
Shukur, Zarina (1999) The automatic assessment of Z 
specifications. PhD thesis, University of Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/28622/1/285597.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


Page i 

UNIVERSITY OF NOTTINGHAM 
SCHOOL OF COMPUTER SCIENCE AND IT 

The Automatic Assessment 
of 

Z Specifications 

By 
Zarina Shukur B.Sc(Hons) 

Thesis submitted to the University of Nottingham 
for the degree of Doctor of Philosophy 

January 1999 



The University of 

Nottingham 
Information Services 

Ethos - Thesis for digitisation 

Thesis details: Shukur, Zarina 

'The Automatic Assessment of Z Specifcations' 

Please exclude the following sections/pages: 

Pages: 17, 18, 27, 133 



To 

my family 

Page ii 



Acknowledgement 

I would like to express my enormous appreciation to Dr Edmund Burke and Dr Eric 

Foxley for their advice, encouragement, and supervision particularly in writing the 

thesis. 

I would also like to thank Professor Peter Ford, the department's head of School of 

Computer Science and IT, as well as Learning Technology Research Group for 

allowing me to attend several academic events both in the UK and abroad. 

Thanks also go to the Malaysian Government for financial support during this project. 

The statistical study is carried out using the information from many books and 

internet sources which it is not practical to list in this thesis. I also consulted with 

several friends; Brother Hassan, Liza and Rina (majoring in statistics) and would like 

to thank them for their help. 

Last but not least, I would like to thank all my friends for their help directly or 

indirectly throughout my studies. 

Page iii 



Abstract 

The need to automate the process of assessing a specification in a learning 

environment is identified to be one of the fundamental ways to improve the use of 

formal notation in specifying a real system. 

General issues involved in building an automatic marking system for computer-based 

courses are explored. Techniques that have been proposed for assessing a 

specification are also discussed. By considering the issues and the techniques, we 

describe how they can be used to build a system that is able to give a quality grade to 

a specification that is written in the Z language. 

In the system, four quality factors are taken into consideration; maintainability of a 

specification (which considers the typographic arrangement of a specification and the 

specification complexity), and correctness of a specification (which reflects the static 

correctness and the dynamic correctness of a specification). 

By using suitable quality metrics for specification maintainability, the results that are 

produced are compared to some values which can either be absolute values or relative 

to the model answer. The marks awarded for this factor are based on this 

comparison. Static correctness is carried out by applying a syntax and type checker. 

The marks granted for this factor depend on the outcome of the checker. Dynamic 

correctness is determined by employing a testing technique. In the context of a 

specification, the behaviour of a system-state, which is represented by so-called state 

variables, is analysed. The specification is 'executed' by using animation. The 

marks are given according to the correctness of the output and the final state. 

The system is implemented within the well-known courseware management system, 

Ceilidh. There are fundamental differences between Z specifications, and the subject 

matter of other courses taught using the Ceilidh system (which are mostly computer 

programming courses). For this reason we take some time in this thesis to explain (in 

Pageiv 



some detail) the incorporation of the system within Ceilidh. The need for the 

fundamental components (i.e the editor, the syntax and type checker, the animator 

and the automatic marker) are discussed and described. 

The system has been used by a group of 13 students who attended a Z course within 

the School of Computer Science and Information Technology at the University of 

Nottingham during the 199711998 academic year. The students were given a 

questionnaire about the system. An analysis of these questionnaires shows that the 

currently implemented tools are beneficial and helpful to the students. We also test 

the results of the system and compare them with a small selected group of human 

markers. The testing reveals very encouraging results and shows that the system can 

mark student scripts with a good degree of accuracy. 

We conclude that this system can provide a very useful aid for teachers of the Z 

Specification language. 

Page v 



Table of Contents 

Acknowledgement ............................................................................................. .. 

Abstract ............................................................................................................... . 

Table of Contents ............................................................................................... . 

List of Figures ..................................................................................................... . 

List of Tables ...................................................................................................... . 

Chapter 1 : Introduction .................................................................................. .. 

1.1 Motivation for automatically assessing a specification ...................... .. 

1.2 The Z specification language .............................................................. .. 

1.3 Types of exercise in a Z course .......................................................... .. 

1.4 The aim of the research ........................................................................ . 

1.5 Organisation of the thesis .................................................................... . 

Chapter 2 : Approaches to Automatic Assessment Systems .......................... . 

2.1 Introduction ......................................................................................... .. 

2.2 Automatic marking systems ................................................................ .. 

2.3 Software quality factors ....................................................................... . 

2.4 Measuring quality ............................................................................... .. 

2.5 Approach for specification assessment ................................................ . 

2.6 Quality in a specification .................................................................... .. 

2.6.1 Maintainability ......................................................................... .. 

2.6.2 Specification correctness ........................................................... . 

2.7 Other issue : Z tools ............................................................................ .. 

2 8 D · 'd ti' . eSlgn cons) era on ............................................................................ . 

iii 

lV 

Vl 

ix 

xu 

1 

1 

4 

8 

9 

9 

12 

12 

12 

14 

17 

20 

21 

22 

24 

26 

28 

2.9 Conclusion ............................................................................................ 31 

Chapter 3 : Automatic Z Specification Assessment System ............................ 36 

3.1 Introduction ........................................................................................... 36 

3.2 Maintainability ...................................................................................... 37 

3.2.1 Typographics ............................................................................. 38 

3.2.2 Complexity ................................................................................. 44 

3.3 Specification correctness ....................................................................... 47 

Page vi 



3.3.1 Static correctness ....................................................................... 48 

3.3.2 Dynamic correctness .................................................................. 50 

3.4 The overall system ................................................................................ 60 

3.5 Conclusion ............................................................................................ 63 

Chapter 4 : Inspecting the Correctness of Specification through 

System-state Analysis .............. ........ ................... .... ............................. ....... ......... 66 

4.1 Introduction.... ...... .................. ....... ..... .............. .............. ........... ....... ..... 66 

4.2 The system-state analysis approach ...................................................... 68 

4.2.1 Pre-condition analysis ................................................................ 69 

4.2.2 Post-condition analysis .............................................................. 72 

4.3 The system approach ............................................................................ 73 

4.4 Z specification testing system ............................................................... 74 

4.5 Conclusion ........... ............. .......... ..... ..... ....... .................... ......... ............ 85 

Chapter 5 : Managing Z Specification Coursework On-line .......................... 88 

5.1 Introduction ........................................................................................... 88 

5.2 Ceilidh: Course Management System ................................................. 90 

5.3 Components .......................................................................................... 91 

5.4 Z specification coursework on-line ....................................................... 93 

5.4.1 Student facilities in handling an exercise .. ................................ 94 

5.4.2 Course developer facilities ........................................................ 99 

5.5 World Wide Web version ..................................................................... 102 

5.6 Experience ............................................................................................ 103 

5.6.1 Performance of student facilities ............................................... 103 

5.6.2 Performance of the Z automatic marking system ...................... 106 

5.7 Conclusion ............................................................................................ 106 

Chapter 6 : Evaluation .............................................................................. ......... 110 

6.1 Introduction .................. ........... ........................ .................. .................... 110 

6.2 Case studies .... .......... ........ ............ ........................ ...... .................. ......... 111 

6.3 Material selection ................................ ........ ..... .......... ...... ................ ..... 111 

6.4 Data analysis ......................................................................................... 112 

Page vii 



6.5 Description of the score ......... ........... ..... ..... ...... ..... ............. .... ...... ..... ... 116 

6.6 Inferential Statistics ... ........................ ..... ..... ... ...... ..... ........ ...... .......... .... 129 

6.7 Observations ......................................................................................... 138 

6.8 Conclusion ............................................................................................ 139 

Chapter 7 : Discussion and Further Research ................................................. 141 

7.1 Introduction ... ........... ........................ ..... ........ ......... ..... .......................... 141 

7.2 Contributions .... ............................ ..... ...... ........ ............... ...................... 141 

7.3 Outstanding problems . ...................... .......... ........ ........... ...... ......... ........ 143 

7.3.1 Local problems .......................................................................... 143 

7.3.2 Universal problems .................................................................... 144 

7.4 Direction for future research ................................................................. 146 

7.4.1 Refinement to the system ........................................................... 146 

7.4.2 Correctness analysis using symbolic execution ......................... 147 

7.4.3 Correctness analysis using formal proof .... ...... .............. ........ .... 148 

7.4.4 Generation of test case for marking purpose ........... ...... ....... ..... 149 

7.4.5 Technique for allocating marks ................................................. 151 

7.5 Final remarks ..................... ............................... .... ...... .......................... 156 

Bibliography.. ........... ....................................... ....... ................ .............. ............... 160 

Appendix A : The Syntax Definition 

Appendix B : Z Coursework Questionaire 

Appendix C : Student Feedback 

Appendix D : Compilation of Z Exercises 

Appendix E : Score, Grade, Grouped Frequency 

Appendix F : Normal QQ Plot of Data 

Appendix G : Comments on Prolog implementation by zp 

Page viii 



List of Figures 

Figure 1-1 : Waterfall Model................... .... ................... ..... .... ....... .............. ........ 1 

Figure 1-2: Alternative Model of Software Life Cycle ....................................... 2 

Figure 2-1 : Rees' approach for measuring programming style . .... ................. ..... 17 

Figure 2-2: AUTOMARK's approach for measuring programming style .......... 18 

Figure 3-1 : Framework of AZ-AS ........................................................................ 37 

Figure 3-2 : Example of file model.tv ................................................................... 42 

Figure 3-3: Example of file model. metric ............................................................ 46 

Figure 3-4 : Example of file model.sv ............................... ......... ........ ............ ....... 49 

Figure 3-5 : Calculation for static correctness mark ............................................. 49 

Figure 3-6 : Example of final state and output analysis ........................................ 51 

Figure 3-7 : Z specification in Z-roff format ........................................................ 55 

Figure 3-8 : First test data state ...... ................. ....... .... ............. ........ ............. ......... 56 

Figure 3-9 : First test data marking ....................................................................... 56 

Figure 3-10 : Example of file model.dv ................................................................ 59 

Figure 3-11 : Example of output from static correctness marking ......... .......... .... 61 

Figure 3-12 : Example of output from dynamic marking ..................................... 61 

Figure 3-13 : Example of output from typographics marking .... .............. ............ 62 

Figure 3-14 : Example of output from complexity marking ................................ 62 

Figure 3-15: Example of output from complexity marking ................................ 63 

Figure 4-1 : Test Information Flow......................................... ...... ........ ............... 67 

Figure 4-2 : Process of generating test case .......................................................... 75 

Figure 4-3: Process of generating test weight ...................................................... 76 

Figure 4-4 : Process of preparation .... .......... .......... ...... .................. ............ ........... 77 

Figure 4-5 : Process of testing and evaluation ...................................................... 77 

Figure 4-6 : Process of debugging ....................... ....... .............................. ............ 78 

Figure 5-1 : System Level Ceilidh Menu: Z Course ............................................ 96 

Figure 5-2: Unit and Course Level Ceilidh Menu: Z Course ............................. 96 

Figure 5-3: Z Exercise Level Ceilidh Menu: Z Course ...................................... 97 

Figure 5-4 : Student editing and viewing a Z exercise ......................................... 99 

Pageix 



Figure 5-5 : System Output ................................................................................... 99 

Figure 5-6: Developer's Exercise Menu: Z Course ............................................ 101 

Figure 5-7 : Window for Animation .......... .................. ........ ................................. 101 

Figure 5-8 : Z Student Exercise Menu for WWW ................................................ 102 

Figure 6-1 : Bar Chart of Score Distribution for Exercise 1 ................................. 116 

Figure 6-2 : Bar Chart of Score Distribution for Exercise 2 ................................. 117 

Figure 6-3 : Bar Chart of Score Distribution for Exercise 3 ................................. 119 

Figure 6-4: Bar Chart of Score Distribution for Exercise 4 ................................. 120 

Figure 6-5: Bar Chart of Score Distribution for Exercise 5................................. 121 

Figure 6-6 : Bar Chart of Score Distribution for Exercise 6 ................... .............. 122 

Figure 6-7 : Bar Chart of Score Distribution for Exercise 7 ................................. 123 

Figure 6-8: Bar Chart of Score Distribution for Exercise 8 ................................. 124 

Figure 6-9: Bar Chart of Score Distribution for Exercise 9 ................................. 124 

Figure 6-10 : Bar Chart of Score Distribution for Exercise 10............................. 127 

Figure 6-11 : SPSS output for Normal Q-Q Plot of Human Marker HI.............. 130 

Figure 6-12: SPSS output for Detrended Normal Q-Q Plot of Human 

Marker HI ............................................................................................................. 131 

Figure 6-13 : SPSS output for Spearman's Correlation among markers in 

terms of Score distribution .................................................................................... 132 

Figure 6-14 : SPSS output for Kendall Tau's Correlation among markers in 

terms of Grade distribution ..... .......................... ....................... ........... ...... ....... ..... 133 

Figure 6-15 : SPSS output for Kendall Tau's Correlation among markers in 

terms of Grouped Frequency distribution ......................... .............. ...................... 133 

Figure 6-16 : SPSS output for the Mann-Whitney test comparing 

correlation coefficient for Score distribution between system-human 

correlation and human-human correlation ............................................................ 135 

Figure 6-17 : SPSS output for the Mann-Whitney test comparing 

correlation coefficient for Grade distribution between system-human 

correlation and human-human correlation ............................................................ 135 

Figure 6-18 : SPSS output for the Mann-Whitney test comparing 

Page x 



correlation coefficient for Grouped Frequency distribution between 

system-human correlation and human-human correlation ................................... 136 

Figure 6-19: SPSS output for the Kruskal-Wallis test comparing Grade 

awarded by the markers ........................................................................................ 137 

Figure 6-20: SPSS output for the Kruskal-Wallis test comparing Grouped 

Frequency awarded by the markers ...................................................................... 137 

Page xi 



List of Tables 

Table 2-1 : Functionality of Z Support Tools ....................................................... 27 

Table 3-1 : Typographics Quality Parameters ..... ..... ... ..... ..... ........ .............. ......... 41 

Table 3-2 : Typographics Calculation .................................................................. 41 

Table 3-3: Complexity Calculation ..................................................................... 45 

Table 4-1 : Test data classification ....................................................................... 69 

Table 4-2: Combinations of test data ................................................................... 71 

Table 4-3 : Marking scheme for first combination of test data ............................ 72 

Table 6-1 : Scores awarded by hI, h2, h3 and the system for Exercise 1 ............ 113 

Table 6-2 : Grades awarded by hI, h2, h3 and the system for Exercise 1 ....... ..... 114 

Table 6-3: Grouped frequency by hI ................................................................... 115 

Table 6-4: Means for the distribution .................................................................. 129 

Table 6-5: Summary of Correlation Coefficient .................................................. 134 

Page xii 



Chapter 1 

Introduction 

1.1. Motivation for automatically assessing a specification 

Formal methods are taught in many institutions (in one form or another) on 

computing degree courses.1 In software development, Wordsworth2 describes them 

as "methods that exploit the power of discrete mathematics. II By using formal 

methods, developers can make a precise record of something that can often be left 

vague and imprecise.2 In the classic software life cycle model (sometimes called the 

'waterfall model'), formal methods are primarily applied at the design stage as shown 

in Figure 1-1 which is adapted from3 . In the model, it can be seen that the testing is 

done at a later stage, i.e after the coding process is finished. However, many new 

models like one shown in Figure 1-2 which is adapted from4 , have become more 

flexible. According to the model, every step of the cycle is monitored in order to 

ensure the quality of software during the whole process. Therefore errors can be 

reduced at a later stage. 

ｾ ｬ l :system 
ngineering 

Analysis 

Design 

Code 

Testing 

ｾ ｡ ｩ ｮ ｴ ･ ｮ ｡ ｮ ｣ ｾ ~

Figure 1-1 : Waterfall Model .. 
This research focuses on controlling quality in the specification phase, by looking at 

fundamental problems in formal methods. The problems that are faced by formal 

Chapter 1 : Introduction Page 1 



methods today are identified by W ordsworth2 and are associated with educational 

issues. The teaching and learning of formal methods has been said to be a field of 

tensions for the following reasons. 

• Formal methods are not sufficiently mature enough to be useful to the practising 

software engineer.6 

• The lack of a coherent body of widely applicable, formal methods makes it 

difficult for educators to know what and how to teach existing techniques.6 

• The mathematics being used in formal methods is a problem, since computer 

science lecturers are not good at teaching mathematics, and computer science 

students are not good at understanding it. 2 

Manage, 
Control & 

.-----+1 Assure 14----

Quality 

Figure 1-2: Alternative Model of Software Life Cycle 

There has been a recognition in recent years that education in the use of formal 

methods is vital, and that the role of mathematics is central to this.7, 8 As would be 

expected, many different approaches to teaching formal methods are applied in 

different higher education institutions.6 They either: 

Page 2 Chapter 1 : Introduction 



• base an entire curriculum around a specific formal method, where one would 

learn one technique and apply the skill to software development acitivities; 

• adopt a single course specifically devoted to formal methods, where a number of 

different formal techniques are introduced; 

• integrate formal methods across the entire curriculum, learning several formal 

techniques in depth and apply the appropriate technique to the problem; or 

• avoid teaching formal methods at all. 

Even though it has been argued that the emphasis in teaching formal methods should 

be upon modelling6,9 , it is important to express the model using some notation.9 In 

general the skills that should be gained by the student include the ability: 

• to model a problem using formal methods, 

• to specify a model using formal methods techniques, 

• to write a correct formal specification, and 

• to read a formal specification. 

Two main aspects to be considered when assessing student solutions to formal 

specification coursework are therefore: 

• the quality of the modelling, and 

• the quality of the writing a formal notation. 

Usually, interaction between the student and teacher is needed in delivering a high 

quality of modelling.9 Direct teacher involvement is essential here. Although the 

emphasis is on modelling, research done by FinneylO on 62 undergraduate and 

postgraduate students shows that "in general the students found it difficult to 

understand any of the very simple Z specifications". One of her conclusions is that 

"the familiarity with notation and structure that comes naturally to them takes time, 

training and practice to acquire." This can be seen as a skill problem. Assessing a 

formal notation can be laborious as it involves extensive use of formal notation. The 

teacher's effort and time should be directed to such high value aspects of teaching as 

Chapter 1 : Introduction Page 3 



modelling. Assessing mathematical notation manually can be a waste of energy. 

Where needed we should optimise the teacher's involvement and where possible we 

should minimise the teacher's work. 

Some aspects such as ensuring the correctness of the use of notation in a specification 

are more easily accomplished by computer programs than by humans. This thesis 

demonstrates an attempt to automate the processs of assessing Z specification by 

using an animation concept as the fundamental process of observing its correctness. 

An overall aim of this research project is that the system should be used within the 

learning environment of higher education institutions. 

The focus of the thesis is the correctness of the specification. However, other quality 

factors are also taken into consideration. This research is influenced by other works 

on automatic marking systems for programs and the feasibility of animating a 

specification. As discussed in the next chapter, formal specification has many similar 

attributes (as well as major differences) to computer programming. As far as the 

author is aware, this project is the first attempt to mark formal specification exercises 

automatically. 

1.2. The Z specification language 

There are many types of formal specification that can be employed, including VDM, 

Z and the B method. The Z specification language is studied in this thesis. From a 

survey done by Austin and Parkin 1 on higher education institutions in United 

Kingdom, it was found that Z is the most frequently taught formal method. It is also 

one of the two most widely used formal methods in industry (the other is VDM). 

Furthermore, there are a number of very cheap or free support tools9•11 such as type 

checkers and type-setters. 

A great number of specification languages have been introduced over the years. 

Indeed, programming languages can be considered to be specification languages. 

Page 4 Chapter 1 : Introduction 



Basically, specification is divided into three types according to what is being 

specified; requirements specifications, functional specifications and design 

specifications. 12 Z is used to specify the functional phase, i.e a phase where we define 

the interfaces within the system. It is a model-based specification language that relies 

strongly on typed set theory and first-order predicate logic. 

Z can be described in many ways.13 It is called a language because it is used for 

communication. It is called a formal language because it has a precisely defined 

syntax. It is a formal specification language because the topic of communication is 

the specification and design of a software system. Its grammar is based on the 

mathematical fields of logic and set theory. 

A Z specification normally contains state and operator schemas, as well as axiomatic 

descriptions. The schemas are often given names so that they may be referred to by 

other schemas. Each schema has the following form: 

The schema name occurs at the top of the schema box. The contents of the box are 

separated by a short horizontal line, so that the declaration part of the schema lies in 

the upper region and the predicate part of the schema (containing one or more 

formulas) lies in the lower region. 

The nature of Z specifications 

Spivey14 says, "in Z, schemas are used to describe both static and dynamic aspects of 

a system. The static aspects include: 

the states it can occupy 

Chapter 1 : Introduction Page 5 



the invariant relationships that are maintained as the system moves from state to 

state 

The dynamic aspects include: 

the operations that are possible; 

the relationship between their inputs and outputs; 

the changes of state that happen. II 

Those aspects discussed by Spivey are described in mathematical notation. The data 

in a system is modelled by using mathematical data types and we describe the 

operations using predicate logic. 

Schemas which describe static aspects of a system are known as state schemas. 

Burke and Foxley15 said that state schema describes lithe logic of the overall state of 

a system. II The state is represented by some values held by some variables, i.e state 

variables. 

Schemas which describe dynamic aspects of a system can be classified into two 

types; schemas that cause the system-state change (known as event or operation 

schema) and schemas that preserve the system-state but read information from it 

(known as observation or query schema). They both involve pre-conditions and 

post-conditions, specifying constraints before and after the event, and predicates 

relating to the state of the data after the event to the state before the event. 

Throughout this thesis, we will consider a simple example called telephone book 

taken from the book Understanding Z: A Specification language and its formal 

semantics written by Spivey.16 The example involves storing the names and 

telephone numbers of a group of people. The state schema is named TelephoneBook, 

the schema representing the addition of a new entry is AddTelephone, and the schema 

representing the retrieval of a named person's telephone number is FindTelephone. 

Those schemas might look like the following. 

Page 6 Chapter 1 : Introduction 



ｔ ･ ｫ ｰ ｨ ｯ ｮ ･ ｂ ｯ ｯ ｾ ｫ k__________________________________________ -, 

known: P NAME 
telephone: NAME -f+ TELEPHONE 

known=dom telephone 

This state schema describes a telephone book system with two state variables i.e 

known and telephone. At any time, the names of people known to the database are 

exactly those for which a number is recorded. 

AddTelephone ...... ____________________ --. 

ATelephoneBook 
name?: NAME 
phone? : TELEPHONE 

name ? ｾ ｫ ｮ ｯ ｷ ｮ n
known' =knownu {name?} 
telephone' =telephone u {(name?, phone ?) } 

The ATelephoneBook indicates that we wish to use this schema in association with a 

state change. In any state change, a primed identifier indicates the value after the 

change, an unprimed identifier indicates the value before the change. The symbol ? 

in front of the identifier means that the identifier is an input to the operation. The 

above schema says that after the operation, a given name and telephone number will 

be in the telephone database with the condition that the name is previously unknown 

to the database. 

FindTekphone _________________________________________ ---. 

ETelephoneBook 
name?: NAME 
phone! : TELEPHONE 

name? E known 
phone !=telephone name? 

The declaration ETelephoneBook means that we wish to use this schema in 

association with no change to the system data. The symbol ! means that the identifier 

Chapter 1 : Introduction Page 7 



associated with it is an output of the observation. This schema describes the output 

of the query as the telephone number of a given name with the condition that the 

name must be in the database. 

1.3. Types of exercise In a Z course 

Different universities have different ways of teaching formal methods. In this 

section, we discuss the types of exercises which are given in the formal methods 

module offered by the School of Computer Science and Information Technology at 

University of Nottingham. The university teaches Z specification with the objective 

to expose the student to how to use Z in specifying a system. 

The way the Z exercises are assessed is varied according to the focus of the question. 

As is the case with most courses, it will start with a simple problem, and the difficulty 

of exercises increases through the duration of the course. We divide the Z exercises 

into three categories: Exercises at the introductory level, intermediate level and 

advanced level. 

• At the introductory level, the students are introduced to a Z specification in 

general, including various Z paragraphs and their syntax. The student will also 

usually carry out some revision on mathematical background. After completing 

this level, the student should be able to write simple Z paragraphs. The focus 

might be on writing a predicate for a specified problem. 

• Students at the intermediate level are expected to have skills in Z syntax and 

layout. At this level, students will learn about several types of Z schema. The 

modelling technique for a simple problem would be introduced in this level. 

• At the advanced level, the student will learn how the schemas are integrated by 

using schema algebra. The idea of getting program codes from the formal 

perspective might be presented. After finishing this level, the student is able to 

manipulate schemas and formally specify large software systems. 

Page 8 Chapter 1 : Introduction 



1.4. The aim of the research 

The research described in this thesis, is aimed at developing a system to automate the 

assessment process of Z specifications. This system is designed (on purpose) to 

assess Z schema written by a beginner where much of the early coursework focuses 

on writing a specification, rather than on modelling. The aim of our system is not just 

to give a mark, but also to be able to reason about and interpret the marks produced. 

The experiment carried out on this system is intended to observe its performance and 

restriction. Furthermore, we recommend further studies on this problem. The system 

is named the Automatic Z Specification Assessment System (AZAS). 

The attraction of doing this research is inspired by the feasibility of assessing 

programming language coursework automatically and the availabity of the basic tools 

(i.e type and syntax checker and animator) that share the same interface and support 

the basic function that are needed in this research. The experiment conducted on the 

system against a set of student answers has shown that it tends to behave like human. 

1.5. Organisation of the thesis 

This thesis consists of seven chapters (including this chapter). 

• In chapter 2 we describe the influence of the evolution of automatic marking 

systems in computer based studies (which are mostly for computer programs). 

The fundamental principal of building an automatic marking system for a 

programming language and how this can be applied in building a system for 

assessing a specification language is discussed. We then show how we 

developed an automatic marking system for Z specifications. 

• Chapter 3 concerns the detailed explanations of how the system is built by 

considering four aspects of quality: typographic, complexity, static correctness 

and dynamic correctness. For every factor, we explain how it is measured and 

the programs that are involved. 

Chapter 1 : Introduction Page 9 



• The testing technique used in dynamic correctness is discussed in detailed in 

chapter 4. This involves the discussion of a debugging process. 

• The description of the incorporation of the system into the existing courseware 

management system used in the University of Nottingham, (called Ceilidh17 ) is 

described in chapter 5. In addition, we also describe the implementation in the 

web pages. 

• The performance of the automatic marking system is discovered by carrying out 

an experiment which involves sets of student answers as inputs to the system. 

The results produced by the system are compared to the results given by three 

human markers. This experiment is presented in Chapter 6. Further to this 

result, we present a discussion about the special requirements for the exercises 

to be assessed by the system. 

• In chapter 7, we highlight the contribution that we have made and present some 

suggestions for further research. 

References 

1. S. Austin and G.I. Parkin, "Formal Methods: A Survey," Report, The National 

Physical Lab., Middlesex, 31 March 1993. 

2. J.B. Wordsworth, "An industrial perspective on educational issues relating to 

formal methods," in Teaching and Learning Formal Methods, ed. C.N. Dean & 

M.G. Hinchey, pp. 1-9, San Diego, California, US, 1996. 

3. R.S. Pressman, Software Engineering, McGraw-Hill Company Europe, 1992. 

4. B. Ratcliff, Introduction Specification Using Z : A Pracatical Case Study 

Approach, McGraw Hill International, 1994. 

5. E.W. Dijkstra, "Foreword," in Teaching and Learning Formal Methods, ed. 

C.N. Dean & M.G. Hinchey, San Diego, California, US, 1996. 

6. D. Garlan, "Making formal methods education effective for professional 

software engineers," Information and Software Technology, vol. 37, no. 5-6, pp. 

Page 10 Chapter 1 : Introduction 



261-268, 1995. 

7. J.B. Wordsworth, "Education in formal methods for software engineering," 

Information and Software Technology, vol. 29, Jan-Feb 1987. 

8. "Educational Issues relating to Formal Methods," Educational Issues Session 

ofZ Users Meetings '94. 

9. C.N. Dean and M.G. Hinchey, "Introducing Formal Methods Through Role 

Play," ACM SIGCSE Bulletin, vol. 27, no. 1, pp. 302-306, March 1995. 

10. K. Finney, "Mathematical Notation in Formal Specification: Too Difficult for 

the Masses?," IEEE Transactions on Software Engineering, vol. 22, no. 2, pp. 

158-159, February 1996. 

11. C. Parker, "Z Tools Catalogue," ZIP/BAel90/020, Software Technology Dept, 

British Aerospace, 10 May 1991. 

12. D. Cooke, A. Gates, E. Demirors, O. Demirors, M.M. Tanik, and B. ｋ ｲ ｡ ｭ ｾ ｲ Ｌ ,

"Languages for the Specification of Software," Journal of System Software, 

vol. 32, no. 3, pp. 269-308, 1996. 

13. A. Diller, ZAn Introduction to Formal Methods, John Wiley & Sons, 1994. 

14. J.M. Spivey, The Z notation: Reference Manual, Prentice Hall, 1988. 

15. E. Burke and E. Foxley, Logic and its Applications, Prentice Hall Europe, 1996. 

16. J.M. Spivey, Understanding Z: A Specification language and its formal 

semantics, Cambridge University Press, 1988. 

17. S. Benford, E. Burke, E. Foxley, N. Gutteridge, and A.M. Zin, "CEILIDIH: A 

Course Administration and Marking System," Proceedings of International 

Conference in Computer based Learning in Science, Vienna, 1993. 

Chapter 1 : Introduction Page 11 



Chapter 2 
Approaches to Automatic Assessment Systems 

2.1. Introduction 

Computer science courses should lead in using computer technology in teaching. 

Challenging areas, such as to automate marking processes, have attracted many 

people to do the research. These attempts focus on various types of computer 

program languages, from procedural, object-oriented, declarative to functional 

languages. Formal specification language, a functional specification, is an abstract 

specification language taught in computer science courses. In this chapter, we will 

consider several systems used for marking exercises in computer science courses. 

The main principle to develop such a system will be identified and following that, the 

approach that is taken to develop an automatic marking system for Z specifications 

will be described. 

The idea in this chapter has been presented in the conference on Integrating 

Technology into Computer Science Education '97 and published in the respective 

proceedings. 1 

2.2. Automatic marking systems 

Automatic program assessment systems have a long pedigree.2 Foubister et al2 touch 

upon the early automatic assessment system for computer programs in fair detail. 

They say that 'many early applications were for the assessment of numerical analysis 

programs." They believe that "one of the earliest was developed in the late 1950's by 

Hollingsworth for IBM 650 machine code programs." In brief, these assessment 

processes take a student program (in the form of cards or paper tape) inline within a 

"grader", an assessment program, to provide initial variable values and make absolute 

checks on correct final values. Van Verth3 wrote in her thesis that ''until the mid-70s 

the emphasis in computer science courses was program correctness, concentrating on 

Page 12 Chapter 2 : Approaches to Automatic Assessment Systems 



the development of programs that ran correctly, i.e programs that produced correct 

answers, and that used resources such as time and memory economically." 

However, Michaelson4 diagnosed that "in the 1970's and early 1980's the focus 

moved away from correctness to optimality assessment." This movement is believed 

to be influenced by the awareness of the computer society concerning the need of 

discipline in the development of software, aiming at producing high quality software. 

This discipline, known as software engineering, was defined by Fritz BauerS as: 

"lbe establishment and use of software engineering principles in order to obtain 

economically software that is reliable and works efficiently on real machines." 

In this era, it can be seen that discussion about other factors of software has been 

greatly increasing. Discussion such as programming style by Kernighan in 1974, 

complexity by McCabe in 1976, the introduction of Halstead Software Science in 

1977, and the broad classification of quality factors by McCall et al7 in 1977 seem to 

have contributed to changing the ideas behind assessment systems. Furthermore, by 

having a software engineering discipline, we are not only considering the quality of a 

program, but consider quality in every step of the software life cycle. 

Nowadays, automatic marking systems focus not just on the correctness of the 

program output, but analyse the output, the style of writing, the complexity and some 

other factors depending on the scheme of the system. Some systems are built to 

assess only one factor, whilst others assess a program by considering several selected 

factors. Van Verth3 developed a system to assess the quality of a program in terms of 

complexity. Faidhi8 built a program to analyse the complexity of Pascal programs. 

Some others include several quality factors in assessing programs. Zin and Foxley 9 

built an assessment system, called Analyse, to mark C program by considering four 

factors, i.e layout, complexity, static correctness and dynamic correctness. Hung et 

al lO developed ASSESS to mark factors in development effort, reliability, style, 

execution efficiency and complexity (which involves size, data structure and logic 

structure). A system for marking exercises written in a functional programming 

Chapter 2 : Approaches to Automatic Assessment Systems Page 13 



language, Standard ML, which was introduced by Foubister et al,2 assess functions 

for correctness and optimility (which involves style and type). 

In brief, it can be said that the difference between assessment systems before and 

after the 80's is that more factors of assessment are taken into consideration. 

However, one aspect common to most of these systems is the use of teacher's 

knowledge. 

2.3. Software quality factors 

Pressman 11 said that "software quality is a complex mix of factors that will vary 

across different applications and the customers who request them." Schneidewind 12 

defined it as a "degree to which software possesses a desired combination of 

attributes." The most common way of measuring software quality is by looking at 

many different factors which affect quality. These factors are then measured 

separately and finally combined to form the overall measure of the software quality. 

McCall et al7 categorise factors that affect software quality into three main aspects: 

• product operations: correctness, reliability, efficiency, integrity and usability 

• product revision: maintainability, flexibility and testability; and 

• product transition: portability, reusability and interoperability 

The following is the description of the above factors in the context of a program. 

Correctness. The extent to which a program satisfies its specification and fulfills 

the customer's mission. 

Reliability. The extent to which a program can be expected to perform its 

intended function with required precision. 

Efficiency. The amount of computing resources and code required by a program 

to perform its function. 

Integrity. The extent to which access to software or data by unauthorized 

persons can be controlled. 

Page 14 Chapter 2 : Approaches to Automatic Assessment Systems 



Usability. The effort required to learn, operate, prepare input, and interpret 

output of a program. 

Maintainability. The effort required to locate and fix errors in a program. 

Flexibity. The effort required to modify an operational program. 

Testability. The effort required to test a program to ensure that it performs its 

intended function. 

