error are also 

shown.  
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Figure 5.5 The instantaneous error of the ANN estimated first active vector 

derivatives compared to the least squares fit results 

 

It is clear in Figure 5.5 that there is no notable difference in the 

performance of the ANN when comparing its performance using previously 

seen and unseen data. The RMS error for previously seen data was 2046.2 

while the RMS error for unseen data only was 2028.0. The ANN showed no 

notable change in the instantaneous error when estimating negative and 

positive derivatives. As the negative derivatives had a much larger amplitude 

this indicates that the ANN is able to estimate the derivative more accurately 

when the derivative is large.  The standard deviation value gives an indication 

of the error magnitude that can be expected in the ANN estimated results. 

Figure 5.4 shows that the positive derivatives have an amplitude in the 40000 

A/s region. Hence with a standard deviation of 2046 an error of approximately 

5% can be expected in the ANN derivative estimates, this value is within the 

limit  of 1±1.315e4 A/s defined in Section 2.6. Inspection of Figure 5.4 reveals 

that the negative derivatives have amplitude in the -100000 A/s region. Hence 

an error of 2% can be expected in the result.  
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5.5.2 Phase A, Second Active Vector  

 Following the encouraging tests performed using transients collected 

under the first active vector the same test was repeated using data captured 

under the second active vector. Once again Figure 5.6 (a) shows the results 

using transients used during the training of the ANN while the results shown 

in Figure 5.6 (b) are obtained by supplying the neural network with data it has 

not previously seen before. The ANN again shows a good ability to estimate 

the derivatives with reasonable accuracy.  

 

 

Figure 5.6 (a) 
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Figure 5.6 (b) 

Figure 5.6 The estimated second active vector derivatives from the ANN are 

shown with the derivatives calculated from a least squares fit for comparison. 

In (a) the transients supplied to the ANN had been seen during the training 

process while in (b) the transients supplied to the ANN had not be used 

previously 

 

Following the same approach that was applied to the first active vector 

case, the instantaneous error in the derivative estimates was calculated and 

analysed. The instantaneous error is shown in Figure 5.7  
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Figure 5.7 The instantaneous error of the ANN estimated second active vector 

derivatives compared to the least squares fit results 

 

The standard deviation for the second active vector was found to be 

3021.4. This result is clearly higher than the result seen in the case of the first 

active vector derivative estimates but is again within the limit  of 1±1.315e4 

A/s defined in Section 2.6. Inspection of Figure 5.6 (a) and (b) reveals that the 

second active vector derivative waveform has a more complicated shape 

including several discontinuities. If these are not accurately reflected in the 

estimated derivative then large errors can be introduced, particularly for small 

derivatives (of which the second active vector derivative has a number) where 

a small error can have a large effect on the derivative. It could also be that the 

ANN is simply better trained to the first active vector derivative. This is 

speculative as apart from the reduced error seen for the first active vector 

derivative estimates, there is no way to tell whether this is the case. Despite 

the reduction in performance compared to the first active vector case the 

second active vector derivative estimates from the ANN still follow the actual 

derivative closely. 
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5.5.3 Phase A, Null Vector  

 It has now been demonstrated that an ANN can be used to estimate the 

derivative from transient current data under both SVPWM active vectors in a 

PWM period. In order to be able to implement the Fundamental PWM 

technique derivatives are also required for the PWM null vectors. Hence the 

final simulation tests were performed in order to see if this was possible. The 

tests followed the same procedure as those for the active vectors. Current 

transients captured under central null vector (V7) were supplied to the ANN to 

gain a set of derivative estimate results. The results are shown in Figures 5.8 

(a) and (b) and once again comprise of results obtained by supplying the ANN 

with previously seen (a) and unseen (b) transients. The ANN shows a good 

capability to estimate the derivatives but it is clear that the results are not as 

accurate as those seen for the active vectors. 

 Figure 5.8 (a) 
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Figure 5.8 (b) 

 

Figure 5.8 The estimated null vector derivatives from the ANN are shown 

with the derivatives calculated from a least squares fit for comparison. In (a) 

the transients supplied to the ANN had been seen during the training process 

while in (b) the transients supplied to the ANN had not be used previously 

 

In order to investigate the accuracy of the estimates the instantaneous 

errors were again analysed. The instantaneous error is shown in Figure 5.9. 
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Figure 5.9 The instantaneous error of the ANN estimated null vector 

derivatives compared to the least squares fit results 

 

 Using the instantaneous error results the standard deviation was 

calculated to be 4476.2. This was the highest standard deviation seen in the 

results so far and given the small amplitude of the positive derivatives can 

represent a large error. However the result is less than the limit  of 1±1.315e4 

A/s defined in Section 2.6. The decrease in the performance of the ANN when 

estimating the derivatives under null vectors is thought to be due to the fact 

that the same ANN is also trained to estimate derivatives under active vectors 

which can have much larger amplitude. The normalisation that must be 

applied to data supplied to the ANN is based on the amplitude of the largest 

derivatives expected, since even the largest null vector derivatives are small 

(compared to those of the active vectors) the active vector derivatives dictate 

the scaling and normalisation applied and as a result the null vectors are 

located in a small operating region of the ANN which is close to zero. The 

limited operating range reduces the resolution and separability of the null 

vector derivatives and the estimation accuracy is consequently affected. If an 
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ANN was trained to deal with just null vectors the scaling and normalisation 

applied could be different and could represent the full operating range of the 

ANN (±1). The accuracy of the null vector derivative estimates, while not as 

good as those for active vectors, are still thought to be accurate enough to be 

used. It should also be considered that when measuring the null vector 

derivatives using other techniques the derivatives encountered are so small 

that measurement noise could introduce large errors using these techniques 

also. 

5.5.4 Phases B and C 

Similar tests were performed for data collected from phases B and C 

and the results obtained reflected a similar level of accuracy to those presented 

above for Phase A giving confidence in the potential of the proposed 

technique. 

5.6 Conclusions 

The results presented demonstrate that a neural network can be used to 

give an acceptable estimation of the current derivative when supplied with a 

short section of a phase current transient contaminated with high frequency 

oscillations. The window length employed was 2µs, the minimum pulse width 

that would normally be used on the drive from which the transients were 

captured would be  greater than 5µs meaning that at least a 60% reduction in 

the minimum pulse width is achievable using this technique in this case. 

 Other tests that could be performed at this stage to evaluate validity 

and performance with regards to the sensorless position estimation were 

limited by not having a system available that was capable of sampling the 
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necessary phase currents (required for the implementation of the Fundamental 

PWM technique) at a high sample rate. It would have been possible to 

simulate the entire drive setup which would allow a sensorless position 

estimation algorithm to be tested. However, simulation tests such as these are 

only of limited use in this case since the current transient is so sensitive to the 

real parasitic impedance network and inverter non-linearity affects which are 

difficult and time consuming to accurately simulate. This means that simulated 

transients were not sufficiently reflective of the real behaviour to test the 

techniques true ability to estimate derivatives for position estimation. 

 Instead it was decided to test the technique on the real machine with 

the first objective being to sample a single PWM vector of one phase at a high 

sampling frequency, use an ANN to estimate the derivative and compare the 

result with that from a dedicated derivative sensor and/or a result from the two 

current sample method. Upon a successful outcome the test could be expanded 

to include other PWM vectors of the same phase. Once it could be established 

that an accurate derivative estimate could be found (by comparing the estimate 

with a measured derivative) in a real time experimental situation, it naturally 

follows that this estimate could be used in place of the value measured from 

the dedicated di/dt sensor which had been successfully used by others in the 

past for sensorless position estimation [22, 23, 26].  
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Chapter 6  

Hardware and Practical 

Implementation 

6.1 Introduction 

Following successful off-line simulation studies using an ANN to 

estimate the current derivative, it was decided to evaluate the technique in a 

real environment. A permanent magnet motor drive which had been 

constructed by an earlier PhD student [34] was available for use. The rig 

comprised of an inverter together with DSP/FPGA controller and an industrial 

surface mounted permanent magnet machine (connected to a DC motor and 

commercial DC drive for loading). Speed (and rotor position) could be 

measured using a shaft mounted 4096 pulse incremental encoder and this was 

interfaced to the DSP (Digital Signal Processing) system. This chapter 

describes the existing rig and the components added by the author (a separate 

Altera FPGA system) to implement the current derivative estimation. The full 

system is shown in Figure 6.1 
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Figure 6.1 A diagram illustrating the layout of the overall system 

6.2 Permanent Magnet Motor  

The motor used for the majority of the experimental work was a 

Control Techniques Unimotor, a three phase, six pole, surface mounted 

permanent magnet AC machine rated at 3.82 kW. The full load current rating 

of the machine is 7.625A. While the machine is rated at 3000 RPM, in this 

research it was always operated at 50Hz (1000 RPM) or less. Table 6.1 

summarizes the other key parameters of the machine taken from the datasheet 

[106]. 
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Model Identification Number 142UMC300CACAA 

Poles 6 

Rated Speed 3000 RPM 

Rated Power 3.82 kW 

Rated Torque 12.2 Nm 

Inertia 20.5x10-3 kg.m2 

Kt 1.6Nm/A 

Ke 98.0 Vrms/kRPM 

Rs 4.7mȍ 

Ls 4.15mH 

 

Table 6.1 Permanent magnet motor parameters [106] 

6.3 Power Electronics 

The Inverter used to supply the permanent magnet machine was a 

custom built, three phase, two level design rated at 15kW [23] and supplied 

from a 415V 3 phase supply. This type of drive was chosen because it is very 

common in industry and its operation causes large dv/dt to be applied to the 

machine when switching. This in turn produces a strong transient current 

response for testing of the proposed technique.  

The inverter was designed at the University of Nottingham [107] and 

featured six output phases, although only three were used in this work. The 

incoming voltage from the supply was rectified via a three phase diode bridge 

rectifier and supplied to a DC link constructed using four 400V 2mF 

capacitors. These were arranged as a pair of two series capacitors in parallel 
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giving a total DC link capacitance of 2mF and a voltage rating of 800V. A 

three phase inverter then supplied the motor.  

The switches used in the inverter were Fuji IGBTs rated to withstand 

1200V and carry 100A. Each module contains both upper and lower IGBTs of 

an inverter leg. Housed on the inverter board were LEM sensors used for 

measuring DC link voltage (LEM LV 25-P) and the three phase currents 

(LEM  LAH 100-P) with measurements from the sensors being used for both 

control and protection purposes.  

The inverter board also contained the gate drive circuitry which took 

fibre optic gate drive signals from the Actel FPGA and converted these back 

into electrical signals with the required amplitude (±18V) to switch the IGBTs. 

6.4 DSP and FPGA Control Platform 

The control platform for the inverter was developed by the PEMC 

group at the University of Nottingham and consisted of a Texas Instruments 

TMS320CX6713 DSP with an Actel ProASIC FPGA mapped to the external 

memory of the DSP and located on a separate PCB. The DSP is responsible 

for all of the control implementation and software based safety provisions. It is 

set up to have an interrupt triggered by the FPGA which is configured to occur 

at the PWM switching frequency. The interrupt routine includes the 

acquisition of measurements from ADCs, over-current and over-voltage 

protection checks, position calculation (using measurements obtained from 

encoder), control equation implementation and SVPWM gating signal 

calculations. The DSP stores results in specific memory locations which are 

accessed by the FPGA through a 32 bit external memory interface (EMIF). 

Values calculated in the DSP as well as general configuration settings (e.g. 

PWM switching frequency) can be accessed and used by the FPGA which is 

responsible for generating the PWM gating signals and controlling the 
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analogue to digital conversion of measured signals supplied to ADC chips. 

The FPGA board contains nine 12 bit ADCs capable of conversion rates of 

3MSPS. The inputs to the ADCs are also supplied to comparators which are 

set up to generate hardware trips in the event of an excessive reading from the 

attached sensor. 

6.4.1 Modifications to DSP/FPGA Control Platform  

With the control platform being well proven for controlling two level 

inverters supplying AC machines, only minor modifications were required 

specifically for this application. Additional signals calculated in the Actel 

FPGA and required by the proposed technique were added as outputs of the 

Actel FPGA via a ribbon cable which was connected to the GPIO header of 

the Altera FPGA used to implement the proposed technique.  

6.4.1.1 Modifications to the PWM 

Space Vector PWM was used to generate the gating signals but it was 

necessary to ensure that the PWM vectors always respected a minimum pulse 

time in the first half of the PWM period for the reasons discussed in Chapter 2. 

The technique for extending and compensating vectors described in Chapter 2 

was implemented within the DSP.  

