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Abstract 

CD133 is a pentaspan transmembrane glycoprotein of - 120 kDa, which 
was initially used to identify haematopoietic stem cells and, later on, used 
for the isolation and study of cancer stem cells in many different types of 
solid tumour including colorectal cancer. Although CD133 expressing cells 
are thought to represent cancer stem cells, little is known about the exact 
role of CD133 and the molecular mechanisms underlying control of CD133 
expression. This project sought to investigate these questions in colorectal 
cancer. 

Initially the expression of CD133 was tested by immunohistochemistry in a 
two tissue microarray (TMA) sets consisting of (a) 449 cases of primary 
colorectal cancer, and (b) 45 cases of primary and matched liver 
metastases. High CD133 expression was marginally associated with 
shorter overall survival (OS) (p=0.05, Log-rank test) but no difference in 
expression was found between primary tumours and corresponding 
metastases. 

Next, the functional activity of CD133 was evaluated in colorectal cancer 
(CRC) cell lines by knockdown in cell lines with high CD133 expression. In 
order to identify appropriate cell lines, the expression of CD133 was tested 
by quantitative RT -PCR in a series of 29 CRC cell lines and 10 samples of 
normal mucosa and, in selected cell lines, validated by testing for protein 
expression by flow cytometry. CD133 mRNA was ･ ｸ ｰ ｲ ｾ ｳ ｳ ･ ､ d in 24/29 
colorectal cancer cell lines with a heterogenous level of expression. 10 cell 
lines were chosen on the basis of CD133 mRNA expression level to 
assess the protein level. CD133 mRNA and protein expression were 
generally correlated (rs = 0.831, p= 0.003, spearman rank correlation 
coefficient test) although, interestingly, CD133 mRNA level was higher in 
normal samples compared with that in cancer cell lines and was 
significantly higher in cell lines derived from metastatic sites than those 
derived from site of primary tumour (p=0.009; Mann-whitney test). In 
addition, it was noted that many cell lines had a stable biphasic phenotype 
containing CD133+ and CD133- cell populations. This allowed functional 
analysis of CD133 by sorting the two populations. 

HT29 was identified as a high expresser of CD133 (95%) and was used for 
gene-knockdown studies, SW480 had a biphasic population consisting of 
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42% CD133+ cells and 58% CD133- cells and each population was 
isolated by cell sorting before functional analysis. Functional assays 
included proliferation, migration, colony formation and staurosporine 
induced apoptosis assays. These showed that CD133 expressing cells had 
greater cell motility (p= 0.04, and p = 0.03, unpaired t-test, for knocked 
down cells and sorted populations respectively) , enhanced colony forming 
abilities (p=0.0001, and p=0.003, unpaired t-test for 2D and 3D colony 
formation respectively using sorted populations only), and increased 
resistance to staurosporine induced apoptosis (p=0.01, and p=0.008, 
unpaired t-test, for knocked down and sorted populations respectively) 
than CD133 negative counterparts. In addition, sorted monophasic 
populations reverted to a biphasic state in both CD133+/- populations from 
SW480. Further stUdies demonstrated that CD133-induced cell motility 
was independent of E-cadherin, J3-catenin, and suggestive of not being 
regulated by Cten or Wnt, but further work is warranted to verify these 
results. In addition, regulation of CD133 was partly dependent on STAT3 
signallingand on CD133 promoter methylation. Levels of mRNA of some 
stem cell related genes such as KLF-4, Musashi-1, OCT4, Nanog, and 
LgrS were higher in CD 133 + compared to CD 133 negative cells (p=0.008, 
p=0.004, p=0.006, p=0.001, and p=0.11; unpaired t-test, respectively) 

In conclusion, in CRC, CD133 was found to be a significant prognostic 
factor which enhances cell motility and is associated with features of 
"sternness". It is a target of ST AT3 signalling and partly regulated by 
promoter methylation. More in depth studies are warranted to discover the 
downstream and upstream targets of CD133 before translating these 
preclinical and laboratory investigations into clinical management of 
colorectal cancer. 
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1.1 Introduction 

eRe is one of the most common causes of deaths worldwide. In the UK, 

colorectal cancer is the third leading cause of cancer mortality with around 

38, 610 new cases diagnosed every year, which accounts for more than 

100 cases every day (Bowel cancer statistics 2010). Surgical treatment is 

the mainstay of eRe treatment; however, adjuvant chemotherapy could be 

applied dependent on the pathologic tumour features (Morris, Maughan et 

al.2007). 

eRe development is a multistep process that requires years and is 
". 

accompanied by accumulation of a number of genetic changes 

(Vogelstein, Fearon et al. 1988). These genetic changes are mirrored as 

pathologic transformation of normal colonic epithelium to dysplastic 

epithelium (Le. adenomas) and eventually development of invasive eRe 

(Todaro, Francipane et al. 2010). 

During the last decade research in the field of eRe has been directed 

towards the exploration of dysregulated pathways involved in the 

development of eRe. It was found that activation of the WNT signalling 

pathway, due to mutations that lead to either inactivation of the 

adenomatous polyposis coli (APe) gene or stabilization of ｾ ~ catenin 

(Korinek, Barker et al. 1997; Morin, Sparks et al. 1997), lead to the 

development of adenomas (Shibata, Toyama et al. 1997). Wnt signalling 

.. ｾ ~ . 
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activity leads to nuclear accumulation of /3-catenin followed by over 

expression of the c-myc and cyclin D1 oncogenes which contribute to the 

malignant features of CRC (He, Sparks et al. 1998; Tetsu and McCormick 

1999). Several other pathways and genes were also found to be disrupted 

in development of CRC such as activation of KRAS and inactivation of 

tumour suppressor TP53 gene (Vogelstein, Fearon et al. 1988), bone 

morphogenetic protein pathway (BMP) (Howe, Bair et al. 2001), and 

dysregulation of the Sonic hedgehog (Shh) pathway (Douard, Moutereau 

et al. 2006). 

A well described feature of tumours is differentiation towards the tissue 'of 

origin. This feature is used in diagnostic practice (to identify the origin of 

tumours) and shows that, despite the presence of a full set of mutations, 

some cells will still show some evidence of terminal differentiation (Saaf, 

Halbleib et al. 2007) Thus although all the mutations are necessary for 

CRC formation, not every cell is likely to be able to form tumours. This has 

led to the development of the "stem cell hypothesis" of cancer in which it is 

thought that just small populations of cancer stem cells are responsible for 

the development of most of the tumour. Nowadays, these two subjects -

dysregulated· pathways and cancer stem cells, are the main focus of 

research in the field of cancer. 

In CRC, a small population of cells capable of initiating tumour growth .. , 

... when they were inoculated in mice (Dalerba, Dylla et al. 2007; O'Brien, 
,., . 
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Pollett et al. 2007; Ricci-Vitiani, Lombardi et al. 2007), was recently 

identified. These cells were characterized by the expression of CD133 and 

were thought to represent the CRC stem cells. 

1.2 What are stem cells? 

Stem cells (SCs) are undifferentiated cells that have the ability to give rise 

to one or more type of cells, through asymmetric cell division. In this type 

of division, SCs give rise to two daughter cells, one cell resembles the 

mother cell and will have the same SC features, whilst the other daughter 

cell is a more specialized cell (often called transient amplifying or 

progenitor cells) which later on differentiates to form tissue specific cells 
" 

(Lin and Schagat 1997; Dingli, Traulsen et al. 2007). Stem cells undergo 

another type of division called symmetric division in which stem cells divide 

and develop into two identical daughter cells endowed with the same SC 

characteristics of the mother cells. This leads to replenishment of the stem 

cell store and prevents its exhaustion (Dingli, Traulsen et al. 2007) (figure 

1-1 ). 

Stem cells are of two types, embryonic stem cells (ESCs) and adult stem 

cells (ASCs).· ESCs are pluripotent cells, meaning they are able to 

differentiate and give rise to all the three germ layers (ectoderm, endoderm 

and mesoderm) (Reubinoff, Pera et al. 2000), while ASCs are multipotent 

and can Ｌ ｾ ｩ ｶ ･ e rise to multiple cell types of the same organ but not other cell 

,·f· 
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types of different organs. However, recently, researchers have induced 

pluripotency in ASes (Takahashi, ｔ ｡ ｮ ｾ ｢ ･ e et al. 2007). ASes remain in an 

undifferentiated state and retain their features by asymmetric division, and 

can give rise to the specific cells of the organ where they locate. Recently, 

ASes were identified to participate in tissue repair after injury 

demonstrating their role in tissue homeostasis (Weissman 2000; Zhang, 

Zhang et al. 2004). 

In different organs, ASes reside in a specific microenvironment called 

"niches". These stem cell niches are composed of cells from the 

surrounding microenvironment which act as a protector that prevents 
II 

differentiation stimuli and other stimuli that could affect stem cell reserves 

(Moore and Lemischka 2006). 

Recently, stem cell biology researchers have been directed from an 

exploration of the mechanisms of development and maintenance of normal 

tissue to the implication of stem cells in tumourigenesis. 

,., . 
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Progenitor cells Differentiated cells 

Figure 1-1: Schematic presentation of stem cell divisions. 
Normal ASCs undergo two types of division, a symmetric division ( number 1), and give 
rise to two identical daughter cells (green cells) with the same SC features which maintain 
the stem cell reserve. The other type of division named an asymmetric division (number 2) 
and leading to development of two daughter cells, one resemble the mother cells in 
having the SC features (green cell), and the other one is called progenitorl transient 
amplifying cells (yellow cells). These progenitor cells undergo a number of replicative 
proliferation with terminal differentiation (White cells). 

1.3 Colon stem cells 

The normal human colon consists of millions of crypts. Each crypt contains 

about 2000 cells (Cheng, Bjerknes et al. 1984; Patten and Loeffler 1990; 

Patten, Kellett et al. 1992; Booth and Patten 2000) which are maintained 

by stem cells. Little is known about the number and the exact location of 

stem cells and they have been topics of debate which can be attributed to 

lack of specific stem cell markers (Brittan and Wright 2002). Unfortunately, 

the vast majority of data about colonic stem cells comes from mouse small 

intestine studies which differ from human colon (Bevins 2006). This 

difference arises from the fact that small intestine had finger-like 

projections called intestinal villi that are lacking in the colon. In addition, 

6 



there is a fourth cell type, Paneth cells, which reside at the bottom of the 

small intestinal crypt but not in the colon. This could mean that small 

intestine SCs endow molecular information to their progeny that is different 

from that endowed by colonic SCs (Boman and Huang 2008). 

Furthermore, the mutant mice used as models of human colon cancer 

develop tumours predominantly in the small intestine, not the colon (Corpet 

and Pierre 2003). Cheng and Leblond et al. presumed the unitarian 

hypothesis to describe the origin of epithelial cells in the gastrointestinal 

tract which is the slow proliferating SC (Cheng and Leblond 1974) . This 

theory was supported by the study of Paulus et al. which showed that only 

a single cell that escaped irradiation damage of the crypt was capable of 
It 

regeneration of the damaged crypt (Paulus, Potten et al. 1992). 

I n the normal human colon, stem cells are present at the base of the crypt. 

They divide and migrate upward forming the transient amplifying/progenitor 

cells which occupy the lower two thirds of the crypt. Differentiated cells 

(which are produced from progenitor cells) occupy the upper third and 

migrate towards the surface where they undergo apoptosis or are extruded 

into the lumen (figure 1-2). The life span of epithelial cells is rapid and 

replaced within a week with the exception of stem cells (Potten 1998; Reya 

and Clevers 2005). 

." . 
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Figure 1-2: Normal colon crypt. 
Normal colon crypt showing stem cells 
and proliferating cells occupying the 
lower two thirds (Reya and Clevers 
2005) 

1.4 Colon stem cell niches 

In the colon, stem cells reside at the crypt base in a microenvironment that 
t 

maintains their stemness features and which is named the "stem cell 

niche". The colonic stem cell niche is located at the base of the crypt and is 

formed by intestinal subepithelial myofibroblasts (also known as pericryptal 

myofibroblasts) that surrounds the stem cells (Powell, Mifflin et al. 1999). 

Pericryptal myofibroblasts are involved in various functions such as tissue 

repair, organogenesis and extracellular matrix metabolism (McKaig, Makh 

et al. 1999; Powell, Mifflin et al. 1999; Okuno, Andoh et al. 2002). Within 

the niche, several signalling pathways influence stem cell self-renewal and 

differentiation such as Wnt signalling pathway, Notch, and BMP pathways 

(He, Zhang et al. 2004; Andoh, Samba et al. 2005). 
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Growing evidence has indicated that Wnt signalling has a discrete function 

within the intestinal crypts, with particular emphasis on progenitor and stem 

cells. In mouse models, deletion of T-cell factor 4 (TCF4) in the intestine 

leads to absence of the progenitor cells and the stem cells compartment of 

the crypt (Korinek, Barker et al. 1998). Similarly, ectopic expression of 

Dickkopf-1 (DKK1); a Wnt signalling inhibitor, leads to architectural 

disruption of the villi of the intestine and colon with complete loss of the 

crypt. (Pinto, Gregorieff et al. 2003; Kuhnert, Davis et al. 2004). Wnt 

signalling via nuclear expression of ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ n stimulates the expression of 

ephrin type B receptor tyrosine kinases and their ligands which are 

involved in the epithelial cell proliferatton and migration along the crypt 

villus axis (Batlle, Henderson et al. 2002). Although there is growing 

evidence suggesting the role of Wnt signalling in the maintenance of the 

stem cell niche, until recently the source of Wnt signalling was unclear. 

Recently, it was found that Wnt mRNA was expressed mainly in the 

pericryptal myofibroblasts supporting the role of intestinal myofibroblasts in 

the maintenance of stem cells. Moreover, Frizzled (Fzd) mRNA was 

expressed in both intestinal myofibroblasts and in the crypt epithelium 

suggesting autocrine and paracrine function of the Wnt ligand (Andoh, 

Bamba et I a. 2005). Previous reports showed that C-MYC 

(myelocytomatosis oncogene) is one of the target genes of Wnt signalling 

(He, Sparks et al. 1998). It was found that c-myc expression inhibits 

P21WAFI/CIP1, (Mitchell and EI-Deiry 1999), which' has been previously shown ... 
to be expressed by differentiated epithelial cells (EI-Deiry, Tokino et al. 
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1995). A study has shown that Wnt activation stimulates c-myc expression 

which in turn represses p21wAFI/CIP1 allowing cellular proliferation and 

suppression of differentiation (van de Wetering, Sancho et al. 2002). All 

these data support the enrolment of Wnt signalling pathway in the 

maintenance of stem cell niche and inhibition of differentiation at the crypt 

base. 

BMP is another pathway involved in the intestinal stem cell self-renewal 

and differentiation (Crosnier, Stamataki et al. 2006). BMPs are members of 

transforming growth factor J3 superfamily. Kosiniski et al. noted that BMP 

members are differentially expressed 910ng the crypt axis of the colon. 

BMP1, BMP2, BMP5, BMP7, SMAD7, and BMPR2 were highly expressed 

in the colon top; whilst, BMP inhibitors such as gremlin1 (GREM1), gremlin 

2 (GREM2) and chordin-like 1 (CHRDL 1) were enhanced at the crypt base 

(Kosinski, Li et al. 2007). It was found that GREM1, GREM2 and CHRDL 1. 

originate from the intestinal myofibroblasts and smooth muscle that are 

located at the crypt ｢ ｡ ｳ ･ ｾ ~ Furthermore, GREM 1 activates Wnt signalling 

confirming the speculation that these BMP antagonists are involved in the 

stem cell niche control through activation of Wnt signalling and inhibition of 

differentiation of the epithelial cells at the crypt base (Kosinski, Li et al. 

2007). In addition, He et al. demonstrated that BMP inhibited the intestinal 

stem cells self-renewal through inhibiting activation of J3-catenin, thus 
.. . 

balancing ｴ ｾ ･ e role of Wnt- J3 catenin in stem ceil self-renewal (He, Zhang et ... 
al. 2004) . 
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Apart from the Wnt and BMP pathways, the notch pathway is also involved 

in the regulation of stem cell niche (Crosnier, Stamataki et al. 2006). 

Several molecules of the Notch pathway are expressed in intestinal crypt 

suggesting a role of Notch in determining cell fate decision and 

differentiation (Sander and Powell 2004). Kosiniski et ale found that 

NOTCH1, NOTCH2 and NOTCH3 are highly expressed at the crypt base 

(Kosinski, Li et al. 2007). Deletion of Hes-1 (hairy and enhancer split 1), 

whose transcription is regulated by Notch activity (Jarriault, Brou et al. 

1995), resulted in production of excessive numbers of secretory cells such 

as goblet, enteroendocrine and paneth cells (Jensen, Pedersen et al. 

2000), supporting the role of Notch signalling in selecting cell fate and 

differentiation of the crypt cells. 

Though these data demonstrated the importance of stem cell niche in 

maintaining a balance between stem cell self-renewal and ､ ｩ ｦ ｦ ･ ｲ ･ ｮ ｴ ｩ ｡ ｴ ｩ ｯ ｾ ~

through epithelial-mesenchymal interactions, the crypt villus structure could 

be generated from a single SC in the absence of mesenchymal niche. Sato 

et ale demonstrated that a single SC, when maintained in a long-term 

culture conditions, initiates organoids that contains all the cellular 

architecture present in the crypt villus unit of the adult mammals (Sato, 

Vries et al. 2009). Figure (1-3) demonstrates different signalling pathway in 

stem cell niche. 

,', . 
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Figure 1-3: signalling pathways in 
stem cell niche 
A diagram showing different signalling 
pathways that control stem cell self-
renewal in the stem cell niche a model 
proposed by Kosiniski et al. (Kosinski, Li 
et al. 2007). ISEMFs surround the base 
of the crypt and exert its effect on stem 
cells through paracrine secretion of 
certain molecules such as BMP 
inhibitors (GREM1, GREM2, CHRDL 1) 
which stimulates Wnt activity. These 
inhibitors are high at the bottom of the 
crypt and lower at the upper part. Wnt 
activity was higher at the base of the 
crypt and lowered with direction up 
toward differentiated cells. At the 
meanwhile, BMP activity is higher in the 
upper region to affect the cellular 
differentiation of the intestinal cells. 

• Stemcels 
ｾ ~ MyoIibrtltQsls 

MuWaris 
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1.5 Molecular identifiaation o/normal colon SCs 

Historically, DNA labelling using bromodeoxyuridine (Brdu) was used to 

identify the stem cells, based on the assumption that long term label 

retaining cells (LRCs) could be identified as either cells constituting or 

enriched with stem cells in many tissues including colon. These LRCs have 

the ability to retain DNA labeling as they have a slower cell cycle than the 

more rapidly dividing transit cells (Kim, Cheung et al. 2004). Nowadays, 

this method has been replaced by the identification of cell ｳ ｵ ｲ ｦ ｡ ｣ ｾ ~ markers 

on the stem cells and these were considered as putative stem cell 

markers. 
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Musashi-1 (Msi-1), an RNA-binding protein was the first molecule identified 

as a putative marker for normal human 'colon SCs. The early information 

regarding its function, demonstrated that it was essential for the 

preservation of neural stem cells (Nakamura, Okano et al. 1994; Okano, 

Kawahara et al. 2005). Then, Msi-1 expression was detected in the human 

colon crypt and mouse intestinal crypt (Nishimura, Wakabayashi et al. 

2003; Potten, Booth et al. 2003). In human colon crypts, Nishimura et al., 

by immunohistochemical analysis of Msi-1, showed that positivity of Msi-1 

located at the lower part of the crypt at cell positions 1-10 that could 

correspond to the area of stem cells as well as early transient amplifying 

cells (Nishimura, Wakabayashi et al. 2003). 

In 2002, Fujimoto et al. demonstrated that the integrin (31 subunit is a 

surface marker for the proliferative zone of the· human colon crypt which 

include SCs and progenitor cells (Fujimoto, Beauchamp et al. 2002). 

Immunofluorescence study revealed that (31 integrin expression was higher 
.. 

in the lower part of the crypt than the remainder of the crypt. Employing 

clonogenic assays after separating crypt cells based on their expression of 

(31 integrin, revealed a cell population with enhanced ability to colony 

formation (Fujimoto, Beauchamp et al. 2002). Nonetheless, further 

experiments were required to confirm the specificity of (31 integrin as a 

putative marker for colon stem I progenitor cells. 

,', . 
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Most recently, leucine-rich repeat containing G protein coupled receptor 5 

(lgrS); a Wnt target, was identified to be a marker of normal colon SCs 

(Barker, van Es et al. 2007). LgrS was identified in the crypt base, marking 

active cycling cells and contradicting the concept that SCs are slow cycling 

cells. Moreover, a more recent study revealed that a single LgrS+ cell can 

produce a structure similar to crypts and contain all the cellular architecture 

of the crypt when grown in vitro in cultured conditions for long term (Sato, 

Vries et al. 2009). In brief, LgrS could be considered as a promising marker 

for colon SCs. 

1.6 Cancer stem cell hypothesis 

For decades, the stochastic model for tumour development was held, 

which presumed that all tumour cells are equally able to form tumour 

growth. But, recently, the cancer stem cell theory has emerged and 

suggested that the tumourigenicity was limited to a small population of 

cells within the tumour, called cancer stem cells (CSCs). These CSCs are 

responsible for tumour initiation and maintain tumour growth (Wang and 

Dick 200S; Dalerba, Cho et al. 2007). Due to the heterogeneity of the 

tumour, CSCs were proposed to have stem-cell like features such as self-

renewal and differentiation abilities. The efficacy of CSCs to initiate ,tumors 

was demonstrated by using xenografting models which is good in vivo 

evidence for existence of these cells (Bonnet and Dick 1997). Many cell 

sU'rface markers were identified to isolate CSCs. 
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1.7 Molecular identification of cancer stem cells (CSCs) 

CSCs were first identified in acute myeloid leukemia (AML) (Bonnet and 

Dick 1997). Bonnet and Dick revealed that a small population of AML cells, 

when injected into non-obese diabetic mice with severe combined 

immunodeficiency disease (NOD/SCID) mice, produced leukemic blasts. 

Moreover, these cells had a cell surface phenotype of being CD34 + CD3S-

similar to that of normal haematopoietic stem cells (Bonnet and Dick 1997). 

Later on, research has surged towards identification of CSCs in other 

tumour types based on expression of specific cell surface markers, and the 

ability to self-renewal and differentiation. 

In breast cancer, as few as 200 cells of a cell population with the cell 

surface phenotype of CD44+CD24-/Low were capable of inducing tumours 

when implanted into NOD/SCID mice (AI-Hajj, Wicha et al. 2003). 

Moreover, the same cells showed the ability to grow as non adherent 

mammospheres in vitro (Ponti, Costa et al. 2005), in concordance with 

findings obtained with normal stem and progenitor cells of the breast 

(Dontu, Abdallah et al. 2003). 

In pancreatic cancer, Li et al. initially identified that ｃ ｄ ｾ Ｔ Ｋ ｃ ｄ Ｒ Ｔ Ｋ ｅ ｓ ａ Ｋ +

were tumourigenic as 100 cells with this cell surface phenotype were 

capable of initiating tumours that recapitulate the primary tumour from 

which they originate, indicating its characterization as CSCs in pancreatic 
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tumours (Li, Heidt et al. 2007). However, Herman et al. indicated that 

pancreatic CSCs were identified by the ·use of CD133 marker (Hermann, 

Huber et al. 2007). 

Besides breast and pancreas, prostate CSCs were identified by the 

expression of CD44, CD133, and 02(31 integrins. It was found that cells of 

CD44+ 02(31 highCD133+ have the ability to self renew and to regenerate 

tumours phenotypically similar to the original tumour (Collins, Berry et al. 

2005). Furthermore, in brain tumours, Singh et al. demonstrated that a 

small number (100 cells) of CD133+ cells generated tumors in NOD/SCID 

mice that recapitulate the original tumour, while 105 of CD133- populations 

failed to generate tumours (Singh, Hawkins et al. 2004). In another study, 

CD133+ and Nestin+ cells isolated from brain tumors were able to 

proliferate and produce tumour spheres in vitro (Yi, Zhou et al. 2007) 

I n colon, several cell surface markers were proposed as putative markers 

for colon CSCs such as CD133, CD24, CD44, CD166, ESA, and aldehyde 

dehydrogenase 1 (ALDH 1) (Dalerba, Dylla et al. 2007; O'Brien, Pollett et 

al. 2007; Ricci-Vitiani, Lombardi et al. 2007; Huang, Hynes et al. 2009). 

The first existence of colon CSCs was identified by O'Brien et al. where 

they demonstrated that only a small population of human colon cancers, 

isolated based on the expression of CD133, were able to induce tumour 

ｷ ｨ Ｎ ｾ ｮ n implanted in NOD/SCID mice (O'Brien, Pollett et al. 2007). Moreover, 
,., . 

CD133+ cells were able to grow in vitro as undifferentiated spheres in long 
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term culture (Ricci-Vitiani, Lombardi et al. 2007). Epithelial cell adhesion 

molecule (EpCAM), also known as ESA, and CD44 were used for 

identification of colon CSCs. A study reported that injection of 200 to 500 

cells of EpCAM highCD44+ in NOD/SCID mice resulted in tumour formation, 

whilst injection of 104 of EpCAM lowCD44- cells did not produce any tumour; 

moreover, in the same study it was found that CD166 (a mesenchymal 

stem cell marker) could be used as a CSC marker in conjunction with 

EpCAM and CD44 (Dalerba, Dyl\a et al. 2007). Cells that express CD133 

were more clonogenic than negative counterparts, and when the 

clonogenicity was tested based on co-expression of CD44, CD166, CD29 

with CD133, no increase in the clonogenicity was reported. However, 

coexpression of CD133 with CD24 increased the clonogenicity of CD133 

expressing cells. Moreover, CD133 and CD24 expression was lost upon 

differentiation followed by CD44, indicating that CD133 and CD24 could be 

used in conjunction for isolation of colon CSCs (Vermeulen, Todaro et at 

2008). 

Recently, ALDH1 was proposed to be a marker for normal stem cells and 

colon CSCs. A study showed that ALDH1 was expressed at the bottom of 

the colon crypt where cells are also positive for CD133 and CD44. Isolation 

of human colon cancer cells based on the expression of ALDH 1 and 

injection into NOD/SCID initiate tumours while the negative counterparts 

ｦ ｡ ｩ ｬ Ｎ ｾ ､ d to do so. Moreover, isolation of cells using ALDH1 with another 
.', . 
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marker such as CD44 or CD133 leads to a minor increase in the tumour 

initiating ability (Huang, Hynes et al. 2009). 

So far it is thought that no single molecular signature can be used to 

identify CSCs, but likely, a combination of cell surface markers that are 

expressed or repressed is preferable. Within the same context, evidence 

suggesting the use of CD133, the most widely used marker, either alone or 

in combination with other markers to isolate CSCs in many solid tumours 

has grown. Some of the markers used for identification of cancer stem 

cells are summarised in (Table 1-1) 

Table 1-1: list of some cancer stem cell markers. 

Tumour type Marker Reference 
Breast CD44+CD24-/Low (AI-Hajj, Wicha et al. 

2003) 
Pancreas CD44+CD24+ESA + (Li, Heidt et al. 2007) 

Pancreas CD133 (Hermann, Huber et al. 
2007) 

Brain CD133 (Singh, Hawkins et al. 
2004) 

Brain CD133+Nestin+ (Vi, Zhou et al. 2007) 

Colon CD133 (O'Brien, Pollett et al. 
2007) 
(Ricci-Vitiani, Lombardi et 

EpCAM highCD44+ 
al. 2007) 

Colon (Dalerba, Dylla et al. 
2007) 

Colon CD133+CD24+ (Vermeulen, Todaro et al. 
2008) 

Colon ALDH1 (Huang, Hynes et al. 
2009) 

AML CD34+CD38- (Bonnet and Dick 1997) 

Prostate CD44+ a2J31 highCD133+ (Collins, Berry et al. 
2005) 
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1.8 CD133 (prominin-lj 

1.8.1 Identification of CD133 

CD133, also known as prominin-1, is a pentaspan transmembrane 

glycoprotein of the prominin family (Miraglia, Godfrey et al. 1997). In 

mouse, prominin-1 was located in the microvilli and plasma membrane 

protrusions of the apical surface of the epithelium (Weigmann, Corbeil et 

al. 1997). AC133 antibody was originally used to identify the cell surface 

CD133 antigen (Yin, Miraglia et al. 1997), which recognizes a glycosylation 

dependent epitope. Yin et al. reported that AC133 antigen was restricted to 

CD34+ cells of fetal liver, bone marrow, adult bone ｭ ｾ ｲ ｲ ｯ ｷ Ｌ , and cord blood -, 

II 

suggesting that it could function as a marker of haematopoietic progenitor 

cells (Yin, Miraglia et al. 1997). In the same study, another antibody named 

AC141 has been generated against CD133 antigen and also recognizes a 

glycosylated epitope that is different from the previous epitope recognized 

by AC133 antibody (Yin, Miraglia et al. 1997). 

CD133 antigen was detected in the stem and progenitor cells of different 

organs (Yin, Miraglia et al. 1997; Bhatia 2001), and in neoplastic cells 

(Corbeil, Roper et al. 2000; Florek, Haase et al. 2005), In Cac02, a human 

colon cancer cell line, CD133 antigen was downregulated upon. cellular 

differentiation whilst the CD133 mRNA (messenger ribonucleic acid) was 

slightly increased (Corbeil, Roper et al. 2000). In the' same study, CD133 

mRNA was detected in rT),any tissues ｩ ｮ ｣ ｬ ｾ ､ ｩ ｮ ｧ g kidney, brain, liver, heart, 

lung, placenta, colon and small intestine which contradict the absence of 
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AC133 antigen (Miraglia, Godfrey et al. 1997). A plausible explanation for 

this contradiction is that CD133 antigen may be inhibited from translation 

or the fact that antibodies used, AC133 and AC144, detect a glycosylated 

epitope and the glycosylation process varies during cellular differentiation 

and malignant transformation (Corbeil, Roper et al. 2000). In support for 

the latter speculation, Florek et ale generated an antibody named ahE2 

which could recognize glycosylated and non-glycosylated CD133 antigen. 

This led to detection of CD133 antigen in Cac02 even after differentiation. 

Moreover, CD133 immunoreactivity was detected in adult kidney and 

mammary glands (which showed higher CD133 ｭ ｒ ｎ ｾ Ｉ ) using ahE2, but no 

It 

AC133 immunoreactivity (Florek, Haase et al. 2005). A more recent finding 

which is in line with these data reported that the AC133 glycosylated 

epitope could not be detected with differentiation of CSCs but CD133 could 

be detected in the differentiated cells (Kemper, Sprick et al. 2010). 

Therefore, it could be concluded that the glycosylation epitopes recognized 

by AC133 and AC141 ｡ ｾ ｾ ｩ ｢ ｯ ､ ｩ ･ ｳ s were restricted to stem and progenitor 

cells, and lost in adult tissue and upon differentiation of cells. 

1.8.2 The molecular profile of CD 133 gene 

CD133 gene maps to the short arm of chromosome 4 (4p15.32) . The 

CD133 gene consists initially of 27 exons. A 5 prime untranslated region' 
'. 

(5'UTR) and the start codon are contained within exon 1, while the stop 
,-, 

codon is in exon 26. Exons 1-26 range in size from 27 to 217 base pairs 
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(bp), while exon 27 is large containing at least 1143 bp (Yu, Flint et al. 

2002). The complementary Deoxy ribonucleic acid (cDNA) that encodes 

CD133 protein consist of 3794 nucleotide, with a 37 nucleotides 5 'UTR, 

and an 1159 nucleotide 3' UTR, and contains a long open reading frame of 

2596 nucleotides that forms a protein of 865 amino acids (AA) (Miraglia, 

Godfrey et al. 1997). Later on, Shmelkov et al. reported that CD133 

consisted of 28 exons and the transcription of CD133 gene is controlled by 

5 alternative promoters and 9 distinct 5' UTR exons results in the formation 

of seven alternatively spliced isoforms (Shmelkov, Jun et al. 2004). 