Portability. The effort required to transfer the program from one hardware 

and/or software system environment to another. 

Reusability. The extent to which a program (or parts of a program) can be 

reused in other applications. 

Interoperability. The effort required to couple one system to another. 

The factors proposed by McCall are very comprehensive. These factors are 

environment dependant and differ in their importance in the individual stages at the 

software life cycle. Some might not be appropriate to individual stages in the 

software life cycle. 13 However, the relative importance of different factors may vary 

in different environments.13 For a small software project, Burgess14 proposed that 

only four factors should be considered. These factors are; correctness, 

maintainability, usability and efficiency. In a study done by Zin 15 for programming 

quality in a learning environment, only correctness and maintainability are taken into 

consideration. 

Software quality metrlcs 

Whitty 16 said that "deriving and applying measurements for software systems is a 

thriving technical area of research, broadly termed 'software metrics'." A quality 

metric is a number that represents one facet of the quality factors. Pressman II 

recognised that "it is difficult, and some cases impossible, to develop direct measures 

of the above quality factors. II He identifies two types of software quality factors; first, 

factors that can be directly measured (for example errors/unit time), second, factors 

Chapter 2 : Approaches to Automatic Assessment Systems Page 15 



that can be measured only indirectly (for example usability and maintainability). In 

each case measurement must occur, and the software (such as documents or 

programs) must be compared to some data and an indication of quality will be arrived 

at. Factors which cannot be measured directly need a software metric to reflect them. 

A lot of research about software metrics has been done. Most of it proposes ways to 

derive a metric to represent a value for the complexity factor, for example Halstead's 

Software Science6 , Henry's Information Flow Metrics17 and McCabe's Cyclomatic 

Complexity. 18 

There is a question of which software metrics should be used. Software metrics are 

said by Whitty 16 to be "an area particularly fraught with hazards and pitfalls, arising 

from poorly understood concepts in software engineering and doubtful analogies with 

other engineering disciplines." Kearney et al advised users of complexity measures 

to be "aware of the limitations of these measures and approach their applications 

cautiously". 

Quality indicators 

As stated by Pressman above, these values (i.e quality metrics) will not give any 

result by themselves; a general indication of quality is needed. This can be done by 

conducting an analysis on a set of actual data and deduce which metrics are 

indicators. For example, McCabe furthered his study in complexity by analysing data 

from actual programming projects and concluded with the best cyc10metric 

complexity metric. Another way is by using a model solution, assuming that the 

model is the best solution. This has been proposed by Redish and Smith.19 Rees20 

mentioned that an assessor is required to provide a certain range of parameters as 

indicators. Hung et al10 claimed to improve the scheme proposed by Rees. They 

overcame the subjectivity of choosing the parameters in Rees' approach (see below) 

by using the average measurement of a set of programs. 

Page 16 Chapter 2 : Approaches to Automatic Assessment Systems 







the score is less than F-T*F, the mark will be calculated by linear interpolation 

(might be positive, negative or 0 depending on the value of L) between 0 and F-T*F. 

The same technique of calculation is also applied if the score is greater than F+ T*F. 

Measuring correctness 

In general correctness tends to be classified either right or wrong. A warding marks 

by strictly considering only these two extremes seems inefficient It is preferable 

when looking at the correcness of student work if the mark awarded is based on the 

degree of correctness. 

Zin and Foxley9 proposed a way to measure program correctness by using an 

"oracle". The oracle involves a number of regular expressions to define the structures 

which it expects to find in the student program's output. They give an example, in a 

simple example of a program to convert centimeters to feet and inches, if the correct 

output value is 3 feet 4.69 inches, there might be two regular expressions. One would 

search for 

"3" followed by "feet" or "ft" 

and the other for 

"4.69" or "4.7" or "511 followed by lIinchesll or "ins" 

The score from a regular expression based oracle may be any value from 0 to 100% 

Principally, four aspects should be considered when developing an automatic 

marking system. Firstly, to achieve high software quality in a system, the quality 

factors involved must be clearly defined, otherwise assessment of quality is left to 

intuition.12 Secondly, we must define a way to derive the quality metrics. 

Schneidewind12 signifies this issue by saying that "using metrics reduces subjectivity 

in software quality assessment by providing a quantitative basis for making 

decisions." Thirdly, the derived metrics have no meaning by themselves. They need 

Chapter 2 : Approaches to Automatic Assessment Systems Page 19 



to be compared to other values to indicate quality. This is usually done by 

embedding teacher knowledge or research done by others. And lastly, a technique to 

allocate a mark should be considered. 

Apart from that, an automatic grading system needs to meet certain other criteria3 : 

• A system must be able to evaluate those features of programs that are currently 

poorly defined; 

• It should provide evaluations with which many graders would be in general 

agreement, distinguishing between programs demonstrating positive attributes 

and those demonstrating negative ones; 

• It should be able to provide students with diagnostic information about poor 

programming practices and suggestions for improvement. 

2.5. Approach for specification assessment 

Software components are built using a programming language. We can say that 

programs are the end product of the software life cycle, even though the cycle itself 

might be a non-stop process. To keep the software up to the standard quality, the 

awareness of software quality in every stage of the life cycle should be stressed. 

Therefore, software quality factors are applied to all the software documents such as 

the program, specification, manual and other related documents. It has been proved 

that assessing a program automatically can be done by using those factors. We did 

this research to observe the feasibility of developing a system with the same concept 

as the previous automated marking systems. The subject to be assessed is a 

specification. 

The perspective from which we approach the problem is that we wish to 

automatically assess the quality of Z specifications provided by students as part of 

their coursework for a Formal Specification course. The environment chosen for the 

assessment is the Ceilidh System, the most widely used student programming 

automatic assessment system in the world. This provides an environment into which 

Page 20 Chapter 2 : Approaches to Automatic Assessment Systems 



new assessment tools can be inserted, and which provides all the required 

administrative framework. 

A program is said to be a special case of a specification.21 It is written in more 

constrained style compared to the specification. 

• Programs will react somehow to all possible inputs, whereas specifications need 

only cover inputs relevant to the intended context of use. 

• Programs must be defined, whereas specifications may leave some cases 

ambigious or undetermined. 

• Programs explicitly constrain outputs in terms of inputs, while specifications can 

constrain by any explicit or implicit means.21 

Another way to describe this relation is as said by Hall,22 "a specification and a 

program are defined as mappings f and P from some domain set D to some range set 

R." 

specification: f:D -> R 

program: P:D->R 

Therefore, we have chosen to apply similar techniques to those used in developing 

automatic marking system for programs in this study. 

2.6. Quality In a specification 

Several researchers have discussed definitions of quality of specification from 

different perspectives. Following Zin's9 study for programming quality in learning 

environments, we have taken two quality factors (correctness and maintainability in a 

more general sense - see below) into consideration for use in assessing a 

specification. 

Chapter 2 : Approaches to Automatic Assessment Systems Page 21 



2.6.1. Maintainability 

Following Oman and Cook23 , we divide the specification style into two categories: 

those pertaining to the typographic arrangement, and those measuring the structural 

content of the text, its complexity. 

Typographies 

Typographic style describes the way a specification text is presented. The 

importance of having style in writing has been touched by many researchers, such as 

stated by Rosalind24 : 

"A consistent style helps people to read others' work, and can ease the reuse of 

parts of a specification." 

There are two approaches to style: relative and absolute. Relative style is concerned 

with assessing something against an appropriate exemplar whereas absolute style is 

based on generic concepts. In the context of programs, the languages can be defined 

in terms of: a lexical analysis which specifies the symbol; syntax which specifies 

valid grammatical structure; semantics which specifies the meaning of well-formed 

symbol sequences; and pragmatics concerned with context of use. Michaelson4 

discussed programming style according to these four terms: 

• Issues regarding the lexicon such as the length of identifier and the 

meaningfulness of identifier. 

• Syntax is a subject of how well formed the sequence of symbols is, for instance 

issues of indentation and layout. 

• Semantics dealing with the appropriate use of constructs, such as the fact that 

FOR constructs are better than WlllLEs in certain cases. 

• Pragmatics dealing with the context of use, for example, the use of comments, 

assertions and type annotations. 

Various aspects of typographic style which are relevant to Z include: 24 

Page 22 Chapter 2 : Approaches to Automatic Assessment Systems 



• naming conventions 

• layout of the mathematics 

• accompanying text 

• Z style conventions 

• document structure 

• cross referencing and index conventions 

• layout of proofs 

• statement of proof obligations 

Furthermore, the layout for a Z specification could be25 

• define given sets, data types and constants 

• define state variables 

• define initial state 

• define 'correct' operations 

• define exceptional operations 

• combine operation schemas 

• compose component specifications to form a complete system specification 

Complexity 

Basili26 defines complexity as a measure of the resources expended by a system 

while interacting with a piece of software to perform a given task. Software 

complexity has been researched by many people.6, 17,26,27 Kearney et al27 claimed 

that "the most widely known measures are those devised by Halstead and his 

colleagues that are collectively known as software science". Halstead's theory of 

software science is said by Curtis28 to be ''probably the best known and most 

thoroughly studied." 

Chapter 2 : Approaches to Automatic Assessment Systems Page 23 



The Halstead measures6 are functions of the number of operators and operands in the 

program. The basic elements of software science (which are called primitive 

measures by Pressman II ) are 

• the number of unique operators 

• the number of unique operands 

• the total number of operators 

• the total number of operands 

From these primitive measures, he derived functions for program length and program 

volume. 

Additionally Kearney et al claimed that McCabe's theory regarding cyclomatic 

number has also received a great deal of attention. As has been concluded in their 

article in which they referred to research done by Basi1i29 and Henry and Kafura,17 

"the cyclomatic number is strongly related to the Halstead metrics. Both are 

computed by counting lexical entities and it has been shown that the measures are 

highly correlated". 

2.6.2. Specification correctness 

If a formal specification is to be trusted, it should satisfy the following two 

conditions. 

Firstly, it must be well-formed. This means that statements in the specification 

must conform to the syntax and semantics of the specification language. 

The second condition, which is more important, is that the properties of the 

formal specification reflect the user requirements. 30 

Several techniques have been developed for measuring a specification. 11,30 The 

normal approach to validating a formal specification is by employing formal 

reasoning. However, Fields31 has shown that this technique is very tedious and time 

consuming. 

Page 24 Chapter 2 : Approaches to Automatic Assessment Systems 



Another technique which can overcome some of these problems is formal technical 

reviews (FfR). This is a class of review techniques that includes walk through, 

inspection, round-robin and other small group technical assessments. 11 Each FfR is 

conducted as a meeting which focuses on a specific part of the overall specification. 

Before the meeting, copies of the specification are distributed to each reviewer. Each 

reviewer is expected to inspect the document, make notes, and become familiar with 

the work. During the meeting, the person who has developed the specification walks 

through it while reviewers raise issues based on their advance preparation. FfR is a 

very effective way for validating the specifications of technical documents. 

However, this approach is very informal and is labour intensive.32 

Another technique which is more formal is the viewpoint resolution technique. This 

is a process which: 

(i) identifies discrepancies between two different viewpoints, 

(ii) classifies and evaluates those discrepancies, and 

(iii) integrates the alternative solutions into a single representation. 33,34 

An advantage of the viewpoint resolution technique is that it has a level of 

formalising with all the inherent benefits. However, this technique requires several 

specifications to be produced by different people or groups of people.30 

The testing technique for assuring the correctness of a formal specification executes 

the specification against test data. This idea has been proposed by many people, for 

example by Kemmerer,35 Jalote36 and Hal1.22 The different objectives of the testing 

mean that we have to create different methods for conducting it, especially in 

choosing test data sets. For the testing to be done, the formal specification must be 

executable. However, most formal specification notations are non-procedural and 

thus cannot be executed directly. This implies that before this type of formal 

specification can be tested, the specification must be translated into a procedural form 

which can be executed. 

Chapter 2 : Approaches to Automatic Assessment Systems Page 25 



2.7. Other issue: Z tools 

In order to make this study feasible, three basics tools have been identified needed to 

carry out the functions below. 

• To automate the process of marking a Z specification it has to be in electronic 

form. As has been described before, Z specification consists of texts, 

mathematical symbols and lines. Therefore a way to represent it in electronic 

form is needed. 

• A well-defined grammar exists for the Z language, therefore it is possible to 

check that every construct is well formed.37 Similarly, every variable must be 

identified with a specific type. As with those programming languages which use 

types, it is possible to check that the usage of every variable conforms to its 

declared type. With Z, it is possible to automate both checks. 

• To animate a formal specification document means to produce an executable 

prototype by (automatic) transformations which preserve correctness and other 

"interesting" properties. 35 

Many Z tools have been developed to support the above functions plus others which 

can be of great support in our study. However there are some problems that need to 

be considered.38 

• Each tool typically involves a large initial investment of time to get to the point 

where the tool is useful. 

• Few tools work together or share common interface designs, consequently, each 

tool must be learned from scratch and operated in isolation. 

In our study, we use in-house tools which have been developed by researchers at the 

University of Nottingham. The important aspect of these tools is that they have the 

same interface design and they have the primary functions which are relevant to our 

study. Table 2-1 shows the functionality comparisons between the tools that we use 

(Tool 19) and other existing Z tools (Tool 1 - Tool 18). The information about the 

Page 26 Chapter 2 : Approaches to Automatic Assessment Systems 





2.8. Design consideration 

Before the possible assessment of specifications is discussed, some general points 

about assessment need to be made. These arise from experience in the use of Ceilidh 

for the assessment of similar topics.41 Any assessment scheme which we eventually 

produce must satisfy a number of criteria. 

• Its output must be helpful to the student. The output must not be, for example, 

simply a statement that their specification failed, or that they lost 10 marks. It 

should pinpoint the reasons for any losses in a form which acts to enhance the 

student's learning experience. 

• It must be reasonably easy for the designer of the assessment system to set it up. 

In the exercise-specific information, the person setting up a new exercise should 

not need to know the workings of, for example, the Z to Prolog compiler. The 

marking procedures should be ｷ ｲ ｩ ｴ ｾ ｾ ｮ n in a high-level user-friendly language. 

• The awarded mark scheme must allow flexibility, so that the teacher can 

concentrate marks in any area of the process, to suit the area currently being 

taught. The emphasis of the marking may change from week to week, and from 

course to course. In order to achieve this, the overall assessment must combine 

the sub-marks for each part of the assessment process by a formula which the 

teacher can easily change. In the present version of Ceilidh the teacher specifies 

weighting factors in a pre-determined marking formula combining the sub-

marks; in the next version, much more general formulae will be permitted. 

• The marking scheme must be incremental and progressive. By this we mean that 

the system must not merely award 100% for perfect answers and 0% for 

erroneous answers. It must be capable of awarding partial marks at the control 

of the teacher for partially correct solutions. In this case, the student should 

ideally be informed only of the most serious error, the error causing the most 

serious loss of marks in the current marking scheme. It would not help the 

educational process to give the student many messages concerning very minor 

losses of marks. 

Page 28 Chapter 2 : Approaches to Automatic Assessment Systems 



• A further point is that all specifications are written to represent the customer 

requirements, and the way the specification is written is dependent on the type 

of problem to be addressed. The evaluation of the specification quality must also 

take into consideration the requirements descriptions. In our system we will 

represent the "customer statement of requirements" by a specification model 

supplied by the teacher; the teacher presumably thinks that this is the best 

solution which reflects the requirements descriptions. This means that some 

aspects of the evaluation will be based on this supplied model. 

• Apart from the (student) specification to be analysed, the system must therefore 

accept two more inputs, the set of values and formula with the control variables 

defining the importance of different factors in the assessment, and the model 

specification produced by the teacher (which is presumed by the teacher to 

represent accurately our "customer" statement of requirements). For the purpose 

of animation, the system mll'St be supplied with a number of sets of states and 

queries. The number of queries deemed appropriate for testing the exercise will 

be determined by the teacher. This represents the input to the animation process. 

Also the system should be supplied with definitions of the expected answers that 

represent the output of the animation process; in Ceilidh these would be 

supplied as oracles. 42 

In the University of Nottingham we have a Z type checker that has been developed 

by Zin30 which is called zc. Our assessment system uses zc to check the semantic 

and syntax of the specification. This requires that the specification be written in an 

ASCII file in a format developed at Nottingham, referred to as Z-roff43 and originally 

designed as a pre-processor language for the Unix roff system. The Z specification 

would be presented in roff format as: 

Chapter 2 : Approaches to Automatic Assessment Systems Page 29 



.ZS SchemaName 

variable declaration 

predicates 

.ZE 

The system developed in this study awards marks for specification maintainability 

using a similar technique to that technique proposed by Rees.20 For the typographic 

category, we derive the metrics by analysing the specification, which is written in Z-

roff format. Each selected typographic metric is marked according to a range of 

absolute values specified by the teacher to best reflect the good layout of the 

specification. The measurement of structural style (or complexity) is carried out 

based on the model solution, similar to the one proposed by Redish and Smyth44 , 

since the structure of a specification depends on the type of problem being solved. 

Before we can compare the structural style of two specifications, we have to make 

sure that both specifications are equivalent, that is, they are solving the same 

problem. For the complexity category, the metrics are gathered by analysing a 

conceptual model file of the specification (which is created as part of a succesful 

application of zc). Each complexity metric is marked relative to the corresponding 

counts for the model specification. 

The system measures the correctness of a Z specification by using two steps. First 

the specification semantics and syntax will be checked. The student is awarded full 

marks for this step if no error occurs. If errors occur, no further testing takes place. 

The overall mark for this step is categorised as static correctness. The next step is to 

ensure that the properties of the specification reflect the user requirements. A number 

of sets of test data are run against the specification. Each set has a weighting to 

reflect its importance. Marks are given according to the success of the testing against 

the test data. For a given test data, each aspect of success has its own weighting 

factor to reflect its importance. 

Page 30 Chapter 2 : Approaches to Automatic Assessment Systems 



To make the specification executable, we use the concept of animation. During the 

animation, the specification is 'executed' against a number of sets of test data. Not 

many tools have been developed to do animation; one such tool is the Zen and Zee 

(see Table 2-1). In the University of Nottingham, we have a tool named zp30 which 

can fonn a basis for the animation of a Z specification. zp translates into Prolog a 

specification which has been successfully compiled by zc. 

Although the concept of testing a specification has been used by Jalote36 and HaU22 , 

the goal of their testing is different from ours. Jalote's36 testing goal is to detect the 

incompleteness of the set of axioms, whilst Hall's22 goal is to test implementations. 

The different objectives will create different methods of testing, especially in 

choosing test data sets. 

Our testing objective is to test the degree to which the specification fulfills customer 

requirements. Our tests are therefore designed to see whether the specification will 

react in the way our customer wants if we give certain inputs to it. Since our system 

is meant for an educational environment, the teacher will act as the customer. The 

overall mark awarded for this step is categorised as dynamic correctness. 

2.9. Conclusion 

In this chapter we have presented the issues involved in building an automatic 

marking system for computer-based courses. Several techniques that have been 

proposed to be used in assessing specification were discussed. By considering these 

factors, we explained the idea of how we can develop a marking system for Z 

specifications. The idea shows that the development of an automatic assessment 

system for fonnal specifications written in Z is feasible and would provide a useful 

tool. Such a system would be of great help to anyone who has to assess the quality of 

specifications, and in particular for teachers of such courses. Ceilidh has been 

successful in the automatic on-line marking of programs but it needs to expand its 

capability to include other aspects of automatic marking. Supported by the existing Z 

Chapter 2 : Approaches to Automatic Assessment Systems Page 31 



syntax checker and Z to Prolog translator, develop by Zin30 , we have developed a 

system that can mark the quality of a software specification which is written in the Z 

language. 

References 

1. E. Foxley, O. Salman, and Z. Shukur, "The Automatic Assessment of Z 

Specification," Proceedings of ITiCSE '97 Conference, Uppsala, Sweden, June 

1997. 

2. S.P. Foubister, G.J. Michaelson, and N. Tomes, "Automatic assessment of 

elementary Standard ML programs using Ceilidh," Journal of Computer 

Assisted Learning, vol. 13, pp. 99-108, 1997. 

3. P.B. Van Verth, "A System for Automatically Grading Program Quality," 

SUNY (Buffalo) Technical Report, 1985 . 

4. G. Michaelson, "Automatic analysis of functional program style," Australian 

Software Engineering Conference, vol. 13, pp. 38-46, Melbourne, Australia, 

1996. 

5. P. Naur and B. Randell, Software Engineering, 1968. NATO 

6. M. Halstead, Elements of Software Science, Elsevier Scientific Publishing Co., 

1977. 

7. J. McCall, P. Richards, and G. Walters, Factors in Software Quality, 3 Vols., 

1977. NTIS AD-A049-014,0l5,055 

8. J.A.W. Faidhi, "The complexity analysis of Pascal programs and the application 

to a university teaching environment," PhD Thesis, University of BruneI, 1986. 

9. A. M. Zin and E. Foxley, "Automatic Program Quality Assessment System," 

Proceedings of the IFIP Conference on Software Quality, March 1991. S P 

University, Vidyanagar, INDIA 

10. S. Hung, L. Kwok, and A. Chung, "New Metrics for Automated Programming 

Assessment," IFIP Transactions A-Computer Science and Technology, vol. 40, 

Page 32 Chapter 2 : Approaches to Automatic Assessment Systems 



pp. 233-243, 1993. 

11. R.S. Pressman, Software Engineering, McGraw-Hill Company Europe, 1992. 

12. N.F. Schneidewind, "Standards," Computer, April 1993. 

13. S.S. Yau and J.S. Collofello, "Some Stability Measures for Software 

Maintenance," IEEE Transactions on Software Engineering, vol. 6, no. 6, pp. 

545-552, November 1980. 

14. R.S. Burgess, An Introduction to Program design using JSP, Hutchinson & Co. 

Publisher Ltd, 1984. 

15. A.M. Zin and E. Foxley, "Analyse - An automatic program assessment 

system," Malaysian Journal of Computer Science, vol. 7, p. 123, 1994. 

16. R. Whitty, "Structural Metrics for Z Specifications," Fourth Annual ZUM, 

Rewley House, Oxford, UK, 15 December 1989. 

17. S. Henry and D. Kafura, "On the relationship among three software metrics," 

Perform. Eval. Rev. ,no. 10, I ,pp. 81-88, Spring 1981. 

18. T.J. McCabe, "A Complexity Measure," IEEE Transactions on Software 

Engineering, vol. 2, no. 4, pp. 308-320, December 1976. 

19. K.A. Redish and W.F. Smyth, "Evaluating Measures of Program Quality," The 

Computer Journal, vol. 30, no. 3, 1987. 

20. M.J. Rees, "Automatic Assessment Aid for Pascal Programs," SIGPLAN 

Notices, vol. 17 ,no. 10, pp. 33-42, October 1982. 

21. S.H. Valentine, "The programming language Z--," Information and Software 

Technology, vol. 37, no. 5-6,pp. 293-301, 1995. 

22. P.A.V. Hall, "Towards Testing with Respect to Formal Specifications," Proc. 

of Second IEE/BCS Conference: Software Engineering 88, pp. 159-163, 

London, 1988. 

23. P.W. Oman and c.R. Cook, "A Paradigm for Programming Style Research," 

SIGPLAN Notices, vol. 23, no. 12, pp. 69-79. 

Chapter 2 : Approaches to Automatic Assessment Systems Page 33 



24. R. Barden, S. Stepney, and D. Cooper, Z in Practice, Prentice Hall, 1994. 

25. J.B. Wordsworth, "Education in formal methods for software engineering," 

Information and Software Technology, vol. 29, Jan-Feb 1987. 

26. V.R. Basili, "Tutorial on Models and Methods for Software Management and 

Engineering. ," IEEE Computer Society Press, Los Alamitos, California, 1980. 

27. J.K. Kearney, R.L. Sedlmeyer, W.B. Thompson, and M.A. Gray, "Software 

Complexity Measurement," Communications of the ACM, vol. 29, no. 11, pp. 

1044-1050, September 1986. 

28. W. Curtis, "Management and Experimentation in Software Engineering," 

Proceeding of the IEEE, vol. 68, no. 9, September 1980. 

29. V.R. Basili, R.W.Jr. Selby, and Philips T., "Metric analysis and validation 

across Fortran projects," IEEE transaction Software Engineering SE-9, pp. 

652-663, Nov 1983. 

30. A.M. Zin, ZFDSS: A Formal Development Support System based on the Liberal 

Approach, 1994. PhD Thesis, University of Nottingham, UK 

31. B. Fields and M. Elovang-Goransson, "A VDM Case Study in mural," IEEE 

Trans. Software Eng., vol. 18, no. 4, pp. 279-295, Apr. 1992. 

32. J.A. Goguen, "Parameterized Programming," IEEE Transactions on Software 

Engineering, vol. 10, no. 5, pp. 528-543, 1984. 

33. R. Balzer and N. Goldman, "Principles of Good Software Specification and 

their Implications for Specification Languages," Proceedings of IEEE 

Conference on Specifications of Reliable Software, pp. 58-67, Cambridge, 

Mass., 1979. 

34. J.C.S. do Prado Leite and P.A. Freeman, "Requirements Validation Through 

Viewpoint Resolution," IEEE Transactions on Software Engineering, vol. 17, 

no. 12, pp. 1253-1269 ,December 1991. 

35. R.A. Kemmerer, "Testing Formal Specifications to Detect Design Errors," 

IEEE Transactions on Software Engineering, vol. 11, no. 1, pp. 32-43, January 

Page 34 Chapter 2 : Approaches to Automatic Assessment Systems 



1985. 

36. P. Jalote, "Testing the Completeness of Specification," IEEE Transactions on 

Software Engineering, vol. 15, no. 5, pp. 526-531, May 1989. 

37. N.P.H. Haigh, "Providing tool support for Z," Software Tools: Improving 

Applications, pp. 185-191, June 1987. 

38. D. Garlan, "Making formal methods education effective for professional 

software engineers," Information and Software Technology, vol. 37, no. 5-6, pp. 

261-268, 1995. 

39. C. Parker, "z Tools Catalogue," ZIP/BAel90/020, Software Technology Dept, 

British Aerospace, 10 May 1991. 

40. P. Steggles and J. Hulance, Z Tools Survey, Imperial Software Technology Ltd 

& Formal System (Europe) Ltd, June 1994. 

41. S. Benford, E. Burke, E. Foxley, N. Gutteridge, and A.M. Zin, "CEILIDIH: A 

Course Administration and Marking System," Proceedings of International 

Conference in Computer based Learning in Science, Vienna, 1993. 

42. A. M. Zin and E. Foxley, "The Oracle Program," LTR Report, Computer 

Science Dept, Nottingham University, 1992. 

43. E. Foxley and A.M. Zin, Zpp - A Troff Preprocessor for Typesetting Z 

Specifications, 1990. Nottingham University Computer Science 

44. K.A. Redish and W.F. Smyth, "Program Style Analysis: A Natural By-Product 

of Program Compilation," Communications of the ACM, vol. 29, no. 2, pp. 

126-133, February 1986. 

Chapter 2 : Approaches to Automatic Assessment Systems Page 35 



Chapter 3 
Automatic Z Specification Assessment System 

3.1. Introduction 

In this chapter, we will describe the implementation of the Automatic Z Specification 

Assessment System (AZAS) , which is designed for assessing the quality of Z 

specifications written by beginners. The system is now being used as one of the 

components in a course management system called Ceilidh. 

The system was implemented under the UNIX operating system. It was written using 

the C++ and C languages, and UNIX facilities such as awk, sed and shell 

programming. The system consists of four different main programs; each program is 

used to assess different factors of a Z specification's quality. The Prolog system 

sicstus is used to support the process of dynamic marking. The system relies upon 

the type and syntax checker for Z specifications, zc,l as well as the Z to Prolog 

translator, zp. 1 The type checker and the translator have been developed by Zinl 

and are used mainly in the University of Nottingham. 

The structure of AZAS can be split into four important tools that are specifically 

designed for marking different aspects of quality; typographic arrangement of a Z 

specification, complexity of a Z specification, its static correctness and its dynamic 

correctness. A brief diagram of the AZAS structure is shown as in Figure 3-1. 

Besides the student's solution, AZAS also needs a teacher's model answer, as well as 

other particulars to be used in the assessment process. Each of the tools will produce 

their own marks which have been scaled to a percentage, and these marks will then 

be totaled up according to weight to make the overall marks. The student can be 

infonned of their result in several ways, depending on the teacher's intention. 

Page 36 Chapter 3 : Automatic Z Specification Assessment System 



TEACHER 

RESULT 

STUDENT 

Figure 3-1 : Framework of AZAS 

This chapter is divided into four main sections: maintainability which involves 

typographic and complexity, and correctness which involves static correctness and 

dynamic correctness. Every section will start by describing related research done by 

other researchers, followed by an explaination of how the factors are being assessed 

and finished by describing the program involved. This chapter ends by showing the 

output of the system. 

A brief description of the system with an initial experimental result was presented at 

the PROGRESS '98 Conference and published in the proceedings.2 The content of 

this chapter has been accepted to be published in the Journal of Computing in Higher 

Education. 3 

3.2. Maintainability 

The system measures a Z specification's maintainability by analysing the text based 

on two aspects; typographic arrangement and structural contents, i.e complexity. 

Chapter 3 : Automatic Z Specification Assessment System Page 37 



3.2.1. Typographies 

The following section is a discussion about some of the selected factors. 

The first factor that will be discussed here is an infonnal description. It is obvious 

that infonnal description which is written in natural language, e.g. the English 

language, is very important in any specification as it describes what is specified by 

the Z component. It helps the reader to interpret the fonnal description.4 A Z 

specification is composed of many schemas. The infonnal description which explains 

the significance of the fonnal mathematics therefore plays a role to act as a link 

between those schemas.5 However, the amount of English description and Z 

description in a specification should be balanced so that it helps the reader to 

understand the specification more efficiently. A study by Jones6 shows that a number 

of specifications lack informal description. The underlying issue here is what 

percentage the English description should fonn in any specification. Most articles 

mention the importance of the English description, but none discuss the percentage. 

Further, spelling errors should not happen in the English description. The system uses 

the Unix System Vocabulary to check the spelling. However, we must consider a few 

types of words that might not be in the Unix system vocabulary, which will be stated 

in the problem statement. 

The second factor is the style convention. It is sensible to follow an agreed 

convention for choosing identifiers in Z specifications. This makes the specification 

more readable. We follow the convention recommended by Gravell7 and 

MacDonald,S which concerns Case. Conventional style for Case in Z is as below: 

• Schema components, global variables and local variables should be written in 

lower case letters. 

• Schema names should be written in mixed upper and lower case letters. 

• Types should be written in upper case letters. 

Page 38 Chapter 3 : Automatic Z Specification Assessment System 



• Constants should be written in upper case letters. 

Further convention styles are: 

• "?" and "!" are used at the end of input and output variables, respectively. 

• The symbol 11 is used in front of a schema name as an indicator that the schema 

is in association with a state change and the symbol :a: for an unchanged value of 

a state. 

• If the total operation is called Op, then the correct part can be called Op _ OK and 

the error cases can be called Op _Error _ 1, Op _Error _ 2 and so on. So the total 

operation would be: 

However our system does not take these styles into account because the style is 

inherited by the support tools (i.e editor, type and syntax checker). 

The third concern is the length of the identifiers. It has been stated that meaningful 

identifiers improve comprehension.9 However, an identifier name that is too short can 

lead to misunderstanding and confusion whilst a complete name will use too many 

spaces and provide a potential error. to One-letter names for variables are not advised 

to be used, unless they are used locally. 8 A suitable length for the identifier is 

therefore needed to cater for both problems. Most of the references stated that an 

acceptable identifier is a string of reasonable length. However they mention nothing 

about the value or range of the acceptable lengths. 

The fourth matter is schema length. Schemas should be simple so that the whole 

specification is easier to understand and errors are more likely to be spotted.8 The 

unit that we used in counting the schema length is a line. For example, if the schema 

takes 5 lines, the length of the schema is 5. 

Dealing with long quantified expressions can be confusing. Thus, it can be useful to 

follow indentation, with the key symbols indented by the same amount. 8 In our 

system, indentation is captured when any lines end with an operator. Otherwise, the 

Chapter 3 : Automatic Z Specification Assessment System Page 39 



line should not be indented. 

As we have discussed earlier, there are many more factors that contribute to 

composing a good quality specification layout. At the moment our system chooses 

only factors that can be calculated and produce a numeric value; we claim that this is 

satisfactory for assessing Z specification written by beginners of Z. Nevertheless 

other factors could be researched, and if they are taken into consideration we might 

have a potentially intelligent system that could assist Z practitioners to write high 

quality Z specifications. The factors selected for the typographic arrangement in our 

system are: 

• % of blank lines 

• average schema length 

• % of schemas which have a good length 

• average variable name length 

• % of variable names which have a good length 

• % adherence to style conventions (to be agreed) 

• correctness of indentation 

• juxtaposition of English text and Z schema 

• % of spelling errors (explanatory) 

The typographic style is concerned with the specification presentation, it is 

independent of the particular requirements statement and model specification being 

assessed. Table 3-1 shows the range of values that we choose to be the indicator of 

quality in typographic aspect. This range were chosen after studying several 

examples of Z specification fromll - 13 • Each of the factors are marked relative to 

that range of values. These values can easily be reset. Table 3-2 shows the formula 

that the system uses to calculate every factor, with an explanation of the formula in 

the last column. 

Page 40 Chapter 3 : Automatic Z Specification Assessment System 



Factor L S F H 
% English description 6 II 60 65 
% of blank lines -3 0 25 28 
% of wrong spell -2 0 20 22 
% of conventional 78 80 100 102 
Average oflength identifiers 1 3 25 27 
% of variable names which have a good length 78 80 100 102 
Average schema length 3 5 19 21 
% of schemas which have a good length 78 80 100 102 
% of Z Description 24 30 85 91 
% of Good indented 78 80 100 102 
% of bad indented -2 0 20 22 

Table 3-1 : Typographies Quality Parameters 

Factor formula explanation 
% English description (min)" 100 m is a number of English 

description lines and n is a total 
number of lines 

% of blank lines (min)" 100 m is a number of blank lines (all 
blank lines from start to end of file) 
and n is a total number of lines. 
Please note thai blank lines at the 
beginning and end of files are not 
counted. 

% of wrong speU % of wrong spell m is a number of words that spelled 
wrongly and n is a total number of 
words in Enl!lish description. 

% of conventional (min)" 100 m is a number of identifiers that 
salisfy the rules and n is a total 
number of identifiers. 