6.4.1.2 Trigger Signal  

The high frequency sampling of the current signal required a trigger 

signal to indicate the start of the transient and therefore the point at which to 

begin sampling. The easiest way to do this was to produce this from the FPGA 

which produces the PWM signals since the knowledge of the PWM timings 
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can be used to produce a trigger signal slightly before or after the PWM gating 

signal to perfect the timing of the high frequency sampling and subsequent 

transient capture. This allowed delays in the gate driver circuitry to be 

accounted for.   

6.4.1.3 New Period Signal 

This signal served a dual purpose and was used in conjunction with the 

“Trigger” signal. Four trigger signals were expected within each PWM period. 

The “New Period” signal provided the first while the “Trigger” signal 

provided the other three. The New period signal was also used as a reset to 

protect the system in the event that one of the trigger signals was missed and 

not all of the necessary data had been captured for a position estimate. Without 

this provision it may have been possible for the Altera FPGA to keep waiting 

for four trigger signals and actually use transients from different PWM 

periods. The timing of the new period and trigger signals with respect to the 

PWM gating signals is illustrated in Figure 6.2. 
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Figure 6.2 an illustration of the positions of the new period and trigger signals 

with respect to the PWM waveforms 
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6.4.1.4 Sector  

„Sector‟ refers to the segment in which the voltage reference vector lies 

in the SVPWM plane. This information is already calculated in the DSP as 

part of the Space vector PWM algorithm. Knowledge of this information was 

required in the Altera FPGA for the implementation of the Fundamental PWM 

technique, since it is the sector of operation that governs which phase 

derivatives are required for position estimation. The Sector always has a value 

of between one and six and was communicated as a 3 bit signal. 

6.4.1.5 Encoder Output  

This was used for capturing training data in an attempt to ensure that 

sampling continued from the same angle in the phase rotation to ensure 

continuous sampling (in terms of electrical angle) when a break for bulk 

movement of stored data to external memory was required. This helps to avoid 

parts of the current waveform being over-represented in the captured data 

which, if a ANN were to trained using the captured data, could lead to the 

ANN being over-trained to the more frequently sampled sections of the 

current waveform. The encoder signals were already present in the DSP/FPGA 

as pulses from the encoder and were simply directed out of the Actel FPGA.  

6.4.1.6 V/F Operation Handshaking Signals  

Ideally training data for the ANN would be captured with the machine 

under open loop V/F operation so that at no point would a mechanical encoder 

ever be required. This facility was built into the original design to allow the 

FPGA to request V/F operation of the machine when collecting training data. 

Following a request, a corresponding acknowledgement of the request (once 
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V/F operation was enabled) would be sent from the Actel FPGA to the Altera 

FPGA. This then tells the Altera FPGA that it can begin sampling. 

6.5 Implementation of the Proposed 

Technique in Hardware 

6.5.1 Introduction 

The proposed technique required that a number of demanding 

hardware design specifications be met including a very high ADC conversion 

rate on at least three incoming channels (to measure the phase current 

transients), large amounts of storage space for bulk recording of training data, 

I/O for communication with the existing control platform and a DAC 

operating at a rate fast enough to output the results. The desire to buy an off 

the shelf platform in order to reduce development time and ensure correct 

operation (particularly with regard to the high frequency circuitry design) 

restricted the number of available options. The high sample rate of the ADCs 

meant that an FPGA based solution for that part of the system was preferable. 

This directed the selection to either platforms featuring both an FPGA and a 

DSP or a solely FPGA based solution. Another consideration was the cost of 

the development boards with a number of the boards being out of budget and 

FPGA only platforms being generally cheaper than platforms featuring both a 

DSP and an FPGA. 
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6.5.2 FPGA Platform 

The chosen platform was the Terasic DE3 development board which 

features an Altera Stratix III FPGA. The DE3 offers large flexibility with the 

facility to accept expansion boards via 4 HSTC (High-Speed Terasic 

Connector) connectors and 2 GPIO (General Purpose Input-Output) 

connectors, allowing customisation of the specification of the development 

board. The board also features four slide switches, 8 DIP switches and 4 push 

button switches. These were used to allow the user to configure the setup and 

mode of operation of the design while 8 RGB LEDs and a 7-segment display 

were used to indicate the state of operation. Figure 6.3 shows a front view of 

the DE3 board with key hardware features highlighted [108]. 

 

Figure 6.3 Front view of the Terasic DE3 board with key hardware features 

highlighted. Image courtesy of Terasic [108] 
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Being a general development board (albeit one fitted with a highly capable 

FPGA) this was comparatively cheaper to buy when compared with the 

specialist solutions. The expansion boards that would perform the high speed 

ADC and DAC were also reasonably priced. Other factors that influenced the 

decision were:  

 

 Confidence that the entire design could be realised on an FPGA 

 Previous experience coding VHDL 

 Design confined to a single device. 

 Development board offered numerous methods of data storage (DDR 

RAM, SD card, on-board memory and USB interface that could be 

used to transmit to a PC for storage) which would be required for bulk 

storing training data for the ANN.  

 Numerous I/O  

 Potential for parallel processing to speed up calculations and general 

operation. 

6.5.3 Signal Measurement and High Speed Data 

Acquisition  

The Altera DE3 FPGA development board required additional 

expansion boards to provide high speed ADC and DAC capability. The 

Terasic AD/DA board, shown in Figure 6.4 [109], is ideal for this application 

as the board provides two 14 bit 65MSPS ADC channels and two 125MSPS 

DAC channels. The DE3 board could accept multiple expansion boards and so 

two AD/DA boards were installed to provide the necessary number of high 

speed ADC inputs and DAC outputs.  
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Figure 6.4 Front and Back view of the Terasic AD/DA board. Image courtesy 

of Terasic [109] 

 

One issue that was identified with the AD/DA boards was that they 

were fitted with back to back transformers (the back to back configuration is a 

technique used in RF design to minimise the mismatch in parasitic capacitance 

of the transformer windings [110]) at the inputs to provide superior high 

frequency performance and common mode rejection through single-ended to 

differential signal conversion [111]. However they also acted as a filter on the 

incoming signal. In the case of the ADT1-1WT transformers used on the 

boards there was a 0.4MHz cut-off frequency [112] which would remove the 

low frequency current gradients that were of interest from the sampled current 

waveform. 

With the issue identified the simplest solution appeared to be to 

remove the transformers which would allow the ADC to operate with a single 

ended input. However this could lead to poor performance as there is a loss in 
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common mode rejection performance when compared to using a differential 

input. The datasheet for the ADC instead recommended the use of a high 

speed op-amp based ADC driver. The op-amp based ADC driver uses an 

AD8138 differential op-amp and is illustrated in Figure 6.5 [111].  

 

 

 

Figure 6.5 The AD8138 produces a differential output from a single ended input 

centred on the mid-point of the supply voltage (Voc) 

 

The op-amp based solution would still be capable of operation in the 

low MHz range due to the use of high speed op-amps and would also offer 

good common mode rejection performance. The proposed use of an op-amp 

ADC driver meant that an interfacing PCB would be required. Similarly it was 

desired to output DC to low MHz signals on the DAC channels. These 

channels were also fitted with ADT1-1WT transformers and thus suffered 

from the same problem of filtering out key data. These transformers were also 

replaced with op-amps to give differential to single ended conversion at the 

outputs. The additional PCB was designed “in house” at the University of 

Nottingham to operate at low MHz frequencies. The board is shown in Figure 

6.6. Care was taken with the layout, the impedance of tracks and the 

components used so as not to affect the incoming high frequency signals. The 
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supply voltage came from a linear voltage regulator and featured parallel 

100nf and 10µf decoupling capacitors at all points of connection with ICs. 

 

 

 
Front view 

Rear view 

 

Figure 6.6 ADC Interface board designed “in house” at the University of 

Nottingham. The board uses high speed op-amps to provide single-ended to 

differential conversion at the input and vice-versa at the output 

6.5.4 Current Measurement 

The sampled current data came from a custom designed current 

sensing board shown in Figure 6.7. This contained three current sensors whose 

outputs were scaled to give a 1V output at 10A (approximately 1.3 times the 

rated RMS current of the permanent magnet machine) to satisfy the input 

requirements of the ADC‟s (±1V max). As with the ADC interfacing boards 

the supply voltages came from linear voltage regulators. Decoupling 

capacitors were deployed close to the Vcc pins of all devices on the board.   
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Figure 6.7 Current Sensing Board designed to measure and scale the three 

phase motor currents 

 

The current sensing board and ADC interface board were designed to 

be able to transmit the current measurements either as a current (with a burden 

resistor on the receiving end) or as a voltage with the burden resistor at the 

transmission end. For voltage transmission, provisions were made to allow 

matched impedances to be used, preventing reflections in the transmission 

line. 

6.5.5 Justification of the Use of Low Bandwidth 

Current Sensors 

Despite the high frequency content of the current transients, normal 

low bandwidth industrial current sensors were used to capture the responses. 

The current sensors used were standard off the shelf LEM LA 25-P closed 
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loop Hall Effect current sensors. This family of transducers have a 

standardised footprint meaning that the board could be used to measure 

currents of up to 100A by selecting the appropriate transducer. The sensors 

themselves have a maximum rated bandwidth of 200 kHz [113]. Figure 6.8 

illustrates the working principle of the LEM closed loop hall effect current 

sensor which helps to give an understanding of where the bandwidth limits 

arise. 

 

 

Figure 6.8 Working principle of the LEM closed loop hall effect current 

sensor. Image courtesy of LEM [114] 

 

 The bandwidth limitation arises from two sources; one is due to the 

internal circuitry of the sensor. At low frequencies the Hall generator principle 

is used. An amplifier, A in Figure 6.8, amplifies the measured signal due to the 

primary current, Ip in Figure 6.8 – the current that is being measured. This 

amplified signal is then used to drive a push pull driver that provides a current 

through a secondary coil, Is in Figure 6.8. The secondary coil current is 

measured at the output of the sensor using a burden resistor. The secondary 

coil has a large number of turns such that the small secondary current cancels 
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the field generated by the primary current that is being measured by the sensor 

[114]. The amplification circuitry sets a relatively low frequency limit  and is 

responsible for measuring DC and low frequency AC currents. This however 

is not the bandwidth limit of the sensor as at higher frequencies the secondary 

coil acts as a current transformer [114]. The coil has a high frequency cut-off 

associated due to the coils leakage inductance and stray capacitance [115] 

which determines the upper frequency limitation of the sensor. Combining two 

different current measurement techniques in this way allows a wide bandwidth 

sensor to be produced with DC capability. The resulting bode plot for the 

sensor is illustrated in Figure 6.9 [114].   

 

 

Figure 6.9 LEM current sensor bode plot. Image adapted from [114]  

 

Measurement beyond the upper frequency cut-off is possible but 

measurements will no longer be made in the flat-gain region (and hence the 

measured values will not be accurate). Also, operation at high frequency is 

undesirable as core heating occurs due to eddy current and hysteresis losses 

[114]. In this research the high frequency signals to be measured are very short 

in duration meaning that the losses incurred and the subsequent heating are 

acceptable. 
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Measurement outside of the flat gain region is also acceptable in this 

research since it is the shape of the response that is of interest and although not 

accurate in terms of amplitude or frequency, the current measurements at high 

frequency are repeatable. This allows a low cost current sensor found in 

normal commercial drives to be used in a specialist application for both 

current measurement (for classical dq control) and also derivative estimation. 

This is beneficial compared to traditional sensorless techniques which require 

separate special di/dt sensors. 

Comparing the measured response from the low cost current sensors 

(LEM LA 25-P) to one measured using a Lecroy CP150 (10MHz bandwidth) 

in Figure 6.10, it is clear from the response that the LEM sensor is able to 

capture a reasonable response in the high frequency range. There is a small 

difference in the amplitude of the measured currents in Figure 6.10 due to the 

scaling applied to the LEM sensor measurement. 

 

 

Figure 6.10 (a) Time domain, both sensors 
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Figure 6.10 (b) High bandwidth Lecroy probe 

 

 

Figure 6.10 (c) Low bandwidth LEM sensor 

 

Figure 6.10 Lecroy Vs LEM current sensors. (a) shows the time domain 

response captured by the sensors while (b) and (c) show the frequency domain 

responses of the Lecroy and LEM sensors respectively 
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6.6 FPGA Design 

6.6.1 Introduction 

The design of the proposed system was realised using behavioural 

VHDL and was implemented so that the top level design (named DE3) 

contained a state-machine that controlled overall operation. Various 

components were declared in the top level design, each with a specific 

function in the overall design. Figure 6.11 attempts to illustrate the general 

structure of the top level design. After a reset the top level state machine 

would stay in an “Idle” state and wait for a stimulus either from a user input or 

from a trigger signal. On receiving a trigger signal the top level design would 

start the ADC controller to begin sampling the current. All components in the 

top level design had “busy” flag outputs. Whenever a component was initiated 

by the top level state machine its busy flag would be set to 0 while it 

performed its function, this temporarily disabled the top level state machine. 