1.8.3 Structure of CD133 protein 

The CD133 protein is a 5 transmembrane (TM) domain glycoprotein. The 

protein consists of 865 AA with a molecular weight of - 97 kd 

(unglycosylated), and of - 120 kd (when glycosylated). There is an 

extracellular N-terminus (104 AA) to which is attached a signal peptide that 

is cleaved when the protein reaches the plasma membrane, two small 

intracellular loops (30 AA each), two extracellular domains(258 and 279 

M} at which 8 N-Iinked glycosylation site are present, and ends with a 59 

M carboxy-terminal tail (Figure1-4) (Miraglia, Godfrey et al. 1997). 

,', . 
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Glycosylation site 

C-terminal 

Figure 1-4: A schematic presentation for the expected structure of CD133. 
A structural model of CD133 as proposed by Miraglia et al. (Miraglia, Godfrey et al. 1997), 
showing that CD133 composed of 5 TM domains, extracellular N-terminus end, two 
intracellular loops, two extracellular loops containing 8 N-linked glycosylation sites, and a 

II 

C-terminus end. 

1.8.4 eD133 splice variants 

Initially, Miraglia et al. reported that CD133 gene is composed of 27 exons 

(Miraglia, Godfrey et al. 1997) and was referred as AC133-1. Later on, 

another study showed the presence of a splice variant of CD133 which 

lacks exon 3 (consisting of 27 nucleotides, 9 AA) and this splicing out of 

this exon does not affect the degree of glycosylation (Yu, Flint et ｾ ｉ Ｎ . 2002). 

In 2004, Shmelkov et al. discovered an extra exon in the 5'UTR area of the 

CD133 gene upstream to the previous exon 1 (which become exon 2), and 

contains 5 alternative promoter areas which can result in 7 alternatively 

spliced variants of CD133 transcripts ,which are expressed in a tissue 
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dependent manner and methylation plays a role in their regulation 

(Figure1-5)(Shmelkov, Jun et al. 2004). 
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ｾ ~ Exon2 

ｾ ~ Exon2 

ｾ ~ Exon2 I 
[§J Exon2 I 
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Figure 1-5: 5'UTR region and different alternative promoter sites of CD133. 
A schematic presentation of 5'UTR region of C0133 showing different promoter areas 
based on Shemelkov et al. study (Shmelkov, Jun et at. 2004). 5' RACE (rapid 
amplification of cONA ends) analysis revealed the presence of several exons in the 5'UTR 
region of C0133 such as exon 1A, 1B, which clustered as 01,02 and 03, and exon 1E· 
which clustered as E1, E2, E3 and E4. These exons are alternative spliced to exon 2. P1, 
P2, P3, P4, and P5 represent possible alternative promoters of C0133 gene that their 
activity gives rise to alternative spliced variants of C0133 mRNA. 

Although this study showed the differential expression of alternative splice 

variants by alternative promoter activity in the 5'UTR, it does not show any 

splice variants affecting the ORF (open reading frame). Fargeas et al 

reported alternative splice variants resulting in differential transcript, 

variants (Figure 1-6, and Table 1-2) (Fargeas, Huttner et al. 2007). 

Currently, ｴ ｨ ｾ ~ biological val,ue of these ｶ ｡ ｲ ｩ ｡ ｾ ｴ ｳ s is unclear. 
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Isoforms 

Svl 
I 2 I 3 14 I 5-25 1 2Gb 

I 27 1
28 

Sv2 
I 2 I 3 

I 
5-25 12Gb 127 I 28 

Sv3 I 2 I 3 I 5-25 
1

2Gb 
I 

Sv4 
I 2 I 3 I 5-25 I 28 I 

Sv5 I 2 1
3 I 5-25 1 2Gb I 28 

SvG I 2 I 3 I 4 
I 

5-25 
1

28 

Sv7 
12 1

3 I 4 I 5-2S 12Gb 1 28 

Figure 1-6: CD133 Splice variants 

A schematic presentation illustrates seven different splice variants of CD133. These Svs 
are variable in their expression of exon 4, 26b, and/or 27. 

Table 1-2: CD133 splice variants (Svs) . 

This table showed the CD133 Svs, their CBI nomenclature, AA, and accession number in 
NCBI Database (Fargeas, Huttner et al. 2007) 

Splice variants NCBI 
AA 

Accession 
- nomenclature Number 

Sv1 ,. Isoform 1 
865 NM_006017 

f--

Sv2 Isoform 2 856 NM 001145847 I-

Sv3 Isoform 3 830 AY449689 I--

Sv4 Isoform 4 825 AY449690 I---

Sv5 Isoform 5 833 AY449691 -
Sv6 Isoform 6 834 AY449692 -
Sv1 .. 

Isoform 7 842 AY449693 '--- . 
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1.8.5 Function of CD133 

The exact function of CD133 is still elusive. Growing evidence suggests a 

role in the regulation of plasma membrane topography due to its 

localization in the plasma membrane protrusions (Corbeil, Roper et al. 

2001). POSSibly, CD133 could be involved in signal transduction, as it is 

known that CD133 has a cholesterol binding lipid raft microdomain (Roper, 

Corbeil et al. 2000), and lipid rafts often represent areas in the plasma 

membrane that are involved in signal transduction (Simons and Toomre 

2000). It has been reported that membrane particles containing prominin-1 

are released into a number of body ｦ Ｑ ｵ ｩ ､ ｳ ｾ ｳ ｵ ｣ ｨ h as neural tube fluid, seminal 

fluid, urine and lacrimal fluid (Marzesco, Janich et al. 2005). Given that 

prominin-1 is a stem cell marker (Weigmann, Corbeil et al. 1997; Yin, 

Miraglia et al. 1997), it was postulated that its release in membrane 

particles could be involved in the down-regulation of stem cell properties or. 

their differentiation. Supporting this postulation, the prominin-1 containing 
"' 

membrane particles were released upon differentiation of Cac02 cells 

(Marzesco, Janich et al. 2005). 

Interestingly, the' migrating CD34+ haematopoietic stem cells acquire a 

polarized morphology, and during this process some molecules are 

ｲ ･ ､ ｩ ｳ ｴ ｲ ｩ ｢ ｵ ｴ ｾ ｾ ~ including CD133, which is redistributed ir:tto the uropod, thus' 

ｳ ｕ ｾ ~.. gesting a role for CD133 in cell migration (Giebel, Corbeil et al. 2004). 

Uropod is a plasma membrane protrusion in which cytoskeletal proteins, 

signalling "and adhesions receptors are present, and these might be 
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involved in many functions such as cell migration, intercellular adhesion 

(Sanchez-Madrid and Serrador 2009) 

Genetic analysis of family members with retinal degeneration revealed that 

deletion of a single nucleotide from CD133 gene leads to a frame shift 

mutation. This mutation resulted in formation of a truncated protein that lost 

half of the second extracellular loop, the last transmembrane domain, and 

the cytoplasmic C-terminal domain. In the same study, mouse mutant 

PROM that mimics human PROM does not reach the cell surface and 

immunohistochemical staining of mouse retina showed that CD133 can be 

found on the membranes of rod phGtoreceptors implying a role in 

photoreceptor disk morphogenesis. (Maw, Corbeil et al. 2000) . Although 

many stUdies have proposed a biological role for CD133, till now its exact 

function is unclear. 

1.8.6 CD133 and normal stem cells (NSCs) 

Since its original description as a marker for hematopoietic stem/progenitor 

cells (Yin, Miraglia et al. 1997), much attention has been paid to evaluating 

the validity of CD133 as a putative stem cell marker in many tissue types 

Such as hematopoietic system, renal, brain, endothelial cells and even in 

the field of regenerative medicine. CD133 was identified as a marker for 

hematopoietic stem and progenitor cells due to its selective expression in a 

suo'set of CD34+ fetal, cord and bone ｭ ｡ ｾ ｲ ｯ ｷ w cells (Yin, Miraglia et al. 

1997). Similarly, it has been stated that CD34+/AC133+ cells have 10-100 
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fold higher capability to produce granulo.cyte macrophage colony forming 

cells (GM-CFC) compared to CD34+/AC133- cells. In addition, human 

CD34+/AC133+ cells have higher engraftment rate with reconstitution of 

bone marrow of sub-Iethaly irradiated NOD/SCID mice compared to 

CD34+/AC133- counterparts (de Wynter, Buck et al. 1998) . Moreover, 

Gallacher et a/. demonstrated that hematopoietic AC133+/CD34-/Lin- cells 

were 400 fold more clonogenic than AC133-/CD34-/Lin- counterparts, and 

they were able to produce CD34+ cells (Gallacher, Murdoch et al. 2000). 

Lang et a/. showed that injection of either CD133+ or CD34+ cells in 

leukemic patients produce immune and platelet cells recovery (Lang, 
II 

Bader et al. 2004). Within the same context, Bitan et a/. reported that 

Successful mismatched transplantation of CD133+ cells in five high risk 

leukemic patients recovered the neutrophils. and platelet cells with 

avoidance of lethal acute graft-vs-host disease (Bitan, Shapira et al. 2005). 

Apart from the hematopoietic system, CD133 can be used as a putative 

marker for stem cells in several other tissues. A long term culture model 

has been developed allowing the propagation of neural stem/progenitor 

cells, and these neural cells can grow as either monolayers or as clusters 

known as neurospheres (Ray, Peterson et al. 1993). Using the 

neurosphere assay, it was revealed that sorted CD133+ cells from human 

fetal brain tissue can grow as neurospheres; in addition, a single cell from 

these neurospheres could"differentiate into' neurone and astrocytes when 

grown in conditioned medium. Moreover, injection of human CD133+ cells 
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into the brain of NOD/SCID mice showed engraftment, proliferation and 

migration of these cells in the whole brain tissue (Uchida, Buck et al. 

2000). Likewise, neural stem cells from murine cerebellum expressing 

CD133 and negative for other neural markers, were capable of forming 

neurospheres; even if they were cultured as single cells, in contrast to 

CD133- cells. Also, they were able to differentiate into neurone, astrocytes, 

and oligodendrocytes both in vitro and in vivo (Lee, Kessler et al. 2005). 

CD133 expressing cells isolated from normal adult human kidney have 

been shown to be capable of self renewal and differentiation in vitro and in 
II 

vivo into renal epithelium (Bussolati, Bruno et al. 2005). The renal origin of 

differentiated cells was confirmed by the expression of cytokeratin, E-

cadherin, and markers of fully differentiated renal epithelium such as 

alkaline phosphatase and amine peptidase which are normally expressed 

by the epithelium of the proximal tubules (Mentzel, Dijkman et al. 1996). 

Interestingly enough, the ability of hematopoietic CD133+ cells to engraft 

and differentiate into non-hematopoietic cells was directed to the field of 

tissue ｲ ･ ｧ ･ ｮ ･ ｲ ｡ ｴ ｩ ｾ ｮ n and disease improvement. Torrent et al. reported the 

ability of the isolated human AC133+ blood cells to self renew and 

differentiate into a myogenic lineage under certain culture conditions in' 

vitro, and to be recruited into muscle fibers when transplanted into 
... 

SCID/mdx mice and ameliorate the muscular dystrophy disease (Torrente, 

Belicchi et, al. 2004). In a like manner, injection of autologous, CD133+ 
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bone marrow stem cells into the liver" was associated with enhanced 

physiologic regeneration of liver cells (am Esch, Knoefel et al. 2005). In 

brief, these studies stated that CD133 expression marks more primitive 

cells. 

1.8.7 CD133 expression in human tumours 

The CSC hypothesis states that tumourigenic potential is restricted to a 

small population of cells within the tumour which have the ability to self-

renew, differentiate into multiple, lineages, and regenerate tumour 

recapitulating the original one. These cells were named as CSCs or tumour 

initiating cells and postulated to originate from normal stem cells, as they 

are the most likely cells to initiate tumours. CD133 was identified as a 

putative CSC marker in various human tumours. 

By using Flow cytometry .. analysis of cell surface expression of CD133 

protein in different types of brain tumours such as medulloblastoma, 

oligodendroglioma, and astrocytoma it was shown that CD133+ cells were 

able to form neurospheres, differentiate, and form tumours in vivo that 

recapitulate the original tumours (Blazek, Foutch et al. 2007; Yi, Zhou et al. 

2007). In addition these CD133+ cel'ls were chemo- and radioresistant (Liu, 

Yuan et al."2006; Blazek, Foutch et al. 2007). Similarly, in prostate cancer, 

the"cscs have a CD44+/q2J31 high/CD133+ phenotype, were shown to be 

able to self-renew and differentiate (Collins, Berry et al. 2005). CD133+ 
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cells have more proliferative and colony forming abilities, higher 

tumourigenic capacity in vivo, and are more chemoresistant than CD133-

counterpart (Suetsugu, Nagaki et al. 2006; Ma, Chan et al. 2007; Yin, Li et 

al. 2007; Ma, Lee et al. 2008). 

In pancreatic cancer, CD133+ cells were'more tumourigenic in vivo and 

highly resistant to chemotherapy than CD133- cells; what is more, CD133 

expression together with CXCR antigen showed higher invasive and 

metastatic potential (Hermann, Huber et al. 2007). Also, in anaplastic 

thyroid carcinoma, CD133+ cells showed higher proliferation rate, self-

renewal ability, higher resistance to chemotherapy, and expression of stem 

cell marker such as OCT4 (Zito, Richiusa et al. 2008). Moreover, CD133+ 

ovarian cancer cells were characterized by higher proliferative capability 

and exhibited enhanced clonogenic efficiency compared to CD133- cells., 

Furthermore, CD133 expression was higher in ovarian cancer than normal 

or benign tumours, and "interestingly was lower in metastatic ovarian 

tumours compared to the primary ovarian cancer (Ferrandina, Bonanno et 

al. 2008). 

Recently, O'Brien et al. and Ricci-Vitiani et al isolated CD133+' colon 

cancer ｣ ･ ｬ ｾ Ｎ ｳ s and showed that these are more ｴ ｵ ｭ ｯ ｾ ｲ ｩ ｧ ･ ｮ ｩ ｣ c in vivo than 

ｴ ｨ ｾ Ａ ｲ r negative counterparts. It has been shown that CD133+ cells can grow 

for a long time as ｴ ｵ ｭ ｯ ｵ ｾ Ｇ ' spheres and have the ability to xengraft and 
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induce tumours recapitulating the original one (O'Brien, Pollett et al. 2007; 

Ricci-Vitiani, Lombardi et al. 2007). 

Using immunohistochemistry, the CD133 expression pattern has been 

found to be variable. Expression of CD133 can be detected at the apical 

surface and the luminal border of the tumour glands as reported in many 

tumours such as colon cancer (Horst, Kriegl et al. 2008), pancreatic cancer 

(Immervoll, Hoem et al. 2008), whilst cytoplasmic staining alone or in 

combination with the previous pattern is described in ovarian cancer 

(Ferrandina, Martinelli et al. 2009), and hepatocellular carcinoma (Song, Li 

et al. 2008). Differences of cellular 10caJization have been seen in other 

proteins. For example, human epidermal growth factor receptor 2 (HER-2) 

by immunohistochemistry has been reported to be both membranous and 

cytoplasmic in colorectal cancer (Pavlakis, Kountourakis et al. 2007). In 

this case cytoplasmic expression of Her-2 was proposed to be either a. 

cross reacting protein or a precursor form of the mature protein. The 

differences in cellular ｬ ｯ ｾ ｾ ｬ ｩ ｺ ｡ ｴ ｩ ｯ ｮ n of CD133 expression could also be 

explained by this or may reflect a difference in cellular function at these 

different sites. However, these different patterns warrant further 

investigations. 

1.8.8 Signalling pathways in CD133+ cells 

Recently, several signalli.l.1g pathways have been implicated in the 

regulation of. CD133+ cancer stem cells. For example, the 
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Hedgehog/Glioma-associated oncogen homolog 1 (GLI1) pathway was 

reported to be involved in the survival and tumourigenicity of glioma cell 

culture. In addition, blockage of Hedgehog signalling pathway in CD133+ 

glioma stem cells reduces the clonogenicity, and expression of some 

sternness related genes such as Oct4, Nanog, and Sox2 (Clement, 

Sanchez et al. 2007). Similar to the hedgehog pathway, blockage of the 

Notch pathway decreased the tumour forming ability due to depletion of the 

CD133+ and nestin + medulloblastoma stem cells (Fan, Matsui et al. 

2006). This depletion of stem cells was found to be due to decreased 

cellular proliferation and increased apoptosis through reduction of 

phosphorylation of Signal transducer and activator of transcription 3 

(STAT3) and AKT (Fan, Khaki et al. 2010). 

Wnt signalling is another pathway that was reported to be involved in the, 

control of function of CD133+ cells. It has been stated that CD133 + cord 

blood hematopoietic ste"m cells could be differentiated into non-

hematopoietic lineage such as neuronal cells, astrocytes and 

oligodendrocytes when grown in conditioned culture media (Jang, Park et 

al. 2004). Furthermore, CD34+AC133+ hematopoietic stem cells have an 

endothelial potential with a role in neo-angiogenesis (Peichev, Naiyer et al. 

2000). ｔ ｨ ｾ Ｎ . exact link between the commitment of the,se stem/ progenitor 

cells and lineage differentiation is not clear. Nikolova et al. evaluated the ... 

effect of culturing CD133:' cells in conditioned media containing Wnt 

signalling molecules. It was found that WntSa and Wnt11 increased the 
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expression of CD31 + cells, whereas, Wnt3a maintain the undifferentiated 

blast phenotype of CD133+ cells. Moreover, WntSa increased the 

expression and nuclear localization of (3- catenin in CD133+ cells indicating 

activation of Wnt signalling. (Nikolova, Wu et al. 2007). Nuclear localization 

of (3- catenin regulates the expression of several genes such as c-myc (He, 

Sparks et al. 1998). The latter was shown to be highly expressed in 

CD133+ glioma stem cells and involved in the regulation of proliferation 

and survival of these cells (Wang, Wang et al. 2008). 

The BMP pathway is also involved in" the control of brain stem cells. 

Treatment of glioblastoma tumour with BMP4, a ligand of the transforming 

growth factor (3 family, decreases the proliferation, reduces the tumour 

formation ability in vivo, increases the marker of neuronal differentiation 

and decreases the size of CD133 expressing cells (Piccirillo, Reynolds et. 

al. 2006). Furthermore, in CD133+ cells of hepatocellular carcinoma the 

chemotherapy resistance" was associated with activation of AKT IPKB 

pathway and survival molecule such as BCL-2 (Ma, Lee et al. 2008). 

Figure 1-7, simply represent the possible pathways regulating CD133 

expressing cells. These stUdies demonstrated the involvement of these 

pathways in CD133+ cancer cells but the direct involvement of CD133 in 

these pathway remains elusive . 

. Ｇ ｾ ~ . 
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Uncovering the role CD133 plays in cancer biology, and the mechanisms 

regulating its expression and function are pivotal in considering CD133 as 

a potential target therapy. 

Figure 1-7: Signalling pathway regulating the function of CD133+ cells. 
A simple schematic presentation of signalling pathway involved in the regulation of 
CD133+ cancer stem cells such as the Notch, Wnt, and Hedgehog pathways. Fan et a/. 

found that blockage of Notch pathway decreases cellular proliferation and increased 
apoptosis through decrease phosphorylation of STAT3 and AKT not the total protein (Fan, 
Khaki et al. 2010). Hedgehog pathway increased survival of glioma cells through 
activation of GLI (a transcription factor) and its inhibition lead to reduced clonogenicity and 
decreased stem cell related genes such Oct4, Nanog and Sox2 (Clement, Sanchez et al. 
2007). Wnt signalling stimulated nuclear localization of J3-catenin which increased level of 
c-MYC that was increased in CD133+ glioma cells and was found to be involved in 
proliferation and increased survival 
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1.8.9 Hypothesis and aims 

Considerable knowledge about characteristics of CD133 expressing cells 

in many tumours such as brain tumours, and hepatocellular carcinoma has 

been acquired. However, at the beginning of this project, two earlier 

studies by O'brien et al. and Ricci-Vitiani et al. revealed that CD133 could 

be used as a marker for tumor initiating cells in colon (O'Brien, Pollett et al. 

2007; Ricci-Vitiani, Lombardi et al. 2007). In this case we hypothesized 

that, if CD133 marks CSC populations that are responsible for tumour 

growth and resistance to treatment, then CD 133 expressing cells will have 

increased tumourigenicity and resistance to apoptosis and association with 

patient survival. 

To test this hypothesis, the aims of the current study, which will form the 

groundwork of subsequent chapters as indicated, were to: 

(1) Evaluate the expression of CD133 in colorectal cancer clinical' 

samples and find its correlation with the different 

clinicopathological variables and patients clinical outcome 

(Chapter 3). 

(2) Screening of different cell lines for CD133 expression as a 

preliminary step for gene functional stUdies (Chapter 4) 

(3) Study the biological characteristics of CD133 expressing cells 

through study of functions such as proliferation, migration, 

colony forming, and staurosporine induced apoptosis (Chapter 

5). 
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(4) Discover any of the upstream or downstream target molecules 

that could reflect the mechanism of action of CD133 (Chapter 6). 

(5) Assess the expression of sternness related genes in CD133+ 

colorectal cancer cells (Chapter 7) . 

• t 
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2 Chapter 2: Material and methods 

.t 
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2.1 Immunohistochemistry 

2.1.1 Patients and specimens 

This study encompassed use of two tissue Micro Array (TMA) sets which 

were studied after ethical approval by the Nottingham Local Research 

Ethics Committee under REC reference numbers 01020402, and 

05/02402/72. The first TMA set, kindly supplied by Prof. Lindy Durrant 

(Division of Oncology, University of Nottingham, UK), consisted of 449 

cases of primary operable colorectal cancer patients who underwent 

elective resection at the Nottingham University Hospital between Januray 
,I 

1994 and December 2000. All cases are represented as cores on a tissue 

micro array (TMA) construct prepared as previously described (Kononen, 

Bubendorf et al. 1998). Clinical and pathological data including histological 

type, histological grade, tumor site, TNM stage, and the presence or 

absence of vascular invasion were prospectively collected. The follow-up 

was considered from the date of primary tumor resection, and all surviving 

cases were censored for data analysis at December 2003. Clinical 

characteristics of patients are summarized in table 2-1. 

The second TMA set used in this study was independent of the first TMA 

series; it comprised 45 samples from primary colorectal adenocarcinoma 

and their corresponding liver metastases, diagnosed' between 1993 and 

2009 and entered into the Nottingham CRC Series .The cases were 
.',. . 

arrayed onto TMA set as previously descr.ibed (Kononen, Bubendorf ･ ｾ ~ al. 
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1998) by Dr. Wakkas Fadhil (PhD student, Division of Pathology, School of 

Molecular Medical Sciences, University of Nottingham). Clinical 

characteristics of patients are summarized in table 2-2. 

Table 2-1 :Clinicopathological features of patients cohort n=449 

Age (years) 

Sex 

Status 

Median 
Range 

Male 
Female 

Alive 
Dead (colorectal cancer related deaths) 
Dead (unrelated causes) . 
Unknown 

Histological type 
Adenocarcinoma 
Mucinous adenocarcinoma 
Columnar adenocarcinoma 
Signet ring mucinous adenocarcinoma 
Unknown 

Histological grade 
Well differentiated 
Moderately differentiated 
Poorly differentiated 
Unknown 

Tumour site 
Colon 
Rectal 
Unknown 

TNM stage 

o (TiS) 
1 
2 
3 
4 
Unknown 

Extramural vascular invasion 

72 
57-89 

257(57%) 
192 (43%) 

167 (37%) 
220 (49%) 
60 (13%) 

.t 2 

382 (85%) 
49 (11%) 
4 (1%) 
6 (1%) 
8 (2%) 

28(6%) 
345 (77%) 
67 (15%) 
9 (2%) 

230 (52%) 
177 (39%) 
42 (9%) 

3 (1%) 
67(15%) 
172(38%) 
149 (33%) 
51(11%) 
7 (2%) 

Negative 219 (49%) 
'. Positive 121 (27%) 

Unknown .'.. 109(24%) 
Unknown: means either the data is not registered or no information found in the database 
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Table 2-2: Clinicopathological features of patients cohort n= 45 

Clinicopathological 
variables 
Age (years) 

Median 
Range 

Sex 
Male 
Female 

T stage 
T1 
T2 
T3 
T4 

Vascular invasion 
Negative 
Positive 

Frequency 
n (0/0) 

70 
43-88 

16 (35.6) 
29 (64.4) 

1 (2.3) 
2 (4.6) 
23 (53.4) 
17 (39.7) 

14 (32.6) 
29 (67.4) 

It 

2.1.2 Immunohistochemical staininl: with CD133 

For immunohistochemistry, 4IJm thick formalin-fixed paraffin - embedded 

tissue sections were cut and mounted onto glass slides pre-coated with 3-

aminopropyltriethoxysilane (APES). Sections were dewaxed by immersing 

in xylene (twice; 5 minutes each), and rehydrated through graded alcohol 

(100, 90, and 70%; 10 seconds each). For antigen epitope retrieval, heat 

induced epitope retrieval (HEIR) method was employed, where sections 

were boiled in citrate buffer (0.1 M concentration at PH 6.0) using a 

microwave for 20 minutes. Endogenous hydrogen peroxidase activity was 

blocked by applying 0.3% hydrogen peroxidase in methanol for 5 minutes. 

For blocking of nonspecific binding, sections were treated with 200 IJI of 

nor.mal swine serum (NSS) for 5 minutes at room temperature (RT) . . ',' 

Sections were incubated for 30 minutes. at RT with primary rabbit anti-
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CD133 antibody (rabbit momoclonal antibody, C24B9, Cell Signalling 

Technology, product number # 3663, UK), diluted 1:100 (optimum dilution). 

After washing unbound primary antibody, immunostaining was performed 

using Dako REAL ™ kit following the manufacturer's instructions (Dako 

REAL ™ EnVision ™ Detection System, Peroxidase/DAB+, Rabbit/Mouse, 

Code K5007). Bound antibody was' developed by using 3, 3'-

Diaminobenzidine tetrahydrochloride (Dako REAL ™ EnVision ™ Detection 

System, Peroxidase/DAB+, Rabbit/Mouse, Code K5007) for 6 minutes at 

RT. Sections were then counterstained with Mayer's haematoxylin, 

dehydrated with ascending graded alcot).ol, cleared in xylene, and mounted 

with DPX. Negative control was stained following the same protocol with 

the omission of the primary antibody to confirm the specificity of the stain. 

Positive controls using retinal tissue should be performed in order to judge 

the staining of CD133, but unfortunately we do not have reach to this type 

of tissue. 

2.1.3 Evaluation ofeD133 immunostaining 

CD133 positivity was identified as expression of CD133' at the apical 

luminal surface of the colon cancer cells and staining of the shed 

intraluminal cellular debris that mirrors CD133 expression of the 

surrounding tumour cells (Horst, Kriegl et al. 2008). CD133 expression was 

scored on. the basis of positive tumour glands (glands with either apical 

ｉ ｕ ｾ ｩ ｮ ｡ ｬ l staining or staining of intraglandular cellular debris) and expressed 
Ｎ Ｇ ｾ ~ . 

as a percentage of CD133 positive tumour glands compared to the total 
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tumour glands within each core. Assessment of CD133 positivity was 

carried out by two observers. First observer, Tarek Elsaba, assessed the 

whole TMA series blinded to the patients' clinicopathological and survival 

data. A second observer, Ahmed Benhasouna, also blinded to the patients' 

clinicopathological and survival data, assessed 250/0 of the TMA sections. 

A cutoff value of 50% was used. Tumours containing less than 50% 

positivity were considered CD133 negative/low, and those with ｾ ~ 50% were 

considered CD133 high as previously described (Horst, Kriegl et al. 2008; 

Horst, Kriegl et al. 2009; Takahashi, Kamiyama et al. 2010). Cytoplasmic 

staining was evaluated as positive or ｮ ｾ ｧ ｡ ｴ ｩ ｶ ･ e according to the presence 

or absence of cytoplasmic staining. 

2.1.4 Statistical analysis 

For assessment of association between CD133 and other 

Clinicopathological categories, specimens were categorized using the ｣ ｵ ｴ ｾ ~

off value previously described. To assess clinical significance between 

different categories, chi-square test and cross tabulation were used. 

Multiple testing corrections were applied if necessary. Kaplan-Meier curve 

was used to plot the difference in disease specific survival between 

groups, and the significance of difference between groups estimated by the 

log-rank test. Multivariate analysis using Cox regression hazard method to 

identify the relative risk and independent variables significance was 

pe,,!ormed. p-values < 0.05 were considered as statistically significant. 
.... 

Kappa (I<) agreement was used to evaluate the agreement between two 
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observers. All statistical analysis was done by using SPSS package 

(version 15.0 for windows, SPSS Inc., Chicago, IL). 

2.2 Cell culture condition 

Colorectal cancer cell lines were maintained in Oulbecco Modified Eagle 

Medium (OM EM) (Invitrogen, UK) supplemented with 10% fetal bovine 

serum (FBS) (Sigma, UK), streptomycin 100 IJg/ml (Sigma, UK) and 

penicillin100 units/ml (Sigma, UK) and were grown in T75 flasks (Corning 

Incorporation, Coaster, UK). Flasks were incubated at 37°C in a humidified 

atmosphere containing 50/0 CO2• The tissue culture medium was changed 

every 2 days and cells were passaged before they become confluent. 

Briefly,- when the cells reach 900/0 confluence, the cells were rinsed with 

sterile phosphate buffered saline (PBS) (Sigma, UK), then 3ml of diluted 

Trypsin/EOTA (Ethylenediaminetetraacetic acid) were added [(10X) from 

Sigma, Cat# T 4174]. After cell detachment, a new 5 ml medium was added 

to cells. Then 1 ml of these cells was transferred into a new T75 flask 

containing 10 ml fresh medium and incubated in the incubator. 

2.3 Analysis a/protein expression using }low cytometry 

For analysis of cell surface protein expression in colorectal cancer cell 

lines using flow cytometry, the following protocol was used. In brief, the 

cells were rinsed with PBS, and then were detached using cell dissociation 
,', .... 

solution (1X non enzymatic Cell dissociation solution, Sigma, UK). 
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Carefully, cells were collected and centrifuged at 1000 rpm for 5 minutes at 

4°C. Cells were resuspended in cold blocking buffer (PBS 1X; 5% heat-

inactivated rabbit serum; 0.5% BSA; 2mM NaN3; 5mM EDT A). Cells were 

counted and the number was calculated per ml by making a suitable 

dilution in trypan blue and using a haemocytometer. Cells were diluted to 

5X105 per Ｕ Ｐ ｾ Ｑ 1 then Ｕ Ｐ ｾ Ｑ 1 of mouse IgG1anti-human CD133/1 antibody 

(AC133) conjugated to R- phycoerythrin (PE) (Miltenybiotec, UK, Cat. 130-

080-801) optimally diluted 1 :50 (final working dilution is 1:100) in wash 

buffer (PBS 1X, 0.5% BSA; 2mM NaN3; 5mM EDTA) were added to the 

cells, and incubated in dark at 4°C for 115 minutes. Unbound antibody was 

washed with wash buffer and centrifuged at 1000 rpm (twice, 5 minutes 

each). Labeled cells were resuspended with Ｒ Ｕ Ｐ ｾ Ｑ 1 of wash buffer, and then 

fixed with Ｒ Ｕ Ｐ ｾ Ｑ 1 of 2% formaldehyde. Negative control (with the omission of 

antibody and replace it with wash buffer), and isotype matched control 

[using monoclonal Mouse IgG1 antibody conjugated to R-phycoerythrin 

(PE)] were performed foli6wing the previous staining procedures. At least 

fifty thousand events were detected using Epics Altra flow cytometry 

machine (Beckman Coulter), and the results were analyzed by WinMDi 2.9 

or Weasel computer software. Background fluorescence was measured 

using negative populations, and gating parameters between positive and 

negative populations was implemented on the basis ,of cells labeled with 

IgG isotype control. 
,', 

.'1· 
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2.4 Fluorescence activated cell sorting (FACS) 

Cells were stained using the previous staining protocol but without the final 

fixation step. To insure the purity of the sorted cells, the gating was 

stringently conducted to include the highly expressing cells and the lowest 

negative ones. To check the purity of the sorted populations, the sorted 

cells were re-analysed again by flow cytometry. Sorting was done using 

Epics Altra flow cytometry machine (Beckman Coulter). 

