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ABSTRACT 

This thesis presents a Control Volume (CV) method for transient transport problems where the 

cell surface fluxes are reconstructed using local interpolation functions that besides interpolating 

the nodal values of the field variable, also satisfies the governing equation at some auxiliary 

points in the interpolation stencils. The interpolation function relies on a Hermitian Radial Basis 

Function (HRBF) mesh less collocation approach to find the solution of auxiliary local 

boundary/initial value problems, which are solved using the same time integration scheme 

adopted to update the global control volume solution. By the use of interpolation functions that 

approximate the governing equation, a form of analytical upwinding scheme is achieved without 

the need of using predefined interpolation stencils according to the magnitude and direction of 

the local advective velocity. In this way, the interpolation formula retains the desired 

information about the advective velocity field, allowing the use of centrally defined stencils 

even in the case of advective dominant problems. This new CV approach, which is referred to as 

the CV-HRBF method, is applied to a series of transport problems characterised by high Peclet 

number. 

This method is also more flexible than the classical CV formulations because the boundary 

conditions are explicitly imposed in the interpolation formula, without the need for artificial 

schemes (e.g. utilising dummy cells). The flexibility of the local meshless character of the CV-

HRBF is shown in the modelling of the saturated zone of the unconfined aquifer where a mesh 

adapting algorithm is needed to track the phreatic surface (moving boundary). Due to the use of 

a local RBF interpolation, the dynamic boundary condition can be applied in an arbitrary 

number of points on the phreatic surface, independently from the mesh element. 

The robustness of the Hermite interpolation is exploited to formulate a non-overlapping non-

iterative multi-domain scheme where physical matching conditions are satisfied locally, i.e. 

imposing the continuity of the function and flux at the sub-domain interface. 
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1 INTRODUCTION 

1.1 Literature review 

1.1.1 Control volume method (CV) 

The control volume (CV) method is one of the most popular numerical techniques in 

Computational Fluid Dynamics (CFD) due to its robustness, simplicity and mass conservation 

capability. Originally the method was applied only to structured meshes, but with the incredible 

computer development of the last twenty years there has been a large increase of engineering 

applications that benefit from numerical· modelling, and the use of unstructured grids to 

discretise complex geometries became necessary to simplify the mesh generation process. 

However, when unstructured meshes are employed instead of structured ones, both cell stencil 

selection and flux computation become more difficult. Although significant works have been 

carried out in this field, methods that aim to high order convergence solution with unstructured 

meshes are still a subject of active research. 

In the literature, two different approaches are reported when unstructured control volume 

schemes are considered: Cell-centred (CC) and vertex-centred (VC) schemes. The second 

scheme is usually called the Control Volume Finite Element (CV-FEM) scheme. In the cell-

centred configuration the CVs used to integrate the governing equation are the elements of the 

mesh that discretises the problem, and pertinent information concerning the system variables are 

stored at the centre of these elements. The main ideas behind this scheme, widely used in 

computational fluid dynamic (CFD), are reported in Versteeg and Malalasekera (2007); for 

some practical applications see also Date (200S). In the vertex-centred scheme, system variable 

information is stored at the vertices of the mesh elements, and the CV s are constructed around 

these vertices. The field variable within each element is defined in terms of the element nodal 

values using FE shape functions (polynomial functions), and the corresponding gradient is 

obtained by differentiation of the same shape functions. Since the first publication by Baliga and 

Patankar (1980) the CV-FEM has been successfully used as a numerical tool in a wide range of 

application (for more details see Rousse (2000); Liu et al. (2002); Ben Salah et al. (2005); 

Orissa et al. (2007». 
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Regardless of the type of scheme implemented, the accuracy of the CV method discretisation is 

strongly dependent on the flux approximation which is adopted. This is usually computed 

considering two contributions; the advective flux and the diffusive flux. Generally each of these 

terms requires a different method of approximation that suits its physical nature. 

In the vertex-centred schemes, the gradient at the CV faces found in the diffusive flux is 

obtained by differentiation of the shape functions. A different strategy is reported in literature 

for cell-centred CV methods. In this case the diffusive flux is usually decomposed in terms of 

appropriately chosen orthonormal vectors, Versteeg and Malalasekera (2007). In two-

dimensional (2D) problems, the scheme takes account of two different contributions to compute 

the gradient vector of the field variable at the cell faces: along the line which joins the two cell 

centres and along the cell face tangential direction. The normal component is finally expressed 

in terms of these two gradient projections. The first term is obtained by a central finite 

difference (FD) formula, which is of second order of accuracy only when the adjoining control 

volumes are of equal length in the normal direction. The second term, the tangential component, 

is still computed with a second order central FD formula which is a function of the cell face end 

points. As in the cell-centred scheme the values of the function at the face end points are 

generally unknown, these values are usually obtained by simple averaging over neighbouring 

cell centres. The evaluation of the gradient using the approach explained above brings a 

computational error which increases with skewness and the degradation of the element aspect 

ratio. To avoid this discretisation error, Turner and Ferguson (1995) proposed the use of a four-

node formula, instead of a two-node one. This approach captures both the normal and tangential 

components of the gradient vector and consequently reduces the error associated with the 

domain discretisation. 

In general, the computation of the advective flux requires a different approach, since this type of 

flux is characterised by the flow direction of the carrying fluid. It is well known that for 

advective dominant problems featuring function discontinuities, spurious oscillations 

(instabilities) are frequently observed when using numerical techniques based on centrally 

defined interpolation functions. Such instabilities are due to the dispersive errors in the 

evaluation of the advective flux. In central schemes, as for the case of centrally defined CV 

methods, the interpolation stencil includes points from the upstream and downstream directions 

of the advective velocity field using similar weighting functions. In such numerical schemes the 

spurious oscillations are controlled introducing upwinding interpolation techniques where the 

upstream points are heavily weighted compared to the downstream ones. This method it often 

combined with gradient limiters and Reimann solvers to guarantee mass conservation (see 

Versteeg and Malalasekera (2007) for a comprehensive review of the most commonly available 

upwind schemes). 
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CV schemes based on upwind strategy are characterised by a typical artificial diffusivity that, 

controlling the dispersive error, helps to improve their stability at the expense of the accuracy. 

These methods are limited to the first order in regions characterised by discontinuities. In the 

last twenty years, there have been many attempts to overcome, or at least mitigate, this problem. 

Among these the most popular are the essentially non-oscillatory (ENO); Shu and Oshert 

(1989), and the weighted essentially non-oscillatory (WENO); Jiang and Shu (1996), schemes. 

High accuracy schemes such as flux limiting or (WENO) methods aim to improve the accuracy 

of upwinding schemes by including some downstream information in the interpolation without 

increasing dispersive errors or instability. Unfortunately, the selection of upwind stencils is 

completely ad hoc and their implementation for unstructured meshes dealing with complex 

three-dimensional problems is not a trivial task. 

More recently, Nessyahu and Tadmor (1990) and Kurganov and Lin (2007) have reported on 

how to reduce the diffusivity error in central upwind CV schemes by utilising one-sided local 

propagation speeds in term of a Oodunov-type projection evolution method to locally capture 

the shock evolution. Although these works have achieved significant contributions to improve 

the evaluation of advective fluxes without inducing instabilities, the use of one-dimensional 

polynomials can be considered an evident limitation for applications to complex three-

dimensional unstructured meshes. 

In an attempt to increase the accuracy of unstructured CV schemes, innovative ideas regarding 

the flux reconstruction have been proposed in the last few years. Abgrall (1994) revisited the 

possibility of performing the flux reconstruction in triangular meshes through the use of local 

two-dimensional polynomial functions. The same idea has been extended to three-dimensional 

problems in the WENO scheme presented by Dumbser and Kaser (2007). Large attention has 

also been given to the least squares function reconstruction technique (LSRT). This technique 

has been used in the computation of flux corrective terms, Jayantha and Turner (2003), (2005), 

to increase the spatial accuracy of CV schemes, and also, in a more direct approach, in the 

reconstruction of the fluxes at the cell faces of the control volume (Ollivier-Oooch and Van 

Altena (2002). Other researchers proposed the Gauss-Green gradient reconstruction technique 

(OORT), which has been used in combination with the LSRT to compute the gradients at the 

cell faces of the CV (Truscott and Turner (2004) and Manzini and Putti (2007». New ideas have 

been found also in the spectral volume (SV) developed by Liu et at. (2006) where the 

unstructured grid cells are partitioned into structured sub-cells. The main problem of this 

approach, recognised by the authors themselves, is that a good partitioning requires the set up of 

a large number of parameters, which becomes extremely difficult for 3D problems. Liu et at. 

consequently abandoned the SV idea in favour of a finite difference formulation in which the 
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mass conservation is locally guaranteed, imposing that the flux between two adjoined 

unstructured cells be the same (Liu et al. (2006». The reconstruction schemes reported in the 

last paragraph also require the use of upwinding interpolation stencils in order to guarantee their 

stability when dealing with advective dominant problems. 

One possible alternative to improve the accuracy of the evaluation of the flux is the use of radial 

basis functions (RBF). In the literature, the RBF interpolation method is considered as an 

optimal numerical technique for interpolating multidimensional scattered data. Although most 

work done so far on RBF relates to scattered data interpolation, there has recently been an 

increased interest in the use of RBF as the base of mesh less collocation approaches for solving 

partial differential equations (PDEs) (see Kansa and Hon (2000), for the unsymmetric approach, 

and Jumarhon et at. (2000), for the symmetric approach). While the global formulation of these 

techniques becomes unpractical when the number of collocation points is relative large, their 

local implementation can be explored for the improvement of classical numerical methods. 

The idea of introducing RBF interpolations to improve the accuracy of a classical numerical 

scheme has been recently employed by Wright and Fornberg (2006). In this work the authors 

utilise a Hermitian RBF interpolation to remove the symmetry constraint required to achieve 

high order approximation in the FD scheme. Cecil et al. (2004) use RBF as interpol ants to 

reconstruct locally the gradients of the function in their numerical scheme for the Hamilton-

Jacobi equation on unstructured data sets for arbitrary dimension. In this way they avoid the use 

of multidimensional polynomials that leads to ill-conditioning problems when solving the local 

linear systems necessary to find the interpolation coefficients. 

The use of RBF interpolation to improve the Boundary Element Method (BEM) has been 

implemented amongst others by Sladek et al. (2005), using a local integral equation 

formulation, while May-Duy et at. (2006) used a global formulation. On the other hand, 

Nguyen-Van et al. (2007) incorporates the strain smoothing method for mesh-free conforming 

nodal integration into the Finite Element Method (FEM). 

At the knowledge of the writer, the RBFs were used for the first time in the context of control 

volume methods in the 'optimal recover' approach of Sonar (l996) and Iske and Sonar {I 996) 

for two-dimensional triangular grids. In these works the flux at the cell face integration points is 

'recovered' from the cell average values evaluated in the cell being integrated and in its 

neighbours. In his optimal recovery, Sonar removes the poor approximation of locating the 

mean values in the cell centres, demonstrating that such constrain limits to the first order in 

space the accuracy of most of the classic control volume schemes. In Sonar's approach the 
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interpolants are integrals obtained by applying the cell average operator to the second argument 

of the RBFs, i.e. by using an Hermitian interpolation scheme with the average integral operators 

included in the expression (see section 1.1.2 for more details). The interpolation coefficients are 

found imposing that the average of the interpolants must be equal to the average of the unknown 

function in the control volumes of the prescribed stencil. Note that this is the same condition 

used in the works of Abgrall (1994) and Dumbser and Kaser (2007) mentioned above, in which 

polynomials are used rather than RBFs. In Sonar's CV method, originally developed for 

hyperbolic conservation laws, the END technique is employed to avoid instabilities rising from 

the advection flux computation. 

More recently, Moroney and Turner (2006), (2007) improved Liu et al. (2002) CV approach, for 

2D and 3D problems respectively, by using RBF interpolation functions instead of FE 

polynomial shape functions to reconstruct the field variables and their derivatives. Their 

approach relies on a local RBF interpolation of the field variable used to obtain the surface 

fluxes, where the CV centres of the considered stencil act as trial points. Moroney and Turner 

claim the ability of their CV-RBF scheme to achieve high order of convergence on relatively 

coarse meshes due to the accuracy of the RBF interpolation to evaluate derivatives (Madych 

(1992) and Fornberg and Flyer (2005» and thus guarantee a very good approximation of the 

diffusive flux. In the case of advective dominant problems, Turner's et al. CV-RBF approach 

also requires the implementation of some kind of upwinding scheme in order to avoid spurious 

oscillations in their numerical results. 

1.1.2 Radial basis function mesh less collocation methods 

In recent years the theory of radial basis functions has undergone intensive research and enjoyed 

considerable success as a technique for interpolating multi variable data and functions. A radial 

basis function 'l' (lix - ｾ ｪ II) depends upon the separation distances of a subset of trial centres 

ｻ ｾ ｪ E ｾ ｗ ［ j = 1,2, ... ,NI,;} and a field point x Em", where N
I
, is the number of trial centres. 

Due to the RBF spherical symmetry around the centres qJ (trial points), they are called radial. 

The distances ｉ ｬ ｸ Ｍ ｾ ｪ ｬ ｬ Ｌ are usually taken to be the Euclidean metric. The set of field points 

where the function is evaluated in the interpolation are known as test or collocation points. In 

RBF interpolation it is usual to select the trial and test points as the same set of points; however 

this is not necessary in principle. 

The most popular RBFs are listed in Table 1.1 below: 
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Radial basis functions RBFs) 
Generalized Thin Plate Generalized Multiquadric Gaussian 

Spline 

r 2M- 2 1ogr (2 2 t/2 r +cs exp(-r2/cn 

where M is an integer and r = Ilx - ｾ ｪ II. 

Table 1.1 - Table of most popular Radial Basis Functions 

The Gaussian and the inverse multiquadric, i.e. M < 0 in the generalised multiquadric 

function, are positive definite functions. The thin-plate splines (TPS) and the multiquadric, i.e. 

M > 0, are conditionally positive definite functions of order M , which require the addition of 

a polynomial term of order M -1 along with a homogeneous constraint condition (see equation 

(1.3) below) in order to obtain an invertible interpolation matrix. The multiquadric functions 

with values of M = 1 and Cs = 0 are often referred to as conical functions and with M = 3 

and Cs = 0, as Duchon cubic. 

Even though TPS have been considered optimal in interpolating multivariate functions, they 

only converge linearly, Powell (1994). On the other hand, the multiquadratic (MQ) functions 

converge exponentially as shown by Madych and Nelson (1990); however they contain a free 

parameter, cs' often referred to as the shape parameter. When Cs is small the resulting 

interpolating surface is pulled tightly to the data points, forming cone-like basis functions and as 

Cs increases, the peak of the cone gradually flattens. It is worth noting that the set up of this 

parameter is not trivial and is still a matter of intensive research (see Wright and Fomberg 

(2006)). 

In a typical interpolation problem, there are N pairs of data points {(x' ,<l>(X' )),.1,2, .. N} , which 

are assumed to be samples of the unknown function <l> that is to be interpolated by the function 

¢ as 

N NP 

¢(x) = ｌ ｡ Ｏ ｐ Ｈ ｬ ｬ ｸ Ｍ ｾ ｪ ｬ ｬ Ｉ Ｋ ｾ ｡ ｪ Ｋ ｎ ｐ ｾ ｟ Ｑ {x} 
j=1 )=1 

(1.1) 

in the sense that 

(1.2) 
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along with the constraint condition 

k=l, ... ,NP (1.3) 

Here ai' withj=l, ... ,N,N+l, ... ,N+NP, are real coefficients to be found from the 

interpolation. \{J is a radial basis function and NP is the total number of terms in the 

polynomial (determined by the polynomial order M and the number of spatial dimensions). In 

order to retain a simple notation the polynomial terms that appear in the second term of the right 

hand side of(1.1) will be indicated as PM-I • 

The matrix formulation of the above interpolation problem can be written as [A] [ a] = [b ] with 

(1.4) 

Micchelli (1986) proved that for a case where the test points are all distinct, the matrix resulting 

from the above radial basis function interpolation is always non singular. Although a matrix 

such as [A] is always invertible in theory, i.e. well posed, numerical experiments show that the 

condition numbers of the matrix obtained with the use of RBFs like Gaussian or multiquadric 

are extremely large when compared with those resulting from the generalised thin-plate splines 

with low values of M , Schaback (1995). Similar condition number issues to those encountered 

with the use of the Gaussian or multiquadric functions are found when using the generalised 

thin-plate splines function with large values of M . 

Consider now a boundary value problem defined by 

L[¢] = fs(x) on n 
B[¢] = fB(X) on an 

(1.5) 

(1.6) 

where the operators Land B are linear partial differential operators on the domain n and on 

the contour an respectively. The un symmetric REF collocation method, also referred to as 

Kansa's method (KRBF), represents the solution of the above boundary value problem by the 
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interpolation (1.1). In the collocation scheme of the Kansa's method, a set of N test points are 

considered, these are divided in Nbc boundary points, where the boundary condition (1.6) is 

imposed, and N - Nbc interior points, where the governing equation (1.5) is satisfied. The trial 

points are usually chosen to be the same set of the test points. 

The above expansion for ¢ leads to a collocation matrix [A] ofthe form: 

(1.7) 

which is fully populated and non-symmetric. 

The un symmetric approach has been applied to a wide range of problems with great success. 

See for example Hon and Mao (1998) and Fedoseyev et at. (2002). However, no existence of 

solution and convergence analysis are available in the literature, and it has been reported that in 

some cases the resulting matrices were extremely ill-conditioned and even singular for some 

distribution of the nodal points, Dubal et at. (1993). In those cases where the matrix obtained is 

singular, it is possible that a small perturbation of the functional centre locations or the value of 

the shape parameter can result in a non-singular matrix Brown (2005). More recently, Ling et al. 

(2006) showed the feasibility of a generalised variant of the Kansa's method by using separated 

trial and test spaces. Under this condition, for a sufficiently dense set of N" linearly 

independent continuous trial functions and a set of N test points, whose locations are chosen to 

minimise the residual, the resulting interpolation matrix has full rank N,r . Then it is possible to 

find a trial centres distribution for which the resulting Kansa's collocation matrix can be non-

singular. 

Fasshauer (1997) suggested an alternative approach to the unsymmetric method, based on the 

Hermite interpolation property of the radial basis functions. This states that the RBFs are not 

only able to interpolate a given function, but also any integral or partial differential operators. 

This method will be referred to as HRBF. The convergence proof for a RBF Hermite-Birkhoff 

interpolation was given by Wu (1992) who subsequently also proved the convergence of this 

approach when solving PDEs, Wu (1998) ( see also Franke and Schaback (1998». In this 

approach, the solution ¢ of the above boundary value problem is defined by 
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ｾ N ｾ

ｾ Ｈ ｘ Ｉ ］ ｌ ｡ ｩ ｂ ｾ ｾ Ｈ ｬ ｬ ｸ Ｍ ［ ｪ ｬ ｬ Ｉ Ｋ L ｡ ｩ ｌ ｾ ｾ Ｈ ｬ ｬ ｸ Ｍ ［ ｪ ｬ ｬ Ｉ Ｋ ｌ ｡ ｩ Ｋ ｎ ｐ ｾ Ｍ Ｑ (x) (1.8) )=1 i=Nbc+1 )=1 

In the above expression ｌ ｾ and ｂ ｾ are the differential operators used in (1.5) and (1.6) acting 

on 'I' viewed as a function of the second argument ; . Applying the boundary condition (1.6) to 

the interpolation (1.8) in the Nbc boundary points, and the governing equation (1.5) in the 

N - Nbc interior points, leads to a symmetric collocation matrix [ A], which is of the form 

ｂ ｸ ｌ ｾ ｛ ｾ ｝

ｌ ｸ ｌ ｾ ｛ ｜ ｽ Ｌ ｝

Lx ｛ ｐ ｾ Ｍ ｉ ｊ

(1.9) 

The matrix (1.9) is of the same type as the scattered Hermite interpolation matrices and thus 

non-singular as long as 'I' is chosen appropriately, i.e. provided that there are no collocation 

points that share linearly dependent operators, Wu (1992), Wu (1998). A major point in favour 

of the Hermite based approach is that the matrix resulting from the scheme is symmetric, as 

opposed to the completely unstructured matrix of the same size resulting from the un symmetric 

scheme. For further details on the application of the above HRBF collocation approach see La 

Rocca et at. (2005). 

Another flexibility of the Hermitian method consists of applying the POE operator directly on 

top of boundary points without causing a singularity in the collocation matrix. This is an 

intrinsic feature of this method, in which the solution is constructed from operators applied to 

the basis functions rather than the basis functions themselves. This technique is known as 

'double collocation', and was recently studied by La Rocca and Power (2008). They found that 

using double collocation at the boundary points offered great improvements in the accuracy of 

the solution near the domain boundary particularly in the approximation of derivatives. The 

improvement using double collocation is better than using an additional set of internal points 

and moving them closer to the boundary. It is worth noting that the requirement of satisfying 

simultaneously both the boundary condition and governing equation yields to a C2 continuity of 

the approximation at the boundary points. In general, in a Hermite approach, the resulting 

matrix will be non-singular as long as the partial differential operators applied to each point are 

linearly independent; even if in a single node, more than two different differential operators are 

imposed. 
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In principle the double boundary collocation scheme can be implemented also in the 

unsymmetric approach (Kansa's method). However, due to lack of dependence on the 

differential operators in the interpolation formula, see equation (1.1), this alternative will return 

an over-determined system of algebraic equations that can be solved in the least square sense. 

Another alternative of imposing both internal and boundary operators on the domain boundary 

when using the Kansa's method, without obtaining an over-determined system, is offered by the 

use of two different set of collocation points at the boundary in which the differential conditions 

are required to be satisfied independently, Fedoseyev et al. (2002). But with this approach the 

two differential operators cannot be imposed simultaneously in the same set of boundary nodes. 