Average of length identifiers min m is a total length of all identifiers 
and n is a total number of 
identifiers. 

% of variable names which have a good length (min)" 100 m is a number of words with good 
length and n is a total number of all 
words. 

Average schema length min m is a total of lines thai used to 
write a Z schema and n is a total 
number of Z schemas. 

% of schemas which have a good length (min) x 100 m is a number of schemas with good 
length and n is a total number of all 
Z schemas. 

% of Z Description (min) x 100 m is a number of Z decsriplion lines 
and n is a total number of lines. 

% of Good indented (min) x 100 m is a number of lines with good 
indented and n is a total number of 
lines. 

% of bad indented (min) x 100 m is a number of lines with bad 
indented and n is a total number of 
lines. 

Table 3-2 : Typographics Calculation 

Chapter 3 : Automatic Z Specification Assessment System Page 41 



Scoring for typographies 

The awarding of scores for each aspect of typographic style is done by using a 

technique proposed by Rees. 14 The teacher is required to provide the maximum mark 

for each factor. Marks will be awarded for the percentage of factors that falls within 

a certain range of values. The system keeps this detail in a special file named 

model. tv. The format of the file is that each line starting with 4 characters represents 

the short-form of the factor's name, followed by a maximum mark, and four values 

defining the five ranges of marks awarded. Below (Figure 3-2) is an example of a 

typical file model.tv. 

Factors Maximum Mark L F S H 
%ENG 5 6 11 60 65 
%BLL 5 -3 o 25 28 

Figure 3-2 : Example of file model.tv 

The formula to calculate the mark for each type of error is 

if ｆ ｧ ｾ ｓ S then award Maximum Mark 

if Lg <F then award X -L Maximum Mark 
F-L 

if S<XSHthen award H-X Maximum Mark 
H-S 

if X <L or X>H then award no mark 

where 

X is the value of any factors (calculated in Table 3-2). 

L, F, Sand H are values represent the five ranges of marks awarded (see 

Table 3-1). 

Page 42 Chapter 3 : Automatic Z Specification Assessment System 



Example. Assume that the above is detailed in the file model.tv. Suppose that 63% of 

the student's specification consists of English description. The student will then be 

awarded 2 out of 5 marks for that factor. The total of the maximum marks for every 

factor will then be scaled to a percentage. 

Program description: ｴ ｙ ｐ ｏ ｾ ｌ ｺ z

The program is written in C++. It takes a student solution as an input, and analyses it 

line by line. To check for spelling errors, the program uses the spell checker in the 

Unix system. 

The syntax of the command for typo9_z is: 

typo9_Z [-vO I -vI I -v2 I -v3 ] [-fO I -fl I -f2 I -f3 ] 

[-w filel] file2 

where filel is a weights file and file2 is a Z specification document with extension .z. 

The explanation of the flags is as follows: 

-w : use given file weight 

-vO I -vll-v21-v3 : level of verbosity (Numeric) 

(vO and vI show only the final score, v2 shows the score for every factor and 

v3 shows the score for every factor as well as the maximum mark for every factor) 

-tU I -fl I -f2 I -f3 : level of verbosity (Feedback in English) 

(tU shows only the final score, fl shows the factors that lost most marks, 

f2 shows all the factors that lost marks and f3 comments on marks for all 

the factors by using word either excellent, well, moderate, fair or bad) 

Chapter 3 : Automatic Z SpecifICation Assessment System Page 43 



3.2.2. Complexity 

The factors of Z specification structure in our domain are mostly taken from the ideas 

of Halstead Software Science, that is, counting the lexical entities of Z. This 

category includes the analysis of the following factors. 

• operators 

• number of operators per schema 

• mathematical toolkit operations 

• complexity of predicate expressions 

• complexity of schema algebra expressions 

• number of schemas 

• number of operation schemas 

• number of distinct identifiers 

• total number of variables 

• number of distinct variables 

• number of observation schemas 

• schema inclusions 

• depth of schema inclusion 

• number of variables per schema 

• basic/free type definitions 

• average length of natural language texts 

• the use of schema expressions 

Each one is marked relative to the corresponding counts for the model specification, 

and we will again assume the scoring technique shown in Figure 2-1. In a typical 

factor we might allow the student full marks for being within a factor of 2 (from 50% 

to 200%) of the corresponding metric for the model solution. 

Page 44 Chapter 3 : Automatic Z Specification Assessment System 



In our system, not all the above factors are calculated. Table 3-3 shows the factors 

that are chosen (pragmatically) to be included in the system. 

Factor Technical DescriPtion 
Number of distinct identifiers This includes schema names, schema 

components, given types and constanls. Please 
note that any identifiers with 'prime' symbol is 
not counted. 

Number of scbemas This involves schema definition and schema 
calculus. 

Number of operation schemas This involves schema which can change the 
stale. 

Number of observation schemas This involves schema which cannot change the 
state. 

Average of schema inclusion This means the number of schema inclusion per 
schema. 

Average depth of schema inclusion This means the depth of schema inclusion per 
schema. A schema which does not include any 
schema in it, has a depth of O. The depth of 
schema which include other schemas is, the 
number of included schemas + the depth of 
eve1}' included schema. 

Number of total variables This involves global variables, schema variables 
and local variables Note: variables with 
'prime' symbol is not counted. 

Number of distinct variables This involves only distinct variables is counted. 

Number of total constants This involves abbreviation, user-defined symbol 
and functional and relational operator (infix, 
prefix and postfix are not implemented). 

Number of distinct constants This involves only distinct constant is counted. 

Number of total given types This involves basic type, free type and generic 
type. 

Number of distinct given types This involves only distinct given types is 
counted. 

Number of tOlal basic built types Basic built type is any types except given type 
and composite type. For example N. 

Number of total composite types This involves distinct variables that associated 
with the composite ｬ ｙ ｾ ｳ Ｎ .

Average composite type length This means the average number of composite 
types been used per distinct variables type. 

Number of predicates This involves the schema predicates declaration 
and constraints for global variables. One 
predicate means one line in predicate part. 

Number of operators This involves operators which occurs in the 
schema predicates and in constraints expression 
for global variables. Operators under schema 
calculus are not counted. 

Average operators per schema This means the average num ber of operators per 
schema, excluding schema calculus. 

Average operators per predicate This means the average num ber of operators per 
predicate. 

Average predicates per schema This means the average number of predicates 
per schema, excluding schema calculus. 

Average variables per schema -

Table 3-3 : Complexity Calculation 

Chapter 3 : Automatic Z Specification Assessment System Page 45 



Scoring for complexity 

The student specification metrics must be within certain factors of those of the model 

solution for each metric set by the teacher. The marks and parameters for each of the 

factors are kept in file model.metric. Each line contains 4 characters which represent 

a code for the factors. followed by a maximum mark. next two values representing L 

and F. then a metric from the model solution. with the last two values representing S 

and H. Below (Figure 3-3) is an example of a typical file model. metric. 

Factors 
NDID 
NSCH 

Maximum Mark 
5 
5 

L 
8 

0.50 

F 
16 

Model 
32 
2 

S 
64 
4 

H 
96 
6 

Figure 3-3: Example of file model. metric 

The formula to calculate the mark for each type of factor is similar to the 

typographics formula (i.e using the Rees model). 

Example. Assume that the above details are in the file model. metric. If the student 

has 80 different identifiers and the model has 32. the student gets 2.5 out of 5 marks 

for that factor. Similar to typographics marking. the total marks of every factor will 

be scaled to 100%. 

Program description: complex_z 

zc is used to support the program in obtaining those metrics. The program analyses 

files which consist of a conceptual model of a specification which is generated by 

zc. Please note that complexity marking cannot be done. unless the specification has 

been succesfully compiled by zc. 

The relevant weights file (that is a file with extension .metric) from a model solution 

should first be generated before invoking the main process. The command to 

Page 46 Chapter 3 : Automatic Z Specification Assessment System 



generate this file is: 

complex_z -mm file 

where file is a Z specification document (model solution) with extension .z. 

The syntax of the command for complex_z is: 

complex_z [-vO I -vI I -v2 

-w filel file2 

-v3 ] [-fO I -fl I -f2 I -f3 ] 

where filel is a weights file and file2 is a Z specification documents with extension .z. 

The explanation of the flags is as follows: 

-w: flag weight, use following argument as file weight 

-vO I -vI I -v2 I -v3 : level of verbosity (Numeric) 

(vO and vI show only the final score, v2 shows the score for every factor and 

v3 shows the score for every factor as well as the maximum mark for every factor) 

-ill I -fll -f2 I -f3 : level of verbosity (Feedback in English) 

(ill shows only the final score, f1 shows the factors that lost most marks, 

f2 shows all the factors that lost marks and f3 comments on marks for all 

the factors by using word either excellent, well, moderate, fair or bad) 

3.3. Specification correctness 

As explained in chapter 2, the system measures the correctness of a specification 

using two steps. 

1. The specification's static correctness is checked. 

2. Next, a number of sets of test data are run against the specification. 

Chapter 3 : Automatic Z Specification Assessment System Page 47 



3.3.1. Static correctness 

Static analysis involves the examination of the text of the specification without 

'execution'. The specification structure and syntax are inspected to highlight 'static' 

errors and produce statistical information for the specifier. IS In order to assess static 

correctness, we rely partly on zc. This compiler will comment on Z specifications 

as part of the compilation process. The score for static analysis will be based on the 

outcome of applying zc and the occurrence of other static problems in the 

specification. This checks for Z syntax, for correct types in all expressions, and for 

the validity of all use of identifiers. 

The Z compiler analyses a Z specification document written in Z-roff format in order 

to build a Z specification conceptual model. The conceptual model for a Z 

specification defines the software objects and relationships between these objects at a 

selected level of abstraction. I Another task of the compiler is to perform error 

reporting. The compiler classifies the errors into three types, lexical errors, syntax 

errors and semantic errors. 

Lexical errors are concerned with the validation of tokens. For example, variable 

name@ is an invalid token in a Z specification. 

Syntax errors occur when the specification does not follow the Z syntax rules as 

specified by Spivey.16 

Semantic errors involve scope errors and type errors. An example of scope analysis 

is that all variables declared in a schema have schema scope. An error will therefore 

occur if a schema uses a variable which is declared in another schema. An example 

of type checking is that the compiler follows predicate] <rel> predicate2 syntax for 

an infix relation. The type of predicate] and predicate2 must conform with the 

types required by the relation <rei >. If the relation is !;;;;, then predicate1 and 

predicate2 should be the same type of set. 

Page 48 Chapter 3 : Automatic Z Specification Assessment System 



Scoring for static correctness 

Static correctness is measured by counting the errors detected when we execute zc. 

For each of the three types of error summarised above (lexical, syntax, semantic), we 

give a maximum mark. A mark is then deducted from the maximum mark for every 

occurrence of an error of that type. In addition to a maximum mark, a weight for 

every type of error is also given. The details of the maximum mark and the weight 

for every error are stored in a file model.sv. This detail can be changed by the teacher 

to reflect different requirements or priorities. Below (Figure 3-4) is an example of a 

typical model.sv file. 

Type of Error 
Lexical 
Syntax 

Semantic 

Maximum Mark 
5 
5 
5 

Weight 
I 
3 
2 

Figure 3-4 : Example of file model.sv 

The formula to calculate the mark for each type of error is 

( Maximum mark - Number of errors) lie Weight 

subject to a non-negative result. 

Example. Let us say that in one particular exercise the student had 1 lexical error, 2 

syntax errors and 4 semantic errors. Using the detail in the above model.sv file as an 

example, the student score is calculated as below (Figure 3-5): 

for lexical 
for syntax 
for semantic 
Total lexical score 

(5-1)xl 
(5-2)x3 
(5-4)x2 

4 
9 
2 
15 

Figure 3-5 : Calculation for static correctness mark 

The total score is 15 out of 30, which is 50%. If the student has errors equal to or 

more than maximum mark, then 0 marks will be given to the respective type of error. 

Chapter 3 : Automatic Z SpecifICation Assessment System Page 49 



If the student has no errors then she or he will be awarded full marks of 100%. 

Program description: statcorr_z 

By modifying zc, instead of producing error messages, it produces the number of 

errors of each type. The marks for each error are either taken from default values 

from data initialization built in the statcorr_z program, or can be supplied from a 

file model.sv. 

The syntax of the command for statcorr_z IS: 

statcorr_z [-w file1] [-vOI-v11-v21-v3] [-fOI-f11-f21-f3] 

fi1e2 

where file I is a weights file and file2 is a Z specification document with extension .z. 

The explanation of the flags is as follows: 

-w: use given weights file 

-vO I -vI I -v2 I -v3 : level of verbosity (Numeric) 

(vO and vI show only the final score, v2 shows the score for every factor and 

v3 shows the score for every factor as well as the maximum mark for every factor) 

-ill I -fl I -f2 I -f3 : level of verbosity (Feedback in English) 

(ill shows only the final score, fl shows the factors that lost most marks, 

f2 shows all the factors that lost marks and f3 comments on marks for all 

the factors by using word either excellent, well, moderate, fair or bad) 

3.3.2. Dynamic correctness 

In order to check the degree to which the specification fulfills the user requirements, 

the system uses a testing technique. The execution is done by animating the 

specification. The main aim of animation is two fold. Firstly, we wish to uncover 

any inconsistency or incompleteness in the specification. Secondly, we must ensure 

Page 50 Chapter 3 : Automatic Z Specification Assessment System 



that the specification faithfully reflects the 'customer' requirements. 

A Z specification consists of schema paragraphs. Some are state schemas defining 

system invariants. Others are operation schemas defining the relation between the 

states before and after a given operation. The definition represented by the schema is 

written as a number of predicate formulae. To test that the schema is defining the 

behaviour of the system correctly, we invoke the schema with a chosen set of values 

of the system variables; these may include global pre- and post-variables, as well as 

input and output variables. If the schema is successfully invoked, we continue by 

analysing the values of the rest of the system variables. A measure of the system's 

behaviour is determined by the expected values of the system variables. The 

complete analysis of the schema will involve a number of tests; some marks will be 

awarded for each test, and the total mark represents (in a certain sense) the overall 

success of the schema. 

We will consider the example of telephone book. The example involves storing the 

names and telephone numbers of a group of people; the state schema is named 

TelephoneBook, the schema representing the addition of a new entry is 

AddTelephone, and the schema representing the retrieval of a named person's 

telephone number is FindTelephone. 

Our assessment system might invoke the student's copy of an event schema such as 

AddTelephone with particular values for the initial state and for the input variables 

(this will be referred to as a test case ) and check the final state and output values 

with tests such as (Figure 3-6) 

25 marks: 
5 marks: 

10 marks: 
. 5 marks: 

eric E known' 
known'= .. . 

telephone' = .. . 
result! = .. . 

Figure 3-6 : Example of final state and output analysis 

where eric is the new name being added, known is the set of all people whose names 

Chapter 3 : Automatic Z Specification Assessment System Page 51 



are known, telephone is a partial function which maps names to numbers, and result 

is some result message indication successful conclusion. By giving this example, we 

do not mean to abandon the symmetrical feature of the input and output in the Z 

language. The implementation of this feature in the system will be discussed in 

chapter 4. 

Assessing state schema 

There is a question as to how we should test the student's state schema. We need to 

set up initial valid and invalid states, and check that the student's state schema reports 

correctly. In one sense this is a static test, but we implement it using animation. 

Assessment using animation 

Three entities are involved in each animation test in the process; these are the 

specification, the test case and the test weight. The test case is a file which is written 

by the teacher to set up a data state for the schema. It is written in the format 

SchemaName 

variable 1 = value 1 

variable 2 = value 2 

where 

SchemaName is the name of the schema that we want to test, 

variable 1 etc will be the name of an input, output or pre-or post-state variables and 

value 1 etc is the value we wish that variable to take. 

The file defining the weight to give to each test specifies the predicates we wish to 

test, and the mark to be awarded for each successful test. The format of a test weight 

file is as below: 

Page 52 Chapter 3 : Automatic Z Specification Assessment System 



SchemaName 

mark] predicate I 

mark2 predicate 2 

where 

SchemaName is name of the schema that we have tested and 

markl is the mark we want to give if predicate 1 is true. 

To make the specification executable, we translate the specification into Prolog. Not 

all specifications can be made executable, suitable choice of exercise needs to be 

made by teacher. An intuitive motivation for this is that mathematical logic forms 

the foundation of both Z and Prolog. We use zpl to translate Z specifications into 

Prolog code. The test cases and test weights will also be translated into Prolog, this 

time using scrptz and markZ respectively (see chapter 4). 

We then run the specification (which is now Prolog code) by adding several queries, 

and analysing the values of output variables. 

Example assessing state schema: TelephoneBook 

We will show a simple example of how we can apply this technique to grade the 

degree to which a state schema fulfills a specification. We will use the above 

example of a system which records people's telephone numbers. A correct state 

schema for the system is as follows. 

ｔ ･ ｫ ｰ ｨ ｯ ｮ ･ ｂ ｯ ｯ ｾ ｫ k__________________________________________ -. 

known:PNAME 
telephone: NAME -f+ PHONE NUMBER 

known = dom telephone 

We would wish to check that a schema supplied by a student has a behaviour 

Chapter 3 : Automatic Z SpecifICation Assessment System Page 53 



equivalent to this. 

The state schema's predicates given in the predicate part should hold in all valid 

cases, and the conjunction of the predicates should fail for invalid data. To test a 

state schema, we actually test whether the relations in its predicate behave as 

required. We give certain values to its variables, and then invoke the schema. 

In the above schema, there are two state variables, known and telephone. known is a 

set of NAMEs, whilst telephone is a partial function from NAMEs to PHONE _ NUMs. 

The predicate part of the schema specifies that the domain of telephone is equal to the 

value of known. We are interested when checking any student schema to see whether 

the relation 

known = dom telephone 

is correctly true or false when applied to certain values of the variables supplied to or 

defined by the student schema. We can give at least two sets of variable values, one 

in which the predicates of the state schema should hold, and another in which the 

conjunction of the predicates fails. 

An example of a test case which should satisfy the predicate is 

telephone = {Uohn, 9790917), (mary, 9788777)} 

known = {john, mary } 

The sets 

telephone = {Uohn, 9790917), (mary, 9788777)} 

known = {mary} 

and 

telephone = {Uohn, 9790917), (mary, 9788777)} 

known = {eric, john, mary} 

Page 54 Chapter 3 : Automatic Z Specification Assessment System 



should cause the state schema to deliver false. More serious possible student errors 

would arise from type errors such as 

or 

telephone = {Uohn, 9790917, mary), (mary, 9788777, john)} 

known = {eric, john, mary} 

telephone = {Uohn, 9790917), (mary, 9788777)} 

known = {9790917, 9788777} 

Accompanying each test case is a progressive marking scheme that tests the extent to 

which the student's schema fulfills the required conditions. We may require with a 

valid initial data set that 

10 marks if the relation 'known = dom telephone ' is true 

We must also test the correctness of the relation by giving an invalid initial data state, 

in which the state schema should deliver the result false. For example, the data set 

telephone = {Uohn, 9790917), (mary, 9788777)} 

known = Uohn} 

should have a marking scheme 

10 marks if the relation 'known = dom telephone' is false 

.ZS TelephoneBook 
known: POWER NAME 
telephone: NAME PARTFUN PHONE_NUM 

known - DOM telephone 
.ZE 

Figure 3-7 : Z specification in Z-roff format 

Chapter 3 : Automatic Z Specification Assessment System Page 55 



Figure 3-7 shows the Z-roff format of the model specification as supplied by the 

teacher, Figure 3-8 shows the file defining the data state for the first test case and 

Figure 3-9 shows the file defining the marking for this data state (in this case "10 

marks is given if the schema is TRUE"). 

TelephoneBook 
telephone - { (john, 9790917) , (mary, 9788777) } 
known - {john, mary } 

Figure 3-8 : First test data state 

TelephoneBook 
10: TRUE 

Figure 3-9 : First test data marking 

The above example shows how we assess the correctness of a state schema. We will 

also wish to assess schema which represent a change to the data state, an operation 

schema, and of schema for reporting on the data state, an observation schema . 

Examples assessing operation schema: AddTelephone 

The following example still uses the same telephone book problem, with the above 

state schema. In the problem, there is an operation schema, AddTelephone. This 

takes two inputs name? and phone? representing the name and telephone number of 

a new entry, thus changing the data state, but producing no output. The new state 

variable telephone' will be updated by adding a new relation that is 

(name?, phone ?). The expected specification of the schema is 

Page 56 Chapter 3 : Automatic Z Specification Assessment System 



ａ ､ ､ ｔ ･ ｬ ･ ｰ ｨ ｯ ｮ ｾ ･ e__________________________________________ ｾ ~

ll.TelephoneBook 
name?: NAME 
phone?: PHONE_NUM 

telephone' = telephoneu{name? ｾ ~ phone?} 
known' = knownu{name?} 

Critical errors such as the non-existence of input variables or the number of input 

variables more than expected are ignored for the time being. The topic will be 

discussed in chapter 4. 

Assume that we want to add a person's name, John and his telephone number is 

9790917 into the TelephoneBook database. We also want to initialise the value of the 

data state known and telephone as empty sets. Hence the state of the system after the 

operation for known' and telephone' are {John} and {(John, 9790917)}, respectively. 

We can now design our test cases for this operation. For the operation schema the 

test case is 

AddTelephone 

name? = john 

phone? = 9790917 

known = {} 
telephone = {} 

Our mark scheme expressed informally would be 

-if the conjunction of all predicates in the student's schema AddTelephone that is 

telephone' = telephoneu{name? ｾ ~ phone?}" known' = knownu{name?} 

is true, give 10 marks 

-if known' contains an element John, give 5 marks 

-if telephone' contains a relation (John, 9790917), give 5 marks 

Chapter 3 : Automatic Z Specification Assessment System Page 57 



These sentences have to be transformed into special notation, and the file 

representing the marking for this test is 

AddTelephone 

10 : true 

5 johneknown' 

5 Uohn, 9790917) e telephone' 

If the schema should be TRUE when it fails, then the system will award a mark 

according to the percentage of predicates which contribute to the corrrectness. For 

example, the schema AddTelephone consists of a total of three predicates (one 

predicate is from the included schema TelephoneBook). The predicates are as 

follows: 

known=dom telephone 

telephone' = telephoneu{name? H phone?} 

known' = knownu{name?} 

Let us say that the second predicate of the schema causes an error which fails the 

whole schema. The analysis could not be continued due to the nature of Prolog 

implementation. This means that one third of the predicates has been tested working 

(i.e the known=dom telephone). Therefore 33.33% from the amount of the marks 

when the schema is true, will be awarded by the system. In this case, 33.33% out of 

10, that is 3.33 marks will be awarded to the student. 

This situation, along with a technique to design a test case and to plan a marking 

scheme for the purpose of dynamic marking is presented in detail in chapter 4. 

Scoring for dynamic correctness 

Each of the test case files with their corresponding progressive mark file will be run 

against the student specification. Each test case will have an overall weight. The 

output from the process is either the total of the progressive marks multiplied by their 

Page 58 Chapter 3 : Automatic Z Specification Assessment System 



weighting factors, or a negative value showing that an error has occurred (the student 

schema may have syntax or type errors). This mark is then scaled to an integer 

percentage. 

If there are six test cases, the six overall test weights are given in the file model.dv, 

typically (Figure 3-10) 

Test number 
1 
2 
3 
4 
5 
6 

Title of the test 
Te\ephoneBook 

AddTelephone, general test 
AddTelephone, add to empty database 

AddTelephone, add existing user 
FindTelephone, general test 

FindTelephone, user not found 

Test Weight 
4 
8 
6 
6 
6 
4 

Figure 3-10 : Example of file model.dv 

Assume that in one particular exercise, the progressive marks awarded to the student 

for the six tests are 40%, 80%, 20%. 30%, 60% and 10% respectively. These marks 

will be totaled using the given weighting factors and scaled to 100%. The overall 

cumulative mark will be 

(40*4 + 80*8 + 20*6 + 30*6 + 60*6 + 10*4) 1(4 + 8 + 6 + 6 + 6 + 4) * 100 

Negative marks act only as indicators to the type of failure, and are always treated in 

calculations as a mark of zero. The indicators are 

-1 : Runtime prolog error. 

-2 : Format error. 

-3: Prolog loading error. 

Chapter 3 : Automatic Z Specification Assessment System Page 59 



Program description 

The process in carrying out the dynamic marking is discussed under the issue of 

testing the correctness of a specification, presented in the next chapter. 

3.4. The overall system 

Basically, the system will receive as input 

the student specification, 

a set of test data and, 

a marking scheme. 

The test data would be provided by the teacher in an educational context. The 

marking scheme will also be provided by the teacher. Typically, the system marks 

the specification by first analysing its layout and then its static correctness. If there 

are no errors in static correctness, the system will continue the marking process, to 

analyse the specification's complexity, and lastly to animate the specification against 

the test data and award marks to represent its dynamic correctness. However, it is not 

necessary to have four factors in every analysis. It depends on the marking scheme 

set by the teacher. In a simple question, the focus is usually on correctness; 

maintainability is not so important. 

The output of the system is designed so that it is helpful to the student. The system 

has three ways of presenting the output. The first is by showing details of the score 

and the mark for every factor. The second is verbal grading for every factor. Lastly, 

only the overall score is shown. The style is chosen by setting the respective flag 

when we run the program. Figure 3-11 is an example of output from the static 

correctness marking. 

Page 60 Chapter 3 : Automatic Z Specification Assessment System 



ERROR TYPE 
Semantic 
Lexical 
Syntax 

Static Correctness Marks 
NUMBER OF ERRORS MARK 

o 10 
o 10 
o 10 

Total Static Correctness 

OUT OF 
10 
10 
10 

100.00% 

Figure 3-11 : Example of output from static correctness marking 

The output is separated into four columns. The first column shows the type of error; 

the second column shows the number of errors that are produced from the student 

solution; the third column displays the marks that are awarded to the student with 

respect to the occurrences of errors (and it is scaled to the weight); and the last 

column shows the weights of the errors. The overall mark is shown in the last row. It 

is scaled to a percentage. 

Figure 3-12 shows an example of output from animation marking. 

Dynamic Correctness Marks 
TEST SCORE MARK OUT OF 

Simple Test 50 10 10 
Harder Test 15 19 25 

Difficult Test 25 13 25 
Overall Dynamic Correctness mark 70.00% 

Figure 3-12: Example of output from dynamic marking 

The output is divided into four columns. The first one describes the type of the test; 

the second, shows the unsealed mark that is awarded to the student for a respective 

test; the third column presents a mark which has been scaled to the weight; and the 

last column shows the weights of the tests. The total mark which is scaled as a 

percentage is shown at the bottom. The same output style is used for typographics 

where the output is divided into four colums, where the only difference is at the first 

column, and we now show the type of factor. This is shown in Figure 3-13. 

Chapter 3 : Automatic Z Specification Assessment System Page 61 



Typographic Marks 
ITEM SCORE MARK OUT OF 
% of English Description 49.06 5.00 5.00 
% of blank lines 0.00 5.00 5.00 
% of wrong spell 0.90 5.00 5.00 
% of conventional 100.00 5.00 5.00 
Average Identifier length 6.80 5.00 5.00 
% identifier with good length 10.00 0.00 5.00 
Average schema length 5.50 0.50 5.00 
% schema with good length 0.00 0.00 5.00 
% of Z description 50.94 5.00 5.00 
% of good indent 100.00 5.00 5.00 
% of bad indent 0.00 5.00 5.00 

Total Typographies 73.64% 

Figure 3-13 : Example of output from typographics marking 

Finally, Figure 3-14 shows an example of output from complexity marking. The 

output is similar to typographics with an extra column which shows the metric from 

the model specification. 

Complexity Marks 
ITEM MODEL SCORE MARK OUT OF 
Number of distinct identifier 21.00 21.00 5.00 5.00 
Number of Schema 3.00 2.00 5.00 5.00 
Number of Total Variable 12.00 12.00 5.00 5.00 
Number of Distinct Variable 11.00 12.00 5.00 5.00 
Number of Total Constant 0.00 0.00 5.00 5.00 
Number of Distinct Constant 0.00 0.00 5.00 5.00 
Number of Total Given Type 3.00 2.00 5.00 5.00 
Number of Distinct Given Type 7.00 7.00 5.00 5.00 
Total Basie Built Type 0.00 0.00 5.00 5.00 
Total Composite Type 9.00 10.00 5.00 5.00 
Average Composite Type Length 1.00 1.20 5.00 5.00 
Number of operators 55.00 44.00 5.00 5.00 
Number of predicates 29.00 21.00 5.00 5.00 
Average operators perschema 18.33 22.00 5.00 5.00 
Average operators perpredicate 1.90 2.10 5.00 5.00 
Average predicates perschema 9.67 10.50 5.00 5.00 
Number of Operation Schema 0.00 0.00 5.00 5.00 
Number of Observation Schema 2.00 1.00 5.00 5.00 
Average Schema Inclusion 0.67 0.50 5.00 5.00 
Average Depth of Schema 0.67 0.50 5.00 5.00 
Average variables perschema 16.00 16.00 5.00 5.00 

Total Complexity 100.00% 

Figure 3-14 : Example of output from complexity marking 

Page 62 Chapter 3 : Automatic Z Specification Assessment System 



The above examples of output are presented using the first (numeric) type. An 

example of a result which is shown verbosely is given in Figure 3-15. 

Complexity Marks 

You have done excellently in Number of distinct identifier 
You have done excellently in Number of Schema 

You have done excellently in Average Depth of Schema 
You have done excellently in Average variables perschema 
Score 100.00 

Figure 3-15: Example of output from complexity marking 

Below is an example of the third type of output, in which only the overall mark is 

shown. 

Score 75.00 

Further features 

The system is able to give a reason for marks lost, when tested against a particular 

test case. If the schema should be true when it fails, then the system can show which 

predicate caused the error. Furthermore, if the schema succeeds the test, but fails in 

some of the analysis, the system is able to infonn of the analyses that fail. 

3.5. Conclusion 

We have described in this chapter a system that gives a quality grade to a 

specification that is written in the Z language. Four factors are involved in 

determining the quality of a specification : typographic arrangement of a 

specification, complexity of a specification, static correctness of a specification and 

dynamic correctness of a specification. 

Chapter 3 : Automatic Z Specification Assessment System Page 63 



References 

1. A.M. Zin, ZFDSS: A Formal Development Support System based on the Liberal 

Approach, 1994. PhD Thesis, University of Nottingham, UK 

2. Z. Shukur, E. Burke, and E. Foxley, "Automatic Marking System for Z 

Specifications," Proceedings of PROGRESS 98 Conference, Nottingham, UK, 

March 1998. 

3. Z. Shukur, E. Burke, and E. Foxley, "The Automatic Assessment of Formal 

Specification Coursework," Journal of Computing in Higher Education, 

Amherst, Massachusetts, US, (will be published in) August 1999. 

4. N.P.H. Haigh, "Providing tool support for Z," Software Tools: Improving 

Applications, pp. 185-191, June 1987. 

5. J. M. Spivey, The Z Notation: A Reference Manual, 1989. Prentice-Hall, Inc. 

6. C. Jones, "A Survey of Programming Design and Specification Techniques," 

Proceedings of IEEE Conference on Specification of Reliable Software, pp. 91-

103, Cambridge, Mass., 1979. 

7. A.M. Gravell, "What is a Good Formal Specification?," Fifth Annual Z User 

Meeting, Oxford, UK, 17 December 1990. 

8. R Macdonald, "Z Usage and Abusage," Report 91003 Royal Signals and 

Radar Establishment, Malvern, Worcs, February 91. 

9. B. Shneiderman, Software Psychology: Human Factors in Computer and 

Information Systems, Winthrop Publishers, 1980. 

10. RS. Pressman, Software Engineering, McGraw-Hill Company Europe, 1992. 

11. A. Diller, ZAn Introduction to Formal Methods, John Wiley & Sons, 1994. 

12. L. Bottaci and J. Jones, Formal Specification Using Z: A Modelling Approach, 

International Thomson Publishing, 1995. 

13. "ZUM '98: The Z Formal Specification Notation," Proceedings of 11th 

International Conference ofZ Users, no. 1493, Springer, September 1998. 

Page 64 Chapter 3 : Automatic Z Specification Assessment System 



14. M.J. Rees, "Automatic Assessment Aid for Pascal Programs," SIGPLAN 

Notices, vol. 17, no. 10, pp. 33-42, October 1982. 

15. M. Coleman and S. Pratt, Software Engineering for Students 1986, Chartwell-

Bratt Ltd., 1986. 

16. J.M. Spivey, The Z notation: Reference Manual, Prentice Hall, 1988. 

Chapter 3 : Automatic Z Specification Assessment System Page 65 



Chapter 4 
Inspecting the Correctness of Specification 

through System-state Analysis 

4.1. Introduction 

Testing techniques for assuring the correctness of a formal specification have been 

proposed by many people, for example by Kemmerer} and Jalote.2 The fundamental 

requirement of any software testing is to define the objectives accurately. The testing 

objectives help one plan design test cases in such a way that the objectives can be 

met. 3 A number of rules that can serve as a basis for testing objectives are described 

by Myers4 and are presented as below. 

• Testing is a process for executing a program with the intent of finding an error. 

• A good test case is one that has a high probability of finding an as yet 

undiscovered error. 

• A successful test is one that uncovers an as yet undiscovered error. 

Information flow for the testing process which is adapted from3 is shown in Figure 

4-1. From the figure, it can be that seen the process has two classes of inputs; 

software configuration and test configuration. A "test configuration" includes both 

test cases and expected results. 

Page 66 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



Figure 4-1 : Test Information Flow 

Mandrio1i5 says that "many testing techniques address the problem of generating test 

data (for example program inputs) for a system but do not address the problem of 

verifying the correctness of the outputs obtained during the testing activity." 

Richardson6 tackles this problem by incorporating oracles into the testing process. 

She says, "a test oracle determines whether a system behaves correctly for test 

execution." 