2.5 Magnetic cell sorting (MACS) 

For MACS sorting of colorectal cancer cell lines, we used anti-PE 

MicroBeads. First, the cells were stained with a R-Phycoerythrin (PE) 

conjugated primary antibody. Second, the cells are magnetically labeled 

with Anti-PE MicroBeads. Last, cells were filtered through a column placed 

in a magnetic field to retain the positively labeled cells within the column, 

and the negative cells (cells passed through the column) were filtered 
.-. 

again through another column to increase the purity of the sorted cells. 

Briefly, the cells were first stained with mouse IgG1 anti-human CD133/1 

antibody (AC133) conjugated to R- phycoerythrin (PE) (Miltenybiotec, UK, 

Cat. 130-080-801) following the same staining protocol used with flow 

cytometry analysis without the final fixation step, and cells were 

resuspended in 80IJI of wash buffer per 107 total cells. Then 20IJI of anti-PE 

MicroBeads were added per 107 total cells, mixed well and the cells were 
," 

.', . 

incubated for 15 minutes in the refrigerator. Cells were washed with buffer 
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and centrifuged for 10 minutes. Then, supernatant was aspirated and cells 

were resuspended in 5001J1 buffer. Finally, cells were passed through MS 

column placed in a magnetic field of the MAGS separator, where the 

unlabelled cells moved across the column while the labeled ones were 

retained in the column. The retained cells were eluted as positively 

selected portion. 

2.6 Ribonucleic acid (RNA) extraction from cell lines 

Total RNA was extracted from the GRG cell lines using RNeasy Mini Kit, 

including DNase treatment (QIAGEN house, West Susex, UK) following 

the manufacturer's instructions. Briefly, 1 X1 07 cells were washed with PBS 

and detached using Trypsin/EDTA. After detachment of the cells, medium 

was added and the cells were centrifuged at 1000 RPM for 5 minutes. After 

discarding the supernatant, 600 IJI of lysis buffer were added to the cells 

and mixed by pipetting. Subsequently, the lysate was placed into a 

QIAshredder spin columri'placed in a 2 ml collection tube, and centrifuged 

for 2 min at full speed. Then, 1 volume of 70% ethanol was added to the 

lysate to homogenize it and mixed well by pipetting. The lysate was 

transferred to an RNeasy spin column placed in a 2 ml collection tube and 

centrifuged for 15 s at 13,.000 rpm. The RNeasy spin column membrane 

was washed with 700 IJI of washing buffer (buffer RW 1 supplied with the 

Kit) and centrifuged for 15 seconds at 13000 rpm. After discarding the flow-
,'. 

through, the column mem'brane was wash'ed with 350 IJI of wash buffer 
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(buffer RW1), and centrifuged for 15 seconds at 13000 rpm. At the same 

time, RNase-Free DNase enzyme was prepared by adding 1 ｏ ｾ ｉ I of DNase 

buffer with Ｗ Ｐ ｾ Ｑ 1 of DNase enzyme (supplied with Kit) and the mix was 

placed directly to the spin column and left on the bench place for 15 

minutes at (20-300C). Then, the column was washed with washing buffer 

and centrifuged at 13000 rpm for 15 seconds. After discarding the flow-

through, the column membrane was washed twice with another wash 

buffer (buffer RPE, supplied with the kit) and centrifuged at 13000 rpm for 

15 seconds (the first wash), and for 2 minutes (the second wash). Lastly, 

RNA was eluted by applying 30-50 ｾ ｉ I of,tRNase-free water and centrifuged 

at 13000 rpm for 1 minute. The quantity and purity of eluted RNA were 

checked using a NanoDrop ND-1000 UV-Vis Spectrophotometer (LabTech 

International Ltd, Ringmer, UK). Samples had an A260/A2BO ratio between 

(1.B-2.00) indicating a relative purity of the RNA. The eluted RNA was 

stored at - BOoC. RNA samples from normal colonic mucosa were obtained 

following a study on inflammatory bowel disease (80) by Professor lIyas 

(Division of Pathology, University of Nottingham, UK). 

2.7 Complementary Deoxyribonucleic acid (cDNA) synthesis 

RNA was reverse transcriped into complementary deoxyribonucleic acid 

(DNA) using reverse transcription reaction. In short, 'a total of Ｑ ｾ ｧ g RNA 

was made up in a total ｯ ｦ Ｑ ｂ ｾ Ｑ 1 water and incubated with Ｑ ｾ Ｑ 1 of random . .. ｾ ~

hexamer (pDN6) at 70°C for 10 minutes ｡ ｾ ~ initial denaturation step. The!l a 

47 



mixture of 1 lJl (200 units) of Moloney· Murine Leukemia Virus Reverse 

Transcriptase enzyme [M-MLV RT (Invitrogen, UK)], 10mM of Dithiothreitol 

[DTI (Invitrogen, UK)] and 0.5mM each of Deoxyribonucleotide 

triphosphate (dNTP) was prepared, added to the denatured RNA making 

up a final volume of 50lJI. Subsequently, the mix was incubated at 37°C for 

60 minutes, then for 95°C for 10 minutes using thermocycler (Gene Amp 

PCR System 9700). Reverse transcriptase minus (RT-) negative control 

was performed with RNA and all the reagents with the exception of M-M LV 

RT enzyme. 

.1 

2.B Quantitative reverse transcriptase-polymerase chain reaction 

(QRT-PCRJ 

All the experiments of aRT -PCR were carried out in triplicates and values 

were normalized to the reference gene Homo sapiens Hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) that was found to be the most 

accurate and economic single normalization gene that could be used as an 

alternative for use of multiple housekeeping genes when compared to 

another 12 endogenous housekeeping genes (de Kok, Roelofs et al. 2004) 

Primers were designed with the help of Primer3 web 0.4.0 which is a web 

based primer design software tool. PCR amplification was conducted using 

the SYBR green II dye as a reporter. For each quantitative reaction, a final 

volume of 25 lJl was used; containing 12.5lJl of 1 X SYBR Green Master 
,'. . ... 

Mix (Stratagen, UK), 1 lJl of each primer (250 nM, a final concentration), 
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and 51J1 of cDNA templates (10 ng/51J1). Cycling conditions for the reactions 

were 10 minutes denaturation at 95°C followed by 40 cycles of 30 seconds 

denaturation at 95°C; 30 seconds annealing at a temperature according to 

the primer used (see table 2-3); 30 seconds extension at 72°C and a final 

melt for 60 seconds. The reaction was conducted using thermal cycler 

(MX3005P Stratagene, UK). The data for Q-PCR were analyzed by the 

MxPro-QPCR software version 3.20 using the standard curve method. For 

each QRT -PCR experiment, a standard curve was generated for each 

target gene. Standard curves were generated using 10 folds serial dilution 

of either image clone in case of CD133 and HPRT1 or 2 folds dilution of 

neat cDNA of highly expressing cell line for the rest of the genes. No 

template control (NTC) reactions which contain all the reagents except for 
t 

DNA template, and (RT-) negative control were performed for each primer. 

Table 2-3: List of primers used for qRT-PCR. 
A table showed list of primers use and the annealing temperature and the product size 

Gene Primers Amplicon AN. T 

size in bp 

CD133 Forward primer: 5' ACAGGGAATGGA TTGTTGGA 3' 119 59°C 
Reverse primer: 5' CTCCCATACTTCTT AGTTTCCTCAA 
3' 

CD133 Forward primer: 5'·ACCCATTGGCATTCTCTTTG 3' 199 56°C 
(Sv) Reverse primer: 5'CCCCAGGACACAGCATAGAA 3' 172 

HPRT Forward primer: 5' AAA TTCTTTGCTGACCTGCTG 3' 122 61°C 
Reverse primer: 5' TCCCCTGTTGACTGGTCATT 3' 

KLF-4 Forward primer: 5' CCCACACAGGTGAGAAACCT 3' 169 56°C 
Reverse primer: 5' ATGTGT AAGGCGAGGTGGTC 3' 

Msi-1 Forward primer: 5' ACAGCCCAAGATGGTGACTC 3' 191 56°C 

Reverse primer: 5' CCACGATGTCCTCACTCTCA 3' 
Oct4 Forward primer: 5' GAAGGATGTGGTCCGAGTGT 3' 183 58°C 

Reverse primer: 5' GTGAAGTGAGGGCTCCCATA 3' 
Nanog Forward primer: 5' TTCCTTCCTCCATGGATCTG 3' 213 57°C 

49 



Reverse primer: 5' TCTGCTGGAGGCTGAGGTAT 3' 
LgrS Forward primer: S'CTCTTCCTCAAACCGTCTGC 3' 

Reverse primer: 5' GATCGGAGGCTAAGCAACTG 3' 
c-MYC Forward primer: 5' TTCGGGTAGTGGAAAACCAG 3' 

Reverse primer: 5' CAGCAGCTCGAA TTTCTTCC 3' 

181 

203 

2.9 Construction o/CD133 expression plasmid (pcDNA3.1-CD133) 

The pcDNA™3.1 Directional TOPO® Expression Kit (Invitrogen, UK) was 

used to clone a blunt end PCR product (CD133 coding sequence) into 

pcDNA™3.1 DN5-His-TOPO®. (Vector map see appendix 9.1) 

2.9.1 peR amplification oreD133 codin&: sequence 

In order to allow the directional cloning of CD133 coding sequence, the 

forward PCR primer must contain the sequence, CACC, at the 5' end of 

the primer and directly before the ATG start codon. This sequence allows 
It 

direct ligation with overhang sequence GTGG in pcDNA TM3.1 DN5-His-

TOPO® vector (a polylinker map see appendix 9.2). The amplification 

primers were designed manually and their sequence were as follow; 

forward primer 5'- CACCATGGCCCTCGTACTCGG-3; reverse primer 

5'-TCAATGTTGTGATGGGCTIGTCAT-3' and were purchased from 

MWG-BiotecH AG). 

To amplify a blunt end CD133 coding sequence with CACC sequence at 

the 5' end of the PCR product, CD133 image clone (accession No. 

BC012089 , IMAGE:4644690), and the aforementioned designed primers 

were used in a final volume of 501-11 PCR reaction using the Pfu DNA 

polymerase enzyme (Promega, cat. No. M774A). In a sterile, nuclease-free 
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0.5 ml tube, the PCR reaction contain the following components; 5 1-11 of 

10x Pfu DNA polymerase buffer with MgS04 (final concentration of 1 X), 21..11 

of each forward and reverse primers (final concentration of 250nM), 11..11 of 

Pfu DNA polymerase enzyme (2-3u/l..ll), 11..11 of dNTPs mix (10mM)(making 

a final concentration of 200I..lM), and 291..11 of nuclease-free water. 

The reaction was performed in thermal cycler (Perkin Elmer GeneAmp 

PCR system 2400), and allowed to run for 40 cycles with the following 

cyclic conditions; 95°C for 2 minutes (initial denaturation), 95°C for 1 

minute (denaturation), 60°C for 1 minute (annealing), 72°C for 2 minutes 

(elongation) and 72°C for 10 minutes (tinal extension). PCR product was 

checked for a single band suitable for cloning using 1 % agarose gel. 

2.9.2 Agarose gel electrophoresis 

1 % agarose gel was prepared by adding 1 gm of agarose (Gibco-BR Life 

Technologies, USA) into 100 ml of 1% Tris Borate EDTA (TBE) buffer 

(Sigma, USA) and heated in a microwave for 60 seconds. The gel was 

allowed to cool down at room temperature. 101..11 of Sybersafe dye (1000x) 

(Sigma, USA) was added and the gel was then poured into the gel 

apparatus and an appropriate comb was inserted. After solidification of the 

gel, 12 1..11 of previously prepared DNA samples (101-11 of DNA samples 

mixed with 21..11 loading dye) were loaded into the gel lanes, and 1 KB DNA 

ladder (New England BioLabs, UK) was loaded for sizing of the samples. 

ｇ ｾ ｾ ｳ s were allowed to run at 90 volts for 45 minutes using 1 X TBE solution 
.'.> 
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as a running buffer. Visualization of the PCR products on the gel was done 

using an ultraviolet transilluminator (UVP Inc., USA). 

2.9.3 Purification ofPCR product 

The PCR product was purified using QIAquick PCR Purification Kit 

(Qiagen) following the manufacturer's ｰ ｲ ｯ ｾ ｯ ｣ ｯ ｬ Ｎ . Briefly, 5 volumes of buffer 

PBI were added to one volume of PCR sample and mixed.the mixture was 

added to the QIAquick column and centrifuged for 60 seconds. Then, 

column was washed by adding 750111 of buffer PE and centrifuged for 60 

seconds. Lastly, DNA was eluted in a clean microcentrifuge tube using 50 

III of water. The purified DNA was then analyzed on a gel and the final 

amount of purified DNA was quantified using NanoDrop ND-1000 UV-Vis 

Spectrophotometer (LabTech International Ltd, Ringmer, UK). A ratio of 

1.8 - 2.0 was considered an indication of relative purity. 

2.9.4 Clonin&: of CDt33 into in pcDNA™3.tDIV5-His-TOPO® vector and 

transformation 

To clone CD133 PCR product into pcDNA™3.1DN5-His-TOPO® vector, 

TOPO cloning reaction was performed. The reaction was done by making 

a mixture of 1111 of purified PCR product, 1111 of Salt Solution (1.2 M NaCI 

and 0.06 M MgCI2), 1 III of TOPO vector, and sterile water to a final 

volume of 51J1. The mixture was incubated at room temperature (22°-23°C) 

for 15 minutes. Then, the reaction was placed on ice for 5 minutes, and 

preceded to one shot chemical transformation following the manufacturer's 

instructions. 

52 



One shot chemical transformation was conducted by mixing gently 41..l1 of 

the Tapa cloning reaction (as performed above) into a vial of One 

Shot®rOP10 Chemically Competent E. coli and incubated on ice for 30 

minutes. Then, the cells were heat-shocked for 30 seconds at 42°C without 

shaking, and the tube immediately transferred to ice. A 2501..l of SOC 

medium was added to the tube, tightly closed and was then placed in a 

shaker (New Brunswick Scientific Co. Ltd., USA) at 37°C for 1 hour. 60 III 

from the transformation were spread on a LB agar plate containing 50llg/ml 

ampicillin as a selection antibiotic to allow growth of bacteria containing the 

plasmid and the plate was incubated ｯ ｶ ｾ ｲ ｮ ｩ ｧ ｨ ｴ t at 37°C. 

2.9.5 Analyzing transformants 

Eight colonies were picked and cultured overnight in LB broth medium 

(Sigma, UK) containing 501..lllmi ampicillin. Then, plasmid DNA was isolated 

using GenElute ™ Plasmid Miniprep Kit (Sigma Aldrich, UK) following the 

manufacturer's instructions. Briefly, 1-5 ml of the recombinant E.coli were 

pelleted by centrifugation at 13000rpm for 1 minute and then resuspended 

in 200 I..lI of resuspension solution (supplied with the kit). Cells were lysed 

by adding 200 I..lI of lysis solution and mixed gently followed by adding 

350l..l1 of neutralization/binding solution in order to precipitate the cell 

debris. This was then centrifuged at maximum speed for 10 minutes. 

Subsequently, the lysate was added to a GenElute Miniprep Binding 

CO.I,umn and centrifuged at 13000 rpm for 1 minute. After discarding the . ｾ Ｌ , . 

flow-through, a 7501..l1 of wash solution was added to the column and 
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centrifuged at 13000 rpm for 1 minute. The flow-through was discarded 

and samples were centrifuged at maximum speed for 2 minutes. Finally the 

plasmid DNA was eluted by adding 100tJI of water to the column and 

cetntrifuged at 13000rpm for 1 minute. The quantity and purity of the eluted 

plasmid were checked by using using NanoDrop ND-1000 UV-Vis 

Spectrophotometer (LabTech International Ltd, Ringmer, UK) A ratio of 1.8 

- 2.0 was considered an indication of relative purity. 

The plasmid DNA was analyzed by restriction enzyme analysis method to 

confirm the presence of the insert in ｴ ｾ ･ e construct. EcoRV enzyme was 

used for the restriction digestion analysis. In a sterile 0.5 ml tube, the 

reaction mix was prepared in a final volume of 20tJI as follow: 2tJI of 10x 

buffer 3 (Promega, UK), 0.2tJl of 100X BSA (bovine serum Albumin) 

«Promega, UK), 1 tJl of EcoRV enzyme (Biolabs, UK), 6tJI of plasmid DNA, 

10.8tJl of distilled water. The reaction was incubated for two hours at 37°C. 

Gel electrophoresis was done by using 1 % agarose gel and 1 Kb ladder to 

visualize the results of restriction analysis. Furthermore, to confirm the 

correct orientation of the insert, the plasmid DNA was subjected to direct 

sequencing. 

2.10 RNA silencing 

The small interfering RNA (siRNA)(stealth type) was used to knockdown 
,-, 

CD133 and STAT3 in CRC cell lines. The following siRNA was used: 
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CD133 siRNA, 5'AUU GCUAUC UGC CAG UUU CCG ACU C-3'., CD133 

control siRNA 5' GAG GGA ACA GUC GGA UAG ACC UM U 3', STAT3 

siRNA 5' UGGCCCMUGGMUCAGCUACAGCA 3', AND STAT3 control 

siRNA 5' UGG ACU AGG MC UGA UCC MC CGC A 3'. The siRNA for 

CD133 was synthesized by the help of BLOCK-iTTM RNAi designer which 

is a web-based tool for designing and customizing synthetic siRNA from 

nucleotide target sequences (Supplied free by Invitrogen) .. After making a 

selection, duplexes was ordered from the same company (Invitrogen, UK). 

The STAT3 siRNA was kindly gifted by one of our colleagues in the Lab 

(Dr. Kanwal Baloch; a PhD student, department of Pathology), and was 
It 

designed by the same way as CD133. For gene knockdown, 

lipofectamine ™ 2000 transfection reagent (Invitrogen, UK) was used 

following the manufacturer's guidelines. One day before transfection, cells 

were seeded in 1 ml of antibiotic-free growth medium in 6 well ｰ ｬ ｡ ｴ ｾ ~

(Corning Incorporation, Coaster, UK) in order to allow cells to be 30-400/0 

confluent before transfection. On the day of transfection, medium was 

aspirated, cells were washed with PBS, and then 2 ml of Opti-MEM® I 

Reduced Serum Medium without serum was added. For each transfection 

reaction, oligomer -lipofectamine 2000 complexes were prepared as 

follow: A 100 pmol siRNA (equal to Ｕ ｾ Ｑ 1 of siRNA) was diluted in 250 ｾ ｉ I of 

Opti-MEM® I Reduced Serum Medium without serum (final concentration of 

siRNA when added to the cells is will be 33 nM), and mixed gently. Then, 5 
,". 

ｾ ｉ I of lipofectamine 2000 'was diluted at Ｒ Ｕ Ｐ ｾ Ｑ 1 of Opti-MEM® I Reduced 

Serum Medium without serum, mixed gently and incubated for 5 minutes. 
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After the incubation, the diluted oligomer and lipofectamine 2000 were 

combined, mixed gently, and incubated for 20 minutes at room 

temperature. Lastly, the complexes were added to the wells and mixed 

gently by rocking the well, and incubated at 37°C in 5% CO2 atmosphere. 6 

hours later the medium was replaced by the normal DMEM medium. 

Seventy two hours later, transfected cells were used in functional assays, 

flow cytometry analysis, protein extraction for western blot analysis, and 

RNA isolation for PCR reactions. 

2.11 Plasmid (pcDNA3.1-CD133) DNAt transfection 

For plasmid DNA transfection, lipfectamine®2000 transfection reagent was 

used following the manufacturer's protocol. One day before transfection, 

the proper number of cells were seeded in 1 ml antibiotic-free growth 

medium in 6 well plate, so that they will be 60-70% confluent at the 

transfection day. At the day of transfection, medium was aspirated, cells 

were washed with PBS, "and then 2 ml of Opti-MEM® I Reduced Serum 

Medium without serum was added. For each transfection reaction 

complexes were prepared as follow: A 41-1g plasmid DNA was diluted in 250 

1-11 of Opti-MEM® I Reduced Serum Medium without serum, and mixed 

gently. Then, 12 1-11 of lipofectamine 2000 was diluted at 2501-11 cif Opti-

MEM® I Reduced Serum Medium without serum,. mixed gently and 

incubated for 5 minutes. After the incubation, the diluted plasmid DNA and 
.'. 

lipofectamine 2000 were 'combined, mixed gently, and incubated for 20 
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minutes at room temperature. Lastly, the complexes were added to the 

wells and mixed gently by rocking the well, and incubated at 37°C in 5% 

CO2 atmosphere. 6 hours later the medium was changed. Twenty four or 

48 hours later, cells were used for flow cytometry analysis, protein 

extraction for western blot analysis, and RNA isolation for PCR 

experiments. 

2.12 Western blot (WB) analysis 

2.12.1 Protein preparation and guantitation 

" Either after gene knockdown or gene forced expression, protein 

preparation was performed by removing the culture medium, then rinsing 

the cells with ice-cold 1 X PBS. Cells were homogenized with 495 1-11 of lysis 

buffer (RIPA buffer) made fresh [20 mM Tris, pH 7.5, 150 mM NaCI, 1% 

TritonX-100, 0.50/0 sodium deoxycholate, 1 M EDT A, 0.1 % SDS] enriched 

with 51-11 of protease and phosphatase inhibitors cocktail (Sigma, UK). Cells 

were scraped off with a syringe plunger, and cell lysate was transferred 

into 1.5 ml eppendorf tube, and incubated on ice for 30 minutes. 

Afterwards, the cell lysate was centrifuged at 13000 rpm at 4°C for 20 

minutes. The supernatant fluid (total cell lysate) was transferred into new 

small Eppendorf tube and stored at -20°C. 

Protein quantification was done using BCA (bicinchoninic acid) Protein 
," 

Assay Kit (Pierce, thermo-scientific, Cat. No.23225), following the 

manufacturer's instructions (Appendix 9.4). 
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2.12.2 Electrophoresis and blottinl: 

30 I-Ig of cell lysate; prepared previously; were then loaded with 4X loading 

dye [100mM Tris-HCI (pH 6.8), 200mM OTT, 4% SOS, 0.2% glycerol and 

0.2% bromophenol blue] supplemented with 5% ｾ Ｍ ｭ ･ ｲ ｣ ｡ ｰ ｴ ｯ ･ ｴ ｨ ｡ ｮ ｯ ｬ Ｎ .

Samples were boiled for 5 minutes in a water bath at 90°C, and then 

electrophoresed using 10% SOS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) at 60mA. Subsequently, the protein 

samples on the gel were transferred to a PVOF membrane (Amersham 

Hybond-P PVDF membrane, GE Healthcare, UK) using a semi-dry transfer 

method at 60mA for 2 hours. After blocking the membranes for 1 hour at 

room temperature using 5% dried milk dissolved in Tris buffer saline (TBS) 

with tween, they were incubated with primary antibodies overnight with 

agitation at room temperature. Membranes were washed with wash buffer 

(TBS with 0.1 % Tween-20) three times, 5 minutes each. Appropriate horse 

raddish peroxidase conjugated secondary antibody was added to the 

membrane and incubated' with agitation for 1 hour at room temperature. 

Proteins were visualized using Enhanced Chemiluminescence detection kit 

(Supersignal West Pico Chemiluminescent Substrate, Thermoscientific, 

UK) and exposure to X-ray film (Kodak, UK). Antibodies applied in this 

study include anti-C0133 (1:1000, Cell signalling, C24B9; UK), anti-'STAT3 

(1:50, Abcam, ab7966), ｡ ｮ ｴ ｩ Ｍ ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ n (1:1500; clone, ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ Ｍ Ｑ Ｌ , Dako), 

anti-E-Cadherin (1:1500; clone NCH-38; Oako) , anti-B-actin (1:2000, 

Sigma; UK)., anti-c- c-Myc"(1:1000, clone 9E10, ab32, Abcam), anti-CTEN 
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(1:1000; Sigma, UK product number WH0084951M1). Detailed steps of 

western blot experiment see (see appendix 9.5) 

2.13 Functional Assays 

2.13.1 Proliferation assay 

A time course assay was conducted to compare the number of proliferating 

cells between two different populations regarding their CD133 expression. 

A 24 well plate (Corning Incorporation , Coaster, UK) was used, seeded 

with 1 X1 04 cells and cell number was measured at specific time using 
" 

methylene blue assay (Dvory-Sobol, Sagiv et al. 2007). First, cells were 

washed with PBS once then fixed in 5001J1 of absolute methanol for 30 

minutes. Cells were allowed to air dry for 5 minutes after removal of 

methanol, followed by staining with 1 % methylene blue [1 gm methylene 

blue hydrate (Sigma, UK), and 100 ml distilled water] for 30 minutes. Then 

methylene blue was removed and wells are washed with distilled water 

(thrice). Lastly, 5001J1 of 0.1 % HCI in ethanol was added , then 1001J1 of 

each well was transferred into 96 well plate, and absorbance was 

measured at a wave length of 570nm using a plate reader (Labsystems, 

UK). Each assay was performed in triplicate and repeated in at least two 

independent experiments 

ｾ ~ ". 
,',' 
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2.13.2 Cell Mil:ration assay 

In-vitro migration ability of the cells was assessed using Transwell cell 

migration assays and wound healing assay. Transwell cell migration assay 

was performed using a Boyden chamber containing a polycarbonate filter 

with an 8 11m pore size (Costar, UK). A 600 III of culture medium(DMEM 

medium) supplemented with 20% FBS (Sigma, UK) was added to the 

lower chamber and 2.5x105 cells were seeded in 100111 of culture medium 

supplemented with 100/0 FBS in the upper chamber. The number of cells 

migrating through the membrane was manually counted either after 24 or 

48 hours. Assays were performed in triplicate and on at least two separate 

occasions. Cell migration was also measured using a cell wounding assay 

performed in 6 well plates (Costar, UK). Cells were grown to confluence 

and then starved for 24 hours in serum free medium. A sterile 200111 pipette 

tip was used to create three separate parallel wounds and migration of the 

cells across the wound line was assessed after 24 and 48 hours. 

Photographs were taken ··using a charge-coupled device (CCD) camera 

(Canon, Japan) attached to the inverted phase-contrast microscope at a 

power of X40. The distance between the edges was measured at 6 equally 

distributed points using ImageJ software.(Rasband WS, Image J. U. S. 

National Institutes of Health, Bethesda, Maryland, USA, 199t-2009. 

Available from URL: http://rsb.info.nih.gov/ij/) and ｴ ｨ ｾ ｮ n analysed using a 

two tailed t-test. Experiments were repeated on at least two separate ,-. 
,', . 

occasions 
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2.13.3 2D I 3D colony formation assay . 

The ability of isolated single CD133+ and CD133- cells to form colonies 

was tested in both 2 dimensional (2D) culture and 3 dimensional (3D) 

culture. For 2D culture, 300 freshly sorted cells were seeded into individual 

wells of a 6 well plate and cultured for 14 days. The cells were then stained 

with methylene blue and colonies containing more than 20 cells were 

counted. The experiments were carried out in triplicate and on two 

separate occasions. 3D (soft agar assay) culture was performed to assess 

the clonogenic ability of the sorted populations in non adherent conditions. 

Cells (2500 from each population CD133+ and CD133-cells) were counted 

and resuspended as single cells in 0.7% DNA grade agarose (Sigma 

Aldrich).This was overlaid on a base of 1 % DNA grade agar (Sigma 

Aldrich) and both top and base layers were mixed with 2X DMEM. 

Experiments were set up in triplicate and medium changed twice a week. 

After two weeks, the number of colonies that developed within each well 

was counted and visualized under a microscope after staining with 0.05% 

crystal violet for 1 hour and representative fields were photographed. For 

both 3D and 2D culture. Colony forming efficiency (CFE) was calculated as 

follow, % CFE = (Number of obtained colonies I Number of cultured cells) 

X 100 (Arango, Chamorro et al. 2005). The original values have skewed 

distributions; therefore log transformed values rather than the original 

values were. used for statistical analysis. 
,-, 

.,-,. 
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2.13.4 Staurosporine induced apoptosis assay 

Staurosporine was used to evaluate the resistance conferred by CD133 to 

exogenous apoptotic stresses. The protocol was modified for individual cell 

lines. For HT29, each well was seeded with either HT29cD133- (cells 

transfected with CD133 siRNA) or HT29sSC (cells transfected with siRNA 

control)cells 72 hours after transfection, Approximately 5 X 104 cells were 

seeded per well and incubated with staurosporine. (Staurosporine 

readymade solution, Sigma, UK) at a final concentration of Ｘ ｾ ｍ M for 24 

hours. Control cells were treated with DMSO. After this period, viable cells 

were measured using methylene blue assay. For SW480, each well of a 96 

well plate was seeded with 105 cells of the sorted cells and staurosporine 

was added 24 hours later at a concentration of Ｘ ｾ ｍ Ｎ . Control cells were 

also treated with DMSO. After another 24 hours, the numbers of viable 

cells was assessed using the previously described methylene blue assay. 

The assay was performed in triplicate and repeated in at least two 

independent experiments 

2.13.5 Statistical analysis 

All evaluations were done using unpaired two tailed Student's t-test For 

studies involving cell and colony counting, cell numbers were analysed. 

For studies with a numerical fluorescence output, the raw fluorescence 

values were used. 

,-, 
.'1 . 
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2.14 5-aza-2' deoxycytidine effect 

To test the epigenetic control involved in colorectal cancer, a DNA 

methyltransferase (DNTM) inhibitor (5-aza-2'-deoxycytidine, DAC) was 

used. Cultured cells were treated with 5-aza-2'-deoxycytidine (5-Aza) 

(DAC; Sigma Adldrich, UK» at a concentration of 1IJmoi for 72 hours, and 

media changed every 24 hour. Control cells were treated with DMSO. After 

72 hours, treated cells with either vehicle or 5-Aza were evaluated for 

CD133 expression by flow cytometry. 

tt 

,'f' 
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Results 
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3 Chapter 3: The expression ofCD133 in colorectal cancer 

and its correlation with clinico-pathological features 

II 

...... 
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3.1 Abstract 

Background and aims: CD133, a transmembrane glycoprotein of 

unknown function, was originally described as a stem cell marker in 

haemopoietic cells. Subsequently it has been reported as a marker of 

cancer stem cells or "tumour initiating cells" in many solid tumours 

including colon, liver, pancreas, prostate and brain tumours. The aim of 

this study is to (1) evaluate the expression of CD133 in colorectal cancer 

and is correlation with clinico-pathological features, and (2) compare 

CD133 expression in primary colorectal cancers and their corresponding 

I iver metastases cases tl 

Methods: Formalin fixed paraffin embedded blocks of previously prepared 

tissue microarrays (TMAs) of 449 colorectal cancer cases, and 45 matched 

primary colorectal cancer and their corresponding liver metastases were 

stained for CD133 using standard immunohistochemistry protocols. CD133 

expression was scored ｾ Ｎ ｾ ~ "low" «500/0 tumour cells positive) or "high" 

(>500
/ 0 tumour cells positive) and correlated with the clinico-pathological 

parameters and patients survival. The level of CD133 expression was 

compared between primary lesions and liver metastases cases. 