On completing its task the component would set its busy flag high again and 

the top level design would be allowed to continue. Following the ADC 

controller was the ANN controller which arranged the sampled data for the 

ANN‟s after which the ANN‟s were run. After a successful ANN run the di/dt 

estimates were stored in a block of memory which was configured such that a 

snapshot of its contents could be taken during real time operation and 

subsequently processed offline.  

Another state machine in the top level running in parallel with the main 

state machine took the outputs of the design and scaled them appropriately to 

allow di/dt estimates to be viewed in real time and compared to those 

measured from a Rogowski coil. The functionality of the main components in 

the design will now be described in more detail.  
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6.6.2 Linear Feedback Shift Register (LFSR) 

The purpose of the LFSR is to generate a “random” set of data that can 

be used as the weight and bias values of the ANN during initialisation. 

Initialising the ANN weights and biases with random values has been found to 

lead to reduced training times and increased accuracy [116].  

When the training of the ANN is performed in Matlab the LFSR 

becomes redundant since the ANN configuration data is read from an SD card 

and the initial contents do not matter. It was however useful during simulation 

and testing to have different values stored in the ANN configuration memory 

as this made it easy to establish if the correct ANN was being used (Without 

the LFSR the ANN configuration memory would all be initialised to 0‟s).  

6.6.3 ADC Sampling Controller 

A controller was required to manage the data acquisition and storage of 

the data from the ADC expansion boards. Once a trigger or new period signal 

(aligned with the PWM edges in the first half of the PWM period) had been 

detected the 7 clock cycle latency of the ADCs had to be observed and then 

the incoming data could be stored in memory. The ADC‟s were designed for 

65MSPS operation. With the FPGA base clock running at 50MHz it was 

necessary to use a PLL generated clock to clock the ADC‟s. The closest 

achievable clock frequency was 62.5MHz which resulted in samples being 

taken at 16ns intervals. This meant that 64 samples represented 1.024ȝs while 

128 samples represented 2.048ȝs. The use of numbers divisible by 8 for 

sample window lengths simplified the SD card read/write processes when 

collecting training data as the SD card stores data in 512B blocks. Sample 

windows that are multiples of 8 make it easier to collect an integer number of 

samples that can be stored as an integer number of blocks on the SD card.   
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Following conversion, the incoming 14 bit signals from the ADCs to 

the FPGA were in the range 0-16383. The desired amplitude of the measured 

analogue signal was to be normalised in the range ±1 before being supplied to 

the ANN. In order for the incoming sample data to represent a normalised 

floating point current value some scaling was required. Instead of applying a 

time intensive offset subtraction and scaling multiplication to every incoming 

sample, a block of ROM memory was used as a lookup table. The lookup table 

used 14 bit addressing with the first address containing a value of -1 and the 

last address containing a value of +1 and every value in between coming from 

interpolation. The incoming 14 bit data was then used as an address for the 

lookup table. The output of the lookup table was stored in the sample memory. 

For full three phase sensorless mode the phases were sampled according to the 

SVPWM sector of operation and whether it was the first active vector, second 

active vector or null vector. Figure 6.12 illustrates the operation of the ADC 

controller when in “Run” mode. 

 

When in train mode the ADC controller collected transients for every 

trigger signal seen until 100 transients have been captured. This number of 

transients comes as close as possible to using all of the sample memory 

assigned in the FPGA while still representing an integer number of memory 

blocks (500) on the SD card (where the bulk training data is stored).  At this 

point the ADC sampling was paused, and the phase angle from the encoder at 

the point where sampling ceased was recorded. The data held in the FPGA‟s 

sample memory is then written to the SD card and following a successful SD 

card write the ADC controller is allowed to continue sampling. The controller 

waits until the angle (from the encoder) reaches the same value as the point 

where it stopped previously before continuing. This ensures that sample data is 

collected from all parts of the reference voltage vector rotation equally. Figure 

6.13 illustrates the operation of the ADC controller when in “Train” mode. 
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Figure 6.12 ADC Controller operational flow diagram when in “Run” mode 
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Figure 6.13 ADC Controller operational flow diagram when in “Train” mode 
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6.6.4 Least Squares Curve Fit Calculator 

Early designs featured a least squares fitting component which would, 

from collected transient current data, produce target derivative estimates that 

could be used to train the neural network online. This component was later 

discarded as there were some floating point function requirements that were 

specific to this component, such a comparing two floating point numbers to 

find the higher value. Also during testing it was found that the time taken for 

the Least Squares Curve Fit component to find the training data was much 

longer compared to storing the raw current transient data and processing it 

offline in Matlab. 

The final overall design was critical on certain FPGA resources 

(namely “DSP blocks” which were heavily used in the implementation of 

floating point components). Because of the intensive “DSP block” resource 

usage of this component and the time taken for it to perform it‟s function 

coupled with the fact that it was in reality redundant due to the network 

training being performed much more efficiently in Matlab this component was 

removed to make way for additional components.    

6.6.5 ANN Controller 

When operating in “Run” mode the ANN controller followed the ADC 

sampling. This took the current samples stored in memory and arranged them 

for processing by the ANNs. Once the data was arranged the networks were 

allowed to run. Following a successful run of the ANNs the results were 

stored. Because six current derivatives were required for sensorless operation 

the three ANNs had to be run twice. So immediately following the first run the 

next set of transient current data was retrieved from memory and arranged for 

processing by the networks. This process is illustrated in Figure 6.14.   
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Figure 6.14 ANN controller operational flow diagram 

6.6.6 Artificial Neural Network Implementation 

The implementation of the ANN on an FPGA was initially based on 

VHDL code available in the public domain [117]. This code was originally 

designed to recognise characters which were entered on a seven segment 

display. There were a number of drivers which led to the decision to make use 

of this code. The decision had already been made to use an Altera 
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FPGA, in terms of logic resources, provided a good solution. The VHDL code 

in [117] was designed for use with a lower spec Altera development board and 

so was already presented in the suitable structure and format. The code 

included the implementation of an ANN including both normal “run” mode 

and “train” mode which involved the adjustment of the weights and 

calculation of the mean squared error during the learning process.  

Also ANNs realistically require the use of floating point numbers in 

order to achieve a reasonable accuracy in the weights, biases and outputs. This 

had already been taken account of in [117] with the implementation of a 

floating point arithmetic logic unit (ALU) which made use of Altera‟s own 

Megafunctions to complete floating point arithmetic operations using single 

precision values. Despite this head start gained by using the code there was 

still a large amount of work required to adapt the design for this application. 

The ANN itself required modification to be able to store the weights in the 

internal memory of the FPGA as opposed to an external SRAM. Also tests 

conducted in Matlab had found that in this application a tansig() transfer 

function, as shown in Eqn 5.1, was the most suitable, hence this was added. 

The outputs from the ANN also had to be de-normalised before they could be 

used as di/dt estimates. The ANN controller required a complete redesign. In 

the final design the training section and weight and bias section were 

redundant (since this operation was completed offline in Matlab) and hence 

removed.   

Modifications were also made to reduce the computation time for the 

ANN. Performing calculations in parallel offered a significant time saving. For 

example, the hidden layer consisted on 10 neurons. The input to each neuron 

consisted of the sum of each of the inputs multiplied by the corresponding 

weights plus a bias value. Having 10 ALUs meant that these calculations 

could be performed simultaneously for all neurons in the hidden layer, 

therefore reducing hidden layer calculation time by a factor of 10. Figure 6.15 

gives a general overview of the operation of the ANN.  
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Figure 6.15 Artificial Neural Network operational flow diagram 
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6.6.7 SD Card Controller 

An SD card was used for the bulk storage of transient current data 

collected for training the ANN. The drivers that led to this decision were 

comparatively simple implementation, storage space flexibility (various sizes 

of SD card are available) and the portability offered by SD cards. The SD card 

could also be used to transfer ANN weight and bias information from a PC (as 

they were computed in Matlab) although this function was later performed 

using Altera‟s “in system memory content editor”.  

The SD card controller design was initially based on VHDL code 

available in the public domain [118].  A read process was initiated by a user 

pressing a button on the user I/O. This initiated the reading of ANN weight 

and bias values from the SD card which were then stored in a block of 

memory in the FPGA. Figure 6.17 illustrates the SD card read process.  

A “write to SD card” function meant that during the collecting of 

current transients (for training the ANN), when the on-board FPGA memory 

was full, the SD card controller could take the memory contents and write 

them to the SD card. Data lengths were chosen so that sampled current 

transients could be arranged and stored in integer blocks of memory on the SD 

card. Each 32 bit single precision value (of a sampled current transient) was 

broken up into 4 bytes and written to the SD card. This allowed 128 single 

precision samples to be written to each block of memory on the SD card 

(512B). 100 sampled transients were written to the SD card in one writing 

process as this came as close as possible to utilising all of the FPGA‟s on-

board memory with an integer number of transients. An additional feature of 

the write process took the ANN weight and bias values from FPGA memory 

and copied them to the SD card. This was added as a validation check. Figure 

6.16 provides an overview of the SD card write process. 

 



Chapter 6 
Hardware and Practical Implementation 

 
149 

 

 

 

Figure 6.16 SD Card Controller operation flow diagram when writing to the 

SD card 
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Figure 6.17 SD Card Controller operation flow diagram when reading from 

the SD card 
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give an idea of the raw position estimate yielded by the approach. A simple 

fixed frequency band pass filter was applied to the Pȕ results to reduce the 

effects of other saliencies before calculating ș. Figure 6.18 illustrates the 

operation of the position estimation component.  

 

 

Figure 6.18: Position estimator operational flow diagram 

6.6.9 Output State Machine 

A state machine was designed to output the derivative results in 

parallel with the operation of the main state machine. The derivatives were 

presented as single precision numbers in the range ±1. These had to be 

Calculate position scalars Pabc 

Use position scalars Pabc to calculate position 

vectors Pɴ and apply band pass filter 

ɽ ൌ ʹ ൈ    ିଵ ൬ ఉܲܲఈ൰ 

CĂůĐƵůĂƚĞ ɽ ĨƌŽŵ 

Idle 

Idle 

SĐĂůĞ ɽ ĨŽƌ OƵƚƉƵƚƚŝŶŐ 



Chapter 6 
Hardware and Practical Implementation 

 
152 

 

converted to 14 bit integer values (0-16383) before they could be output via 

the DAC for observational purposes. This was achieved by multiplying the 

single precision values by 50, then adding 50 and multiplying by 163.83. This 

result was then converted to an integer and presented to the DAC.   

6.6.10 Storing Results in the FPGA’s On-board 

Memory for Offline Processing 

The design stored the six derivative estimates from the ANNs, six 

derivative estimates from the two current sample method (if enabled otherwise 

these memory locations were left blank), the SVPWM sector, Rogowski 

sensor measurement and Position measurement (from the encoder) in the on-

board memory (of the FPGA). This memory was configured to be accessible 

in real time from a PC through the Altera Quartus development software 

therefore allowing a snapshot of its contents to be taken. This could then be 

exported to a file and inspected. A Matlab script was written to extract the file 

contents allowing the derivative estimates to be post-processed in Matlab 

which was particularly useful since this provided access to results at all the 

intermediate stages of the calculations involved in obtaining a position 

estimate.  

6.7 Training of the Neural Network in 

Matlab  

A large number of current transients were captured and stored on the 

SD card. As explained in (6.6.7), because the SD write process accepts 

individual bytes the single precision numbers had to be broken down into four 
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8 bit values. Once all of the training data had been captured the data stored on 

the SD card could be exported to a PC and used in Matlab to train an ANN. A 

number of scripts were written to complete this process.  

 

The first script read in four bytes at a time from the SD card, tagged 

them together and converted the result back to a single precision number.  

The second script took the transient data (made up of the single precision 

numbers) and applied a least squares fit to the steady state part of the 

waveform. This was according to a simple first order equation (as described in 

Chapter 5) and provided a gradient value for each transient which could be 

used in to train the ANN. By only using steady state data for the least squares 

fit any distortion (due to limited sensor bandwidth or non-linear inverter 

switching) present at the start of the transient had settled and didn‟t affect the 

derivative training data. 

The next script created a 3 layer feed-forward ANN, specified the 

number of neurons present in each layer (the configuration described in 

Chapter 5 was used) and set up the training parameters before initiating the 

training process. 

 

An additional script (that was used as a validation of the performance 

of the ANN) ran the trained ANN (supplying it with current transients) and 

stored the derivative estimate results in an array. These were then presented 

along with the results of a least squares curve fit applied to the steady state 

sections of the same transients. The data supplied included all of the captured 

transients. This included approximately 30000 transients that were not used in 

the training process to allow the performance of the ANN to be evaluated 

using data that it had not encountered before. The script also plotted the error 

between the ANN estimate and least squares result.  