Another issue is in debugging, which is defined as a process of removing an error. 3 

According to Beizer7 it, "occurs as a consequence of successful testing" , that is when 

a test case uncovers an error. It has been said by Shneiderman8 that this process is 

one of the most difficult parts of software engineering. This process is normally 

supported by debugging tools such as debugging compilers and dynamic debugging 

aids (sometimes called "tracers"). In terms of program debugging methodologies, 

these are divided into two main kinds; static analysis that examines the code, and 

dynamic analysis that examines the running of the code on specific examples.9 An 

outcome of the debugging process might be the knowledge of the location and the 

type of all bugs and the corrections necessary. 9 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 67 



This chapter discusses how the above idea can be used in testing a Z specification in a 

learning environment. With respect to the information flow in Figure 4-1, we 

'execute' a specification against selected test cases and evaluate the results of the 

testing by comparing them with the expected results using a test oracle. The result of 

the evaluation is presented by using some numeric measurement such as a percentage 

figure. The value of the percentage can give an idea about the degree of the 

correctness of a specification. When an error is discovered, the debugging process 

can be initiated. 

We can test the correctness of the system specification behaviour by analysing the 

state of the system because Z specifications use a state-based approach. The 

execution behaviour of a specification can be demonstrated by animating it. To make 

the specification animatable, we translate the specification into Prolog using Zin' s Z 

to Prolog translator, zp. 10 We produce a percentage that shows the level of 

correctness of the specification. When the level of correctness is not at an acceptable 

level (we may not demand complete correctness), some faults are shown to exist in 

the specification. To 'debug' a specification, we developed a debugging tool to 

locate the error. 

The work presented in this chapter will be submitted to the IEEE Transactions on 

Software Engineering.11 

4.2. The system-state analYSis approach 

In principle, the specification analysis can be classified into two areas: pre-condition 

analysis and post-condition analysis. Furthermore, post-condition is analysed in two 

ways; abstract analysis and concrete analysis. These analyses can be performed by 

investigating only the system-state. The results of each analysis are presented as an 

integer. The greater the value of the integer the more successful the analysis. 

Page 68 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



4.2.1. Pre-condition analysis 

Predicates which define the pre-condition of a schema can be obtained by hiding all 

the primed and output variables. By only using unprimed system variables (i.e 

system-state variable and input variables), we can detect the occurences of respective 

pre-conditions in a schema. This can be done by using a combination of test cases. 

The combination of results infers the condition possessed by the specification. Marks 

can be awarded according to the completeness of the pre-conditions that the 

specification possesses. 

We illustrate this situation by using the schema AddTelephone. The schema consists 

of two pre-conditions: the input name must not be in the database, and the input 

phone must be valid data. By using a technique proposed by Hall l2 , we produce the 

table below (Table 4-1): 

TDl TD2 TD3 TD4 

known - - - -
telephone - - - -
name? Eknown eknown Eknown eknown 

phone? valid telephone invalid telephone invalid telephone valid telephone 

known' - - - -
telephone' - - - -

Table 4-1 : Test data classification 

An example of a system-state that satisfies TD! is: 

known = {ali,abu} 

telephone = {(ali, 9422144),(abu, 9788777)} 

name? = ahmed 

phone? = 9514232 

An example of a system-state that satisfies TD2 is: 

known = {ali,abu} 

telephone = {(ali, 9422144),(abu, 9788777)} 

Chapter 4 : Inspecting the Correctness of Specification through System-state AnalYSis Page 69 



name? = ali 

phone? = scotland 

An example of a system-state that satisfies TD3 is: 

known = {ali,abu} 

telephone = {(ali, 9422144),(abu, 9788777)} 

name? = ahmed 

phone? = england 

An example of a system-state that satisfies TD4 is: 

known = {ali,abu} 

telephone = {(ali, 9422144),(abu, 9788777)} 

name? = abu 

phone? = 9515455 

If we succeed in using test data 1 (TD 1) for the specification, it does not guarantee 

that both pre-conditions are correct. It could be that either both pre-conditions exist, 

or neither exist, or only one exists. If the test data were to fail then either both of the 

pre-condition exist or one of the pre-condition exists. This situation is similar to 

program testing, where R.A. DeMilIo et al13 said "if the program gives the incorrect 

answer, then certainly the program is in error. On the other hand, if the program 

gives the correct answer, it may be that the test data is not sensitive enough to 

distinguish that error." However if we extend the testing by using test data T02, TD3 

and TD4, and all three produce negative results, this combination of results infers that 

the specification has both pre-conditions. 

By generalising the AddTelephone problem into any problem that contains two pre-

conditions A and B, we derive four different instances of test data as follows: test 

data that satisfies pre-condition A and B (teAB), test data that does not satisfy pre-

condition A but satisfies B (te-AB), test data that does not satisfy pre-condition B but 

only A (teA-B), and finally test data that does not satisfy either pre-condition A or B 

Page 70 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



(tc-A -B). From those four instances, we can write several combinations as in the 

table below (Table 4-2). 

Comb. tcAB tc-AB tcA-S tc-A-S inference 

I / x x x A&B 

2 / x / x A 

3 / / x x B 

4 x / x x -A&B 

5 x x / x A&-S 

6 x x x / -A& -S 

7 x / x / -A 

8 x x / / -S 

9 / / / / -

Legend I 

/ I Success when trying against a specification 
x • Fail when trying against a specification 

Marks Rationale of marks given 

100% satisfies both pre-conditions 

75% satisfies only one pre-condition 

75% satisfies only one pre-condition 

50% satisfies one pre-condition and 

does not satisfy the other one 

50% satisfies one pre-condition and 

does not satisfy the other one 

0% does not satisfy both pre-

conditions 

0% does not satisfy one pre-

condition 

0% does not satisfy one pre-

condition 

0% no pre-conditions exist 

Table 4-2 : Combinations of test data 

If the schema consists of complete pre-conditions, it will satisfy the first combination 

(in Table 4-2), and should be awarded full marks. By a complete pre-condition, we 

mean the specification consists of predicates which cover the definition of pre-

conditions in the model solution (which is provided by the teacher). The marks 

accompanying each combination are based on the teacher scheme presented in the 

last two columns of the table. For example, if a student testing corresponded to 

combination three, then 75% of the marks would be awarded. 

However, this analysis technique has a high cost. If a schema has N pre-conditions, it 

will require 2N different test cases, which means that the combination of results also 

increases exponentionally. Therefore it is not practical to produce a marking scheme 

by creating a table of combinations. To overcome this problem, we propose another 

scheme with the distribution of the marks as presented in Table 4-3. 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 71 



Test Data tcAB tc-AB ｴ ｣ ａ ｾ ~ tc-A-B 

Result / x / x / x / x 
Marks 5 0 0 5 0 5 0 5 

Table 4-3 : Marking scheme for first combination of test data 

If the student specification succeeds when tested against test case tcAB, he/she will 

be awarded 5 marks, and if the specification failed there would be no marks awarded. 

However, if the specification failed when tested against test case tc-AB, tcA-B or 

tc-A-B, he/she would obtain 5 marks, and 0 otherwise for each of the tests. These 

marks would be totalled up to provide the overall mark for the pre-condition analysis. 

The two marking schemes are similar in several aspects. In the first 5 combinations 

the schemes do not differ. The difference lies in the last four combinations. The 

scheme in Table 4-2 awards no marks for those combinations. However, for 

combination 6, the student can get 50% if using the scheme in Table 4-3 and 25% (5 

out of 20) for the last three combinations. Even though the schemes are not that 

different, scheme 2 offers a practical solution to the problem whereas scheme I 

cannot be implemented for realistically sized cases. 

We examine the post-condition as described below only if the specification passess 

the ideal pre-condition analysis (tcAB). 

4.2.2. Post-condition analysis 

Post-condition analysis involves checking the system state after certain operations. 

After we have 'executed' the specification against selected test data, we can then 

analyse the system variables. The system variables are inspected in order to see that 

the 'action' carried out by the schema is accurate. For example, if the schema is 

performing the addition of an item of data in a state variable system, we will inspect 

whether the data has been added correctly, by analysing the system state after the 

'execution' of the schema. We can check this in two ways (known as 'abstract' and 

Page 72 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



'concrete'}. Abstractly, we check the existence of a relation between the system-state 

and the input or output. Concretely, we check the exact value of the system-state 

itself. An example of abstract analysis is 

ali Eknown' 

and for concrete analysis 

known'={abu,ali,ahmad } 

For every successful analysis, we set a corresponding mark. For example 

Give 5 marks if the relation ali Eknown' is true. 

Give another 5 marks if the relation known'= {abu, ali, ahmad } is true. 

4.3. The system approach 

The definition of the system state shown by the schema is represented by predicate 

formulae. To test that the schema is defining the behaviour of the system correctly, 

we invoke the schema with a chosen set of values of the system variables (these may 

include global pre- and post-variables, as well as input and output variables). These 

variables (set with an instantiated value) are what we call system inputs. A test case 

is a reference to system inputs. Even though a test case can consist of output 

variables and post-variables, in principle it is better to prepare the test case just for 

input variables and pre-variables. We will use the term input variable for the literal 

meaning of input to a schema and output variable for the literal meaning of output 

from a schema. 

If the schema is succesfully invoked (which can be classified as the pre-condition 

stage of analysis), we continue by analysing the values of the rest of the system 

variables (which can be classified as the post-condition stage of analysis). This 

principally involves system outputs (output variables and post-variables). Indirectly, 

this analysis corresponds to the concept of an oracle. Marks awarded to the success 

analysis are determined. This analysis information together with the marks are 

represented by a term which we choose to call test weight. A measure of the system's 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 73 



behaviour is determined by the expected values of the system outputs. The complete 

analysis of the schema will involve a number of tests; some marks will be awarded 

for each test, and the total mark represents (in a certain sense) the overall success of 

the schema. 

In order to reduce the complexity of the system test, Sadeghipour14 proposed that the 

analysis should be better carried out on a schema one at a time. We use Ha11'sl2 idea 

for generating test cases and test weights. To select test cases, firstly we define the 

test domains and then for every test domain, "typical" elements (the value of input 

variables and pre-variables) are selected. This is done manually. To determine test 

weights, we need abstract analysis, concrete analysis and corresponding marks. 

Concrete analysis can be carried out automatically by running the model answer 

against selected test cases. Abstract analysis is carried out manually, and marks are 

set as described in the previous section. 

4.4. Z specification testing system 

Our system consists of four main testing processes: generating the test case, 

generating the test weight, testing and evaluation, and debugging. 

Generating a test case 

The process of generating a test case is not fully automated. Figure 4-2 shows the 

process flow. A model specification will be used to derive system input variables. 

This can be represented as 

SchemaName 

variable 1 = A 

variable 2 = A 

Page 74 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



where 

SchemaName is the name of the schema that we want to test, 

variable 1 etc will be the name of an input, output or pre-or post-state 

variables and, 

_A is a temporary value for the variables. The real value for the variables will be 

input manually (by the teacher). 

The test case then will be compiled to ensure the syntax (the format of the file) is 

correct. If so, it will be translated into Prolog to become a compiled test case. 

Figure 4-2: Process of generating test case 

Generating a test weight 

The process of generating the concrete analysis is done by running a model 

specification against a test case. The format of the initial test weight file will be 

SchemaName 

o concrete predicate I 

o concrete predicate 2 

The mark in this file is set automatically to zero. The teacher will set the abstract 

analysis together with the marks manually. The final test weight file will be 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 75 



SchemaName 

mark\ abstract predicate \ 

mark2 concerete predicate \ 

mark) abstract predicate 2 

mark4 concrete predicate 2 

where 

SchemaName is name of the schema that we have tested and 

markl is the mark we want to give if predicate 1 is true. 

This complete test weight will be compiled to check the syntax and then will be 

translated into Prolog. Figure 4-3 shows the overall flow of the process. 

Figure 4-3 : Process of generating test weight 

Preparation of the specification 

Before any specification can be tested, the system will make sure that it has all the 

properties that are needed. The following are checked before testing is carried out; 

schema name, 

Page 76 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



input and output variables, and 

interested state variables 

A message will be produced to say that the specification is ready to be used in the 

testing process or otherwise. 

Figure 4-4 : Process of preparation 

Testing and evaluation 

Figure 4-5 shows the testing and evaluation process. The output of this process is a 

number that represents the level of correctness. If the specification does not obtain 

full marks then the debugging process can be carried out. 

Figure 4-5 : Process of testing and evaluation 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 77 



Debugging 

The debugging process attempts to detect the reasons for lost marks. Marks may be 

lost during (post-condition) analysis or during 'execution' or for a number of other 

reasons. Marks are lost during analysis when one or more of the concrete or abstract 

post-condition analyses are not satisfied. If this is the case then the debugger will 

produce a message showing the one that is not satisfied. Marks are lost during 

execution when a particular test case fails when it should have succeeded. This 

normally happens because of the existence of an invalid operation in the 

specification. Other reasons for lost marks are: 

• a particular test case, succeeded when it should not have; 

• a run time error with the Prolog system. 

Figure 4-6 shows the information flow of the process. 

imperfect 

Figure 4-6 : Process of debugging 

Supporting program 

This section will explain the program that supports the above process. 

Page 78 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



Test case generator: tdg 

The system assists the teacher in preparing the test case by providing the files which 

have all the system inputs (i.e system-state and input variables). Program tdg does 

this task. It takes a model specification and schema name as input and produces a file 

(with extension .tc) with the information of all the system inputs that should be 

associated with a value. 

The syntax for tdg is : 

where: 

tdg file! testcase schema 

file I is model specification, with an extension .z, 

testcase is a name that will be used as a test case file name, and 

schema is a schema to be tested. 

Test weight generator: tog 

Test weight consists of abstract analysis and concrete analysis of system variables as 

well as distribution of marks for each analysis. The system will prepare the concrete 

analysis for the teacher by using program tog. It takes a model specification and 

test case file as input and produces a file (with extension . w) with the information for 

the concrete analysis that will be carried out and the mark that will be awarded if that 

analysis succeeds. 

The syntax for tog is : 

tog filename testcase schema 

where: 

filel is a model specification (with extension .z), 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 79 



testcase is a file (with extension .tc) that will be used, and 

schema is a schema to be tested. 

Test case to Prolog translator: scrptz 

Before a test case (file with extension .tc) can be used, it needs to be translated to 

Prolog code by program scrptZ. During the translation process, program scrptz 

also checks the syntax and semantics of the testcase (refer to Expression in Appendix 

A). A typical example of a syntax error is missing parentheses. An example of a 

semantic error is when the number of output parameters for respective schema is not 

the same as for the model. If the test case is succesfully compiled, it will produce a 

formatted file (with extension _tc.pl). 

The syntax for scrptZ is: 

where: 

scrptZ filel file2 

filel is model specification (with extension .z), and 

file2 is test case script (with extension .tc). 

Test weight to Prolog translator: markZ 

Before a test weight can be used, it needs to be translated into Prolog code, by 

program markZ. During the process, markZ will check the syntax and semantics 

of the test weight (Appendix A). If the test weight is succesfully translated, it will 

produce a formatted file which is named with extension _w.pl. 

The syntax for markZ is: 

markZ filel file2 

Page 80 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



where: 

filel is test weights (with extension .z), and 

file2 is model specification (with extension .w). 

For every test case and test weight file, we can only have one schema to test. 

NOTE: Prolog recognises the values as small letters, therefore the parameters in the 

testcase should be written in small letters. 

Specification and test cases compatibility checker: warnZ 

The system also provides a facility to check the compatibility between student 

schema and the testcase. Program warnZ checks whether the schema name, number 

of inputs and outputs and the rest of the parameters in the student specification is the 

same as the model specification and the test case. 

The syntax for warnZ is : 

where: 

warnZ filel file2 file3 

filel is student specification (with extension .z), 

file2 is test case (with extension .te), and 

file3 is model specification (with extension .z). 

Debugger program: dynpred 

The algorithm for the debugging process carries out the following checks: 

• It checks whether the specification is prepared for the testing (using warnZ). If 

it is not prepared, an error message such as the following will be produced. 

Warning error occured during testing 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 81 



• It checks whether the schema can be animated against the given test data. If it 

failed when it should have succeeded, the error message 

Your animated specification has failed when tested 

against respective schema 

will be produced. Or if it is succeeds when it should have failed, 

Your animated specification should fail when tested 

against respective schema 

will occur. If it is caused by the former, the tracing program will be invoked 

and will determine the predicate which started the error. A message such as the 

one below will be shown. 

Error occurs at line number N 

• It checks every analysis in a given test weight file, listing the analyses that 

failed. A message such as the following will be shown. 

Your animated specification did not satisfy the analysis i 

The syntax for dynpred is: 

where: 

Page 82 

dynpred file! file2 dir [b I f I s] 

[-p I -pd I -c I -m I -md] 

filel is a specification (with extension .z), 

file2 is a test case (with no extension), 

dir is a directory where the test case resides, 

b I f Is: type of tracing speed, and 

-p I -pd I -c I -m I -md : type of output. 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



The tracing program traces which predicate produced the error. Generally in Prolog, 

when a predicate fails the proceeding predicates will not be executed. The tracing 

program is used to trace the predicate in Prolog that caused the error and therefore 

refers it to the predicate in the Z schema (which was translated into that predicate). 

This is best illustrated as follows: 

Predicates in Z 

1: DOM video_titles = videos 

2: videos_in UNION DOM video_out to = videos 

are represented in the Prolog implementation as 

1: dom(V322,V707), 

2: equalset(V707,V321,true), 

3: dom(V324,V709), 

4: union(V323,V709,V710), 

5: equalset(V710,V321,true), 

The predicate at line 1 in Z is represented by the predicate at lines 1 and 2 in the 

Prolog implementation. The predicate at line 2 in Z is represented by the predicate at 

lines 3, 4 and 5 in the Prolog implementation. If the predicate at line 4 in the Prolog 

implementation fails, then the predicate at line 2 in the Z implementation also fails. 

There are two steps to carry out this process; first to detect the predicate in the Prolog 

implementation that started the failure, and second, to interpret the result to represent 

the predicate in Z. To carry out the first step, we are dealing with a tracing issue. 

The Prolog system that we used (i.e sicstus) has a tracing facility. If it is done 

automatically, it will produce a robust tracing output, i.e every single predicate will 

be shown. An example is presented below: 

Call: pVideo_shop ? 

Call: update(vcustomers,_655) ? 

Call: update(vcustomers) ? 

Call: name(vcustomers,_1097) ? 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 83 



Exit: name(vcustomers,[118,99,117,115,116, ... ]) ? 

Call: conc([118,99,117,115,116, ... ], [80],_1091) ? 

If we want to have a first level tracing, we have to control it by using the skip 

command. An example is: 

Call: pVideo_shop ? 

Call: update(vcustomers,_655) ? s 

Exit: update(vcustomers,[]) ? 

Call: update(vcust_name,_649) ? s 

Exit: update(vcust_name,[]) ? 

Call: update(vcust_address,_643) ? s 

Exit: update(vcust_address,[]) ? 

In our case, we are interested in the first level of tracing. Therefore we developed a 

metaprogram (written in Prolog and called meta/ail) which traces the Prolog 

execution and produces an output consisting of the first level result automatically. 

The second step is to translate the representation in terms of a line in the Z schema. 

This is easily done. The program that handles this is called obtraceZ. Both of the 

programs meta/ail and obtraceZ are called internally by the program dynpred. 

Testing and evaluation program: dyncorr_z 

The main program, dyncorr_z is written in the C programming language. The 

program uses several files, both from the teacher and from the student. The program 

also uses the Prolog runtime library and calls on previously discussed programs. 

Some actions need to be carried out before the process can be invoked. The model 

solution must be named as model.z. The student specification and model solution 

should be translated to a Prolog implementation (by using zp ). It is advisable to 

use the program warnZ to ensure that both of the specifications are ready to be used 

in the process. All the files provided by the teacher (such as the model solution, test 

weight and test data) must be located in the same directory. All the respective files 

Page 84 Chapter 4 : Inspecting the Correctness of Specification through System-state AnalysiS 



should be in the Prolog implementation. This can be done by using previously 

described programs. As regards the calling of the Prolog predicate from the C code, 

the respective Prolog program must have the Prolog object files. This can be done by 

compiling the Prolog program using a built-in predicate in the Prolog system, i.e 

Jcompile. 

The syntax of the command for dyncorr_z is: 

dyncorr_z -d dirl [-vO I -vl I -v2 I -v3 ] [-f) file! 

-tN testl test2 •• testN 

where: 

dirt is the directory where model.z, weights file (file with extension .w), 

test data (file with extension .tc), zdef.pl and model.dv are all located, 

filel is Z specification documents (with extension .z), 

-vO I-vI I -v21-v3 : result shown verbosely, 

-f : result shown in sentences, 

-tN : testcase flag, showing that the next N arguments is a test case files, and 

-d: directory flag, showing that the next argument is a directory. 

4.5. Conclusion 

In this chapter, we have shown how we can apply system-state analysis to determine 

the correctness of a specification. We extended the research by presenting an idea on 

how to scale the correctness in terms of a percentage figure. This technique of testing 

a specification has been one of the important components in the automatic marking 

system for a Z specification (see Chapter 3) written by a student. Having this 

technique is important as it can support an on-line learning environment. 

Chapter 4 : Inspecting the Correctness of Specification through System-state AnalYSis Page 85 



References 

1. RA. Kemmerer, "Testing Formal Specifications to Detect Design Errors," 

IEEE Transactions on Software Engineering, vol. 11, no. 1, pp. 32-43, January 

1985. 

2. P. Jalote, "Testing the Completeness of Specification," IEEE Transactions on 

Software Engineering, vol. 15, no. 5, pp. 526-531, May 1989. 

3. R.S. Pressman, Software Engineering, McGraw-Hill Company Europe, 1992. 

4. G. Myers, The Art of Software Testing, Wiley. 

5. D. Mandrioli, S. Morasca, and A. Morzenti, "Generating Test Cases for Real-

Time Systems from Logic Specifications," ACM Transactions on Computer 

Systems, vol. 13, no. 4, pp. 365-398, Plotecnico di Milano, November 1995. 

6. D.J. Richardson, S. Leif Aha, and T.O. O'Malley, "Specification-based Test 

Oracles for Reactive Systems," Proc. of the 14th ICSE International 

Conference on Software Engineering, pp. 105-118, IEEFJACM, New York, 

1992. 

7. B. Beizer, Software system testing and quality assurance, Van Nostrand 

Reihold, 1984. 

8. B. Shneiderman, Software Psychology: Human Factors in Computer and 

Information Systems, Winthrop Publishers, 1980. 

9. C.K. Looi, "Automatic program analysis in a Prolog intelligent teaching 

system," PhD Thesis, University of Edinburgh, May 1988. 

10. A.M. Zin, ZFDSS: A Formal Development Support System based on the Liberal 

Approach, 1994. PhD Thesis, University of Nottingham, UK 

11. Z. Shukur, E. Burke, and E. Foxley, "Inspecting the correctness of specification 

through system-state analysis," IEEE transaction on Software Engineering, 

(will be submitted) 1999. 

12. P.A.V. Hall, "Towards Testing with Respect to Formal Specifications," Proc. 

of Second IEE/BCS Conference: Software Engineering 88, pp. 159-163, 

Page 86 Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis 



London, 1988. 

13. R.A. DeMillo, R.J. Lipton, and F.G. Sayward, "Hints on test data selection: 

Help for practiting programmer," Computer, April 1978. 

14. S. Sadeghipour, "Test Case Generation on the basis of Formal Specifications," 

Proc. FEmSys '97, 1997. 

Chapter 4 : Inspecting the Correctness of Specification through System-state Analysis Page 87 



Chapter 5 
Managing Z Specification Coursework On-line 

5.1. Introduction 

It has been said, "marking on paper is inappropriate for most computer-based 

learning. Administration of assessment is a time-consuming process, made more 

difficult by having to deal with large quantities of paper.',l In general, "scripts can 

easily get lost, detached or damaged." 1 The use of automatic assessment tools2- 5 has 

already benefited the computer-based learning process. However, it should be noted 

that there are several other issues that need to be considered when implementing on-

line specification coursework. It is beneficial to the student and teacher to have a 

system that can check the type and syntax of a specification, mark the exercises 

automatically, allow submission of the solution in electronic form and provide other 

facilities to support learning. 

There are many studies that investigate improving educational systems, especially by 

incorporating aspects involved in teaching. One example is presented in a paper 

written by Woolf.6 Here the author says that an Intelligent Tutoring System (ITS) 

will "allow the emulation of a human teacher in the sense that an ITS can know what 

to teach (domain content), how to teach it (instructional strategies), and learn certain 

relevant teaching information about the student being taught." The idea of the ITS 

architecture has been used in developing systems for use in military and aerospace 

research; for example Intelligent Computer-Assisted Training Testbed Program 

(ICATI)7 , and Intelligent Computer-Aided Training (ICAT).7 The idea has also 

been employed in educational institutions; for example ISIS-Tutor8 (an adaptive 

hypertext learning environment) , Sherlock9 (a coached practice environment for an 

electronics troubleshooting job) and ELM-ARTlO (an adaptive, knowledge-based 

tutoring system on the WWW that supports learning programming in LISP). 

Page 88 Chapter 5 : Managing Z Specification Coursework On-line 



Ceilidh 11 is another example of a well-known educational system which is being 

used in many higher education institutions. The research upon which Ceilidh is 

based started at the University of Nottingham in 1988. Its essence is an automatic 

assessment mechanism for programming. The first course implemented in Ceilidh 

was a C programming course. At the moment there are various courses such as C++, 

Software Tools, Prolog and many others. 12 

The Z formal specification language has been taught at the university for a number of 

years. In previous years, the coursework was handled in the conventional way, that is 

using paper and submitting to the teacher for marking. This year the teaching system 

has been improved by implementing the coursework in Ceilidh. The coursework 

includes writing Z specifications, description of solutions in essay form, short-answer 

form and mathematical scripts. The Z specification can be either non-animatable, in 

which case we can only do static marking or they can be animatable in which case we 

can also do dynamic testing. 

Z specification coursework is different from other courseworks in Ceilidh in several 

aspects. Specific components are needed to support the process of making the 

coursework on-line: 

• Z specification employs mathematical symbols and other specialised symbols. 

An editor that can support those symbols in Z and embed the concept of 

WYSIWYG is therefore needed. 

• A program is needed to ensure that the specification is free from syntactic errors. 

Unlike programming languages that have established compilers such as gcc 

for the C language, most Z type and syntax checkers were built for in-house use. 

• In order to validate a specification, several techniques can be used, such as 

Formal Technical Review 13 , View Point Resolution14 , symbolic execution15 

and testing.16, 17 We require a method that can be automated, and have chosen 

to use testing techniques which animate the specification. 

Chapter 5 : Managing Z SpeCification Coursework On-line Page 89 



• Marking tools for assessing a specification automatically will remove problems 

encountered when using conventional hand marking, such as inconsistency in 

awarding marks. In addition, marks can be made available to students very 

quickly compared to the use of hand marking. 

Incorporating the above tools into the existing course management system simplifies 

the managerial issues mentioned earlier. 

This chapter will start with a short description of Ceilidh. For further details the 

reader can refer to Learning Technology Research group papers.18 This will be 

followed by a description of the special tools used and then an explanation of the 

facilities offered by Ceilidh in handling Z specification exercises. The description 

will emphasise exercise facilities both for the student and the developer. The tools 

that are being used have been built by Nottingham University researchers. 

The work has been presented at the Association for Learning Technology Conference 

'98 and the abstract was published in the proceedings.19 It has also been informally 

discussed in the Educational Session of Z User Meeting '98. A full paper of this 

chapter has been submitted to the Journal of Computers in Mathematics and Science 

Teaching.20 

5.2. Ceilidh: Course Management System 

The core of the Ceilidh system is an automatic coursework submission and marking 

component which can give instantaneous feedback on student programs from 

perspectives such as program complexity and typographic style. Beyond this, Ceilidh 

also provides on-line access to all notes, examples, exercises and solutions as well as 

providing progress monitoring for tutors and general course administration for 

teachers. 

Ceilidh helps the teacher in administrating courses by setting exercises, collecting 

students' work (in electronic form), detecting plagiarism, manipulating students' 

Page 90 Chapter 5 : Managing Z Specification Coursework On-line 



marks, performing statistical analysis of marks and many other facilities. These 

facilities help the staff by reducing administration and marking time, therefore 

allowing greater effort to be focused on effective teaching. 

The major differences among the courses in Ceilidh is at the exercise level. Besides 

the notes and courseworks, a complete new set of marking tools (and any necessary 

support tools) will need to be written when implementing a new language in Ceilidh. 

Different languages require different facilities in the exercise menu, and Ceilidh 

chooses the correct menu by looking at the file extension. 

5.3. Components 

Z specification editor 

Since the Z language includes many special symbols that are not available on an 

ordinary keyboard, all Z schemas for this course are created in an ordinary ASCII file 

with a normal ASCII text editor such as emacs or vi. The format uses a technique 

related to the UNIX raff text processing system, and forming an extension to the 

existing mathematical pre-processor.21 The specification can be viewed in ordinary Z 

format by using the Z pre-processor zpp. 22 This is a raff pre-processor for printing 

Z specifications. zpp takes a Z specification written in Z-roff format and transforms 

it into PostScript form which is viewed using ghostview. 

Type and syntax checker 

A type and syntax checker, zc that has been developed by Zin23 is used. zc takes a 

Z specification written in Z-roff format and reports errors. The compiler classifies the 

errors into three types; lexical errors, syntax errors and semantic errors. The 

compiler will display the message 

The specification has been accepted 

Chapter 5 : Managing Z Specification Coursework On-line Page 91 



if there is no error in the specification. Otherwise a list of infonnation about the 

errors will be displayed. This includes the line number where the error was detected 

followed by a description of the possible cause of the error, and the total number of 

errors at the last line. For example: 

35 In function INTER type not compatible 

63 name used before declaration - "ok" 

There are 2 errors in the specification 

Animator 

The specification is translated into Prolog code by using the Z-Prolog translator zp23 

also written by Zin. This is used so that the student can validate their specification 

and increase their understanding of it. 

For example, zp translates the schema 

X_biggerthan y"-____________________ ---. 

X:Z 
Y:Z 

X>Y 

into the Prolog statement, 

pX_higgerthan_Y :-

greater(V301,V302,true). 

Z marking tools 

It is not necessary to have an automatic marker to handle the Z coursework on-line. 

However, if an automatic marker is incorporated in the system, it will reduce the 

problems associated with conventional marking. We have developed an automatic 

marking system to assess Z coursework automatically. In general, the system will 

Page 92 Chapter 5 : Managing Z Specification Coursework On-line 



receive a Z specification written in Z-roff format with some particulars from the 

teacher, and then produce a mark. It is a combination of several tools which have 

specific tasks. 

• Testing the dynamic correctness of a specification. The specification is 

'executed' in order to check whether it performs the required task. This is done 

by animating the specification against sets of test cases and marks are awarded 

based on the correctness of the animation. Queries are provided by the teacher 

to check on the correct relationship between input and output variables. 

• Marking the static correctness of a specification. The score for our static 

analysis will be based on the outcome of applying zc and the occurrences of 

other static problems in the specification. 

• Assessing the layout of a specification. Many researchers have discussed the 

layout of Z specifications.24-27 The system incorporates a selection of the 

proposed features. 

• Marking the complexity of a specification. Considering that there are many ways 

to describe the same problem, the complexity factor should be taken into 

account when assessing a specification. Each complexity metric is marked 

relative to the corresponding counts for the model specification. 

These tools do not merely produce marks. The tools are also able to inform the 

student where marks have been lost and why. The system can advise the student on 

which predicate caused the error during dynamic marking. For more detailed 

information, refer to chapter 3 and chapter 4. 

5.4. Z specification coursework on-line 

The tools discussed in the previous section have been incorporated into Ceilidh. The 

overall functionality of Ceilidh is categorized into student facilities and course 

management facilities. Students and teachers use the system to obtain access to 

course resources such as notes, work and lecture schedules. Course management 

Chapter 5 : Managing Z Specification Coursework On-line Page 93 



involves the process of developing the course, setting up the course and exercises and 

monitoring the running of the course. In the Ceilidh system, these three facilities 

reflect three categories of staff involved in managing a course: course tutors represent 

teaching assistants and are provided with additional facilities to inspect work and to 

summarize the progress of individuals or groups of students ; course teachers are 

provided with facilities to administer entire courses; and course developers can 

amend the course information including notes, exercises, and marking metrics. 

The following sections are a discussion about student and course developer facilities 

at the exercise level. 

5.4.1. Student facilities in handling an exercise 

In the Z course, Ceilidh provides the following key facilities to students: 

[i] It allows students to view general temporal course information such as hand-in 

times for course work and more permanent information such as lecture notes. 

This information can be viewed on-line or printed. 

[ii] It provides access to a number of exercises in each unit. Each exercise contains 

a question and other information. The question forms a reasonably precise 

definition of the problem which the student has to solve. A typical question 

might be the following. 

Page 94 

In the context of the "Student Class" schema, described 

in the notes, write a schema for the operation Add_Student 

defined as follows: 

There shall be a command to add a new student to the 

class. The name of the student will be an input to the 

command. It is to be assumed that the new student has 

not handed in any work. The new student must not already 

be a member of the class. 

Chapter 5 : Managing Z Specification Coursework On-line 



[iii] It offers an outline (skeleton) Z specification source. The skeleton may be as 

helpful as the teacher wishes; it may contain very little information, or may be 

given in such a way that students need to fill in only the predicate part of the 

schema. A skeleton is necessary if the automatic marking system is to be used 

because AZAS will search for specific properties in the answer such as a schema 

name. 

[iv] Ceilidh allows students to edit the ASCII form of the specification, and to view 

and print it in graphic form. 

[v] Once the schema file has been created, the student can type check and syntax 

check it. If (and only if) these checks are successful, the schema can then be 

translated into Prolog, so that it can be animated for further testing. 

[vi] The student can test the correctness of their specification dynamically against 

the exercise test data. This is not the same as "run" in programming languages 

where the interest of the student is to see the output of the test-run for the given 

input. The result of the test in our case is only a comment such as whether their 

specification is successfully tested. 

[vii] When the schema has been completed and tested to the student's satisfaction, it 

can then be submitted to the system. The system will retain a copy of the 

submitted work, and may, where appropriate, mark it and return marks to the 

student to help them to assess their specification quality. Before any marking 

action is invoked, the system will first repeat the type and syntax checking, 

followed by translation to Prolog code. Here, the Z automatic marker plays its 

role, which is to mark the specification using a number of different quality 

factors determined by the teacher. 

[viii]Ceilidh may allow the student to view a model solution, to view test data and to 

animate their solution against the test data. The model solution can be seen only 

after the deadline for submission has passed. 

[ix] Students can view their work through a PostScript viewer; our viewer is called 

ghostview and includes a printing option. 

Chapter 5 : Managing Z Specification Coursework On-line Page 95 



[x] It allows them to comment on a specific exercise or on the system as a whole. 