Results: A total of 323/449 cores could be evaluated' after 

immunostaining. Staining for CD133 was usually confined to the lumen of 

tumour glands. 28/323 (8.60/0) showed high expression whilst 295/323 

showed low expression. "There was no' association between CD133 

expression and pathological features. A borderline significant association 
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was found between low CD133 expression and better overall survival (p = 

0.05; Log-rank test), and multivariate analysis showed that CD133 was an 

independent prognostic marker in colorectal cancer. No significant change 

in CD133 expression level in the primary and corresponding liver 

metastases. However, a significant correlation was found between CD133 

expression in primary tumours and liver metastases (r = 0.46, P = 0.001; 

Spearman rank correlation coefficient test). 

Conclusion: In these TMA series, CD133 protein was found to be an 

independent prognostic significance in colorectal cancer which may reflect 

its clinical importance as a predictor of" survival, but with no difference in 

primary and metastatic cases. 

,', . 
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3.2 Introduction 

Recently, much effort has been focused towards the cancer stem cell 

(CSC) model of tumour growth. Growing evidence suggests that the 

tumour is hierarchically structured, and according to the CSC model, the 

tumour contains a minority of cells having stem cell-like features, termed 

"cancer stem cells (CSC)" or "tumour initiating cells (TIC)", and these are 

responsible for the maintenance of the tumour (Reya, Morrison et al. 2001; 

Shmelkov, Jun et al. 2004; Burkert, Wright et al. 2006; Dalerba, Cho et al. 

2007). Two recent studies stated that the CSC model could apply in 

colorectal cancer. (Ricci-Vitiani, Lombardi et al. 2007; Todaro, Alea et al. 

2007). and CD133 was proposed as a marker that can be used to 

characterize colon cancer stem cells (Co-CSCs) (O'Brien, Pollett et al. 

2007; Ricci-Vitiani, Lombardi et al. 2007). 

Although little is known about CD133 function it is reported to be an 

independent prognostic factor for overall survival (OS) in many tumours 

such as pancreas (Maeda, Shinchi et al. 2008), hepatocellular carcinoma 

(Song, Li et al. 2008), brain tumours (Pallini, Ricci-Vitiani et al. 2008). 

Furthermore, CD133 mRNA in peripheral blood mononuclear cells of 

patients with different cancer types was elevated in patient with bone 

metastases (Mehra, Penning et al. 2006), and can predict colon cancer 

ｲ ･ ｾ Ｎ ｾ ｲ ｲ ･ ｮ ｣ ･ e (Lin, Hassan et al. 2007) Therefore, the aim of this study is 1) 
,', . 

to assess the expression of CD133 in colorectal cancer; 2) correlate 
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CD133 expression with different clinicopathological variables and patients' 

outcome; 3) compare the expression of CD133 in primary tumours and 

their corresponding liver metastases. 

Briefly, in this study we stained formalin fixed paraffin embedded TMA 

sections comprised of 449 cases of primary colon cancer. In order to 

further evaluate the role CD133 may play in metastasis, another TMA 

comprising 45 cases of primary tumours and their corresponding liver 

metastases cases were stained with rabbit monoclonal antibody (C24B9, 

Cell Signalling, UK) Western blotting was employed with whole cell Iystaes 

from Cac02 and DLD1 Cell lines to validate anti-CD133 antibody specificity. 

Details regarding the immunostaining protocol, evaluation criteria of CD133 

expression, western blot experiment, and statistical methods are described 

in detail in the material and methods section. 

3.3 Results 

3.3.1 Validation of the antibody 

The performed Western blotting analysis with Iysates from the CD133+ 

colon cancer cell lines Cac02, and DLD1 which were reported as high and 

negative ･ ｾ ｰ ｲ ･ ｳ ｳ ･ ｲ ｳ s of CD133, respectively (Corbeil,. Roper et al. 2000; 

ｈ ｯ ｲ ｾ ｴ Ｌ , Kriegl et al. 2008) revealed a specific band at the predicted size 
fl· 

(-120 kDa) of the CD133 protein confirming" the specificity of the antibody 

Used in IHC staining (Figure 3-1). The anti-CD133 antibody used (C24B9) 
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in western blot analysis and immunohistochemistry can detect both 

glycosylated and non-glycosylated epitopes of CD133 protein. Horst et al. 

revealed that immunohistochemistry detection of CD133 protein in 

colorectal cancer using three different clones of CD133 antibodies (two of 

them detected glycosylated epitopes) showed comparable levels of CD133 

expression. Therefore, we used this clone to allow direct comparison with a 

previous study (Horst, Kriegl et al. 2008). 

OLDl Caco2 

lSOkOa-

C0133 

lOOkOa __ 

p-actin 

Figure 3-1: CD133 antibody specificity 
Western blot analysis using anti-CD133 (C294B) rabbit monoclonal antibody used for 
immunohistochemistry showed specific band at the expected size (120 kDa). Protein 
Iysates of Caco2 (CD133+) and DLD1 (CD133-) were used. B- actin was used to indicate 
equal loading of proteins. 

3.3.2 ImmunostaininK for CD133 

CD133 expression was investigated in TMA section of 449 cases, and 45 

cases of primary CRC and matched live metastases. The CD133 staining 

pattern in colorectal cancer was detected mainly in the apical surface of 

the colon cancer glands (figure 3-28) as well as the shed cellular debris 

into the glandular lumen of the CD133+ glands (figure 3-2C). In addition, 

mixed cytoplasmic staining with apical luminal and positive shed cellular 
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debris was observed in a few cases (9/323 and 4/45 cases showed 

cytoplasmic staining (Figure 3-2D). 

CD133 expression was scored by determining the percentage of CD133+ 

tumour glands by two observers (see material and methods section), and a 

K > 0.86 was obtained, indicating a very good correlation between 

observers. And accordingly the cohort was dichotomized into two 

categories as CD133 low (0% to <50% CD133+ tumour glands), and 

CD133 high Ｈ ｾ ~ 50% CD133+ tumour glands) as previously described 

(Horst, Kriegl et al. 2008). 
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Figure 3-2. Pattern of C0133 expression in colorectal cancer. 

(a) represents a negative control, (b) CD133 staining of the apical luminal surface of the 
gland (thin arrows) (200X magnification), (c) CD133 positive staining of shedded 
intraglandular cellular debris (thick arrows), positivity was considered when either the 
apical luminal surface or intraglandular cellular debris or both of them are stained (200x 
magnification), (0) mixed staining pattern of CD133 including cytoplasm, apical lumina, 
and intraglandular cellular debris, the stroma between tumour glands was negative 
indicating the specificity of CD133 staining (400X magnification), (E) represents a case 
with CD133 expression less than 50% (100X), and (F) represents a case of CD133 
expression of more than 50% (100X magnification) 

3.3.3 Correlation of CD133 expression with clinicopatholoeical 

par(lmeters 

After excluding the uninformative TMA cores (due to loss of tissue, folding, 

and absence of invasive tumours in the cores), 323 cases were applicable 

for statistical analysis. Applying the aforementioned scoring criterion, it was 

found that 28/323 (8.60/0) were CD133 high and 295/323 (91.40/0) were 

CD133 negative/low expressors. Figure (3-3) shows a distribution of 

percentage score for CD133. A cross tabulation and K test was performed 

to assess the correlation of CD133 expression status with different clinico-

pathological parameters. No association was observed between CD133 
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expression and histologic type, vascular invasion, TNM stage, and distant 

metastasis (Table 3-1). 
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Figure 3-3: A histogram showing the 
distribution of percentage scores, 

Table 3-1: Correlation of CD133 with the clinicopathological variables in 
colorectal cancer cases. 

Variables Total 
CD133 expression )( p-value 
Low High 

Histologic types 
Adenocarcinoma 285 258 27 2.74 0.601 
Mucinous 33 32 1 
Columnar 4 4 0 
Signet ring adeno. 1 1 0 

Vascular Invasion 
No 159 142 17 2.751 0.151 
Yes 88 84 4 

TNM stage 
I 56 53 3 4.073 0.539 
II 116 104 12 
III 108 101 7 
IV 40 34 6 

Distant Metastasis 
No 281 259 22 1.104 0.350 
Positive 39 34 5 

.. 

323 
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3.3.4 Correlation of CD133 expression with patients' outcome 

Applying Kaplan Meier curve analysis demonstrated that patients with high 

CD133 expression had significantly poor prognosis than those with low 

CD133 expression. Univariate analysis revealed that patients with CD133 

high expression associated with short overall survival (OS) which was 

borderline significant (Log Rank, LR=3.761, P = 0.05, Log-rank test) (figure 

3-4). Furthermore, multivariate Cox proportional hazard analysis including 

tumour stage, distant metastasis, and CD133 expression showed that 

CD 133 expression was an independent predictor of low survival 

(HR=0.478, P = 0.01, 95% CI = 0.261 - 0.875; Cox regression test) (Table 

3-2) 
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Figure 3-4. Association between CD133 expression and patients overall survival in 
CRC series. 

Kaplan-Meier plot revealed that high expression of C133 is associated with short overall 
survival (Log Rank, LR = 3.761, p = 0.05; Log-rank test). 

74 



Table 3-2. Multivariate Cox proportional hazard analysis of CD133 expression in 

CRC. 

95% CI 
Variables Hazard ratio· P-value 

Low High 

TNM stage 0.167 0.096 0.291 <0.001 

Vascular Invasion 0.480 0.318 . 0.723 <0.001 

CD133 expression 0.478 0.261 0.875 0.01 

CD133 is an independent prognostic factor for low survival in CRC. 

3.3.5 CD133 expression in primary and correspondin&: liver metastasis 

In the 45 cases, the percentage of CD133 positivity was evaluated for each 

case. Using CD133 expression as a continuous variable (percentage of 

CD133 positivity), it was found that there was no significant difference in 

the expression level between primary CRC and liver metastases cases. 

However, a significant ｣ ｯ ｲ ｲ ｾ ｾ ｡ ｴ ｩ ｯ ｮ n was found between CD133 expression in 

primary and metastatic lesions (r = 0.46, P = 0.001; Spearman rank 

correlation coefficient test) (Figure 3-5). The CD133 expression level 

(negative/low expression vs high expression) in liver metastatic cases was 

compared with that in primary lesions (Table 3-3). It was found that 26/32 

(81.25%) cases of liver metastases derived from CD133 negative/low 

primary tumours were also CD133 negative/low, while, 6/32 cases 

(18.750/0) were CD133 high liver ｭ ･ ｴ ｡ ｳ ｴ ｾ ｳ ｩ ｳ s in patients with CD133 

negative/low expression primary tumours. Liver metastases originating 
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from CD133 high primary tumours were also heterogeneous for CD133 

expression level. 4/13 cases (30.70/0) of liver metastasis derived from 

CD133 high primary tumours were CD133 negativellow. Also, it could be 

noted that there was a slight tendency for liver metastatic lesion to exhibit 

more CD133 high expression (33.3%) than was found in primary tumours 

(28.9%) (p=0.002, Fisher's exact test). Figure 3-6 showed the expression 

of CD133 in primary tumours and liver metastases. 

120 

100 • • 
411 80 • • :: .., 
'iii .., 
-a; 60 • • E .. • • • 
> 

:::::i 40 • 
20 (raO.46, p-O.OO1) 

• • 
20 40 60 80 100 120 

Primary tumours 

Figure 3-5: Correlation of CD133 in primary and liver metastases cases. 
A scatter blot graph showed that the correlation between CD133 mRNA expression in 
primary tumours and their corresponding liver metastases was statistically significant (r = 
0.46; P = 0,001) 

Table 3-3: CD133 expression level in primary CRC and liver metastases 

Liver metastasis 
CD133 CD133 high Total 
negative/low 

CD133 

Primary 
.. negative/low 26 6 32 

ｃ ｒ ｾ ~ CD133 high 4 9 13 
,', 

Total 30 15 45 
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Figure 3-6: CD133 staining pattern in primary and liver metastases. 
CD133 expression level was the same in primary colorectal cancer (200X magnification) 
(a), and the corresponding liver metastasis (b). 

3.4 Discussion 

This study examined the expression of CD133 in colorectal cancer and 

correlated this expression with the clinicopathological findings and patients 

outcome. 

CD133 was formerly identified on the apical surface of the colon cancer 

cell line Caco2 and many human embryonic tissues including gut, neural 

tube and kidney (Corbeil, Roper et al. 2000). In the studies of Horst et al. 

and Kojima et al. CD133 immunostaining was detected on the luminal 

surface of the tumour glands and intraglandular shed cellular debris (Horst, 

Kriegl et al. 2008; Kojima, Ishii et al. 2008). However, studies have also 

shown cytoplasmic staining of CD133 exp,ression in pancreatic and CRC 
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as well as glioblastoma multiforme (Immervoll, Hoem et al. 2008; Kojima, 

Ishii et al. 2008; Maeda, Shinchi et al. 2008; Pallini, Ricci-Vitiani et al. 

2008). In line with the previous studies, the positivity of CD133 was mainly 

identified on the luminal surface of tumour glands and/or shed 

intraglandular cellular debris although a few cases also showed 

cytoplasmic staining (9/323 and 4/45 cases). This low number of cases will 

lead to lowering the power of statistical test used when correlating this 

cytoplasmic pattern of staining with other clinicopathological variables and 

patients' survival. Therefore, a larger series with a larger number of 

cytoplasmic cases should be considered in the future to build up an 

accurate conclusion regarding the impact of cytoplasmic expression of 

CD133. 

The results of this study demonstrated low incidence of CD133 high . 

expression (2! 50%,) in a large series of colorectal cancer. This incidence 

was similar to the findings of Li et al. that CD133 high expression was 

found in 7/104 (6.50/0) cases of colorectal cancer (Li, Li et al. 2009). 

However, in other studies in colorectal cancer, variable incidences of 

CD133 high expression were detected. For instance, Horst et al. found that 

CD133 high expression represented 26% of the cases (Horst, Kriegl' et al. 

2008). Whilst, another study showed that 36% of cases were correspond to 

CD1.33 high·, expression (Horst, Kriegl et al. 2009). Moreover, a more 
"I' 

recent study revealed that the frequency of CD133 high expression was 

27% (Takahashi, Kamiyama et al. 2010). Such a discrepancy between 
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these studies could be attributed to different selection criteria of colorectal 

cancer cases studied. In this study as well as Li et ale study (Li, Li et al. 

2009), the selected cases included different histopathologic types of 

adenocarcinoma and different grades; whilst, one study of Horst et ale 

(Horst, Kriegl et al. 2008) the selected cases were only moderately 

differentiated adenocarcinoma, and the other study, contained only grade 2 

and grade 3 and no other histopathologic types of adenocarcinoma (Horst, 

Kriegl et al. 2009). In addition, the Takahashi et ale study contained well 

and moderately differentiated adenocarcinoma only (Takahashi, Kamiyama 

et al. 2010). Accordingly, these selection criteria could affect the 

expression level of CD133 through a postulation that colorectal cancer has 

different histopathologic subtypes with different expression level of CD133. 

The current study revealed that CD133 expression was not correlated with, 

any of the clinico-pathological parameters including histologic types, TNM 

stage, vascular invasion and distant metastasis in the series of TMA 

examined. Similarly, Kojima et ale examined 189 cases of CRC, and 

showed that CD133 expression is not correlated with any of the 

clinicopathological features such as histology, LN metastasis, distant 

metastasis, liver metastasis, tumour stage and vascular invasion. 

However, when the series was stratified, a significant co.rrelation was found 

between CD133 expression· in well and moderately differentiated 

adenocarcinoma and distant metastasis (Kojima, Ishii et al. 2008). In line 

with our data, many studies in colorectal cancer showed that CD133 
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expression was not associated with -any of the clinicopathological 

characteristics (Horst, Kriegl et al. 2008; Choi, Lee et al. 2009; Horst, 

Kriegl et al. 2009; Li, Li et al. 2009; Lugli, Iezzi et al. 2010). On the other 

hand, a previous study of CD133 expression in human colorectal cancer 

showed correlation between CD133 expression and lymph node 

metastasis and liver metastases (Horst, Scheel et al. 2009). In another 

study, CD133 was correlated with tumour differentiation, Iymphovascular 

invasion and tumour stage (Wang, Chen et al. 2009). In addition, 

Takahashi et al. reported that cytoplasmic expression of CD133 was 

correlated with TNM stage, vascular invasion and lymphatic invasion, while 

membranous staining of CD133 was significantly correlated with histology 

of the tumour (Takahashi, Kamiyama et al. 2010). In our study the 

cytoplasmic expression of CD133 was noted in only a small numbers of 

cases, which will lead to lowering the power of the test when compared to _ 

any of the clinicopathological variables and lead to inaccurate 

interpretation of the results. 

Interestingly enough, in this study, although the frequency of CD133 high 

expression in this large series of colorectal cancer was only 8.50/0, CD133 

high expression was found to be associated with shorter as compared to 

CD133 negative/low expression cases, although it was marginally 

significant (p=O.05). Moreover, multivariate analysis ｲ ･ ｶ ｾ ｡ ｬ ･ ､ d that CD133 is 

an independent predictor factor for survival. In agreement with these data, 
. ., . 

many studies in CRC have reported the same findings (Horst, Kriegl et al. 

2008; Horst, Kriegl et al. 2009; Horst, Scheel et al. 2009; Li, Li et al. 2009; 
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· Wang, Chen et al. 2009; Takahashi," Kamiyama et al. 2010). The 

association of CD133 high expression with shorter survival could be due to 

the following reasons. First, CD133 expression may confer resistant 

phenotype to the conventional treatment (chemo-radiotherapy). Supporting 

this notion, in colorectal cancer Ong et al. found that CD133 expressing 

tumours had no survival benefits from 5-fluorouracil chemotherapy (Ong, 

Kim et al. 2010). Furthermore, an in vitro study, revealed that the resistant 

clone of H29 cell line to 5-fluorouracil and oxaliplatin showed an increase 

in CD133 expression by 16 and 30 fold increase compared to parent cells, 

suggesting that CD133 expression could predict resistance to treatment 

(Dallas, Xia et al. 2009). Second, CD133 expression may be associated 

with metastasis which is a prognostic factor in colorectal cancer. In support 

of this speculation, association of CD133 expression with liver metastases, 

lymph node meatstases, and Iymphovascular invasion was reported in . 

many studies (Horst, Scheel et al. 2009; Wang, Chen et al. 2009; 

Takahashi, Kamiyama et al. 2010). On the contrary, two studies reported 

that there was no association between CD133 expression and survival in 

colorectal cancer (Choi, Lee et al. 2009; Lugli, Iezzi et al. 2010). 

Such discrepancies between these studies as regarding the association 

between CD133 expression with the clinicopathological features and 

｣ ｬ ｩ ｮ ｩ ｾ ｡ ｬ l patient outcome could be possibly explained by several factors 
0> 

such as differences in number of cases, selection criteria, antibody used, 

immunohistochmistry protocols, and cut-off values. Some studies were 
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small sized (less than 90 cases) (Horst, Scheel et al. 2009), the antibody 

used is different from that of this study, some may pick up only the 

glycosylated epitope, while ours pick up both glycosylated and non-

glycosylated epitopes (Choi, Lee et al. 2009; Wang, Chen et al. 2009). In 

the Choi et al. study, CD133 expression was associated with advanced T 

stage but not with distant metastasis, lymphatic invasion and vascular 

invasion, and had no effect on overall survival (Choi, Lee et al. 2009). 

While Wang et al. study showed that CD133 correlated with 

Iymphovascular invasion, tumour differentiation, TNM stage and tumour 

regression after preoperative radiotherapy and is of prognostic value 

(Wang, Chen et al. 2009). On the other hand, a study using the same 

antibody clone as ours showed that CD133 expression was not correlated 

with any of the clinicopathological variables and associated with poor 

disease free survival after chemoradiotherapy (Saigusa, Tanaka et al. . 

2009), while another study showed that CD133 only correlate with the 

degree of differentiation and stage but not with any other 

clinicopathological features and associated with poor survival (Takahashi, 

Kamiyama et al. 2010). The cut-off values determining the level of CD133 

whether high or low were different from that used in this study (Choi, Lee et 

al. 2009; Wang, Chen et al. 2009; Lugli, Iezzi et al. 2010). Accordingly, it is 

worth consiqering optimization of cut-off point ｳ ･ ｬ ･ ｣ ｴ ｩ ｾ ｮ n by using either 

ｲ ･ ｣ ｾ ｩ ｶ ･ ｲ Ｍ ｯ ｰ ･ ｲ ｡ ｴ ｩ ｮ ｧ g characteristic (ROC) curve analysis (Zlobec, Steele et 
'" . 

al. 2007), oran X-tile program (Camp, Dolled-Filhart et al. 2004). The latter 

. is used to 'determine an outcome-based cut point and is widely used in 
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many studies (Aleskandarany, Rakha et al. 2010; Stratford, Bentrem et al. 

2010). Therefore, a rationale should be applied in particular regarding the 

cut-off point and the antibody used; moreover, the prognostic and 

predictive value of CD133 should be confirmed in a large prospective study 

Comparing the association of CD133 expression with the 

clinicopathological parameters and patient clinical outcome in colorectal 

cancer and other human solid tumours, also, it was found that CD133 has 

no correlation with the clinicopathological features in ovarian cancer 

(Ferrandina, Martinelli et al. 2009), endometrial cancer (Nakamura, Kyo et 

al. 2010), breast cancer (Liu, Li et al. 2009),' and lung cancer (Li, Zeng et 

al. 2010). In contrast, in pancreatic cancer, Maeda et al. reported an 

association between CD133 expression and histologic type, lymphatic 

invasion and lymph node metastases (Maeda, Shinchi et al. 2008). In 

addition, in hepatocellular carcinoma a significant association was reported , 

between CD133 expression and tumour grade and stage (Song, Li et al. 

2008). Similarly, an association between CD133 and some of the 

clinicopathological features was detected in gastric cancer (Ishigami, Ueno 

et al. 2010). 

Likewise in many human solid tumours such as glioma (Zeppernick, 

Ahmadi et Ｎ ｾ Ｑ Ｎ . 2008), endometrial cancer (Nakamura" Kyo et al. 2010), 

hepptocellular carcinoma (Song, Li et al. 2008; Sasaki, Kamiyama et al. 
.-.. 

2010), cholangiocarcinoma (Shimada, Sugimoto et al. 2010), and gastric 

. cancer (Ishigami, Ueno et al. 2010; Zhao, Li et al. 2010), CD133 was an 
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independent prognostic factor for low patient survival. Contradicting these 

data, in ovarian cancer (Ferrandina, Martinelli et al. 2009), and lung cancer 

(Salnikov, Gladkich et al. 2010), CD133 was reported to be of no 

prognostic value for patient survival. Arising out of these findings, CD133 

expression has a prognostic role in colorectal cancer and many other solid 

tumours that could have a role in the clinical setting. 

Comparing CD133 expression level in 45 cases of matched primary CRC 

and corresponding liver metastases demonstrated that no significant 

difference in the expression level between primary and metastatic cases 

was found. This similar level of CD133 is in line with the cancer stem cell 

model (Brabletz, Jung et al. 2005). According to this model, within the 

tumour there are two types of cancer stem cells, stationary cancer stem 

cells present at the main bulk of the tumour and migrating cancer stem 

cells found at the invasive front where they undergo epithelial 
., 

mesenchymal transition with the help of environmental signals. These 

migrating cancer stem cells when reaching the metastatic site they revert 

to the stationary state and differentiate due to loss of the microenvironment 

signals (Brabletz, Jung et al. 2005). Also, it was noted that the frequency of 

CD133 high expression was 33.30/0 and 28.90/0 in liver metastase's and 

primary lesi.9ns respectively. This incidence was contra,dictory to what was 

､ ･ ｴ ｾ ｣ ｴ ･ ､ d in the other TMA series examined, and in line with other studies 
,'1 • 

(Horst, Kriegl et al. 2008; Horst, Kriegl et al. 2009). The difference in the 

incidence 'of CD133 high expression between the two TMA series 
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examined could be attributed to different sample size (45 cases compared 

to 449 cases), and different histologic types of colorectal cancer included in 

both studies and different stages in the larger TMA series. 

Cytoplasm expression of CD133 was detected in few cases in both TMA 

series examined in this study. Similar to these findings, cytoplasmic 

expression of CD133 was reported in other solid tumours such as 

hepatocellular carcinoma (Song, Li et al. 2008), pancreatic cancer (Maeda, 

Shinchi et al. 2008) and brain tumors (Zhang, Song et al. 2008). Recently, 

a cytoplasmic staining was also detected in colorectal cancer (Takahashi, 

Kamiyama et al. 2010). The shift from membranous to cytoplasmic 

localization has been also reported in CD24 which was defined as a CSC 

surface marker (AI-Hajj, Wicha et al. 2003; Weichert, Denkert et al. 2005). 

Weichert et al. postulated that CD24 relocalization may reflect, 

overproduction or disturbance of distribution of CD24 or the transition of 

cells to more invasive phenotype. (Weichert, Denkert et al. 2005). On 

account of these speculations, the shift of CD133 localization from the 

membrane to the cytoplasm may also reflect different cellular function or 

transition of cells to more invasive phenotype. The later speculation was 

supported with different stUdies which demonstrated that CD133 

cytoplasmic, staining correlated with tumour ｡ ｧ ｧ ｲ ･ ｾ ｳ ｩ ｶ ･ ｮ ･ ｳ ｳ s such as 

vascular invasion, lymph node metastasis, and high grade tumours 
,., . 

(Sasaki, Kamiyama et al. 2010; Takahashi, Kamiyama et al. 2010) . 

. Although, cytoplasmic staining was detected in a small number of cases in 
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this study, it is worth considering that a larger study with more number of 

cases might help to identify such correlations more obviously. 

To sum up, the current study demonstrated that CD133 is an independent 

prognostic factor for short overall survival in colorectal cancer, but with the 

same expression level in both primary tumours and corresponding liver 

metastases cases. On account of these findings, improved understanding 

of the functional role of CD133 and its mechanistic basis and/or regulation 

may disclose a role as a therapeutic target in colorectal cancer. Therefore, 

it is of utmost important to study the characteristics of CD133 expressing 

cells and try to shed some light on the mechanistic basis or regulation of 

CD133. This will be the context of next chapters. 

,,' 
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4 Chapter 4: Evaluation of CD133 expression in colorectal 

cancer cell lines 

"t· 
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4.1 Abstract 

Background and aims: Based on the results presented in the previous 

chapter suggesting that CD133 may have a role in the prognosis of 

colorectal cancer patients and that it was an independent prognostic factor, 

it was of interest to investigate the biological characteristics of CD133 

expressing cells in vitro, and try to shed light on some details of the 

mechanisms that govern CD133 action. The aim of this part of the project 

was to evaluate CD133 expression in a series of colorectal cancer cell 

lines both on CD133 mRNA and protein expression levels. Furthermore, 

since the origin of many of these was known, it was of interest to evaluate 

differences in CD133 expression between those derived from primary 

tumours and those derived from metastases. 

Methods: 29 colorectal cancer cell lines were assessed for CD133 mRNA 

level using QRT -PCR, while the protein level was evaluated in 10 selected 

colorectal cancer cell lines.based on their CD133 mRNA expression using 

flow cytometry. 

Results: CD133 mRNA expression was detected in 24/29 colon cancer 

cell lines with variable levels of expression. CD133 protein expression was 

detected in seven out of ten selected colorectal cancer cell lines that 

showed variable levels of CD133 mRNA expression. Interestingly, CD133 

ｭ ｒ ｾ ａ A expression was statistically significantly higher in CRC cell lines 

derived from metastases than those derived from primary tumours (p = 

. 0.009, Mann-Whitney test). Moreover, correlating CD133 mRNA levels with 
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CD133 cell surface protein expression by flow cytometry was found to be 

statistically significant (rs = 0.831; P = 0.003, Spearman rank correlation 

coefficient test). 

Conclusion: CD133 was variably expressed in cell lines and may be 

associated with the process of metastasis. 
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4.2 Introduction 

Growing evidence supports the new concept of cancer stem cells that may 

have implications in terms of developing novel diagnostic and therapeutic 

approaches. In this context, several molecules have been used to isolate 

tumor initiating cells in haematopoietic and several solid tumors (Singh, 

Clarke et al. 2003; Richardson, Robson et al. 2004; Suetsugu, Nagaki et 

al. 2006) 

CD133, is a cell surface molecule, has been recently used to identify the 

potential tumor initiating cells in colon cancer Ｈ ｏ Ｇ ｂ ｲ ｩ ･ ｮ ｾ ~ Pollett et al. 2007; 
.. 

Ricci-Vitiani, Lombardi et al. 2007). O'brien et al. and Ricci-Vitiani et al. 

demonstrated that CD133+ population were highly enriched with tumor 

initiating cells and had the abilities to self-renew and were highly 

tumourigenic (O'Brien, Pollett et al. 2007; Ricci-Vitiani, Lombardi et al. 

2007). Furthermore, these cells were resistant to chemotherapy and were' 

able to retain ｴ ｵ ｭ ｯ ｵ ｲ ｩ ｧ ･ ｮ ｾ ｣ ｩ ｴ ｹ y when growing as tumor spheres in vitro 

(Ricci-Vitiani, Lombardi et al. 2007; Todaro, Alea et al. 2007). 

Results presented in chapter 3, together with data from other groups, 

suggested a prognostic role of CD133 expression in colon cancer (Horst, 

Kriegl et al. 2008; Kojima, Ishii et aL 2008) as well as other tumors (Tae 

Lee, Ho Jang et al. 2001; Zeppernick, Ahmadi et al. 2008). Therefore, it· 

was of inte,rest to evaluate the biological . characteristics of CD133 
... 

expressing cells in colon cancer and try to delineate the mechanistic basis 

of control. of CD133 and its activity. For achievement of these aims, 
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colorectal cancer cell lines were used for assessment of characteristics of 

CD133 expressing cells. As a preliminary step for this study, colorectal 

cancer cell lines were first evaluated for CD133 mRNA and protein 

expression levels in order to choose the cell lines suitable for functional 

studies. 

In this part of the project, RNA extraction from 6 cell lines (SW480, SW620, 

SW837, DLD1, SKC01, LS1034) was performed, while RNA of the other 

23 cell lines had previously been extracted in the Laboratory. Then, ORT-

PCR using cDNA synthesized from the extracted RNA from all 29 CRC cell 

It 

lines, and 10 normal colon mucosa was applied using CD133 primers, and 

data were normalized to HPRT1 (a reference gene). Thereafter, 10 colon 

cancer cell lines were selected on the basis of CD133 mRNA levels to 

assess their protein expression levels using flow cytometry analysis. For 

flow cytometry analysis CD133/1 antibody (AC133, which can detect the' 

glycosylated epitope of Cg133) conjugated to R- phycoerythrin (PE) was 

used. 

For detailed reading about RNA extraction, cDNA synthesis, ORT-PCR, 

labeling of the cells for flow cytometry analysis, refer to material and 

methods section. Mann-whitney test was used to compare means of 

CD133 mRNA expression level between the CRC cell lines. 

'" . 
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4.3 Results 

4.3.1 Colon cancer cell lines characteristics 

All 29 CRC cell lines were derived from colon cancer patients; six were 

derived from metastatic sites, 17 were derived from primary tumors, while 

for the remaining six cell lines no information available regarding the site it 

was derived from. All information for cell lines used in this study regarding 

site of origin is collected in Table 4-1. 

4.3.2 CD133 mRNA expression in colorectal cancer cell lines 

After designing CD133 and HPRT1 primers, their specificity was checked 
II 

using primer blast (http://www.ncbLnlm.nih.gov/tools/primer-blast/). 