From a series of simple steady state numerical examples, Fasshauer (1997) concluded that the 

Hermitian method performs slightly better than Kansa's method in most circumstances. More 

recently Power and Barraco (2002) found that the unsymmetric method faced some difficulties 

when solving convection-diffusion problems at high Peclet number, which do not occur when 

using the Hermitian approach. Jichun and Chen (2003) pointed out that such inconvenience can 

be removed by using higher-order radial basis functions and overlapping domain decomposition 

technique. 

The computational costs of both the symmetric and unsymmetric methods are very high due to 

the use of global interpolation functions in the representation of the problem solution, resulting 

in fully populated coefficient matrices. Besides, the matrices obtained tend to become 

progressively more ill-conditioned as the number of trial and test points increase, and for 

interpolation functions featuring higher degree M. For cases where it is necessary to employ a 

large number of points (over a few thousands) the resulting systems are practically unsolvable 

with the use of standard algorithms. 

Several techniques have been proposed to improve the conditioning of the coefficient matrix 

and the solution accuracy, such as the replacement of global solvers by block partitioning, LU 

decomposition schemes, matrix preconditioners, overlapping and non-overlapping domain 

decomposition amongst others (for an overview see Kansa and Hon (2000». 

One of the last efforts to improve the solution algorithms for such badly conditioned systems is 

found in Ling and Hon (2005). In this paper a method based on an affine space decomposition 

that decouples the influence between the interior and boundary collocations is proposed. Even 

though the results are encouraging, this method requires a singular value decomposition (SYD), 

resulting in a quite expensive solution procedure from a computational point of view. 
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Other research groups have been working on approaches based on domain decomposition 

methods. Between them Wong et al. (1999) developed a multi zone algorithm for the 

mutiquadric scheme to reduce the matrix size. Zhou et al. (2003) tested the overlapping domain 

decomposition with both multiplicative and additive Schwarz iterative techniques for the 

Kansa's (un symmetric) RBF collocation method, while Hernandez Rosales and Power (2007) 

proposed a non-overlapping domain decomposition algorithm for the Hermite radial basis 

function mesh less collocation method. 

Another alternative to the global interpolation is given by the use of the compactly supported 

RBFs. These type of functions return sparse interpolation matrices since only few terms have to 

be considered for the evaluation of the interpolants. Each function is defined by a centre and a 

compact support r 

ｏ ｾ ｲ ｾ ｬ

r > 1 
(1.10) 

Wendland (1995) derived positive definite functions for one, three, and five-dimensional 

problems of different degree of continuity starting from the truncated power functions. These 

functions are reported in Table 1.2 for three dimensional problems together with their degree of 

continuity 

nd=3 ｜ ｽ ｊ Ｇ ］ Ｈ ｬ Ｍ ｲ Ｉ ｾ CO (1.11) 

\}J' = (1- r): (3r + I) C2 (1.12) 

\}J'=(I-r): (35r2 +18r+3) C4 (1.13) 

\{J'=(I-r): (32r3 +25r 2 +8r+l) C6 (1.14) 

Table 1.2 - Compact support functions 

The choice of the support size is the critical point of those methods based on this type of 

functions. It has been found that the best solutions are obtained for a support of the same size of 

the computational domain, a situation that brings back all the problems encountered in a global 

formulation. 

Although many attempts have been made to resolve these issues, solving practical engineering 

applications with mesh less collocation methods based on the global RBF interpolation is still 

considered prohibitive. In recent years, special attention has been given to the use of local RBF 

interpolations which are assembled to obtain the global solution (see Lee et al. (2003), Shu et at. 
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(2003), Sarler and Vertnik (2006), Vertnik et at. (2006), Stevens et at. (2009». The local 

strategy results in well-conditioned and banded systems improving the behaviour of this type of 

meshless methods. 

1.2 Objective and motivations 

The work carried out in the present thesis is devoted to develop a hybrid method between 

classical CV schemes and RBF mesheless collocation methods with the intent of exploiting at 

most the best features of these two numerical techniques. In the finite volume community there 

is evidence of a constant research to find more accurate and flexible interpolation algorithms to 

be used in the flux reconstruction step for the case of unstructured meshes. On the other hand, 

the mesheless collocation methods are among the best numerical schemes in dealing with scatter 

data points, and the RBF have been found to be the most accurate interpolations by many 

researchers. At the same time they suffer ill-conditioning problems that limit their use to 

relatively simple problems. 

The main objective of this research is to develop a method that combines the RBF strong form 

formulation applied locally to each cell, with the CV weak form to solve the global problem. 

The new numerical scheme will benefit the mass conservation and the sparse matrix of the 

control volume scheme and the high accuracy of the RBF meshless methods in the local 

interpolations also in those cases of non uniform distribution of points. From a different point of 

view, it could be said that the new method aims to overcome the ill-conditioning problem 

typical of the RBF mesh less collocation methods, and at the same time offers a valid alternative 

to the classical polynomial functions used in the flux reconstruction ofCV schemes. 

Although the meshless benefit is lost in the global formulation, due to the use of an element 

mesh, this feature is preserved locally, opening great opportunities in the selection of the stencil 

of points that support the local interpolation and in the boundary conditions implementation. 

The problems solved in this work are focused on groundwater water applications since the 

present study was funded by the European Commission GABARDINE project (Contract no: 

518118), sixth framework program, priority 1.1.6.3 (G lobal change and Ecosystems). 

All the results are obtained using a in-house software written mainly in FORTRAN 95 by the 

author, while a commercial mesh generator (GAMBIT, Ansys) is employed in the construction 

of the computational grids needed for the domain discretisation. 
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1.3 Original contribution 

In Moroney and Turner (2006) and (2007) • a local interpolation of the field variable based on 

equation (1.1) is used to construct the shape functions of the CV-FEM method. The centres of 

the control volumes belonging to the stencil are used as the corresponding trial and test points of 

the interpolation. 

Following Moroney and Turner (2006); (2007). in this thesis it is proposed to use a RBF 

meshless technique to improve the accuracy of classical CV schemes. The method is based on a 

local RBF interpolation of the field variable at the control volume cell centres. as in the case of 

Moroney and Turner CV-RBF approach. In addition. in the present approach. the local 

interpolation is required to satisfy the partial differential equation (PDE) of the governing 

equation and the boundary condition operators at a set of auxiliary points in the interpolation 

stencils. The corresponding interpolation of the field variables. internal and boundary 

differential operators is equivalent to solve a local initiallboundary value problem. for which the 

solution is found by using the meshless collocation techniques recalled in section 1.1.2. 

Therefore, this approach combines the mesh less strong form formulation applied to the local 

initiallboundary value problems with the CV weak form used to solve the global problem. In 

this way a high order CV scheme is obtained resolving the ill-conditioning issues encountered 

in the reconstruction step by Abgrall (1994) and Dumbser and Kaser (2007) for the computation 

of the polynomial coefficients. In fact. choosing the RBF type appropriately and limiting the 

number of collocation points used leads to an interpolation that is well posed in all dimensions. 

This method is also more flexible than the classical CV formulations because the boundary 

conditions are explicitly imposed in the interpolation formula. without the need for artificial 

schemes (e.g. utilising dummy cells). 

The use of prescribed local interpolation functions (polynomials, RBFs etc.) that do not satisfy 

the original governing equation is a common approach used in all numerical techniques based 

on a weak formulation. These local approximations strongly limit the result of the obtained 

global solutions (including Turner et at. CV-RBF approach), independently of how robust is the 

integral representational formula used in the approach (even in those BEM cases when the exact 

integral representational formula is obtained from the Greens identities). For analytical 

functions the success of these weak formulations using this type of interpolation is a 

consequence of the theorems on analytical continuation. which guarantee the representation of 

the unknown function in terms of polynomial series in a neighbourhood around a collocation 

point (Taylor series). restricting these approaches to the use of small elements or cells. 
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In the new approach presented in this work, instead of using previously prescribed interpolation 

function, local approximate solutions of the original partial differential equations are used as 

interpol ants, which also satisfy the boundary condition in those stencils enclosing boundary 

points. The use of interpolating functions that satisfy the boundary condition is a well-

established scheme in numerical analysis and it has been the basis of some classical numerical 

approaches, as in the case of the Ritz method for the calculus of variations. However, in the 

hybrid control volume/meshless collocation method proposed in this thesis, local approximate 

solutions of the governing equation based on RBF collocation approaches are used as 

interpolation functions to improve the performance of a CV method for the first time, see Orsini 

et al. (2008). 

Having an interpolation that satisfies locally the partial differential operator, including the 

advective terms, provides an implicit upwind formulation. In fact, the velocity field contained in 

the PDE operator is directly included in the local RBF interpolation, providing the required 

information about the flow direction on the evaluation of the advective fluxes. In this approach, 

it is not necessary to recourse to upwinding schemes in order to obtain the solution of advective 

dominant problems without spurious oscillations. Each local system is centrally defined, 

without the need of using interpolation stencils predefined according to the magnitude and 

direction of the local advective flow velocity. 

1.4 Structure of the thesis 

In chapter 2 the formulation of the CV scheme proposed is presented for the solution of general 

boundary value problems. Both the unsymmetric (Kansa's method) and symmetric (Hermitian 

method) RBF collocation methods can be used in the local solution and the method will be 

referred as CV-KRBF or CV-HRBF depending on which of the two approaches is adopted. The 

new numerical scheme is validated in a series of one-and three-dimensional steady test cases, 

giving particular attention to the comparison between the CV-KRBF and CV-HRBF. In 

addition, a convergence analysis is performed, analysing different stencil configurations for the 

local interpolation. The effect of using different types of RBFs functions is also investigated. 

In chapter 3 the CV -HRBF is extended to study transient transport problems. The local 

interpolation function, which relies on a Hermitian Radial Basis Function (HRBF), is found 

solving a local boundary/initial value problem using the same time integration scheme adopted 

to update the global CV solution. Two time-stepping formulations are considered: a full implicit 

approach and the weighted Crank-Nicholson one. A fully kinetic formulation for the solution of 
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non-linear reactive transport systems typical of groundwater quality control problems is also 

developed. The implicit upwinding scheme, intrinsic to the proposed CV-HRBF, is tested by 

solving a travelling front problem at Peelet number equal to 500, 1000 and infinity; with the 

latter corresponding to a shock front. In addition, the accuracy of the numerical method is 

validated against one and three-dimensional reactive transport problems characterised by 

smooth solutions. Finally the process of magnesite dissociation in local non-equilibrium 

conditions is modelled in an experimental column domain to validate the kinetic formulation of 

the CV-HRBF. 

In chapter 4 two alternatives to improve the convergence of the CV-HRBF method for 

unstructured meshes are investigated: increasing the order of the numerical integration schemes, 

and the use of vertex centred (VC) discretisation which guarantees a numerically conservative 

scheme. The convergence and the flux analysis of the two approaches implemented are carried 

out in a one-dimensional advection diffusion problem using three unstructured meshes 

progressively refined. In addition the second order integration and the VC discretization are also 

assessed for steady and unsteady three dimensional advection diffusion problems using 

unstructured meshes. 

In chapter 5 the CV -HRBF scheme is adapted to solve ground water flow in the saturated zone 

of the semi-confined aquifer. The method is combined with a local re-meshing technique in 

order to track the phreatic surface, where the gradients required to satisfy the kinematic 

condition are computed by the same local RBF interpolations used for the flux computation. 

The proposed numerical approach is validated in a series of three-dimensional groundwater flow 

problems where the operations of recharging and extracting water from a semi-confined aquifer 

are modelled. Finally the injection into the saturated zone carried out from one of the 

GARB ADINE project partners in the experimental test site of Campina De Faro (Portugal) is 

also modelled, and the result compared with the available experimental data. 

In chapter 6 a non-overlapping non-iterative multi-domain formulation for the CV-HRBF is 

proposed, where the local Hermitian RBF meshless collocation method is used to satisfy a 

physical matching condition at the sub-domain boundaries. The algorithm is first validated in 

one-dimensional advection diffusion problems for which an analytical solution is known. More 

general applications in two and three dimensional domains are then considered. A heat transfer 

problem in strongly heterogeneous materials, and a groundwater flow problem in presence of 

geological layers characterised by different hydraulic conductivity are taken as engineering 

applications to test the capabilities of the CV-HRBF method to handle multizone problems. A 

final test is carried out for a one-dimensional unsteady transport problem for a single species in 
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a channel consisting of two adjacent zones that feature a different Peelet number. This is part of 

an on-going research that will be completed in the near future. 
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2 THE CV UNSYMMETRYC (Kansa), AND SYMMETRIC 

(Hermite) RBF FORMULATIONS (CV-KlHRBF) FOR 

BOUNDARY VALUE PROBLEMS 

2. 1 Introduction 

To construct local interpolants as approximate solutions of the problem being solved, the most 

critical point is to couple the solution of the local boundary value problems, one for each cell, to 

the global control volume assembling procedure. With any RBFs, the local approximate 

solutions can be found using the KRBF or the HRBF methods introduced in section 1.1.2. The 

resulting interpolations can be linked to the control volume solution by expressing the global 

unknown values as Dirichlet conditions in the RBF collocation system. This way of coupling 

the finite volume equation with the strong RBF formulation is the most natural one, and it 

already has been used in Moroney and Turner (2006) (2007) and Orsini et a!. (2008). In the 

works by Moroney and Turner a simple RBF interpolation is used, while in Orsini et. al. the 

KlHRBF approach is employed. In the case of the KlHRBF technique, applying the PDE and 

boundary operators to the local interpolation in a set of auxiliary points does not change the 

coupling algorithm, but instead increases the size of the local RBF collocation system. The 

additional information provided by the PDE and the boundary operator points transform the 

normal interpolation to a boundary value problem solution, and the increase in computational 

cost and complexity of implantation at local level is the price to be paid for such an 

improvement. 

Both KRBF and HRBF methods can be used in the local solution. The method proposed in this 

thesis will be referred to as CV-KRBF or CV-HRBF, depending on which of the two 

approaches is adopted. It is worth mentioning that the KRBF can be considered as a sub-case of 

HRBF where neither the PDE nor boundary operators are considered as trial functions (see 

section 1.1.2). As a consequence, only the CV-HRBF will be comprehensively presented in the 

next section. Once this scheme is understood, the corresponding CV -KRBF can be obtained 

from the previous one by cancelling few terms in the interpolation and significantly simplifying 

the local system. 
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For the sake of simplicity in the presentation of the formulation, the schematic diagrams 

showing implementation details will be presented for two-dimensional cell centre structured 

volume elements. However, the proposed method is also valid for three-dimensional problems, 

for structured and unstructured meshes, as it is independent from cell shape and mesh type. This 

flexibility reflects one of the advantages of using an RBF interpolation rather than polynomial 

functions in the flux reconstruction algorithm. In this chapter only the cell centred discretisation 

scheme is considered, while the vertex centred formulation will be introduced in chapter 4. 

2.2 The CV-KlHRBF formulation 

Consider a steady boundary-value problem for which the governing equation features an 

advective term, a diffusion term, a reactive term and a general source 

ｌ Ｈ ｾ Ｉ ］ Ｘ ｾ Ｈ ｄ ｩ ｪ :.)- Ｘ ｾ ｾ Ｋ ｋ ｲ ｾ ］ ｦ ｳ Ｈ ｸ Ｉ
, J , 

i,j = 1,nd on n (2.1 ) 

B(¢) = IB(x) on an (2.2) 

where x E R3
, ｾ is the unknown field variable, Dij is the diffusivity tensor, Uj is the 

component of the advective velocity along the j-direction, Kr the reactive coefficient. In 

equation (2.2) B( ) is the corresponding partial differential operator defining the boundary 

conditions, i.e. equal to the value of the function when Dirichlet conditions are given, the 

normal derivative for Neumann conditions and a combination of the two in the case of Robin or 

mixed conditions. 

Following the approach of the classical cell-centred CV scheme, equation (2.1) is integrated 

over the grid elements, leading to 

ｦ ｾ Ｈ ｄ ｩ ｪ ｾ ｽ ｖ ｦ ｡ ｵ Ｌ ｾ dV+ fKr¢dV= fir (x}dV 
V Ox Ox. v Ox v v pi J p' p p 

(2.3) 

Applying the divergence and the mean value theorems, the following equation is obtained 

(2.4) 
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where the bar indicates the cell average operator over the control volume, ( • ) = Ijvp J ( • )dv , 
v. 

and Vp is the volume of the cell over which the integration is performed. The volume integrals 

are evaluated using the midpoint integration formula, i.e. the mean values tP p and f sP in 

equation (2.4) are considered to be located at the control volume centre. If Nsurf is the number 

of cell faces in the control volume, the integral over the control volume surface can be divided 

into Nsurf sub-integrals 

(2.5) 

As done in equation (2.4) for the volume, the surface integrals are approximated by the 

midpoint integration formula. The surface mean values of the function ¢ and its gradient are 

assumed to be placed at the midpoint of the cell faces; this approximation leads to the following 

control volume discretisation equation 

(2.6) 

where n: is the i-component of the outward pointing normal to the /'h face and Sf the area of 

the /'h face. In equation (2.6), the field variable ¢ and its gradient at the centre of the cell faces 

are given in terms of the cell average values found in the interpolation stencil. This is done by 

the use of a RBF interpolation as described in the next paragraphs. Different alternatives to 

improve the numerical integration are considered in chapter 4, where two approaches of 

increasing the order of the surface and volume integrations are investigated and tested. 

The cell centres of the surrounding control volumes, along with a few scattered data points 

placed inside and nearby the neighbouring cells, are used as a set of trial points for the local 

RBF interpolation. In addition, if a stencil is close to a domain boundary, the points at the 

intersection between the boundary and the stencil are also included in the interpolation, Figure 

2.1. Applying a Dirichlet condition at the cell centres, the boundary operator (2.2) at the 

boundary points, and the internal operator (2.1) at the auxiliary scattered points, a local 

Hermitian interpolation formula can be defined as 
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¢(x)= L an'¥(llx-4nl\)+ L anB,'¥(llx-4nll)+ 
c.cenlres B.operalor 

L ｡ ｮ ｌ Ｏ ｉ Ｇ Ｈ ｉ ｉ ｘ Ｍ ｾ ｮ ｬ ｬ Ｉ Ｋ ｐ ｍ ｟ ｬ (x) 
L.Operalor 

(2.7) 

• • • ·N • 
• .w • • .p E· • 

• • • • S. • 

Figure 2.1 - Cell stencil and set of points used by the CV-KlHRBF scheme. Round symbols 
correspond to points where the internal (POE) operator Is imposed; square symbols for the 
Dirichlet operator and diamond symbols for the boundary operator 

By evaluating the different operators (Dirichlet, PDE and boundary) on the interpolation 

formula (2.7) at the corresponding collocation points, the following algebraic system is obtained 

for the unknown interpolation coefficients 

where 

[lJI] 
Bx [lJI] 

[A] = Lx [lJI] 

[P:-1] 

B, [lJl] 

BxB, [lJI] 
LxB, [lJI] 
Bx [P:- 1] 

[A][a]=[b] 

L, [lJI] 
BxL, [lJI] 
LxL,[lJl] 

Lx [P:-1] 

[Pm-I] 
Bx[Pm-1] 

Lx [Pm-I] 
[0] 

(2.8) 

(2.9) 

and ｛ ｾ ｣ ･ ｬ ｬ ｳ r = Ｈ ｾ ｐ Ｇ ｾ ｗ Ｇ ｾ ｅ Ｇ ｾ ｓ Ｇ ｾ ｎ Ｉ are the values of the unknown field variable ¢ at the cell 

centres (see Figure 2.1). The matrix A in (2.9) corresponds to the Hermite RBF matrix obtained 

from the mesh less collocation approach used to find the local approximate solutions of the 

governing equation. As commented in section 1.1.2 this matrix is non-singular according to 

Wu's theorems (see comments after equation (1.9) where in the case of (2.9) additional 

Dirichlet conditions are included). 
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At this stage it is not possible to determine the coefficients of the Hermitian interpolation, since 

one part of the right hand side of the system (2.8) is defined by the unknown field variable (i.e. 

the array [¢cellsJ made of the cell-centered values of the function ¢). However, system (2.8) 

can be rewritten to express the interpolation coefficients as a function of the unknown values 

[¢cellsJ as 

(2.10) 

The function ¢ at any point, Xl, inside the stencil, is obtained by substituting the interpolation 

coefficients given by (2.10) in (2.7) 

¢II = ｾ ｡ ｮ Ｈ ｾ Ｈ ｬ ｉ ｸ Ｍ ｾ ｮ ｬ ｬ Ｉ ｬ ｟ ｸ ｉ + ｾ ｡ ｮ Ｈ ｂ Ｌ ｾ Ｈ ｬ ｉ ｸ Ｍ ｾ ｮ ｬ ｬ Ｉ ｬ Ｎ ｸ ｉ

+ Lan Ｈ ｌ Ｌ ｾ Ｈ ｬ ｬ ｸ Ｍ ｾ ｮ ｬ ｬ Ｉ ｬ ］ ｸ ｉ +( PM-I (x))Lx' 

while the corresponding gradient is obtained by differentiating equation (2.11) 

(2.11 ) 

(2.12) 

Since the coefficients [a] of the interpolation depend on the cell average values [¢ celiS]' the 

function and its gradient expressed in Equations (2.11) and (2.12) will also do. 