Comments within the course are sent by email to the course teacher. In 

particular, whenever students submit work, they are asked (if they want) to 

comment on the marks obtained. 

[xi] Ceilidh offers help facilities, including an overview of the marking metrics 

employed by the system and a good specification style guide. 

Solving an exercise 

The initial (system level) menu appears as shown in Figure 5-1. When the student 

selects a particular course, the menu shown in Figure 5-2 is displayed. 

Ccilldh system top level menu: 

Ic li st course titles 

Yen view course notes 

vp view papelS 

c1p chanSC printu 
co ｭ ｬ ｾ ~ a commcnllo ltacber 

fs ｾ ｮ ､ d student 

System level command: 

I tC move Illumed course (prl) 

I 

I pp print papen (developer) 

I h for more help 

I q quit Ibis ..,.sion 

I ft find tUltes 

Figure 5-1 : System Level Ceilidh Menu: Z Course 

Course and unit menu for course Z lIIlit 4: Type 

vp view pope .. 

I. list Illlittitks 

II l ist Wlit ""e",i .. ritJc:o 
lux list .... its and eUlCises 

vn view .oIe! 011 the ICRCD 

awn view caufSC S\II'OIIW)' 

vm view all marks 

clp thlll,e prinler 

h help 

til ｾ ｹ ｷ ｯ ｬ ｜ ｬ l help 

q quit savin, CIlrrcAt Slarus 

Count level command: 

I pp print papen (developer) 

I IU let unit code 
I u move to named exercise (I) 

I stale currenl eu-rt' lse stale 

I pn print note. on brother I 4 

I usum view \lDit surnmuy 

I co .. ake • comment III teacher 

I raok! view mold 

I H vicw ItUdenl ,.ide 

I q! quit Qilidh, DO savini 

Figure 5-2 : Unit and Course Level Ceilidh Menu: Z Course 

At the course/unit level, the student is given access to look at the details of the course 

such as units, exercises and notes. The student can' then move to the appropriate unit 

Page 96 Chapter 5 : Managing Z Specification Coursework On-line 



and select a particular exercise. The menu shown In Figure 5-3 would then be 

displayed. 

Z language menu for course Z unit 4 exercise ,Iv: Type 

vq view question 00 the screen I pq prinl question on brOlherl4 

cq copy question to file I 
co m • ..., I comment to teacher 

h for con lex I help 

q to return to caUin, menu 
ed edil your program 

Ip translate Z 10 prolog 
vicw view post scripl 

nit run yours ISlirut tesl data 

sub submit/mark your provam 

sid look II the tesI data 

vs view solution program 

cp copy solulion (teacher) 

stale check delails of exercise 

----------
Type compiled language comm.nd (default vq): 

1..,1 sct up coursework 

I H (or general help 

I q! quit Ceilidh 

I tc Iype and synt" cheek 

I 
I fresh 10 refresh post script 

I ps print (",,,,,her) on brolherl4 

I 

I 

Figure 5-3 : Z Exercise Level Ceilidh Menu: Z Course 

This is the level at which most of the student work will be undertaken. Each exercise 

will have been set up by the teacher, and will include a question, a skeleton solution, 

and all necessary testing information. A typical sequence of activities at this level 

might be as follows. 

First, use vq to look at the question. The question can only be viewed in 

ASCII form. The student may need to study the question for a while before 

tackling it on the computer. 

The student will then use set to set up a skeleton solution. This command 

typically puts an outline of the required specification into the student directory, 

to give them a flying start in solving the problem. In more complex exercises 

later in the course, it may set up other data files as well. 

At this stage, the student can start to develop his/her solution, using the 

command ed to edit the specification in Z-roff format as described earlier. 

ed calls their preferred ASCII editor such as emacs or vi. This can be done 

by setting the environment variable EDITOR in their own login script file. 

Chapter 5 : Managing Z Specification Coursework On-line Page 97 



Next the student will probably view the PostScript version of the specification. 

The student would then use tc to type and syntax check the specification. 

Even though this is not essential, later stages of the marking process will not 

function unless the specification passes these checks. 

The next step is to use tp to translate the specification into Prolog. This action 

is not necessary unless the marking process involves dynamic correctness. It is 

essential if the student wants to test their solution against the exercise test data. 

Once the student has successfully checked his/her specification, the system is 

ready to submit and mark. This is done using sub. 

At any point the student can convert their solution to PostScript format and view 

it by using the view command. When the command is invoked, the student 

answer which is in Z-roff will be translated to PostScript format, and 

ghostview (the PostScript viewer) will be loaded and automatically displays 

the PostScript form of the student answer. 

When the student updates hislher specification (which is in Z-roff format), the 

. command fresh can be used to translate his/her updated specification to 

PostScript form. Assuming that the ghostview has been loaded using the 

fresh command, the student can use the facility <Page><Redisplay> in 

ghostview to view their updated specification in PostScript form. Figure 5-4 

shows a student editing an early Z exercise and viewing a PostScript form of it. 

Submission 

When the student uses the sub command to submit and mark his/her solution, the 

computer's response will be something like that shown in Figure 5-5. 

Page 98 Chapter 5 : Managing Z Specification Coursework On-line 



l ... ..-.l CCIII .. fI;lWlit1...,-.cl.2:1W" 
IoIq ｾ ｩ i.. ｾ ｬ ｡ ｮ ｩ ｗ ｉ ｴ ｎ Ｎ Ｌ Ｎ Ｎ Ｎ Ｎ . I ,.. ｰ ｲ ｪ ｲ ｴ ｣ Ｚ ｵ ｎ ｴ t ｬ ｬ ｉ Ｇ ｉ ｏ ｉ Ｇ ｉ ｾ ｬ Ｎ .

CIt CClPtA3CU,..,UOI'ItofJ}. I 
ｾ ~ ...... Ｐ ｇ ｍ ｴ Ｇ ' ｜ \ ｾ ~ loe: 
to. ｦ ｦ ｲ ｾ ~ ｉ Ｎ Ｎ . 1M 

ｾ ~ Ｚ ｪ ｾ ~ r Ｚ Ａ Ｚ ｩ ｾ Ｎ ｴ ｾ ~ : ｾ ~
ｾ ｬ Ｂ " Z lfIC"n In pott 1CI'"1p\: If NII', 
_f'CII. _ II.a1c_ I 

Mt. ... 00Ir._ ... 
f ... ｾ Ｎ . Ｇ Ｇ ｍ Ａ ! Ｎ .
. l tCll HctI 
tp..-d¥l""..Gc:Mcl, 
rtfr"Htl pon .,.1,,, 

1M ｾ ｴ t • .,11..1.''" l .. · !"1 I PI' 1I"1rc. Ct.M;:t.,r) 0- b-ot,. ..... l. 
cp "" .,h .. ti," {t..:t.,.· 
st. ... ct.k Jataila )( 'lCIf"'C :" I 

II.l .... r"l.lltr gf a.o...w.;r. fir U h ..-cl .. 1. 2 
........... :nlwatIOl'l 

ｾ ｃ Ｂ Ｂ Ｂ Ｂ ｬ ｬ ｴ ｾ Ｉ Ｚ ｴ Ｎ ｣ c

ISTUDENTI'] 

Do lor ella. the c!edaAt»n paft' 
ｃ ｾ ~ __________________________________ ｾ ~

cIan.IIM .. ,_"" ... JoiltLrI.4 , . ｓ ｔ ｕ ｄ ﾣ ｎ ｾ ~

Ｑ Ｎ Ｇ ｷ ｬ ｬ l ﾢ ¢ ｉ ｾ ｾ Ｐ ｾ Ｒ 2 ｾ ｾ ｾ ｾ ~__ ｾ ~_____________________________________ ﾷ ｾ ｾ ~

Figure 5-4: Student editing and viewing a Z exercise 

Mark summary 

category: mark: out of 

Typographies: 20: 20 

Dynamic Correctness: 20: 20 

Static Correctness: 20: 20 
Overall mark awarded 100 out of 100 

Figure 5-5 : System Output 

5.4.2. Course developer facilities 

The course developer has the most access to functionality in Ceilidh compared to 

other Ceilidh users. I I Besides the above facilities, Ceilidh provides the course 

developer with additional facilities which include: 

[i] setting up new units and editing notes. The notes are written in zpp format, and 

can be translated to PostScript. 

Chapter 5 : Managing Z Specification Coursework On-line Page 99 



[ii] changing details such as the test data for an existing exercise; 

[iii] setting up new exercises in an existing course; 

[iv] adding new marking tools to an existing course, and incorporating them into the 

marking process; and 

[v] setting up a completely new course. 

Setting up the exercise 

The Ceilidh Developer menu for exercises is shown in Figure 5-6. In order to set up 

an exercise, the course developer basically needs to provide a number of files: 

A question/specification. 

A working model solution or model answer, written in zpp format. 

A test cases file, to set up a data state for testing the schema. It is written in the 

format: 

SchemaName 

variable t = value t 

variable 2 = value 2 

where 

SchemaName is name of the schema that we want to test, 

variable 1 etc will be the name of an input, output or pre-or post-state variables 

value 1 etc can be any value which that variable has to take 

A file defining the weight to give to each test specifies the predicates we wish to 

test, and the mark to be awarded for each successful test. The format of a test 

weight file is as below: 

SchemaName 

markt : predicate t 

Page 100 Chapter 5 : Managing Z Specification Coursework On-line 



predicate 2 

where 

SchemaName is name of the schema that we have tested 

markt is the mark we want to give if predicate t is true 

The developer's exercise menu has three additional facilities compared with the 

programming version of the Ceilidh developer exercise menu. 

Z develope,'s exercise menu (Course rsp, unit 6, ex evs): 
et 10 edil tille 
cp 10 edil Z model 
os 10 edil skeleton 
esa to edif setup actions file 
Ie to type and synlax check 
elh 10 edil tutor help file 
Ip to translale to prolog 
IS to set static correctness 
<I 10 sellypographic weights 
sd 10 sel dynamie marie scheme 
mt 10 mark llle model soln 
rob 10 mark a studs soln 
at 10 add essay actions 
ch 10 do • comple.e check 
h help 

Type developer's Z command: sd 

ely to ediltype file 
eq to edit question 
er edit procram and fork 
ema 10 edit mark actions file 

am to animale 
sr 10 set reatures mark 
sc to stl ｣ ｯ ｭ ｰ ｬ ･ ｸ ｬ ｴ ｾ ~ weighls 

mv 10 mark more vc,bmely 
mka 10 remark aJllIIUds 
f1l1 10 remove e .. ay actions 

q to relurn to Ollie, level 

Figure 5-6 : Developer's Exercise Menu: Z Course 

The additional facilities are the type and syntax checking facility, the facility to 

translate a specification to a Prolog implementation and a window to carry out 

animation in a Prolog environment. This last facility is used to help the teacher to 

check that the model solution works properly when animated against selected test 

data. The window is shown as in Figure 5-7. 

Animate 
SICStus 3 'S: Wed )un II 11:19:31 BST 1997 
(compiling Ｑ ｾ Ｒ Ｔ ｨ Ｑ ｣ ･ ｩ ｕ ､ ｨ ｩ ｣ ･ ｩ ｬ ｩ ､ ｨ ｬ ｣ ｯ ｵ ｭ Ｎ ｲ ｳ ｰ Ｇ ｵ ｮ n ｬ Ｎ Ｆ ･ ｾ Ｎ ｴ t ｳ ｬ ｺ ､ d ｦ Ｎ ｰ ｬ Ｌ , .. ) 
(/cslu24b1ceilidhlceilidhlcourse.r'pluniL6'ex.mJzdef.pl compiled. 3420 rosec 123520 bytes) 
I ?-

Figure 5-7 : Window for Animation 

Chapter 5 : Managing Z Specification Coursework On-line Page 101 



5.5. World Wide Web version 

For the purpose of presenting the system to remote users, we have developed a World 

Wide Web interface which includes the basic functions of solving a Z exercise. This 

is shown in Figure 5-8 . 

. 11 cl .. _ .... d< 
OUIf, 1I ........ Ja, .. t.".... ..... .sa : 
iW.4 .... .sa UlllOII •• \Jl ........ £& • 01& 
11».4 .... £& _ .. ｴ ｟ ｾ Ｂ Ｇ ﾣ Ｆ & • _ 
. 0 

Figure 5-8 : Z Student Exercise Menu for WWW 

The facilities include a text area to edit a Z schema in Z-roff format and six buttons 

with six different functions that are; to select a question, to view edited Z in 

PostScript form, to view the question, to retrieve the skeleton, to perform type and 

syntax checks and to mark the solution. The interface consists of three partitions. 

Related papers can be viewed from the top partition, the left partition is the work 

Page 102 Chapter 5 : Managing Z Specification Coursework On-line 



area, and output from any action after clicking the buttons will be shown in the right 

partition. 

5.6. Experience 

The system has been tested on 13 final year students who took the Z specification 

course in the first semester of academic year 1997/1998. At this stage, the animator 

has not been used by the students because the animation concept is not in the course 

syllabus. In the course, the students were provided with a hardcopy of the zpp 

document For the syntax of the Z language, it was assumed that it is the student who 

is responsible to find the information, as it follows first order logic and is well-defined 

in many books about Z. For the type and syntax checker, the grammar that it use 

follows the standard Z syntax and it only accept Z specifications written in zpp 

format 

The discussion of our experience of the system performance will be presented in two 

sections 

• The tools directly used by the students have been evaluated by giving 

questionnaires (Appendix B) to the students. 

• The automatic marking has been evaluated by comparing the system output with 

that from a human marker. 

5.6.1. Performance of student facilities 

At the end of the course, only 10 students filled in a questionnaire analysing the 

effectiveness of the system. The questionaire is divided into four sections: 

1 Performance of the editor 

2 Performance of the syntax and type checker 

3 The need for an animator 

Chapter 5 : Managing Z Specification Coursework On-line Page 103 



4 General comments 

Editor 

The Z specifications are written using an ASCII text editor, with the format related to 

UNIX roff text processing. The PostScript form of the Z specification can be viewed 

using ghostview. 60% of the students have no experience in using the roff format, 

but reported that writing Z specification using it was not difficult. 90% of them 

preferred to write their Z specification in the roff format rather than by hand. Even 

though the roff format was reported as easy to use, all the students who already had 

experience of the WORDS mathematical library would prefer to use an editor 

specifically designed for editing Z specifications, which embeds the concept of 

WYSIWYG. 

Type and syntax checker 

In the system, the type and syntax checking is carried out by zc. 60% of the 

students found that zc was able to locate and explain some errors clearly. However, 

the students experienced that some errors detected by zc are not reasonable to their 

understanding. We found out that this happened due to the confusion in using zpp 

format. For example, the set subtract operator should be written as SETSUB in roff 

format, but many students wrote it as a symbol "_". When the type and syntax 

checker produce an error message saying that there is a type mismatch at the 

respective line, the student could not understand it. 70% of them claimed that it 

served a practical purpose and was useful. As expected, the students all claimed that 

there is a need for an ideal type and syntax checker in solving their coursework. 

Page 104 Chapter 5 : Managing Z Specification Coursework On-line 



Animation 

The concept of animation was not taught to the students. After explaining the 

concept to the students, 90% of them said that they would like to have a tool to 

animate their specification. 

General comments 

Below is a summary of the general comments from the students. 

1 There is a need for on-line help in using the roff format. 

2 There is a need for on-line help for the Z syntax. 

3 There is a need for a better type and syntax checker. 

One of the reason that the students asked for a better type and syntax checker might 

be because of the confusion in using Z-roff format. Although for the time being we 

do not have a Z editor, writing Z specifications in roff format is not a burden to the 

students. 

From the student perspective, it can be concluded that teaching Z specification on-

line will be more valuable if a Z editor, an ideal type and syntax checker and an 

animator are available. 

From our perspective, the Z editor is feasible to be develop as it is only a matter of 

interface, whilst we can still use Z-roff as its backbone. For the type and syntax 

checker, we can use the current one as it serves the basic functions for the 

specification at the introductory level. For an animator, we found out that it is not 

suitable to be used by students at an introductory level. This is because the animation 

concept is not normally taught in the Z course. 

Appendix C shows the feedback from the students. 

Chapter 5 : Managing Z Specification Coursework On-line Page 105 



5.6.2. Performance of the Z automatic marking system 

At the moment we have tried the system with five Z exercises at an introductory 

level. The evaluation was done by comparing the results from the system with 

humans marking. By using a Correlation-Pearson test, we found that correlation 

between the system and the human is 0.837. This indicates a high level of 

correlation. The more detailed analysis is discussed in chapter 6. 

5.7. Conclusion 

In this chapter, we have described a system for the management of on-line Z 

specification coursework. The fundamental components of the process (the editor, 

the syntax and type checker, the animator and the automatic marking systems) were 

discussed and described as part of the well-known courseware management system, 

Ceilidh. Students can access the notes and exercises of the Z course on-line and 

submit their solution through Ceilidh. Finally the Z specification exercises are 

assessed automatically by the system. The focuses of this chapter is on the unique 

facilities that are provided by Ceilidh in handling Z specification exercises. 

The system has been utilised by a group of 13 students who are taking a Z course. 

From the analysis, we show that the currently implemented tools are beneficial to the 

students. Preliminary testing of the automatic marking system reveals encouraging 

results. 

A detailed study involving assessing more difficult exercises by the Z automatic 

marker and a range of human markers is the subject of following chapter. 

References 

1. S. Benford, E. Burke, E. Foxley, N. Gutteridge, and A.M. Zin, "Early 

experiences of computer aided assessment and administration when teaching 

computer programming," Association for Learning Technology Journal, vol. 1, 

Page 106 Chapter 5 : Managing Z Specification Coursework On-line 



no.2,pp.55-70, 1993. 

2. S. Hung, L. Kwok, and A. Chung, "New Metrics for Automated Programming 

Assessment," IFIP Transactions A-Computer Science and Technology, vol. 40, 

pp. 233-243, 1993. 

3. M.J. Rees, "Automatic Assessment Aid for Pascal Programs," SIGPLAN 

Notices, vol. 17 ,no. 10, pp. 33-42, October 1982. 

4. P.B. Van Verth, "A System for Automatically Grading Program Quality," 

SUNY (Buffalo) Technical Report, 1985 . 

5. K.A. Redish and W.F. Smyth, "Evaluating Measures of Program Quality," The 

Computer Journal, vol. 30, no. 3, 1987. 

6. B. Woolf, "Intelligent tutoring systems: A Survey," in Exploring artificial 

intelligence: Survey talks from the National Conferences on artificial 

intelligence, ed. H. E. Shrode, pp. 1-41, Morgan Kaufmann Publishers Inc. , San 

Mateo, CA, 1988. 

7. C. Youngblut, "Government-Sponsored Research and Development Efforts in 

the Area of Intelligent Tutoring Systems," (IDA Paper P-3003), Institute for 

Defense Analyses, Alexandria, VA. , September, 1994. 

8. P. Brusilovsky and L. Pesin, "ISIS-Tutor: An adaptive hypertext learning 

environment," Proc. JCKBSE'94, Japanese-CIS Symposium on knowledge-

based software engineering. ,pp. 83-87, Tokyo, May 10-13, 1994. 

9. A.M. Lesgold, S.P. Lajoie, M. Bunzo, and O. Eggan, "SHERLOCK: A coached 

practice environment for an electronics troubleshooting job," in Computer 

assisted instruction and intelligent tutoring systems: Shared issues and 

complementary approaches, ed. 1. Larkin & R. Chabay ,pp. 201-238, Lawrence 

Erlbaum Associates, Hillsdale, NJ, 1992. 

10. E. Schwarz, P. Brusilovsky, and G. Weber, "World-wide intelligent textbooks. 

," Proceedings of ED-TELEKOM 96 - World Conference on Educational 

Telecommunications, pp. 302-307, Charlottesville, VA: AACE., 1996. 

Chapter 5 : Managing Z Specification Coursework On-line Page 107 



11. S. Benford, E. Burke, E. Foxley, N. Gutteridge, and A.M. Zin, "Ceilidh as a 

Course Management Support System," Journal of Educational Technology 

Systems, vol. 22, no. 3, September 1993. 

12. E. Foxley, E. Burke, C. Higgins, and C. Gibbon, "The Ceilidh System:A 

General Overview as at December 1996," LTR Report, University Of 

Nottingham, 1996. 

13. R.S. Pressman, Software Engineering, McGraw-Hill Company Europe, 1992. 

14. J.C.S. do Prado Leite and P.A. Freeman, "Requirements Validation Through 

Viewpoint Resolution," IEEE Transactions on Software Engineering, vol. 17, 

no. 12, pp. 1253-1269 , December 1991. 

15. J.C. King, "Symbolic execution and Program testing," Communication of the 

ACM, vol. 19, pp. 385 - 394, July 1976. 

16. R.A. Kemmerer, "Testing Formal Specifications to Detect Design Errors," 

IEEE Transactions on Software Engineering, vol. 11, no. 1, pp. 32-43, January 

1985. 

17. P. Jalote, "Testing the Completeness of Specification," IEEE Transactions on 

Software Engineering, vol. 15, no. 5, pp. 526-531, May 1989. 

18. Steve Benford, Edmund Burke, and Eric Foxley, Courseware to support the 

teaching of programming, pp. 158-166, 1992. TLTP Conference, University of 

Kent at Canterbury 

19. Z. Shukur, E. Burke, and E. Foxley, "Applying Z Specification Coursework 

On-Line," Proceedings of AltC-98 Conference, Oxford, UK, September 1998. 

20. Z. Shukur, E. Burke, and E. Foxley, "Managing Z Specification Coursework 

On-line," Journal of Computers in Mathematics and Science Teaching, 

Charlottesville, USA, (submitted) 1999. 

21. B.W. Kernighan and L.L. Cherry, "A System for Typesetting Mathematics," 

Communications of the ACM, vol. 18, pp. 151-157, 1975. 

Page 108 Chapter 5 : Managing Z Specification Coursework On-line 



22. E. Foxley and A.M. Zin, Zpp - A Troff Preprocessor for Typesetting Z 

Specifications, 1990. Nottingham University Computer Science 

23. A.M. Zin and E. Foxley, "Software Tools for Animating a Z Specification," 

Sa ins Malaysiana, vol. 24, no. 4, pp. 67-89, 1995. 

24. A.M. Gravell, "What is a Good Formal Specification?," Fifth Annual Z User 

Meeting, Oxford, UK, 17 December 1990. 

25. C. Jones, "A Survey of Programming Design and Specification Techniques," 

Proceedings of IEEE Conference on Specification of Reliable Software, pp. 91-

103, Cambridge, Mass., 1979. 

26. R. Macdonald, "Z Usage and Abusage," Report 91003 Royal Signals and 

Radar Establishment, Malvern, Worcs, February 91. 

27. R. Balzer and N. Goldman, "Principles of Good Software Specification and 

their Implications for Specification Languages," Proceedings of IEEE 

Conference on Specifications of Reliable Software, pp. 58-67, Cambridge, 

Mass., 1979. 

Chapter 5 : Managing Z Specification Coursework On-line Page 109 



Chapter 6 : Evaluation 

6.1. Introduction 

We evaluate the performance of the automatic assessment based system described in 

this thesis by using samples from real students. Faidhi,l in his study on the 

complexity of Pascal programs said "all the programs collected are supposed to be 

fully working ". Franklin2 found in analysing the structure of Pascal programs 

automatically that before the system can take the sample to be used, the student had 

to make sure that the program (that they had written) should be correctly compiled, 

executed and seen to give correct output. Any failure meant that the students had to 

correct their program and re-submit it. The same applied to research carried out by 

Van Verth3 on the automatic grading of program quality. She said, "each program 

was written in Pascal, was syntactically correct, produced correct results ... ". 

The method of evaluation of a system depends on the objective that we want to 

achieve. In this study, the evaluation that has been performed is quite different from 

the work described above. The main purpose of the evaluation of the AZAS system 

carried out in this chapter is to observe: 

• the behaviour of the system compared with human markers, and 

• the environment in which it can be used. 

To achieve the first objective, participation from human markers were required. To 

achieve the second objective, it was decided that the experimental environment 

would not be bonded to the system requirements. The teacher and the student need 

not have any knowledge of the system. Basically, the steps taken in this study are: 

• To determine the types of question that can be assessed by the system. 

• To regard questions that are feasible for assessment by the system. The result 

from the system will be compared with result from human markers. 

• To present the reasons for the questions which cannot be assessed by the system. 

Page 110 Chapter 6 : Evaluation 



The result in this chapter has been included in the results section of a paper to IEEE 

Transactions on Software Engineering.4 

6.2. Case studies 

A group of 13 students in the School of Computer Science and Information 

Technology at the University of Nottingham took a Z specification module in the first 

semester of session 1997/1998. A set of Z courseworks had been implemented on-

line, and the AZAS system was implemented within Ceilidh. The results from the 

automatic marker were not released to the students since this was an initial testing of 

the system and we felt that it should not be released to the students until it had been 

thoroughly tested. During the module each student had to do a number of 

courseworks which were obtained and submitted using Ceilidh. The course works 

were taken from books entitled Logic and its Application 5 and Z: A Beginner's 

Guide. 6 The students were informed that the system would mark their solution but 

the results would only be used for research purposes. It was stressed that their 

courseworks would be completely assessed by a human in the normal manner to 

obtain the final mark for their work. 

6.3. Material selection 

The questions selected are classified into three types. 

• Questions that cannot be assessed by the system, 

• Questions which can be assessed by the system directly, and 

• Questions which need to be tailored before they can be used in the experiment. 

The tailoring of the student answers will not affect the result of the experiment 

because the tailored answers will also be assessed by human markers. These 

experiments have increased our understanding about which is most suitable for 

AZAS. In general, it is not possible to assess certain questions by the system for the 

following reasons. 

Chapter 6 : Evaluation Page 111 



• No skeleton is attached. 

• The question is not clearly defined. 

• Some Z properties are not well enough supported by the Z to prolog translator. 

Some editing of the student scripts was carried out for the following reasons. 

• Problems were caused by inconsistencies in the specification of the question. 

• Most of the students ignored the comments made by the type and syntax 

checker, ZC. This was not surprising because the students were under no 

obligation take any notice of the comment given by zc. 

• Most of the students modified the skeleton given to them. The vital 

modification was that they added some words to the schema name. 

The compilation of the exercises is fully documented in Appendix D. 

6.4. Data analysiS 

Sets of answers from ten exercises, (numbered accordingly) are used in this 

evaluation of AZAS. The exercises are marked by AZAS and the weight distribution 

is as follows: 

5% each for typographics and complexity, 

10% for static correctness, and 

80% for dynamic correctness. 

The same exercises are also marked by three different human markers who are 

represented by symbols hI, h2 and h3. The human markers were aware that they 

were marking the exercises specifically for the purposes of this experiment. The 

human marks were NOT the official University of Nottingham marks for these 

exercises. The official marks have NOT been released. 

Page 112 Chapter 6 : Evaluation 



Data 

As there are four different markers for the scores awarded, it can be said that the 

samples (i.e score) are collected from 4 independent groups. The score is in term of 

percentage, described as ratio/interval in statistics terms. The scores for every 

exercise from each of the markers are placed in a tabular form (like Table 6-1). 

Score for Exercise 1 
Student hI h2 h3 system 

sl 100 100 100 98 
s2 100 100 100 99 
s3 100 100 100 98 
s4 100 100 100 99 

s5 100 100 100 99 
s6 100 100 100 98 
s7 100 100 100 98 
s8 100 100 100 98 
s9 100 0 0 30 
slO 100 100 100 99 

Table 6-1 : Scores awarded by hI, h2, h3 and the AZAS system for Exercise 1 

Even though the markers give a precise measurement, we can in this situation (refer 

to learning environment) classify this score to represent a rank such as A, B and so 

on, called the grade. The grade allows us to establish a rank ordering of answers 

from "good" answers to "poor" answers. In the University of Nottingham, the 

average of ALL modules is taken and a classification of degree awarded according to 

the following: 

70%-100% : Class I 

60%-69% : Class II division I 

50%-59% : Class II division 2 

40%-49% : Class III 

0%-39% : Fail 

Because statistics deals with numbers, we associate the grade with a number as 

Chapter 6 : Evaluation Page 113 



follows: 

Score which falls into 70-100% is associated with 5. 

Score which falls into 60-69% is associated with 4. 

Score which falls into 50-59% is associated with 3. 

Score which falls into 40-49% is associated with 2. 

Score which falls into 0-39% is associated 1. 

The grades for every exercises are stored in a tabular fonn (like Table 6-2). 

Grades for Exercise 1 

Student hI h2 h3 system 

sl 5 5 5 5 

s2 5 5 5 5 
s3 5 5 5 5 

s4 5 5 5 5 

s5 5 5 5 5 

s6 5 5 5 5 

s7 5 5 5 5 

s8 5 5 5 5 
s9 5 1 1 1 

s10 5 5 5 5 

Table 6-2: Grades awarded by hI, h2, h3 and the AZAS system for Exercise 1 

It is also interesting to see the pattern of a frequency of the score regarding its 

classification for every exercise. Table 6-3 shows an example of how this 

information is stored in a tabular form for human marker hI. We refer to this data as 

a grouped frequency. 

Page 114 Chapter 6 : Evaluation 



Exercise 70-100 60-69 50-59 40-49 0-39 

1 10 0 0 0 0 
2 10 1 0 0 0 

3 11 0 0 0 0 
4 8 2 1 0 0 
5 11 0 0 0 0 
6 6 0 3 1 0 
7 7 1 1 1 0 
8 2 3 3 0 2 

9 12 0 0 0 1 
10 10 1 2 0 0 

Table 6-3 : Grouped frequency by hI 

The scores, grade and grouped frequency for all the exercises awarded by the four 

markers are recorded in Appendix E. 

Objective of the analysis 

The data is analysed in order to compare the system marker behaviour and the human 

marker's behaviour in tenns of: 

the score, 

the grade, and 

the grouped frequency. 

Plan for analysis 

With the objective in mind, the plan of the analysis is presented as follows: 

• Describe the raw data (i.e score) qualitatively. Any scores awarded by the 

markers that differ significantly will be discussed. 

• Discuss the general outlook of the data. 

• Identified the nonnality of the distribution of the data. This is important in 

selecting an appropriate test. 

Chapter 6 : Evaluation Page 115 



• Observe the correlation between the markers regarding the data. 

• Test the hypothesis that there is no difference between the system and human 

markers. 

6.5. Description of the score 

Before exploring the statistical relevance of the results, we will present the raw data 

graphically. This is possible because the number of students to our study is relatively 

small. The scores awarded by the four markers for every exercise are shown using a 

barchart. Any visually extreme differences between the scores will be examined. 

Exercise 1 

Score Distribution for Exercise 1 

120 

100 

80 r- • hl 
Q) o h2 ... 
g 60 u o h3 (I) 

40 • system 
20 Il • I 0 

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 

Student 

Figure 6-1 : Bar Chart of Score Distribution for Exercise 1 

As shown in Figure 6-1, there are significant differences in the scores awarded for s9 

by the markers. The automatic marking system detected that student s9 did not give 

appropriate predicates to specify the behaviour of the system in the question and so 

that student obtained a lower mark. h2 and h3 were also aware of the error which 

resulted in s9 obtaining no mark. Clearly, it can be seen that hI was not careful 

enough to spot that the student answer was wrong. 

Page 116 Chapter 6 : Evaluation 



Exercise 2 

Score Distribution for Exercise 2 

120 

100 

80 • h1 

!! Dh2 
8 60 
VI c h3 

40 • system 
20 

0 
s1 s2 s3 s4 s5 56 s7 s8 s9 s10 s11 

Student 

Figure 6-2: Bar Chart of Score Distribution for Exercise 2 

As can be seen in Figure 6-2, extreme differences of score are awarded to s5, s7 and 

s10. An error was detected in the answer written by student s5, h2 and the system 

classified it as a serious error as the mark given was very low. The system found it to 

be a syntactic error. Due to the fact that dynamic marking cannot be carried out 

unless the specification is successfully compiled by zc, the system marker awarded 

nearly 0 to s5. Weakness were found by all the markers in student s1's answer. All 

human markers gave less than 80% to the student. However the system gave a higher 

mark than that due to the design of the mark allocation scheme. All human markers 

were not satisfied with the answer given by s10. However, the system did not detect 

any weakness in the answer. The following examines the reason for this situation. 

Observing the answer, it seems that the student presented the following schema: 

Class __________________________________________________ ｾ ~

class, honour _stud, joint_stud: P STUDENTS 

honour ｳ ｴ ｵ ､ ｾ ｣ ｬ ｡ ｳ ｳ s
joint_stud r;;.class 
honour _studnjoint _ stud={} 

Chapter 6 : Evaluation Page 117 



ｃ ｷ ｳ ｳ ｈ ｯ ｭ ･ ｷ ｯ ｲ ｾ ｫ k________________________________________ ｾ ~

Class 
handed _in, not_handed _in: P STUDENTS 

handed inunot handed in=class 
handed-innnot-handed-in={} 
honour -studnnot handed inuhonour studnhanded in=honour stud 
joint_sludnnot_hQ.nded_inUjoint_studnhanded_in=Joint_stud -

The model answer was 

Class ________________________________________________ ｾ ~

class, honour _stud, joint_stud: P STUDENTS 

honour studu joint stud=class 
honour =studnjoin(stud={} 

ｃ ｬ ｡ ｳ ｳ ｈ ｯ ｭ ･ ｷ ｯ ｲ ｾ ｫ k________________________________________ ｾ ~

CWss 
handed _in, not_handed _in: P STUDENTS 

handed inunot handed in=class 
handed=innnot=handed=in={} 

Manipulation of the predicates is needed if one wants to observe the correctness of 

the answer. From the assessment made by the system (regarding the test cases 

provided), the answer is classified as correct. However, the maintainability factor 

surely should be considered in this case. It seems that the system is not sensitive 

enough to detect the weakness in the maintainability aspect. 