According to primer blast results, it was found that CD133 primer could 

detect all transcript variants of CD133. Prior to QRT -PCR experiments, 

CD133 and HPRT1 annealing temperatures were optimized first, and then 

the temperatures which produced high quality amplicon were used for 

generating standard curves to obtain the best PCR efficiency for CD133 

and HPRT1 primers (refer to material and methods section 2.8 for optimum 

annealing conditions). For standard curves, serial 1 :10 dilution of CD133 

IMAGE clone (accession No.BC012089, IMAGE:4644690), and HPRT1 

plasmid constructed by Dr. AbdulKadder Albasri (PhD student, Pathology 

Department) were used (figure 4-1). Employing QRT-PCR evaluation of 

CD)33 mRNA level and its normalization to the reference gene HPRT1 

mRNA levels revealed thaf 29 colon carcinoma cell lines showed variable 

levels of CD133 mRNA expression ranging from high, moderate to low and 
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negative expression relative to each other. A CD133 mRNAlHPRT mRNA 

ratio of < 0.2 was referred to as low/negative expression; a ratio between 

0.2-0.8 was referred to as moderate expression, whilst a ratio > 0.8 was 

considered as high expression (Figure 4-2). Collectively, CD133 mRNA 

expression in colorectal cancer cell lines was lower than that in normal 

colonic mucosa samples. Table 4-2 showed the normalization data for 

CD133 mRNA in all cell lines. Moreover, it was noted that CD133 

expression was more abundant in the cell lines derived from metastases 

than those derived from the primary cell lines. Histograms showing the 

expression of CD133 mRNA expression plotted against the number of 

cases for primary and metastatic CRC cell lines are shown in figure 4-3A. 

Relationship amongst expression of CD133 mRNA levels and site of origin 

of CRC cell lines was statistically significant (p=0.009; Mann-whitney test), 

such relationship was illustrated using box plot in figure 4-38 . 

. ., . 
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Figure 4-1: Efficiency and specificity of CD133 and HPRT1 primers. 
The upper row of this graph represents the efficiency of CD133 and HPRT1 primers which 
has been found 95.6% and 92.9% for CD133 and HPRT1, respectively. The middle row 
represents the melting curve which shows a single peak indicating one PCR product. The 
lower row showed agarose gel electrophoresis illustrating PCR product of both CD133 
and HPRT1 was at the correct expected size which is 119 bp for CD133 and 122 bp for 
HPRT1. In agarose gel for CD133 (Lanes 1-3) sample containing DNA template, and 
(Lanes 4-5) were non-template control (NTC), while in case of HPRT1 (lanes 1-3) were 
NTC, and Lanes 4-5 were containing DNA template. 100 bp DNA ladder was used in both 
cases (M). 
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Table 4-1: Origin of cell lines used in this study 

Cell line Derived site 

C84 UNK 

C80 UNK 

C32 UNK 

C125 UNK 

C106 UNK 

SW620 Metastatic site (lymph node) 

SKC01 Metastatic site (ascites) 

Lovo metastatic site (left supraclavicular region) 

GP2D Recurrent tumor 

Colo205 Metastatic site (ascites) 

SW837 Primary 

SW480 Primary 
.. 

SW1222 primary 

SW1160 Primary 

RKO Primary 

LS1034 Primary 

HUTU80 Primary 

HT55 Primary 

HT29 Primary 

HRA19 Primary 

HCT116 Primary 

HCA7 Primary 

HCA46 Primary 

DLD1 Primary 

Colo320 primary 

CAC02 Primary 

VAC05 Primary 

SW948 Primary 

.... 
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Figure 4-2: CD133 mRNA expression in different cell lines. 

QRT-PCR experiment was employed to assess the CD133 mRNA expression level in 29 
colorectal cancer cell lines. After normalization to HPRT1, data revealed that CD133 
mRNA expression was varied among cell lines, and ratio of < 0.2 was referred to as 
low/negative expression; a ratiO between 0.2-0.8 was referred as to moderate expression, 
whilst a ratio> 0.8 was considered as high expression, CD133 mRNA was higher in cell 
lines derived from metastatic sites compared with those derived from primary lesions. 
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Table 4-2: Normalized CD133 mRNA expression relative to HPRT1 mRNA 
expression in cell lines and normal colon mucosa. 

CD133 mRNA HPRT1 mRNA 
CD133/HPRT1 

Cell line (ng) (ng) 
Normalization 
Ratio 

Unknown origin: 
CB4 0.00 6.9BE-06 0.00 
CBO 1.14E-06 3.63E-06 0.31 
C32 3.13E-07 1.27E-04 0.00 
C12S 2.03E-06 4.BOE-OS 0.04 
C106 6.87E-OS 1.04E-04 0.66 
From metastatic site: 
SW620 3.S9E-OS 2.93E-04 0.10 
SKC01 9.90E-OS 7.S2E-OS 1.32 
LaVa 1.02E-OS 2.22E-OS 0.46 
GP2D 3.2SE-OS S.32E-OS 0.61 
Colo20S 1.40E-OS 1.01 E-OS 1.38 
Colo201 3.4BE-OS 3.3SE-OS 1.04 
From primary 
tumours: 
SWB37 1.76E-06 1.SBE-04 0.01 
SW4BO 8.16E-06 1.79E-04 O.OS 
SW1222 1.S0E-06 1.74E-OS 0.OB6 
SW1160 1.20E-06 4.11 E-OS 0.029 
RKO 0.00 9.2BE-OS 0.00 
LS1034 8.61E-06 2.10E-OS 0.41 
HUTUBO 0.00 1.62E-04 0.00 
HTSS 3.10E-OS 4.64E-04 0.06B 
HT29 3.00E-OS 6.91E-OS 0.43 
HRA19 6.30E-07 2.33E-OS 0.027 
HCT116 1.99E-OS 7.94-0S 0.2S 
HCA7 1.B6"E-OS 7.64E-OS 0.24 
HCA46 8.96E-08 1.04E-OS 0.01 
DLD1 S.14E-07 7.63E-OS 0.01 
Colo320DM 4.34E-OB 1.26E-04 0.0001 
CAC02 3.09E-OS 3.47E-OS 0.89 
VACOS 2.29E-OS 2.0BE-OS 1.10 
SW94B 2.24E-OS 2.73E-OS 0.B2 
Normal colon 
mucosa: 
N 2.67E-04 2.74E-OS 9.7 
N 1.8SE-04 3.1SE-OS S.9 
N 1.1SE-04 2.30E-OS S.O 
N 6.S4E-04 3.01E-OS 21.8 
N 3.19E-04. S.2BE-OS 6.0 
N .. S.24E-04 2.B4E-OS 18.4 
N 1.22E-03 2.SSE-OS 47.8 
N. 1.63E-03 2.23E-OS 73.1 
N 2.13E-04 2.26E-OS 9.4 
N .2.S6E-04 3.32E-OS 7.7 
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Figure 4-3: Distribution and relationship of CD133 mRNA expression in both 
primary and metastatic colorectal cancer cell lines. 

(A) A histogram showing the distribution of CD133 mRNA / HPRT1 mRNA ratio plotted 
against the number of primary and metastatic colorectal cancer cell lines, (8) A box plot 
showing the relationship between primary and metastatic colorectal cancer cell lines and 
relative CD133 mRNA expression (** p = 0.009; .Mann-whitney test), the middle line in 
each box representing the median value. 
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4.3.3 Flow cytometry analysis of CD133 expression 

Fifty thousand events were collected using flow cytometry to quantify the 

proportion of CD133 expressing cells in 10 CRC cell lines selected on the 

basis of CD133 mRNA expression level (which represent low, medium and 

high expression) in order to assess whether CD133 protein expression 

conforms to that of mRNA expression. Flow cytometry analysis revealed 

that three cell lines (HRA19, DLD-1, and SW837) were negative for CD133 

expression, while in Caco2 and HT -29 cell lines, CD133 + populations 

were more than 90%. In the remaining cell lines, a bimodal population was 

present with a CD133+ populations ranging from 32% - 64%, (Table 4-3), 

and (figure 4-4, and 4-5). Cell surface expression of CD133 protein 

mirrored by the percentage of CD133 positivity measured by flow 

cytometry in 10 colorectal cancer cell lines was found to be correlated with 

CD133 mRNA level measured by qRT-PCR (rs = 0.831, p= 0.003, 

spearman rank correlation coefficient test) (figure 4-6). 

Table 4-3: Flow cytometry analysis of CD133 cell surface protein expression in 10 
colorectal cancer cell lines. 
The percentage represents means of two independent experiments with three replicates 
each ± SO 

Colorectal cancer cell line 

SW480 
SW620 
Caco2 
HT29 
LoVo 
LS1034 
DLD1 
SW837 
HCT116 
HRA19 

,,' 

C0133 expression (0/0) ± 50 

42 ± 0.19 
67 ± 0.31 
97 ± 0.35 
95 ± 0.25 
64 ± 0.26 
32 ± 0.31 
o 
o 
40 ± 0.25 
o 
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Figure 4-4: Histogram illustrating CD133 expression, 
Evaluation of CD133 expression by' flowcytometry in 10 colorectal cancer cell lines 
showed that three cell lines were negative for CD133 expression whilst the remainder 
showed variable levels of expression. 
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Figure 4-5. Cell surface positivity of CD133 in colorectal cancer cell lines. 
Results of flow cytometry showed variable CD133 positivity in colorectal cancer cell lines 
where DLD1, SW837, and HRA19 (CD133-), HT29 and Caco2 (CD133+), and SW480, 
SW620, Lovo, HCT116, LS1034 (both CD133+/-). Filled histogram (gray) represents IgG 
isotype control, and CD133-PE labeled cells illustrated with solid black line. Each is a 
representative graph of two independent experiments with three triplicate each. 
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Figure 4-6: Correlation between CD133 mRNA expression and CD133 protein. 
It 

A scatter blot graph showed that the correlation between CD133 mRNA expression 
measured by qRT-PCR and CD133 cell surface expression of protein by flow cytometry 
was statistically significant (rs = 0.831; P = 0.003) 

4.3.4 Splice variant of CD133 in normal mucosa and CRC cell lines 

Expression of the two main splice variants of CD133 (AC133-1 and 

AC133-2) was tested by RT-PCR in both the cell lines (SW480, SW620, 

DLD1, Cac02, HT29, and HCT116) and samples of Human normal colonic 

mucosa. Only one product was seen on agarose gels which, on 

sequencing, was found to be the shorter splice variant from which exon 4 

(27 bp) is spliced out (Figure 4-7a and 4-7c). However, shorter PCR 

products undergo preferential amplification and it is possible that larger 

products may be missed by both agarose gel electrophoresis and 

sequencing (especially if present at low levels). The analysis was refined 
... 

by performing PCR using"'SYBR green as a reporter dye to provide a more 

sensitive method of determining whether a single or multiple PCR products 
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are present. Evaluation of the dissociation curve showed the presence of a 

single PCR product only (Figure 4-7b). 
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Figure 4-7: Splice variants of CD133. 
Cell lines and normal mucosal samples were tested for expression of the two main CD133 
splice variants by RTPCR with primers anchored on either side of the spliced out exon 
(exon 4). Sample data are shown which demonstrate only a single product was identified 
when PCR products were analysed on both (a) agarose gel and (b) the more sensitive Q-
PCR technique using Sybr green as a reporter.M = size marker, nc = negative control, * 

represents DLD1 . (c) Sequencing of the products showed that exon 4 was spliced out of 
the coding sequence; thus only the shorter splice variant that lacks exon 4 was detected. 
The sequence above the electropherogram is of AC133-1 with exon 4 shown between the 
lines. 

4.4 Discussion 

The present study evaluated CD133 mRNA and protein expression in 

human colorectal cancer cell lines. Assessment of CD133 mRNA 

expression in the cell lines by QRT-PCR revealed that CD133 expression 

was variable ranging from high, medium, to low and negative expression 

relative to ,each other. These findings are consistent with previous studies 

thQt examined CD133 expression in a different number of CRC cell lines by 

QRT -PCR, and showed the same variable expression levels amongst cell 

lines (leta', Tanaka et al. 2008; Jeon, Kim et al. 2010). It is of interest that a 
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significant difference in CD133 mRNA . expression amongst primary and 

metastatic colon cancer cell lines was noted. In line with these data, Huh et 

al. demonstrated that CD133 mRNA expression was correlated with lymph 

node involvement and Iymphohovascular invasion (Huh, Park et al. 2010). 

Surprisingly, CD133 mRNA expression level was found to be higher in 

normal colonic mucosa than colon cancer cell lines. In line with these data, 

a study in colorectal cancer showed that 300/0 of cases had CD133 mRNA 

expression level higher in normal compared to tumour tissue (Artells, 

Moreno et al. 2010). Indeed, the higher level of CD133 mRNA in normal 

tissue compared to the CRC cell lines could be attributed to several 

plausible explanations. First, these normal colon samples could contain 

endothelial cells, and hematopoietic cells in addition to epithelial cells that 

might express CD133 mRNA, where CD133 was reported as a marker for 

haematopoietic stem cells and endothelial progenitor cells (Bonnet and 
.. 

Dick 1997; Fan, Li et al. 2003). However, if it is not the case, a second 

plausible explanation is that normal colon mucosa during differentiation 

could generate a small truncated variant of CD133 mRNA transcript in 

addition to the normal full length CD133 transcript, and this variant was lost 

during the process of tumorigenesis. Supporting this postulation, Osmond 

et a/., ､ ｾ ｾ ｯ ｮ ｳ ｴ ｲ ｡ ｴ ･ ､ d that in Glioblastoma cell line anti-CD133 antibody 

(G24B9) which detect epitopeon the second extracellular loop could detect 
,., . 

a small truncated variant of the CD133 protein of molecular weight about 

16kD in addition to the full length protein of molecular weight about 120 kd 
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by western blot analysis (Osmond, Broadley et al. 2010). Further support 

this postulation came from Corbeil et al. study who reported a small 

increase in CD133 mRNA level associated with down-regulation of AC133 

antigen upon differentiation of Cac02 cell line (Corbeil, Roper et al. 2000), 

which also could be explained by the findings of Osmond et al. study 

(Osmond, Broadley et al. 2010). A third reasonable explanation of the 

higher level of CD133 mRNA in normal colon samples compared to CRC 

cell lines is the presence of unmethylated CD133 promoter region in 

normal colon whilst the CRC cell lines contain hypermethylated CD133 

promoter area, where hypermethylatol') of CD133 promoter suppress its 

expression (Shmelkov, Jun et al. 2004). Supporting this speculation, Vi et 

al. revealed the absence of CD133 promoter methylation in normal brain 

and colon samples, whereas a higher incidence of hypermethylation of 

CD133 promoter was detected in (10/16 cases-62%
) of CRC cell lines and 

(14/15; 93%) of GBM cell lines (Vi, Tsai et al. 2008). 

Flow cytometry analysis of human colorectal cancer cell lines displayed 

variable patterns of cell surface CD133 protein expression with some cell 

lines lacking CD133 expression, others scoring as predominantly positive, 

and others as a mixture of CD133 positive and CD133 negative cells. 

Similar patterns have been reported in colon (leta, Tanaka et al. 2008), 

ovarian (Baba, Convery et al. 2009) and liver cancer cell lines (Ma, Chan 

ef al. 2007). In ｡ ､ ､ ｩ ｴ ｩ ｯ ｮ ｾ Ｌ ｃ ｄ Ｑ Ｓ Ｓ 3 protein expression was also higher in 

metastatic cell lines (SW620, and LoVo) than the primary cell lines, 
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confirming the data obtained by QRT -PCR. Flow cytometry analysis of 

CD133 expression using human clinical colon cancer samples in two 

previous studies revealed that the percentage of CD133+ cells within the 

human clinical samples ranged from 2-25% (O'Brien, Pollett et al. 2007; 

Ricci-Vitiani, Lombardi et al. 2007), whilst, in the current study using colon 

cancer cell lines, cell surface express·ion of CD133, mirrored by the 

percentage of positive cells, ranged from negative, 32-64%, and > 90%. 

Such a difference in results may be due to different types of samples used; 

in this study human colorectal cancer cell lines were used while in other 

studies clinical samples were used. Moreover, the difference in expression 

level between cell lines and clinical samples could be attributed to 

passaging selection of either CD133+ or CD133 negative cells leading to 

remaining of the selected progeny in cell lines than in clinical samples or to 

the gene expression changes as a result of long term culture. 

Although a wide variety ?,f splice variants have been described for CD133, 

only one (termed AC133-1 and which was first to be cloned) has been 

allocated a Reference Sequence number. This contains the full length 

coding sequence whilst a second splice variant (AC133-2, the second to 

be cloned) appears to splice out exon 4. Our analysis of 8 CRC cell lines 

and 10 samples of normal mucosa, using both end-point and real-time 

methodologies would suggest the presence of a splice variant that lacked 

27 base pairs, indicating ｾ ｨ ｡ ｴ t the full length CD133 splice variants (AC133-

1), Sv6 and SV7 were not expressed in ｾ ｯ ｬ ｯ ｮ n and the other splice variants 
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(Sv2, Sv3, Sv4, and Sv5 that lacks exon 4) were. Given that shorter PCR 

products are preferentially amplified , the primers used could be amended 

in a way that preferentially amplifies the splice variant that contains exon 4. 

This could be done by designing a primer pair in such a way that one of the 

primer pair spans exon 4 or completely hybridizes to exon 4. Another 

alternative way is by the use of target specific probes. TaqMan probes 

targeting exon 4 could be used to specifically detect the presence or 

absence of exon 4. In such ways we will be more accurate as regarding its 

detection. A support of our preliminary data comes from the study by Yu et 

a/. in which AC133-2 was reported ｡ ｾ ~ being the splice variant which is 

present in many stem cell compartments whilst AC133-1 is limited to foetal 

brain and skeletal muscle (Yu, Flint et al. 2002). Recently, a study goes 

online with our finding showed that in colon cancer samples several splice 

variants were expressed at the mRNA level, but the majority of ｴ ｨ ･ ｳ ｾ ~

mRNA encoded Sv2 (Kemper, Sprick et al. 2010). 

To sum up, it appears from this study of human colorectal cancer cell lines, 

as has been reported in other studies, CD133 mRNA and protein 

expression was variable among cell lines. Moreover, a significant 

correlation was found between CD133 mRNA expression level and CD133 

protein ･ ｾ ｰ ｲ ･ ｳ ｳ ｩ ｯ ｮ Ｎ . It was also noted that in metastatic colorectal cancer 

｣ ｾ Ｑ ｉ I lines,CD133 expression was higher than their primary counterparts. 

Nevertheless, in clinical samples, CD133 protein expression level was the 

same in primary tumours and liver metastases cases. Interestingly, CD133 
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splice variants that lacks 27 bp; not the full length CD133 splice variant 1, 

Sv6 and Sv7 were found to be expressed in CRC cell lines and normal 

colon mucosa. The results from this chapter together with the results 

suggesting CD133 as an independent prognostic factor from chapter 3 

highlight the possible role of CD133 in tumor progression. Therefore, it was 

of interest to study the characteristics of CD133 expressing cells and to 

shed some light on the mechanistic role for CD133. These characteristics 

will be studied in the next chapter. 

,', . 
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5 Chapter 5: Biological characteristics of CD133 expressing 

cells in colorectal cancer cell lines 

,," 
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5.1 Abstract 

Background and aims: Data in chapter 3, together with other studies 

revealed that CD133 was of prognostic importance for patients' survival, 

but the main function of CD133 was still unknown. The previous chapter 

characterized the expression of CD133 in a series of CRC cell lines. This 

allowed us to select the appropriate cell lines for this part of the project 

which was to study the biological characteristics of CD133 expressing cells 

in colorectal cancer cell lines. 

Methods: Two approaches were used to produce CD133+ (test) and· 
It 

CD133- (control) populations. SW480 - a CRC cell line shown to have a 

bi-phasic population of about 400/0 CD133+ cells- was isolated by FACS 

cell sorting into CD133+ and CD133- populations. CD133 was knocked 

down using small interfering RNA (siRNA) in the CRC cell line HT29 (a 

CRC cell line shown to have 950/0 CD133+ cells). Functional studies such 

as proliferation, ｭ ｩ ｧ ｲ ｡ ｴ ｩ ｾ ｮ Ｌ , colony forming, and staurosporine induced 

apoptosis assays were then undertaken. 

Results: A time course assay showed that CD133 knockdown in HT29 

had no significant effect on cell proliferation when compared with 

scrambled controls. However, CD133 knockdown did result in greater 

susceptibility to staurosporine-induced apoptosis (p = 0.01) and reduction 

in cell migration (p=0.04, unpaired t-test). In concordance with knockdown .. 
experiments, time course· assays performed on the sorted populations of 

SW480,· revealed no significant proliferative differences between the 
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CD133+ and CD133- groups. Also greater resistance to staurosporine-

induced apoptosis (p = 0.008, unpaired t-test), greater cell migration ability 

(p = 0.03, unpaired t test) and greater colony forming efficiency was seen 

in the CD133+ sorted population of SW480 cell line than the CD133-

population in both 2D and 3D culture (p=0.0001 and p=0.003 respectively, 

unpaired t- test). The plasticity of CD133 expression in tumour cells was 

tested and showed that prolonged culture of a pure CD133- population 

resulted in re-emergence of CD133+ cells. 

Conclusion: Using two separate approaches, the data show that CD133 ., 

plays a role in cell motility and colony ｾ ｯ ｲ ｭ ｡ ｴ ｩ ｯ ｮ Ｎ . These characteristics of 

CD133 expressing cells may be relevant to a role as tumour initiating cells 

and may support tumour metastasis in colorectal cancers. 

,', . 
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5.2 Introduction 

A number of studies claim to have isolated CSCs from several different 

tumour types such as brain (Singh, Clarke et al. 2003; Yuan, Curtin et al. 

2004), breast (AI-Hajj, Wicha et al. 2003), colon (O'Brien, Pollett et al. 

2007; Ricci-Vitiani, Lombardi et al. 2007), hepatocellular carcinoma (Chiba, 

Kita et al. 2006) and pancreatic cancer (Li, Heidt et al. 2007). These 

studies have used putative CSC markers to separate stem cells from 

differentiating cells within a tumour. One common method of separation is 

the dye elimination method (Le. side population (Addla, Brown et al. 2008)) 

although this has recently been thrown into doubt as a marker for stem 

cells (Burkert, Otto et al. 2008). Identification of a number of cell surface 

markers (such as CD24, CD44, and CD166) has allowed use of 

fluorescence activated cell sorting (FACS)to isolate CSCs (Wright, 

Calcagno et al. 2008). Recently, CD133 gained attention as marker ｦ ｾ ｲ r

isolation of CSCs in colorectal cancer as well as many other human solid 

tumours (Li, Deng et al. 2006; Suetsugu, Nagaki et al. 2006; Dou, Pan et 

al. 2007; O'Brien, Pollett et al. 2007; Ricci-Vitiani, Lombardi et al. 2007; 

Wei, Zhou et al. 2007). 

The aim of this study is to further clarify the role of CD133 in CRC. Two 

approaches were used: (i) CD133 expression was functionally evaluated in 

HT29 after gene knockdown and (ii) SW480 underwent cell sorting into a 
,'- . 
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CD133+ population and a CD133- population followed by comparative 

functional analysis of the two populations. 

5.3 Results 

5.3.1 CD133 knockdown in HT29 cell line 

Gene knock down was achieved by transfecting HT29 (shown to have 950/0 

CD133 positive cells) with CD133 specific synthetic small interfering RNA 

(siRNA) using the stealth RNAi type. These are henceforth annotated as 

HT29cD133-. Controls consisted of cells transfected with scrambled control 
.. 

stealth RNAi, and henceforth annotated as HT29ssc. 72 hours after gene 

knockdown, flow cytometry analysis revealed that CD133 was 500/0 

downregulated compared to scrambled control (Figure 5-1A). In order to 

improve the knockdown more than 500/0, we compared different amounts of 

siRNA with final concentrations of 30, 50 and 100 nmol. We found that all 

different concentration "resulted in the same knockdown level of 500/0. 

Therefore, we used the final concentration of 100 nmol for all gene 

silencing experiments. Evaluation of these data by western blot, in 

contrast, showed that the protein was virtually undetectable when CD133 

specific stealth RNAi was used. In contrast, transfection of the control 

stealth RNAi had no effect on protein expression (figure 5-18). Such 

､ ｩ ｳ ｣ ｲ ･ ｰ ｡ ｮ ｾ ｹ y between flow and western data· comes from the fact that flow .. 
cytometry detects the percentage of positive cells rather than quantification 

of the amount of protein. Moreover, confirmation of the knockdown was 
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conducted by applying qRT-PCR analysis of CD133 mRNA level after 

knockdown (Figure 5-1C) 

5.3.2 F ACS of SW 480 cell line 

The SW480 cell line (shown to have 40% CD133 positive cells) was sorted 

into CD133+ and CD133- populations using FACS technique and 

underwent immediate re-analysis by flow cytometry to check the purity of 

the sorted cells. Analysis showed that· the CD133+ and CD133-

populations were 97.6% and 99.9% pure, respectively (Figure 5-2A). 

Quantitative PCR showed transcriptipnal repression of CD133 in the 

CD133- population and although CD133 mRNA was still detectable, it was 

only at 150/0 of the level seen in the CD133+ population (Figure 5-28). 

,., . 
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Figure 5-1: CD133 knockdown in HT29 cell line. 
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HT29 was transfected with either specific stealth RNAi (HT29cD133') or scrambled control 
stealth RNAi (HT29ssc). 72 hours later, (a) Flow cytometry analysis showed down 
regulation of CD133 expression in HT29cD133. compared to HT29sSC (SSe on the dot blot 
= side scatter). Each graph represent a sample graph of two independent experiments 
with triplicate each. (b) Western blotting confirms the down regulation of CD133 by gene 
knock down (J3-actin used as an indicator of equal protein loading). (c) QRT-PCR analysis 
confirm down-regulation of CD133 at the transcriptional level (data were normalized to 
HPRT1). 



A ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ~
SW480 

.... .... .,. 
'" C0133 - cells C0133 + cells 

.., 
99.9% 

.., 
c c 97.6% QI QI 
::- ::-w w 

10' 10' 10' 10' 1 • 

CD133-PE CD133-PE 

B 
0.10 

c 
Ｎ Ｒ ｾ ~
ｾ ｡ Ｚ : 0.08 
- 0.. 
ｾ Ｚ ｊ Ｚ :
)( 0 ... 0.06 

ｾ Ｑ 1
｡ Ｚ ｾ ~ 0.04 
E " ME 
MO 0.02 ｾ ｺ zc-o 

0.00 
ｏ ｲ ｩ i ｩ ｮ ｾ Ｑ 1 CD133 + CD133· 

Figure 5-2. Sorting of SW480 cell line. 
(a) SW480 was sorted into CD133 positive and negative populations which, on immediate 
analysis, were shown to be pure populations 97.6% and 99.9% for CD133+ and CD133-
populations respectively (filled grey histogram represent IgG isotype control , while CD133-
PE labeled cells presented by histogram with solid black line) (b) QRT-PCR analysis of 
the sorted CD133+/- populations showed that low level of CD133 transcript were still 
detectable in CD133- cells (data were normalized to HPRT1 ). 
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5.3.3 Association of CD133 with proliferation 

The effect of CD133 expression on the proliferation was tested in a time 

course experiment using two experimental approaches. In HT29 cell line 

the CD133 protein was knocked down and cell numbers (as measured by 

methylene blue staining) monitored for 5 days (Figure 5-3A); whilst SW480 

cell line was sorted into CD133+/CD133- populations and cell numbers 

were monitored over 9 days (Figure 5-3B). Both experiments showed the 

same results. There was no difference in the proliferation between those 

transfected with stealth RNAi and scrambled control RNAi. Similarly, there 

was no significant difference in thew proliferation· between the sorted 

CD133+/- populations. This showed that CD133 expression has no effect 

on proliferation 

5.3.4 Association of CD133 expression with cell ｭ ｩ ｾ ｲ ｡ ｴ ｩ ｯ ｮ n

Comparative analysis of cell motility between cells with high and low 

CD133 expression was tested by transwell migration assays. Both 

experimental conditions produced concordant results. Significantly fewer 

HT29cD133- cells migrated across the membrane than HT29sSC cells (Figure 

5-4A, p= 0.04, unpaired t-test). Conversely, significantly larger numbers of 

CD133+ cells migrated than CD133 - cells (Figure 5-4B, p = 0.03, unpaired 

t-test). In order to validate the transwell migration assay a cell wounding 

assay was also employed following gene knockdown in HT29 which 

showed that the wound edges were significantly closer in HT29sSC cells 
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than in HT29cD133-cells (p<O.001, unpaired t-test) thereby confirming the 

relationship between high CD133 expression and increased cell motility 

(Figure 5-4C). 
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Figure 5-3. Association of CD133 expression with proliferation. 

9 

Cell proliferation was evaluated after knockdown of CD133 in HT29 (A), and sorting of 
SW480 into pure CD133+ .and CD133- popul?tions (8) A time course assay was 
performed over several days with no association seen between CD133 and cell numbers. 
Error bars represent mean ± SD. 
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Figure 5-4. Association of CD133 with cell motility. 
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Transwell migration was performed 72 hours after knockdown of CD133 in HT29 and 
sorting of SW480 into CD133+/- populations. Significantly fewer HT29cD133- cells migrated 
across the membrane than HT29sSC cells (Figure 5-4a, p = 0.04, unpaired t-test). 
Conversely, larger numbers of sorted CD133+ cells migrated than CD133- cells (Figure 5-
4b, P = 0.03; unpaired t-test). Error bars represent mean±SD of two independent 
experiments with triplicate each. A wounding assay was also undertaken and gene 
knockdown was associated with marked delay in closure of the wound which was visiually 
perceptible after 24, and 48 hours (Figure 5-4c) ,and statistically significant (p < 0.001, 
unpaired t-test). 
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5.3.5 Association of CD133 expression with colony formation 

Another feature of "sternness" is the ability to form colonies. Colony 

forming assays were done only in the sorted populations because the 

effect of stealth RNAi just lasts for a short time as was stated by the 

providing company. Sorted CD133+/- populations were tested by growing 

single cells in tissue culture plates and DMEM medium for 10-14 days. In 

this assay, CD133+ cells gave rise to large adherent colonies growing as 

dense cell monolayer (Figure 5-5C) while, CD133- cells developed as 

small colonies of loose cell monolayer (Figure 5-5C). The number of 

colonies was significantly greater in C0133+ cells compared with CD133-

counterpart (p=O.0001, unpaired t-test) (Figure 5-5b). Soft agar colony 

formation (anchorage-independent growth assay) was also performed. 

Consistently, sorted CD133+/- populations were seeded as single cells in 

soft agar for two weeks. After two weeks, figure 5-5d showed larger 

colonies were generated by CD133+ cells than those by CD133- cells. In 

addition, the number of colonies was significantly greater in CD133+ cells 

(p=O.003, unpaired t-test) (Figure 5-5a). 
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Figure 5-5. Asociation of CD133 with colony formation. 

Figure 5-5A and 5-58 show C0133+ cells were significantly more clonogenic than C0133-
cells (p=O.0001 and p=O.003, unpaired t-test) in 20 and 30 culture respectively (CFE = 
colony forming efficiency). ,Error bars ｲ ･ ｰ ｲ ･ ｳ ･ ｾ ｴ t mean ± SO of two independent 
experiments with triplicate each. Figures 5-5C and d (colonies formed by C0133+ cells 
and C0133- cells) show that both C0133+ and C0133- populations of SW480 were able 
to form colonies from single cells (typical colonies are shown). 
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5.3.6 Association of CD133 expression with staurosporine-induced 

apoptosis 

A feature that may be expected in stem cells is resistance to apoptosis 

following exogenous stress. 80th experimental approaches were used to 

test the effect of CD133 levels on resistance to apoptosis when exposed to 

staurosporine for 24 hours. Staurosporine is commonly used to induce 

apoptosis in cells and was used to test the resistance to exogenous 

apoptotic stress conferred by CD133. Controls consisted of cells grown in 

DMSO only without staurosporine were performed. Numbers of viable cells 

after 24 hours were measured using methylene 'blue staining assay. 