Equations (2.11) and (2.12) can be rearranged in a concise form 

(2.13) 

(2.14) 

where 
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(2.15) 

[ ｃ ｾ ｪ Ｂ J = ｾ ([ '¥ (lix -q"ID]' [B. '¥ (11x -q"ll) J, [ L( '¥ (lix -q"ID]' [PM_I (X)]) 
j _J 

(2.16) 

Finally, substituting the values of ¢ and its gradient at the midpoint of each cell face in tenns of 

the interpolation fonnulae (2.13) and (2.14), equation (2.6) reduces to 

Ｇ ｦ Ｈ ｄ ｹ ｾ ｪ ｮ Ｍ ｾ ｇ ｮ Ｉ ｾ ｾ ｡ ｮ Ｋ ｋ ｲ ｾ ﾢ ｰ ］ ｾ ｦ sP (2.17) 
1=1 

Equation (2.17) is the final CV -HRBF fonnula which couples the field value at the central cell 

of the stencil, ¢ P' with the values at the neighbouring cells centres, (¢ P' ¢w, ¢ E' ¢ s, ¢ N ) • By 

assembling equation (2.17) corresponding to all the stencils in the domain, a global system of 

equations for ¢ is obtained, therefore by inverting the corresponding global matrix the solution 

can be updated. After solving the global system of equations, the cell average values [¢ cell' ] are 

known and the corresponding values of the local interpolation coefficients [a ] are obtained 

from equation (2.10). With the values of [a] available, the value of the solution and its 

gradient, anywhere inside and in the vicinity of a cell can be reconstructed using equations 

(2.11) and (2.12). 

It is important to observe that at this point the boundary conditions are already imposed at the 

level of the local interpolation, therefore it is not necessary to incorporate them in the global CV 

system. Further assessments about this issue will be discussed later in section 2.4. 

The CV -KRBF can be obtained from the previous derivation where the Hermitian interpolation 

(2.7) is replaced but the simpler RBF interpolation used in the Kansa's approach: 

N 

¢(x) = 2: an \}' (1Ix Ｍ ｾ ｪ ｬ ｬ Ｉ + PM - 1 (x) 
n=1 

(2.18) 

where N is the total number of points considered in the local interpolation, i.e. control volume 

centroids, boundary condition points and POE points. 
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The CV-HRBF and CV-KRBF method can be considered as a high order scheme for calculating 

diffusive fluxes, given the high order accuracy of the RBF derivative approximation (Madych 

(1992); Fornberg and Flyer (2005». Furthermore a kind of an analytical upwinding scheme is 

introduced by imposing the PDE operator in the interpolation formula which contains the 

desirable information about the advective velocity field. In this approach each local system is 

centrally defined, without the need of using interpolation stencils predefined according to the 

magnitude and direction of the local advective flow velocity, i.e. it is not necessary to use any 

kind of up winding scheme. This aspect will be considered in detail in the next chapter. 

2.3 Stencil configuration and size 

In the previous section, the mathematical formulation for the proposed CV-KlHRBF method has 

been derived on the basis of a number of stencils equal to the number of elements used to 

discretise the physical domain. From here on, this approach will be named as the one-stencil-

one-cell configuration. However this is not the only approach that can be considered in the 

implementation of the new CV approach proposed. 

The conservativeness of the numerical scheme is the first condition that needs to be satisfied 

when choosing the stencil configuration; i.e. in order to conserve mass, the flux leaving a 

control volume through one of its faces, must be equal to the flux entering the neighbouring 

control volume that shares the same face. In the one-stencil-one-cell configuration, as the one 

sketched in Fig. 2.2, this property is guaranteed by coupling the neighbouring cells in the local 

problem formulation. To resolve a particular control volume or cell, the two cells adjacent to a 

face must be included in the local problem; for example five cells will be considered in Stencil! 

for the layout shown in Figure 2.2. The overlapping region formed by Cells 1 and 2 guarantees 

the uniqueness of the flux value for face A when computing the interpolations for stencils, 1 and 

2. This is equivalent to solving two local boundary value problems that have the same 

governing equation and the same solution value in the points falling in the overlapping region. 

For this reason, at least from a theoretical point of view, the two solutions must be identical due 

to the uniqueness ofthe corresponding boundary value problem. 
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. ;:r-A 
• 

1 2 
Figure 2.2 - One-stencil-one-cell configuration. Round symbols correspond to points where the 
internal (POE) operator is imposed; square symbols for the Dirichlet operator. 

An alternative to guarantee the conservativeness condition is to form a stencil for each cell face 

as shown in Figure 2.3. This is referred to as the one-stencil-one-face confi guration. The face 

flu x is computed only once for every cell face and the cell flu x computation takes account of the 

number of stencils equal to the number of its faces. In Fig. 2.3 the basic cross stencil needed to 

calculate the flu xes at the faces of cell I is split into four simpler problems. This alternative 

requires the interpolation in those four regions containing the faces of cell I, but with each of 

them having significantly less interpolation points in comparison with those used in the one-

stencil-one-cell approach. 

• 

• • 

1 • 

Figure 2.3 - One-stencil-one-face configuration. Round symbols correspond to points where the 
internal (PDE) operator is imposed; square symbols for the Dirichlet operator. 

]n terms of computational cost, the two configurations described above perform differently. In 

the one-stencil-one-cell configuration the total number of control volumes and stencil s are the 

same and equal to the total number of elements (Nele). On the other hand, the one-stencil-one-

face alternative requires a larger number of stencils than cell s, with the number of stencils equal 

to Nst = p Nele for Nele cell s, where P changes with the number of dimensions and the type 

of cell. For the case of 3D problems, the resulting value of P is between two (unstructured 

meshes) and four (structured meshes). However the impact on the computational cost of the 

24 



increment in the number of stencils, and consequently the number of local interpolations for the 

one-stencil-one-face alternative, is somehow balanced by the reduction on the stencil size, as it 

is evident by comparison of Figure 2.2 and Figure 2.3. 

Although in principle the one-stencil-one-cell configuration guarantees the consistency of 

fluxes, due to the uniqueness of the solution induced by the overlapping region, numerically 

some discrepancies are observed due to the numerical error. On the other hand the one-stencil-

one-face approach always guarantees the flux consistency since the flux reconstruction in a face 

shared by two cells is performed using the same interpolation. 

Once the base for the stencil is chosen, either the cell-face or the cell-element, the points to be 

included in the interpolation need to be determined. The element structure can be exploited to 

choose a cloud of points that are well spaced between each other. In fact, having a smooth 

distribution of the radial distances between the trial centres of the interpolation significantly 

eases the solution of the local boundary value problem. The minimum number of control 

volume centres to be included in the interpolation must guarantee the coupling between the 

global unknowns. This number changes with the stencil configuration used. In the case of the 

one-stencil-one-cell configuration, the centre of the control volume and the cell centre of its 

neighbours must be included, Figure 2.1. Where the one-stencil-one-face configuration is 

adopted, the cell centres to be included are those of the two control volumes sharing the face 

considered. The POE points can be placed in the face integration points and/or in the element 

nodes, while in the presence of domain boundaries, always coinciding with the control volume 

faces, the corresponding boundary differential operators can be applied to the face nodes and/or 

integration points. Due to the meshfree character of the local RBF interpolation, the selection of 

the points to be included in the stencil is extremely flexible and can be adapted depending on 

the type of problem. 

As in the case of other classical control volume schemes, there are two ways of refining a 

numerical solution: by increasing the number of elements utilised to discretise the domain, and 

by improving the accuracy of the local interpol ants. There are no particular differences to 

highlight for the first approach. Instead it is worth analysing the flexibility introduced by the 

RBFs in refining the local interpolation. As explored by Moroney and Turner (2006) (2007), the 

number of control volumes centre included in the interpolation can be increased considering the 

next level of neighbours. This strategy returns a global matrix with a larger number of non-zero 

entries, and it increases the size of the local system. However, it generally leads to a significant 

improvement in the solution. When polynomial functions are used rather than RBFs, enhancing 

the order of the interpol ants for unstructured meshes is not trivial, and more importantly, it 
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requires the solution of local linear systems, which can present ill-conditioning issues also for 

small sizes, Abgrall (1994) and Dumbser and Kaser (2007). 

In addition, the eV-KlHRBF method offers the possibility of improving the accuracy of the 

interpolants, increasing the number of the PDE points. This approach returns a larger local 

system without introducing any extra non-zero entries in the global sparse matrix. However, 

increasing the number of points where the local interpolation is required to satisfy the PDE 

operator behind a certain threshold does not improve the numerical solution due to the ill-

conditioning issues related with the solution of the local system. If the number of PDE points 

used in the local interpolation is larger than a number as low as 10-15, the condition number of 

the local interpolation matrices quickly increases, and special numerical algorithms are required 

to find the corresponding inverses. In the numerical problems solved during this work, it was 

found that few POE points were necessary at the local level to achieve considerable 

improvements. Also, increasing the number of data points, i.e. the number of control volume 

centres where the global unknowns are placed, leads to ill-conditioning issues. But for these 

points where the Dirichlet operator is applied, the practical threshold is remarkably larger 

(around 50). If it is necessary to further improve the accuracy of the solution locally, it is 

recommended to refine the ev mesh instead of increasing the number of interpolation points 

behind the indicated thresholds; this is to avoid large increments on the computational cost due 

to the use of special algorithms to invert the local interpolation systems. In this work, it was 

found that if the local system size goes above 50x 50, the computation of a free-numerical-noise 

solution requires expensive methods, such as singular value decomposition or QR 

decomposition. 

2.4 Boundary condition implementation 

The mesh less nature of the proposed method at local level impacts directly on the 

implementation of the boundary conditions (BC). Typical constraints of classical control 

volume schemes, such as the need for ghost or dummy cells at the boundaries, are removed by 

directly imposing the boundary conditions in the solution of the local mesh less interpolation 

problem. In addition, boundary conditions can be applied everywhere inside the stencil without 

being confined to cell faces, opening great opportunities for the investigation of moving 

boundary problems. Imposing the Be on the local interpolation also allows an additional 

reinforcement to the global system terms (known) that express the Be in the sense of the 

classical ev approaches. In this way a more accurate and robust solution in the proximity of the 

domain boundaries can be obtained. Consider a domain boundary where a Neumann condition 
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is applied and a control volume face that fall s in this boundary, e.g. face I in the example of 

Figure 2.4. 

• 

Figure 2.4 - Boundary condition implementation, boundary control volume. Round symbols 
corresponds to points where the internal (POE) operator is imposed; squa re symbols for the 
Dirichlet operator and diamond symbols for the boundary operator. 

The control volume equation (2.6) can be rewritten separating the numeri cal integrati on carri ed 

out on face I 

(2. 19) 

Since the projecti on of the gradient along the normal of the face is given by the Neumann 

condition, the diffu sive contribution to the flu x integral that appears in the fir st member of 

equation (2.19) is known and can be moved to the ri ght hand side of the equation 

(2.20) 

The advective term of the integral requires the value of the functi on in the centre of the face. It 

will be reconstructed using the RBF interpolati on, which already sati sfi es the BC at the 

boundary points of the stencil. On the contrary, if the known BC is of the Diri chlet type, the 

advective flu x can be imposed in the control volume equati on, i.e. given the value of t/J on S) in 

equati on (2.19), and the di ffusive flu x is reconstructed by the local RBF interpolati on. This way 

of implementing the boundary conditions will be referred as BC-cvrbf. 

Alt ernati vely both terms of the flu x integral on face I can be treated as unknowns and both the 

value of the function and its gradient will be reconstructed by the RBF interpolation; this 

method of imposing the boundary conditions wil l be named BC-rbf. This type of 
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implementation can be very useful if the boundary conditions are known only in the nodes of a 

boundary face but not in its integration points. In this case using the BC-rbf approach is 

equivalent to interpolating the BC values at the nodes of the face to reconstruct the values at the 

integration points. 

A numerical example with a comparison between these two alternatives of implementing the 

BC is given in section 2.7.5 

2.5 Computational cost considerations for the CV-KRBF and 

CV-HRBF 

The global system obtained with the CV-KlHRBF method is sparse as those deriving from other 

classical CV discretisation schemes, while the bandwidth of its matrix depends on the number 

of control volume centres included in the local interpolation. For a fast solution of this type of 

system there are several sparse iterative solvers available in literature, and usually different type 

of preconditioners are used to accelerate the convergence algorithms, (Saad (1996), Saad (1988-

2000». Throughout the numerical experiments reported in this work, the Generalised Minimum 

Residual Method (GMRES) is used for the solution of the sparse linear system and a truncated 

incomplete LU factorization (lLUT) is adopted to precondition the system. This solution 

technique was found to be quite robust. However other efficient sparse system solution 

algorithms as the flexible GMRES (FGMRES) or the Conjugate Gradient (CG) algorithm were 

not tested because it was beyond the scope of this thesis. 

The computational cost of the CV-KlHRBF diverges from the classical CV schemes due to the 

handling of the construction of the local interpolants. In fact, it is common practice for most of 

the CV schemes to reconstruct the cell faces fluxes using simple finite difference formulae that 

can be evaluated on the flight during the computation, see section 1.1.1. Instead, to obtain the 

local RBF interpolation of the CV-K/HRBF, a local linear system fully populated needs to be 

solved for each element of the mesh. This operation implies an extra computational cost of the 

order NstxN3
, where Nst is the total number of stencils and N is the number of points used 

for each local interpolation. Although this is an important cost to bear in mind for real life 

applications, it must be said that to achieve higher order CV schemes for unstructured meshes, 

other researchers ended up with the same problem (see Abgrall (1994), Dumbser and Kaser 

(2007) and Moroney and Turner (2006) (2007». 
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In general, for the CV-KlHRBF, this cost can vary significantly with each type of application, 

according to the form of the PDE operator appearing in the local interpolation formula. 

Comments regarding this extra computational load will be given throughout the thesis for each 

application considered and for each variation of the numerical formulation. 

2.6 The RBF free parameter computation 

Up to this point, the formulation of the CV-KlHRBF has been presented considering a general 

RBF \f' . In the practical implementation, one of the functions listed in the tables 1.1 and 1.2 

must be chosen. The preferable function must feature a high order of convergence, and if a 

polynomial needs to be added in order to obtain an invertible interpolation matrix, the resulting 

number of polynomial terms should not be comparable with the number of trial centres typical 

of the CV-KlHRBF local interpolation (15-20 centres). In this extreme case the function would 

behave similarly to a multi dimensional polynomial, leading to the ill-conditioning issues 

already mentioned in section 1.1.2. The Thin-Plates Splines (TPS) are discarded because they 

require a large number of polynomial terms when used in three-dimensional problems, whereas 

multi-quadric (MQ), Gaussian (GA) and Compactly Supported (CS) are all valid candidates. 

These three functions are all characterised by a free parameter that can in theory be chosen 

arbitrarily. In the case of the MQ and GA functions this parameter is indicated with Cs and it 

acts as a shape parameter. When Cs is small the resulting MQ interpolating surface is pulled 

tightly to the data points, forming cone-like basis functions. As Cs increases the peak of the cone 

gradually flattens. Similarly for the GA functions the interpolating surface around the centre 

decays more rapidly as the shape parameter decreases, and for extremely small values the 

interpolating function picks around the centre. Finally a CS function can be defined only if the 

radius that delimits its region of action is fixed, i.e. its compact support. In these three functions 

the free parameter has a dimension of a length, and it represents an intrinsic weight of the 

function on a point located at a prescribed distance from the centre that defines the RBF. 

How to choose such a parameter is not a trivial task and is still subject of active research. Most 

of the work found in the literature relates to the MQ functions, which featuring an exponential 

rate of convergence, are the most attractive between the available RBFs. In general, when an 

interpolation problem is solved by the use of global RBF interpolants such as the MQ or GA, 

increasing the shape parameter leads to an improvement of the interpolation. If this value is 

pushed behind a certain threshold the condition number of the interpolating matrix becomes too 
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large, and special algorithms are needed to find a noise-free solution. In fact, the condition 

number of the interpolating matrix grows like c;c, where Pc is a positive integer that depends 

on the number and dimension of the nodes considered in the interpolation, Wright and Fornberg 

(2006). It has been shown that the accuracy of a RBF interpolant is inversely related to the 

condition number of the interpolating system, Schaback (1995). An interesting shape parameter 

optimisation based on this result is found in Cecil et al. (2004) where a local RBF interpolation 

is utilised to reconstruct the gradient in each node of the computational grid. Each interpolation 

stencil is formed including the closer neighbours of the node for which the gradient 

reconstruction is needed, and for each stencil an optimal shape parameter is computed. The 

value of Cs is increased iteratively until the condition number of the corresponding 

interpolating system remain smaller than a prescribed value. In practice the maximum condition 

number allowed is only related to the precision of the machine system used. Since they are 

solving a transient problem this is done prior to time evolution and optimal values of the shape 

parameter are stored in memory. This algorithm allows for optimisation on different parts ofthe 

domain where mesh spacing may vary greatly, but it is not practical if the interpolating matrix 

changes with time because the evaluation of the condition number is prohibitively expensive. 

The value of the shape parameter does not have to be constant, i.e. in an interpolation formula 

each function can be assigned a different value. Based on this simple consideration, Kansa and 

Hon (2000) elaborate an empirical formula to relate the shape parameter of the MQ functions 

with the curvature of the function being interpolated. In this work the interpolation problem is 

solved twice: an approximated curvature of the function is first computed using a constant shape 

parameter value, then a second more accurate solution is found with an optimal variable shape 

parameter that is obtained from the curvature distribution previously computed. It is shown that 

using a variable shape parameter proportional to the function curvature leads to significant 

improvements, but this is obtained at the expense of an extra non-linearity that does not exist in 

the physics of the problem. 

Only a few of the research works carried out on the shape parameter issues and selection 

algorithms have been mentioned in this section. More attempts and details about this problem 

that afflicts the RBF collocation methods can be found in Carlson and Foley (1991), Hardy 

(1971) and Rippa (1999). 

None of the expensive optimisation methods reported above are adopted in this thesis to 

evaluate the RBF free parameter, though in principle they can all be applied to the local 

interpolation scheme of CV-KlHRBF formulation. Instead, simple empirical rules based on 
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geometrical considerations are used to compute a sensible value for the shape parameter 

contained in the MQ and GA functions and the compact support appearing in the CS function. 

For consistency, and due to the analogous geometrical meaning, the compact support radius will 

be also indicated with cs' 

When the element mesh that discretises the computational domain is uniform or it does not 

present great variation in the element sizes, a constant Cs can be adopted for all the interpolation 

stencils. In this case the value is usually taken to be proportional to the element edge length: 

(2.21) 

• The value of Cs can vary significantly when looking for an optimal solution, but in the problems 

solved in this work, using twice the element edge length always returned a good interpolation. A 

different approach is adopted in the case of strongly non-uniform meshes for which a different 

shape parameter value is computed for each interpolation stencil; this is taken as a fraction of 

the maximum distance found between the stencil points 

(2.22) 

• 
In this thesis, choosing Cs between 0.1 and 1.0 guaranteed nearly in every case good solutions 

(though not necessary the most accurate ones). This approach seems to be more suitable in the 

case of strongly non-uniform meshes because it allows a mesh-independent choice of the shape 

parameter value. However, it does not lead to any significant improvement because the optimal 

shape parameter value seems dependant on the interpolated function as well as on the 

distribution ofthe test points as explained in the introduction of this section. 

In the remainder of this thesis, the absolute value of Cs will be indicated for those numerical 

experiments where a constant shape parameter is adopted, formula (2.21). Instead when a 

different shape parameter is computed for each stencil, equation (2.22), the value of c; will be 

given. 

2.7 Numerical results 

One and three-dimensional numerical examples for which an analytical solution is known, are 

proposed to validate the CV-KlHRBF method. This assessment also aims to understand the 
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potential of this new numerical scheme in all its possible configurations: the accuracy and 

robustness of the CV-KRBF and the CV-HRBF are compared, and the performance of the 

different stencil configurations introduced in section 2.3 is analysed. 

The relative percentage error, equation (2.23), and the L2 -norm error, equation (2.24), are used 

as estimators of the numerical results against the analytical solutions 

E%= ¢-¢cn:r xlOO 
¢au 

Nnndes 2 
L [¢(X;)-¢ana(X;)] 
1=1 

L2error = 
Nnodes 

(2.23) 

(2.24) 

When a large variation of the function value occurs, a dimensionless L2-norm error 

(L;error = ｾ ｭ ｯ ｲ / ¢max) is used to obtain an estimator that is scale effect-free. Unless stated 

otherwise, a multiquadric RBF is employed in the local interpolation algorithm and the value of 

the shape parameter is chosen experimentally (iteratively) in order to minimise the absolute L2 -

norm error. 

2.7.1 One-dimensional advection diffusion reaction problems: CV-

KRBF I CV-HRBF comparison 

The performance of the CV-KRBF and the CV-HRBF is compared in one-dimensional steady 

advection-diffusion reaction problems for which the advection is predominant. In all the test 

cases presented in this section only the one-stencil-one-face configuration sketched in Fig. 2.3 is 

adopted. Taking a stencil far away from any domain boundary, and considering only hexahedral 

elements, it is evident that even the largest interpolation is supported from a small number of 

points: 2 Dirichlet points located at the cell centres, and 11 PDE points placed at the cell face 

centres. The analysis is focused on the comparison between the CV -KRBF and the CV -HRBF 

using the same interpolation stencil. The performance and efficiency of the one-stencils-one-cell 

and one-stencil-one-face configurations will be discussed in section 2.7.2. 