Page 118 Chapter 6 : Evaluation 



Exercise 3 

Score Dis1Jibution for Exercise3 

120 

100 

80 • h1 

!:! Dh2 
8 60 
VI IJ h3 

40 • system 
20 

0 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

Student 

Figure 6-3 : Bar Chart of Score Distribution for Exercise 3 

In Figure 6-3, only s3 obtains significant differences in the scores awarded. Human 

markers detect slight weakness in the answer given by s3. The student did not 

provide one predicate. The answer written by s3 is: 

Add StudenLt _____________________ ｾ ~

I1ClassHomework 
student? : STUDENTS 

student? {i!: class 
class' =classu {student?} 
not_handed _in' =not _handed _inu{student?} 

And the model solution is written as follows: 

Add Studen'Lt ______________________ --, 

I1ClassHomework 
studs? : STUDENTS 

studs? {i!: class 
class' =classustuds? 
not handed in' =not handed inustuds? 
handed in '-;;handed-in 

Chapter 6 : Evaluation Page 119 



The absence of the predicate 

handed in' =handed in 

in s3 answer can be easily detected by human markers. For the system, the test case 

was designed so that the existence of that kind of predicate is determined by 

evaluating the value of variable handed_in'. However, the absence of the predicate 

does not mean that the value of the variable involved is empty. It depends on how 

the prolog implementation is carried out. The prolog implementation being used in 

the system is not able to distinguish the variable that is not associated with a value. 

Therefore the system cannot detect this weakness. 

Exercise 4 

Score DistJibution for Exercise 4 

120 

100 

80 ｾ ~
• h1 

ｾ ~ I" o h2 
B 60 I- r-
r.n C h3 

40 - ｾ ~ l- • system 

20 I-

0 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

Student 

Figure 6-4 : Bar Chart of Score Distribution for Exercise 4 

We set a more 'tricky' problem in exercise four, which caused several problems. The 

system and human markers detected this and marked the exercises accordingly. 

From Figure 6-4, we can see that the system alone is being more harsh to students s2, 

slO and sll. We found that answers from those two students are essentially correct, 

but they had problems with the type and the syntax (which can be put down to the 

carelessness of the student). They could therefore not get any marks from the 

Page 120 Chapter 6 : Evaluation 



dynamic marking and complexity aspects of the system. For s 1 ], it is statically 

correct, however, it does not satisfy most of the test cases during dynamic 

correctness. 

Exercise 5 

Score DistJibution for Exercise 5 

120 

100 

80 • h1 

ｾ ~ o h2 
8 60 
(f) Ch3 

40 • system 
20 

0 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

Student 

Figure 6-5 : Bar Chart of Score Distribution for Exercise 5 

From the barchart in Figure 6-5, we can see that all the four markers were satisfied 

with all the student answers. 

Chapter 6 : Evaluation Page 121 



Exercise 6 

Score Distribution for Exercise 6 

120 
I 

100 _ . 

80 .... • h1 

!! '. [] h2 
8 60 
til C h3 

40 - ｾ ~ l- I'"" • system 
20 r ｾ ~ ｾ ~ I- r-

0 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

Student 

Figure 6-6 : Bar Chart of Score Distribution for Exercise 6 

As shown in Figure 6-6, all the four markers agreed that there were weakness in all 

the student solutions, with s3, s5, s9 and s10 showing significant differences in the 

score awarded by the markers. The system is more harsh to s5, s9 and s10. Again, 

this is due to syntactic problems in the student answers. For s3, the answer was 

syntactically correct. However it failed all of the analysis during the dynamic 

marking. 

Page 122 Chapter 6 : Evaluation 



Exercise 7 

Score Distribution for Exercise 7 

90 
80 
70 
60 • h1 

e! 50 [J h2 
8 40 c h3 (/) 

30 • system 
20 
10 
0 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

student 

Figure 6-7 : Bar Chart of Score Distribution for Exercise 7 

At a glance, the pattern in Figure 6-7 shows that the system behaves almost like h 1. 

There are visually significant differences in the score given to s8 and s 10. The 

human markers detect an error in both of the student answers. Looking at the score 

given, they categorised it as serious. Even though the system detected the weakness, 

the score awarded is quite high due to the mark allocation scheme's design. 

Chapter 6 : Evaluation Page 123 



Exercise 8 

ｾ ~

120 

100 

80 

8 60 
tJl 

40 

20 

o 

Score DistJibution for Exercise 8 

• h1 

o h2 

o h3 

• s stem 

• • • 
ｉ ｾ ~ Itl 

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

Student 

Figure 6-8 : Bar Chart of Score Distribution for Exercise 8 

In general, the system tends to behave like the human markers. Even though the 

system gave s 1 0 high score, this is also done by h2. In fact, we can also see that h2 

did not agree with other markers for s6. 

Exercise 9 

Score DistJibuUon for Exercise 9 

120 

100 

80 r- • h1 

ｾ ~ Dh2 
Q 60 r-
ｾ ~ o h3 en 

40 - • system 
20 1 
0 

..... N (") v ｾ ~ <D ,..... 
ｾ ~

en 0 ..- N M 
</I </I </I </I VI VI </I </I ..... ..... ..... (;; VI VI </I 

Student 

Figure 6-9 : Bar Chart of Score Distribution for Exercise 9 

Page 124 Chapter 6 : Evaluation 



Extreme differences can be spotted in sl, s5, s8 and s9. From the score given to s1 

and s5, we can see that the system did not agree with the weaknesses that were 

detected by the human markers. We will look at this problem in some detail. The 

state schema ferries is given in the skeleton file as below: 

_ferriesl-------------------------., 
ferry max: N 
generol_q_ max : N 
known Jerries : P ferry_ref 
known cars: P car ref 
general_queue: seq car Jef 
ferry_load: ferry Jef ｾ ~ P car Jef 

ferry _ max = 10 
general_q_ max =20 
known Jerries=dom ferry_load 
known _ cars=rng general_queue Uu rng ferry_load 
# ｧ ･ ｮ ･ ｲ ｡ ｬ ｟ ｱ ｵ ･ ｵ ･ ｾ ｧ ･ ｮ ･ ｲ ｡ ｬ ｟ ｱ ｟ ｭ ｡ ｸ x
'Vf: knownJerries • # ｦ ･ ｲ ｲ ｹ ｟ ｬ ｯ ｡ ､ ｾ ｦ ･ ｲ ｲ ｹ ｟ ｭ ｡ ｸ x

Both of students s 1 and s5 answers are as follows: 

listJerry_space,.l.s-----------------------, 
'Efe"ies 
ferry? : ferry_ref 
no_spaces! : N 

And the model solution provided is as follows: 

listJerry ｟ ｳ ｰ ｡ ｣ ･ Ｎ ｾ ｳ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｎ .
'Efe"ies 
ferry? : ferry_ref 
space!: N 

ferry? E known Je"ies 
space !=ferry_max-# ferry_load ferry? 

The human markers awarded less marks because the student answer did not provide 

the pre-condition 

Chapter 6 : Evaluation Page 125 



ferry? e known Jerries 

However, the system understands this differently. The function # ferry _load ferry ? 

in the predicate part of the student's schema is dynamically wrong if ferry? does not 

exist in the domain of ferry _load, and otherwise. Therefore the system awards nearly 

full marks. 

It was a totally different situation for student s8. All the three human markers agreed 

that there is no fault with the student answer, whilst the system detected an error. 

Consider student s8 answer 

listJerry_space,JoI.s------------------------. 
Eferries 
ferry? : ferry_ref 
result!: N 

ferry? eferry _ref 
result !=ferry _ max-# ferry _load ferry? 

At a glance, it is difficult for a human to detect the error. However, if we look 

carefully, the predicate 

ferry? eferry _ref 

is actually the problem. According to the model solution, it should be 

ferry? e known Jerries 

ferry _ref is an object type whilst known Jerries is a system variable. 

We can also see that significantly different classes of marks was awarded to student 

s9, where hI give very low marks, h2 awards full marks while the system and h3 are 

less extreme. The answer written by s9 is: 

Page 126 Chapter 6 : Evaluation 



listJerry _space ..... s-------------------_ __ -, 
3ferries 
ferry? : ferry Jef 
spaces!: N 

ferry? E known Jerries 
spaces!=it ferry_load ferry?-ferry_max 

The problem is that variable spaces! will yield a negative value of the correct 

answer. From the marks awarded, we can assume that hI classified it as a serious 

error, whereas h2 might not be aware about the error and h3 is quite understanding 

about it. The system detected the error, and awarded marks according to the mark 

allocation scheme. 

Exercise 10 

Score Distribution for Exercise 10 

120 , 
100 

80 I- .- r- ｾ ~ t-
• hi 

ｾ ~ , o h2 
0 60 l- t- .-- I-u Dh3 en 

40 • system 
20 I- ... I 0 

ｾ ~ N (Y') .". '" <D I'-- <Xl en 0 ..... N (Y') 
(I) (I) (I) (I) (I) (I) (I) (I) (I) ｾ ~

ｾ ~
..... 

ｾ ~(I) (I) 

Student 

Figure 6-10 : Bar Chart of Score Distribution for Exercise 10 

Figure 6-10 shows that s2, s3 and s8 experienced significant differences in the score 

awarded. Again, the human markers agreed that there is no fault in specification 

written by s3. However, the system detected something. Observe the student answer 

which is as follows: 

Chapter 6 : Evaluation Page 127 



canJerries _combine_no _spa .... c""'e--------------------, 
Aferries 
ferry yom 1 : ferry_ref 
ferry_to 1 : ferry_ref 
result! : message 

ferry yom? eknown Jerries 
ferry_to 1 e known Jerries 
# ferry _load ferry yom 1+# ferry _load ferry_to 1> ferry_max 
result !=Not_enough_space 

And the model solution is as follows: 

can Jerries _combine_no _spaU.c"'e--------------------, 
Eferries 
ferry 11 : ferry_ref 
ferry 21 : ferry_ref 
report! : message 

ferry l1eknownJerries 
ferry 2? eknown Jerries 
# ferry _load ferry 1?+# ferry _load ferry 2?> ferry_max 
report !=Not_enough_space 

Looking at the predicates part we can clearly see that the model solution and the 

student answer are the same. However if we look at the declaration part, we can see 

that the student wrote the schema as an operation schema by writing the symbolll. in 

front of the schema ferries, when the correct answer should be an observation schema 

(i.e Eferries). Although A does not insist on state changes, by testing the schema 

against a test case which involve changing the state, it will allow this happen, which 

it should not. 

In this exercise, the answer written by s2 was decided by h I and h3 to be not good 

enough. However, h2 decided to give full marks. The system awarded 0 marks 

because the process of marking was interrupted due to 'hanging' during the run-time. 

As well as the answer written by s8, all the markers were in agreement that there was 

a fault in the specification. The system gave 0 marks due to the same reason as s2. 

'Hanging' during run-time is a problem in the Prolog implementation of the 

Page 128 Chapter 6 : Evaluation 



respective specification. The 'hanging' is due to the uncontrolled back tracking in the 

implementation. This type of problem is discussed in chapter 7, and further 

recommendations are also presented in the chapter. 

6.6. Inferential statistics 

Studies concerned with infering conclusions about populations based on results 

obtained from samples (by using certain procedures) is known as inferential statistics. 

The following are analyses of the samples by using selected procedures appropriate 

to the nature of the samples. SPSS tool version 8 was used in this analysis. 

General outlook 

To have a general overview of the data, we look at its mean. The mean values for the 

score, grade and grouped frequency awarded by the markers are shown in Table 6-4. 

Marker Score Grade Frequency 

HI 83.73 4.58 2.20 

H2 81.00 4.37 2.20 

H3 78.05 4.10 2.20 

SYSTEM 75.85 4.09 2.16 

Table 6-4 : Means for the distribution 

As displayed by the table, the system mean is the lowest compared to the human 

markers for all the 3 types of data. Are these differences significant? At this stage, 

we are not able to conclude anything. We will continue to analyse this (below). 

Identification of the normality 

It is important to know the distribution of the data, as it will guide us in selecting an 

appropriate test. A quantile-quantile (qq) plot is used to see if a given set of data 

follows a specified distribution. It should be approximately linear if the specificied 

Chapter 6 : Evaluation Page 129 



distribution is the correct model. 

In our study, we are going to observe whether our data are normally distributed. We 

use hI's distribution of score as an example of how to determine the normality. As 

revealed by the graph in Figure 6-11, the distribution of the data is not in a straight 

line. To have a clear picture of how the data deviates from the normal, we can 

explore its detrended normal plot. If the sample is from a normal distribution, the 

points should cluster in a horizontal band around zero; there should not be a pattern. 

In this example, the points were not clustered around zero (which can be seen in 

Figure 6-12). Therefore we can conclude that the score distribution by human marker 

hI is not normal. 

Normal Q-Q Plot of H1 
Ｑ Ｐ Ｐ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ ~

90 

eo 

70 
(l.) 

:::J 
16 60 > 
16 
E .... 50 a 
Z 
U o 
(l.) 

40 tl 
(l.) 

ｾ ~ 30 W 

o 

0 20 40 60 eo 100 120 

Observed Value 

Figure 6-11 : SPSS output for Normal Q-Q Plot of Human Marker HI 

Page 130 Chapter 6 : Evaluation 



Detrended Normal Q-Q Plot of H1 
20 

" 
10 

" 

" " " 0 " ro 0 

E " " ... 
0 

o " z 
E 
0 -1 0 .::: 
c 
0 0 

ｾ ~ 0 "5 
(1) 

-20 0 
0 20 40 60 60 100 120 

Observed Value 

Figure 6-12: SPSS output for Detrended Normal Q-Q Plot of Human Marker HI 

By using the qqplot, we observed that the data for the score, grade and grouped 

frequency for all the markers were not normally distributed. Therefore, 

nonparametric methods, methods which are appropriate for samples with unknown 

distribution, will be used in the following analysis. Appendix F shows the qqplot for 

the score, classified score and frequency score of all the markers. 

Correlation 

Correlation is a study of the relationship between two variables. The measurement 

for correlation is called the correlation coefficient. In this section, we would like to 

observe the correlation between the system and the humans in terms of the distributed 

score, grade and grouped frequency. Additionally, we would also like to study this 

correlation relative to the correlation between human and human. In the 

nonparametric method, there are two ways to measure the association of variables; 

using the Spearman correlation coefficient and the Kendall Tau correlation 

coefficient. In most of the literature, it is said that both tests can be used. I was 

verbally advised by one researcher majoring in statistics to use the Spearman 

Chapter 6 : Evaluation Page 131 



correlation coefficient for analysing the data score because it is ratio/interval typed. 

For grade and grouped frequency, the Kendall Tau correlation coefficient was chosen. 

The data used in this procedure is presented in Attachment E. Figure 6-13, 6-14 and 

6-15 display the result for this procedure. 

Correlations 

H1 H2 H3 SYSTEM 
Spearman's rho H1 Correlation Coeflicient 1.000 .713*" .845 .... .767* 

Sig. (2-tailed) .000 .000 .000 
N 110 110 110 110 

H2 Correlation Coeflicient .713 .... ' 1.000 .806 .... .676" 
Sig. (2-tailed) .000 .000 .000 
N 110 110 110 110 

H3 Correlation Coeflicient .845*" .806*" 1.000 .826'" 
Sig. (Hailed) .000 .000 .000 
N 110 110 110 110 

SYSTEM Correlation Coefliclent .767 .... .676'" .826 .... 1.000 
Sig. (2-talled) .000 .000 .000 
N 110 110 110 110 

-, Correlation is significant atthe .01 level (2-talled). 

Figure 6-13 : SPSS output for Spearman's Correlation among markers 
in terms of Score distribution 

Page 132 Chapter 6 : Evaluation 





grade and grouped frequency. 

The variety of coefficients in the figures can be grouped into two; the coefficient 

between system and human, and the coefficient between human and human. We are 

interested to see whether the differences between system-human correlation and 

human-human correlation (regardless of which marker) is significant. We 

hypothesize that there is no difference between the correlation between system and 

human and the correlation among humans. Table 6-5 is the summary of the 

correlation value from the score, grade and grouped frequency. As correlation 

coefficients are special data which were derived from the correlation procedure, there 

might be a special test for them, such as an extension of the correlation procedure. 

However, from several literature reviews about testing the differences between 

correlation coefficients, none was found to be suitable. The closest is testing for two 

correlation coefficients. Therefore, we decided to treat the coefficients as data with 

unknown distribution. 

Correlation 
Score Grade Frequency 

system-human human-human system-human human-human system-human human-human 

0.676 0.713 0.545 0.476 0.473 0.424 
0.767 0.806 0.582 0.525 0.490 0.563 

0.826 0.845 0.666 0.741 0.593 0.5R2 

Table 6-5 : Summary of Correlation Coefficient 

The Mann-Whitney-Wilcoxon test is appopriate for this case, as it is a nonparametric 

test for two independent samples. The null hypothesis for this test is that: 

there is no difference between correlation coefficient system-human and 

human-human. 

The alternative hypothesis is that: 

there is a difference between correlation coefficient system-human and human-

human. 

Page 134 Chapter 6 : Evaluation 



We ran the test for the 3 types of data taken from Table 6-5. The results of the tests 

are presented in Figure 6-16, 6-17 and 6-18. 

Test statistic; 

correlation 
Mann-Whitney U 3.000 
WilcoxonW 9.000 
Z -.655 
Asymp. 81g. (2-talled) .513 
Exact 8ig. (2*(1-talled I 

81c')l .700 

a. Not corrected for ties. 

b. Grouping Variable: MARKER 

Figure 6-16: SPSS output for the Mann-Whitney test comparing 
correlation coefficient for Score distribution between 

system-human correlation and human-human correlation 

Test statistic; 

correlation 
Mann-Whitney U 3.000 
WlicoxonW 9.000 
Z -.655 
Asymp. Big. (2-talled) .513 
Exact 81g. (2*(1-talled I 

8ic.)1 .700 

a. Not corrected for ties. 

b. Grouping Variable: MARKER 

Figure 6-17 : SPSS output for the Mann-Whitney test comparing 
correlation coefficient for Grade distribution between 

system-human correlation and human-human correlation 

Chapter 6 : Evaluation Page 135 



Test Statistic; 

correlation 
Mann-Whitney U 4.000 
WilcoxonW 10.000 
Z -.218 
Asymp. 8113. (2-talled) .827 
Exact 8ig. (2*(1-talled 1.000· 
Sla.)) 

a. Not corrected forties. 

b. Grouping Variable: MARKER 

Figure 6-18 : SPSS output for the Mann-Whitney test comparing 
correlation coefficient for Grouped Frequency distribution between 

system-human correlation and human-human correlation 

The figures show that the p-values for score, grade and grouped frequency (which are 

0.513,0.513 and 0.827) are not significant based on the confidence of 95%. It means 

that there is not enough evidence to reject the null hypothesis. In other words, the 

relation between system-human can be regarded as the same as the relation between 

human-human. 

Testing a hypothesis 

Even though we have explored the data thoroughly, and confidence about the 

correlation between system and human is as strong as the correlation between human 

and human, we have not answered our early hypothesis of this analysis, that is, there 

is no difference between score, grade or groupedJrequency produced by the system 

and by the human markers. 

According to the nature of the data discussed before, an appropriate statistical test to 

carry out in this case is the Kruskal-Wallis test for K independent samples. The 

Kruskal-Wallis test is a nonparametric test suitable for more than two independent 

samples where the samples come from unknown distribution. 

Page 136 Chapter 6 : Evaluation 



The raw data (i.e score), is not suitable for this analysis. because nonparametric 

analysis will rank the data, and scores like 100% and 97% cannot really be ranked as 

best or second best. However, grade and frequency are appropriate for this test. 

The null hypothesis for both data is: 

there is no difference between grade/grouped frequency of different markers. 

The alternative hypothesis is that: 

there is a difference between at least two of the markers. 

The data used in this test is presented in Attachment E. The results from the test for 

grade and grouped frequency are shown as in Figure 6-19 and 6-20, respectively. 

Test statistic' ,b 

GRADE 
Chi-Square 7.210 
df 3 
Asvmc. Sla. .OS5 

a. Kruskal Wallis Test 

b. Grouping Variable: MARKER 

Figure 6-19 : SPSS output for the Kruskal-Wallis test comparing 
Grade awarded by the markers 

FREQUENC 
Chi-Square .221 
df 3 
Asvmp. Sitt .974 

a. Kruskal Wallis Test 

b. Grouping Variable: MARKER 

Figure 6-20 :SPSS output for the Kruskal-Wallis test comparing 
Grouped Frequency awarded by the markers 

Based on the p-values of 0.065 for grade and 0.974 for grouped frequency (which are 

not significant at the level of 0.05), this implies that there is not enough evidence for 

us to reject the null hypothesis. This means that we can say that the grade and 

Chapter 6 : Evaluation Page 137 



grouped frequency given by the system is the same as that given by a human. 

6.7. Observations 

Bearing in mind the first objective of the experiment which is to observe the 

behaviour of the system compared to human markers, we can summarise as follows: 

• The system marker is better at detecting certain type of errors which a human 

marker can often overlook. 

• Human markers are better at detecting certain type of erros which a system 

marker could not detect regarding the insensitivity of the test cases. 

• When dealing with a serious error, the human markers are more lenient in 

awarding marks compared to the system marker. 

• The system marker has a strong correlation with human markers in terms of 

determining score, grade and grouped frequency. 

• The correlation concerning score, grade and grouped frequency between the 

system and humans is believed to be the same that between human and human. 

• The system grades for the student answers are similar to the human grades. 

• The system groups of the grade of student answers are similar to the human 

groups. 

Regarding the second objective which is to observe the environment in which it can 

be used, we can conclude that the system can only be used for Ceilidh-type exercises. 

This means: 

• The skeleton should be attached. 

• The question must be clearly defined. 

• The schema name, the type of input and output must be determined by the 

teacher. 

Page 138 Chapter 6 : Evaluation 



From the data analysis, we also found that: 

• There is a need for technique to allocate marks for test cases. This is to ensure 

that the marks awarded will be appropriately distributed according to the 

seriousness of the error. We propose such technique in the next chapter. 

• If the system is to be used to produce official students' results, the use of the 

type and syntax checker by the student should be emphasised. The students 

should be informed that any syntactical error will yield substantial loss of 

marks. 

• The Prolog implementation of Z needs improvement and it needs to be 

expanded to support other functions. This matter will be further discussed in the 

next chapter. 

6.S. Conclusion 

In this chapter, we have presented and discussed an experiment to observe and 

compare the performance of the Automatic Z Specification Assessment System with 

human markers. Samples are taken originally from students and used in the analysis. 

By using decriptive and inferential statistics, we conclude that the system indeed 

behaves like a human marker in some areas and indeed in certain areas it is better 

than a human. As the conclusions drawn above are only valid for the tested sets of 

answers, there is a need for more experiments to be conducted before substantial 

claims concerning the performance of the system can be made. A final remark: as the 

number of participants is quite small (i.e 13), the strength of the statistical result can 

be argued. However, this situation cannot be avoided as the module is optional and 

few students take it. We have chosen the best statistical test that exists to suite the 

nature of our sample. 

Chapter 6 : Evaluation Page 139 



References 

1. J.A.W. Faidhi, "The complexity analysis of Pascal programs and the application 

to a university teaching environment," PhD Thesis, University of BruneI, 1986. 

2. M.E. Franklin, •• Automatic analysis of the structure of Pascal programs written 

by novices," MPhil Thesis, University of Sheffield, 1987. 

3. P.B. Van Verth, "A System for Automatically Grading Program Quality," 

SUNY (Buffalo) Technical Report, 1985. 

4. Z. Shukur, E. Burke, and E. Foxley, "Inspecting the correctness of specification 

through system-state analysis," IEEE transaction on Software Engineering, 

(will be submitted) 1999. 

5. E. Burke and E. Foxley, Logic and its Applications, Prentice Hall Europe, 1996. 

6. D. Rann, J. Turner, and J. Whitworth, Z: A Beginner's Guide, Chapman & 

Hall,1994. 

Page 140 Chapter 6 : Evaluation 



Chapter 7 

Discussion and Further Research 

7.1. Introduction 

This chapter summarises the contributions to be found in this thesis. It also makes a 

critical assessment of the research area as a whole and presents possible directions for 

future research. 

Using the marking system within Ceilidh could not be easier. The interface provided 

by Ceilidh, makes it easier for the teacher to set up the exercise and marking scheme. 

The teacher need not to understand how the marking system works in detail. It is 

enough for them to understand the basic functions of Ceilidh. 

7.2. Contributions 

In this thesis we proposed a system to automatically assess student Z specification 

exercises. 

In the first chapter of the thesis, we discussed the need to have an automatic marking 

system for a specification in a learning environment. We also briefly discussed why 

Z is chosen in the study. By presenting a relation between a program and a 

specification in chapter two, we arrive at a point where ideas in analysing the 

program automatically can be used in analysing a specification. In general, four 

aspects should be considered if one wants to develop such a system. They are: 

• Identify factors that affect the quality of a subject to be assessed. 

• Regarding the identified factors, find a way to derive the quality metric from the 

subject. 

• 
• 

Find a quality indicator to be the milestone of the quality. 

Select or derive a suitable scheme to award the mark. 

Chapter 7 : Discussion and Further Research Page 141 



The system that we developed considers four quality factors when assessing Z 

specifications; typographics, complexity, static correctness and dynamic correctness. 

In chapter three, we described a system to automatically assess the quality of Z 

specifications by considering maintainability and correctness. The analysis of a 

specification's correctness is done in two steps: first the specification will be statically 

analysed by applying a type and syntax checker against it. Second, if no error oceurs 

then the analysis will continue by checking its dynamic correctness. This is carried 

out by animating the specification against a set of test data. The analysis of the 

maintainability of a specification is divided into two aspects: analysis of the 

typographies arrangement of a specification, and the analysis of the complexity of a 

specification. 

The dynamic correctness employs the testing technique. In chapter four we discussed 

how the idea is handled regarding the context of specification. By using a system-

state analysis approach, the specification is 'executed' against sets of test data. 

System variables are used as the test data. After the specification is invoked, the 

system variables (i.e variables which hold the value of the system-state, as well as 

input and output variables) are checked. The result of the testing is compared to the 

expected result provided by the teacher. The comparisons yield a value in terms of a 

percentage. If the result is less than 100%, the cause of the lost marks can be 

discovered. If an error is revealed, the debugging process can be invoked to locate 

the error. In chapter four, we also proposed a way to derive test data together with a 

scheme for awarding marks. 

The need for basic tools for handling Z coursework on-line is highlighted in chapter 

five. The incorporation of the automatic marking tools along with the existing editor, 

type and syntax checker and animator in Ceilidh are explained. We conducted an 

empirical analysis on student views about the facilities offered in the system. The 

results indicated that this could be very beneficial to the student. However, we found 

out that the need for better tools are strongly proposed by the students. 

Page 142 Chapter 7 : Discussion and Further Research 



To observe the perfonnance of the marking system, an experiment was conducted 

where specifications submitted by students at the introductory level were used. The 

selection of the material is discussed. Comparisons with marks given by human 

markers for the same sets of specifications have demonstrated that the system marker 

tends to behave like a human marker. This is presented in chapter six. 

7.3. Outstanding problems 

Even though we have shown the possibility of marking a Z specification 

automatically, the techniques currently used restrict its area of application in a 

number of ways. The problems are divided into two main areas; local problems (i.e 

the problems which contribute to the shortcomings in the research itself) and 

universal problems (i.e the problems which are also being discussed by other 

researchers). 

7.3.1. Local problems 

We identify some weaknesses that are encountered in the study. 

• The handling of dynamic correctness is designed specifically for Ceilidh-type 

exercises. This means that the schemas involved will be detennined by the 

teacher and the input and output will be set by the teacher. Therefore this 

analysis could not be applied to a modelling-type exercise. 

• The idea of awarding a mark for the failed schema when it should be true is not 

absolute. Giving marks according to the percentage of predicates which 

contribute to the correctness yields a problem. If the location of the predicate 

that contributes to the failure is changed to the other line, the system might 

award different marks. 

• 
• 

Some bugs in zpp need to be removed.l 

The Z to Prolog translator zp needs to support more features of Z specification 

techniques. 1 

Chapter 7 : Discussion and Further Research Page 143 



During the study, we corrected some of the bugs that were found. In Appendix G we 

highlight some deficiencies that were found in the tools. 

7.3.2. Universal problems 

There are some universal problems that are still being discussed among the 

researchers in this area. 

Prolog as a media for animation 

We chose Prolog as a suitable language for the animation of Z specifications because 

they are both based on first order logic (and set theory). Several attempts have been 

made to translate Z schemas to Prolog code using different methods. However, this 

is said to have had little impact 2 Prolog code that has been produced has often been 

very inefficient due to inferior transformation rather than to limitations of the 

approach.2 As an example, in the SuZan project,3 they faced two main problems. 

• Combinatorial explosion (i.e no satisfactory answer will be obtained by a query 

either because there are infinite answers or because the generate and test loop 

will take too much time). 

• Limited translation for schema calculus. 

Another example is EZ.4 With EZ, only a subset ofZ can be translated. Further, it did 

not support 

• 3 and V 

• axiomatic declarations 

• generic schemata 

• set and multiset operations 

• functions and relations 

• schema operator» 

Page 144 Chapter 7 : Discussion and Further Research 



• a few logical operators like <=> and ｾ ~

The predicate library in tzc2 (a compiler to translate Z schemas into Prolog code), 

needs to be augmented in order to handle the full range of Z predicates and 

expressions. 

Sterling et al2 commented (on Prolog) that ''things like types tend to be defined 

implicitly: a type is whatever it is". Whereas the distinctive features of Z is that it is 

a typed language.S They further said ''this would make hard to tie down certain 

properties about functions; for example, whether a function is total or partial becomes 

more of a philosophical issue than a practical one". 

There have also been attempts to translate formal specification into functional 

languages.6,7 However, it is stated by Gravell and Henderson8 that "the translation 

scheme was not automated". 

Animating a specification 

As we have described earlier, the system uses testing techniques to validate a 

specification. The only way to do this is to make it executable. Execution of a formal 

specification is said by Gravell & Henderson9 to be a controversial area. The 

debate 10, lIon these issues will not stop and, of course, it is not the objective of this 

thesis to join the debate. Gravell and Handerson9 summarised the debate as follows: 

• There is a conflict between clarity and executability. 

• There are relative merits of proof and execution in validating specifications. 

• There is a potential unreliability of manual transliteration for execution. 

• There is an inefficiency of some forms of execution 

• There are possible merits of hybrid forms of execution. 

In the following section, we will investigate other possible ways that can be used in 

the system to check the correctness of Z specifications. 

Chapter 7 : Discussion and Further Research Page 145 



7.4. Direction for future research 

7.4.1. Refinements to the system 

One of the areas of research that was beyond the scope of this project was an 

exhaustive investigation of specification maintainability. This might be because the 

environment that we are working on is learning, where the factor of correctness is 

heavily considered rather than maintainability. However, in a real situation, 

maintainability is identified as being as important as other quality factors. Therefore 

we propose: 

• Investigation of the typographics arrangement for Z specifications, by 

considering factors which are specifically for a Z specification. This was not 

taken into consideration during the research because of the difficulties in 

automation. Such a problem is another major research project in itself which 

would fall in the area of Artificial Intelligence. In addition, more work could be 

carried out in choosing a quality indicator for typographics assessment. No 

clear solutions have been proposed from the literature to address this problem. 

Some work could be carried out in the further evaluation of the effectiveness of 

the typographics factors. 

• Specification complexity factors are not precisely debated by scholars in the 

area of software metrics and specification. Investigation of these factors should 

be conducted. The aim of the study might be to investigate complexity in Z 

specifications and to find a practical way to derive the complexity metric. Most 

of the complexity factors involve the analysis of a specification as a whole. 

Therefore the effectiveness study of these factors might be carried out 

independently. 

Some other areas of future research which are expected to be short term projects are: 

• Improve the student facility to test their specification against the test data. This 

will present a detailed analysis of the failure. 

Page 146 Chapter 7 : Discussion and Further Research 



• Provide a facility for students to view the question in PostScript form. This was 

actually done at an early stage of the research. However it was discontinued 

because of the time to load the PostScript viewer. The main thing that has been 

considered during this project is response time. 

• Provide a facility for the students so that they can test their specification using 

their own initial data state and check the final data state without having to 

understand the animation concept. 

• There are lots of problems which can occur when directly using the Unix spell 

checker. There are some vocabulary which is not in the Unix System 

Vocabulary. Examples are vocabulary of the complete course notes, the course 

title, vocabulary of the question, the test data, student's program identifiers and 

other such vocabulary. This problem has been resolved by the Ceilidh spell 

checker.12 Therefore instead of using the Unix spell checker in AZAS, invoke 

the Ceilidh spell checker. 

7.4.2. Correctness analysis using symbolic execution 

With the development of a reliable theorem prover, symbolic execution is one of the 

techniques which we might use (apart from animation). For example, the student 

might be asked to write a schema operation named AddTelephone where a person's 

telephone number will be added into the telephone database provided that it is not set 

in the database. 

ａ ､ ､ ｔ ･ ｫ ｰ ｨ ｯ ｮ ･ ｾ ~______________________________________ ｾ ~

ATelephoneBook 
name?: NAME 
phone?: TELEPHONE 

name? ｾ ｫ ｮ ｯ ｷ ｮ n
known' =knownu{name?} 
telephone' =telephoneu {(name ? phone ?)} 

The sequence of starting a TelephoneBook, then adding a person's telephone number 

Chapter 7 : Discussion and Further Research Page 147 



can be tested by defining the schema 

TestTelephone == InitTelephone ; AddTelephone 

and then expanding the schema TestTelephone. InitTelephone is a schema which 

initialises the database with empty data. The result of symbolically executing it will 

be something like this: 

known={} 

telephone={} 

name?eNAME 

phone?eTELEPHONE 

ｮ ｡ ｭ ･ ＿ ｾ ｫ ｮ ｯ ｷ ｮ n

known' = {name ?} 

telephone' = {(name ? ,phone?)} 

The above result presents symbolic values for the system variables. This result can 

be compared to the model result which is provided by the teacher. 

7.4.3. Correctness analysis using formal proof 

Instead of using a testing technique, we would like to show that a fonnal proof might 

possibly be used in validating and verifying a specification. We describe the process 

by giving the same example as that presented previously (i.e AddTelephone). In the 

example, it is obvious that after adding the telephone number of a given name, the 

respective name and the telephone number should be recorded in the telephone 

database. By using an existing theorem prover (such as Isabelle13 and Z'EVES14 ), 

this can be automatically checked by proving the following proposition. 

VAddTelephone • ｮ ｡ ｭ ･ ＿ ｾ ｫ ｮ ｯ ｷ ｮ n 1\ telephone '(name ?)=phone ? 

To suite our problem, we might prove this separately and allocate a mark for each of 

the following steps. 

if VAddTelephone • name ＿ ｾ ｫ ｮ ｯ ｷ ｮ n is true then give 5 marks. 