Concordant results were obtained indicating that high levels of CD133 

conferred staurosporine resistance. Fewer viable HT29cD133- cells were 

present than HT29sSC cells (Figure 5-6A,' p=O.01; unpaired t-test); 

conversely greater number of viable cells were present in the sorted 

CD133+ population than the CD133 - population (Figure 5-68, p=O.OOB, 

unpaired t-test). There was however no difference between cells when 

exposed to DMSO alone as a control. 
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Figure 5-6. CD133 gave resistance to staurosporine induced apoptosis. 
Figure 5-6A shows that after exposure to staurosporine there were fewer viable cells after 
transfection with CD133 specific siRNA (HT29CO 133-) than with scrambled control 
(HT29ssc

) (p = 0.01; unpaired t-test). Figure 5-68 shows that the C0133+ population of 
SW480 showed cells showed siglf'lificantly greater resistance than the C0133- population 
(p = 0.008; unpaired t-test). One hundred percent represented cell viability in each control 
cells treated with OM SO which has the same optical density (OO) reading;Staurosporine 
(ST). Error bars represent mean ± SO of two independent experiments with triplicate 
each. 

5.3.7 Long-term culture changes on sorted population 

Sorted CD133+/- population were allowed to grow in culture medium to 

investigate the time-dependent changes in CD133 expression. Long-term 

culture of sorted populations resulted in both populations reverting to a 

bimodal profile. The CD133+ population, after 3 weeks, consisted of 700/0 

CD133+ cells and 300/0 CD133- cells, frequencies which remained stable 

thereafter for at least 3 months. The CD133 - cells developed a population 

of CD133+ cells which, after 3 weeks, reached 17% but did not increase 

thereafter (Figure 5-7A and 5-78). 
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Figure 5-7. Effect of long term culture on sorted CD133+/- cells. 
SW480 was sorted into CD133 positive and negative populations which were then 
cultured separately. (a) Gating was set so that only the extreme populations were 
collected which, on immediate retesting, were shown to be very pure populations. (b) After 
prolonged culture, both of the sorted populations became biphasic. The ratios of the 
CD133+ and CD133- cells became stable after three weeks and did not change after that 
(although they were not the same as the original parental cell line) 
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5.4 Discussion 

In order t6 evaluate the function of CD133, the cell line HT29 was tested 

after knockdown of CD133 by RNA interference. Another complementary 

approach used was to separate SW480-a cell line with a CD133+ 

population of 400/0 - into pure CD133+ and CD133 - populations. Both 

types of experiments yielded similar results. Firstly, levels of CD133 did not 

appear to alter cell proliferation. Second, there were however significant 

differences in the features which may be regarded as part of the stem cell 

phenotype. Thus high levels of CD133 were associated with increased 

clonogenicity and resistance to staurosporine induced apoptosis. The latter 

may be due to an innate resistance to apoptosis possibly due to 

preferential activation of certain pathways or molecules that gives an 

advantage to the CD133 I' expressing cells to resist apoptosis. Such 

pathways or molecules included in the resistant phenotype of CD133+ cells 

include DNA damage checkpoint (Bao, Wu et al. 2006), FLI P (caspace 8 

inhibitor) (Zobalova, McDermott et al. 2008), BCl-2, BCl-Xl , inhibitors of 

apoptosis protein (lAP) (Liu, Yuan et al. 2006; Chiou, Kao et al. 2008), and 

AKT/PKB pathway (Ma, lee et al. 2008). Alternatively, it may be due to 

enhanced cytoprotective strategies such as the ability to actively extrude 

toxic substances from the cytoplasm and the enrichment of these ｣ ｾ ｬ ｉ ｳ s with 

ABC transporter members (Jin, Bin et al. 2009; Hostettler, Zlobec et al. 

2010). 

127 
,', . 



Another feature we found to be associated with CD133 expression was 

enhanced· cell motility. Other studies have suggested a role for CD133 in 

cell motility since it is classically expressed in membrane protrusions 

(Corbeil, Roper et al. 2000; Giebel, Corbeil et al. 2004). In certain 

situations, such as embryogenesis and wound healing, stem cells need to 

acquire features of motility. In CSCs, features of enhanced motility may 

allow invasion and metastasis to occur-a notion supported by the study of 

Rappa et al. which found CD133 expression was associated with 

metastasis in melanoma cells (Rappa, Fodstad et al. 2008). Our data do, 

however, contradict those of Horst et al. (Horst, Scheel et al. 2009) who did 

not find that CD133 expression was associated with cell motility in Cac02. 

We are uncertain of the cause for this discrepancy but a plausible 

explanation for this contradiction is the utilization of different cell lines that 

may harbour genetic evolution during in vitro growth for a long time that 

may affect the function of CD133 (Jiang, Gwye et al. 2010). Alternatively, . 

CD133+ cells in a given cell line may harbour a heterogenous colony 

forming, migrating and resistance ability different from that in other cell line 

even within CD133+ cells of the same cell line. In support of the latter 

speculation, Li et al. reported that CD133+ cells of SW480 cell lines had a 

different invasive and migration ability and attributed this to heterogeneity 

of ｾ ｾ Ｑ Ｓ Ｓ Ｋ + cells with different invasive and migration abilities (Li, Liu et al. 

2010). Also, technical differences between laboratories, or differences in 

the duplex sequence used for gene knockdown could be considered. 
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We used FACS to sort SW480 into pure CD133+ and CD133 - populations 

and, by mRNA quantification, showed that this was due to transcriptional 

repression rather than changes in glycosylation. The mechanistic basis of 

inhibiting CD133 expression is uncertain. However, epigenetic silencing 

due to hypermethylation of CD133 promoter has been reported as a 

means of controlling CD133 expression (Yi, Tsai et al. 2008). Alternatively 

other mechanisms such as mRNA degradation may be involved. 

Prolonged culture of pure CD133+1 CD133 - populations resulted in both 

populations reverting to a bimodal pattern although in neither case did the 

pattern revert to that of the original cell line. Thus, after 3 months, the 

cultured pure CD133+ population developed a CD133+/CD133 - split of 

70%/30% respectively. Thsse data are consistent with other studies 

showing that tumours derived from CD133+ populations ultimately become 

bimodal (Balla, Vemuganti et al. 2009). However, it is uncertain why the· 

CD133+ population did not revert to 400/0 as seen in the original SW480 

cell line. The cultured pure CD133 - population developed a stable CD133+ 

population of around 17%). The study by O'Brien found that CD133 - sorted 

populations could induce tumours containing a CD133+ population and 

attributed this to contamination of the CD133 - cells by CD133+ cells. We 

think that contamination is unlikely to be an explanation in our case as our 

initially sorted populations were very pure and our time-course studies did 

not show any difference in rates of proliferation between CD133+ and 

.. CD133 - cells. Another possibility is that CD133 was re-induced in these 
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cells. Since CD133 mRNA was detected in the CD133 - cells, it shows that 

a low level of transcriptional activity may still have been occurring in cells 

which were negative for protein expression. This would fit with data from 

animal studies demonstrating that transit amplifying cells (which lie beyond 

the stem cell compartment) can re-acquire stem cell properties in the small 

intestine under appropriate conditions (Potten 1998). If this is the case, 

then it would question the existence of CSCs since, by extension, non-

stem cells within a tumour could theoretically acquire stem cell features. 

To sum up, in this study, the biological characteristics of CD133 expressing 

cells were identified such as enhanced migratory, clonogenic abilities as 

well as resistance to stress induced apoptosis. Furthermore, CD133 + cells 

have the ability to induce both populations after long time culture indicating 

plasticity of these cells, and surprisingly, CD133 - cells did as well. CD133 

may, at least in part, play a role in tumour metastases and tumour 

progression. The mechanistic bases that regulate the expression or the 

function of these cells warrant further investigation. This will be discussed 

in the next chapter. 
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6 Chapter 6: Evaluation of upstream and downstream 
.-

targets of CD133 in colorectal cancer 
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6.1 Abstract 

Background and aim: Recent, data together with data presented in 

previous chapter indicated that CD 133 expression was associated with 

enhanced colony forming abilities, enhanced motility and resistance to 

stress induced apoptosis. The aim of this study is to test the downstream 

targets of CD133 which mediate these effects and to investigate the 

mechanisms of CD133 regulation. Specifically, the aims are to test the 

hypotheses that 1) CD133 interacts with proteins of the adherence 

junctions (E-cadherin and l3-catenin) and the focal adhesions (Cten) during 

cell motility and, 2) CD133 activity is regulated by Wnt signalling or STAT3 

(functional pathways deregulated in colorectal cancer). 

Methods: Expression of specific genes w,as manipulated and the effect on 
It 

downstream targets tested by Western blot or flow cytometry. Reduction of 

gene expression was achieved by gene knockdown using siRNA targeted 

to genes of interest (i.e. CD133 and STAT3). Increase in gene expression 

was induced by forced ectopic expression of cloned cDNA (CD133 and 

Cten). Wnt signalling pathway was blocked by forced ectopic expression of 

dominant negative (ON) TCF4. Finally the effect of promoter 

hypermethylation on CD133 gene regulation was tested by demethylation 

using 5-Aza-deoxycytidine. 

Results: Knockdown of STAT3 resulted in down-regulation of CD133 

whilst alterations of CD133 levels did not affect the levels of E-cadherin, 13-

catenin. Alternatively, alteration of Cten showed a modest effect on the 
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level of CD133 and inhibition of Wnt with dnTCF4 did not affect CD133 

level. Promoter demethylation did affect CD133 levels in cell lines showing 

low CD133 expression. 

Conclusion: These data indicate that STAT3 signalling is, at least in part, 

a potential regulator of CD133 expression in colorectal cancer cell lines. 

Furthermore, CD133 might enhance the motility through other molecules 

rather than E-cadherin, J3-catenin, however, its association with Cten 

warrants further ｩ ｮ ｶ ･ ｳ ｴ ｩ ｧ ｡ ｴ ｩ ｯ ｾ ｳ Ｎ . In this study, although Wnt signalling 

inhibition using dnTCf4 might have no effect on CD133 level, further 

optimization of dnTCf4 transfection should be warranted to verify the 

absence of such a relationship between Wnt pathway and CD133. Finally, 

methylation status of CD133 promoter may, at least partially, playa role in 
II 

regulation of CD133 expression. 
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6.2 Introduction 

Consistently, with published studies in colorectal cancer (leta, Tanaka et 

al. 2008; Puglisi, Sgambato et al. 2009) and other solid tumours (Rappa, 

Fodstad et al. 2008; Yanagisawa, Kadouchi et al. 2009; Sato, Sakurada et 

al. 2010), the data in the previous chapter demonstrated that CD133 

expressing cells have enhanced migratory and colony forming ability, 

implying that CD133, might playa role in both primary tumour formation 

and migration of cancer cells. 

Epithelial-mesenchymal transition (EMT) is a process through which 

tumours are thought to be able to acquire the ability to metastasize (Thiery 

2003). It is associated with E-cadherin downregulation and increased 

nuclear ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ Ｎ . Recently, two studies reported a connection between 

EMT and cancer stem cells. Mani and Morel and their co-workers reported 

that activation of EMT was associated with the acquisition of stem cell 

properties in breast cancer (Mani, Guo et al. 2008; Morel, LiA"vre et al. 

2008). Another study in hepatocellular carcinoma (HCC), where CD133 

used as a marker for isolating CSCs, E-cadherin was downregulated in 

CD133+ compared to CD133- cells (Lee, Han et al. 2010). Moreover, 

Snail, which is involved in EMT and leads to downregulation of E-cadherin, 

was only expressed in CD133 positive glioblastoma cells (Liu, Yuan et al. 

2006). Consistently, CD133+ cells have been detected at the invasive front 

of primary tumours of the pancreas and colorectal cancer (Hermann, 

Huber et al. 2007; Li, Li et al. 2009). In addition, cells at the invasive sites 
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showed nuclear localization of (3-catenin compared to the central area 

which showed membranous expression (Brabletz, Jung et al. 1998). Taken 

together, these circumstantial data raise the possibility of a role for CD133 

in the process of EMT and initiation of metastasis. 

Boivin et al. reported that CD133 was phosphorylated at the tyrosine 

residue found on the C-terminal cytoplasmic end (tyrosine-828) by Src 

kinase creating a binding site for interaction with proteins that contain 

phosphotyrosine binding Src- homology 2 (SH2) domain (Boivin, Labbe et 

al. 2009). Recently, it has been reported that Cten (C-terminal tensin-Iike), 

a member of Tensin gene family that lacks N-terminal acting binding 

domain and contains an SH2 domain, affects cell motility and migration 

through repression of. E-cadherin (Albasri, Seth et al. 2009). Taken 
It 

together, it was hypothesised that Cten through its SH2 domain could 

regulate CD133 expression. 

Several pathways are involved in normal stem cell self-renewal and 

decisions about differentiation. The Wnt signalling pathway has been 

reported to play a major role in the maintenance of normal and cancer 

stem cells (Vermeulen, De Sousa E Melo et al. 2010). Furthermore, signal 

transducer and activator of transcription 3 (STAT3) activation supports self-

renewal and the undifferentiated state of mouse embryonic stem cells 

(mouse ESCs) (Matsuda, Nakamura et al. 1999), although it fails to 

prevent differentiation of Human embryonic stem cells.(Boiani and Scholer 

2005). ST AT3 was reported to be activated in many human tumours 
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including colorectal cancer (Corvinus, Orth et al. 2005), and gliomas 

(Abou-Ghazal, Yang et al. 2008). A study in colorectal cancer reported that 

STAT3 and other signalling molecules were activated in 

CD133high/CD44high/progastrinhigh cells (Ferrand, Sandrin et al. 2009). 

However its role in regulating cancer stem cells is still under investigation. 

In a study that investigated the transcriptional regulation of the CD133 

gene, it was found that Exon 1 A, 1 B, 1 C, promoter 2, promoter 3 and 

partially promoter 1 were located within a CpG island suggesting a 

speculation that methylation of CpG islands in the promoter areas may 

suppress the expression of the CD133 gene (Shmelkov, Jun et al. 2004). 

Furthermore, induction of methylation of CD133 promoter 1 and promoter 2 

resulted in suppression oft activity of the promoters in Cac02 cell line 

(Shmelkov, Jun et al. 2004). In support, Tabu et al. reported that 

hypomethylation of the CpG island was associated with increased level of 

CD133 mRNA expression in glioma (Tabu, Sasai et al. 2008). Another 

study in CRC and brain tumours revealed a higher incidence of methylated 

CD133 promoter region in CRC and GBM cell lines compared to the 

normal colon and brain samples which showed unmethylated CD133 

promoter (Yi, Tsai et al. 2008). These data showed that CD133 ｾ ｯ ｵ ｬ ､ d be 

epigenetically regulated by the methylation status of its promoter. 

The aim of this part of the project is to (1) test the hypothesis that CD133 

.. could enhance the migration ability of co!orectal cancer cells through EMT, 
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by studying the effect of CD133 expression on both E-cadherin and 13-

catenin (a key regulator of EMT) and effect of Cten expression on CD133, 

and (2) to test the hypothesis of controlling CD133 through Wnt signalling, 

ST AT3 and DNA hypermethylation. 

The following protocols were used: 

(1) CD133 was knocked down in Cac02 and HT29 (both high expressers of 

CD133) whilst CD133 was forcibly expressed in DLD1 and Sw837 

(negative for CD133 expression). E-cadherin and J3-catenin expression 

were evaluated using western blotting. 

(2) Green fluorescent protein tagged Cten (GFP-Cten) was forcibly 

expressed into HCT116, SW837, and HT29 cell lines and CD133 

expression was evaluated using western blotting and flow cytometry. 

(3) Wnt signalling was inhibited using DN-TCF4 (kindly gifted by Dr Nateri 

AS, Division of Pre-clinical oncology, University of Nottingham) whilst the, 

STAT3 signalling pathway was inhibited by gene knockdown. CD133 

expression was evaluated by flow cytometry; 

(4) DNA hypermethylation was reversed using 5'aza treatment and CD133 

expression was evaluated by flow cytometry. 

Details for transfection protocols; refer to material and methods section. 
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6.3 Results 

6.3.1 Clonin2 ofCD133 into pcDNA™3.1DIVS-His-TOPO®vector 

Manually designed primers for PCR amplification of the full length CD133 

coding sequence were used with the help of Pfu DNA polymerase enzyme. 

Visualizing the amplified PCR product using 1 % agarose gel 

electrophoresis demonstrated an amplicon of the same size of full length 

CD133 at - 2.6 Kbp (figure 6-1). 

3000 bp 

2500 bp 

M 12345678 

Figure 6-1. Am plification of full length CD133. 
Gel electrophoresis showed a PCR amplification of full length CD133 using CD133 
forward and reverse primers. The CD133 product; which is 2600 bp, was detected in 
lanes 2-8. Lane 1 is a negative control containing no DNA template. A 1 kb DNA ladder 
(DNA size marker) (M) is shown on the left 

Purification of the PCR product from any excess primers, nucleotides, 

polymerase enzyme, and salts were conducted using QIAquick PCR 

purification Kit (Qiagen). Measurement of the DNA amount after 
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purification using Spectrophotometer Nanodrop was done and revealed an 

amount of 104 ng/IJI (figure 6-2A, 8). 
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Purified PCR product visualizaed by agarose gel electrophoresis (a) showed CD133 
product of corrected size in lane 1, and 1 kb ladder is shown on the left (b) illustrate the 
quantity of CD133 DNA after purification using Nanodrop technology (nanodrop 

spectrophotometer). 
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TOPO cloning reaction between PCR product (CD133 full length DNA) and 

pcDNA™3.1 DN5-His-TOPO® vector and transformation into competent 

cells (E-coli) was conducted (see supplementary data for vector map). The 

growing colonies were analyzed for transformants using restriction 

digestion method. EcoRV enzyme was used for restriction digestion 

analysis. EcoRV enzyme cut once in the insert (CD133 DNA) at site No. 

1176 (using DNADynamo software, to detect restriction enzyme sites at 

CD133; a map for EcoRV site on CD133 , see appendix 9.6) and once in 

the pcDNA™3.1 DN5-His-TOPO® vector at site No. 963 (restriction map of 

the vector, see supplementary data). The full length CD133 PCR product is 

2598 bp and the pcDNA™3.1DN5-His-TOPO® vector is 5514bp. Given 

that the insert (CD133 PCR product) is ligated to the vector, the resulting 

plasmid size will be 8112bp. When applying the restriction digestion 

analysis using EcoRV enzyme, it should result in two bands; one band is -

1446bp, and another band of about 6666bp. Analysis of the restriction 

digests with EcoRV confirmed that CD133 DNA has been inserted in the 

vector and in the right orientation (figure 6-3). These data were confirmed 

with sequencing (supplementary data, appendix 9.3). 

140 
,,' 



M 1 2 1 2 1 2 1 2 

8Kbp 

6Kbp 
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Figure 6-3. Restriction digestion analysisof CD133 plasmid. 
Analysis with EcoRV showed two bands, one - at 6.6 Kbp, and the second at 1.5 Kbp, 
confirming the insertion of CD133 DNA into the vector. M; 1 Kbp DNA ladder, 1; Uncut 
CD133 plasmid, 2; restriction enzyme digestion with EcoRV. 

6.3.2 Transfection of pc DNA 3.1-CD133 plasmid into SW837 and DLD-l 

Transfection efficiency of pcDNA3.1-CD133 plasmid into SW837 and 

DLD1 was verified by qRT-PCR. Data revealed increased CD133 mRNA 

expression (figure 6-4), which per se does not indicate that it is translated 

to the corresponding CD133 protein or that CD133 protein is expressed on 

the cell surface. Therefore, flow cytometry analysis of CD133 protein 

expression on the cell surface was employed and showed heightened 

numbers of CD133 expressing cells from 0% in both SW837 and DLD1 to 

57% and 39% respectively (figure 6-5). Moreover, western blot was 

performed and revealed that the protein was detected when pcD'NA 3.1-

CD133 plasmid was used, whilst transfection with the corresponding empty 

vector has no effect on the protein expression (figure 6-6). These data 
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demonstrate that the CD133 protein was expressed, appropriately 

glycosylated and trafficked to the cell membrane. 
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Figure 6-4: Transfection of CD133 gene in both Sw837 and DLD1 cell lines. 
The efficiency of CD133 transfection was assessed by qRT-PCR. CD133 mRNA 
expression (normalized to HPRT1) in transfected cells with pcDNA3.1-CD133 plasmid 
(black bars) compared to transfected cells with corresponding empty vector (white bars). 
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Figure 6-5. Forced expression of pcDNA 3.1-CD133 plasmid. 
Transfection of SW837 and DLD1 (negative expressers of CD133) with pcDNA 3.1-
CD133 plasmid resulted in upregulation of CD133 on protein level which was detected by 
flowcytometry as increased number of CD133+ cells, when compared with cells 
transfected with the corresponding empty vector (.EV). 
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Figure 6-6. Evaluation of forced expression of pcDNA 3.1- CD133 plasmid. 
Transfection of SW837 cell line with pcDNA 3.1-CD133 plasmid resulted in upregulation of 
the protein level (lane 2), compared to transfection with the corresponding empty vector 
(lane 1). With the use of anti-CD133 antibody (C2489) which detect both glycosylated and 
non-glycosylated epitopes of CD133, western blot showed a small faint band at a size -
100 kDa which is the expected size of non-glycosylated epitope of CD133 protein (97 
kDa) in lane 1. While, in Lane 2, there are two dense bands, one at a size - 100 kDa 
(represent non-glycosylated epitope), and another dense band at - 120 kDa representing 
the glycosylated epitope of CD133. 8-actin showed equal loading of protein. 

6.3.3 Assessment of E-cadherin and l1-catenin ｦ ｯ ｬ ｬ ｯ ｷ ｩ ｮ ｾ ~ manipulation 

of CD133 expression 

HT29 and Caco2 cell lines were transfected with CD133 SiRNA and its 

corresponding scrambled control (SSC), and CD133 protein expression in 

knocked down cells was down-regulated in 72 hours after transfection as 

evaluated by flow cytometry (Figure 6-78). Meanwhile, SW837 and DLD1 

were transfected with pcDNA 3.1-CD133 plasmid, and the expression of 

CD133 mRNA and protein was heightened after 48 hours as shown in 

figure 6-7 A. Next, western blot analysis was employed to examine E-

cadherin, and J3-catenin expression. As shown in figure 6-8, there are no 

significant changes in E-Cadherin, J3-catenin, expression between the 

knocked-down cells and their control, and cells transfected with pcDNA 
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3.1-CD133 plasmid compared to cells transfected with the corresponding 

empty vector (EV). 

6.3.4 Assessment of relation between CD133 and Cten 

Cten localizes to focal adhesions where it is found in complex with the 

cytoplasmic domains of integrins. It has been shown to modulate cell 

motility and in order to determine whether this' was affected through 

CD133, GFP-Cten was forcibly expressed in HCT116 (a cell line showing 

both moderate CD133 expression and low Cten expression). Surprisingly, 

Western blot analysis showed an increase in CD133 protein expression in 

cells treated with GFP alone compared to the nontransfected cells. Also, 

cells transfected with GFP-Cten plasmid showed a slight increase of 

CD133 protein expression compared .to cells transfectedwith GFP 

plasmid. (Figure 6-9). Later, SW837 and HT29 (both are negative 

expressers for Cten) were transfected with GFP-Cten plasmid. Following 

transfection, CD133 expression was assessed by flow cytometry and 

revealed a limited increase in CD133 expression (figure 6-10) 
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Figure 6-7: Knock down and forced expression of CD133 assessed by flow 
cytometry. 

(A) Flow cytometry analysis shows that CD133 was significantly expressed in SW837 
and DLD1 cell lines (negative expressers of CD133) after forced expression of CD133-
plasmid, filled histogram (gray) represents IgG isotype control, blue line histogram 
represents CD133-PE labeling of cells transfected with empty vector, black line 
histogram represent CD133-PE labeling of cells transfected with CD133-plasmid, (B) a 
flow cytometry histogram confirming the occurrence of knock down of CD133 in ·HT29 
and Caoc2 cell lines (high expressers of CD133), filled histogram (gray) represent IgG 
isotype control, Black line histogram represent CD133-PE labeling cell transfected with 
scrambled control siRNA, and blue histogram represent CD133-PE labeling of cells 
transfected with CD133 siRNA. 
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Figure 6-8: E-cadherin and p-catenin expression association with CD133. Western 
blot analysis of E-cadherin and l3-catenin expression after CD133 knockdown and CD133 
transfection showed no association between these two molecules and CD133 expression. 
SSC (SiRNA scrambled control), EV (empty vector). 
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Figure 6-9: Cten and CD133 in colorectal cancer. 
CTEN mediated metastasis was hypothesized to be induced through CD133. A protein 
lysate of HCT116 that forcibly expressed Cten was assessed using western blotting for 
CD133 expression. Western blotting revealed (a) an increase of CD133 protein 
expression in both GFP alone and GFP-Cten plasmid treated cells which is slightly more 
in the latter, (b) western blotting showed Cten protein expression in cells transfected with 
GFP-Cten plasmid compared to cell transfected with GFP vector alone. Beta-actin 
showed equal protein loading. 
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Figure 6-10: CD133 expression and Cten. 
GFP-Cten plasmid was forcibly expressed into SW837 and HT29 cell lines. Flow 
cytometry analysis of CD133 protein expression showed a minimal increase in CD133+ 
cells in cell transfected with GFP-Cten plasmid compared to cells treated with GFP vector 
alone which also showed increased CD133+ cells compared to isotype control, gating 
was performed using isotype control. (SSe = side scatter) 

6.3.5 Wnt sil:nalliol: pathway and CDt33 expression 

In order to test the hypothesis whether CD133 is regulated by Wnt 

signalling pathway or not, HT29 (high expresser of CD133) SW837 

(negative expresser for CD133), and SW480 (showed 400/0 positivity for 

CD133) cell lines were transfected with dominant negative TCF4 (NTCF-

4), and CD133 expression level was assessed. Dominant negative TCF4 

has a deletion of N-terminal B-catenin binding site allowing no binding 

between B-catenin and TCf/LEf complex leading to inhibition of 

transcription of downstream targets of Wnt signalling pathway (Kolligs, 

Nieman et al. 2002). Flow cytometry analysis revealed neither increase nor 

decrease in the number of CD133 expressing cells (figure 6-11). In order to 

validate that dnTCF-4 has been efficiently transfected, c-myc protein level 
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was evaluated by western blot. Minimal decrease in the level of c-myc 

protein was detected (figure 6-12A). QRT-PCR analysis of c-myc mRNA 

level revealed a change when comparing cells transfected with dnTCF-4 to 

cells transfected with corresponding empty vector (figure 6-128). This 

minimal change in c-myc level may indicate that the transfection of 

dnTCF4 was not efficient making it less likely that we could see a change 

in CD133 protein level. 
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Figure 6-11: dnTCF4 and CD133. 
Flow cytometry analysis showed that cell surface expression of CD133 protein neither 
increased nor decreased when comparing ce,lIs transfected with dnTCF4 with cells 
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transfected with the corresponding empty vector. Gating was done based on the IgG 
isotype control. 
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Figure 6-12: Effect of dnTCF4 on C-myc expression. 

SW837 

SW837 

(a) Western blot analysis showed minimal change in the level of C-myc protein when cells 
transfected with dnTCF4 compared to control cells. 8-actin showed equal protein loading. 
(b) qRT-PCR analysis of showed decrease in the level of C-myc mRNA when comparing 
cells transfected with empty vector (gray bars) and cells transfected with dnTCF4 (white 
bars). 

6.3.6 STAT3 controls CD133 expression in CRC 

STAT3 has been identified to be associated with poor clinical outcome and 

drug resistance. Also, it is involved in self-renewal of stem cells. Several 

studies have demonstrated that CD133 expressing cells have features 

associated with sternness such as resistance to chemotherapy; in addition 

it was widely used as a marker for isolating cancer stem cells in many 
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tumours. Hence, we wanted to test the hypothesis that CD133 is one of the 

targets of STAT3 signalling. In order to assess the role of STAT3 in 

governing CD133 expression, RNAi was employed and a ST AT3 specific 

stealth siRNA was used (see Material and Methods). SW837 (negative 

expresser for CD133), SW480, and SW620 (which contains 40% and 60% 

of CD133+ cells respectively) were transfected with ST AT3 stealth siRNA 

and its corresponding control to evaluate the effect of ST AT3 on CD133 

expression level. Quantitative measurement of ST AT3 silencing was 

conducted by western blot which confirm ST AT3 knockdown (figure 6-

13A). As shown in figure 6-138, flow cytometry analysis revealed that 

numbers of CD133+ cells in both SW480 and SW620 was decreased by 

-27% - 30% following ST AT3 knockdown. Furthermore, QRT -PCR 

demonstrated that STAT3 gene silencing associated with reduction in the 

level of CD133 mRNA (figure 6-13C). This could indicate that STAT3 

control CD133 expression is, at least in part, at the transcription level. 

6.3.7 Re-expression ofCD133 after treatment with DNA demethylatine 

reaeent 

To find out whether CD133 expression is partially regulated by methylation 

or not, SW837 cell line (negative expresser of CD133) and DLD-1(known 

previously to be methylated for CD133) were treated with 5-aza-2'-

deoxycytidine. Control cells were treated with DMSO. Following treatment, 

flow cytometry analysis of cell surface expression of CD133 protein 

revealed an increase in CD133+ cells from 0% in both SW837 and DLD-1 
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to 10.1 % and 17.3% respectively (figure 6-14). This could indicate that 

CD133 expression is, at least partially, regulated by DNA methylation. 
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Figure 6-13: STAT3 gene silencing and CD133 expression. 

SW480 

STAT3 SiRNA 

35.1% 

- -

47.3% 

200 - - .., 

0.46% 

0 200 --"NT' Lift .-

"' 

.. 

Ｎ ｾ ~

SW480, SW620 and SW837 were transfected using siRNA specific for STAT3 and with 
scrambled siRNA as a control. Gene knock down significantly down-regulated ST AT3 on 
the protein level as evaluated by (A) wets tern blotting, beta-actin showed equal loading of 
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protein. Transfected cells with STAT3 siRNA showed decrease in eD133 expression on 
protein level using flow cytometry , each graph is a sample graph of two independent 
experiments (8) and on mRNA level by qRT -peR, the difference was statistically 
siginificant (p= 0.001, and p= 0.03; unpaired t-test) in both SW620 and SW480 cell lines 
respectively. Error bars represent mean ± SO of two independent experiments (e), when 
compared with cells transfected with scrambled siRNA control. 
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Figure 6-14: CD133 expression analysis after treatment with 5-aza-2'deoxycytidine 
(5-aza-dc). 
Flow cytometry analysis of cell surface expression of eD133 protein in SW837 and DLO-1 
(negative expressers of eD133) with and without 5-aza-dc treatment. Representative data 
revealed that e0133 expression was up-regulated after 5-aza-dc treatment. (SSc= side 
scatter). Each graph is a sample graph of two independent experiments. 

6.4 Discussion 

I n recent years, large numbers of researchers have tried to identify 

colorectal cancer stem cells and to elucidate their roles in developing and 
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maintaining the tumour, as well as their resistance to the conventional 

chemo-radiotherapy. CD133 is one of several markers that have been 

used to isolate colorectal CSCs in an attempt to study their characteristics 

and clarify the pathways associated with their characteristics. 

Consistent with Rappa et al. who reported in malignant melanoma that 

CD133 knockdown resulted in impaired cell motility in vitro, and decreased 

metastasis specially to spinal cord in vivo (Rappa, Fodstad et al. 2008), our 

data showed that SiRNA-mediated downregulation of CD133 was 

associated with reduced cell motility and invasion in vitro. Therefore, we 

sought to clarify the impact of CD133 on metastasis by studying its 

association with EMT, an initial step in the process of metastasis. This was 

achieved by studying the association between CD133 expression and E-

cadherin and ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ Ｎ .