2.7.1.1 Advection-diffusion problem (shock profile) 

In this section the steady-state advection-diffusion equation is considered in a channel of 

dimensions [l.OxO.2x0.2]. The governing equation is given by 
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(2.25) 

where D is the diffu sion coefficient, U, the component of the advective velocity in the 

direction and ¢ the potential. The followin g boundary conditions are imposed 

¢ = I, x= O, o <y < 0.2, 0 < z < 0.2 

¢ = 2, x= l, o <y < 0.2, 0 < z < 0.2 

a¢ = 0 at the remaining wall s of the channel. an 

a) 0] 11 11111111 11111111 1111 11 11 11111111111111 
o 0.2 0.4 0.6 0.8 1 

X 

b) 0] 11,1,1 ,111,111,11111111,1111 111111111111111 
o 0.2 0.4 0.6 0.8 1 x 

0.2 1-r-T-rr..,..,-rrrrrrrrnrrrrTTTTITrrrTTTTrTTIrmTnmmT 

c) 

0.4 
x 

Figure 2.5 - Two-dimensional view at y=O.1 of the three meshes used to solve the diffusive shock: a) 
uniform with 9x9x41 points, b) non-uniform with 9x9x41 point , c) non uniform with 5x5x81 
points 

For a one-dimensional advective fi eld, UI = const and U
2 
= U

3 
= 0 , the above problem has the 

following analytical solution 

l -exp(UI (X- I)) 
¢( x) = 2 - Ｍ Ｍ Ｍ Ｇ Ｍ Ｍ Ｚ Ｍ Ｍ Ｇ Ｍ Ｍ Ｍ Ｚ Ｍ ｾ

l -exp(-UI ) 
(2.26) 

The parameter that describes the relative influence of the advective and the diffusive 

components is the Peclet number, Pe = ULR / D , where U is the velocity, L/I a reference length 

scale (the channel length in the present case) and D the diffu sion coefficient. The above 

problem is solved for values of the Peelet number equal to 50, 100,200 and 400. 
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The numerical experiments are carried out in a uniform mesh of 41 x9x9 points for the solution 

corresponding to the case of a Peelet number of SO, a non uniform mesh of 41 x9x9 for the case 

of a Peelet number of 100 and on a non-uniform mesh of 81 x5x5 points for the cases of Peelet 

numbers of 200 and 400. A 2D view of the meshes described above in a cross section at y = 0.1 

is shown in Figure 2.5 
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Figure 2.6 - One-dimensional advection diffusion problem (Advective-Diffusive front) predictions 
at four different Pe values: 1) Pe=50, 2) Pe=100, 3) Pe=200, 4) Pe=400; a), CV-KRBF; b), CV-
HRBF; c), Relative percentage error. The symbols represent the analytical solutions; the dashed 
black lines refer to CV-KRBF; the full black lines refer to CV-HRBF. 

The comparison between the results obtained with the CV-KRBF and CV-HRBF approaches, 

for the four different Peelet numbers considered, is shown in Figure 2.6. For clarity in the 
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presentation, the results are only shown for x> 0.8 since the value of the potential is almost 

constant for x :::;; 0.8 in the cases considered here. As can be observed from the results in Figure 

2.6, both approaches are capable of reproducing the analytical solution accurately for the values 

of the Peelet number tested. However, the CV-KRBF approach always exhibits a larger error at 

the shock front than that one obtained with the CV-HRBF approach. This is confirmed from 

Table 2.1 where minimum L2 -norm errors are reported and their corresponding optimal shape 

parameters are listed. 

CV-KRBF CV-HRBF 
Peelet 

L2 -norm error L2 -norm error Cs Cs 
50 1.1 Ox I O·.l 0.09 1.02x I ｏ ﾷ ｾ 0.02 
100 1.43x10·.l 0.1 1.00x 10·.l 0.01 
200 1.66x 1 ｏ Ｍ ｾ 0.002 5.40x 10"" 0.002 
400 4.21 x 10·J 0.009 4.00x I 0"" 0.002 

Table 2.1 - Error and shape parameter values for the simulation of the one-dimensional advection 
diffusion problems for four different Peelet numbers 

2.7.1.2 Axisymmetric Laplace problem 

Consider the solution of the Laplace equation in a circular cylinder with an internal circular 

hollow cross section. At the internal and external surfaces a constant value of potential is 

prescribed. Under these conditions, in cylindrical co-ordinates, the problem is defined by the 

following axisymmetric equation 

Ａ ｾ Ｈ ｲ ､ ﾢ Ｉ ］ ｯr dr dr (2.27) 

where r is the radial coordinate and ¢ is the potential. By expanding the cylindrical Laplacian 

operator in equation (2.27), the following expression is obtained 

or (2.28) 

The analytical solution ofthis problem is given by 

¢(r) = A+ Bln(r) (2.29) 

where 
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with rMAX and rmin as the external and internal radius, respectively. Equation (2.28) can be 

viewed as a one-dimensional advection-diffusion problem with a variable reaction coefficient, 

1/ r2 and featuring a compressible flow with a negative convective velocity, - 1/ r . In this way, 

this equation takes the same form of equation (2.1) with values of D = 1, VI = - 1/ r, 

V2 = V3 = 0 , Kr = 1/ r2 , Is = 0 and ¢ = ¢(r). As can be observed from Equation (2.29), the 

analytical solution of this boundary value problem has a singularity when r = rmin = O. The 

solution of this problem is chosen here to examine the behaviour of the CY-KlHRBF numerical 

solution in the limit rmin ｾ O. 

The one-dimensional problem defined by equation (2.28) with boundary conditions 

¢(rMAX ) = 2 and ¢(r,ni.J = 1 will be solved here as a 3D problem in a channel defined by the 

domain rmin S x = r S 1, 0 S Y S 0.2 and 0 s z s 0.2, with zero lateral flu x and given 

constant potential at the inlet and outlet boundaries, i.e. ¢(x = r,nin ) = ] and ¢(x = r,nin ) = 1. 

Two different values of r · ( rmill = 0.0 I and 'mill = 0.003) are tested and each of the cases is mIn 

solved using a different mesh. Each mesh consists of 5 points in the y and z directions and 81 

points in the x direction. However the mesh used for rmin = 0.003 features a larger point density 

close to the near-singularity, see Figure 2.7.b. 

0.2 

III I I 

0.2 

00 0.6 0.8 
X X 

(a) (b) 

Figure 2.7 - 2D view at y=O.l of the two meshes used for the computation of the axisymmetric 
Laplace problem: a) mesh used for 'min = 0.01, b) mesh used for 'min = 0.003 

In Figure 2.8 the computed solutions are compared against the analytical solution for both cases. 

For the case of rmill = 0.0 I, both approaches are able to reproduce the analytical solution with a 

good degree of accuracy, indicating the ability of the CV-K/HRBF method to handle problems 

with a strongly varying velocity field and reaction coefficient. However for the case of 

r . = 0.003, the CV -HRBF method is no longer able to resolve the problem accurately, whereas 
min 

the CV-KRBF is still matching the analytical solution, see Figure 2.8.2a, Figure 2.8.2b. It 
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appears that the Kansa's scheme interpolation performs better than the Hermitian one in solving 

this problem. Increasing the number of points in the local interpolation stencil overcomes this 

drawback, but the solution of the CV-KRBF solution remains slightly more accurate. The effect 

of the local convergence and of adopting different stencil configurations will be investigated 

further in the following sections. Finally, the values of the optimal shape parameters found for 

this numerical test case are reported in table 2.2 together with their corresponding L2 -norm 

errors. 
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Figure 2.8 - One-dimensional axisymmetric Laplace problem: I) Fml,,=O.OI, 2) Fml,,=O.003; a), CV-
KRBF; b), CV-HRBF; c), Relative percentage error. The symbols represent the analytical 
solutions; the dashed black lines refer to CV-KRBF; the full black lines refer to CV-HRBF. 

CV-KRBF CV-HRBF 
Internal Radius L2 -norm error Cs L2 -norm error Cs 

0.01 9.S3x 1 0-3 0.07 1.09x I ｏ Ｍ ｾ 0.001 
0.003 l.S3x 10-z 0.03 7.41 x 1 ｏ Ｍ ｾ 0.02 

Table 2.2 - Error and shape parameter values for the simulation of the one-dimensional 
axisymmetric Laplace problem 

2.7.1.3 Advection-diffusion problem with a variable velocity 

In this section, a one-dimensional advection-diffusion problem with variable velocity is 

considered. The test case is implemented for a three-dimensional channel of dimension 

[1.0xO.2xO.2] and the advective velocity is assumed to be a linear function of the longitudinal 

direction. The governing equation to be solved is equation (2.25) where 
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The above expression describes a hypothetical compressible flow with a velocity field changing 

direction within the domain. Here a2 is a longitudinal shear stress intensity and ¢m and ¢OUI are 

the prescribed inlet and outlet constant values of the potential, respectively (with assigned 

values of ¢in = 300 and ¢OUI = 100). In the remaining domain surfaces, symmetry conditions 

(zero fluxes) are imposed to retain the one-dimensional characteristic of the solution. For 

simplicity, a unit value is assigned to the diffusion coefficient D. 

This problem has a simple analytical solution given by 

(2.30) 

In this case, two advective-diffusive fronts are formed at either ends of the domain, with the 

central region left relatively "empty". This effect is magnified as the value of G
1 

increases. The 

solution of this problem presents numerical difficulties, as both the large values of ¢ around the 

shocks and the very small values around the centre of the domain must be predicted accurately. 

The values of G2 = 40, G2 = 80 and G2 = 120, are tested and the computed solutions, using both 

CV-KRBF and CV-HRBF, are compared against the corresponding analytical solutions in 

Figure 2.9. A uniform mesh of(81x5x5) points is used for G2 =40, and a uniform mesh of 

(101 )(5)(5) points for the other two values of G2 (80 and 120). 

The solution is reproduced reasonably well throughout the domain for all the a
2 

values tested, 

with the CV-KRBF still performing slightly better than CV-HRBF, see Figure 2.9. It is 

important to point out that the apparent high relative error obtained at the centre of the domain 

is due to the dimensionless form used in the definition of the relative error (2.23) (absolute 

value of the difference between the numerical and analytical solutions divided by the absolute 

value of the analytical solution), which results in a division by a very small value of the 

potential in the centre region of the domain. An evaluation of the errors free from this type of 

scale effects is reported in Table 2.3 where the optimal shape parameter values and the 

dimensionless ｾ -norm errors for the three values of G2 tested are reported. 
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Figure 2.9 - One-dimensional advection diffusion problem with a variable velocity, at three 
different a2 values: 1) a2=40, 2) a2=80, 3) a2=120; a), CV-KRBF; b), CV-HRBF; c), Relative 
percentage error. The symbols represent the analytical solutions; the dashed black lines refer to 
CV-KRBF; the full black lines refer to CV-HRBF. 

CV-KRBF CV-HRBF 
a2 L,. -norm error Cs L,. -norm error Cs 
40 8.68xlO-J 0.04 2.83x Ｑ ｏ Ｍ ｾ 0.06 
80 2.26x 10-l 0.001 2.21 x I ｏ Ｍ ｾ 0.001 
120 2.81 x 10-": 0.001 2.78xI0- l 0.002 

Table 2.3· Error and shape parameter values for the simulation of the one-dimensional advection 
diffusion problem with a variable velocity 

It is worth noting that the cs-parameter dependency is very strong in this particular example and 

therefore a comparison between the two methods based on these results alone is inopportune. 

Changing the Cs parameter in a bounded range returns solutions which look quite different. In 

particular, for large value of a2 • Figure 2.10 exhibits evidence of the effect of the Cs parameter 

on the error along a longitudinal section over the entire domain for a2 = 120. This makes clear 

that the shape factor Cs is a data-dependent parameter and does not only depend on the 

geometry of the problem as already discussed in section 2.6. 
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Figure 2.10 - One-dimensional advection diffusion problem with a variable velocity, CV-HRBF, 
a2=120, influence of the c parameter on the solution. Full line, simulation using c=O.OOI; Dot dashed 
line, simulation using c=O.Ol; a), full scale plot; b) zoom on the bottom left corner of the full scale 
plot. 

2.7.1.4 Comparison between CV-KRBF and CV-HRBF: remarks 

The analysis carried out in the previous sections using the one-stencil-one-face interpolation 

stencil shows that the CV-KRBF and CV-HRBF methods are both suitable for the solution of 

advection-diffusion problems. Depending on the numerical test chosen, one of the schemes 

performs better than the other one, but during the numerical analysis presented so far no 

significant differences in accuracy have been found. The CV -HRBF usually allows smaller 

values of the shape parameter before the local system is seriously affected from ill-conditioning 

issues and becomes not solvable by the use of a standard direct solver (e.g. Gaussian 

elimination, LV factorization). This is probably due to the higher order of the derivatives that 

characterises the Hermitian interpolation, in which the boundary and the partial differential 

operators applied to the RBFs act as trial functions. 

On the other hand, the CV-HRBF scheme offers the possibility of applying multiple linearly 

independent operators in the same location (see section 1.1.2) and this flexibility offers 

remarkable advantages to optimise the computational efficiency of the method in the case of 

unsteady and non linear problems as will be shown in the next chapter. In addition, the local 

system resulting from the CV -HRBF discretisation presents a matrix that is symmetric and that 

has been proven to be invertible. While the symmetry can be exploited to reduce the time 

required to solve the local systems, the fact that the solution existence for the HRBF has been 

proven makes the CV-HRBF more robust than the CV-KRBF. In fact there is no formal proof 

yet about the solvability of the system deriving from the KRBF collocation method, section 

( 1.1.2). 
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Due to the reasons given above, the CV-HRBF is preferred over the CV-KRBF, and from now 

on all further developments related to the formulation are presented and tested only for CV-

HRBF. However it must be said that the CV-KRBF has the advantage of being easier to 

implement due to the relatively simple interpolation formula. While this feature may not be of 

primary interest in a research work, it could play a crucial role for many complex industrial 

applications. 

2.7.2 Three-dimensional advection-diffusion problem with variable 

velocity: comparison between different stencil configurations 

The CV -HRBF is validated in a three-dimensional advection-diffusion problem with a variable 

velocity field, and the performance and sensitivity to the mesh of the two stencil configurations 

introduced in Section 2.3 are analysed. The equation solved is Equation (2.25) with the 

components of the advective velocity field given by U. = atx, U2 = -a2y and U3 = a3 • This 

corresponds to a linear shear compressible flow with a constant density and a constant mass 

source term p (a. - a2 ). The potential function given by the expression (2.31) is a general 

solution of the advection-diffusion equation with the parameters specified above 

(2.31) 

where are A is an arbitrary constant. 

The CV-HRBF method is used to solve this three-dimensional advection-diffusion problem in a 

cubic domain of dimension [1 x 1 xl] using the potential function given in (2.31) to prescribe 

Dirichlet boundary conditions on the six cube faces, and assigning to the constant parameters 

the following values: A = 0.001, D = 0.1, a. = 0.5, a2 = 1.0 and a3 = 1.0. The solution of 

this problem shows a strong advection towards one of the domain corners where a smooth front 

is formed. 

In this example, two different meshes are tested, a coarser mesh with 26x26x26 points, 

corresponding to 15,625 cells, and a finer one with 36x36x36 points, corresponding to 42,875 

cells. Both computational grids present a non-uniform point distribution with a refinement in the 

region of the expected shock, see Figure 2.11. 
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Figure 2.1 t - Structured meshes used to solve the three-dimen ional convection-diffusion problem: 
a) coarse mesh, three-dimensional view; b) coarse mesh, view at x=0.96; c) coarse mesh, view at 
z=0.96; d) fine mesh three-dimensional view; e) fine mesh, view at x=0.97; f) fine mesh, view at 
z=0.97; 

Figure 2.12 - Solution 3D plots: t) x=0.96 for the coarse mesh, 2) x=0.97 for the fine mesh. a) 
analytical solution; b) one-stencil-one-cell solution, c) one-stencil-one-face solution. 

To assess the accuracy of the method and the behaviour of the two proposed stencil 

configurations, the numerical results are presented in two sli ces close to the high gradient 

regions. The first is a plane of constant x value, at x=0.96 for the coarse mesh and x=0.97 for the 

fine mesh, and the second a plane of constant z value, at z=0.96 for the coarse mesh and z=0.97 
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for the fin e mesh. For these two sli ces three-dimensional soluti on plots are reported in Figure 

2.12 and Figure 2.1 4 for both meshes and both stencil confi gurations. The analyti cal solution is 

also plotted on these planes for compari son purposes. 

Corresponding detail ed profil es are plotted in two dimensions in Figure 2.13 and Figure 2. 15 for 

clarity, where the analyt ical soluti on is also presented fo r comparison purposes. The one-stencil -

one-face approach fail s in the shock region when the coarse mesh is used. It undershoots the 

exact soluti on and is not able to predict the correct concave shape. This problem is not displayed 

in the case of the one-stencil -one-cell confi gurati on where the single cell stencil employed is 

larger and guarantees a local interpolati on that describes more accurately the soluti on in all 

directi ons. The drawback reported for the one-stencil -one-face confi gurati on improves with the 

use of the fin er mesh, but its soluti on still has a lower accuracy in comparison with the soluti on 

obtained with the one-stencil -one-cell config uration using the same fin er mesh. It is also worth 

noti cing that the sli ces and the profil es analysed for the fin er mesh are closer to the shock front 

than the secti ons considered for the coarse mesh. 

140 I -a) 
120 

100 

:;: 80 
0. 

60 

40 

20 

00 0.2 0.4 

180 

160 

140 

120 

i OO 

0.80 

eo 
40 

20 

Y 

y 

140 , 

120 

100 

:;: 80 
0. 

60 

40 

20 

0 

180 

160 

140 

120 

:c1OO 

0.80 

eo 
40 

20 

0 

I-b) 
'\ 
". ,,, 

\\ ,' . 
•• ;!. 
ｾ Ｎ

<. w 

Y 

2-b) 

" 

'\ 

ｾ. 
w 

6 
I-c) 

" , 

0 . , , 
·2 , , 
-4 . 
.e \ , 

0 0.2 0.4 0.6 0.8 
Y 

14 '. 
12 2-c) , ' , . , . 
10 , 
8 , 
6 

4 , , 

2 
0 " 

-2 
-4 

Y 

Figure 2.13 - Profiles extracted close to the shock: J) at x=O.96, z=O.96, ｏ Ｄ ｾ ｬ for the coar e mesh; 
2) at x=O.97, z=O.97, ｏ Ｄ Ｇ ｬ for the fin e mesh; a), one-stencil-one-cell configuration b), one-stencil-
one-face configuration; c), Relative percentage error. The symbols represcnt the ana lytical 
solutions; the dashed lines refer to one-stencil-one-facc configuration; the full lin es refer to one-
stencil-one-cell configuration. 

An evaluati on of the errors is reported in Table 2.4 where the optimal shape parameter values 

and the dimensionless ｾ -norm errors for the two structured meshes tested are reported. The 
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L2 -norm error is scaled by a factor equal to the maximum potential value found in the upper 

corner of the computational domain ( 1.0, 1.0,1.0). 
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Figure 2.14 - Solution 3D plots: 1) z=O.96 for the coarse me h, 2) z=O.97 for the fin c mesh. a) -
analytical solution; b) one-stencil-one-cell solution, c) one-stencil-one-face olution. 
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Figure 2.15 - Profiles extracted close to the shock: 1) at y=0.04, z=0.96, Ｐ ｓ ｾ Ｑ for the coarse mesh; 
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CV -HRBF one-stencil-one-face CV -HRBF one-stencil-one-cell 
Mesh 

ｾ -norm error Cs ｾ -norm error Cs 
15,625 cells 4.84xI0·j 0.1 1.72 x 10-j 0.02 
42,875 cells 6.25x 10-j 0.005 3.02x 10-j 0.01 

Table 2.4 - Error and shape parameter values for the simulation of the three-dimensional advection 
diffusion problem with a variable velocity 

The errors reported in Table 2.4 confirm that the solutions obtained with the one-stencil-one-cell 

configuration are more accurate, but increasing the number of cells increases the errors slightly 

for both stencils configurations. The result presented can be considered mesh independent, and 

the fact that small errors cannot be achieved is due in part to the topology of mesh used to 

discretise the computational domains. To refine the hexahedral mesh keeping the number of 

total cells limited, a distortion of the elements located around the comer where the diffusive 

shock takes place is needed. Since linear elements and the mid-point integration rule are used in 

the flux integration, the distortion of the cells introduces a significant error in the region where 

larger gradients are expected, which limits the accuracy of the CV-HRBF for this test case. In 

chapter 4, higher order integration and different mesh topology will be used to solve this 

problem again and significant improvements that support this hypothesis will be shown. 

The drawback found for the one-face-one-stencil configuration sketched in Figure 2.3 (2 

Oirchlet points located at the cell centres, and 11 POE points placed at the face centres, for 

hexahedral meshes) could be removed if a larger number of points was included in the 

interpolation. Although this is always possible this is not an option considered in this work 

because it would result in a too expensive alterative of the method. As observed in section 2.3, 

if the one-stencil-one-face configuration is adopted the number of local systems to be solved 

would be much larger compared to the one-stencil-one-ce\1 interpolation strategy. To keep the 

computational cost at a reasonable level, the extra number of local systems should be 

compensated by the reduction in size. Since it appears that including only two cell centres in the 

interpolation is not enough to obtain an accurate interpolation, the one-stencil-one-face 

configuration is discarded, and from now on the main efforts will be in finding the most 

efficient stencil of points based on the one-stencil-one-cell technique. 

It is worth observing that the one-stencil-one-cell configuration used in the comparison above 

does not follow exactly the scheme sketched in section 2.3. In fact to have a contained number 

of POE points, only the nodes of the central elements are used as POE points, see Sl-POE 

configuration in Figure 2.16. For a mesh made of only hexahedrons, a stencil internal to the 

domain includes: 7 Dirichlet points (one each cell centre), and 8 PDE points (one each node of 

the central cell considered). The choice of placing the POE points in the cell face centres, as 
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done for the one-face-one-stencil confi guration, impl ies that in the locati on where the flu x is 

reconstructed the interpolati on is required to sati sfy the governing equation yielding to a 

C2 continuity of the functi on approximation. In theory this should improve the accuracy of the 

flu x reconstructi on and the numeri cal scheme accuracy, but in practi ce no signifi cant 

differences are found when the POE points are located in the element nodes rather than in the 

face integration points. 

Another observation regards the number of points included in this type of interpolati on stencil. 

As addressed in secti on 2.3 a larger number of nodes does not necessaril y mean a more accurate 

interpolation, because of the ill -conditioning issues that affect the full populated local system. 

Different stencil sizes will be tested in the next secti on. 