A final script extracted the weight and bias values of the ANN in 

Matlab and arranged them in the order that the ANN on the FPGA was 

expecting. These values were then stored on an SD card so that they could 
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easily be transferred into the memory of the Altera FPGA (and subsequently 

read) without any need to re-arrange the data. 

6.8 Conclusions  

This chapter has detailed the configuration of the experimental system 

used to test the real-time performance of the ANN based current derivative 

estimation technique. The existing permanent magnet motor drive utilised in 

this work has been described and the modifications required to accommodate 

the new FPGA platform were explained. The TerasIC DE3 development board 

and its expansion boards (which provide ADC and DAC capability), that 

together provide the platform on which the proposed technique was 

implemented, have been introduced. The use of low bandwidth, low cost 

industrial current sensors for the capture of high bandwidth signals has been 

justified. Finally the operation of the components used in the FPGA design to 

implement the ANN derivative estimation technique has been explained. With 

the experimental system in place it was possible to test the proposed technique 

in a real time situation. Chapter 7 will present some of the results from these 

tests.  
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Chapter 7  

Experimental Results 

7.1 Introduction  

The design of the experimental system detailed in Chapter 6 allowed 

the method of using an ANN to estimate current derivatives, as discussed in 

Chapter 5, to be validated experimentally. This chapter presents experimental 

results for current derivative estimation by artificial neural networks supplied 

with 2ȝs of transient data. All of the results presented were captured using the 

Altera FPGA operating in real time. Initially the performance of the ANN 

derivative estimator will be examined under long minimum pulse widths 

(17µs) to show that the ANN can be used effectively to estimate the derivative 

with a small amount of transient data. The effects of speed and load are 

investigated and the results are compared with those from the two current 

sample technique (obtained under large pulse widths). Finally the performance 

of the technique under small minimum pulse widths (where existing methods 

cannot operate due to the decaying high frequency oscillations) is investigated. 
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7.2 Single ANN  

The first configuration to be tested was the most basic. This 

configuration consisted of a single ANN which had been trained using current 

transients captured by the FPGA from one of the motor phases. The derivative 

estimation performance for the phase that was used to capture the training data 

(under the same conditions as the training data was captured) was found to be 

good. However when this ANN configuration was applied to the other two 

phases the derivative estimation performance was poor under all conditions. 

Figure 7.1 illustrates this by showing the first active vector derivative 

estimates for phases A, B and C. The ANN estimates are compared with the 

results obtained from the two current sample approach. The ANN was trained 

using data captured from phase A, the machine was operated at 30Hz, 83% 

load with a minimum pulse width of 17µs. This operating point was selected 

for two reasons: firstly it was a trained operating point of the ANN; secondly, 

as will be shown later, the technique performs well at higher speed and under 

high load. Both of these facts combined mean that this operating point is 

expected to show good performance.  

Two factors were thought to be responsible for the inability of a single 

ANN to work across all phases. The first is the difference in the parasitic 

impedance network seen at the phase outputs of the drive. This difference 

could have a large effect on the frequency components contained in the 

transient response seen by the ANN.  

The second factor is due to differences in the data acquisition channels 

of the FPGA used to sample the current transient. During training only a single 

channel was used to capture data, but during normal operation separate 

channels are used for each of the Iabc inputs. Any differences in the circuitry of 

these inputs due to component tolerances or contact quality (which will 
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influence parasitics) will cause a difference in the measured response which 

the ANN would be sensitive to.   

 

Figure 7.1 ANN estimated first active vector derivatives for each phase when 

using only one ANN trained with data collected from phase A only. Derivative 

results obtained from the two current sample method are shown for reference 

7.3 Triple ANN  

In order to remove the sensitivities described for a single neural 

network solution a different design was implemented which utilised three 

different neural networks – each neural network was specific to one phase and 

data acquisition channel. During training the input channel that would be used 

under normal operation for a particular phase was used to capture the training 

data. This meant that any influences of input channel circuitry would be 
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trained into the ANN and the parasitic network seen during training is exactly 

the same as the one seen under all normal operating conditions.  

When implementing the Fundamental PWM equations (see Table 2.1), 

despite the reasonable accuracy of the derivative estimates from the ANN, the 

position vector (PĮȕ) results were found to have a strong component at fe and a 

weak component at 2fe when using derivatives from both the ANN and two 

current sample methods. Since it is the saturation saliency that is of interest it 

was expected that the dominant component should be present at 2fe. After 

further investigation it was found that this was due to an assumption which 

had been made to simplify the implementation. This assumption relied on the 

shape of the null vectors V0 and V7 being the same in a given fundamental 

period. Assuming these were the same reduced the number of transients that 

had to be sampled and processed by the ANN from 6 to 5 and reduced the 

number of ADC sample trigger signals required from 4 to 3. There are some 

differences between V0 and V7. V0 is sinusoidal while V7 has a quasi-square 

wave profile which means this assumption (V0=V7) does not hold true and 

with this not being the case the back-emf was not properly cancelled from the 

response causing a strong fe component. With V0 included in the 

implementation a strong component was seen at 2fe when operating under the 

trained condition and the derivative estimate results obtained were similar to 

those obtained using the two current sample method.  

The results for the individual vector derivative estimates were found to 

be a close match to the actual results obtained from a dedicated Rogowski coil 

which was used for validation purposes. Figures 7.2 to 7.5 show a 

representative set of derivative results. The error of the ANN derivative 

estimates is analysed by comparing it with the derivative results from the two 

current sample method. Histograms also show the spread of the error 

amplitude. A Gaussian distribution centred around zero is expected. The two 

current sample method was chosen as the reference as measurements from the 

Rogowski coil appeared to be affected by random noise to a greater extent 
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than the two current sample method. This is likely to be due to the 

amplification applied to the Rogowski coil measurements which would also 

amplify noise. The results shown in the Figures 7.2 – 7.5 were obtained with 

the machine operating at 30Hz under 83% load with a large 17ȝs minimum 

pulse width, Once again this operating point was chosen as it was one of the 

operating points used during the training process and the high load, medium 

speed condition was known to give good performance. The variation in 

performance away from the trained operating points will be discussed later. 

 
Figure 7.2 (a) First Null Vector 

 Figure 7.2 (b) Error 
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Figure 7.2 (c) Error distribution 

Figure 7.2 First null vector estimates of the ANN plotted with measured 

values from a Rogowski coil and a result obtained from the two current 

sample method (a). Using the two current sample results as a reference, the 

error of the ANN estimate is calculated and also shown in (b). The distribution 

of error amplitude is also shown in (c)  

 

 

Figure 7.3 (a) First Active Vector 
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 Figure 7.3 (b) Error 

 

 

 

Figure 7.3 (c) Error distribution  

Figure 7.3 First active vector estimates of the ANN plotted with measured 

values from a Rogowski coil and a result obtained from the two current 

sample method (a). Using the two current sample results as a reference, the 

error of the ANN estimate is calculated and also shown in (b). The distribution 

of error amplitude is also shown in (c)  
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Figure 7.4 (a) Second Active Vector 

 

 

 Figure 7.4 (b) Error 
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Figure 7.4 (c) Error distribution 

Figure 7.4 Second active vector estimates of the ANN plotted with measured 

values from a Rogowski coil and a result obtained from the two current 

sample method (a). Using the two current sample results as a reference, the 

error of the ANN estimate is calculated and also shown in (b). The distribution 

of error amplitude is also shown in (c)  

 

 

Figure 7.5 (a) Second Null Vector 
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 Figure 7.5 (b) Error 

 

 

Figure 7.5 (c) Error distribution 

 

Figure 7.5 Second null vector estimates of the ANN plotted with measured 

values from a Rogowski coil and a result obtained from the two current 

sample method (a). Using the two current sample results as a reference, the 

error of the ANN estimate is calculated and also shown in (b). The distribution 

of error amplitude is also shown in (c)  
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The derivative estimates from the ANN shown in Figures 7.2 (a) to 7.5 

(a) visually show a good agreement with the results of the Rogowski coil and 

the two current sample method. Analysis of the error in Figures 7.2 (b) to 7.5 

(b) shows that a standard deviation of approximately 6000 A/s was found for 

the first active and second active vectors. Although this is higher than the 

simulated results in Chapter 5, this is an acceptable result considering that it is 

less than the limit of 1±1.315e4 A/s defined in Section 2.6 and the active 

vectors have a peak amplitude in the region of 100,000 A/s. The result for the 

second null vector was less accurate. Once again a standard deviation of 

approximately 6000 A/s was obtained (again less than the limit of 1±1.315e4 

A/s defined in Section 2.6) but this vector has a peak amplitude in the region 

of 40,000 A/s, so the standard deviation as a percentage of the peak expected 

result is much higher. The results for the first null vector were very good. This 

could be due to a combination of limited amounts of oscillations in the 

sampled transients (since there has not been a change in the inverter switching 

state in the PWM period prior to this point) and the fact that results from this 

vector would be presented first to the ANN during training so there may be 

some element of bias towards this vector. 

The histograms (Figures 7.2 to 7.5 (c)) show the error distribution for 

each of the vectors. In each case a Gaussian distribution is seen indicating that 

there is no bias point where the ANN produces a particularly high non zero 

error. Also notice that the distribution for the first null vector (Figure 7.2 (c)) 

is narrow around and centred zero. The distributions for the active vectors 

(Figures 7.3 and 7.4 (c)) are more broadly spread but similar to each other 

while the distribution for the second null vector (Figure 7.5 (c)) is wide, in line 

with observations made previously. 

The error between the Rogowski and two current sample method 

measurements visibly increases in the case of the second active vector (Figure 

7.4 (a)) and second null vector (Figure 7.5 (a)) compared to the first null 

vector (Figure 7.2 (a)) and first active vector cases (Figure 7.3 (a)). This is 
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thought to be due to decaying transients from the previous vector affecting the 

measurements even with the large minimum pulse applied (17µs). 

 With the derivatives estimated by the ANN the position vectors could 

be found. Figures 7.6 (a) shows a typical position vector result for the same 

conditions as the derivative results above. The results are shown in the 

frequency domain to allow easy identification of the saliency components 

contained in the signal. The component of interest in this case lies at 60 Hz 

(2fe, where fe = 30 Hz). Because of the large minimum pulse width that was 

applied the two current sample method could also be used to identify the 

position vector. For validation the position vector obtained from the two 

current sample method is also shown in Figure 7.6 (b) 

 

 
Figure 7.6 (a) ANN 
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Figure 7.6 (b) Two current sample method 

 

Figure 7.6 the frequency content of the position vectors for both the two 

current sample method (a) and the ANN method (b) is shown above, these 

were calculated using the derivatives shown in Figure 7.2 - 7.5 (a) 

 

The results of Figure 7.6 (a) and (b) are similar but the two current 

sample frequency components have slightly larger amplitudes. It is also clear 

that there are some differences in the higher order harmonic components 

found, with the ANN method having a larger high harmonic content. 

Note that the ANN method only uses the first 2µs of the data captured, 

whereas the two current sample method in this case uses samples with at least 

17µs worth of separation: with the large separation it is expected that the 

performance of the latter technique should be good. 
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7.4 Operating Point Variation 

One of the key demands of any variable speed drive is the ability to 

operate at various speeds and loads. With the derivative estimation 

performance proven at the trained operating point, attention turned to the 

performance of the technique at operating points not previously seen by the 

neural network during training. Variation of speed was found to make little 

difference providing the electrical frequency demand applied to the machine 

was kept above 5Hz, the reasons behind this will be discussed later.  

However an increase in loading beyond levels seen during training 

caused a deterioration of the derivative estimates and a loss of the saturation 

saliency component at all speeds. This is logical since an increase in loading 

will lead to an increase in the amplitude of the phase current of the machine 

into a region the neural network has no learned behaviour to reference. This is 

illustrated in the Figure 7.7 which shows the relative strength of the 2nd 

harmonic component (the saturation saliency component that is of interest) of 

the position vectors with respect to the other harmonics present in the 

response. This measure was found by dividing the amplitude of the 2nd 

harmonic component (measured in the frequency domain) by the sum of the 

remaining harmonics up to the 5th harmonic. The larger the value, the stronger 

the 2nd harmonic component in relation to the other harmonics present. A 

value of greater than one represents a good result. Also note that a small value 

does not necessarily mean that only a small second harmonic component 

exists. This could mean that very large harmonic components exist which 

swamp the second harmonic component and would be difficult to remove 

from the response.  

Notice that at the trained points (no load and 44% load) a reasonable 

result is achieved. However between the training points the performance 
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diminishes and at higher loads beyond the trained points the performance is 

very poor.  