Two approaches were conducted to assess the impact of CD133 on 'both 

E-cadherin and beta-catenin. First, gene expression silencing using the 

stealth RNAi technique. Second, forced expression of CD133 gene using 

the cloned pcDNA3.1-CD133 plasmid, and hence exploring CD133 gene 

functionality on expression of E-cadherin and beta-catenin. Knockdown 

and forced expression data revealed that CD133 has neither effect on E-

cadherin nor ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ Ｎ . In agreement with our data, Horst et al reported 

that no correlation was found between CD133 and 'nuclear ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ n in 
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stage IIA colon cancer using immunohistochemistry approach (Horst, 

Kriegl et al. 2009). 

Surprisingly, when evaluating the role of Cten as an upstream regulator of 

CD133, GFP alone treated" cells revealed a minimal increase of CD133 

protein expression detected on both western blot and flowcytometry 

analysis, In addition, GFP-Cten plasmid treated cells showed a modest 

increase of CD133 protein expression compared to cells treated with GFP 

alone. In a study in breast cancer, it was reported that Cten induction was 

mediated by Interleukin-6 (IL-6) was dependent on STAT3 activation 

(Barbieri, Pensa et al. 2010). Recently, other observations revealed that IL-

6 could induce CD133 expression through loss of methylation of CD133 

promoter (D'Anello, Sansone et al. 2010). This could lead to a ｟ ｾ ｰ ･ ｣ ｵ ｬ ｡ ｴ ｩ ｯ ｮ n

that Cten may induce CD133 expression through loss of methylation of 

CD133 promoter. Supporting this speculation, CD133 induction occurred in 

SW837 cell line (cell line negative for CD133) after 5-aza-2' deoxycytidine 

treatment suggesting either a methylation of CD133 promoter or 

methylation of promoters of molecules regulating CD133. In addition, Liao 

et al. found that Cten was detected in both the cytoplasm and the nucleus 

of colon cancer cells suggesting different cellular functions of Cten (Liao, 

Chen et al. 2009). Given that SW837 cell line that appears to be negative 

for -CD133 and transfection with GFP vector alone lead to a minimal 

increase of CD133 protein expression, caution should be considered 

during interpretation of these data as regarding Cten an upstream regulator 

.. of CD133. Such a relationship could be further investigated by either using 

154 
.', . 



another vector type or doing gene silencing for Cten and evaluate CD133 

protein expression. At this stage, it will be difficult to give a clear statement 

regarding the mechanistic role by which CD133 promotes motility, but a 

possible mechanism may inClude that CD133 enhances cancer cell motility 

through induction of metalloproteinases as stated in hepatocellular 

carcinoma (Kohga, Tatsumi et al. 2010). 

In human tumours, Wnt signalling pathway is dysregulated in diverse 

tumours (llyas 2005). Brabletz et al. proposed that colon CSCs are 

characterized by Wnt signalling pathway activation (Brabletz, Jung et al. 

2005). This proposition was supported by the finding that spheroids 

resulted from culturing a single colon CSC expressed a subset of stem cell 

marker including CD133, <3D166, CD44 and CD24 beside nuclear beta-

catenin (Vermeulen, Todaro et al. 2008). Despite what has been stated 

above, information about direct impact of Wnt signaling activation on 

CD133 expression was not yet known. 

Hence, we blocked Wnt signalling using dnTCF4 in order to assess the 

relation between Wnt signalling and CD133. Our data revealed that the 

dnTCF4 resulted a small decrease on the level of c-myc that was qetected 

on the level of mRNA and this small effect has no impact on the level of 

CD133 protein expression - neither increased nor decreased. Therefore, 

further work is needed to improve the transfection efficiency of dnTCF4 
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and demonstrate its effect on c-myc level, so that we will be able to prove 

or disprove the relation between Wnt signaling pathway and CD133. 

STAT3 is important in tumorigenesis and embryonic stem cell 

development. STAT3 target genes are involved in many cellular process 

including proliferation, tumour growth and metastasis (Corvinus, Orth et al. 

2005; Huang 2007). A study by Ferrand et a/. reported that holoclone (a 

type of colony morphology) showed higher expression of CD133, active 

forms of STAT3, Jak2, ERk and AKT compared to other types of colony 

morphology in a cancer cell line (Ferrand, Sandrin et al. 2009). In viewing 

of these data, we sought to assess the role of STAT3 in regulating CD133 

expression. The stealth RNAi technique was employed to evaluate the 

STAT3 gene silencing function on CD133 expression. Our ､ ｡ ｾ ｡ a revealed 

that down-regulation of CE>133 expression followed STAT3 knockdown, 

implying that CD133 could be a downstream target of STAT3. In line with 

our data, STAT3 knockdown in glioblastoma is associated with initiation of 

apoptosis, a reduction in BCL-2 and cyclin D1 expression as well as 

decrease in the number of CD133+ cells (Li, Wei et al. 2010). Taken 

together, STAT3 appears to act as a regulator of CD133 expression in 

colorectal cancer. 

While screening cell lines for an effect of STAT3 Knockdown, it was 

noticed that STAT3 was expressed in SW837 (appendix 9.6) but CD133 is 

not expressed in this cell line. A plausible explanation is that CD133 

expression could be inhibited by epigenetic modification. This notion was 
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supported by the finding that DNA methylation suppressed CD133 

expression in CD133 negative progeny of CD133 positive cells (Saba, 

Convery et al. 2009). In line with these findings, this study revealed that 

treatment of SW837 cell line (negative expresser of CD133) with 5-aza-2'-

deoxycytidine recovered CD133 expression. The later data are 

corroborated with other studies in colorectal cancer which showed that 

CD133 expression was modified by epigenetic regulation through promoter 

methylation status. For instance, a study showed that CD133 promoter 

hypermethylation was only found in colon cancer tissue compared to 

normal colon samples, furthermore hypermethylation was associated with 

repression of CD133 expression (Yi, Tsai et al. 2008). Similarly, other 

studies showed the influence of, CD133 promoter methylation on CD133 

expression in colon cancer'(Jeon, Kim et al. 2010), ovarian cancer (Saba, 

Convery et al. 2009), breast cancer (D'Anello, Sansone et al. 2010), and 

glioma (Tabu, Sasai et al. 2008). 

As a conclusion, this study revealed that CD133 might be controlled by 

STAT3 or DNA methylation under unique circumstances. Furthermore, 

CD133 might not be a Wnt signalling target. Although CD133 enhances the 

motility of cancer cells, this appears not to be through regulation ,of either 

E-cadherin or ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ Ｎ . In addition, according to this study the relation 

between CD133 and Cten in colorectal cancer is still unclear and warrants 

further investigations.· 
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7 Chapter 7: CD133+ colorectal cancer cells are associated 

with stem cell markers 

II 
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7.1 Abstract 

Background and aim: Data in chapter 5 showed that CD133 might be 

associated with features of sternness; however, CD133 expression in the 

cell lines ranged from 0-95%, so, it is unlikely that CD133 can be 

considered as an absolute marker for CSCs. We hypothesized that CD133 

expression may be associated with other stem cell markers. 

Methods: SW480 cell line was sorted using MACS, and then qRT-PCR for 

assessment of expression of five stem cell-related genes (Musachi-1, 

Oct4, LgrS, KLF-4, and Nanog) in the sorted CD133+/- populations was 

conducted. 

Results: All stem cell related genes were highly expressed in CD133+ 

than in CD133- populations and this difference was statistically significant 

with the exception of Lgr5 (p=O.03, p=O.008, p=O.004, p=O.006, p=O.001, 

and p=O.11;unpaired t-test, for CD 133, KLF-4, Musashi-1, Oct4, Nanog, 

and LgrS respectively) 

Conclusion: CD133+ cells were enriched with cancer cells that harbor 

stem cell ｲ ･ ｬ ｾ ｴ ･ ､ d genes. 
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7.2 Introduction 

Our data have shown that CD133 expressing cells were associated with 

greater colony forming efficiency, and are resistant to apoptotic stress 
.. 

compared to their CD133 negative counterparts (leta, Tanaka et al. 2008; 

Zobalova, McDermott et al. 2008). Thus, by these criteria, CD133 might be 

considered as a marker associated with features of sternness. However, 

the percentage of tumour cells showing CD133 expression in the CRC cell 

lines was variable ranging from 0 - 950/0. From this, it is unlikely that 

CD133 is an absolute marker of CSC. This led us to wonder whether 

CD133 expression was associated with other stem cell markers and 

whether, in future, a panel of markers could be developed to define more 

precisely CSCs. 

.t 

In recent years a number of markers have been identified which, when 

induced in terminally differentiated cells, are able to re-program the cells 

into pluripotent stem cells (Takahashi and Yamanaka 2006; Yu, Vodyanik 

et al. 2007). These markers of induced pluripotent stem cells (iPS) include 

Kruppel-like factor 4 (KLF-4) , Octamer binding transcription factor 4 (Oct4), 

and Nanog·· - these are transcription factors that are important for 

development and maintenance of pluripotent cells. It has been stated that 

KLF-4, which plays an important role in a number of cellular processes 

such as cellular proliferation, differentiation and maintenance of stem cells, 

is involved in the process of carcinogenesis througl1 its function as both 
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tumour suppressor and oncogene depending on tissue type and cellular 

context (Rowland and Peeper 2006). 

Oct4 (POU5F1) is a transcription factor that is involved in maintenance of 

self renewal and pluripotency of human embryonic stem cells (Pesce and 

Scholer 2001). Moreover, Oct4 was expressed in germ cell tumours and 

used as a diagnostic marker for subtypes in germ cell tumours (Cheng, 

Sung et al. 2007), suggesting that Oct4 contribute to malignant 

transformation of primordial. germ cells (Kehler, Tolkunova et al. 2004). 

Several studies have reported that Oct4 expression can be detected in 

adult somatic stem cells and different cell lines (Steingart, Heldenberg et 

al. 2002; Tai, Chang et al. 2005). 

Similarly, Nanog is a transcription factor that is also involved in 

maintenance of self renewal and undifferentiated state of embryonic stem 

cells (Pan and Thomson 2007). Along with Oct4 and Sox2, it is involved in 

the reprogramming of differentiated cells into stem cell state (Takahashi 

and Yamanaka 2006; Yu, Vodyanik et al. 2007) 

Other propC?sed markers for CRC cancer stem cells include Musashi-1 

(Msi-1). This is an RNA binding protein that is involved in the asymmetric 

divisions of neural stem/progenitor cells (Kaneko, Sakakibara et al. 2000). 

In addition, it regulates the expression of several genes involved in cell 

cycle regulation, proliferation (de Sousa Abreu, Sanchez-Diaz et al. 2009). 

In mammary epithelium, expression of Msi-1 leads to inhibition of 
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Dickkopf3 (Wnt inhibitor) and activation of proliferin1, which in turn 

activates the Wnt pathway and Notch in mammary stem/progenitor cells 

(Wang, Yin et al. 2008). In mice and humans, it has been found that Msi-1 

is preferentially expressed in the intestinal stem / progenitor cell regions, 

suggesting its role as a marker for stem/ progenitor cells (Kayahara, 

Sawada et al. 2003; Potten, Booth et al. 2003) 

Leucine-rich repeat-containing G-protein coupled receptor 5 (LgrS) , which 

is a G-protein couple receptor and a downstream target gene of Wnt 

signalling pathway, was identified as a marker for intestinal stem cells 

(Barker, van Es et al. 2007) and hair follicles stem cells (Morris, Liu et al. 

2004). In colon cancer, Zhu et al. stated that Igr5 positive intestinal stem 

cells also expressed CD133 that is susceptible to neoplastic transformation 
I' 

(Zhu, Gibson et al. 2009). 

The plasticity of CD133+ cells and their ability for self renewal would 

predict that CD133+ cells harbouring genes related to stem cell 

maintenance. Therefore, the aim of this study is to assess the expression 

of stem cell related genes involved in stem cell maintenance and 
.. 

reprogramming of differentiated cells in CD133+ and CD133- cells by qRT-

PCR. 
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7.3 Results 

7.3.1 MACS sortin&: ofSW480 cell line 

In order to investigate the relationship between expression of CD133 and 

other stem cell markers, we sought to test the CD133+/CD133- populations 

derived from the bimodal cell lines. We have shown, by flow cytometry, 

that in SW480 there is a CD133+ population comprising approximately 

40% of the total tumour cell population. Because MACS is less time 

consuming than FACS in collecting large volume of either positive or 

negative populations, SW480 was sorted into CD133+/- populations by 

MACS (see Materials and Methods). The purity of CD133+ cells was 88%, 

while CD133- population was 760/0 as shown by post-sorting flow cytometry 

analysis (figure 7-1 ). 

88% 

/\ C0133+ 
:k' 
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Figure 7-1: Purification of Sorted populations of SW480 cells 

24% 

Sw480 cell line was sorted using MACS, and the sorted populations were subjected to 
post sorting flow cytometry analysis. FACS analysis showed that sorted CD133+ cells 
were 88% pure (left histogram), while the CD133- cells still have 24% positivity (right 
histogram). Filled histogram (red) represents IgG isotype control 
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7.3.2 peR optimization and data analysis 

The expression of genes involved in the stem cell maintenance pathways 

such as Oct4, Nanog, KIf-4, Musashi-1 and LgrS were scrutinized by qRT-
.' 

PCR. First, primers for these genes were designed with the help of 

Primer3-web (v. 0.4.0) (http://frodo.wLmit.edu/primer3/input.htm). Then, the 

specificity of the primers was checked with primer blast (http://www 

.ncbLnlm.nih.gov/tools/primer-blast). For qRT-PCR, primers annealing 

temperature was first optimised. For the purpose of primers annealing 

temperature optimisation, a wide range of annealing temperatures from 

530C - 62°C were used to obtain a high quality PCR amplified product. The 

PCR products were then subjected to 10
/ 0 agarose gel electrophoresis to 

discover the effect of different annealing temperature and. to further 

validate the specificity 0(1 the primers (Figure 7 -2). Then, cDNA of 6 

different cell lines (SW480, SW620, Lovo, HCT116, SW837, and HT55) 

was screened for the different levels of the stem cell related genes, and the 

cell line with the lowest Ct (cycle threshold) value which indicates" high 

expression was used as a template for initiation of standard curve for each 

of these ｧ ･ ｾ ｾ ｳ Ｎ . This experiment showed that HCT116 was high in case of 

Musashi-1 (27.28), and Oct4 (28.38), while SW620 was high in LgrS 

(27.17), and SW480 high in Nanog (26.66) and KLF-4 (23.73) based on Ct 

value shown between brackets. 
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Figure 7-2: Agarose gel electrophresis for gradient annealing temperature. 
Annealing temperature was optimised by doing gradient temperature in order to yield a 
high quality PCR product. A temperature range from 53°C-62°c was used (lane 1-10), 

lane 11 represent no template control (NTC). Agarose gel electrophoresis showed PCR 
products at the correct expected size which are 191, 183, 181, 169, and 213 bp for 
Musashi-1, Oet4, Lgr5, KLF-4 and Nanog respectively. A 100 bp DNA ladder 'was used 

(M). 

With the use of the aforementioned cell lines, a standard curve was 

initiated for each gene primer using different annealing temperatures in 
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order to get the best peR efficiency (Figure 7-3). After several 

experiments, the best efficiency for KLF-4 was 970/0, Lgr5 was 96.8%, Msi-

1 was 94.7%, nanog 111 %, and Oct4 was 85.5%. Moreover, melting curve 

analysis revealed specificity of the primer (for primer sequence, amplicon 

size and optimum annealing temperature see material and methods 

section 2.8). 
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Figure 7-3: Standard curve efficiency for different gene primers 
This figure illustrated the efficiency of standard curve for different gene primers studied. 
Also, melting curve analysis revealed a single product indicating the specificity of the 
primers used. 
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After obtaining a good PCR efficiency, cDNA from sorted CD133+/-

populations was tested for each gene. Each experiment was done twice 

with triplicates for each sorted population. As shown in figure 7-4, the stem 

cell related genes such as Oct4, Nanog, KLF-4, Msi-1, Lgr5 and CD133 

were more highly expressed in CD133+ than in CD133- populations and 

this difference was significant when performing unpaired t-test with the 

exception of Lgr5. 
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Figure 7-4: qRT-PCR analysis of different stem cell related genes in sorted CD133+/-
cells 
This figure showed expression of different stem cells related genes in sorted C0133+/-
populations of SW480 cell line. The data revealed that Oct4, Nanog, Msi-1, Klf4, and LgrS 
were preferentially expressed in C0133+ cells compared to negative counterpart and this 
expression was statistically significant using unpaired t-test with the exception of LgrS. 
Data represent mean of 2 independent experiments ± SO with triplicate for each condition. 
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7.4 Discussion 

Recently, there has been accumulating evidence supporting the hypothesis 

that human cancer development could be attributed to a small population 

of cells with stem cell like features termed CSCs. I n several cancer types; 

CD133 is used to isolate this group of cells (Huang, Dong et al. 2006; 

Suetsugu, Nagaki et al. 2006; Brown, Gilmore et al. 2007; Li, Heidt et al. 

2007; O'Brien, Pollett et al. 2007). 

Several studies support the' notion that CD133 expression is associated 

with stem cell features such as self renewal capability and sphere 

formation. Consistently, several studies in many solid tumours have 

demonstrated that CD133+ cells, unlike CD133- counterparts, are able to 

grow as tumour spheres in )Iitro, and to develop tumours in a mouse model 

(Beier, Hau et al. 2007; Ferrandina, Bonanno et al. 2008; Friedman, Lu et 

al. 2009). In colon cancer, several studies support the fact that CD133 

positive cells are able to induce tumour self-renewal and possess higher 

colony forming ability in vitro than CD133 negative cells (Ricci-Vitiani, 

Lombardi et al. 2007; leta, Tanaka et al. 2008; Li, Xiao et al. 2008) with the 

exception o{Shmelkov et al. (Shmelkov, Butler et al. 2008) 

Several studies have demonstrated the involvement of a number of 

transcription factors such as KLF-4, Oct4, and Nanog, in reprogramming 

the differentiated cells into pluripotent stem cells and maintaining their self 

renewal ability (Takahashi and Yamanaka 2006; Yu, Vodyanik et al. 2007). 
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In addition, other markers have been used to identify intestinal stem cells; 

LgrS and Musashi-1 (Potten, Booth et al. 2003; Barker, van Es et al. 2007). 

On account of this information, SW480 cell line was purified into CD133+/-

populations using MACS and the sorted populations were examined for the 

expression of Oct4, Nanog, KLF-4, LgrS, and Musashi-1. Although the 

purity of CD133+ and CD133- populations was not as high as that obtained 

with FACS, it was still in line with another study in hepatocellular 

carcinoma where MACS sorting of hepatocellular carcinoma cell line 

resulted in 84% CD133+ cells and CD133- cells still containing 23% 

positivity of CD133 (Kohga, Tatsumi et al. 2010). However, this purity is not 

similar to other studies using MACS for isolation of CD133+/- populations. 

A plausible explanation for this discrepancy, in this study we used two step 
II 

labelling of the cells (first cells were labelled with CD133 conjugated with 

PE, then anti-PE microbeads were used) rather than a single labelling step 

(using anti-CD133 conjugated to microbeads). This may cause escape of 

some of CD133-PE labelled cells for being attached to anti-PE microbeads 

resulting in escape of some of positive cells during magnetic sorting. 

QRT-PCR data revealed that CD133 mRNA expression in CD133 + cells 

was double that in CD133- cells, which in contrast to what we found earlier 

after FACS. This contradiction might be due to the low purity of the sorted 

population. Moreover, PCR data showed that CD133 expression was 

associated with the expression of the other proposed CSC or iPS markers. 
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I n contrast to these data, Saigusa et al. found that there was no correlation 

between CD133, OCT4 and Sox2 expression in colorectal cancer by 

immunohistochemistry (Saigusa, Tanaka et al. 2009). However, our data 

are in agreement with other studies in different tumour types which have 

demonstrated that CD133+ cells expressed stem cell related genes such 

as OCT 4, Sox2 and Nanog in liver (Kordes, Sawitza et al. 2007), breast 

(Wright, Calcagno et al. 2008), glioblastoma (McCord, Jamal et al. 2009), 

thyroid (Friedman, Lu et aI., 2009), and lung (Bertolini, Roz et al. 2009). 

Moreover, in glioblastoma, qRT-PCR revealed that mRNA expression of 

stem cell gene such as Nanog, OCT 4 and KLF-4 was higher in CD133+ 

than CD133- population (Zbinden, Duquet et al.). 

-. 
To sum up, this study showed that CD133+ cells were enriched with 

,t 

cancer cells that are endowed with expression of sternness related genes. 
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8 General Discussion 
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Introduction 

Colon cancer is a serious health problem worldwide and in the UK. In the 

UK, it is the third common cause of death (2010). Despite advances in 

chemotherapy, metastases still represent a common challenge in affecting 

the prognosis of patients (Ratto, Sofo et aI.1999). In recent years, a 

cancer stem cell theory has emerged and according to this theory, these 

cancer stem cells are responsible for growth, metastases and 

heterogeneity of the tumour (Reya, Morrison et al. 2001; Brabletz, Jung et 

al. 2005; Burkert, Wright et al. 2006). Currently, there has been a dramatic 

increase in the evidence supporting the cancer stem cell theory which led 

to a surge of interest towards isolation and characterization of these cells 

in different solid tumours. 
II 

Researchers have been challenged by the identification of normal stem 

cells in adult tissue and have used different techniques to identify these 

cells such as morphology (Karam 1999) or the dye-exclusion method (i.e 

side populations) (Chiba, Kita et al. 2006). Recently, cell surface markers 

have been !dentified on these cells with the help of fluorescence-labelled 

antibodies and flow cytometry (Ebener, Brinkmann et al. 2000). Generally 

these putative markers of normal stem cells have been used to identify 

possible tumour stem cells and to isolate them in order to assess the stem 

cell-like features (such as self renewal, and differentiation ability) of these 

cancer cells. 
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Within this context, several studies have used several cell surface markers 

such as CD44, CD24, ESA, ｡ Ｒ ｾ Ｑ 1 integrins, ALDH1, and CD133 to isolate 

the tumour stem cells. Cells expressing these markers have been found to 

be capable of initiating tumours in vivo, grow as spheres in vitro as well as 

have the ability to self renew when serially transplanted, hence supporting 

the concept of cancer stem cells (AI-Hajj, Wicha et al. 2003; O'Brien, 

Pollett et al. 2007; Prince, Sivanandan et al. 2007). 

One of these markers is CD133, which is a five transmembrane 

glycoprotein molecule with a molecular weight of - 120 KD (Miraglia, 

Godfrey et al. 1997). In humans, CD133 has been shown to be located at 

the apical plasma membrane protrusio.ns (Corbeil, Roper et al. 2000). 
It 

Although the function of CD133 is not known, a role in cell polarity, 

migration, cell - cell interaction, and lor interaction with extracellular matrix 

has been suggested due to its localization (Shmelkov, St Clair et al. 2005). 

Initially, CD133 was reported to be a marker of normal haematopoietic 

stem cells (Yin, Miraglia et al. 1997) although now it is considered a 

putative marker of cancer stem cells in many solid tumours such as colon 

cancer (O'Brien, Pollett et al. 2007; Ricci-Vitiani, Lombardi et al. 2007), 

glioma (Singh, Clarke et al. 2003; Bao, Wu· et al. 2006), hepatocellular 

carcinoma (Suetsugu, Nagaki et al. 2006), melanoma (Rappa, Fodstad et 

al. 2008), thyroid carcinoma (Zito, Richiusa et al. 2008), and pancreatic 

cancer (Olempska, Eisenach et al. 2007). However, its role as a sole 

cancer stem cell marker is still debatable. 
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The work conducted in this thesis was to (i) examine the frequency and 

distribution of expression of CD133 in colorectal cancer and its relationship 

to tumour clinicopathological characteristics and patients' clinical outcome, 

(ii) identify the biological characteristics associated with CD133 expression, 

(iii) delineate the mechanistic basis that could be possibly implicated in the 

regulation or the function of CD133 in colorectal cancer, and (iv) study the 

molecular features of stem cell related genes in CD133 expressing cells. 

Clinical implications of CD133 expression 

Apart from characterization of cells expressing stem cell markers, it is of 

utmost importance to study the impact of expression of these markers on 

the clinical outcome. However, this field of research could face a lot of 

challenges. For instances, several studies have shown that more than one 

marker may be required to identify these cancer stem cells which is 

technically easy in fresh tissue with the use of flow cytometry technique 

(AI-Hajj, Wicha et al. 2003; Li, Heidt et al. 2007; Vi, Zhou et al. 2007). 

However, in formalin-fixed paraffin embedded tissue, only a single antibody 

using immunohistochemistry technique can be applied on each section. 

Another challenge is that, in order to translate the cancer stem ｣ ･ ｬ ｾ ~ markers 

into clinical practice, these markers should support the cancer stem cell 

model in determining the prognosis of the patient and response to 

treatment (Woodward and Sulman 2008). 
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The impact of CD133 expression on clinical patients' outcome has been 

assessed in several solid tumours. These studies showed that CD133 is a 

prognostic factor for low patient survival (Klein, Wu et al. 2007; Horst, 

Kriegl et al. 2008; Maeda, Shinchi et al. 2008; Pallini, Ricci-Vitiani et al. 

2008; Song, Li et al. 2008; Tong, Zheng et al. 2008). 

In this study, the impact of CD133 expression on clinical outcome in 

colorectal cancer was evaluated by immunohistochemical staining of a 

larger series of 449 cases of primary colon cancer samples and 45 cases 

of matched primary and liver metastases constructed as TMAs. CD133 

was found to be an independent prognostic factor for low patient survival in 

colorectal cancer but without any correlation with any of the 

clinicopathological variables and no difference in expression between 
It 

primary and metastatic cases. Other reports have shown similar findings in 

colon cancer (Ferrandina, Bonanno et al. 2008; Horst, Kriegl et al. 2008; 

Kojima, Ishii et al. 2008; Liu, Li et al. 2009). Moreover, several studies 

revealed that CD133 was a predictive marker for non-response to 

treatment in colon (Yasuda, Tanaka et al. 2009; Nakamura; linuma et al. 

2010; Ong,. Kim et al. 2010), and lung (Salnikov, Gladkich et al. 2010). 

Taken together, our data and other studies, CD133 is an independent 

prognostic factor in colorectal cancer. Although promising as a prognostic 

and predictive marker, several issues should be taken into account before 

translating these laboratory studies into clinical oncology. Notably, these 

studies have used different cut-off points dividing the data into low and 

high, different antibodies, testing small sample size. All these issues 
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resulted in variation in judging whether CD133 of prognostic or predictive 

values or correlated with any of the clinicopathological variables. 

CD133 mRNA expression is higher in metastatic than primary 

colorectal cancer cell lines 

Since CD133 might playa role in predicting patient clinical outcome, it was 

of interest to study the biological characteristics of CD133 expressing cells. 

As gene silencing and forced expression techniques were difficult to be 

applied for primary clinical samples, it was reasonable to use colorectal 

cancer cell lines as a model for studying the characteristics of CD133 

expressing cells. A number of ｣ ｯ ｬ ｯ ｲ ･ ｾ ｴ ｡ ｬ l cancer cell lines were first 
.1 

screened for the level of CD133 mRNA level. Interestingly, it was found 

that CD133 mRNA expression level was higher in colorectal cancer cell 

lines derived from metastatic sites compared to the cell lines derived from 

sites of primary tumours. In line with these data, recently, two studies in 

colorectal cancer showed that high CD133 mRNA was correlated with 

Iymphovascular invasion, lymph node involvement and depth of invasion 

(Huh, Park et al. 2010) and associated with shorter survival (Artells, 

Moreno et al. 2010) suggesting that CD133 mRNA level could be' used as 

a new diagnostic and therapeutic tools in CRC patients. 
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CD133 as stem cell marker 

Given that, as reported in the literature, CD133 may represent a stem cell 

marker, it was reasonable to study the biological characteristics associated 

with CD133 expression in colorectal cancer. 

Two approaches were used to compare functional characteristics of 

CD133+ cells with CD133- cells. Firstly gene silencing using RNAi 

technique was employed to inhibit gene expression. Secondly, the 

identification of biphasic populations allowed sorting of cells in this CD133+ 

and CD133- populations. Sorting technique of cells into CD133+/-

populations was conducted as a complementary approach to explore 

CD133 biological functionaUty. 

Data in this study showed that CD133 expressing cells had enhanced 

migrating ability, colony formation and resistance to apoptotic stress 

induced by staurosporine, compared to the negative counterparts in in vitro 

studies. Moreover, CD133+ cells were able to produce both progeny 
.. 

(CD133+/- populations) after prolonged culture, and surprisingly, CD133-

cells similarly reverted to a biphasic phenotype. During the current project, 

ｭ ｾ ｮ ｹ y studies showed the same findings in colon cancer (leta, Tanaka et 

al. 2008; Puglisi, Sgambato et al. 2009; Kawamoto, Yuasa et al. 2010), 

and many different tumour types such as glioma (Singh, Clarke et al. 

2003), hepatocellular carcinoma (Suetsugu, Nagaki et al. 2006; Yin, Li et 
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al. 2007) pancreatic (Moriyama, Ohuchida et al. 2010), thyroid (Zito, 

Richiusa et al. 2008) ovarian (Ferrandina, Bonanno et al. 2008; Curley, 

Therrien et al. 2009), endometrial cancer(Rutella, Bonanno et al. 2009), 

and lung cancer (Eramo, Lotti et al. 2008; Bertolini, Roz et al. 2009). 

Having identified CD133 expressing cells were associated with some stem 

cell-like features, we next set up to investigate the expression of stem cell 

related genes such as Oct4, Nanog, KLF-4, Musashi-1, and Lgr5. First, we 

sorted one of the cell lines into CD133+/- population by MACS. However, 

the level of purity of CD133- populations was low; qRT -PCR analysis of 

CD133 mRNA expression level was higher in CD133+ cells than that in 

CD133- population. Then mRNA level of sternness related genes were 
II 

assessed. Interestingly, data from this analysis showed that mRNA levels 

of sternness related genes were higher in CD133+ cells compared to their 

negative counterpart, indicating that CD133+ cells are enriched with 

associated with a stem cell-like signature. 

O'Brien et al. reported that there was one colon CSC in 262 CD133 + cells 

(O'Brien, Pollett et al. 2007). In another study, it was shown that 1 in 20 

CD133 + cells have a clonogenic ability, and this ability was increased into 

1 in 5 when CD133 coexpressed with CD24 (Vermeulen, Todaro et al. 

2008). As has been stated, and together with our findings that CD133 

expressing cells were endowed with stem cell like features and expressed 

higher levels of stem cell related genes, we can conclude that not all· 
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CD133 expressing cells were cancer stem cells, and CD133 alone could 

not identify all these cells. 

One of the limitations of this study is the absence of an animal model to 

justify the tumourigenic and metastatic potential of CD133 expressing cells. 

To do an animal model study, either gene silencing or CD133 stably 

transfected cell lines should be used. In this study, the siRNA used for 

CD133 gene silencing is short lived and not suitable for the animal studies. 

However, constructs expressing small hairpin (sh) RNAs that are stably 

transfected into the cells will be suitable, but this technique was not 

available in the laboratory. Another possibility would be to stably express 

CD133 in a cell line which is CD133- (such as DLD10r SW837). 
,I 

Unfortunately, during this study several attempts to generate cell lines 

stably transfected with a CD133 expression vector failed which could be 

due to inability of the vector to be integrated into the cell genome as these 

cells are cancer cells. However, many cancer cells have been successfully 

stably transfected, and it is much more likely that due to their resistance to 

the drugs used for selection of cells with integrated DNA, wt cell-lines were 

able to survive the selection process. An alternative approach would be to 

use another system e.g lentiviral system which more efficiently integrates 

DNA into genome increasing chance of stable expression. 