2.7.3 CV-HRBF: local and global convergence analysis 

To analyse the convergence of the CY-HRBF method, the one-dimensional advecti on diffusion 

problem presented in section 2.7.1.1 and characteri sed by a Peclet number equal to 50 is 

considered. This case is chosen because it does not show a great dependency on the hape 

parameter and the attention can be focused on the convergence analy is. The computati onal 

domain and the boundary conditions are defin ed a in secti on 2.7. I. 1, and 3 mesh resoluti on 

are employed; fu: = 1/40 (M40), fu: = 1/80 (M80), fu: = 160 (M 160). wo combined effect 

are investi gated: refinin g the element mesh (global convergence), and increa ing the stencil ize 

that supports the local interpolati on (local convergence). For each of the three me hes de cribed 

above, 5 different stencil configurations, Figure 2. 16 and Figure 2.1 7, are te ted, and at each 

step the stencil size is increased either by adding some Diri chlet points or POE points. 

S I) S 1-PD ) 
• • 

• • • • • • 
• • 

Figure 2.16 - Interpolation tencil stopped at the fir st level of neighbouring cell. 1), Only Dirichlet 
points; S1-PDE), Dirichlet points and t set of PDE points. quare ymbol , Dirichlet point; Round 
Symbols, PDE point. 

In the stencils S I only the fir st level of neighbouring cell s are included in the interpolati on; 

instead in the stencils S2 another level is added. 
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Figure 2.17 - Interpolation stencil stopped at the second level of neighbouring cells. S2), Only 
Dirichlet points; S2-PDE), Dirichlet and I set of POE points; S2-PDE+), Dirichl et points and 2 sets 
of POE points. Square symbols, Dirichlet points; Round Symbols, POE points. 

The fir st set of POE points is located on the nodes of the central elements (S I-POE and S2-

POE), whereas for the second set (S2-POE+) the double coll ocation technique is used, and the 

PDE is applied on the top of the Diri chlet condition in the cell centres. The sketches of the 

stencil s reported in Figure 2.16 and Figure 2.1 7 are two-dimensional for the sake of simplicity 

in the presentati on, however the corresponding three-dimensional stencil s in the case of 

hexahedral cell s feature a total number of nodes equal to 7 for S I, 15 (7+8) for the S I-PDE, 33 

for S2, 41 (33+8) for S2-PDE and 74 (33+33+8) for S2-PO +. This number changes with the 

topology of element used. 

The error of the analysis combining different meshes with different interpolati on stencil sizes is 

reported in Table 2.5 and Table 2.6, together with the optimal shape parameter value. As 

expected refinin g the element mesh or/and increasing the number of cell centres in the 

interpolation stencil improves the soluti on ignifi cantly. It is interesting to ob erve the 

behaviour of the solution with and without POE points. Adding a mall set of only 8 PO point 

improves the solution by a factor that ranges from 1.5 to 4 depending on the me h, and in some 

cases using the S I-PDE stencil returns a soluti on more accurate than that obtained using the S2 

stencil. When increasing the number of POE points behind a certain threshold (S2-PO +) the 

ill- conditioning issues related to the solution of the local system do not all ow any further error 

reduction. It is worth noting that only conventional methods as the Gauss-Elimin ati on and the 

LU factorisation are adopted here to find the soluti on of the local system. 

M40 MSO M160 
Stencils 

L2 Cs L2 Cs L2 Cs 
SI 9.39x 10·j 0.02 2.91 x IO.J 0.07 6.68x 10-4 0.07 

SI-PDE 6.29x 10·j 0.02 9.20x 10-4 0.07 2.0SxI0'" 0.07 
S2 8.83x lO.

j 
0.02 2.35x 10-4 0.07 3.03x 1 0-4 0.06 

S2-POE S.94x 10·J 0.02 1.82x 1 0-4 0.07 8.79xI0·' 0.07 
S2-PDE+ 1.25 x I O·L 0.02 3.03xI0·J 0.07 1.S7x 1 0'" 0.07 

Table 2.5 - Convergence analysis: ｾ Ｍ ｮ ｯ ｲ ｭ error and optimal shape parameter values 
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Stencils 
M40 M80 M160 

MaxE% Max JYlIo Max JYlIo 
SI 7.32 1,28 0.25 

SI-POE 4.71 0.52 0.17 
S2 5.28 0.14 0.15 

S2-POE 3.28 0.11 0.05 
S2-PDE+ 6.71 4.60 0.18 

Table 2.6 - Convergence analysis: Maximum percentange relative error 

It is also interesting to observe the behaviour of the shape parameter optimal value, which for 

this test case seems not to vary significantly when switching from one mesh to another or even 

between different stencil configurations. At least for this particular case the shape parameter 

seems to depend mainly on the interpolated function and not so much on the point distribution. 

From the convergence analysis presented in this section it appears that the S I-POE stencil is 

definitively one of the most efficient: for a relatively small number of points in the local 

interpolation, 15, where only 7 of those are Dirichlet points and contribute to the global matrix, 

. a very accurate solution that presents a high convergence rate is obtained. Unless stated 

otherwise, the SI-POE stencil configuration will be used from now on in this work. 

2.7.4 CV-HRBF: RBF free parameter sensitiveness analysis 

Only the multiquadric (MQ) RBF has been used so far in the numerical tests presented, and for 

each simulation the optimal shape parameter value has been reported. Three different RBFs are 

tested in this section with the aim to study the accuracy of the CV -HRBF as the free parameter 

varies. The advection diffusion problem presented in section 2.7.1.1 is taken as a test case for 

this assessment, and a Peclet number equal to 200 is chosen because the solution is 

characterised by a sharp advective-diffusive front that makes the numerical solution quite 

sensitive to the RBF free parameter. In addition, it seems that for this problem the shape 

parameter does not change with the distribution of points (see section 2.7.3), and this 

circumstance makes this test case ideal to investigate the free parameter sensitivity when 

different RBFs are used. 

The same domain, mesh and boundary conditions described in section 2.7.1.1 are used to 

simulate this advection diffusion problem with the CV-HRBF method in which the MQ, the 

Gaussian (GA) and the Compact Supported (CS) RBFs are tested in the local interpolation. For 

each function, a set of Cs values are tested and the corresponding L2 -norm errors are computed 

to assess the accuracy of the numerical solution against the analytical one, Figure 2.18. The Cs 

values shown in Figure 2.18 are those for which a reasonable error is found. Taking a value out 
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of the range shown would return a solution with a large instability and for which the error 

diverges from reasonable values. 

0.01 

0.006 

10.004 

0.002 

10' 

a) 

10 10" 

0.009 b) 
10' 

0.0085 

0.008 

gO.007S 

• 0.007 

0.0085 

Q.OO!JO 10 10' 10 
c. 

Figure 2.18 - RBF free parameter assessment. a), MQ RBF; b), GA RBF; c) CS RBF. 

The minimum errors obtained using the three RBFs are shown in Table 2.7 

MQ GA CS 

L2 Cs L2 Cs L2 Cs 
1.44x 1 O·j 0.003 6.57xlO·3 3.0 4.51xlO·

j 
5.5 

Table 2.7 - Minimum errors obtained with three different RBFs and optimizing the free parameter 

For GA and the CS RBFs the range of the Cs values for which an accurate solution is obtained 

spans an order of magnitude (from 1 to 10). This range becomes wider when using the MQ 

functions; in fact reasonable values for the error are computed for values of the shape parameter 

that range from 0.001 to 1. In addition the MQ returns the smalIest achievable error. This 

analysis shows that the MQ RBFs are potentially the most accurate functions as already found 

by other researchers working on global interpol ants method, e.g. Madych and Nelson (1990). 

Also the free parameter selection is a problem for all the RBF tested in this section, and even if 

it seems that the MQ are the most sensitive to the selection of such a parameter, they show a 

large range of values that lead to a very accurate solution. 

2.7.5 Boundary condition implementation: comparison between two 

different approaches 

The two approaches to implement the boundary condition introduced in section 2.4, the Be-

cvrbf and BC-rbf, are tested here repeating the simulation of the advection diffusion problem 

with variable velocity presented in section 2.7.1.3. The case with highest advection is chosen for 

this validation ("t =120) to have a demanding numerical test that will allow magnification of 

the differences between the BC-cvrbf and the BC-rbf. The same domain, computational grid and 

boundary conditions described in section 2.7.1.3 are used in here. When the boundary condition 
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implementation is carried out following the BC-cvrbf approach, the advective flux of the cell 

faces placed at the inlet and outlet of the channel (Dirichlet BC) are considered as known, 

whereas for the cell faces located in the lateral walls (zero flux BC) it is the diffusive flux that 

can be considered as known. It is important to say that in the local interpolation the BCs are 

prescribed only in the face nodes and not in the integration points. The percentage relative error 

along the domain using the two approaches, Figure 2.19, shows a slightly smaller error in the 

case of the BC-cvrbf approach as expected. In fact imposing known fluxes will always be more 

precise than approximating them with an interpolation, although the improvement is not 

significant. The same optimal shape parameters was found for the two simulations that use the 

BC-rbf and BC-rbf approaches, Cs = 0.02 . 

b) 

·1 

x 

Figure 2.19 - BC-rbf/cvrbf comparison. Relative error along the domain for the one-dimensional 
advection diffusion problem with reactive velocity and al=40. a), BC-rbf; b), BC-cvrbf 

Figure 2.20 shows the solution in a profile extracted for x = 0.9875, z = 0.02 and 

o ｾ y ｾ 0.05 in the region close to the right boundary of the channel where a diffusive shock 

takes place. The analytical solution in this profile is a horizontal straight, but its numerical 

approximation presents a variation which results in being wider in the case of the BC-rbf 

approach. Also in this case the BC-cvrbf method appears to be more accurate in the prediction 

of the Neumann condition near the wall, but not significantly. 

48.5 48.& 
a) b) 

48 

47.5 { 
{ 

47 

411.5 

Figure 2.20 - BC-rbf/cvrbf comparison. Solution plotted for a transversal profile extracted in the 
region of the right front for the one-dimensional advection-diffusion problem with variable 
velocity. Square symbols, BC-rbf; Delta symbols BC-cvrbf; line with no symbols, analytical 
solution. a), plots with the analytical solution; b) zoom on the two numerical solutions 
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To conclude, it can be said that when possible it is always preferable to use the BC-cvrbf 

approach in the boundary implementation, but the BC-rbf method can be considered very 

reliable too, offering a valuable flexibility in those cases where the BCs are not known in the 

cel1 face integration points. 

2.8 Conclusion 

A general formulation of the CV-KlHRBF for the solution of boundary value problems has been 

presented, developing the idea of having approximate solutions of the governing equation as 

local interpolants. The flexibility and the accuracy gained by using a RBF mesh less collocation 

method in the control volume reconstruction step have been shown from a theoretical point of 

view as wel1 as in a number of numerical examples. The numerical experiments presented 

suggested that the most practical stencil configuration for the local interpolation is the one based 

on the mesh element, while having found the same level of accuracy between the CV -KRBF 

and CV-HRBF the second one is preferred due to its robustness and to the possibility of 

applying more than one linearly independent operators in the same location (e.g. 'double 

collocation technique'). 
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3 INITIAL/BOUNDARY VALUE PROBLEMS -

TRANSPORT PROBLEMS 

3.1 Introduction 

The groundwater quality is a well known problem that affects many countries around the world 

due to the high population density and the domestic/industrial wastes. Numerical models can 

greatly help in quantitative analyses of the migration of reactive substances in soil and 

groundwater, providing an important support tool for pollution control. In general these models 

should consider the concentrations of several species and should be able to simulate both solute 

transport processes, such as advection and dispersion, and chemical reactions, such as 

complexation, adsorption and precipitation. However the model can be significantly simplified 

based on the problem studied and on what the most relevant processes of the analysis are. 

Sometime it is appropriate and convenient to describe the transport of a single species through a 

porous media with a simple first-order rate law which has no feedbacks to other chemical 

species in the system. In other cases a complex chemical system must be taken into account, and 

the mathematical model of the transport problem requires the solution of large systems of 

equations, often non-linear and very demanding from a computational point of view. 

In this chapter the CV -HRBF presented in chapter 2 for the solution of general boundary value 

problem problems will be extended to study general transport problems, Orsini et al. (2009). To 

introduce the formulation the transport of a single species is considered, successively an 

example on how the method can be applied to non-linear multispecies systems is given. In both 

cases it is interesting to analyse the formulation of the local problem, which is the main novelty 

of the CV-HRBF method. In fact, to be consistent with what has been presented so far, the 

interpolation used in the cell flux reconstruction must continue to be a local approximation of 

the governing equation of the problem being solved. In the unsteady formulation of the CV-

HRBF an initiallboundary value problem is solved locally for each mesh element using the 

same time integration scheme adopted to update the global CV solution. Doing so, the same 

order of accuracy is retained for the time discretisation of the local and global solutions. 

A similar approach is followed in the case of non-linear transport, where the non-linear 

contribution that appears in the local problem is taken at the previous non-linear iteration and 

moved to the right hand side. 
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In the case of non linear problems the local formulation offers different alternatives of 

implementations. Since the non-linear governing equation is solved globally and locally, 

different solution techniques can be combined to reduce the overall number of non-linear 

iterations. For example, the Newton-Raphson could be applied to the global solution: and the 

Picard iteration technique to the local problem. During this thesis no work was carried out on 

highly non-linear problems (e.g. Navier-Stokes equations) because it was beyond the scope of 

the project that funded this research. However it is worth reporting the theoretical flexibility 

found in the CV -HRBF formulation that could be further investigated in future works. In the 

quasi-linear transport example presented in this chapter, only one possible way of linking the 

local problem to the non-linear global iterations will be considered. 

3.2 The CV-HRBF unsteady formulation - Transport of a single 

species 

The governing equation for the transport of a component in an nd-dimensional space can be 

written as: 

a¢ ］ ｾ Ｈ ｄ Ｎ ｾ Ｉ avj¢ +K '" at ax IJ ax. ax r'f' 
, J , 

i,j = 1,nd (3.1) 

where ¢ is a general scalar variable being transported, Dij is the diffusivity tensor, Vj is the 

component of the advective velocity along thej-direction, Kr the reactive coefficient. 

Equation (3.1), together with the following initial and boundary conditions (3.2) and (3.3) 

¢(x,o) = ¢o on (3.2) 

on an (3.3) 

describes an initiallboundary value problem having a unique solution. 

Discretizing the time derivative by the weighted Crank-Nicholson time-stepping scheme, 

equation (3.1) can be rewritten as follows 
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NO[ !,(D, ｾ Ｉ ｡ ｾ Ｋ ｾ ｦ )-f = 

N(O-l{ !, (D, ｡ ｾ Ｂ Ｉ aU::,f-" +K,f-" }f-" 
(3.4) 

where rj/ and r/Jt-t.t indicate the solution at the time t and t - M , respectively, and 0 S e S 1 

is a weighting parameter (for e = 0.5 the scheme can be considered second order in time). In 

the proposed time stepping algorithm, the original initiallhoundal)' value problem reduces at 

each time step to the solution of a boundary value problem, defined by the non-homogeneous 

partial differential equation (3.4). The non-homogeneous term is given in terms of the solution 

at the previous time step. 

Defining the following two partial differential operators 

(3.5) 

(
a [ a()J aut-t.t ( ) J Lt-t.t (.) = III (e -1) - Dij - - I + K, ( ) -1 ( ) 

ax; Ox) Ox; 
(3.6) 

The time discretisation form of governing equation (3.1), i.e. equation (3.4), can be rewritten in 

a more concise form, as 

(3.7) 

Following the approach of the classical cell-centred CV scheme, equation (3.4) is integrated 

over the grid elements, leading to 

(3.8) 

where the divergence theorem has been applied. The volume and surface flux in the integration 

formula (3.8) are treated numerically as explained in section 2.2 and the flux reconstruction is 
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carried out using an RBF interpolation, which for each time step is the solution of the local 

boundary value problem defined by Equation (3.2), (3.3) and (3.7). 

In the case of the unsteady formulation, the interpolation formula 2.7 presents the PDE operator 

L, that can vary with respect to the time, and so the collocation system (2.8). In addition, it is 

clear from equation (2.9) that for each point where the interpolation is required to satisfy the 

governing equation, the values of the operator L,_t.J need to be reconstructed starting from the 

solution at the previous time step. In fact, this is the non-homogeneous term that fills the local 

right hand side. The interpolation of the solution at the previous time step is also necessary to 

reconstruct the cell flux needed for the computation ofthe integral that appears in the right hand 

side of equation (3.8). When both the right hand sides of the global and local problems are 

computed, the solution can be advanced solving the local systems first, and then the global 

sparse linear system, from which the values of the unknowns in the cell centres at the new time 

are computed. 

3.3 The CV-HRBF formulation to solve multi-species reactive 

transport 

A mathematical description of a multi-species reactive transport for the saturated zone of the 

aquifer is given by 

(3.9) 

where cn is the concentration of one of the Nsp species considered in the system, D; is the 

dispersivity tensor, 1] is the porosity of the medium, qj the water flux, Rn ( c1) is the reaction 

term that in general depends from all the species (1 = 1, Nsp )' Equation (3.9) can be rewritten in 

a more concise form dividing the transport operator from the reaction operator 

(3.10) 

where 
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(3.11) 

The operator LAD takes account only of the advective-dispersive transport whileRn expresses 

the interaction between the species considered, and its model is strictly related to the nature of 

the chemical reactions. 

Some of the chemical processes take place so fast that they can be considered practically 

instantaneous when compared to the transport phenomena speed, i.e. the reaction is in 

equilibrium. The fact that equilibrium can be assumed for a part or all the reactions considered 

in the chemical system, determines the type of formulation chosen to solve the problem, Steefel 

and MacQuarrie (1996). When all of the species can be considered to be at equilibrium, the 

chemical problem can be completely decoupled from the transport, and local speciation driven 

by algebraic expressions based on mass action expressions are considered to take account of the 

chemistry. In this case it is common practice to divide the species in 'primary species' (or 

'components') and secondary species (or 'non-components'), with the number of secondary 

species equal to the number of equilibrium reactions. In order to reduce the number of equations 

that need to be discretised globally, only the transport for the total concentration of the 'primary 

species' is solved, which by definition is reaction free, Saaltink et al. (1998), Steefel and 

MacQuarrie (1996). Note that the total concentration of a primary species is the stoichiometric 

sum of the concentrations of the species that contains the primary species (e.g. 

TOr [ Ca2
+ ] = [ Ca2

+ ] + [ CaC03]). In this approach the extra equations needed to close the 

system and to compute the individual concentrations of each species are given by the mass 

action laws of the equilibrium reactions. These expressions relate the secondary and the primary 

species with the total concentrations, and even though these algebraic equations are local, they 

are usually non-linear. 

Different approaches must be adopted when part of the reactions cannot be assumed in 

equilibrium. The species involved in such reactions must be treated kinetically, which means 

that a transport equation of the form (3.9) must be solved for them. Due to the slowness of such 

processes, they interact with the transport, and cannot be decoupled from it. Even where fast 

reactions need to be included, however, it is possible to use a fully kinetic formulation, 

Chilakapati (1995); Steefel and MacQuarrie (1996). The fully kinetic approach obviates the 

need to solve the set of mixed algebraic and differential equations which characterise mixed 

equilibrium-kinetic systems and avoids the ad hoc iteration schemes which are often employed 

in solving the system. 
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The fully kinetic formulation is the only one considered in this chapter to give an example of 

how the CV -HRBF can be applied to solve multi-species reactive transport problems. 

In equation (3.9) the non-linearity is due to the reactive term that depends on the concentration 

c,. Several methods have been proposed to solve the coupled set of equations. The most 

straightforward way conceptually, but the most demanding from a computational efficiency 

point of view, is to solve the governing equations, including both reaction and transport terms, 

simultaneously. This approach is referred to as a one-step, global implicit or Direct Substitution 

Approach (DSA) and it uses Newton-Raphson for the solution of the non-linear system, KEE et 

at. (1985); Steefel and Lasaga (1994). Alternatively, it is possible to use operator splitting 

techniques to decouple the reaction and transport calculations. This approach which is an 

implementation of the Picard method includes the Sequential Non Iteration Approach (SNIA) 

and the Sequential Iteration Approach (SIA). The SNIA consists of solving the reaction and 

transport equations within a single time step in sequence, with no iteration between the two. In 

the SIA the reaction and transport are solved separately but iteration between the two 

calculations is carried out until a converged solution is obtained. A general overview of these 

methods can be found in SaaItink et at. (2004), Steefel and MacQuarrie (1996) while in Saaltink 

et at. (2001) a comparison in performance between the SIA and the DSA is carried out. 

Here the DSA is discarded in favour of the SIA method avoiding the construction and 

manipulation of the large matrix typical of the global implicit approach. At the same time the 

SIA should be more accurate than the SNIA approach, allowing the solution to converge before 

advancing to the next time step. 

The reaction operator R" (c,) that appears in equation (3.10) is divided into two parts to 

highlight the term that contains the concentration of the species cn being transported 

(3.12) 

where K, (c,) acts as a reaction coefficient for cn and it depends on other species, and ｒ ｾ (c, ) 

is the remaining part of the reaction term not containing cn • In general it will be I = 1, Nsp with 

1'# n. 
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Now substituting expression (3.12) into equation (3.10) and introducing a weighted Crank-

Nicholson time-stepping scheme, the system of equations that describe the reactive transport 

problem can be rewritten as 

(3.13) 

Where the two partial differential operators L1D and L1::t.t can be defined similarly to those 

ones of equations (3.5) and (3.6) 

(3.14) 

(3.15) 

Equation (3.13) can be linearised taking the values of the concentration c1 at the previous non-

linear iteration and moving the reaction term ｒ ｾ to the right hand side 

LAD(C"m)+K (cl,m-I)cl,m = LAD (cl-t.t)_RO(cl,m-l) In' 1 n I-t.t n n 1 (3.16) 

where m is the non-linear iteration index. Integrating equation (3.16) over each control volume 

of the mesh, and applying the CV -HRBF method, a linear system of equation for the unknown 

｣ ｾ ﾷ ｭ is obtained. The solution of such system allows to update the reaction terms ｒ ｾ and the 

reaction coefficient K" and a new system to refine ｣ ｾ ﾷ ｭ can be formed. This procedure 

continues until the following convergence criteria is satisfied 

(3.17) 
00 

where &'01 is the value prescribed for the tolerance. 