Page 148 Chapter 7 : Discussion and Further Research 



if VAddTelephone • telephone' (name ?)=phone? is true then give 10 marks. 

7.4.4. Generation of a test case for marking purposes 

A lot of research has been carried out to generate test cases from a formal 

specification. Here we will look at some techniques which focus particularly on 

generating test cases from a Z specification. 

HaUlS proposed an approach for generating test cases from Z specifications. This 

was done by first identifying the test domains. Having established the test-domains, 

''typical" elements were selected from the sets. The next step was to consider the 

boundaries of the test domains, and any further test cases necessary because it is 

recognised that problems frequently arise at the boundaries of the test domains. The 

technique described above can be shown to be able to generate test cases which are 

reliable and valid. However, the main problem with this technique is that it is not 

capable of being used for generating test cases automatically. 

Zin et al's16 approach for generating test cases from a formal specification is 

different from the one described by Hall. Instead of generating test cases directly 

from the specification, they translated the specification into a Prolog implementation, 

and then used the Prolog implementation to generate the test cases. The advantage of 

using this approach is that the test case generation can be done almost automatically. 

By combining the classification tree method with the disjunctive normal form 

approach, Singh et al17 show that they are able to develop a tool to aid the generation 

of test cases from Z specifications. 

In general, there are several issues that need to be considered when we plan to 

generate test cases. In this section, we discuss some of the issues. 

Oracle Problem : This is a problem regarding the verification of the correctness 

of the outputs obtained during the testing activity. Only a few testing 

Chapter 7 ; Discussion and Further Research Page 149 



techniques address this problem. IS 

Overhead: Weyuker19 said that "exhaustive testing is typically prohibitively 

expensive, because a formula of n variables would require 2n distinct test 

cases." Madrioli et allS (when considering this huge number of test cases) said 

that it, ''makes exhaustive testing impossible in most practical cases, even for 

finite interpretation domains." Foster2o said that small sets of test case should 

be chosen "provided test cases are selected that require each variable value to 

individually affect the result." Smaller test sets that interest Elaine et al19 are, 

"smaller than exhaustive test sets, but would nonetheless be highly effective at 

detecting faults". 

Effectiveness : Jalote21 said that ''the effectiveness of any testing process is 

highly dependent on the choice of test case." If proper test cases are not 

provided, the test goal may not be achieved. Mutation analysis is used by 

Elaine et al19 in their test case evaluation. Mutant analysis was first introduce by 

DeMillo et al.22 Elaine et al described the analysis as it "starts with a program to 

be tested and makes numerous small changes to it, creating a set of mutant 

programs. Each mutant is then run on a test set that is being evaluated to see 

whether the test data are comprehensive enough to distinguish the original 

program from each inequivalent mutant." 

Automation : If we can automate the generation of the test cases, we can 

generate the whole process of testing automatically. Manual testing methods 

are proving to be ineffective in today's software environment.23 It has been 

shown that software quality can not be effectively achieved using manual testing 

techniques. 

Significance : Additionally, in educational issues, we are considering the 

progress of the student. It is not practical to evaluate the student solution by 

using yes or no answers. We should grade the level of their correctness. 

Therefore we should consider the significance of the chosen test case. 

Page 150 Chapter 7 : Discussion and Further Research 



By having a model solution as a guide, we might use the above ideas and issues to 

direct our research in producing the test case automatically. 

7.4.5. Technique for allocating marks 

Another interesting research area which could benefit from the process of automatic 

assessment is the allocation of weights for every test case. We might decide to 

allocate different marks for boundary type test cases compared to non-boundary test 

cases. However, the extent that the mark is different between both test cases is an 

interesting issue to discuss. This section discusses the rationale of choosing the right 

weight for the analysis. 

Before going further, there are some issues that need to be highlighted: 

How many test cases are needed. 

What criteria to select the test cases. 

How to distribute the marks. 

What basis do we use to distribute the marks 

The first two questions have been discussed in the previous section. In this section 

we would like to show how the subjectivity of distribution of marks can be reduced 

and rationalised. The steps can be summarised as follows: 

1 Obtain a set of test cases. 

2 Categorise the test cases according to their significance. 

3 Allocate symbolic marks (represent by variables) for each category. 

4 Define the marks pattern which is in equation form. 

5 Derive the absolute value for the symbolic marks using a Linear Programming 

technique. 

This idea will be illustrated by using the following example. 

write a Z schema which accept any number bigger than 5 

Chapter 7 : Discussion and Further Research Page 151 



and smaller than 10. 

The answer might be 

As regards the testing technique, we will give several inputs and observe the 

behaviour of the schema. 

Step 1: Obtaining test cases 

For non-boundary cases 

[tdl]-ifthe input falls in the range 5<n<1O, the schema should yield value true. 

[td2]-if the input falls in the range n <5, the schema should yield value false. 

[td3]-if the input falls in the range n> 10, the schema should yield value false. 

and for boundary cases 

[td4]-if the input is equal to the first border line, n=5, the schema should yield value 

false. 

[tdS]-if the input is equal to the second border line, n=lO, the schema should yield 

value false. 

Step 2: Categorising the test cases 

We decide that 

• all non-boundary test cases are equally significant. 

• all boundary test cases are equally significant. 

• non-boundary test cases are significantly different from boundary test cases. 

Page 152 Chapter 7 : Discussion and Further Research 



Step 3: Allocating symbolic marks 

From the above arrangement (step 2), we only need to have two different marks, 

which we choose to be A and B. Variable A will represent the mark awarded if the 

testing satisfies non-boundary test cases, and variable B will represent the mark 

awarded if the testing satisfies boundary test cases. In other words: 

if the testing satisfies [tdl], [td2] or [td3], award A marks for each of them. 

if the testing satisfies [td4] or [td5], award B marks for each of them. 

Step 4: Defining a pattern 

Clearly if the student answer fulfills the question criteria (i.e their answer satisfies all 

the test cases) they will be awarded 100%, i.e 

3A+2B=IOO 

H the student satisfies half of the answers, we intend to give around 50%. For 

example, the student answer is n>5. Therefore it satisfies [tdl], [td2] and [td4]. 

2A+B:::50 

We intend to give 70% to the student whose answer only fails at the boundaries. For 

example, if the student answer is ｮ ｾ ~ A. nSl0. It satisfies all the test cases except for 

boundary, i.e [td4] and [tdS]. 

3A:::70% 

H the student fulfills half of the answer without the boundaries, we intend to give 

around 40%. For example, the student answer is ｮ ｾ Ｕ Ｎ . It satisfies [tdl] and [td2]. 

2A:::40 

And if the student only fulfills the boundaries, we give 20%. For example, the 

student answer is n.t5 A. n.tl0. This only satisfies [td4] and [td5]. 

2B:::20 

In summary, we get 

[1] 3A+2B=100% 

Chapter 7: Discussion and Further Research Page 153 



[2] 2A+B=50% 

[3] 3A z'70% 

[4] 2A =40% 

[5] 2B =20% 

Step 5: Deriving the value 

By using trial and error, we can derive values for A and B that tolerably satisfy the 

intention. 

First trial: from [1] and [5], we get 

A - 26.67% and B -10% 

By replacing the value of A and B in other equations, we get 

from [2], 2A+B=63.33% (+13.33% deviation from the original value i.e 50%) 

from [3], 3A=80% (+10% deviation from 70%) 

from [4], 2A=53.33% (+13.33% deviation from 40%) 

Second trial: from [1] and [4], we get 

A - 20% and B - 20% 

By replacing the value of A and B in other equations, we get 

from [2], 2A+B=60% (+10% deviation from 50%) 

from [3], 3A=60% (-10% deviation from 70%) 

from [5], 2B=40% (-20% deviation from 20%) 

We might be able to continue this trial by using other values. However, the best 

value (which is close to our earlier intention) can be achieved by using Linear 

Programming. This can be explained as follows. 

We have 

3A+2B=100 

Page 154 Chapter 7: Discussion and Further Research 



with the conditions as below: 

2A+B=50+r 

3A=70+s 

2A=40+t 

2B=20+u 

where r, s, t and u are errors. In the above case r, s, t and u can take positive or 

negative value. Therefore, 

r=2A+B-50 

s=3A-70 

t=2A-40 

u=2B-20 

The value of the errors (r, s, t and u) will be controlled so that it can be in the range of 

n% from the intended value. If n-20 

r: -n %(50)<r<n %(50) 

-1O<r<10 

s: -n %(70)<s<n %(70) 

-14<s<14 

t: -n %(4O)<t<n %(40) 

-8<t<8 

u: -n %(20)<u<n %(20) 

-4<u<4 

Now we can use Linear Programming to solve the problem: 

r=2A+B-50 then 

Chapter 7 : Discussion and Further Research Page 155 



-lO<2A+B-50<lO [6] 

s=3A -70 then 

-14<3A-70<14 [7] 

t=2A -40 then 

-8<2A-4O<8 [8] 

u=2B-20 then 

-4<2B-20<4 [9] 

From [6], [7], [8] and [9], we can conclude that A and B fall in the range 

8<B<12 

18.67<A<24 

However, none of the values in range A and B will satisfy 3A +2B= 1 00. Therefore, we 

take the value A and B which is very near to that range and satisfy the main equation 

3A+2B=I00. We choose to set B=12 and A=25.33. Finally we can claim that value 

A and B that we choose give errors of around 20% from the intended value. 

In this section, we have presented a formal way to decide what marks we should give. 

However human instinct is still being used in this technique. This idea has not yet 

been proved to be effective, nonetheless it seems useful especially in supporting a 

general automatic marking system. 

7.5. Final remarks 

In this thesis, we have demonstrated the feasibility of assessing Z specifications 

automatically. A system has been developed as an integral part of this research 

project. The existing type and syntax checker and editing tool as well as the marking 

system to support the on-line learning are shown to be beneficial to students. The 

marking system has been tested experimentally against real student answers. It 

successfully reveals that its behaviour in awarding marks is similar to human 

marking. 

Page 156 Chapter 7 : Discussion and Further Research 



References 

1. A.M. Zin, ZFDSS: A Formal Development Support System based on the Liberal 

Approach, 1994. PhD Thesis, University of Nottingham, UK 

2. L. Sterling, P. Ciancarini, and T. Tumidge, "On the Animation of "Not 

Executable" Specifications by Prolog," International Journal of Software 

Engineering and Knowledge Engineering, vol. 6, no. 1, pp. 63-87, 1996. 

3. R. Knott and P. Krause, "The implementation of Z specifications using program 

transformation systems: The SuZan project," in The Unified Computation 

Laboratory, ed. C. Rattray & R. Clark, vol. 35, pp. 207-220, IMA Conference 

Series, Clarendon Press, Oxford, UK, 1992. 

4. V. Doma and R. Nicholl, EZ : A system for automatic prototyping of Z 

specifications, 551, pp. 189-203, Lecture Notes in Computer Science, 

Noordwijkerhout, Springer-Verlag, Berlin, October 1991. 

5. A. Diller, ZAn Introduction to Formal Methods, John Wiley & Sons, 1994. 

6. M. Johnson and P. Sanders, "From Z specifications to functional 

implementations," Proc. 4th Z Users Meeting, pp. 86-112, Springer-Verlag, 

1989. 

7. P. Henderson, "Functional programming, formal specification, and rapid 

prototyping," IEEE Transaction, vol. 12, no. 2, pp. 241-249, 1986. 

8. A.M. Gravell and P. Henderson, "Why execute formal specifications?," Proc. 

Mathematical Structures for Software Engineering, pp. 165-184, Oxford 

University press, 1991. 

9. A. Gravell and P. Henderson, "Executing formal specifications need not be 

harmful," Software Engineering Journal, vol. 11, no. 2, pp. 104-110, March 

1996. 

10. N.E. Fuchs, "Specifications are (preferably) executable," Software Engineering 

Journal, vol. 7, no. 5, pp. 323-334, September 1992. 

Chapter 7 : Discussion and Further Research Page 157 



11. I.J. Hayes and C.B. Jones, Specifications are not (necessarily) executable &J 

Software Engineering Journal, 4, pp. 330-338, November 1989. 

12. E. Foxley, "The Ceilidh spelling checker," LTR Report, Computer Science 

Dept, Nottingham University. 

13. L.C. Paulson and with contribution bu Tobias Nipkow, Isabelle: A Generic 

Theorem Prover, Springer Lecture Notes in Computer Science 828 .. 

14. M. Saaltink, "Effective Use of ZlEVES," Tutorial Programme of Z User 

Meeting '98, Berlin, Germany, September 1998. 

15. P.A.V. Hall, "Towards Testing with Respect to Formal Specifications," Proc. 

of Second IEEIBCS Conference: Software Engineering 88, pp. 159-163, 

London, 1988. 

16. A.M. Zin, A. AI-Amayreh, and E. Foxley, "An Approach to Specification-based 

Testing Systems," Proceedings of Software Quality Engineering Conference, 

Udine, Italy, 6 May 1997. 

17. H. Singh, M. Conrad, and G. Egger, "Tool-Supported Test Case Design Based 

on Z and the classification-Tree Method," Workshop "Tool Support for System 

Development and Verification", Bremen, 1996. 

18. D. Mandrioli, S. Morasca, and A. Morzenti, "Generating Test Cases for Real-

Time Systems from Logic Specifications," ACM Transactions on Computer 

Systems, vol. 13, no. 4, pp. 365-398, Plotecnico di Milano, November 1995. 

19. E. Weyuker, T. Goradia, and A. Singh, "Automatically Generating Test Data 

from a Boolean Specification," IEEE Transactions on Software Engineering, 

vol. 20, no. 5, pp. 353-363, May 1994. 

20. K.A. Foster, "Sensitive test data for logic expressions," ACM SIGSOFT 

Software Engineering Notes, vol. 9, no. 2, pp. 120-126, April 1984. 

21. P. Jalote, "Testing the Completeness of Specification," IEEE Transactions on 

Software Engineering, vol. 15, no. 5, pp. 526-531, May 1989. 

Page 158 Chapter 7 : Discussion and Further Research 



22. R.A. DeMillo, R.J. Lipton, and F.G. Sayward, "Hints on test data selection: 

Help for practiting programmer," Computer, April 1978. 

23. E. Sabbatini, M. Crubellati, and S. Siciliano, "Automating test by adding formal 

specification: An experience for database bound applications," in Software 

Quality Engineering, ed. C. Tasso, R.A. Adey and M. Pighin, Udine, Italy, May 

1997. 

Chapter 7 : Discussion and Further Research Page 159 



Bibliography 

Austin, S. and Parkin, G.I., Formal Methods: A Survey, Report, The National 

Physical Lab., Middlesex (31 March 1993). 

Balzer, R. and Goldman, N., Principles of Good Software Specification and their 

Implications for Specification Languages, Proceedings of IEEE Conference on 

Specifications of Reliable Software, pp. 58-67 (1979). 

Barden, R., Stepney, S., and Cooper, D., Z in Practice, Prentice Hall (1994). 

Basili, V.R., Selby, R.W.Jr., and T., Philips, Metric analysis and validation across 

Fortran projects, IEEE transaction Software Engineering SE-9, pp. 652-663 (Nov 

1983). 

Basili, V.R., Tutorial on Models and Methods for Software Management and 

Engineering. ,IEEE Computer Society Press, (1980). 

Beizer, B., Software system testing and quality assurance, Van Nostrand Reihold 

(1984). 

Benford, Steve, Burke, Edmund, and Foxley, Eric, Courseware to support the 

teaching o/programming, TLTP Conference, University of Kent at Canterbury 1992. 

Benford, S., Burke, E., Foxley, E., Gutteridge, N., and Zin, A.M., Ceilidh as a Course 

Management Support System, Journal of Educational Technology Systems 

22(3)(September 1993). 

Benford, S., Burke, E., Foxley, E., Gutteridge, N., and Zin, A.M., CEILIDIH: A 

Course Administration and Marking System, Proceedings of International 

Conference in Computer based Learning in Science, (1993). 

Benford, S., Burke, E., Foxley, E., Gutteridge, N., and Zin, A.M., Early experiences 

of computer aided assessment and administration when teaching computer 

Page 160 Bibliography 



programming, Associationfor Learning Technology Journal 1(2) pp. 55-70 (1993). 

Bottaci, L. and Jones, J., Formal Specification Using Z: A Modelling Approach, 

International Thomson Publishing (1995). 

Brusilovsky, P. and Pesin, L., ISIS-Tutor: An adaptive hypertext learning 

environment, Proc. JCKBSE'94, Japanese-CIS Symposium on knowledge-based 

software engineering. , pp. 83-87 (May 10-13, 1994). 

Burgess, R.S., An Introduction to Program design using JSP, Hutchinson & Co. 

Publisher Ltd (1984). 

Burke, E. and Foxley, E., Logic and its Applications, Prentice Hall Europe (1996). 

Coleman, M. and Pratt, S., Software Engineering for Students 1986, Chartwell-Bratt 

Ltd. (1986). 

Cooke, D., Gates, A., Demirors, E., Demirors, 0., Tanik, M.M., and Kramer, B., 

Languages for the Specification of Software, Journal of System Software 32(3) pp. 

269-308 (1996). 

Curtis, W., Management and Experimentation in Software Engineering, Proceeding 

of the IEEE 68(9)(September 1980). 

Dean, C.N. and Hinchey, M.G., Introducing Formal Methods Through Role Play, 

ACM SIGCSE Bulletin 27(1) pp. 302-306 (March 1995). 

DeMillo, R.A., Lipton, R.J., and Sayward, F.G., Hints on test data selection: Help for 

practiting programmer, Computer, (April 1978). 

Dijkstra, E.W., Foreword, in Teaching and Learning Formal Methods, ed. C.N. Dean 

& M.G. Hinchey" San Diego, California, US (1996). 

Diller, A., ZAn Introduction to Formal Methods, John Wiley & Sons (1994). 

Doma, V. and Nicholl, R., EZ : A system for automatic prototyping of Z 

Bibliography Page 161 



specifications, Lecture Notes in Computer Science, Noordwijkerhout, Springer-

Verlag, Berlin (October 1991). 

, Educational Issues relating to Formal Methods, Educational Issues Session of Z 

Users Meetings '94, O. 

Faidhi, J.A.W., The complexity analysis of Pascal programs and the application to a 

university teaching environment, PhD Thesis, University of BruneI, (1986). 

Fields, B. and Elovang-Goransson, M., A VDM Case Study in mural, IEEE Trans. 

Software Eng. 18(4) pp. 279-295 (Apr. 1992). 

Finney, K., Mathematical Notation in Formal Specification: Too Difficult for the 

Masses?, IEEE Transactions on Software Engineering 22(2) pp. 158-159 (February 

1996). 

Foster, K.A., Sensitive test data for logic expressions, ACM SIGSOFT Software 

Engineering Notes 9(2) pp. 120-126 (April 1984). 

Foubister, S.P., Michaelson, GJ., and Tomes, N., Automatic assessment of 

elementary Standard ML programs using Ceilidh, Journal of Computer Assisted 

Learning 13 pp. 99-108 (1997). 

Foxley, E., Burke, E., Higgins, C., and Gibbon, C., The Ceilidh System:A General 

Overview as at December 1996, LTR Report, (1996). 

Foxley, E., The Ceilidh spelling checker, LTR Report, O. 

Foxley, E., Salman, 0., and Shukur, Z., The Automatic Assessment of Z 

Specification, Proceedings ofITiCSE '97 Conference, (June 1997). 

Foxley, E. and Zin, A.M., Zpp - A Troff Preprocessor for Typesetting Z 

Specifications, Nottingham University Computer Science 1990. 

Franklin, M.E., Automatic analysis of the structure of Pascal programs written by 

Page 162 Bibliography 



novices, MPhil Thesis, University of Sheffield, (1987). 

Fuchs, N.E., Specifications are (preferably) executable, Software Engineering 

Journal 7(5) pp. 323-334 (September 1992). 

Garlan, D., Making formal methods education effective for professional software 

engineers, Information and Software Technology 37(5-6) pp. 261-268 (1995). 

Goguen, J.A., Parameterized Programming, IEEE Transactions on Software 

Engineering 10(5) pp. 528-543 (1984). 

Gravell, A. and Henderson, P., Executing formal specifications need not be harmful, 

Software Engineering Journal 11(2) pp. 104-110 (March 1996). 

Gravell, A.M., What is a Good Formal Specification?, Fifth Annual Z User Meeting, 

(17 December 1990). 

Gravell, A.M. and Henderson, P., Why execute formal specifications?, Proc. 

Mathematical Structures for Software Engineering, pp. 165-184 Oxford University 

press, (1991). 

Haigh, N.P.H., Providing tool support for Z, Software Tools: Improving 

Applications, pp. 185-191 (June 1987). 

Hall, P.A.V., Towards Testing with Respect to Formal Specifications, Proc. of 

Second IEEIBCS Conference: Software Engineering 88, pp. 159-163 (1988). 

Halstead, M., Elements of Software Science, Elsevier Scientific Publishing Co. 

(1977). 

Hayes, I.J. and Jones, C.B., Specifications are not (necessarily) executable &J 

Software Engineering Journal. November 1989. 

Henderson, P., Functional programming, formal specification, and rapid prototyping, 

IEEE Transaction 12(2) pp. 241-249 (1986). 

Bibliography Page 163 



Henry, S. and Kafura, D., On the relationship among three software metrics, Perform. 

Eval. Rev. , (10, I ) pp. 81-88 (Spring 1981). 

Hung, S., Kwok, L., and Chung, A., New Metrics for Automated Programming 

Assessment, IFIP Transactions A-Computer Science and Technology 40 pp. 233-243 

(1993). 

Jalote, P., Testing the Completeness of Specification, IEEE Transactions on 

Software Engineering 15(5) pp. 526-531 (May 1989). 

Johnson, M. and Sanders, P., From Z specifications to functional implementations, 

Proc. 4th Z Users Meeting, pp. 86-112 Springer-Verlag, (1989). 

Jones, C., A Survey of Programming Design and Specification Techniques, 

Proceedings of IEEE Conference on Specification of Reliable Software, pp. 91-103 

(1979). 

Kearney, J.K., Sedlmeyer, R.L., Thompson, W.B., and Gray, M.A., Software 

Complexity Measurement, Communications of the ACM 29(11) pp. 1044-1050 

(September 1986). 

Kemmerer, R.A., Testing Formal Specifications to Detect Design Errors, IEEE 

Transactions on Software Engineering 11(1) pp. 32-43 (January 1985). 

Kernighan, B.W. and Cherry, L.L., A System for Typesetting Mathematics, 

Communications of the ACM 18 pp. 151-157 (1975). 

King, J.C., Symbolic execution and Program testing, Communication of the ACM 

19 pp. 385 - 394 (July 1976). 

Knott, R. and Krause, P., The implementation of Z specifications using program 

transformation systems: The suZan project, pp. 207-220 in The Unified Computation 

Laboratory , ed. C. Rattray & R. Clark,IMA Conference Series, Clarendon Press, 

Oxford, UK (1992). 

Page 164 Bibliography 



Leite, J.C.S. do Prado and Freeman, P.A., Requirements Validation Through 

Viewpoint Resolution, IEEE Transactions on Software Engineering 17(12) pp. 

1253-1269 (December 1991). 

Lesgold, A.M., Lajoie, S.P., Bunzo, M., and Eggan, G., SHERLOCK: A coached 

practice environment for an electronics troubleshooting job, pp. 201-238 in Computer 

assisted instruction and intelligent tutoring systems: Shared issues and 

complementary approaches , ed. J. Larkin & R. Chabay ,Lawrence Erlbaum 

Associates, Hillsdale, NJ (1992). 

Looi, C.K., Automatic program analysis in a Prolog intelligent teaching system, PhD 

Thesis, University of Edinburgh, (May 1988). 

Macdonald, R., Z Usage and Abusage, Report 91003 Royal Signals and Radar 

Establishment, (February 91). 

Mandrioli, D., Morasca, S., and Morzenti, A., Generating Test Cases for Real-Time 

Systems from Logic Specifications, ACM Transactions on Computer Systems 

13(4) pp. 365-398 (November 1995). 

McCabe, TJ., A Complexity Measure, IEEE Transactions on Software Engineering 

2( 4) pp. 308-320 (December 1976). 

McCall, J., Richards, P., and Walters, G., Factors in Software Quality, 3 Vols., NTIS 

AD-A049-014,OI5,055 1977. 

Michaelson, G., Automatic analysis of functional program style, Australian Software 

Engineering Conference 13 pp. 38-46 (1996). 

Myers, G., The Art of Software Testing, Wiley O. 

Naur, P. and Randell, B., Software Engineering, NATO 1968. 

Oman, P.W. and Cook, C.R., A Paradigm for Programming Style Research, 

SIGPLAN Notices 23(12) pp. 69-79 O. 

Bibliography Page 165 



Parker, C., Z Tools Catalogue, ZIP/BAel90/020, Software Technology Dept, British 

Aerospace (10 May 1991). 

Paulson, L.C. and Nipkow, with contribution bu Tobias, Isabelle: A Generic Theorem 

Prover, Springer Lecture Notes in Computer Science 828. O. 

Pressman, R.S., Software Engineering, McGraw-Hill Company Europe (1992). 

Rann, D., Turner, J., and Whitworth, J., Z: A Beginner's Guide, Chapman & Hall 

(1994). 

Ratcliff, B., Introduction Specification Using Z : A Pracatical Case Study Approach, 

McGraw Hill International (1994). 

Redish, K.A. and Smyth, W.F., Program Style Analysis: A Natural By-Product of 

Program Compilation, Communications of the ACM 29(2) pp. 126-133 (February 

1986). 

Redish, K.A. and Smyth, W.F., Evaluating Measures of Program Quality, The 

Computer Journal 30(3)(1987). 

Rees, M.J., Automatic Assessment Aid for Pascal Programs, SIGPLAN Notices 17 

(10) pp. 33-42 (October 1982). 

Richardson, D.J., Aha, S. Leif, and O'Malley, T.O., Specification-based Test 

Oracles for Reactive Systems, Proc. of the 14th leSE International Conference on 

Software Engineering, pp. 105-118 IEEEJ ACM, (1992). 

Saaltink, M., Effective Use of Z'EVES, Tutorial Programme ofZ User Meeting '98, 

(September 1998). 

Sabbatini, E., Crubellati, M., and Siciliano, S., Automating test by adding formal 

specification: An experience for database bound applications, in Software Quality 

Engineering, ed. C. Tasso, R.A. Adey and M. Pighin" Udine, Italy (May 1997). 

Page 166 Bibliography 



Sadeghipour, S., Test Case Generation on the basis of Formal Specifications, Proc. 

FEmSys '97, (1997). 

Schneidewind, N.F., Standards, Computer, (April 1993). 

Schwarz, E., Brusilovsky, P., and , G. Weber, World-wide intelligent textbooks. , 

Proceedings of ED-TELEKOM 96 - World Conference on Educational 

Telecommunications, pp. 302-307 Charlottesville, VA: AACE., (1996). 

Shneiderman, B., Software Psychology: Human Factors in Computer and 

Information Systems. Winthrop Publishers (1980). 

Shukur, Z., Burke, E., and Foxley, E., Applying Z Specification Course work On-

Line, Proceedings of AltC-98 Conference, (September 1998). 

Shukur, Z., Burke, E., and Foxley, E., The Automatic Assessment of Formal 

Specification Coursework, Journal of Computing in Higher Education, «will be 

published in) August 1999). 

Shukur, Z., Burke, E., and Foxley, E., Automatic Marking System for Z 

Specifications, Proceedings of PROGRESS 98 Conference, (March 1998). 

Shukur, Z., Burke, E., and Foxley, E., Inspecting the correctness of specification 

through system-state analysis, IEEE transaction on Software Engineering, «will be 

submitted) 1999). 

Shukur, Z., Burke, E., and Foxley, E., Managing Z Specification Coursework On-

line, Journal of Computers in Mathematics and Science Teaching, «submitted) 

1999). 

Singh, H., Conrad, M., and Egger, G., Tool-Supported Test Case Design Based on 

Z and the classification-Tree Method, Workshop "Tool Support for System 

Development and Verification", (1996). 

Spivey, J.M., The Z notation: Reference Manual. Prentice Hall (1988). 

Bibliography Page 167 



Spivey, J.M., Understanding Z: A Specification language and its formal semantics, 

Cambridge University Press (1988). 

Spivey, J. M., The Z Notation: A Reference Manual, Prentice-Hall, Inc. 1989. 

Steggles, P. and Hulance, J., Z Tools Survey, Imperial Software Technology Ltd & 

Formal System (Europe) Ltd (June 1994). 

Sterling, L., Ciancarini, P., and Tumidge, T., Specifications by Prolog '"' On the 

Animation of ''Not Executable" Specifications by Prolog, International Journal of 

Software Engineering and Knowledge Engineering 6(1) pp. 63-87 (1996). 

Valentine, S.H., The programming language Z--, Information and Software 

Technology 37(5-6) pp. 293-301 (1995). 

Verth, P.B. Van, A System for Automatically Grading Program Quality, SUNY 

(Buffalo) Technical Report, (1985 ). 

Weyuker, E., Goradia, T., and Singh, A., Automatically Generating Test Data from 

a Boolean Specification, IEEE Transactions on Software Engineering 20(5) pp. 

353-363 (May 1994). 

Whitty, R., Structural Metrics for Z Specifications, Fourth Annual ZUM, (15 

December 1989). 

Woolf, B., Intelligent tutoring systems: A Survey, pp. 1-41 in Exploring artificial 

intelligence: Survey talks from the National Conferences on artificial intelligence, ed. 

H. E. Shrode,Morgan Kaufmann Publishers Inc., San Mateo, CA (1988). 

Wordsworth, lB., Education in formal methods for software engineering, 

Information and Software Technology 29(Jan-Feb 1987). 

Wordsworth, J.B., An industrial perspective on educational issues relating to formal 

methods, pp. 1-9 in Teaching and Learning Formal Methods, ed. C.N. Dean & M.G. 

Hinchey" San Diego, California, US (1996). 

Page 168 Bibliography 



Yau, S.S. and Collofello, J.S., Some Stability Measures for Software Maintenance, 

IEEE Transactions on Software Engineering 6(6) pp. 545-552 (November 1980). 

Youngblut, C., Government-Sponsored Research and Development Efforts in the 

Area of Intelligent Tutoring Systems, (IDA Paper P-3003), Institute for Defense 

Analyses, Alexandria, VA. (September, 1994). 

Zin, A.M., AI-Amayreh, A., and Foxley, E., An Approach to Specification-based 

Testing Systems, Proceedings of Software Quality Engineering Conference, (6 May 

1997). 

Zin, A.M. and Foxley, E., Software Tools for Animating a Z Specification, Sa ins 

Malaysiana 24(4) pp. 67-89 (1995). 

Zin, A.M. and Foxley, E., Analyse - An automatic program assessment system, 

Malaysian Journal of Computer Science 7 p. 123 (1994). 

Zin, A. M. and Foxley, E., Automatic Program Quality Assessment System, 

Proceedings of the IFIP Conference on Software Quality, (March 1991). S P 

University, Vidyanagar, INDIA 

Zin, A. M. and Foxley, E., The Oracle Program, LTR Report, (1992). 

Zin, A.M., ZFDSS: A Formal Development Support System based on the Liberal 

Approach, PhD Thesis, University of Nottingham, UK 1994. 

, ZUM '98: The Z Formal Specification Notation, Proceedings of 11 th International 

Conference ofZ Users, (1493)Springer, (September 1998). 

Bibliography Page 169 



Appendix A 

The Syntax Definition 

In this definition, all terminal symbols are placed in double qoutes, for example 

"NL". A symbol or symbols appear in [] are considered to be optional, and {} denotes 

that a symbol or symbols can appear zero or more times. 

Para ::- Schema_Name IINLII Mark_Grammar 

Mark_Grammar ::... Number "COLON" Predicate-O "NL" Mark_Grammar 

NIL 

PREDICATE 

Predicate-O 

Predicate-! 

Predicate-2 

Page 170 

::- "TRUE" 

"TRUE" "COLON" "STRING" 

"TRUE" Predicate-2 

"FALSE" 

"FALSE" "COLON" "STRING" 

"FALSE" Predicate-2 

::- Pre-ReI Expression Predicate-2 

"TRUE" Predicate-2 

"FALSE" Predicate-2 

"NOT" Predicate-! Predicate-2 

"(" Predicate ")" Predicate-2 

Expression {in-ReI Expression} Predicate-2 

::- "ANO" Predicate-! Predicate-2 

"OR" Predicate-! Predicate-2 

"IMP" Predicate-! Predicate-2 

Appendix A : The Syntax Definition 



EXPRESSION 

Expression 

Exp 

Expression-l 

Exp-l 

Exp-2 

Expression-3 

Expression-4 

''EQV'' Predicate-l Predicate-2 

NIL 

::- Expression-l { "CROSS" Expression-I} Exp 

::- In-Gen Expression Exp 

NIL 

::- ''POWER'' Expression-3 Exp-l 

Pre-Fun Expression Exp-l 

Pre-Gen Expression-3 Exp-l 

"_" Expression-3 Exp-l 

Expression-3 Post-Fun Exp-l 

Expression-3 "ITERA TE" Expression Exp-l 

Expression-3 Exp-2 Exp-l 

Expression-3 Exp-l 

::- In-Fun Expression-l Exp-l 

NIL 

::- Expression-3 Exp-2 

NIL 

::- "(" Expression ")" 

Expression-4 

::- Ident-O 

''EMPTYSET'' 

Appendix A : The Syntax Definition Page 171 



Ident-O 

Ident-l 

Ident-2 

Decoration 

Page 172 

"SET" Expression-4 { "," Expression-4 } ''TES 

''EMPTYSEQ'' 

"SEQ" Expression-4 { "," Expression-4 } "QES 

''EMPTYBAG'' 

"BAG" Expression-4 { "," Expression-4 } "GAB" 

''TUP'' Expression-4 { "," Expression-4 } "PUT" 

::- Word { Decoration} 

Number 

"[" Ident-l "]" 

::= Ident-O Ident-2 

NIL 

::- "," Ident-l 

NIL 

::- ''PRIME'' I "!" I"?" 

Appendix A : The Syntax Definition 



Appendix B 
Z Coursework Questionaire 

Userld (optional): 

Mark the answer (with '#') which best describe you 

for example: 

O. Are you a student? 

A. Yes # 

B.No 

FSP-Ceilidh Questionaire 

EDITOR 

1. Have you ever used a roff preprocessor before? 

A. Yes 

B.No# 

2. How easy did you find it to write a Z specification using the 

roff fonnat AT FIRST? 