 

Figure 7.7 Relative second harmonic strength found from ANN estimates. The 

ANN was trained using data captured at 30Hz, no load and 30Hz, 44% load 

The poor performance outside of the trained loading points was 

improved by increasing the number of operating points used during ANN 

training. One speed was found to be sufficient (30Hz was chosen) but several 

loading points must be included in the training data. With training data 

captured at no load, 44% load and 83% load, the derivative estimates and the 

ability to track the saturation saliency component were found to vary little 

with speed and load and were also found to closely match the results obtained 

from the two current sample approach and Rogowski coil when operated away 

from the no-load region. This is illustrated by the surface plots in Figures 7.8 

(a) and (b) which show the relative harmonic strength of the saturation 

saliency component at a number of speeds and loads. The results also allow a 

comparison to be made between the performance of the ANN method and the 

two current sample method (a minimum pulse width of 17ȝs was applied once 

again). 
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Figure 7.8 (a) ANN 
 

 
Figure 7.8 (b) Two current sample method 

 
 

Figure 7.8 Surface plots illustrating the performance of the ANN and two 

current sample methods at various speeds and loads. For these tests the 

minimum pulse width was maintained at 17ȝs 

 

Figure 7.8 (a) and (b) allow some interesting observations to be made.  

It is apparent that the ANN method has some stronger higher order harmonics 

present when PĮȕ are viewed in the frequency domain (see Figure 7.6 and 
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results contained in Appendix B). Although the saturation saliency component 

identified by the ANN is generally smaller than that obtained from the two 

current sample method (as will be shown later), the harmonic content is the 

main reason behind the relative 2nd harmonic strength results being smaller for 

the ANN method. The increased harmonics of the ANN method are not 

thought to be problematic and a good position estimate could be extracted 

from the response.  

Note that the performance of the ANN technique at no load is poor at 

speeds other than the trained no load speed (30 Hz). At the trained no-load 

speed the performance is good and comparable to the two current sample 

method.  

Also note that there is a region at approximately 25Hz, at medium to 

high loads where the performance of both techniques is reduced. This is 

believed to be due to a resonance point in the mechanical system located at 

this frequency. The resonance is audibly apparent in the behaviour of the 

machine and leads to a distortion of the motor current which in turn affects 

both methods similarly.  

Away from the no-load region and the 25Hz region the ANN produces 

some good results. As indicated previously though, some of the results appear 

to be worse than they actually are due to the size of the harmonics also 

present. For additional clarity the saturation saliency component alone is 

plotted against speed and load in Figure 7.9. The estimated ANN value 

follows a very similar profile to the two current sample method results but 

generally is slightly smaller in amplitude than the two current sample 

approach. At low speed under high loads the ANN method produces a stronger 

component than the two current sample method. At low load the amplitude of 

the saturation saliency component reduces for both methods. 
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 Figure 7.9 (a) ANN 

 

 

Figure 7.9 (b) Two current sample method 

 

Figure 7.9 Saturation saliency component amplitude found from derivatives 

obtained from the ANN method, (a), and the two current sample method, (b), 

at various speeds and loads 
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7.5 Low Speed Performance Limitations 

The major limitation for this technique when operating at low speed is 

being able to capture reliable training data for low speed operation. The 

capturing of training data dictates that a long pulse width must be applied in 

order to allow the sampled waveform to contain both a transient and a steady 

state portion (that can be used for training). This time depends on the parasitic 

impedance network of the drive and so will vary between setups. In this 

research a value of 17ȝs was used. At low speed the large pulse width has a 

much bigger influence on the behaviour of the machine since this is a 

condition where naturally small pulse widths would occur. With such a large 

minimum pulse width threshold all of the active vectors are extended by a 

considerable amount. This is compounded by the fact that in this application 

the distortion caused by extending the pulse widths is corrected in the second 

half of the PWM period, not immediately after the pulse extensions. This 

distortion of the current waveform causes torque pulsations and variations in 

shaft speed. Training data captured under these conditions is not representative 

of normal machine operation at the chosen demand frequency. An encoder 

was still being used to achieve the closed loop speed control of the machine 

and as a result the variation in shaft speed was detected and led to the current 

controller changing the current applied to the machine to try and correct the 

variations in shaft speed (caused by the torque pulsations) which worsened the 

problem. It is also clear from Figures 7.9 (a) and (b) that for both the ANN and 

two current sample approaches at 5 Hz the saturation saliency component 

increases as speed is reduced. However the relative saturation saliency 

component strength shown in Figures 7.8 (a) and (b) reduces as the speed is 

reduced (under no load conditions) which indicates that the results start to 

encounter large harmonic components in addition to the saturation saliency 

component. 
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7.6 Minimum Pulse Width Reduction 

Results presented up to this point had been performed with the 

minimum pulse width fixed at 17ȝs (the same value that was used when 

collecting training data). The neural networks only use the first 2ȝs of the 

transient. In theory this means that the pulse widths can be reduced down to 

2ȝs which is the main advantage of the ANN approach over existing methods 

which require an extended pulse width to allow transient oscillations to settle 

and, in the case of the two current sample method, a measurable change in the 

current amplitude to occur. In order to illustrate this, a current transient 

captured using the Altera FPGA is shown in Figure 7.10.  

 

 

Figure 7.10 Current transient and a corresponding derivative estimate from the 

ANN (red) and derivative measurements using the two current sample method 

with a 10ȝs delay between sample points (black), a 3ȝs delay between sample 

points (pink) 

Only 10ȝs of the current transient waveform is captured when 

collecting data with the Altera setup. In this case the high frequency 

oscillations have decayed by approximately 2ȝs, however a lower frequency 
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component is clearly still present in the response and will cause significant 

errors to be introduced when measuring the derivative using the two current 

sample method (by 17ȝs this lower frequency component will have decayed 

and its effect will be negligible). The two current sample method was applied 

to the response in Figure 7.10 with a delay between the two samples of 3ȝs 

and 10ȝs. The ANN was also supplied with the first 2ȝs of the transient to 

obtain an ANN derivative estimate. The results show that the ANN estimate is 

a close match (7% error) to the derivative result obtained using the two current 

sample method with a 10ȝs delay between sample points. However the result 

when obtained using the two current sample method with a 3ȝs delay between 

sample points is almost double at approximately 180% of the result obtained 

with a 10ȝs delay. It is also clear that there would be a significant variation in 

the result if the second sample point were varied around 3ȝs, making the result 

totally unreliable.     

With the performance of the design proven for speed and load 

variations at 17ȝs, the minimum pulse width was reduced to investigate the 

effects on the performance of the ANN technique. A number of minimum 

pulse width thresholds were applied and the load was varied from 0% to 95% 

for each case. The position vectors were calculated and plotted in the 

frequency domain. This allowed the relative second harmonic strength and 

second harmonic amplitude to be identified for each case. The results are 

given in Figure 7.11 (a) and (b) for the case when the speed demand was 

30Hz. 
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Figure 7.11 (a) 

 

Figure 7.11 (b) 

Figure 7.11 shows the relative second harmonic strength (a) and the amplitude 

of the second harmonic component (b) for ANN derivative estimates found 

under reduced pulse widths. Notice that under no load the relative second 

harmonic strength is poor due to the high harmonic content 

 



Chapter 7 
Experimental Results 

 
177 

 

By performing the same test at a number of speeds it was clear that the 

ANN again showed a good ability to track the saturation saliency at reduced 

minimum pulse widths despite changes in speed (as long as the demand 

frequency was maintained above 5Hz).  

There were some differences observed with changes in load. Figure 

7.11 (a) reveals that at medium (>30%) loads and high loads the saturation 

saliency was identified well in all cases. However at low loads the relative 

second harmonic component strength was very poor (neglecting the trained 

17ȝs case) despite only a small drop in the amplitude of the second harmonic 

component itself (see Figure 7.11 (b)). This is because at low loads the 

response was dominated by other harmonics with a component at fe and higher 

order harmonics of fe (3
rd, 4th, 5th etc) thought to be due to geometric 

saliencies. The reduction in the amplitude of the saturation saliency 

component at low loads coincides with an increase in the amplitudes of other 

harmonic components which dominate the response at low currents.  

Figure 7.11 (a) indicates that the ability of the ANN to reject unwanted 

saliency components at low loads (and therefore low currents) is poor unless 

the ANN is trained for the conditions, as in the 17ȝs case which shows much 

better performance at low loads. It is thought that the ability of the neural 

network to reject unwanted saliency components could be improved at 

reduced pulse widths (therefore increasing the relative second harmonic 

component strength at low loads (see Figure 7.11 (a))) if a way of training the 

neural network with reduced pulse widths could be found. Reducing the pulse 

widths reduces (or even removes completely) the amount of steady state data 

available to identify the derivative (with which the ANN is trained). It is 

thought that if the ANN approach were tested on an induction machine to 

track say rotor slotting saliency for example that this issue may not be so 

severe since an induction machine requires a magnetising current, so even at 

no load there is still a reasonable current being drawn (a few amps). 
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As the load is increased the second harmonic component amplitude 

(Figure 7.11 (b)) increases and is larger for larger minimum pulse widths 

(again neglecting the 17ȝs case). The relative second harmonic strength 

(Figure 7.11 (a)) also increases with load as the second harmonic component 

amplitude increases (Figure 7.11 (b)) and the undesirable harmonic content 

reduces.  However there is a dip in the relative second harmonic component 

amplitude (Figure 7.11 (a)) at approximately 60% load. A dip is also seen in 

the saturation saliency component amplitude at approximately 60% load but 

all traces are similarly affected. This is not the case when considering the 

relative second harmonic component strength (Figure 7.11 (a)) as the 8ȝs case 

experiences a much larger dip compared to the 3ȝs and 4ȝs cases. This 

indicates that this dip corresponds not only to a decrease in the saturation 

saliency component amplitude but also to an increase in undesirable harmonic 

content with larger minimum pulse widths being more adversely affected by 

the harmonic content.  

The results shown are encouraging. While a reduction in the minimum 

pulse width to 3ȝs reduces the saturation saliency component amplitude 

compared to the 4ȝs and 8ȝs cases, the reduction is acceptable and the 

amplitude is still higher than the 17ȝs case. Also the ability of the ANN to 

reject harmonics at the dip seen at 60% load was better for smaller pulse 

widths. Figures 7.12 (a) – (d) compare the derivative estimates from the ANN 

when a 17ȝs and a 3ȝs minimum pulse width are applied. The machine was 

operated at 30Hz under 83% load, the same conditions that were used to 

obtain Figures 7.2-7.5, to allow comparisons to be made. The results visually 

show only a small deterioration in the quality of the derivative estimates.  

The saliency components identified using the derivative estimates are 

also shown. Notice that for the ANN case when a 3ȝs minimum pulse width is 

applied (Figure 7.13 (a)) the higher order harmonics have a larger amplitude 

compared to the 17ȝs case (Figure 7.13 (c)). The results obtained using the 

two current sample method are also shown for reference in Figure 7.13 (b) and 
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(d). In the 17ȝs case (Figure 7.13 (d)) the saturation saliency component is 

identified well as expected. However in the 3ȝs case the two current sample 

method fails to identify the saturation saliency component to the same level of 

accuracy and the response also contains large unwanted harmonic 

components.  

Finally the derivative estimates obtained from the ANN method, the 

two current sample method and a Rogowski coil when a 3ȝs minimum pulse 

width is applied are shown for comparison in Figure 7.14 (a) - (d).  

 

Figure 7.12 (a) First null vector 

 

 

Figure 7.12 (b) First active vector 
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Figure 7.12 (c) Second active vector 

 

 

 

Figure 7.12 (d) Second null vector 

 
Figure 7.12 Comparison of the vector derivative estimates by the ANN when 

applying 3ȝs and 17ȝs minimum pulse widths 

 



Chapter 7 
Experimental Results 

 
181 

 

 

Figure 7.13 (a) 3ȝs ANN 

 

 

Figure 7.13 (b) 3µs Two current sample method 
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Figure 7.13 (c) 17ȝs ANN 

 

 

Figure 7.13 (d) 17ȝs Two current sample method 

 

Figure 7.13 Comparison of the harmonic contents of Pȕ derived from (a) 

ANN with 3ȝs tmin, (b) two current sample method with 3ȝs tmin, (c) ANN 

with 17ȝs tmin and (d) two current sample method with 17ȝs tmin 
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Figure 7.14 (a) First null vector 

 
Figure 7.14 (b) First active vector 

 

Figure 7.14 (c) Second active vector 



Chapter 7 
Experimental Results 

 
184 

 

 
Figure 7.14 (d) Second null vector 

Figure 7.14 Comparison of the vector derivative estimates from the ANN, two 

current sample method and Rogowski coil when a 3ȝs minimum pulse width 

is applied 

 

Inspection of Figures 7.14 (a) - (d) reveals that it is clear that there is a 

deterioration in the results obtained from the Rogowski coil. The two current 

sample method shows better performance although there are still a large 

number of errors introduced when operating under the 3ȝs minimum pulse 

width threshold. There was some variation observed in the errors introduced to 

the Rogowski and two current sample method results as the minimum pulse 

width was reduced, with the results becoming worse and then improving 

before becoming worse again as the pulse width was reduced. This is due to 

the decaying low frequency transient and the sample points coinciding with 

the peaks, troughs and zero crossings of decaying high frequency component.  