In the formulation of the local problem the linearisation of equation (3.13) is more substantial in 

order to reduce the computational cost, and the first order reaction term K,cn is entirely 

evaluated at the previous iteration and moved to the right hand side 
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LAD (ct•m) = LAD (ct-I!J) _ K (Ct•m-1) C,·m- 1 _ RO (C,·m- 1) 
I n I-I!J n r Inn I (3.18) 

In this way the matrix of the local system does not need to be inverted at each non-linear 

iteration. In fact the operator L:D remains unchanged. The algorithm explained above must be 

applied to all the species present in the system ( n = 1, Nsp ), but it is clear that only one species a 

time is evaluated and the resulting global matrix is considerably smaller than the one obtained 

using the DSA. A flow diagram of the algorithm is given in Figure 3.1. 

t=t+dt 

m=m+l 
STOP 

Print error message 

YES 

Figure 3.1 - Diagram of the non-linear transport algorithm used by the CV-HRBF. Nsp. number of 
species; m-max, maximum number of non-linear iteration; t-max, maximum value for the physical 
time. 

In the SIA applied to the CV-HRBF method, the interpolation used to reconstruct the cell flux is 

still an approximation of the governing equation and it can benefit of the analytical upwinding 

discussed in chapter 2. More details on the computational cost will be given in the next section. 
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3.4 Computational cost consideration for the transport 

formulation of the CV-HRBF 

The extra computational cost due to the solution of the local systems has been already analysed 

in section 2.5, however when the unsteady formulation of the CV -HRBF is considered this cost 

can vary significantly depending on the form of the POE operator appearing in the local 

interpolation formula. If the POE operator changes with respect to the time (e.g. due to a 

transient velocity field) the local systems must be solved at each time step, if instead the 

expression of LI remains constant the inverse matrices of the local systems are computed as a 

pre-processing step at the beginning of the computation and stored in memory. The same 

consideration applies to the case of the reactive transport formulation presented in the previous 

section. For this particular case it is interesting to note that all the species share the same 

velocity field, and that in first approximation the dispersevity coefficients are very often taken 

to be the same for all the species. Under these assumptions, the local systems corresponding to 

the different species concentrations, and associated with a single element, share the same 

matrix. If for example ten species are considered for the transport model, than having L1D that 

varies with time will involve re-inverting only one local matrix for each element at each time 

step. For this statement to be true it is also required that the same interpolation stencil is used for 

all the transported variables, a choice that appears to be as one of the most efficient anyway, as 

will be shown in the remaining of this section. 

The formulation of the CV -HRBF has been presented in section 2.2 considering a random 

distribution for the set of points used in the interpolation, and in theory this is always possible 

due to the local mesh less character of the method. However, an ad-hoc choice of the points 

included in the local RBF interpolation can improve significantly the efficiency of the method 

for unsteady problems. When f) = 1 the method is fully implicit in time and equation (3.7) 

simplifies to 

(3.19) 

In this case, to fill up the right hand side of the local system one must reconstruct the solution rp 

at the previous time step at all those points where the POE operator LI has been applied. The 

computation involved in the reconstruction of rp,-61 can be avoided if the POE points of the 

interpolation have the same location as the cell centres used to interpolate the values of rp . In 

fact such values come directly from the solution of the global system once it has been assumed 

60 



that the cell average values coincide with the values of the function at the cell centres. This type 

of double collocation scheme is permitted since the local Hermitian RBF interpolation scheme 

is adopted (see Section 1.1.2). In this case, the unit operator, i.e. the value of function (Dirichlet 

condition), and the PDE operator at each cell centre points are imposed. The local stencil which 

results from this double collocation strategy is shown in Figure 3.2. When 0 < .f) < 1 the 

simplification in (3.19) does not hold anymore, and the operator LHJ (fjJ'-tJ) needs to be 

reconstructed from the previous time step solution, as explained before. 

® 

® ® ® 

® 

Figure 3.2 - Double collocation stencils: Square symbols, Dirichlet points; Circles, points where the 
PDE operator is applied (in this case they coincide with the previous ones) 

The use of the stencil sketched in Figure 3.2 brings to an extra computational cost saving in the 

case of the non-linear transport formulation introduced in section 3.3. When the full implicit 

time stepping is considered, the linearised governing equation (3.18) applied to the local 

interpolation reduces to: 

LAD (c"m) = _c'-tJ _ K (c"m-l )c"m-l _ RO (c"m-l) 
, n n ,1 n nl (3.20) 

If all the species concentrations adopt the same double collocation stencil, then ｣ ｾ Ｍ ｴ ｊ , ｣ ｾ Ｌ ｭ Ｍ ｬ and 

c;,m-l are directly available from the solution of the global systems, and since the coefficient 

K, (c:,m-l) and the operator ｒ ｾ (C;-m-l) usually depend only on the values of the concentration 

and not from their gradient, no reconstructions are required during the non-linear iteration or to 

evaluate the solutions at the previous time step. 

3.5 Numerical results 

As an initial numerical test, an unsteady one-dimensional advection-diffusion problem in which 

the advection term is dominant is considered. In this test case the effect of the CV-HRBF 

implicit upwind is assessed by increasing the Pee let number up to the point where only the 
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advection component of the PDE operator is retained and the solution features a discontinuous 

travelling shock. Additionally, a series of reactive transport problems at low Peclet numbers are 

considered to evaluate the accuracy of the transient formulation in cases where the solution is 

characterised by smooth profiles. 

Where possible the numerical solutions are validated with their corresponding analytical 

solutions and the resulting numerical errors assessed as the number of control volume cells 

increases. Since the numerical simulations are carried out using three-dimensional software, the 

one-dimensional problems are solved in 3D channels applying no-flux boundary conditions at 

the lateral boundaries to retain the one-dimensional characteristics of the problem. A 

multiquadric RBF is employed in the local interpolation algorithm and the value of the shape 

parameter chosen experimentally (iteratively) in order to minimise the ｾ -norm (see Equation 

2.24) in few prescribed instants. 

The optimal values of the shape parameter found for the numerical examples presented in the 

next sections are listed all together in section 3.5.4. The stencil sketched in Figure 3.2, which is 

stopped at the first level of neighbouring cells, is used throughout this numerical section. When 

hexahedral meshes are considered this configuration features 14 points (7 Dirichlet + 7 PDE 

points), whereas for tetrahedral elements the total number of interpolation nodes is equal to 10 

(5+5), see Figure Appl in the appendix. 

3.5.1 One-dimensional transport of a single species 

A one-dimensional transport problem for a single species c can be formulated in dimensionless 

parameters as 

oc oc 1 02C 
-+-=--
ot ax Pe ax2 

(3.21) 

where Pe is the Peelet number. When equation (3.21) is solved in a semi-infinite domain with 

the following boundary and initial conditions 

c(x,O) = 0 

c(O,t) = 1, 

x;;:: ° 
/. oc(x,t) 0 
1m ｾ

x-+ao an 

its analytical solution is (Van Genuchten and Alves (1982» 

ｴ ｾ ｏ (3.22) 
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( ) 1 (X-I J ( x+1 J Cana x,1 =-erfc r:tD: +exp(xPe)erfc r:tD: 
2 2,,1/ Pe 2,,1/ Pe 

(3.23) 

The problem described by equations (3.21) and (3.22) can only be solved numerically in a finite 

domain. In the numerical solution presented here, the semi-infinite one-dimensional domain of 

the above initial! boundary value problem is taken as a bounded three-dimensional channel of 

size [1, 3Llx, 3Llx] where Llx is the discretisation increment in the x direction. A series of 

computational grids featuring three elements in each of the lateral directions, y and z, and a 

uniform distribution of elements with different values of Llx in the x longitudinal direction are 

used for the simulation of this test case. A zero flux boundary condition is imposed at the lateral 

walls as well as at the end cross section ofthe computational domain, i.e. at x = 1 . 

3.5.1.1 High Pee let number 

Values of the Peelet number of 500, 1000 and infinity are considered and, in each case, 3 mesh 

resolutions are employed; tu = 1/40 (M40), Llx = 1/80 (M80), tu = 1/200 (M200). 

To compare the results obtained with the analytical solution (3.23) the simulations must be 

stopped before the travelling wave reaches the end of the computational domain, at x = 1, i.e. 

before numerical reflex ion affects the solution field in the domain considered. Unless stated 

otherwise, a time step equal to 0.001 is used and the simulation stopped at 1=0.5, allowing the 

front to propagate until the middle point of the computational domain. A convergence analysis 

using a full implicit time integration scheme comparing the numerical results with the 

corresponding analytical solutions is presented in Figure 3.3. 

a) b) c) .. , , 1 

0 
0.8 0.8 0.8 ｾ
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0.2 0.2 0.2 e-

x 

Figure 3.3 - Convergence analysis on three meshes: square symbols, M40; triangular symbols, 
M80; round symbols, M200. The full lines refer to the analytical solution. Time-stepping scheme: 
full implicit. a) Pe=500; b) Pe=1000; c) Pe=infinity 

As can be observed from the above results, when using the coarsest mesh, the fully implicit 

numerical solution exhibits both diffusive and dispersive errors, i.e. underestimation of the 
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gradient and spurious oscillations respectively. The magnitude of these two errors becomes 

larger as the Peelet number increases. However, by increasing the number of collocation point, 

it is possible to reduce the dispersive error significantly, damping it completely when using the 

denser mesh, even in the case of the infinite Peclet number. 

In the case of the lower Peelet numbers, Pe = 500 and Pe = 1000, using the densest 

discretisation, M200, the analytical solution is reproduced with a very small diffusive error. 

This artificial diffusivity can be attributed to the use of the first order discretisation in time, and 

it can be improved when a higher order scheme is adopted. The results obtained using the 

second order Crank-Nicholson time stepping scheme with a blending parameter /) equal to 0.5 

are shown in Figure 3.4, from which the previous statement is confirmed. 

The use of the Crank-Nicholson scheme significantly reduces the diffusive error in the two 

cases of finite Peclet number (Pe=500 and Pe=1000) without introducing any dispersive error or 

instability. In those cases, when using the densest mesh the analytical solution is almost 

identically reproduced. On the other hand, in the case of pure advection (infinite Peelet 

number), the numerical solution predicted by the Crank-Nicholson second order scheme 

captures the front of the moving shock better, reducing the diffusive error. However, the 

solution features a large dispersive error or instability. This is not surprising, because for this 

type of problem the second order Crank-Nicholson scheme is not the most suitable approach. 

Instead other high order time stepping schemes should be implemented (e.g. implementing the 

Richardson extrapolation or using a front-tracking algorithm). No further investigation on this 

topic was carried out because this is beyond the scope of the present work. 

a) b) c) 
1 1 

0.8 0.8 0.8 

0.6 0.6 0.6 .. .. .. 
0.4 0.4 

0.2 0.2 

x x 

Figure 3.4 • Comparison full implicit I Crank-Nicholson (CN) time-stepping schemes. Round 
symbols, full implicit; square symbols, CN.The full lines refer to the analytical solution. Mesh: 
M200. a) Pe=500; b) Pe=lOOO; c) Pe=infinity 

The effect of varying the Crank-Nicholson weighting factor /) on the stability is shown in 

Figure 3.5, where the solution obtained using an increasing value of /) (0.7, 0.85, 1) are 
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compared along with the analytical solution for the case of infinite Peelet number and using the 

M200 mesh. As expected, increasing the value of f). makes the numerical solution more stable 

but also more diffusive. 
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Figure 3.5 - Effect of the weighting factors on the Crank-Nicholson scheme: Square symbols, 
/) = 0.5; Diamond symbols, /) = 0.7; Delta symbols,/) = 0.85; Round symbols, /) = 1 

To assess the effect of the time step on the stability of the CV-HRBF scheme, the case of 

infinity Peelet number is simulated for three different time step values (0.1, 0.01 and 0.001). 

The simulations are carried out for a longer evolution time than in the previous simulations, 

until t = 1, to verify that the scheme does not deteriorate the solution as the time advances. The 

solutions obtained using the fully implicit time discretisation for the three values of the time 

step considered are compared with the analytical solution for two instants, t = O.S and t = 1, 

Figure 3.6. The computational domain is twice the size of that used in the previous simulations, 

and the mesh characterised by /::,x = 1/200. As expected, the diffusive error increases with the 

time step, but the solution remains stable in all cases and the accuracy does not worsen 

significantly as the front shock moves downstream. 

Figure 3.6 - Solution comparison for increasing value of the time step (Pe=infinity; mesh, 
Ax=1I200): square symbols, At=O.l; round symbols, At=O.Ol; diamonds symbols, At=O.OOl. First 
evaluation interval taken at t=0.5 and the second one at t=1.0. Full lines, analytical solution. 
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In the test cases reported so far, the local interpolation satisfies the PDE operator at the centre of 

all the cells defining the interpolation stencil, i.e. using the double collocation configuration 

sketched in Figure 3.2. To assess the stabilising effect of the implicit upwind introduced by the 

PDE operator in the interpolation formula, the test cases at Peclet number 1000 and infinity ｡ ｲ ｾ

simulated with the CV-RBF scheme proposed by Moroney and Turner (2006) (2007), i.e. 

without the use of the PDE operator for the local interpolation and without any kind of 

upwinding scheme, using the same implicit time stepping scheme used in the previous 

examples. Comparisons between the results obtained with the CV -RBF and the CV -HRBF 

approaches are reported in Figure 3.7, showing the benefit of the proposed implicit upwind. As 

can be observed, the inclusion of the local PDE in the interpolation improves the stability of the 

solution, becoming more and more significant as the Peclet number increases, i.e. in the cases of 

advection dominant problems, Figure 3.7.b. It is important to point out that the results reported 

in this section, except those given in Figure 3.6, are shown in a zoomed-in region close to the 

moving front. Consequently the magnitude of the respective errors appears to be magnified. 

a) b) 1.2 
1 oOe 
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Figure 3.7 - Comparison with/without PDE in the local interpolation. Round symbols, with PDE; 
square symbols, no PDE. The full lines refer to the analytical solution. a) Pe=1000, MS1; b) 
Pe=infinity, M201; 

Finally, increasing the number of points where the local interpolation is required to satisfy the 

PDE operator does not significantly improve the numerical solution for the ill-conditioning 

issues related with the solution of the local system as previously explained in section 2.3. 

3.5.1.2 Stability analysis 

To further assess the stability of the proposed CV-HRBF approach, the analysis of standing 

waves perturbation, 17(x,t) = a(x)exp(At), imposed to the moving front solution at infinity 

Peclet number of equation (3.21) is considered. Due to the linearity of the problem the evolution 

of the perturbation waves is also governed by equation (3.21), with Pe = ex) , and homogeneous 

boundary conditions. Therefore, the wave amplitude is a solution of the equation 
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la( x) + oa( x) / ax = O. By using the proposed CV -HRBF approach the above problem 

reduces to the following eigenvalue problem 

(3.24) 

where [AaLB] is the global matrix obtained after carrying out the Hermitian interpolation at the 

local levels of the wave amplitude and its advective flux, and [a] is the control volume solution 

vector of the wave amplitude at the cell centres. 

The eigenvalues [A] of the matrix [AaLB] characterise the time evolution of the standing waves 

perturbation and consequently their stability. Therefore, the moving front solution at infinity 

Peclet number of equation (3.21) will be stable or not to the imposed standing waves 

perturbation provided that: 

a) asymptotically stable if and only if the real part of the eigenvalues are all negative, i.e. 

Re[A]< 0 

b) neutral stable if and only ifthe real part of eigenvalues are all equal to zero 

c) unstable if the real part of one or more eigenvalues are positive. In this case the moving 

front will be unstable to the wave modes, eigenvectors, corresponding to these positive 

eigenvalues. 

In the determination of the global matrix [AaLB] the denser mesh, M200, used in previous 

sections is employed, resulting in a matrix system of 1800 x 1800 . As can be observed, in this 

case the analysis of the stability is not affected by a time stepping algorithm due to the selected 

form of the imposed perturbation, i.e. proportional to exp(A. t) . 

The eigenvalues of the global matrix [4.;LB ], real and imaginary parts, are computed 

numerically and reported in Figure 3.8, showing their values and complex conjugate values. All 

the eigenvalues are characterised by a very small negative real part, with the closest value to 

zero equal to -6.0xl0-lo, corresponding to asymptotically stable solution having a very small 

artificial numerical diffusivity (in the present case of infinity Pee let number), where the larger 

absolute value of the real part of 1 is of the order of -3 .Ox 1 0-7• 
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Figure 3.8 - Stability analysis. Matrix eigenvalues analysis: a) real part, b) imaginary part 

3.5.1.3 Low Pee let number 

To test the performance of the transient CV-HRBF scheme in problems where the diffusion is 

dominant the test case described above is solved again assigning a Peelet number of 12. A 

relative coarse mesh corresponding to /lx = 1/80, M80, and a time step equal to 0.001 are used. 

The numerical results are compared against the analytical solution (3.23), at tl=0.03, t2=0.06, 

t3=0.15, t4=0.24 and t5=0.3, Figure 3.9. 
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Figure 3.9 - Comparison full implicit I Crank-Nicholson (eN) time-stepping schemes. Square 
symbols, t=0.03; Delta symbols, t=0.06; Diamond symbols; t=0.15; Round Symbols, t=0.24; 
Gradient symbols, t=0.3. The full lines refer to the analytical solution. a) implicit; b) CN 

The numerical results are in a very good agreement with the analytical solution. In order to 

appreciate the gain in accuracy due to the use of the Crank-Nicholson scheme, an error analysis 

is reported in Table 3.1. Here the benefits of the Crank-Nicholson scheme on the numerical 

solution are evident, in particular at the beginning of the simulation. It is important to point out 

that in the present case, some numerical reflection from the artificial boundary at x = 1 is 

affecting the numerical results towards the end of the simulation; this is the reason why the 

evaluated E2error appears to increase as time increases. 
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t= 0.03 t = 0.06 t = 0.15 t = 0.24 t= 0.3 
Implicit 1.6x10-3 9.2x10-4 1.3x lO-3 2.3x 1 0-3 2.9xI0-3 

CN 6.1xlO-4 7.3x 1 0-4 l.Ox 10-3 1.2x 1 0-3 1.3x10-3 

Table 3.1 - Ltlerror comparison, implicit - Crank-Nicholson (CN) at different time steps. 

As in the previous examples, in this case at the beginning of the simulation a discontinuity front 

needs to be captured, requiring the use of a very small time step to achieve the desired accuracy. 

A solution similar to the one reported in the table above can be obtained by using a variable 

time step, increasing its magnitude as the time progresses and the solution becomes smoother. 

In the present case, similar results can be obtained by gradually increasing the value of the time 

step until 0.01. In section 3.5.2 the effect of the different time steps will be discussed in more 

details. 

3.5.2 Reactive-transport of a single species 

In this section the CV-HRBF capabilities in the solution of single species reactive transport 

problems are investigated in one and three-dimensional test cases. 

3.5.2.1 One-dimensional test case 

The three-dimensional equation (3.1) reduces to a one-dimensional problem when the following 

parameters are assigned: 

2 

D = Ｑ Ｎ Ｐ ｾ for i=j; D/) .. = 0.0 for i:/=j 
lj s 

m 1 
U

I 
=6.0-, U2 =0.0, U3 =0.0, k=0.278-

s S 

The one-dimensional problem considered In this section is prescribed by the following 

boundary and initial conditions 

c(x,o) = 0.0 

kg c(O,t) = 300.0-3 m 

:: (f,t) = 0.0 

where l is the length of the computational domain (6 metres in this case). The analytical 

solution to this problem is given by Van Genuchten and Alves (1982). As in the previous case, 
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the numerical solution is computed in a three-dimensional domain [6, 3Llx, 3Llx], using a 

structured mesh with 3 elements in each of the lateral directions and a uniform distribution in 

the longitudinal direction characterised by Llx = 1/80 m. Zero flux boundary conditions are 

imposed at the lateral walls to preserve the one-dimensional character of the problem. Both the 

implicit and the second order Crank-Nicholson schemes are tested using a time step equal to 

0.00 Is, see Figure 3.10. As before, a discontinuous front needs to be captured initially by the 

numerical simulation. In this case it is possible to increase the value of the time step several 

order of magnitude as the evolution progresses. 
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Figure 3.10 - Comparison full implicit / Crank-Nicholson (CN) time-stepping schemes. Square 
symbols, t=O.1s; Delta symbols, t=0.5s; Diamond symbols; t=1.0s; Round Symbols, t=2.0s. The full 
lines refer to the analytical solution. a) implicit; b) CN 

For this case the Crank-Nicholson second order time integration scheme significantly reduces 

the error as the solution advances in time, Table 3.2. 

t=O.ls t=O.5s t=1.Os t=2.0s 
Implicit l.4x 10·.! 6.0x 10'J 6.0x 10'.! 6.5xI0·j 

CN 7.0xI0-4 7.6xI0'" 5.6x I 0-4 1.5x I 0-4 

Table 3.2 - L "'20"0' comparison, implicit - Crank-Nicholson (eN) at different instants. 

In this case a dimensionless Lrnorm error (L;e,ro, = ｾ ･ ｲ ｲ ｯ Ｌ / cmax) has been used to evaluate the 

accuracy of the solution to obtained an estimator that is scale effect-free, in fact a large variation 

of the function value occurs in the considered domains (0-300 kglm3
). 