A. Easy 

B. Fair # 

C. Hard 

D. Very difficult 

3. How easy did you find it to write a Z specification using the 

roff fonnat NOW? 

A. Easy 

B.Fair# 

C. Hard 

D. Very difficult 

4. How easy did you find it to write a Z specification by hand 

(using pen & pencil)? 

A.Easy# 

Appendix B : Z Coursework Questionaire Page 173 



B.Fair 

C. Hard 

D. Very difficult 

5. Do you think 

A. It is worth the effort to write in the roff fonnat or # 

B. would you prefer to submit handwritten works 

6. Are you satisfied with the response time of Ceilidh when you 

amend your specification, refresh it and redisplay in Ghostview? 

A. Yes 

B.No# 

7. Are you familiar with the WORDS (e.g Microsoft WORDS) mathematical 

symbol library? 

A. Yes # 

B.No 

8. If there existed a Z editor would you 

A. prefer to use it # 

B. prefer the roff fonnat 

C. do not know (because you have never used WORDS mathematical 

library) 

TYPE and SYNTAX CHECKER (tc) 

9. Did you ever USE tc when doing your coursework? 

A. Yes # 

B. Never 

10. Was tc helpful in solving your coursework? 

Page 174 

A. Only for some exercises 

B. For all exercises 

C. It can help in some problems such as detecting 

any undeclared variable. However, sometimes it 

produce error messages that I could not understand # 

Appendix B : Z Coursework Questionaire 



11. In general, do you think you need tc? 

A. Need te# 

B. Do not need it 

12. If there existed an IDEAL tc, do you think you would use it? 

A. Yes # 

B.No 

ANIMATION 

Animation is when the specification would be 'executed'. 

You can give an input to the schema and observe the output. 

13. If there existed an animator (tools that can make the specification 

executable), do you think you would use it? 

A. Yes # 

B.No 

C. Do not know 

GENERAL 

14. If you were to specify a system, would you use 

A. Z Specification # 

B. Natural language 

C.SSADM 

D. Other specification 

15. If Z is not your choice, can you give the reason 

16. Do you have any other comments about FSP-Ceilidh? 

none. 

Appendix B : Z Coursework Questionaire Page 175 



AppendixC 

Student Feedback for the Questionaire 

Below is the result for Question 1 to 14. 

Question Student Id 

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 

1 B A B A A B B B B A 

2 C C B B B B C B C C 

3 B B B A B A B B B B 

4 A A A B E A B A B B 

5 A B A A A A A A A A 

6 A A B B A B A B A B 

7 A A B B B B B A A B 

8 A A C C C C C A A A 

9 A - A A A A A A A A 

10 A - C C A C C C C AlC 

11 B - B A A A A A A A 

12 A A A A A A A A A A 

13 A A B A A A A A A A 

14 D B/C AlD - B B A A AlB/D B 

The following is feedbacks from the students regarding to question 15 and 16. The 

sentences in the quote is the original comments. 

Page 176 Appendix C : Student Feedback lor the Questionaire 



Question 15 : Reason of why Z Is not my choice 

• '7ak:es many hours to specify a resonably large system, because you either do it 

100% accurately or not at all in Z." 

• ''need more experience in writing Z specification." 

• ''It's only useful if a) I understood it well enough to be completely confident & 

b) if everyone I wanted to communicate with do too." 

• ''In most situations giving a Z specification for a system would be too tedious. 

Unless there are some high risks involved in using the final system I don't think 

it can be justified." 

• "Other specification methods, like SSADM ( and natural language ) provide an 

'at a glance' image of the system via flow charts or E-R diagrams etc. I feel that 

Z does not offer this, as many equations need to be decyphered before 

understanding the system, and it is hard to see the complete picture all at once 

with Z. A better idea would be to use Z alongside other methods. For instance, 

within SSADM, Z could be used for certain modules where a strict 

mathematical specification is required." 

• ''I have nothing against Z but personally I feel that natural language is easier to 

understand and things are easier to express using natural language. I don't mind 

using Z to specify easy systems." 

• ''nice but not really powerful compared to UNITY; it looks like a database 

specification language, there is nothing about concurrency programming, real 

time and shared ressources. " 

Question 16 : Comments about FSP-Cellldh 

• "An exam would have been nice. tc should be improved. Ceilidh is too slow, 

and the text interface is outdated." 

• ''provide a menu/list of all available commands 

e.g .ZS - start schema 

Appendix C : Student Feedback for the Questionaire Page 177 



.ZE - end schema 

GUNION-

CSET-{ 

TESC - }" 

• "fC should be better. It will be very helpful provided it works fine." 

• ''No, I'd rather forget the whole sordid ordeal thank you :>" 

• "Some guidance on how to format the text ( e.g. for adding comments and titles 

) we used in our documents using roff macros would have been useful. 

Sometimes the documentation for the preprocessor wasn't entirely accurate, for 

example 'prime' instead of 'PRIME' and the undocumented 'SUCHTHAT' to 

produce a I. But on the whole I think the system was good. It would have been 

nice to be able to write stand-alone predicates in the documents, i.e. outside Z 

schemas. When I tried this using .ZF or .ZC the preproceesor crashed. 

Occasionaly I think better thought should have gone into the exercises being set. 

Especially in the case of Ex6.4 from the book, which was set twice as the basis 

to a coursework exercise. Just before the 2nd handin we were told to just say 

why the exercise was trival and no changes where needed - This effectively 

made the 1 st exercise using this question non-existant!!" 

• ''I think if the tc could be improved then it would be a great help for doing the 

coursework. Since it is not working properly, I think it should not be offered for 

the time being." 

Page 178 Appendix C : Student Feedback for the Questionaire 



Appendix D 
Compilation of Z Exercises 

The following are four case studies that were given to the students. The details of the 

case studies can be found in the respective references. 

• Case study 1: Class Homework Problem 1 

• Case study 2: A Video-rental Shop2 

• Case study 3: A Car Ferry Terminal2 

• Case study 4: Height and Weight Problem2 

The exercises are grouped into three: the accepted exercises, the accepted exercises 

with some editing and the rejected exercises. Regarding to the rejected exercises, the 

reason of this situation will be explained. 

Accepted exercises 

Exercise 1: Case study 1 

Amend the schema ClassHomework to limit the number of students in the class to be 

less than or equal to 20. 

Exercise 2: Case study 1 

Write two possible state schemas for a similar system of students with work either 

handed in or not handed in, in which the class consists of some special honours 

students and some joint honours students. 

Exercise 3: Case study 1 

Write a schema for the operation add _student defined as follows: There shall be a 

command to add a new student to the class. The name of the student will be the input 

to the command. It is to be assumed that the new student has not handed in any work. 

The new student must not already be a member of the class. 

Exercise 4: Case study 1 

Write a schema for the operation add _student defined as follows: There shall be a 

command to add a new student to the class. The name of the student will be input to 

Appendix 0 : Compilation of Z Exercises Page 179 



the command, together with a Boolean which will take the value T if work is to be 

handed in at the time of registration. The new student must not already be a member 

of the class. 

Exercise 5: Case study 1 

Write a schema to list the students who have handed in their coursework. 

Accepted exercises with some editing 

Exercise 6: Case study 2 

Write a schema for the command colleccreserved defined as follows: Allow a user to 

collect a video he/she has reserved. Check details and adjust records. Make sure the 

video is not on loan. 

Exercise 7: Case study 2 

Write a schema for the command return_video defined as follows: Customer returns 

video. Calculate and output charge and inform user whether this video is reserved. 

Exercise 8: Case study 2 

Write a schema for the command add_video defined as follows:. Allocate a unique 

reference for a new video and update the records. Output the new video reference. 

Exercise 9: Case study 3 

Write a schema for the command liscferry_spaces defined as follows: Given a ferry 

reference, give the number of spaces on it. Report an error if the ferry reference is 

invalid. 

Exercise 10: Case study 3 

Write schema for the command can_ferries_combine defined as follows: The inputs 

are two ferry references. Give the message 'OK' if there is enough space on the 

second ferry for the vehicles currently scheduled for the first ferry, and the message 

'Nocenough_space' otherwise. Report an error if either of these ferry references is 

invalid. 

Page 180 Appendix 0 : Compilation of Z Exercises 



Rejected exercises 

Exercise 11: Case study 2 

Write schema for command prinCbad_customers. 

Reason: Practically, a comprehension set will be used to answer this problem. 

However, the comprehension set cannot be translated properly to prolog 

implementation. Therefore this question is not taken into consideration. 

Exercise 12: Case study 2 

Ammend video shop state schema so that it can handle multiple copies of videos. 

Reason: This question is very general where the type of the variables are not 

detennined. In fact, choosing a suitable type for the system variables is one of the 

task. 

Exercise 13: Case study 2 

Ammend the whole system so that it can handle multiple copies of videos. 

Reason: This problem is same as above. 

Exercise 14: Case study 3 

Write a schema for the command Add_ waitin&-vehicles defined as follows: The 

command will be given as input to two ferry references. The vehicles waiting for the 

first ferry will be added to those waiting for the second ferry. An error should be 

reported if either ferry does not exist, or if the combined set is too big for the new 

ferry. 

Reason: During the preparation for the test data, we found out that the predicate 

comma is not stable, which we decide to left this question from the assessment. 

Exercise 15: Case study 4 

Construct a Healthy schema which takes a person's name as input and compares the 

height with the weight of that person to report either overweight, underweight or OK. 

You should include error-handling schemas. 

Reason: This question cannot be assessed by the system because it is not very clear. 

The question did not specify the ratio of height and weight in order to produce a 

Appendix 0 : Compilation of Z Exercises Page 181 



result of overweight, underweight or OK. This will give a problem when we set the 

test case. 

Exercise 16: Case study 4 

Amend the Heighcand_ Weight example to take both height and weight as two 

integers representing the feet and inches, and stones and pounds, respectively, and to 

check the validity of the given heights and weights. 

Reason: The students were asked to write the type for the system variables, and to 

write appropriate predicates to fulfill the rest of the problem. This question cannot be 

assessed by the system because the type of the system variables are not determined. 

References 

1. D. Rann, J. Turner, and J. Whitworth, Z: A Beginner's Guide, Chapman & 

Hall,1994. 

2. E. Burke and E. Foxley, Logic and its Applications, Prentice Hall Europe, 1996. 

Page 182 Appendix D : Compilation of Z Exercises 



Appendix E : Score 

01 h1 h2 h3 system 
s1 100 100 100 98 
s2 100 100 100 99 
53 100 100 100 98 
s4 100 100 100 99 
55 100 100 100 99 
s6 100 100 100 98 
57 100 100 100 98 
58 100 100 100 98 
59 100 0 0 30 
510 100 100 100 99 

02 h1 h2 h3 system 
51 100 100 100 97 
52 100 80 100 97 
s3 100 80 100 97 
s4 100 80 100 97 
55 65 20 50 2 
s6 95 80 100 97 
s7 75 60 75 88 
58 100 80 100 97 
59 100 80 100 97 
s10 80 40 75 97 
s11 100 80 100 97 

03 h1 h2 h3 system 
s1 100 100 100 97 
52 100 100 100 97 
s3 90 80 75 98 
54 100 100 100 97 
55 100 100 100 97 
56 100 100 100 97 
s7 100 100 100 97 
s8 100 100 100 97 
s9 100 100 100 97 
s10 100 100 100 97 
511 100 100 100 97 

Q4 h1 h2 h3 system 
s1 80 100 75 86 
s2 80 60 55 3 
53 60 60 55 47 
s4 80 100 75 86 
s5 80 100 75 86 
s6 80 100 30 35 
s7 60 60 55 47 
s8 80 100 75 86 
s9 80 60 75 85 
510 50 60 55 2 
511 80 100 75 28 

APpendix E : Score, Grade, Grouped Frequency Page 183 



Appendix E : Score 

as h1 h2 h3 system 
s1 100 100 100 97 
s2 100 100 100 97 
s3 100 100 100 97 
s4 100 100 100 97 
s5 100 100 100 97 
s6 100 100 100 97 
s7 100 100 100 97 
s8 100 100 100 97 
s9 100 100 100 97 
510 100 100 100 97 
s11 100 100 100 97 

06 h1 h2 h3 system 
s1 100 80 79 93 
s2 50 40 42 43 
s3 50 40 41 17 
84 70 60 42 33 
s5 70 60 45 2 
s6 70 60 39 44 
s7 70 60 47 44 
88 70 60 47 44 
89 50 40 42 2 
s10 45 30 42 2 

07 h1 h2 h3 system 
s1 60 60 71 77 
82 80 60 54 73 
83 80 60 50 75 
84 75 40 46 72 
s5 75 60 50 72 
s6 75 60 43 72 
s7 75 60 50 74 
58 45 40 43 73 
s9 75 60 43 71 
s10 50 40 34 67 

08 h1 h2 h3 system 
s1 100 100 100 97 
s2 60 60 64 64 
53 65 60 50 48 
s4 70 40 64 64 
s5 65 60 50 47 
s6 55 80 50 42 
s7 20 20 7 25 
s8 50 40 50 45 
59 30 20 14 26 
510 50 80 50 81 

APpendix E : Score, Grade, Grouped Frequency Page 184 



Appendix E : Score 

09 h1 h2 h3 system 
s1 80 80 67 97 
s2 100 100 100 97 
s3 100 100 100 97 
s4 100 100 100 97 
s5 80 80 67 97 
s6 100 100 100 97 
s7 100 100 100 97 
s8 100 100 100 49 
s9 20 100 50 77 
s10 100 100 100 97 
s11 100 100 100 97 
s12 100 100 100 97 
s13 100 100 100 97 

Q10 h1 h2 h3 system 
s1 100 100 100 98 
s2 55 100 47 0 
s3 100 100 100 74 
s4 65 100 100 97 
s5 100 100 80 75 
s6 100 100 100 98 
s7 100 100 100 98 
s8 75 60 51 0 
s9 50 100 100 26 
s10 70 100 100 98 
s11 100 100 100 98 
s12 100 100 100 98 
s13 100 100 100 97 

Appendix E : Score. Grade. Grouped Frequency Page 186 



Appendix E : Grade 

01 h1 h2 h3 sYstem 
s1 5 5 5 5 
s2 5 5 5 5 
s3 5 5 5 5 
s4 5 5 5 5 
s5 5 5 5 5 
s6 5 5 5 5 
s7 5 5 5 5 
s8 5 5 5 5 
s9 5 1 1 1 
s10 5 5 5 5 

02 h1 h2 h3 system 
s1 5 5 5 5 
s2 5 5 5 5 
s3 5 5 5 5 
s4 5 5 5 5 
s5 4 1 3 1 
s6 5 5 5 5 
s7 5 4 5 5 
s8 5 5 5 5 
s9 5 5 5 5 
s10 5 2 5 5 
s11 5 5 5 5 

03 h1 h2 h3 sYstem 
s1 5 5 5 5 
s2 5 5 5 5 
s3 5 5 5 5 
s4 5 5 5 5 
s5 5 5 5 5 
86 5 5 5 5 
s7 5 5 5 5 
s8 5 5 5 5 
s9 5 5 5 5 
s10 5 5 5 5 
811 5 5 5 5 

04 h1 h2 h3 system 
s1 5 5 5 5 
s2 5 4 3 1 
s3 4 4 3 2 
s4 5 5 5 5 
s5 5 5 5 5 
s6 5 5 1 1 
s7 4 4 3 2 
s8 5 5 5 5 
s9 5 4 5 5 
s10 3 4 3 1 
s11 5 5 5 1 

Appendix E : Score. Grade. Grouped Frequency Page 186 



Appendix E : Grade 

05 h1 h2 h3 system 
s1 5 5 5 5 
s2 5 5 5 5 
s3 5 5 5 5 
s4 5 5 5 5 
s5 5 5 5 5 
s6 5 5 5 5 
s7 5 5 5 5 
s8 5 5 5 5 
s9 5 5 5 5 
s10 5 5 5 5 
s11 5 5 5 5 

06 h1 h2 h3 system 
s1 5 5 5 5 
s2 3 2 2 2 
93 3 2 2 1 
94 5 4 2 1 
s5 5 4 2 1 
s6 5 4 1 2 
s7 5 4 2 2 
s8 5 4 2 2 
s9 3 2 2 1 
910 2 1 2 1 

07 h1 h2 h3 system 
s1 4 4 5 5 
s2 5 4 3 5 
s3 5 4 3 5 
s4 5 2 2 5 
s5 5 4 3 5 
s6 5 4 2 5 
87 5 4 3 5 
s8 2 2 2 5 
s9 5 4 2 5 
s10 3 2 1 4 

08 h1 h2 h3 system 
81 5 5 5 5 
s2 4 4 4 4 
s3 4 4 3 2 
s4 5 2 4 4 
85 4 4 3 2 
s6 3 5 3 2 
s7 1 1 1 1 
s8 3 2 3 2 
s9 1 1 1 1 
s10 3 5 3 5 

APpendix E : Score, Grade, Grouped Frequency Page 187 



Appendix E : Grade 

09 h1 h2 h3 system 
s1 5 5 4 5 
s2 5 5 5 5 
s3 5 5 5 5 
s4 5 5 5 5 
s5 5 5 4 5 
s6 5 5 5 5 
s7 5 5 5 5 
s8 5 5 5 2 
s9 1 5 3 5 
s10 5 5 5 5 
s11 5 5 5 5 
s12 5 5 5 5 
s13 5 5 5 5 

Q10 h1 h2 h3 system 
s1 5 5 5 5 
s2 3 5 2 1 
s3 5 5 5 5 
s4 4 5 5 5 
s5 5 5 5 5 
s6 5 5 5 5 
s7 5 5 5 5 
s8 5 4 3 1 
s9 3 5 5 1 
s10 5 5 5 5 
s11 5 5 5 5 
s12 5 5 5 5 
s13 5 5 5 5 

APpendix E : Score. Grade. Grouped Frequency Page 188 



Appendix E : Grouped Frequency 

Marker' h1 
Question 70-100 60-69 5D-59 40-49 0-39 

1 10 0 0 0 0 
2 10 1 0 0 0 
3 11 0 0 0 0 
4 8 2 1 0 0 
5 11 0 0 0 0 
6 6 0 3 1 0 
7 7 1 1 1 0 
8 2 3 3 0 2 
9 12 0 0 0 1 

10 10 1 2 0 0 

Marker' h2 
Question 70-100 60-69 50-59 40-49 0-39 

1 9 0 0 0 1 
2 8 1 0 1 1 
3 11 0 0 0 0 
4 6 5 0 0 0 
5 11 0 0 0 0 
6 1 5 0 3 1 
7 0 7 0 3 0 
8 3 3 0 2 2 
9 13 0 0 0 0 

10 12 1 0 0 0 

Marker' h3 
Question 70-100 6D-69 50-59 40-49 0-39 

1 9 0 0 0 1 
2 10 0 1 0 0 
3 11 0 0 0 0 
4 6 0 4 0 1 
5 11 0 0 0 0 
6 1 0 0 8 1 
7 1 0 4 4 1 
8 1 2 5 0 2 
9 10 2 1 0 0 

10 11 0 1 1 0 

k Mar er: s\ stem 
Question 70-100 60-69 50-59 40-49 0-39 

1 9 0 0 0 1 
2 10 0 0 0 1 
3 11 0 0 0 0 
4 5 0 0 2 4 
5 11 0 0 0 0 
6 1 0 0 4 5 
7 9 1 0 0 0 
8 2 2 0 4 2 
9 12 0 a 1 a 

10 10 0 a a 1 
Total 80 3 a 11 14 

Appendix E : Score. Grade. Grouped Frequency Page 189 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby . 

West Yorkshire, LS23 7BQ 

www.bl,uk 

TEXT CUT OFF IN THE 

ORIGINAL 



Appendix F 

Normal Q-Q Plot of Data 

Data type : Score 

Normal a-a Plot of H1 Detrended Normal Q-a Plot of H1 
100r-------------------------------------------------------------, ｾ ｲ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｟ Ｌ ,

/ 0 
90 / 

I' 

/ 

eo / o 0 

,/
0 

10 

Ｐ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｟ _ Ｑ 1

70 / 

I' 
Ql 

0 ,0) . ro :l ro 60 E > 
0/ 

a ro z 
E SO 0/ 

E 
0 a .... 
Z .... 
'0 0 ,/ c: 
Ql a ... 40 p 
u I ro 
Ql 0 Ｎ ｾ ~
§t 
UJ 30 0 

-10 

0 20 40 60 BO 100 120 

Observed Value Observed Value 

Normal Q-a Plot of H2 Detrended Normal Q-a Plot of H2 
100 10 

i 
0 

/ 0 , 
eo / 0 

/ 0 
I 

0/ 0 

60 / 
/ 

Ql / :l 0 / ro ro / E 0 ｾ ~> 40 " 

0/ 0 0 ro z 
-10 E 0 E 

a / a 0 
z ｾ ~

'0 ｾ ~ 0 / c 
ｾ ~

a 
p 

u ro 
Ql 

Ｎ ｾ ~§t 0 
UJ 0 0 Ｍ ｾ ~

Ｍ ｾ ~ 0 ｾ ~ 40 60 80 100 Ｑ ｾ ~ Ｍ ｾ ~ 0 ｾ ~ 40 60 80 100 1: 

Observed Value Observed Value 

Page 190 Appendix F : Normal Q-Q Plot of Data 



Data type: Score 

Normal Q-Q Plot of H3 Detrended Normal a-a Plot of H3 
100 10 

/ 
0 

/ 0 

eo 00 6' 
/.s, 0 

a 0 

c'C 0 
0 0 

0-

60 Ｚ : Ｏ / 0 

ｾ ~
Q) 0/ ro ::l arS', ro / ｾ ~ 0 > 40 /' 0 'b ro " rP z -10 E E u 0 
I- / 0 0 0 .t: z 
'C 20 0 / c 
Q) 0 

p t) 
0 / ro 

Q) '5 
ｾ ~ Q) 

-20 UJ 0 
-20 0 20 40 60 80 100 120 -20 0 20 40 60 80 100 Ｑ ｾ ~

Observed Value Observed Value 

Normal Q-Q Plot of SYSTEM Detrended Normal a-a Plot of SYSTEM 
160 30 

140 0 20 0 

/ 'bD 

/ 0"0 

0 

120 0 
10 0 Q ' 

/ 
/ 

0 100 / 

/a 0 "lcq" 
Q) eo ro -10 'boo 00 
::l / ro 

/ "" 0 
E 0 > // ,0 
I-

60 0 -20 Q 

ro z 0 

E ｾ ｾ ~ 0 0 E 
0 0 40 e -30 z 

o ' // 
... 

'C Q C 
Q) / 0 ... 20 :/ p -40 u ro 
Q) 

ｾ ~ｾ ~ 0 -so 0 , 
-20 0 20 40 60 eo 100 120 140 160 -20 0 20 40 60 eo 1q 

Observed Value Observed Value 

Appendix F : Normal Q-Q Plot of Data Page 191 



Data type: Grade 

Normal a-a Plot of H1 Detrended Normal Q-a Plot of H1 
5.0 .5 

J C D 

I D 

4.5 / 0 .0 
I 

/ 0 

4.0 / - .5 

/ 
Q) /1 C 

'iii :J 
'iii E C 

> 3.5 0 -1 .0 
'iii ! z 
§ 0 

E 
0 

I 0 
I ｾ ~z / 'C 3.0 c -1 .5 

Q) 0 I 0 0 

ti I P 

I 
(1l 

Q) 
Ｎ ｾ ~

It 2.5 I -2.0 w 0 0 
0 2 3 4 5 6 0 2 3 5 

Observed Value Observed Value 

Normal a-a Plot of H2 Detrended Normal a-a Plot of H2 
5.0 5 

I C 

I 
4.5 

/ 

,/ 0.0 

4.0 / 

/ 
I 

Q) 3.5 / 0 'iii -.5 
:J / 'iii § > / 0 
'iii 

3.0 / z 
E / E 

0 

0 0 0 -1 .0 / '-z ... 
'C / c 
Q) 2.5 0 

ti p 
(1l 

Q) I Ｎ ｾ ~
It 0 ! 

-1.5 W 2.0 0 
o· 2 3 4 6 a 2 3 4 5 

Observed Value Observed Value 

Page 192 Appendix F : Normal Q-Q Plot of Data 



Data type: Grade 

Normal a-a Plot of H3 Detrended Normal Q-a Plot of H3 
5.0 .6 

I 0 

4.5 / 0 

/ .4 

/ 0 
4.0 

/ .2 

3.5 / 0 

Q) 

0 / ro -.0 
::::I ro E > 3.0 

/ a 
ro z 

-.2 0 
E / E .... 2.5 0 a 0 .;: Z 
'0 / C 

-.4 Q) / 0 

tJ 2.0 p 
/ ro 

Q) / Ｎ ｾ ~ 0 
§t 
w 1.5 0 / 0 -.6 0 

0 2 3 5 2 3 5 

Observed Value Observed Value 

Normal Q-Q Plot of SYSTEM Detrended Normal Q-a Plot of SYSTEM 
5.0 1.0 

0 

/ 
0 

4.5 

/ .5 
4.0 

/ 0 

3.5 / 
I' 

I Q) 0.0 
::::I / ro 
ro 3.0 / 0 E 
> / 0 
ro 0 

I Z I 
E 2.5 / E 
a / g -.5 z 
'0 C 
Q) 

2.0 / a .... p 
0 u ro 

Q) 0 Ｎ ｾ ~ 0 
Co x 1.5 -1.0 W 0 

0 2 3 4 5 .6 0 2 3 5 

Observed Value Observed Value 

Appendix F : Normal Q-Q Plot of Data Page 193 



Data type: Grouped frequency 

Normal a-a Plot of H1 Detrended Normal Q-Q Plot of H1 
12 4 

10 
, 0 3 0 

/ 
; 

/ 0 
/ 

/ 0 
2 8 

// 0 0 
0 

6 / 0 

III a 
,/ 0 

::l / "iii 0 
"iii / E 0 0 

> 0 
"iii .- z 
E / E -1 .... 2 0 0 / 

Z // ｾ ~

"0 C 
III 0 

-2 tJ 0 :p 
0 0 ro 0 III '5 It -2 

III 
-3 w 0 

-2 0 2 4 6 8 10 12 14 -2 0 2 6 6 10 12 

Observed Value Observed Value 

Normal a-Q Plot of H2 Detrended Normal a-a Plot of H2 
12 <4 

0 0 
0 

10 / 3 
/ 0 

// 0 

8 / 0 2 0 

/ 0 
/ 0 

6 
/ 0 III 

"iii ::l 0 

"iii / E 0 > / 0 
"iii 0 // z 0 

E 2 
E -1 

0 0 
z ｾ ~

"0 
/ c 

./ 0 
III 0 a' g -2 .... 0 u ro 0 
III Ｇ ｾ ~It -2 -3 w 0 

-2 0 2 4 6 e 10 12 14 -2 0 2 4 6 8 10 12 

Observed Value Observed Value 

Page 194 Appendix F : Normal Q-Q Plot of Data 



Data type: Grouped frequency 

Normal a-a Plot of H3 Detrended Normal a-Q Plot of H3 
10 3 u 

c 

" 
c 

8 
, 

2 
./ 
/' C 

/ c 
./ 

/' 
6 

｣ Ｏ ｾ ~
c ./ 

c 
// 

c C 
(1) 4 0 
:J "iii 
"iii 

//' E > C 0 
c 

"iii Z 
-1 E 2 

//./ 
E .... 0 0 :: z 

"0 ./ C 
(1) 0 ,£' 0 -2 C 

ti 
:p 

'" C 
(1) '> §t 

-2 
(1) 

-3 UJ 0 
-2 0 2 6 8 10 12 -2 0 2 6 8 10 

Observed Value Observed Value 

Normal a-Q Plot of SYSTEM Detrended Normal a-Q Plot of SYSTEM 
12 3 

C 

10 _/" 
c 

2 
./ c , 

// C e , C 

/ 
/ 

(1) 0/ "iii 0 
:J 
"iii C / § > / 0 
"iii c/ z 

-1 § E 
2 0 0 

./ .... 
Z --"0 / § -2 / (1) 

0 cr' :p .... 0 0 u '" (1) 

ｾ ~§t 
-2 -3 UJ 0 

-2 0 2 4 6 e 10 12 14 -2 0 2 4 6 8 10 12 

Observed Value Observed Value 

Appendix F : Normal Q-Q Plot of Data Page 195 



Appendix G 
Comments on Prolog implementation by zp 

Introduction 

There are some problems in the implementation of the Z to Prolog translator that we 

have identified. This document might be useful for one who is interested in 

improving the translator. 

1. Data Representation 

Data type in Z is a set. Therefore it is represented as a list in Prolog. Structure is used 

in order to store the data in a Prolog database. For example 

A - {a,b,c,d} 

is represented as 

A - [a,b,c,d] 

and is stored (during runtime) in Prolog database as 

member(vA,a) 

member(vA,b) 

member(v A,c) 

member(vA,d) 

Storing 

It cannot store the data of type non-set. This problem can be explained as follows. If 

name is a variable of type P NAME and contains data {ali,abu,eric}, i.e 

name={ali,abu,eric }, 

the information can be stored as a structure of 

member(vname,ali) 

member(vname,abu) 

Page 196 Appendix G : Comments on Prolog implementation by zp 



member(vname,eric) 

in prolog. However, if name is a variable of type NAME and associated with ali, i.e 

name =ali, 

it does not provide the structure to store the infonnation ali. 

Tuple and Set 

It is unable to differentiate between tuple and set when using list. A set of sets, such 

as 

A - { {a}, {b}, {c,d} } 

is represented as a list of 

[[a],[b],[c,d]] 

A set of tuples for example 

B .. { (a,b),(c,d),(e,t)} 

is represented as a list in Prolog by 

[[a,b ],[c,d],[e,f]] 

The problem is that if we have a set 

C - { {a,b}, {c,d}, {e,f} } 

it will also be presented in Prolog as 

[[a,b ],[c,d],[ e,f]] 

As a result we cannot differentiate both of them. 

2. Operation Representation 

Appendix G : Comments on Prolog implementation by zp Page 197 



Comprehensive set 

The comprehensive set is translated into Prolog by using the built-in predicate 

setof. The problem is that predicate setof is unable to handle backtracking. For 

example, 

{a laeA;a>O} 

is translated into 

examplel(L) 1-

setof(Va, expl(Va), L). 

expl(Va) 1-

member(setA,Va), 

greater(Va,O). 

Normally if one of the goals under expl failed, there is a possibility of backtracking 

execution. If this happen, predicate setof will fail, and consequently predicate 

examplel will also fail. 

Logical operation: IMPLIES 

The design of a library for function IMPLIES is not proper. Basically, predicate 

A ｾ ~ B will be translated into Prolog as 

exp(A,RA) , 

exp(B,RB) , 

imp(RA,RB,R) • 

RA and RB are the results that produce either true or false when executing 

expression A and B respectively. R is a result of either true or false depending on 

value RA and RB. The logical aspect of the predicate is correct. However, the 

executional aspect of the predicate is not proper. Expression B will be carried out 

regardless whether expression A is true or not. For example, 

A>7 ｾ ｂ ］ Ｔ 4

Page 198 Appendix G : Comments on Prolog implementation by zp 



ａ ｓ Ｗ ｾ ｂ ］ Ｖ 6

will be translated into Prolog as 

1: greater(A,7,RA1), 

2: equa1(B,4,RB1), 

3: imp(RA1,RB1,R1), 

4: 1equal(A,7,RA2), 

5: equa1(B,6,RB2), 

6: imp(RA2,RB2,R2). 

Prolog will execute all the lines sequentially. At the line I, if A > 7 then RAt is 

equal to true. The result is false otherwise. Regarding B, it will always be assigned 

with 4 because the line 2 will always be executed regardless whether predicate A > 7 

true or nol Therefore at the line 5, RB2 will always false because B is not equal to 6. 

B is equal to 4. 

Quantifiers 

Some quantified expression is not translated properly. The error normally found is: 

forall(V999 ,exp 1 (V329),) 

when it is supposed to be: 

forall(V999,exp 1 (V329),dotl (V329» 

A program has been made to correct this particular error. 

Another executional problem is when a schema, which consists of quantified 

expression, is included in another schema. Before any schema is translated, it will 

first be expanded to remove all the included schemas. This expanded schema is then 

translated into Prolog. The algorithm involves is 

for all included schema S 

getcode 

addcodebefore 

Appendix G : Comments on Prolog implementation by zp Page 199 



for all included schema 5 

getcode 

if sign (5) is DELTA 

addcodeafter 

else if sign (5) is INVARIANT 

addcodeafter 

addinvariant 

During the expansion, the quantified expression has no code for after operation 

('primed' variable). Instead it will be written as a code before operation in a location 

where it should be a code after operation. It seems that the algorithm executed for 

quantified expression is as below: 

for all included schema 5 

getcode 

addcodebefore 

for all included schema 5 

getcode 

if sign (5) is DELTA 

addcodebefore 

else if sign (5) is INVARIANT 

addcodebefore 

addinvariant 

This problem can be illustrated as the following. 

ｓ ｣ ｨ ･ ｭ ｡ ｬ ｾ ｟ ﾷ ·____________________________________________ --, 

Page 200 

A:Z 
B:Z 

A=B 
\;fa: A; b : B • a>O 1\ b>O 

Appendix G : Comments on Prolog implementation by zp 



ｓ ｣ ｨ ･ ｾ Ｒ ｾ ~______________________________________________ ｾ ~

ａ ｓ ｣ ｨ ･ ｾ ~ 1 
c: Z 

C=A 

Schema 1 is included in schema2. Expanded schema for Schema2 is 

ｓ ｣ ｨ ･ ｾ ｾ Ｒ 2______________________________________________ ｾ ~

A:Z 
B:Z 
C:Z 
A': Z 
B': Z 

A=B 
Va : A ; b : B • a >0 A b >0 
C=A 
A'=B' 
Va : A ; b : B • a >0 A b >0 

Note the second quantified expression. It should be 

Va:A';b:B' • a>O A b>O 

To correct this, we should focus on the type and syntax checker zc, as well as the Z 

expander, ze. Expression quantifiers such as 1: a Jl and A also face the same 

problem. 

3. The Z prolog library 

Small corrections have been made to the set relations, the logical expressions and the 

list operations in the Z definition library. 

Besides, we also detected the existence of problems in predicate comma and 

predicate docard. 

Appendix G : Comments on Prolog implementation by zp Page 201 