A problem that affects all methods including the ANN method is that 

when operating under a narrow pulse width threshold (that is less than the 

decay time of the high frequency oscillations) the transients in the current 

response excited by the inverter switching don‟t fully decay before the next 

vector is applied and so there is some residual oscillations seen in the 

following current transient. For the machine and cable length used in this 
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research the high frequency transient was dominated by a 4MHz component 

and decayed rapidly, however a lower frequency component was also seen and 

it was this component which affected results at short pulse widths. The first 

null vector and first active vector are less susceptible to the effects of the 

previous vector since the first null vector is preceded by the last null vector of 

the previous PWM period which at low to medium speeds has a large pulse 

width associated. Also, since the null vector from the previous PWM period is 

maintained at the start of a new PWM period there is no requirement to change 

the switching state of the inverter. This also means that there is no new current 

transient initiated which could have a residual effect on the first active vector. 

For these reasons the transients in Figure 7.14 (a) and (b) appear more 

accurate than those in Figure 7.14 (c) and (d).  

When implementing the Fundamental PWM equations it was possible 

to calculate the position scalars using either two results from the first active 

and null vectors and one from the second active and null vectors or vice versa. 

Since the first active and null vectors are less vulnerable to influences from 

residual current oscillations, two estimates were used from these vectors and 

only one from the second active and null vectors. This led to an improvement 

in the results obtained when operating under narrower pulse widths (all results 

presented in this chapter were acquired using this approach). 

7.7 Conclusions 

The results presented have shown that it is possible to use an artificial 

neural network to estimate current derivatives using a small portion of the 

transient current waveform. The accuracy of the ANN derivative estimates 

were found to be good compared to the two current sample approach and this 

performance allowed a good estimation of the saturation saliency component 

to be made from the ANN derivative estimates. The actual saturation saliency 
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components found by the ANN method were generally smaller in amplitude 

than the values found using the two current sample method and also had a 

higher harmonic content. In most cases the two current sample method was 

superior when operating under large minimum pulse widths.  

With the ANN proven but not able to match the two current sample 

method one could wonder what the reason behind using the ANN approach 

would be. The key factor is the ability of the ANN to produce a good 

derivative estimate from a standard current sensor as the pulse widths are 

reduced to levels where the Rogowski coil and two current sample methods 

cannot be relied upon to give an accurate derivative value. This has been 

proven with the ANN giving an improved performance compared to the 

Rogowski coil and two current sample methods when operating with a 3ȝs 

minimum pulse width with load applied. However when operating under no 

load or a very small loads, the ability of the ANN method to identify the 

saturation saliency was poor because of the reduction in the amplitude of the 

saturation saliency component and an increase in undesirable harmonic 

content from other saliencies.  

An area where an improvement could be made to the ANN technique 

is no load operation at speeds other than the training speed for large pulse 

widths (see Figure 7.8 (a)). At the trained frequency, the no-load behaviour 

was better than at any other speed. As load was applied the performance 

improved and speed had little influence thereafter. It is thought that if data 

collected at multiple no-load speeds were incorporated into the ANN training 

then an improvement in performance could be realised. 
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Chapter 8  

Conclusions, Discussions and 

Suggestions of Future Work 

8.1 Conclusions and Discussions 

This thesis has presented a new way to estimate current derivatives in 

the presence of high frequency noise. The technique can improve the 

performance of the Fundamental PWM Technique by reducing the minimum 

pulse width compared to previous implementations allowing a reduction in the 

current distortion, audible noise, torque ripple and vibration. 

A basic understanding of the merits and limitations of the various 

sensorless techniques has been provided.  Mathematical model based 

approaches cannot operate reliably at low and zero speed and require machine 

parameters to be accurately defined. Parameter variation with temperature also 

presents issues. Saliency tracking techniques can operate (theoretically) across 

the entire speed range and are immune to parameter sensitivity. However they 

require high frequency signals to be applied either by modifying the 

fundamental output of the inverter or by modifying the specific switching 

patterns output by the inverter and making use of the high frequency content 

of the voltage steps.  

The Fundamental PWM technique is an attractive saliency tracking 

technique since it makes use of the switching waveform applied to the 
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machine (by the inverter) under normal operation. However measurements of 

the current derivative are required to track the saturation saliency and estimate 

the rotor position. The current derivatives following a switching event are 

affected by high frequency oscillations that prevent immediate measurement 

of the current derivative. In existing methods a delay is applied prior to 

derivative measurement which allows the high frequency oscillations to decay. 

The length of this delay and subsequent time required to measure the 

derivative led to a minimum PWM pulse width threshold. PWM vectors less 

than the minimum pulse width are extended. The vector extensions introduce 

undesirable current distortion, audible noise, torque ripple and vibration. The 

minimum pulse width threshold represents the single biggest limitation 

affecting the Fundamental PWM technique and significant improvements in 

operating performance could be achieved if this limitation could be reduced. 

The high frequency oscillations arise from parasitic impedances in the 

motor, drive and cabling. The impedances have been modelled in this work 

and the common mode frequency response, differential mode frequency 

response and the crucial high frequency oscillatory time domain response has 

been accurately reproduced. The key modelled parameters (of the motor) 

include the stator winding turn to turn capacitance, the skin effect of the 

windings, the high frequency iron loss, the stator winding leakage inductance 

and the stator winding to frame and stator neutral to frame capacitances. With 

regards to the cable model in addition to the standard transmission line model 

parameters, skin and proximity effects and dielectric losses must also be 

modelled in order to accurately reproduce the frequency response.  

 This is sufficient to reproduce the high frequency behaviour seen 

experimentally; however the parasitic capacitance of the switching devices 

must also be included to accurately capture the non-linear switching behaviour 

seen at low currents when the commutation in an inverter leg is from a 

transistor to a diode. This has the effect of reducing the dv/dt of the switching 
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transient. When operating at high currents no effect due to these capacitances 

is seen. 

Several methods have been presented (EMI filters, variation of IGBT 

gate circuitry and the use of multilevel converters) which offer the possibility 

of reducing the amplitude of the high frequency oscillations (that appear in the 

current waveform) and therefore could offer a reduction in the minimum pulse 

width threshold. However they all affect the fundamental operation of the 

inverter by reducing the dv/dt of the switching transients which also reduces 

the high frequency content of the voltage pulses. This in turn reduces the 

magnitude of the saliency components in the current response which is 

undesirable in a sensorless application since these must be identified and 

tracked. Instead the possibility of extracting the current derivative from a 

transient response affected by the high frequency oscillations was investigated. 

A limited amount of work has previously been done in this area. However this 

work was not considered complete for a number of reasons that included a 

reliance on dedicated derivative sensors, offline implementation only, limited 

sensor bandwidth and the neglection of non-linear inverter switching effects.   

The use of curve fitting approaches to extract the derivative was 

explored with a number of simple and some more advanced methods being 

investigated. Taking the transient current response from an experimental rig 

utilising a short supply cable, it was not possible to accurately extract the 

derivative by simply fitting a decaying high frequency sinusoid to the 

experimental waveform (over a short time window) despite the response 

appearing to be dominated by a single high frequency exponentially decaying 

component. This is due to the response containing a large number of 

frequency components, some of which appear as a gradient when viewed over 

a very short time window (a few ȝs). Also the limited bandwidth of the current 

sensor means that the response is distorted which adds further to the estimate 

error. Even if it were possible to find the derivative using curve fitting 

methods, transients in the low current region when commutation is from 
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transistor to diode present further issues. Under these conditions the dv/dt of 

the switching edge is reduced and the current is distorted during switching. 

The amplitude of the subsequent high frequency oscillations is reduced. This 

would introduce large errors into the derivative estimates obtained from a 

curve fitting approach. 

Given these limitations the use of artificial neural networks to estimate 

the derivative directly when supplied with a current transient was investigated. 

This is a promising option since the ANN can be trained to take account of 

limited sensor bandwidth and recognise the non-linear inverter switching 

effects which occur at low current. The ANN was trained to associate the 

initial transient responses captured using a standard industrial current sensor 

with steady state current derivatives during a pre-commissioning phase. 

Simulated results using current transients captured from an experimental setup 

showed promising performance with a good ability to estimate current 

derivatives under PWM active and null vectors when supplied with only 2µs 

of the phase current transients.   

Given the promising performance of the simulated ANN it was decided 

that the proposed approach should be evaluated in a real time experimental 

environment. The major difficulty associated with this was the need to sample 

the motor phase currents at a very high sample rate. For short cable lengths 

(1m) the dominant high frequency component was 4 MHz. It was decided that 

to capture this to a good resolution the sample rate needed to be at least 10 

times the dominant frequency component meaning that at least 40 MSPS ADC 

capability would be required. Many options were explored but the most 

attractive was found to be an FPGA based solution in the form of the TerasIC 

DE3 development with high speed data acquisition expansion cards. This 

provided the necessary specification required, although the input to the data 

acquisition boards required some modification since it blocked key low 

frequency information. This was solved with the addition of a custom board 

featuring a high speed op-amp ADC driver. The ANN was also implemented 
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in the FPGA meaning that the whole design was confined to the development 

board. Training of the ANN was still performed in Matlab and the ANN 

weights and biases were transferred via an SD card. 

This allowed the ANN approach to be validated experimentally. Initial 

attempts used only a single neural network trained using data collected from a 

single phase. While this provided good performance on the phase used to 

collect training data, the derivative estimation performance on the other two 

phases was unacceptable. This was due to the ANN being sensitive to changes 

in the parasitic impedance networks seen by the phases and differences in the 

data acquisition circuitry between phases (these circuits were designed to be 

identical but differed due to component tolerances). Using a dedicated neural 

network for each phase solved this problem and the performance observed was 

now similar across all three phases.  

The technique was tested using large minimum pulse widths to 

establish how well the derivative could be tracked and also understand the 

influences of speed and load without considering narrow pulses. This also 

allowed a comparison with the results obtained from the two current sample 

method and Rogowski coil to be made since these approaches can be used 

when a large pulse width is defined. The results showed that the ANN could 

estimate the derivative to a reasonable accuracy using only 2µs of the current 

transient and while the performance observed was not as good as that of the 

two current sample method, the results were comparable.  

The relationship between speed, load and derivative estimate accuracy 

was also investigated. Variations in speed were found to have little effect on 

the estimation accuracy. However if the load was changed from the values the 

ANN was trained to then the derivative estimation accuracy became poor. This 

was solved by collecting training data at several load points to include the 

effect of load variation into the ANN training. The performance improved 
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significantly and the load could now be varied and the derivative estimation 

accuracy remained good even under loads not seen during training. 

The ability of the technique to accurately estimate the derivative at no 

load at speeds other than at the speed used to capture training data was poor. It 

is thought that if more speeds (with zero load applied) were included in the 

training of the ANN then this may improve performance.  

Low speeds (<5Hz) also presented problems as training data could not 

be collected at these speeds due to the large minimum pulse width (17µs) 

applied when collecting training data. The large pulse width significantly 

increased the time that the PWM active vectors were applied for compared to 

their original demand values. A large current distortion was introduced and the 

shaft rotation was not smooth. As an encoder was still used for the closed loop 

control of the machine this variation in shaft speed was detected and fed back 

to the control loop which tried to compensate the effect. All of this meant that 

the drive operation was not representative of that which may be experienced 

by the ANN under normal operation when a low speed demand is applied.  

Without any training data the ANN did not have experience of operating at 

these speeds and hence the performance was poor. In order to improve the 

performance a method of extracting the steady state derivative in a reduced 

time is required. It is thought that a reduction in the 17µs used in this work is 

achievable. Implementing this and investigating whether or not low speed 

performance is improved remains outstanding for a future task.   

Finally the performance of the technique when operating under narrow 

pulse widths was evaluated. It was found that narrowing the pulse widths leads 

to some degradation in the performance of the ANN derivative estimation 

accuracy but this still represents an improvement compared to the two current 

sample method and dedicated derivative sensor. It is thought that the reduction 

in accuracy could be due to the effects of decaying transients of the previous 

vector. This is not seen in the training data due to the large minimum pulse 
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width threshold which is set in order to ensure steady state data is observed. 