In summary, this study identified that CD133 may contribute to the 

observed migration, colony formation, a'nd resistance to apoptosis abilities" 
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in colorectal cancer. CD133 expressing cells are able to produce CD133+/-

progeny indicating the plasticity of these cells. Furthermore, stem cell 

related genes are higher in CD133+ cells than in CD133- populations 

suggesting the presence of cancer cell with stem cell-like signature within 

the CD133+ population. 

STAT3 and DNA methylation, but not Wnt signalling pathway 

regulate CDt33 expression 

Epithelial-Mesenchymal Transition (EMT) is a process of molecular and 

morphological changes that affects epithelial cells leading to gain of 
", 

mesenchymal features, increase in cell motility and which may play a 
,I 

fundamental role in invasion of tumour cells (Lee, Dedhar et al. 2006). 

Recent studies have demonstrated a coincidence between EMT and 

CSCs, and initiation of EMT has been shown to result in up-regulation of 

stem cell related "sternness" genes (Mani,Guo et al. 2008; Morel, LiA"vre 

et al. 2008). Altered expression of E-cadherin and ｾ Ｍ ｣ ｡ ｴ ･ ｮ ｩ ｮ Ｌ , key regulator 

elements ofEMT, has been noticed when CD133+ cells were compared to 

CD133- cells (Brabletz, Jung et al. 1998; Lee, Han et al. 2010). Our data 

however revealed no association between CD133, ｾ Ｍ ｡ ｣ ｴ ｩ ｮ n and E-cadherin 

expression which was consistent with another study (Horst, Kriegl et al. 

2009). 
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It is worth noting that Cten forced expression in cell lines was associated 

with a modest increase in CD133 level. The significance of this is uncertain 

and warrants further investigation (such as doing gene silencing for Gten 

gene in cell lines which express both CD133 and CTEN) since Cten is also 

an inducer of cell motility (Albasri, Seth et al. 2009). 

Previous studies have shown that STAT3 expression was high in CD133+ 

cells and it was assumed that STAT3 could contribute to the regulation of 

CD133 (Ferrand, Sandrin et' al. 2009; Li, Wei et al. 2010) . In the current 

thesis, data revealed that gene silencing of STAT3 resulted in down-

regulation of CD133 protein expression mirrored by decreased number of 

CD133+ cells by flow cytometry analysis. Moreover, CD133 mRNA level 

was also down-regulated ｾ ｴ ｳ ｩ ｮ ｧ g qRT-PCR. During the current study, and in 

line with the data from Li et al. , in glioblastoma stem cells, STAT3 down-

regulation was associated with a synchronous down regulation of CD133 

protein (U, Wei et al. 2010). In order to confirm the correlation of CD133 

with STAT3, STAT3 immunohistochemistry should be done and evaluate 

its correlation with CD133 expression. 

Interestingly, we found that blockage of the Wnt signalling pathway using 

dnTCF4 resulted in no effect on CD133 expression. With caution taken into 

consideration as regarding the aforementioned results, further validation by 

using Wnt inhibitors is required to prove or disprove such a relation 

between CD133 and Wnt signalling pathway. In line with our preliminary 

data, a study in colon cancer showed upregulation of Dickkopf homolog1 
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(DKK1, a Wnt signalling inhibitor) in the CD133+ compared to CD133-

counterpart (leta, Tanaka et al. 2008). Thus STAT3 signalling seems more 

important than Wnt signalling in regulating CD133 levels. STAT3 transduce 

signals for a variety of growth factors (such as Epidermal Growth Factor) 

as well as a number of cytokines. The mechanism of ST AT3 activation 

which results in increased CD133 expression needs further investigation. 

The CRC cell line SW837 was found to express STAT3 but not CD133; 

therefore, it was thought that another possible mechanism could be 

controlling CD133 expression. Promoter hypermethylation of CD133 has 

been reported in different tumour types such as glioma (Tabu, Sasai et al. 

2008), glioblastoma and colon cancer (Yi, Tsai e.t al. 2008), 'and ovarian 
,I 

cancer. (Saba, Convery et al. 2009) Hence, we sought to test for 

hypermethylation of CD133 in SW837. Using 5-aza-DC, we found 

heightened expression of CD133in SW837, indicating that either CD133 

promoter is methylated or methylation affected an upstream regulator of 

CD133. However, methylation specific PCR and bisulfate sequencing 

analysis for recognition of methylated and unmethylated sites should be 

performed to further investigate this, but due to time limitations they were 

not undertaken. 

Taken together from this study, CD133 expression was controlled, at least 

in part, by STAT3 and DNA methylation in a coordinated manner, but not 

with Wnt signalling pathway that may require further optimization of 
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dnTCF4 . trasnfection efficiency to verify these results. Moreover, CD133 

expression is not associated with E-cadherin, l3-actin, and at least partially, 

associated with Cten expression which may warrant further investigation; 

however, it may contribute to the migration ability of cancer cell through a 

different pathway. 

Concluding remarks 

The data presented in this thesis provide a perception into the importance 

of CD133 expression in colorectal cancer as an independent prognostic 

factor of low patient survival and the contribution of CD133 to increased 

migratory, colony forming" and resistance to apoptosis. Also, the data 

provide a new insight into the regulatory mechanisms of CD133 by STAT3 

which have a role in invasion, metastases and resistance of colon cancer, 

and epigenetic changes (such as DNA methylation), and not by Wnt 

signalling pathway which warrants further optimization to verify it. 

Furthermore, the stem cell molecular features were associated with its 

expression. In depth understanding of the mechanisms underlying CD133 

expression in colorectal cancer will enable translation of laboratory 

researches into targeted rationale therapy 
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Future prospects 

All these preliminary data in this thesis required more in depth studying in 

order to delineated the underlying mechanisms by which CD133 confer its 

migratory, colony forming, and apoptotic potentials. 

• In vivo animal studies using stable transfected cell lines are required 

in order to validate the tumourigenic potential of CD133. 

• Gene microarray analysis comparing cells either after CD133 

knockdown or CD133 forced expression. This will result a large list 

of genes, selection of genes will be based on whether they belong 

to any signalling pathways involved in the migration or apoptosis or 

any signalling pathways involved in maintenance of' stem cells . 
• 1 

These genes will be validated by qRT-PCR. 

• STAT3 immunohistochemistry in order to validate the correlation of 

CD133 and STAT3. 

• Further optimization of dnTCF4 transfection efficiency to verify the 

relation between CD133 and Wnt signaling pathway. 

• Methylation specific PCR and bisulfate sequencing analysis of 

CD133 promoter methylation status should be performed on cell 

lines with and without 5-aza-2' deoxycitidine treatment to further 

support the role of methylation in regulation of CD133. 
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9.1 pcDNA™3.1DjV5-His- TOPO® vector map 

Comrnen1s for pcDNATIIJ.1 DN5-H is-TOP()85514 
Ilucleotides 

CMV promoter: bases232-819 

pc[)NA 1'M3.1 DI 
VSH is-TO P()® 

5514 bp 

T7 promoter/priming site: bases 863-882 TOPOGl recognition 
site 1: bases 930-934 Overhang sequence (complementary 

strand): bases 935-938 
TOP(Yl ｲ ･ ｣ ｯ ｧ ｮ ｾ ｩ ｯ ｮ n ｳ ｾ ･ e 2: bases 9::9-943 V5 
epitope: bases1011-1052 
Po Iyhistidine (6xHis) tag : bases 1062-1079 
BGH reverse priming site: bases 1102-1119 
BGH polyadenylation signal: bases N08-1332 
5\140 early promoter and origin: bases 1833-2142 
Neo mycin resistance gene: bases 2217-3011 

SV40 early polyadenylation signal: bases 3189-3319 
pUC origin: ba ses 3700-4373 (complementary strand) 
Ampicillin (bla) resistance gene: bases4518-5378 (complementary strand) 
bla promoter: bases 5379-5477 (co mplementary strand) 

• _II ｮ ｶ ｩ ｴ ｲ ｯ ｧ ･ ｮ Ｇ ｾ ~
life technologies 
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9.2 Po/yUnker of pcDNA™3.1D jV5-His- TOPO® vector 

• __ I nvitrogen™ 
life technologies 

761 

3'endofCMVpromoter ｾ ~
ｾ ~ ｾ ~ "( I Putattvetranscrtpttonat start 

ｃ ｃ ｃ ａ ｾ ｾ ｇ ａ ｃ ｇ G CAAATGGGCG ｇ ｾ ａ ｇ ｇ ｃ ｇ ｔ ｇ ｾ ~ ａ ｃ ｇ ｇ ｾ ｇ ｇ ｇ ａ ｇ G GTCTATATAA ｇ ｃ ａ ｇ ａ ｇ ｃ ｾ ｃ ｾ ~ ｃ ｾ ｇ ｇ ｃ ｔ ａ ａ ｃ ｔ T AGAGAACCCA 

841 

T7 promolerlprlmlng sHe Hind III Asp719t Kpn t BamH I 

ｃ ｾ ｇ ｃ ｔ ｔ ａ ｃ ｔ ｇ G ｇ ｃ ｔ ｔ ａ ｾ ｃ ｇ ａ ａ A ATTAATA CGA ｃ ｔ ｃ ａ ｃ ｔ ａ ｾ ａ ｇ G GdAGACCCAA ｇ ｃ ｾ ｇ ｇ ｃ ｔ ａ ｇ ｾ ~ TAAGC'M'GGT ａ ､ ｃ ｇ ａ ｇ ｃ ｾ ｣ ､ d

EcoRV ｂ ｳ ｴ ｾ Ｑ 1 Not I Xhol 

GATCCAGTAC ｃ ｃ C ｾ Ｂ Ｇ Ｂ " GGT CM GAC MT TCT 
I I I I 

921 GCA GAT ATC CAG CAC AGT GGC GGC CGC 
ｃ ａ ｾ ｇ G GGAA . ｾ ｾ ｃ C CCA G'M' ｃ ｾ ｇ G

Lys Gly GIn Asp Asn Ser Ala Asp Ile GI n His Ser Gly Gly Ar g 

XbB I ApB I SBC II V5 epHop. 
I I I i 

984 TCG AGT CTA GAG GGC CCG CGG TTC GAA ｇ ｇ ｾ ~ AAG ｃ ｃ ｾ ~ ATC CCT AAC CCT CTC CTC GGT CTC GAT TCT 
Ser: Ser Leu Glu Gly Pro Ar g l Phe Glu Gl y Lys P r o I l e Pro Asn P r o Le u Leu Gly Leu Asp Ser 

--, ａ ｾ ~ I Polyhlslldlne region ｰ ｭ ｾ ~ t I BGH reverse prtmlng sHe 

1050 ACG CGT ACC GGT ｃ ａ ｾ ~ CAT CAC CAT CAC CAT' TGA GTTTAAACCC GCTGATCAGC CTCGACTGTG CCTTCTA'GTT 
Thr A[ g Thr Gly His His His His His His T*T 

priming site BGH polyadenylallon signal 
r---

1123 GCCAGCCATC TGTTGTTTGC CCCTCCCCCG ｔ ｇ G ｃ ｔ ｔ ｃ ｃ ｾ ｔ T GACCCTGGAA ｇ ｇ ｾ ｇ ｃ ｃ ａ ｃ ｔ ｃ C CCACTGTCCT TTCCTAATAA 

1203 AAT GAGGAAA 'M'GCATCGCA ｾ ｔ ｇ ｔ ｃ ｔ ｇ ａ ｇ ｔ T ａ ｇ ｇ ｾ ｇ ｔ ｃ ａ ｔ ｔ T ｃ ｔ T ｾ ｾ ｃ ｔ ｇ ｇ ｇ G GGGTGGGGTG GGGCAGGAC 
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9.3 Sequence of cloned CD133 

Sequencing data of T7 forward primer: 

CTGGCTGTTTAGCTTTGGTCCGAGCTCGGTCCAGTACCCTTCACCAT 
GGCCCTCGTACTCGGCTCCCTGTTGCTGCTGGGGCTGTGCGGGAAC 
TCCTTTTCAGGAGGGCAGCCTTCATCCACAGATGCTCCTAAGGCTTG 
GAATTATGAATTGCCTGCAACAAATTATGAGACCCAAGACTCCCATAA 
AGCTGGACCCATTG GCATTCTCTTTGAACTAGTG CATATCTTTCTCTAT 
GTGGTACAGCCGCGTGATTTCCCAGAAGATACTTTGAGAAAATTCTTA 
CAGAAGGCATATGAATCCAAAATTGATTATGACAAGATTGTCTACTAT 
GAAGCAGGGATTATTCTATGCTGTGTCCTGGGGCTGCTGTTTATTATT 
CTGATGCCTCTGGTGGGGTATTTCTTTTGTATGTGTCGTTGCTGTAAC 
AAATGTGGTGGAGAAATGCACCAGCGACAGAAGGAAAATGGGCCCTT 
CCTGAGGAAATGCTTTGCAATCTCCCTGTTGGTGATTTGTATAATAATA 
AGCATTGGCATCTTCTATGGTTTTGTGGCAAATCACCAGGTAAGAACC 
CGGATCAAAAGGAGTCGGAAACTGGCAGATAGCAATTTCAAGGACTT 
GCGAACTCTCTTGAATGAAACTCCAGAGCAAATCAAATATATATTGGC 
CCAGTACAACACTACCAAGGACAAGGCGTTCACAGATCTGAACAGTA 
TCAATTCAGTGCTAGGAGGCGGAATTCTTGACCGACTGAGACCCAAC 
ATCATCCCTGTTCTTGATGAGATTAAGTCCATG GCAACAG CGATCAAA 
GGAGACCAAAGAGGCGTTGGGAGAACATGAAACAGCACCCTTGAAGA 
GCTTGCACCAACAAAGTACACAGCTTAGCAGCAGTCTGACCAGCGTG 
AAAACTAGCCCTGGCGGTTCATCTCTCAATGACCCCTCTGTGCTTGGT 
GCCATCATCAAAGTGAATCTGCCACCAGCATCAGATTGTCTCTAGCCA 
GCCTGGATTAGCATCCTGAACCTGAGCAGGATTCACCTGAATGCAGA 
CTGGTACACACCGT 
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Sequencing results of BGH reverse primer: 

AGGGTAACTAAAGGGTGATGGTGATGATGACCGGTACGCGTAGAATC 
GAGACCGAGGAGAGGGTTAGGGATAGGCTTACCTTCGAACCGCGGG 
CCCTCTAGACTCGAGCG GCCGCCACTGTGCTGGATATCTG CAGAATT 
GTCTTGACCCTTTCAATGTTGTGATGGGCTTGTCATAACAGGATTGTG 
AATACCATATACATGATCTTTATGATAACCATTATTACCATTTTCCATAT 
TTTTCATGGGTATAGTTTCAACATCATCGTACACGTCCTCCGAATCCAT 
TCGACGATAGTACTTAGCCAGTTTTACCGCAAAAATTAGAGCCGGAAG 
TAAAAATACAGTAGCTTTTCCTATGCCAAACCAAAACAAATTCAAGGG 
GTCGATAATGTAGCTACACAGAAAGACATCAACAGCAGTATCTAGAGC 
GGTGGCCACAGGTTTGCACGATGCCACTTTCTCACTGATAGAGAACT 
CGATCCACTGCAGATAATGTTCAAAATATCCTATTATTGTTCTCCCATA 
CTTCTTAGTTTCCTCAATAATAACAGAGGAAGTATTGTTTGTGATGAAG 
TTCTGAGCAAAATCCAGAGAAGCTAGAATCCTAGTTACTCTCTCCAAC 
AATCCATTCCCTGTGCGTTGAAGTATCTTGACGCTTTGGTATAGAGTG 
CTCAGTGATTGTTCTATAGGAAGGACTCGTTGCTGGTGAATTGTTTTA 
ATAGTTTGTGCATCTCTTTTCAGGGAGTTCCTCAAATTTCCTGGGGGC 
AAACTGTTTGCTTTTGCTTCTAGATCATATGCAAATGATAAAAGATTCA 
ｃ ｔ ｃ ｃ ｔ ｇ ｃ ｇ ｇ ｇ ｇ ｇ ａ ｔ ｔ ｔ ａ ｃ ｃ ａ ｇ ｔ ｃ ｔ ｇ ｾ ｇ ｃ ｃ ａ ａ ｇ ｔ ａ ｇ ｃ ｔ ｇ ｔ ｃ ａ ｔ ａ ａ ｔ ｔ ｃ ａ A

TTCTGTCTATTCCACAAGCAGCAAAATCCTGAAGGTTTTTTCTTCCTGC 
TGCACCCAACAGAAGATATTAAGATTTACCTTCAGACTTTCCAATTCAC 
TGCTTATGCTCAGTATGCTCATATGTGAGATGTCACTGATATGAGCTG 
TCTGCAGTGAGAGTGCGTAGTGCTCTTATTTTTTTTTGCAGTCACTGTA 
CCTGTTCAAGTGAGCTCAATTTTGATTATAATAGCTCCGAAGATAGATT 
TCAGCTCATAGTAAGTAGGGGATCATCCGAAATCCTGGTCGGTAAGG 
TTTCA 
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9.4 BCA protein Assay kit instruction 

Preparation of Standards and Working Reagent (required for both assay procedures) 
.l ｐ ｲ ｾ ｰ Ａ ｬ ｲ Ｎ ｴ ｩ ｮ Ｎ . efTlilat .... Alhll1llD Ｈ ｒ ｾ ａ Ｉ ) ｾ ｢ Ｎ Ｂ ｕ Ｇ ｣ ｉ Ｂ "

t:se Table 1 :as a guide to prepare a SEt ofpron!:i!1 stmd:mls. Dilttte the contems of OlI.e Albm:nin St3Jld:Jrd (BSA) ｾ ･ e into 
5e'\-eral dean \ials, prefera.bly usi:ng fl.e S3Ille d.ilne:nt lIS the smcple{s}. Each lmI ampule of 2.0 mg/ml Albmnin Stmdaxd is 
mfficie:lt to prepare a set of cDlut:ed ｾ ､ ｩ i fur either work ing rmge sugge;ted:in Table 1. Th.er! Vtill be suffidem: ｜ Ｂ Ｂ Ｐ Ｑ ｾ ~
for three replications of each dilu..."ed sta:J.d.ud. 

Table 1.. Preparation ofDilmedAl'bu:mi:l (BSA) Stmhrds 

Dihttion Scheme for St:mda!d Test Tube Protocc>l and Microplate Procedure (U'or:k:ing Rmge = 20-2,000 Jlg,'ml) 
ViiI Volum@ of Dil'UDt Volume IDd S01lnf .ofBSA Fi!l21 BSA. CGlICfDtratilOD 

A 0 ),00 ｾ ~ of Z10ck 2,000 .... ;.'i:nl 
B Ｑ Ｒ Ｕ ｾ ~ ],75 ｾ ~ of Stock 1,500 J.lg.1Jll 
C Ｓ Ｒ Ｕ ｾ ~ ],25 ｾ ~ of Stock ｉ ｾ ｏ ｏ ｏ O ｊ Ｎ ｬ ｾ Ｇ ｭ ｬ l

D Ｑ Ｗ Ｕ ｾ ~ 175 J.&l of \ial B. dilation 750 ｾ ｬ ｧ ｬ ｭ ｬ l
E Ｓ Ｒ Ｕ ｾ ~ 325 J.&l ohial C dilation 500 pg'ml 
F Ｓ Ｒ Ｕ ｾ ~ 325 Jd of\ial B. dJ11Iti.on 250 pglml 
G Ｓ Ｑ Ｕ ｾ ~ 325 JA of\i3l F dihttian 125 ｾ ｬ ｧ Ｂ ｭ ｬ l
H Ｔ Ｐ Ｐ ｾ ~ 100 jJl of \'i3l G dihttion 25 J,lg''ml 
I 400ul 0 o l' ｾ Ａ ｭ ｉ I = BI.a:lk 

Dilc:iOll ｓ ｾ ~ for ｾ ｣ Ｚ ･ ､ d Te.t Tube f'rotoc.ol (\'Itcukin; R4n;e - 5 :!50 ,",S'ml) 

ViiI Vomm@ of DilUfJlt ｖ ｯ ｬ ｵ ｭ ｾ ~ IDd SOUCf ofBS.-\ Finl BS.\ CGlICfDtratilOD 

A Ｗ Ｐ Ｐ ｾ ~ 100 ｾ ~ of Stock 250 pg"ml 
B Ｔ Ｈ ｬ Ｈ Ｉ ｾ ~ 400 ｾ Ｆ ｬ Ｎ . of \'i3l A di.lntion 12 5 pg "ml 
C Ｔ Ｕ Ｐ ｾ ~ 300 J.&l of \ial B. dilmion ".50 J,lg''ml 
D Ｔ ｏ ｏ ｾ ~ 400 J.&l of \ial C dilution 25 J,lg''ml 
E Ｔ ｏ ｏ Ｇ ｾ ~ 100 jJl of \lal D dilntion 5 pg/mI 
F 4OO!'l 0 o !J ｾ Ｌ Ｇ ｭ ｉ I = Bl:mk 

B. PreparatioB of thoe BCA W orkill: Rt agut (WR) 

1. Use Ihe foUowillg for::nnla to detenni:Ile the total wlmr.e ofV,'R.. required: 

(# sblld3rds + Ｃ Ｑ ｬ ｉ ｬ ｫ ｮ ｾ Ｑ Ｑ ｓ Ｉ Ｉ Ｈ ( (#replicates) lC (\"Olm:ne of\VR. per sa:mple) = total ｾ ｯ ｨ ｭ Ｚ Ｎ ･ e WRIeqIri:red 

Ex.aIq>le: for the stan.dard test-mbe procedure "\\;:h 31l:1kll.OWI1S-and 2 I!plialtM Df ｾ ｣ ｨ h sm:p1e: 

(9 sllndards + 3 a:Wlmn1s) )( (2 repliCJtI!5) )C (2 mI} = "S ml \"\1l required 

Note-: 2.-0 ml of the WR. is reqtrind for eachs3:D!ple in the test-tube procedore, w.bile oIlly 200 111 of\v1l ｲ ･ ｡ ｾ ｴ ｩ ｳ s
ｾ ~ for uc:h umpla :in the miaopt2ta prooead-ure. 

2. Prep3I! ViR. by mWng 50 p3ItS ofBCA ReJgem A \\iIh I pm .afBCA ｒ ･ ｊ ｾ ~ B (50:1, Reagent A:B). For the abm'! 
･ ｄ ｉ ｉ ｬ ｐ ｬ ｾ ~ combine 50:ml af Reagent A 1l;:h 1 mlDfReagent B. 

Note-: \V1len Reagent :B is first addM to Reagl!-Ilt A, tmbi.dity is ｯ ｢ ｳ Ｎ ･ ｮ ｲ ｾ ~ that quickly di:s3ppean upoIl mi:xil1g to yield a 
Ut:1II, Ａ ［ Ｑ ｾ ~ WE_ PlqJ ｡ ｵ ｾ ~ ｾ ｵ ｾ ~ wlAlWt!! u! \\>"B. ｾ ~ UlL IlIe ull.Wln:a "'! ｾ ｬ ｴ Ａ ｾ ~ tu W ｾ ｊ Ｇ Ｆ & 'Tlw Wlt U Ａ ｉ ｢ ｉ ｵ ｾ ~ {w 

se\-er31 days "'hen stored in 3 closed container at room tem.p.eI'3tlIre (R.'l). 
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Microplate Procedure (Sample to WR ratio = 1:8) 
1. Pipette 25 ,Ill of each stmd3rd OI'llDmOWU sample replicate into a miat"plate wEll (working range = 20-2,000 pg''ml). 

Not.: Ifsample size is limited, 10 pI of eo llDknown samploe a!ld stmdard em be used (smIple to \lJ"R ratio = 1:20). 
Howeo.-er, the wotting range of the &sS3)' m this case will be timited to 125-2,000 Jig/ml. 

2. Add 200,lll oflhe \VR to each well and mix plate thoroughly 011 a plate shak& for 30 seconds. 

3. Cm'er plate and incubate at 37"C for 30 minutes. 

4. Cool pUte to RT. 

5. Measure the absOO>ance at or De3I' 562 DD1 Oil a plate reader. 

NotM: 
• Wa .... elengths from 540-590 DD1 moe bem used successfully \\ith this method. 

• Be<:mse plate readers use • shaner light psth length than. ｣ ｵ ｾ Ｇ ･ ｴ ｴ ･ e q:«troph.otDme1l!rs, the Microplate Procedure 
requires. greater sample to ,\\'R ratio to obtain the same s.ensiti\ity as the ｾ ｭ ､ Ｓ ｲ ､ d Test Tube Procedure. Ifhigher' 
562 DIll measuremmts are desired, incnase the iDcubatiOll time 10 2 hOllI'S. 

If 
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9.5 Western Blot protocol 

(1) Prepare the 50S polyacrylamide gel 
ｾ ~ Clean the plates and the comb with mild detergent and soft cloth. 
ｾ ~ Put the two plated together with the thinner one in front. 
ｾ ~ Slide the plates carefully into the green clamp. 
ｾ ~ I nsert the comb and mark a fill level 1 cm below the bottom of 

the wells .. 
ｾ ~ Prepare the monomer solution for the running gel as per table. 

Final gel concentration (1 Oml, 2 each, 0.7Smm thick SE2S0 
gels) 

10% 
Monomer solution (gel) 3.3ml 
4x Running Gel Buffer (1.5M Tris-HCL PH 2.Sml 
10% SOS 0.1ml 
dH20 4ml 
APS* SO pI 
TEMEO 3.3pl 

* 100/0 APS should be prepared first 
It 

ｾ ~ Pour the gel into the plates, and then overlay the gel with 200J,J1 
of 10/0 SDS. 

ｾ ~ While the gel is polymerizing, prepare the stacking gel as per 
table. 

0.7Smm 
Monomer solution 0.44ml 
4x Stacking Gel Buffer(O. SM Tris-HCI Ph 0.83ml 
10% SOS 33pl 
dH20 2.03ml 

APS 16.7pl 

TEMEO 1.7pl 

Stacking gel solutions (for two gels) 

ｾ ~ Insert the gel into the electrophoresis unit with the larger thicker 
plate to the outside. If not running two gels insert the clear plastic 
plate against the gasket and close the tabs. Mark the location of 
the well by a permanent marker. Add tris-glycine electrophoresis 
buffer (10% Tris-g/ycine buffer). 

ｾ ~ Remove the comb carefully. 
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ｾ ~ Make 4X loading buffer by adding 95111 of loading buffer + 5111 
fJ- mercaptoethanol. 

ｾ ~ Prepare the protein samples by adding 5111 of loading buffer + 
15111 sample, then heat at 90°C for 5 minutes, and then put in 
ice for 5 minutes .. 

ｾ ~ Load the samples onto the gel, and run the gel at 30mA per gel 
for 60-90 minutes. Electrophoresis is complete when the dye 
reaches the bottom of the gel. 

(2) Western Blot 
ｾ ~ Gently separate the glass plates, and discard the stacking gel. 
ｾ ~ Equilibrate the gel in transfer buffer for 15 minutes. 

o Transfer buffer prepared as follow: 
• 10X TGS buffer 50ml 
• 20% ethanol 100ml 
• water 350 ml 

ｾ ~ Prepare 8 filter paper s the same size as the gel. 
ｾ ~ Prepare PVDF membrane, wet them with methanol, and then 

wash with transfer buffer for 5 minutes. 
ｾ ~ Soak the filter paper in transfer buffer. 
ｾ ~ Carefully place the gel onto the filters and smooth out, then the 

membrane and finally place the remaining filter papers on top of 
the membrane. It 

ｾ ~ This Gel filter sandwich needs inverting before placing onto the 
anode (base) of the semi-dry, the final arrangement being as 
follows. 

Top 
Cathode 

Buffer soaked filter 
paer 
Gel 
Membrane 
Buffer soaked filter 
paper 

Anode ++++ 
Base 

ｾ ~ Gently roll out any bubbles from the 'sandwich' using a universal 
tube. 

ｾ ~ Run on Biorad semi-dry, max 25v (32 A) for one membrane for 
1-2 hours . 
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(3) Immunodetection of protein 
ｾ ~ Make the blocking solution which is either milk (5%) 

o 200 ml1X PBS 
o 200J,.ll Tween ( thick, so cut the tip) 
o 10 g milk .. 
Or Bovine serum albumin (5%) in case of CD133 

o 100 ml1x PBS 
o 100J,.ll Tween 
o 5 g bovine serum albumin 
Stir all of them well for 20 minutes 

ｾ ~ Stain the gel with red dye first for 5 minutes, and then wash with 
distilled water. 

ｾ ~ Put the membrane in the blocking solution for 1 hour on the 
shaker. 

ｾ ~ Dilute the 1ry antibody in 5% blocking solution (prepared before). 
ｾ ~ I ncubate the membrane with 1 ry antibody for overnight on the 

roller to mix either at RT or 4°C according to the antibody used. 
ｾ ~ Pour off the 1 ry antibody and wash 3X with blocking solution for 5 

minutes each time. 
ｾ ~ Make the 2ry antibody in blocking solution (1 :10000), and leave it 

on the roller for 1 hour. 
ｾ ~ Wash 2X with the blocking solution (PBS and Tween only) 

without milk or BSA, then once by PBS 1X only. 
ｾ ~ Prepare the chemiluminescent mix (5ml of each bottle), and 

incubate for 5 minutes in the dark. 
ｾ ~ Cut 2 pieces of plastic, seal it as a bag and the membrane 

should be inside the bag, and then incubate for 5 minutes. 
ｾ ~ Remove excess liquid and dry the membrane, and put it in a new 

plastiC bag. 
ｾ ~ Put the membrane in the cassette. 
ｾ ~ In the dark room expose the membrane to the film for 1 minute. 
ｾ ~ Put the film in the developer first until the band appear, then 

transfer the film in the fixer for 30 seconds, and lastly wash the 
film with water and leave it to dry in the drying cupboard. 
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ｾ ~

CO 
ｾ ~

File 

DNA Start 
2598 

End 
2598 

Edit Sequence 

length 1 PROTEIN Start 
o 

End 

Sequencing Vector Restrict jon Enzymes Boxes Protein Help Windows I 

length ｉ ｦ ﾷ ｯ Ｎ ｬ ｴ Ｌ Ｇ Ｇ Ｇ ｉ I ａ ｃ ｃ ｾ ｌ L Ｕ Ｐ ｊ J >UJX1IJ\lYMfIlll.X Cw.c:TlDCCl (S£UC"llD T"' l o ( ; 0 ｾ ｭ ｭ ｯ ｮ Ｖ Ｋ + J --- --
FindDNA )( 

Sequence X::====A=bs=e=lI=t===::::)-:::(===u=n=jq=ue====:: 
70 '. ( Draw Annotations ) 

AU ( Notes )( Primer Pair ) 

Manager )( ORFs )( Features )( Map 

ｾ ~ ( !.lL[Cflf' ''J C>bTfOlUU folOJ You may s.loct enzymes from this table 
Show All Options List for use wi th the digest/map with a mouse cli ck 

Sel.ction Mod. - Not Remembered 

lipal 1 BaritI Bell 1 B!JlI B!JlIl 1 BssHII 

EeolU EcoRV 1 HindIII Ifpal I<pnI o Inu! Nael o lIarl 

IlruI o llsi! o Pst! PvuI PvuII SacI SacII Sail 
1 SphI 1 Sspl Stu! TthlllI o XbaI Xhol o XmaI o XmnI 

0 

,Spei (171) 
, BstXI (145) 

Neol (773) Bell (1493) 
,Apal (455) ,Bprr'(6S4) ,PvuII (97.5) ,EcoRV (1176), sphdl 399) 

r · - l I I 
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Seal 
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9.7 STAT3 knock down in SW837 

SW837 

STAT3 

IJ-actin 

Western blot analysis showed that STAT3 was knocked down in SW837 
transfected with ST AT3 siRNA compared with cells treated with scrambled 
control (SSe), ｾ Ｍ ｡ ｣ ｴ ｩ ｮ n used to show equal loading amount of protein in 

both lanes. 
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