3.5.2.2 Three-dimensional test case 

A substance is assumed to be instantaneously injected at a point source into a fluid which is 

moving at a constant velocity. The substance is non-conservative and is assumed to decay at a 

rate which is proportional to the concentration. This problem can be described by equation (3.1) 

modelling the injection by an instantaneous point source located at xs,Ys,zs' Ifthexaxis is 
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aligned with the direction of the constant fluid velocity, i.e. U1 = U, U2 = 0, U3 = 0, and the 

diffusivity is homogeneous and anisotropic with the principal components in the x, y, Z 

directions, then the analytical solution to the problem is given by the fundamental solution, 

singular solution (Carslaw and Jaeger (1959» 

(3.25) 

where the three components of the distance from the source are defined as d, = x - Xs ' 

dy = Y - Ys and dz = Z - zs' M represents the total amount of mass of substance introduced 

and p is the density of the mixture of the substance and fluid which can be taken as a constant 

equal to the density of the receiving fluid. As t ｾ 0, the concentration tends to zero at all 

points except at the location of the point source (xs,ys,zs) where the concentration becomes 

infinite. As before, at the beginning of the simulation a strong front needs to be captured, on the 

other hand, as t ｾ 00 the concentration tends to zero everywhere. 

In this example, the source solution (3.25) along with the equation (3.1) are used to define an 

initial boundary value problem in a parallelepiped ([l.Om x 0.25m x 0.5m]) centred at the point 

(0.75m, Om, Om). In order to avoid the singularity, the source is located outside the 

computational domain at Xs = O,Ys = 0.25m,zs = 0.25m, i.e. outside the parallelepiped but 

close to one of its upper edges. The analytical solution is used to assign transient Dirichlet 

boundary conditions to all the six faces of the parallelepiped, and zero concentration is taken as 

initial condition everywhere inside the domain. The following values are assigned to the rest of 

the parameters and coefficients: 

1 m kg 
K, =0.2-, U=6.0-; M=l.Okg, P=l.O-3 
ssm 

A uniform grid made of 40x20x20 hexahedron-cells is initially employed and two time step 

values of 0.0 Is and 0.00 Is are tested. The numerical results are reported at the time intervals of 

t=0.02s, t=0.05s, t=O.ls and t=0.15s. The exact solution taken in the planey = 0.2375m at the 

71 



four time intervals above mentioned is shown in a three-dimensional plot in Figure 3.11 : During 

the time evolution the peak of the concentrati on fl attens as it travels downstream in the channel. 

a) b) 

5 

Figure 3.1 1 - Analytical solution in the plane atxz=0.2375m. a): t=0.2s; b): Square symbols, t=0.05s; 
Delta symbols, t=O.l s; Diamond symbols; t=0.15s 

To compare the results with the analyt ical soluti on, a transversal (at x = 0.75m ) and a 

longitudinal (at z = 0.25m) profil e are extracted from the plane x2 = 0.2375m where the 

higher gradients are expected. Figure 3.12 and Figure 3.13 report the results obtained u ing the 

full y impli cit and second order Crank-Nicholson schemes for a time step equal to 0.00 Is. 

Either using the full implicit time integrati on scheme (Figure 3.12) or the rank-N icholson 

alternati ve (Figure 3.1 3) a good agreement between the computed results and the analyti cal 

soluti on is observed, however higher accuracy is always found when the rank-N icholson 

scheme is employed, Table 3.3. The compari son between the E 2error values obtained using 

At,=O.Ol s and Atl =O.OO] s show the fir st order convergence of the finit e difference 

approximati on used in the impli cit formulation of the time deri vati ve in equati on (3.1) and a 

higher order of convergence in the case of Crank-N icholson. In the present case, it i not 

possibl e to increase more the time step due to the fast time decay experi enced by the analyti cal 

soluti on of the problem (see Figure 3.11). 

To conclude this fir st validation of the transient version of the CY-HRBF proposed in this 

chapter, the three-dimensional reacti ve transport problem descri bed above is simulated again 

using an unstructured mesh. The new computati onal grid which features about 18,000 

tetrahedrons and 3,800 nodes, is shown in Figure 3.14. 
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Figure 3.12 - Implicit, comparison with analytical solution. Square symbols, t=0.02s; Delta symbols, 
t=0.05s; Diamond symbols, t=O.ls; Round symbols, t=0.15s. The full lines refer to the analytical 
solution .. a) profile atx=0.2375m andy=0.75m; b)-c) profile aty=0.2375m and z=0.25m. 
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Figure 3.13 - Crank-Nicholson, comparison with analytical solution. Square symbols, t=0.02s; Delta 
symbols, t=0.05s; Diamond symbols, t=O.1s; Round symbols, t=0.15s. The full lin es refer to the 
analytical solution .. a) profile at x1=0.2375m and x,=0.75m; b)-c) profile at XF O.2375m and 
x ]=0.25m; 

t = 0.02s t = 0.05s t = O.ls t = 0.15s 
/).1\ f). t2 f).t \ /).12 f). t \ f).t2 f). t I !!. J2 

1m. 8.2x lO'L l.4x I O·L 2.9x 10.2 3.3x 10·J 5.8x I 0.3 5.9x 10-4 2.0x 10·J 1.8x I 0-4 
eN 5.0x 10·L 2.5x 1 0.3 5.5x 10·J 4.5x I 0-4 9.0xI0-4 1.6x I 0-4 3.0x 10-4 6.8x I 0.5 

Table 3.3 - Structured mesh: el m Or comparison, implicit - Crank-Nicholson (CN) at different 
instants. M, =O.OI, M, =O.OOI. 

Figure 3.14 - Three-dimensional unstructured mesh view: 18200 tetrahedrons, 3800 nodes 
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It is not possible to note any significant difference between the results obtained using the 

structured and the unstructured mesh when plotting the same profiles considered in Figure 3.12 

and Figure 3.13; in both cases the computed solution is very close to the analytical one. So 

instead of reporting another series of profile plots, only the i!2error analysis is reported below for 

the solution computed in the unstructured grid, Table 3.4. In this case, both time integration 

schemes have similar convergence rate, with larger value for the Crank-Nicholson approach, as 

can be observed from the result in Table 3.4 for the two time steps used. 

t = 0.02s t = 0.05s t = O.ls t=0.15s 
MI /)./2 /).1\ M\ MI M2 /).11 M2 

1m. 8.0xI0-z 3.5x I 0-2 2.4x 10·l 1.0xlO-z 4.6xl0-3 Ｓ Ｎ Ｘ ｸ ｬ Ｐ ｾ ｔ 1.1 x Ｑ Ｐ ｾ 2.0xIO-=3" 
CN 5.SxIO-z 3.2x I 0-2 9.8xIO-J 8.0xlO-3 2.3x 10-3 2.4x 10-3 1.2x I 0-3 l.4xI0-3 

Table 3.4 - Unstructured mesh: L'lm'O' comparison, implicit - Crank-Nicholson (CN) at different 
instants. At1=O.Ol, At1=O.OOl. 

From the comparison between the i!2error values reported in Table 3.3 and Table 3.4, it is clear 

that the precision of the CV-HRBF approach is reduced when the unstructured mesh is 

employed. In spite of this the accuracy obtained is still acceptable. 

For this test case a global residual is also used to estimate how the accuracy of the solution 

changes as the shape parameter varies. This can be useful in those cases where the analytical 

solution is not known. Such residual can be computed using the local HRBF interpolations after 

the global system has been solved and the interpolation coefficients are known. A number of 

points inside and nearby the HRBF interpolation stencil can be selected and for each of them the 

PDE operator (3.7) reconstructed to compute a local residual as follows 

(3.26) 

The residuals must be computed in locations different from those where the PDE operator was 

applied before the formation of the global system. In fact these points satisfy equation (3.7) 

numerically and would not return any contribution. Since the local stencil configuration 

sketched in Figure 3.2 is adopted for the transient formulation, with the PDE operator collocated 

at the cell centres, the residual is computed at the element nodes. Each nodal residual is 

computed as an average of the values reconstructed by the interpolations that share the 

considered element node. The i!2residual defined in (3.27) is used as a global residual estimator. 
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ｾ ｲ ･ ｓ ｩ ､ ｵ ｡ ｬ = 1=1 
(3.27) 

Nnodes 

The computation of the residual defined by Eqs. (3.26) and (3.27) is assessed evaluating [;2error 

and [;2 residual for two different values of the shape parameter, c; = 0.04 and c; = 0.4. The 

corresponding values of the obtained t 2error and [;2 residual as the evolution time progresses are 

given in Table 3.5 and Table 3.6. Although there is not a linear correlation between the 

reduction of the t2residual and [;2error' as the value of the shape parameter increases, the 

comparison between the errors and the residuals shows that the t2residual is a good indicator for 

the selection of the optimal shape parameter, which in this case is achieved using the implicit 

time stepping scheme when its value is close to 0.4. Increasing further the value of the 

parameter leads to a significantly erroneous solution, with ｾ ･ ｲ ｲ ｯ ｲ and ｛ ［ Ｒ ｲ ･ Ｎ ｾ ｩ ､ ｵ ｡ ｬ diverging 

quickly from reasonable values. 

c*s t = 0.02s t - 0.05s t = 0.1 s t = 0.15s 
0.04 5.8xl0-': 2.7x 10-': 7.2x 10-.1 2Jxl0-J 

0.4 3.5xI0-z l.Ox lO-z 3.8xlO-J 2.0x I 0-3 

Table 3.5 • Unstructured mesh, full implicit: L'2error comparison using two different values of the 
shape parameter 

C*s t = 0.02s t = 0.05s t= O.ls t = 0.15s 
0.04 5.7xlO-2 2.1xlO-2 7.4x I 0-3 3.4x I 0-3 

0.4 5JxlO-': 1.9x 10-2 6.4x I 0-3 2.7xlo-J 

Table 3.6· Unstructured mesh, full implicit: L'2resldua comparison using two different values of the 
shape parameter 

3.5.3 Magnesite dissociation in a column experiment 

A semi-infinite column filled homogeneously with crushed magnesite (MgC03) is considered. 

The medium is saturated with water which is initially in chemical equilibrium with the mineral. 

A water with different concentrations of each species, in equilibrium with the mineral is injected 

at the inlet of the column (x = 0) with a constant flux (ql = q ). Since the velocity is constant, 

the dispersivity will also have a constant value (Ds ). As the two waters characterised by 

different chemical signatures mix, a reaction take places to re-equilibrate the system. In order to 

ensure that the speciation of dissolved inorganic carbon is negligible, it is assumed that the pH 

is significantly higher than 1003, which is the pKa of the carbonate-bicarbonate system; in 
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addition the effect of variations of ionic strength on the equilibrium constant is neglected, 

Sanchez-Vila et a1. (2007). 

Dissociation of magnesite is described by: 

(3.28) 

A typical reaction time scale for this reaction is of the order of 54 days, Azaroual et a1. (2003), 

and local non equilibrium conditions are considered in the mixing process. The problem is 

treated with the kinetic approach introduced in section 3.3. A model proposed by Lasaga et a1. 

[1994] is taken for the reaction rate, with R > 0 indicating preci pitation 

(3.29) 

where TR is the effective reaction time, ｋ ｍ ｧ ｃ ｾ is the local equilibrium constant and alA is the 

ion activity product defined as 

alA = [Mg
2
+][CO;-] 

KMgCO) 
(3.30) 

Two transport time scales are considered, the advection time scale T a = LMIX / q, and the 

dispersion time scale T D = ｌ ｾ Ｏ ｸ / DS 
where LMIX is the characteristic length scale of the 

portion of space for which the species can be assumed to be well mixed. The Peelet number 

defined as Pe = T D ITa quantifies the relative importance between the dispersive and the 

advective transport mechanisms. 

Local scale equilibrium can be assumed to hold if the reaction time T R is small compared to a 

typical dispersion time scale T D • The dispersion scale is compared to the reaction time scale T R 

by the non-dimensional Damkohler number Da, defined as 

(3.31 ) 
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Note that dispersion is the relevant mass transfer mechanism in the context of the mixing-

limited reactions that are considered here, whereas the advective transport has the effect of a 

pure translation of a fluid element in space. 

If non-dimensional variable are considered (x' = xl LM1X ,t' = t I r D and c' = c/ ｾ K MgCO) } then 

two transport equations can be written as 

(3.32) 

(3.33) 

where 

(3.34) 

From now on the superscript that indicates non-dimensional variables will be omitted for the 

sake of compactness in the presentation. 

The normalised concentrations in the water of the column before the injection are taken to be 

equal to [Mg2+]o = 0.537 and [CO;-]o = 1.858 (their product is equal to I, which indicates 

chemical equilibrium). The injected water is also in equilibrium but with different 

concentrations: [Ml+]o = 2.148 and [CO;-]o = 0.465. A Peclet number equal to 0.1 is 

chosen to define the injection velocity. 

The problem is solved numerically in a bounded three-dimensional channel of size 

[1O,2.ix,2.ix] where .ix = 0.0125 is the discretisation increment in the x direction. A zero 

flux boundary condition is imposed at the lateral walls as well as at the end cross section of the 

computational domain, i.e. at x = 10 for both variables. The simulations must be stopped well 

before the reacting front reaches the end of the computational domain, at x = 10, i.e. before 

numerical reflexion affects the solution field in the domain considered. No analytical solution is 

known for the concentration of the two species. However, a free-reaction transport equation for 

the conservative component [Mg2+] - [CO;-] is found subtracting equation (3.33) from (3.32). 

This expression has the same form of equation (3.21), for which an analytical solution is given 

by equation (3.23). 
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In the simulations carried out to assess the reactive transport formulation of the CV -HRBF 

method, three values of the Damkohler number are tested (1, 10 and 100). The first of the three 

values (Da = 1) corresponds to a situation where the reaction time is comparable with the 

dispersive time scale, whereas in the last case (Da = 100 ) the reaction is very fast and can be 

considered nearly in equilibrium when compared with the transport. 

The time is discretised using a full implicit time integration scheme, 8- = 1 in equations (3.14) 

and (3.15), and a normalised time step equal to 0.001 is adopted for all the cases simulated. The 

tolerance value imposed for the convergence criteria (3.17) is etol = 10-6 • and the maximum 

number of non-linear iterations, fixed to 20, is never reached during the simulations. 

As a post processing operation, the difference between the two species concentrations, 

[Mg 2+]-[CO;-], is computed and compared against the analytical solution (3.23) at the 

instant t = I, Figure 3.15. 

a) b) c) 
1.5 

8'0.5 8'0.5 S'0.5 

ｾ ｾ ｾ

'iii 0 'iii 0 'iii 0 

!.-O.5 !.-O.5 
!. 
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-1 -1 -1 

x 8 10 10 0 8 10 

Figure 3.15 - Magnesite dissociation, distribution of the conservative component, at the time t=1. 
Full lines CV-HRBF solution; symbols, analytical solution. a) Da=1; b) Da=10, c) Da=100. 

For the three values of Damkohler number simulated, a very good agreement is found between 

the numerical solution of the conservative component and its corresponding analytical solution, 

this is confirmed by the small L2-errorrs reported in table Table 3.7. 

Damkohler number 10 100 
6.40xIO- 6.30xI0-

Table 3.7 - Lt2error comparison for different Damkl>hler numbers at t=1 

In Figure 3.16 the distribution of the concentrations along the channel at the same time 

considered above (t = 1) are repofed. For smaller Damkohler numbers the mixing-reaction 

region is clearly more extended, and this is due to the larger influence of the dispersion on the 

chemical reaction. As the reaction gets slower, there is an increase of the mass transfer that 
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takes place due to the dispersion before the reaction can equilibrate. This local non-equilibrium 

effect is even more noticeable in the reaction plots shown in Figure 3.17.a). 

a) b) c) 
2 2 

10 Ｐ Ｎ Ｕ ｾ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｚ Ｚ Ｚ Ｚ ］ ｩ ］ ］ ｩ ］ ］ Ｋ Ｚ ］ Ｚ Ｚ ［ ［ Ｌo 10 

Figure 3.16 - Magnesite dissociation, distribution of the Mgz+ and COJ
z- component, at the time t=l. 

a) Oa=l; b) Oa=10, c) Oa=100. 

As the Damkohler number decreases the mass transfer due to dispersion leads to a broader 

spatial distribution for the reaction term, indicating a wider area of chemical activity. Slower 

reactions correspond also to the higher values ofthe reaction term, circumstance that reflects the 

better mixing conditions. 

a) 0.3 
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Figure 3.17 - Magnesite dissociation, reaction terms plots. a) distribution along the domain for t=l; 
b) evolution in time at the location x=1. Square symbols, Da=l; cross symbols Da=10; diamond 
symbols,Oa=100. 

In Figure 3.17.b) the attention is focused on a point located at x = 1 , where the evolution of the 

reaction over the time is shown. Following the considerations reported above, it is important to 

address that the reaction affects this location located downstream the inlet of the column for 

longer times in the case of stronger non-equilibrium conditions. 
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3.5.4 Shape parameter values 

The optimal shape parameter values used in the numerical example presented in this chapter are 

summarised in the tables below reported, following the same structure of the comparisons found 

in the description ofthe results. 

Mesh 
Peelet number 

500 1000 Infinity 
M40 0.02 0.02 0.02 
MSO 0.02 0.02 0.02 
M200 0.03 0.03 0.009 

Table 3.8 - Shape parameter values, cs, used in the convergence analysis carried out for the high 
Peclet number cases reported in section 3.5.1.1 

Time spepping Pee let number 
scheme 500 1000 infinity 
Implicit 0.03 0.03 0.009 

CN 0.03 0.02 0.009 

Table 3.9 - Shape parameter values, cs, used in the comparison between the implicit and the CN 
time stepping schemes carried out for the hight Peclet number cases reported in section 3.5.1.1 

0.5 0.7 0.S5 1.0 
0.009 0.009 0.009 0.009 

Table 3.10 - Shape parameter values, cs, used in CN blending parameter analysis carried out for 
the infinity peclet number case reported in section 3.5.1.1 

0.1 0.01 0.001 
0.01 0.01 0.009 

Table 3.11 - Shape parameter values, cs, used in time step analysis carried for the infinity PecIet 
number case reported in section 3.5.1.1 

POE yes POE no 
Pe=1000 0.02 0.075 

Pe=infinity 0.009 0.02 

Table 3.12 - Shape parameter values, cs, used in PDE points analysis carried out for the high Peclet 
number cases reported in section 3.5.1.1 

CN 
0.03 

Table 3.13 - Shape parameter values, cs, used in time stepping scheme analysis carried out for the 
low pecIet number case reported in section 3.5.1.3 

eN 
0.04 

Table 3.14 - Shape parameter values, cs, used in time stepping scheme analysis carried out for the 
one dimensional reactive transport case reported in section 3.5.2.1 
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/).tl /).t2 

Implicit 1.0 1.0 
CN 1.S I.S 

Table 3.15 - Shape parameter values, c*s, used in time stepping scheme analysis carried out for the 
three dimensional reactive transport case - structured mesh - reported in section 3.5.2.2 

Implicit 0.4 0.4 
CN 0.5 0.5 

Table 3.16 - Shape parameter values, c*s, used in time stepping scheme analysis carried out for the 
three dimensional reactive transport case - unstructured mesh - reported in section 3.5.2.2 

Finally, a constant shape parameter, c=O.Ol, is used in the magnesite dissociation one-

dimensional example, section 3.5.3. 

It is worth noting that the variable shape parameter method defined in chapter 2 in fonnula 

(2.22) is used here for the first time in the three dimensional reaction problem reported in 

section 3.5.2.2, see also Table 3.15 and Table 3.16. 

In addition it is observed that the optimal shape parameter value does not change considerably 

when using a higher order time step integration as CN, and that the value stays more or less 

unchanged varying the time step within a reasonable range. 

3.6 Conclusion 

A transient fonnulation of the CV-HRBF scheme has been implemented and tested on a series 

of reactive transport problems. This validation shows that the implicit upwinding that 

characterises the method leads to significant improvements in the stabilisation of the numerical 

solution, in particular in those cases where advection is dominant. In addition to the fully 

implicit time stepping scheme, the weighted Crank-Nicholson scheme has also been tested, 

showing remarkable improvements in some of the problems considered. 

The main CV-HRBF idea of having flux reconstruction functions that satisfy locally the 

governing equation can be applied also in case of non-linear problems. The fully kinetic 

fonnulation presented in this chapter for the solution of mUltispecies reactive transport problems 

is an example of how the non-linearity can be handled at local level. Although in this work only 

quasi-linear problems have been considered, the technique can be applied in principle to more 

complex applications characterised by high non-linearity such as the Navier-Stokes system of 

equations, i.e. viscous flow problems. The task of obtaining a local approximation that satisfies 
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the Navier-Stokes equations within the interpolation is a topic of ongoing research by several 

research groups. In particular, it is not clear how the non-linearity is to be considered at the local 

level. From previous experience, Florez et al. (2000), it is expected that a robust non-linear 

solver needs to be implemented at the global level, but most likely a simple Picard iteration can 

be used at the local level. 
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4 IMPROVING THE CONVERGENCE OF THE CV-HRBF 

FOR UNSTRUCTURED MESHES 

4.1 Introduction 

Although the CV -HRBF method is independent from cell shape and mesh type, one of the last 

numerical examples presented in chapter 3 shows that the use of unstructured meshes leads to a 

loss of accuracy that can be up to one order of magnitude, see section 3.5.2.2. This is expected. 

In fact the irregularity that characterises an unstructured element mesh, not only makes the 

integration schemes less accurate, but also introduces a certain degree of randomness in the 

distribution of points that act as base for the interpol ants used in the flux reconstruction. Due to 

the mesh less character of the local HRBF interpolation, the causes of deterioration in precision 

for the CV-HRBF method must be researched in the control volume formulation rather than in 

the flux reconstruction. 

In the CV-HRBF scheme presented in chapter 2 and 3, the volume and flux integrations make 

use of the mean value theorem, which limits the accuracy of the method to the first order in 

space. This constraint cannot be removed using high order interpolants in the flux 

reconstruction, Holger (2005), and a more accurate integration scheme is required to exploit the 

high order convergence of the RBFs. 