Performance under no load when pulse widths are narrowed was poor. This is 

due to a reduction in the saturation saliency component amplitude and an 

increase in the amplitude of the harmonic components seen in the derivative 

response. In order to improve the ANN performance the training of the ANN 

must be improved, ideally by collecting training data under narrow pulse 

widths to improve the ANN‟s ability to reject the undesirable frequency 

components. 

This work has met the objectives set out at the beginning of this thesis. 

The ANN approach can estimate the current derivative using only 2µs of 

transient data. For the experimental setup used the minimum pulse width that 

would be applied using traditional methods was over 5µs. This represents at 

least a 60% reduction in the minimum pulse width. The reduction in the 

minimum pulse width results in a reduction in the THD (as documented in 

2.4.3) and a noticeable difference in audible noise and vibration emitted from 

the machine. The method relies on measurements of the phase current only. 

Although SVPWM and trigger signals (to initiate ADC sampling) were 

required these were easily supplied by the controlling DSP. The solution is a 

bolt-on solution and has minimal affect on the operation of the drive with only 

a comparatively small minimum pulse width threshold being required. The 

ability of the method to estimate derivatives in real time, in a way that would 

allow a position estimate to be produced has been demonstrated. However, in 

order to utilise the full potential of the technique, operation at low speed must 

be improved as it is at low speed where the reduction in the minimum pulse 

width threshold gives the most benefits. 
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8.2 Future Work 

Given the amount and nature of the work involved in this research it 

was impossible to ensure each part of the work was explored and implemented 

to its full potential. This section aims to give a brief outline of a number of 

areas where it is thought with further attention could yield performance 

improvements.  

8.2.1 Improved High Frequency Simulation Model  

In this work the high frequency modelling of the drive, cabling and 

motor were only carried out to the extent that an understanding of the major 

parasitic sources that effect the current transient could be understood and a 

general transient response could be replicated. The causes of the non-linear 

inverter switching waveforms were also investigated. If more focus was 

directed at matching this simulation to the real drive setup then this could offer 

the possibility to train the neural network on simulated data. 

8.2.2 Alternative Neural Networks  

Research carried out into the type and configuration of the neural 

network to be used for estimating current derivatives indicated that a feed-

forward neural network would be the best configuration to use. The number of 

layers, the number of perceptrons in each layer and the perceptron transfer 

functions used were all chosen initially to be a good compromise between 

performance and resource usage. The fine tuning of this was then done by trial 

and error. The aim of this was to find a neural network which had a reasonable 
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training time and gave good derivative estimation performance on both data 

used to train the network and new data.  

Hence with some expert knowledge in this area it may be possible that 

there is a neural network configuration which could be used that offers an 

improvement in performance.  

8.2.3 Improved Training Data 

The key to the accuracy of the results produced by neural networks is 

in the quality of the training. Every effort was made to ensure that the ANN 

was only supplied with only relevant training data. However, it would be 

possible to further improve the timings of data sampling to further remove 

redundancy in the training and normal run mode data.  

8.2.4 Improvements to the Present Implementation  

Two major limitations in this work were the size of the arrays that 

could be used in Matlab without incurring memory related errors (this limited 

the amount of training data that could be used) and the amount of time that it 

took to retrieve training data from the SD card and use this to train the 

network. This resulted in a limitation of 60000 samples being applied to the 

training data in order to allow three neural networks to be trained in a day. 

90000 samples were achieved without incurring memory errors. However this 

took approximately 13 hours just to retrieve the data from the SD card before 

training could even begin. Hence this was not a practical solution.  

Major improvements could be made to the training process used which 

is still currently very time consuming. The main areas which could be 

improved are the bulk storage of training data. Data is currently stored on an 

SD card and compared to the time taken to capture data, the time taken to 
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write the data to the SD card is large. Once on the SD card the data must be 

exported to Matlab for processing which is also very time consuming. Finally 

the training process itself can also take a long time to complete. This is partly 

due to the high threshold standards that the training process must meet. If 

these could be relaxed without impacting greatly on derivative estimate 

accuracy then an improvement in training time could be achieved. Until these 

issues have been solved it is not possible to say whether this approach could 

be adopted in industry. At present the training time is prohibitive to the use of 

the technique.  

8.2.5 ANN Online Adaptive Learning  

During normal operation at higher speeds the Narrow Vector Problem 

becomes less of a burden as the PWM vectors only require extension around 

the SVPWM boundaries. When operating away from these boundaries longer 

vectors are applied to the machine. If these vectors were long enough to allow 

the high frequency oscillations to settle then a value for the derivative could be 

obtained using the two current sample method and used to train the ANN 

online. It is not known practically how well this approach would work. It is 

thought that the increase in training data would make the ANN more robust. 

However consideration must also be given to avoid the possibility of over 

training the ANN to operating points where long vectors exist (as these will be 

the only training points available).   

8.2.6 Hybrid Derivative Estimate Techniques  

Experience gained using the experimental setup in this research has 

shown that null vectors always allow sufficient time to allow a derivative 

measurement to be made via the two current sample method when operating at 

low to medium speeds. The possibility of only using the ANN to estimate 
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active vector derivatives while calculating null vector derivatives using the 

two current sample method should be explored since this would allow a 

decrease in computation resources required and half the computation time 

(since only three derivatives would need to be estimated by the ANN this 

could be done in one pass instead of two using the system designed as part of 

this work).  

8.2.7 Use the Derivative Estimates to Produce a 

Position Estimate that can be used for Closed Loop 

Control 

The work so far has demonstrated the ability to use an ANN to 

estimate the current derivatives required for position estimation using the 

Fundamental PWM technique. It has also been shown that the derivative 

estimates can be used to identify the saturation saliency component and thus 

track the rotor position. In order to progress this work further and make it 

attractive to industry it would be necessary to use the derivative estimates to 

produce a position estimate in real time and then use this to implement full 

sensorless closed loop control of the machine. 

8.2.8 Improvements to the Derivative Estimation 

Performance of the ANN at Low Speed and Under Low 

Load  

The experimental results presented in this thesis showed that under 

zero loads at the speed used to collect data to train the ANN the ability to 

estimate derivatives and identify the saturation saliency component was 

reasonable. However at speeds not included in the training of the ANN the 
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ability to estimate the saturation saliency was diminished with the amplitude 

of other saliency components increasing. It was suggested that if the ANN was 

trained at a number of speeds (with zero load applied) then the performance 

under no load when the speed is varied may be improved. This is certainly 

something that should be investigated further. 

Additionally the ANN could not be demonstrated at very low and zero 

speeds because it was not possible to provide the ANN with training data for 

low and zero speeds. When collecting training data a large minimum pulse 

width (17µs) had to be applied in order to capture a steady state response. This 

placed a limit on the minimum speed that could be reached since at low speed 

all of the active vectors applied to the machine were extended which in turn 

had a large effect on the machine behaviour. When operating the ANN in 

normal run mode the minimum pulse width could be reduced significantly 

meaning that it was possible to operate at zero and low speeds but as the ANN 

had not been provided with any reference behaviour in the low speed region 

(during training) its derivative estimation performance was poor. If methods to 

obtain training data at low and zero speed could be developed then, it would 

be of great interest to evaluate the performance of the proposed techniques at 

lower speeds since this is where the highest benefit of reducing the minimum 

vector time is seen.  

8.2.9 Use ANN Derivative Estimation Technique to 

Track Saliency in an Induction Machine  

Further to the discussion in 8.2.8 regarding the poor accuracy of the 

ANN derivative estimates when operating at low loading points not included 

in the training data, it is thought that an improvement in low load performance 

could be realised if the technique were applied to an induction machine instead 

of a permanent magnet machine. When using a permanent magnet machine the 
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no load current is very small and it is difficult to measure the derivative. The 

frequency response of the resulting position vector is dominated by other 

harmonic components thought to be due to geometric saliencies. It is thought 

that the low load performance of the ANN derivative estimation technique 

when applied to an induction machine could see an improvement due to the 

need to maintain a magnetising current in an induction machine, even at no 

load, therefore guaranteeing a reasonable current magnitude at all operating 

points.    

8.3 Publications  

Some of the work presented in this thesis has led to a conference paper 

being published [119]. 
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Appendix A 
 

In this appendix the position vector equations of the Fundamental 

PWM technique used in this research are derived. The derivation is based on 

[26, 40, 41]. The stator circuit diagrams under vectors V1, V2 and V0 of the 

SVPWM plane and illustrated in Figure A.1 

 

 (a) First Active Vector, 
V1 

(b) Second Active Vector, 
V2 

(c) Null Vector V0/V7 

 

Figure A.1 Stator circuits when vectors V1, V2 and V0/V7 of the SVPWM 

plane are applied to the machine 

 

For the case shown in Figure A.1 (a), V1, the following equations can 

be defined for Vab, Vbc and Vca. 

 

 ୟୠ ൌ  ୈେ  ൌ   ୱ Ǥ  ୟ୚ଵ  ൅   ıୟ Ǥ   ୟ୚ଵ  ൅  ୟ୚ଵ െ  ୱ Ǥ  ୠ୚ଵ  ൅   ıୠ Ǥ   ୠ୚ଵ  ൅  ୠ୚ଵ (Eqn A.1) 

   ୠୡ  ൌ  Ͳ ൌ   ୱ Ǥ  ୠ୚ଵ  ൅   ıୠ Ǥ   ୠ୚ଵ  ൅  ୠ୚ଵ െ  ୱ Ǥ  ୡ୚ଵ  ൅   ıୡ Ǥ   ୡ୚ଵ  ൅  ୡ୚ଵ (Eqn A.2) 

   ୡୟ  ൌ  െ ୈେ  ൌ   ୱ Ǥ  ୡ୚ଵ  ൅   ıୡ Ǥ   ୡ୚ଵ  ൅  ୡ୚ଵ െ  ୱ Ǥ  ୟ୚ଵ  ൅   ıୟ Ǥ   ୟ୚ଵ  ൅  ୟ୚ଵ (Eqn A.3) 
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While for the null vector case shown in Figure A.1 (c), the following 

equations can be defined. 

 ୟୠ  ൌ  Ͳ ൌ   ୱ Ǥ  ୟ୚଴  ൅   ıୟ Ǥ   ୟ୚଴  ൅  ୟ୚଴ െ  ୱ Ǥ  ୠ୚଴  ൅   ıୠ Ǥ   ୠ୚଴  ൅  ୠ୚଴ (Eqn A.4) 

   ୠୡ  ൌ  Ͳ ൌ   ୱ Ǥ  ୠ୚଴  ൅   ıୠ Ǥ   ୠ୚଴  ൅  ୠ୚଴ െ  ୱ Ǥ  ୡ୚଴  ൅   ıୡ Ǥ   ୡ୚଴  ൅  ୡ୚଴ (Eqn A.5) 

   ୡୟ  ൌ  Ͳ ൌ   ୱ Ǥ  ୡ୚଴  ൅   ıୡ Ǥ   ୡ୚଴  ൅  ୡ୚଴ െ  ୱ Ǥ  ୟ୚଴  ൅   ıୟ Ǥ   ୟ୚଴  ൅  ୟ୚଴ (Eqn A.6) 

  

  

If the separation between the points where samples are taken under the 

null vector V0 and the active vector V1 is small then it may be assumed that 

ixV1 ≈ ixV0 and ExV1 ≈ ExV0 (where x is either a, b or c). With this assumption 

the effects of back EMF and stator resistance voltage drop can be cancelled by 

subtracting (Eqn A.4), (Eqn A.5) and (Eqn A.6)   from (Eqn A.1), (Eqn A.2) 

and (Eqn A.3) respectively which yields 

 

 ୈେ  ൌ   ıୟ Ǥ ቆ  ୟ୚ଵ  െ   ୟ୚଴  ቇ െ  ıୠ Ǥ ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ 
(Eqn A.7) 

  Ͳ ൌ   ıୠ Ǥ ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ െ  ıୡ Ǥ ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ 
(Eqn A.8) 

   ୈେ  ൌ   ıୡ Ǥ ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ െ  ıୟ Ǥ ቆ  ୟୠ୚ଵ  െ   ୟ୚଴  ቇ 
(Eqn A.9) 

 

Multiplying (Eqn A.7) by lıc, (Eqn A.8) by lıa and (Eqn A.9) by lıb, and then 

subtracting each result from the other results and then substituting  

௢ܮ͵ ൬ͳ െ ቀ ο௅ଶ௅೚ቁଶ൰ for lıalıb+ lıblıc +lıclıa yields 

 ୈେሺ ıୠ ൅  ıୡሻ͵ܮ௢ ቆͳ െ ቀ οܮʹܮ௢ቁଶቇ ൌ   ቆ  ୟ୚ଵ  െ   ୟ୚଴  ቇ 
(Eqn A.10) 
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  െ ୈେሺ ıୠሻ͵ܮ௢ ቆͳ െ ቀ οܮʹܮ௢ቁଶቇ ൌ    ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ 
(Eqn A.11) 

  െ ୈେሺ ıୡሻ͵ܮ௢ ቆͳ െ ቀ οܮʹܮ௢ቁଶቇ ൌ   ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ 
(Eqn A.12) 

 

Defining a constant c as: 

 

 ൌ ௢ܮ͵ ቆͳ െ ቀ οܮʹܮ௢ቁଶቇ  ୈେ  
(Eqn A.13) 

 

and replacing lıa, lıb and lıc with equations (Eqn 2.1) – (Eqn 2.3) allows (Eqn 

A.10) - (Eqn A.12) to be re-written as: 

ቆ  ୟ୚ଵ  െ   ୟ୚଴  ቇ ൌ ͳ ൭ʹ െ οܮܮ௢    ൫ ୟ୬ሺɽୟ୬ሻ൯൱ (Eqn A.14) 

  ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ ൌ െͳ ൭ͳ ൅ οܮܮ௢    ቆ ୟ୬ ൬șୟ୬ െ Ͷʌ͵ ൰ቇ൱ (Eqn A.15) 

  ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ ൌ െ ͳ ൭ͳ ൅ οܮܮ௢    ቆ ୟ୬ ൬șୟ୬ െ ʹʌ͵ ൰ቇ൱ (Eqn A.16) 

 

The position vector is defined as:  ൌ  ୟ ൅ Į ୠ ൅ Įଶ ୡ 
 ൌ οܮܮ௢    ൫ ୟ୬ሺșୟ୬ሻ൯ ൅ Įοܮܮ௢     ቆ ୟ୬ ൬șୟ୬ െ ʹʌ͵ ൰ቇ൅ Įଶοܮܮ௢     ቆ ୟ୬ ൬șୟ୬ െ Ͷʌ͵ ൰ቇ 

 

(Eqn A.17) 
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Hence (Eqn A.14) to (Eqn A.16) can be re-arranged to define pa, pb and pc 

 ୟ ൌ ʹ െ  ቆ  ୟ୚ଵ  െ   ୟ୚଴  ቇ (Eqn A.18) 

   ୠ ൌ െͳ െ  ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ (Eqn A.19) 

   ୡ ൌ െͳ െ  ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ (Eqn A.20) 

 

Different DC offsets and a lack of knowledge of the exact value of the 

constant c mean that these equations alone cannot be used to establish the 

rotor position as these terms will not cancel. However the process described 

above can be repeated for the second active vector leading to the definition of 

three more position scalar equations: 

 ୟ ൌ െͳ ൅  ቆ  ୠ୚ଶ  െ   ୠ୚଻  ቇ (Eqn A.21) 

   ୠ ൌ െͳ ൅  ቆ  ୟ୚ଶ  െ   ୟ୚଻  ቇ (Eqn A.22) 

   ୡ ൌ ʹ ൅  ቆ  ୡ୚ଶ  െ   ୡ୚଻  ቇ (Eqn A.23) 

 

By selecting position scalars with the same offset from (Eqn A.18) to 

(Eqn A.23) for Pa, Pb and Pc it is now possible to construct a position vector 

where the constant, c, and DC offsets will cancel. 

The position vector in this case can be found from 

 ൌ ൭െͳ ൅  ቆ  ୠ୚ଶ  െ   ୠ୚଻  ቇ൱ ൅ Į ൭െͳ െ  ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ൱
൅ Įଶ ൭െͳ െ  ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ൱ 

(Eqn A.24) 



 

 
Appendix A 

 
204 

 

In terms of Įȕ: 

 Į ൌ ௔݌  െ ͳʹ ሺ݌௕ ൅ ௖ሻ݌  ൌ ܿ ൭ቆ  ୠ୚ଶ  െ   ୠ୚଻  ቇ ൅ ͳʹ Ǥ ቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ
൅ ͳʹ Ǥ ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ൱ 

(Eqn A.25) 

 ȕ ൌ ξ͵ʹ ሺ݌௕ െ ௖ሻൌ݌ ξ͵ʹ ܿ ൭െቆ  ୡ୚ଵ  െ   ୡ୚଴  ቇ ൅ ቆ  ୠ୚ଵ  െ   ୠ୚଴  ቇ൱ 
(Eqn A.26) 

 

Finally the position can be found by taking the inverse tangent of pȕ/pĮ. 

௔௡ߠ ൌ ͳ݊௔௡ ଵି݊ܽݐ ൬݌ఉ݌ఈ൰ (Eqn A.27) 

 

Where nan is the number of saliency cycles per shaft revolution (=2 

when considering the saturation saliency). Similar derivations can be 

performed for the remaining active and corresponding null vectors of the 

SVPWM plane to provide a table of position scalar equations. The table of 

position scalar equations for a star connected machine was given in Table 2.1. 
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Appendix B 
 

This appendix contains a number of experimental results collected as 

part of the investigation presented in Chapter 7. Fourier transforms of the ȕ 

component of the position vector calculated at various speeds and loads using 

both derivatives found from the ANN method and two current sample method 

are shown. Following this, the ability of the ANN to estimate the saturation 

saliency under narrow pulse widths is demonstrated by showing Fourier 

transforms of the ȕ component of the position vector calculated using 

derivatives from the ANN method when a narrow pulse width is applied.  

Configuration – Three neural networks (one for each phase) trained 

using data captured at 30Hz with 17µs minimum pulse width at 3 loading 

points; No load, 44% load and 83% load.  

When viewing the saliency components in the frequency domain, in 

each case the electrical demand frequency is given in the figure caption. The 

saturation saliency component that is of interest lies at twice the electrical 

frequency.   
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Variation in Load and Speed 

 

Figure B.1 Two current sample method, 20Hz, no load 
 
 

 

Figure B.2 ANN method, 20Hz, no load 
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Figure B.3 Two current sample method, 20Hz, 27% Load 

 

 

Figure B.4 ANN method, 20Hz, 27% Load 
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Figure B.5 Two current sample method, 20Hz, 44% Load 

 

 

Figure B.6 ANN method, 20Hz, 44% Load 
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Figure B.7 Two current sample method, 20Hz, 60% Load 

 

 

Figure B.8 Two current sample method, 20Hz, 60% Load 
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Figure B.9 Two current sample method, 20Hz, 73% Load 

 

 

Figure B.10 ANN method, 20Hz, 73% Load 
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Figure B.11 Two current sample method, 20Hz, 83% Load 

 

 

Figure B.12 ANN method, 20Hz, 83% Load 
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Figure B.13 Two current sample method, 20Hz, 91% Load 

 

 

Figure B.14 ANN method, 20Hz, 91% Load 

 



 

 
Appendix B 

 
213 

 

 

Figure B.15 Two current sample method, 25Hz, No Load 

 

 

Figure B.16 ANN method, 25Hz, No Load 
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Figure B.17 Two current sample method, 25Hz, 27% Load 

 

 

Figure B.18 ANN method, 25Hz, 27% Load 
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Figure B.19 Two current sample method, 25Hz, 44% Load 

 

 

Figure B.20 ANN method, 25Hz, 44% Load 
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Figure B.21 Two current sample method, 25Hz, 60% Load 

 

 

Figure B.22 ANN method, 25Hz, 60% Load 
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Figure B.23 Two current sample method, 25Hz, 73% Load 

 

 

Figure B.24 ANN method, 25Hz, 73% Load 
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Figure B.25 Two current sample method, 25Hz, 83% Load 

 

 

Figure B.26 ANN method, 25Hz, 83% Load 
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Figure B.27 Two current sample method, 25Hz, 91% Load 

 

 

Figure B.28 ANN method, 25Hz, 91% Load 
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30Hz (Trained Frequency) 

 

Figure B.29 Two current sample method, 30Hz, No Load 

 

Figure B.30 ANN method, 30Hz, No Load 
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Figure B.31 Two current sample method, 30Hz, 27% Load 

 

 

Figure B.32 ANN method, 30Hz, 27% Load 
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Figure B.33 Two current sample method, 30Hz, 44% Load 

 

 

Figure B.34 ANN method, 30Hz, 44% Load 
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Figure B.35 Two current sample method, 30Hz, 60% Load 

 

 

Figure B.36 ANN method, 30Hz, 60% Load 
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Figure B.37 Two current sample method, 30Hz, 73% Load 

 

 

Figure B.38 ANN method, 30Hz, 73% Load 
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Figure B.39 Two current sample method, 30Hz, 83% Load 

 

 

Figure B.40 ANN method, 30Hz, 83% Load 
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Figure B.41 Two current sample method, 30Hz, 91% Load 
 

 

Figure B.42 ANN method, 30Hz, 91% Load 

 



 

 
Appendix B 

 
227 

 

 

Figure B.43 Two current sample method, 35Hz, No Load 

 

 

Figure B.44 ANN method, 35Hz, No Load 
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Figure B.45 Two current sample method, 35Hz, 27% Load 

 

 

Figure B.46 ANN method, 35Hz, 27% Load 
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Figure B.47 Two current sample method, 35Hz, 44% Load 

 

 

Figure B.48 ANN method, 35Hz, 44% Load 
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Figure B.49 Two current sample method, 35Hz, 60% Load 

 

 

Figure B.50 ANN method, 35Hz, 60% Load 
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Figure B.51 Two current sample method, 35Hz, 73% Load 

 

 

Figure B.52 ANN method, 35Hz, 73% Load 
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Figure B.53 Two current sample method, 35Hz, 83% Load 

 

 

Figure B.54 ANN method, 35Hz, 83% Load 
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Figure B.55 Two current sample method, 35Hz, 91% Load 

 

 

Figure B.56 ANN method, 35Hz, 91% Load 
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Figure B.57 Two current sample method, 40Hz, No Load 

 

 

Figure B.58 ANN method, 40Hz, No Load 
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Figure B.59 Two current sample method, 40Hz, 27% Load 

 

 

Figure B.60 ANN method, 40Hz, 27% Load 
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Figure B.61 Two current sample method, 40Hz, 44% Load 

 

 

Figure B.62 ANN method, 40Hz, 44% Load 
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Figure B.63 Two current sample method, 40Hz,  60% Load 

 

 

Figure B.64 ANN method, 40Hz,  60% Load 
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Figure B.65 Two current sample method, 40Hz, 73% Load 

 

 

Figure B.66 ANN method, 40Hz, 73% Load 
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Figure B.67 Two current sample method, 40Hz, 83% Load 

 

 

Figure B.68 ANN method, 40Hz, 83% Load 
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Figure B.69 Two current sample method, 40Hz, 91% Load 

 

 

Figure B.70 ANN method, 40Hz, 91% Load 
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Minimum Pulse Width Variation 

The minimum pulse width is reduced to allow the ANN estimates 

when using short vectors to be assessed, the frequency was maintained at 

30Hz (tmin = minimum pulse width).  

 

Figure B.71 tmin = 8µs, No load 

 

Figure B.72 tmin = 4µs, No load 
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Figure B.73 tmin = 3µs, No load 

 

 

Figure B.74 tmin = 2.25µs, No load 
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Figure B.75 tmin = 8µs, 27% load 

 

 

Figure B.76 tmin = 4µs, 27% load 
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Figure B.77 tmin = 3µs, 27% load 

 

 

Figure B.78 tmin = 2.25µs, 27% load 
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Figure B.79 tmin = 8µs, 44% load 

 

 

Figure B.80 tmin = 4µs, 44% load 
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Figure B.81 tmin = 3µs, 44% load 

 

 

Figure B.82 tmin = 2.25µs, 44% load 
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Figure B.83 tmin = 8µs, 60% load 

 

 

Figure B.84 tmin = 4µs, 60% load 
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Figure B.85 tmin = 3µs, 60% load 

 

 

Figure B.86 tmin = 2.25µs, 60% load 
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Figure B.87 tmin = 8µs, 73% load 

 

 

Figure B.88 tmin = 4µs, 73% load 
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Figure B.89 tmin = 3µs, 73% load 

 

 

Figure B.90 tmin = 2.25µs, 73% load 



 

 
Appendix B 

 
251 

 

 

Figure B.91 tmin = 8µs, 83% load 

 

 

Figure B.92 tmin = 4µs, 83% load 
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Figure B.93 tmin = 3µs, 83% load 

 

 

Figure B.94 tmin = 2.25µs, 83% load 
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Figure B.95 tmin = 8µs, 91% load 

 

 

Figure B.96 tmin = 4µs, 91% load 
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Figure B.97 tmin = 3µs, 91% load 

 

 

Figure B.98 tmin = 2.25µs, 91% load 
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