In this chapter, two alternative solutions are proposed to improve the convergence of the CV-

HRBF scheme on unstructured meshes, both aiming to amend the cell face and volume 

integration schemes, Orsini et al. (2009). The first consists of increasing the order of the 

numerical integration schemes for the cell faces and volumes directly on the cell centred (CC) 

control volume. The second approach investigates the possibility of applying the CV-HRBF 

method to the vertex centred (VC) control volume first introduced in the CVFEM of Baliga and 

Patankar (1980) and then used in a numerous CV schemes included the CV-RBF scheme of 

Moroney and Turner (2006); (2007). It will be shown later during this chapter that the VC 

scheme, based on an intrinsic mesh refinement, also enhances the accuracy of integration. In 

addition, this technique guarantees a scheme which is numerically conservative; in fact the flux 

reconstruction at each face shared by two control volumes uses the same interpolation function. 

This feature makes this method very attractive, however more memory is generally required to 
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store the control volume mesh on the top of the element mesh, along with a larger number of 

reconstruction vectors. 

4.2 CV-HRBF - Cell centred (CC) control volume scheme: 

increasing the order of the numerical integration 

In the particular case of unstructured meshes made of tetrahedral elements, high order 

integration formulae which do not require any mapping into the isoparametric reference system 

are available. In this chapter only this type of mesh will be considered, though the extension to 

more general discretisations is feasible by decomposing more complex elements into 

tetrahedrons, which is always possible. In addition, there is no reason why the isoparametric 

transformation could not be used in conjunction with the CV-HRBF as done in the CV-RBF 

method proposed by Moroney and Turner (2007). 

Taking the same advection diffusion reaction problems considered in section 3.2, the numerical 

integration of the flux for a tetrahedral control volume can be written as the sum of the flux 

integrals over its four triangular faces 

(4.1) 

In equation (4.1) a general formula for the flux integration over the single face is used, where 

Nsint is the number of integration points and wm is the weight associated with the integration 

point m. The position of the Gauss integration points can be defined universally in natural 

coordinates (Lma,Lmb,Lmc) on a two-dimensional Cartesian reference frame for which one of 

the axes is one of the triangle edges, see Figure 4.1. 

X3 X'2 

X'1 

X2 

L'IN,L'mb,L'me 

Figure 4.1 - Triangular face flux integration. X'I,X'2: local reference frame axes. L'ma, L'mh, 
L'me: natural coordinates of the gauss integration point m. a, b, c: triangle vertices. 
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When the face vertex positions are known in the local reference frame, the coordinate (X'»X'2) 

of each integration point is computed by the use of equation (4.2), Huebner (1975): 

X ,m = L ,m X ,a + L ,m X ,b + L ,m X ,e 
1 alb 1 e 1 

X ,m = L ,m X ,a + L ,m X ,b + L ,m X ,e 
2 a 2 b 2 e 2 

(4.2) 

It is worth noting that the natural coordinates L ,m are ratios of areas: for example L '; can be 

written as L '; = Aa / Aabe ' with Aa being the area of the sub-triangle mbc, and Aabe is the area 

of the entire triangular face. Although in this procedure a change of reference system is 

required, the flux reconstruction and integration still takes place in the global reference system. 

In fact the local integration point coordinates are transformed back with a simple change of 

reference formula (x;m, x;m) ｾ ( x; ,x; ,x; ). The natural coordinate and the weights of the 

three Gauss points formula used in the flux integration over the triangular face are reported in 

Table 4.1. 

Integration point L,m 
a 

L,m 
b 

L,m 
e weight 

1 1/2 112 0 113 
2 0 112 112 1/3 
3 112 0 1/2 113 

Table 4.1 - Gauss point natural coordinates and corresponding weights used in the flux integration 
for triangular faces 

An analogue method is implemented for the numerical integration over the tetrahedral control 

volume. The volume average value of the function which appears in equation (3.8) is replaced 

with a numerical integration formula: 

Nvint 

J ¢dV = L ¢Ix:x" wmvp (4.3) 
Vp m=! 

The Gauss point locations are given III natural coordinates, but in this case their global 

coordinates can be expressed directly in terms of the tetrahedron vertex positions without any 

change of reference system using equations «(4), Figure 4.2: 

(4.4) 
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X2 

Figure 4.2 - Tetrahedral control volume integration. Lma, Lmb, Lmc, Lmd: natural coordinates of 
the gauss integration point m. a, b, c, d: Tetrahedron vertexes. 

As in the case of the triangular face the natural coordinates have a geometric interpretation. 

They can be viewed as ratios between volumes: for example L; can be written as 

L; = v" /Vabcd ' where v" is the sub-volume formed by the integration point m with the 

vertices a,c,d, and Vahcd = Vp is the volume of the tetrahedron. The natural coordinate and the 

weights of the four Gauss points formula used in the volume integration are reported in Table 

4.2. 

Integration Lm Lm Lm Lm weight 
point a b c d 

I 0.58541020 0.13819660 0.13819660 0.13819660 114 
2 0.13819660 0.58541020 0.13819660 0.13819660 1/4 
3 0.138 I 9660 0.13819660 0.58541020 0.13819660 114 
4 0.13819660 0.13819660 0.13819660 0.58541020 1/4 

Table 4.2 - Gauss point natural coordinate and corresponding weights used in the volume 
integration for the tetrahedral cell 

Replacing the surface and volume first order integrations appearing in the integral equation (3.8) 

with the second order integration formulae (4.1) and (4.3) the following equation is obtained 

Nvint 

+(M(e-1)K, -1) I fjJ'-AiL=x" wmvp 
m=l 
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The function and its gradient at the integration points can be expressed in terms of the local 

interpolation as done in section 2.2 

Ｈ ｌ ｖ ｂ ｉ ｾ Ｈ ｄ ｩ ｪ ｣ ［ Ｉ ｾ -U;q:,tyn:SI +(LVBK, -I) I c;;tW"Vp)d" = 
1=1 m=1 m=1 

ｌ ｖ Ｈ ｂ Ｍ ｉ Ｉ Ｈ ｾ ｾ Ｈ ｄ C:J- 61 _l.1-61rm,t-61\.,rnr/.Sd-61 ) 
ｾ ｾ y 2Jn I ｾ ｮ }W lin 
1=1 m=1 

(4.6) 

Nvinl 

+( LV ( B -I) K, -I) L q:,,-61 d,,-61 W"Vp 
m=1 

where the reconstruction vectors [C;" ] and [c;)' ] that refer to the integration point m show 

dependence with respect to the time in the case of unsteady problems with a transient POE 

operator, see section 2.2. It is worth noting that in case of a transient POE also the interpolation 

coefficients [dJ present a dependence on the time. The equation (4.6) can be rewritten in a 

synthetic form as follows 

(4.7) 

where the element integration reconstruction vectors [IrE" ] and [Ir E,,-61 ] are defined below 

[IrE"T = 

[( /ltB % ｾ ( D,C;j: -U:C1:")w"n"S, + ( AtB K, -\) %' C;:"w'V, )] 
(4.8) 

Murf Mini 

!Y(B-l) ｾ ｾ Ｈ ｄ ｲ ｭ Ｚ ｉ Ｍ ｦ ｉ ｉ ｟ ｖ Ｍ ｦ ｉ ｉ ｲ ｭ Ｂ Ｍ ｦ ｉ ｉ ｜ Ｎ Ｎ Ａ Ｂ S + L...L... y"""ljn I '-1n JW ｾ Ｌ I 
1=1 m=1 

(4.9) 

Nviff 

(!Y( B-l)R: -1) ｌ ｃ Ｚ Ｍ Ｖ Ｑ ｷ ｭ ｾ
m=1 

This representation will be more suitable for the computational cost analysis reported in section 

4.4. 
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4.3 CV-HRBF - Vertex centred (VC) control volume scheme 

In the YC scheme, the control volumes do not coincide anymore w ith the mesh elements; they 

are instead built around the mesh nodes. The geometri cal constructi on of such control volumes, 

which will be referred to as node-control volumes, requires the generati on of a number of 

auxilia ry points. Each e lement centroid is joined to the face midpoints, and the formati on of the 

sub-volumes is completed by connecting every face mid point to the edge mid points belonging 

to the face. Applying this procedure to a tetrahedron generates four hexahedra l sub-volumes that 

feature no-coplanar faces and a degree of distorti on strongly dependent on the ori ginal element 

mesh, Figure 4.3. 

Figure 4.3 - Tetrahedron decomposition to construct node-CVs: a) 4 sub-volumes definitions; b) 
highlight of the front sub-volume faces considered for the flu x integration (gray shaded) 

The fin al node-control volume is a polyhedron formed by adding all the sub-volumes 

converging in a sing le mesh node, and it features a larger number of faces when compared wi th 

an element based control volume, see Figure 4.4. 

Figure 4.4 - Node-control volumes: a) Node-control volume internal to the domain ; b) Node-control 
volume placed in a domain bounda ry 

The CY-HRBF can be adapted to use the YC discreti sation. The main change in the local 

problem formulation between the CC and the YC schemes is the location of the test points in 
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which the value of the function is unknown. In the CC scheme these tests points are placed in 

the cell centred of the element and of its neighbours, whereas in the VC scheme the unknown 

data points coincide with the element vertices, Figure 4.5-a). 

a) b) 

Figure 4.5 - VC scheme, stencil of points used in the local interpolation: a) internal stencil; b) 
stencil in the proximity of a domain boundary. Square symbols, Dirichlet Operator; Round 
symbols, PDE operator 

This circumstance brings an extra complication in the case of node-control volumes located in 

the domain boundary where the Dirichlet condition must be imposed. The CV -HRBF satisfies 

the boundary conditions by the direct application of the boundary operator to the local 

interpolation at those points of the stencil located in the domain boundaries. Some of these 

points coincide with the element vertices, where the value of the function is considered to be 

unknown in the VC discretisation. It is obvious that if a prescribed value is given for a node 

placed in the boundary, this cannot be an unknown of the problem, and mathematically this 

situation causes a singularity in the local system matrix which would end up having two 

identical lines. In fact the Dirichlet operator should be applied twice in the same location: once 

considering the element vertex as unknown of the problem, and again in order to impose the 

known value given in the domain boundary, Figure 4.5-b). 

This problem can be overcome by exploiting the mesh less character of the CV-HRBF in the 

solution of the local problem. In the VC scheme at every node-control volume must correspond 

to a point with an unknown value of the function for which a solution needs to be found, but 

there is no constraint regarding the location of such a point. Keeping this observation in mind, 

in the case of a boundary node-control volume, Figure 4.4-b), the element vertex which should 

act as the location of the corresponding unknown can be split into two points: one remains in the 

original position and allows the application of the Dirichlet boundary condition, the other moves 

internally to the domain and it becomes the new location of the unknown. The boundary node-

control volume centroid is the natural choice for the new position of such an unknown, in Figure 

4.6 the arrows show this new location and its original position. 
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Figure 4.6 - VC scheme, shift of the unknown locations for boundary control volumes. Square 
symbols, Dirichlet Operator for the unknowns; Diamond symbols, boundary operator; Round 
symbols, PDE operator. 

Merging the boundary control volumes to their internal neighbours is another elegant solution to 

the same problem. In this way the boundary control volumes no longer require their 

corresponding unknown values of the function, and the global matrix size reduces. This 

approach has also been taken into account. However, the difficulties encountered in the 

definition of the new control volume containing the boundary ones, e.g. to which of its 

neighbours should a boundary control volume be added to, along with the poor solution points 

coupling due to the loss of the unknowns close to the domain boundary, made the previous 

method preferable due to its robustness. 

In the VC scheme it is convenient to write the integral equation of the problem as the sum of the 

integrals over the sub-volumes which form the node-control volume. Starting from equation 

(3.7) where the time discretisation has already been included, the following equation can be 

written 

f J L, (¢JtV = f J L,_b1 (¢JtV (4.10) 
.=1 Vs; ;=1 Vs; 

where ns is the number of sub-volumes belonging to the node-control volume, and Vs; is the 

volume of the sub-volume i. Each of these integrals can be treated numerically as explained in 

section 2.2 for the CC scheme, using the mean value theorem for the flux and volume 

integrations, leading to the to the following final sub-volume discretisation formula: 

ｾ ｂ Ａ Ｚ Ｈ ｬ Ｑ ｱ ［ ｮ Ｍ ｕ ［ ｾ Ｉ ｲ ｬ ［ ｾ ｾ Ｋ Ｈ ｾ ｂ ｋ Ｌ Ｍ ｉ Ｉ ｾ ﾢ ｓ ｩ = 
1=1 

ｾ Ｈ ｉ Ｍ ｂ Ｉ !: ( ｬ Ｑ ｣ ［ ｾ ［ ｴ ｬ ｉ -C1;-tlI q;:-tlI) ｲ ｬ ［ ｾ +( ｾ Ｈ ｉ Ｍ ｂ Ｉ ｾ -1) ｾ ﾢ ［ ｾ
(4.11 ) 

1=1 
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where Nsurfsi are the sub-volume faces which delimit the boundary of the node-control 

-t 

volume, Figure 4.3-b), and ¢lSi is the sub-volume mean value which is going to be 

approximated by the value of the function at the sub-volume centroid. This value is not an 

unknown in the global matrix as in the case of the CC scheme, and an interpolation is required 

-t 
in order to express ¢lSi in terms of the nodal values. Using the RBF interpolation once again to 

reconstruct the value of the function in the sub-volume centroid, equation (4.11) becomes 

( LYO ｾ ( !let. Ｍ ｌ ｜ ｾ H.s; +( LYOK; -I) J:;G:' Ｉ ｾ ; 

(LY(1-O) ｾ ( Ａ ｬ ｃ Ｚ ［ ｾ Ｍ ＼ ｙ -W" G:" H.s; +( LY( I-O)K; -I) J:;G:'-<Y Ｉ ｾ Ｍ ＼ ｙ
(4.12) 

A synthetic form of equation (4.12) can be written as follows 

(4.13) 

where the sub-volume integration reconstruction vectors are defined as 

(4.13) 

[I,flJ-tV J = 

[( LY( 1-0) ｾ ( !let.-<Y -if,'" G',;'" H.s; +{ LY( 1-0) K; -1) J:;G:'-N ) ] 
(4.14) 

The local problems associated with the elements, which contribute to the node-control volume 

formation, are coupled together by equation (4.10). In this assembling algorithm the flux 

reconstruction of a face shared by two control volumes uses the same function. In fact every 

internal face is contained inside an element and the local interpolations are element based, i.e. 

one each element, Figure 4.3-b). This feature guarantees a scheme which is numerically 

conservative. In the CC scheme the flux conservation is obtained by the overlapping region 

between the two local interpolations used by the face, requiring that such interpolations satisfy 

the same PDE operator, see section 2.3. In principle this should guarantee the uniqueness of the 
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function and its gradient at the flux integration points and so the flux conservation. The 

numerical solutions reported later in this chapter show that this does not happen numerically; 

instead there is a very small discrepancy between the left and right flux which can grow with the 

solution error, and in some cases it can cause a loss or gain of mass. 

Finally it must be said that if the same order of integration is employed in the VC and CC 

formulations, the VC will result in being the more accurate method. This should be obvious 

when observing the element decomposition required by the VC discretisation, Figure 4.3. The 

element is split into a number of sub-volumes equal to the number of vertices, and the PDE is 

integrated in each of them rather than in the entire element. This approach acts as a kind of 

mesh refinement, which results in an improvement of the numerical integration in the control 

volume equation. 

4.4 CV-HRBF computational cost: comparison between CC and 

VC control volume schemes 

For a fair comparison between two methods featuring the same order of accuracy, the CC-

second order integration (see section 4.2) and the VC-first order integration (mean value 

theorem) will be considered. In the case ofVC, only a first order integration is used because the 

element partition results in an increase of the order of integration. A first analysis, with the aim 

of highlighting the main difference between the two schemes, is carried out considering single 

variable problems, full implicit time stepping ( a9 = 1 ) and local interpolations identical in size. 

4.4.1 Memory requirements 

Firstly the VC requires more memory to store the node-control volume mesh on the top of the 

element mesh. However, the main reason for this approach being more memory demanding is 

the larger number of reconstruction vectors needed for the integration. The computation of these 

vectors (Eqs. (4.8), (4.9), (4.13) and (4.14)) is quite expensive, and for an efficient computation 

it is strongly recommended to store them in memory rather than recomputing them at every time 

step. In addition, such vectors must be multiplied by the inverse of the local system before being 

used to compute the entries of the global system. Taking for example equation (4.7), the 

coefficient [at] of the interpolation must be expressed in terms of the local system as in 

equation (2.10), obtaining 
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(4.15) 

Equation (4.15) can be rearranged introducing the arrays which store the mUltiplication of the 

reconstruction vectors time the local inverse 

(4.16) 

The vectors [IrAinv E.
, 
] and [IrAinv E.t-6J 

] can now be directly used to form the global 

system. The vector-matrix multiplication which leads to equation (4.16) is also a very expensive 

operation if it must be done every time step. So unless the local system needs to be reformed 

(for example because the PDE is changing with respect to the time), the most efficient option is 

to store [IrAinvE't ] and [IrAinv E.t-6J 
] in memory. It should be clear at this point why the VC 

scheme is more memory demanding than the CC scheme: two vectors must be stored each sub-

volume rather than two each element. The amount of extra memory required varies with the 

type of element, see Table 4.3. 

Number of element VC-Nr. CC-Nr. 
Element type 

sub-volumes reconstruction reconstruction 
vector per element vector per element 

Tetrahedron 4 8 2 
Pyramid 5 10 2 
Prism 6 12 2 

Hexahedron 8 16 2 

Table 4.3 - Number of reconstruction vectors need for the integration in the CC and VC schemes 

The exact amount of memory can be computed by keeping in mind that the size of [lrAinvE"J 

is equal to the number of points used in the local interpolation, usually around 15-20. 

The situation can be significantly different for the memory required to store the global system, 

which has a number of lines equal to the number of control volumes. In the unstructured meshes 

the number of nodes can be up to a fifth of the number of elements, and the VC discretisation 

can produce a global system with less lines than would be obtained by the CC scheme. This 

gain is partially lost because the VC tends to form a sparse global matrix with a bandwidth two 

or three times larger than the CC, but in the end the number of non zero entries obtained with 

the VC scheme is about half. This situation is not valid anymore when structure meshes are 

adopted, because in this case the number of nodes is larger than the number of elements. 
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4.4.2 CPU cost 

In the computation regarding the local problem the VC scheme is more demanding, once again 

due to the larger number of reconstruction vectors required for the integration. If the local 

systems do not need to be updated the only extra cost comes from the computation of the global 

right hand side. In fact the vector-vector multiplication which figures in equation (4.16) is 

performed for every sub-volume instead of every element as in the CC scheme. This situation 

worsens if the local system need to be updated every time step and both vectors and local 

system need to be recomputed. 

The sparse matrix deriving from the VC discretisation scheme can have a considerably smaller 

number of non zero entries, up to half of the number obtained with the ee scheme. This speeds 

up the solution ofthe global system, only partially compensating the higher CPU demand due to 

the local computation. 

4.5 Numerical results 

A number of test problems presented in the previous chapters are simulated again here 

discretising the computational domain with an unstructured mesh rather than a structured one. 

The idea is to analyse the spatial convergence of the higher order methods whose formulations 

have been introduced in section 4.2 and 4.3. All the test cases are validated with their 

corresponding analytical solutions and with numerical solutions computed on a sufficiently fine 

structured mesh that will represent a reference in term of accuracy. To have a fair comparison 

with the previous solutions on structured meshes, the same MQ RBF function is employed, and 

the value of the shape parameter chosen experimentally (iteratively) in order to minimise the 

absolute L2 -norm error as done for the other numerical experiments (the optimal values are 

reported in section 4.5.5). 

Some abbreviation is adopted for the sake of compactness: CCI and ee2 will indicate the ev-

HRBF cell centred schemes with first and second order integration respectively. whereas ve 

will be used to refer to the eV-HRBF vertex centred method described in section 4.3. Only the 

full implicit time stepping ( [) = I ) is considered for the transient problems. 

For the eel and ee2 schemes, the interpolation stencil Sl-PDE is used (see section 2.7.3). 

While in the case of the VC only the nodes of the element are considered in the interpolation, 

applying both PDE and Dirichlet conditions in the same location, see Figure 4.7. Unless stated 
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otherwise, the stencil stopped at the first level will be adopted, which in the case of tetrahedral 

elements will correspond to 4 Dirichlet plus 4 PDE points, for a total of 8 points. 

a) b) 

Figure 4.7 - VC scheme, stencil of points used in the local interpolation: a) stencil stop at the first 
neighbouring nodes level; b) stencil stop at the second neighbouring nodes level. Square symbols, 
Dirichlet Operator; Round symbols, PDE operator 

4.5.1 One-dimensional advection-diffusion problem with a variable 

velocity 

The numerical example presented previously in section 2.7.1.3 is run again. Due to its high 

advection around the two shock regions, and to the very small values to be predicted in the 

middle, it is a very good test case to investigate the flux computation. Fixing a
2 
= 80, a 

reference solution is computed using a uniform structured mesh of 5120 hexahedrons 

(80X8X8), the convergence analysis is then performed on three, progressively refined 

unstructured meshes: 1860, 5182 and 11199 tetrahedrons, Figure 4.1. 

Figure 4.8 - The three Unstructured meshes used for the convergence anlysis: a) 1860, b) 5182 and 
c) 11199 tetrahedrons 

The numerical solutions obtained by running the eel method in the structured mesh and in the 

coarsest of the three unstructured meshes (1860 tetrahedrons) are plotted together with the 

analytical solution to show the difference between the more and less accurate computations for 

this problem, Figure 4.9. A reasonable agreement is found even in the case of the worst solution 

where the two shocks are still computed without any presence of instability. 
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Figure 4.9 - a) Comparison between analytical and numerical solutions obtained by the eel 
scheme: square symbols, structured mesh of 5120 hexahedrons; round symbols, unstructured mesh 
with only 1860 tetrahedrons; full black line, analytical solution b) Realtive percentage error: square 
symbols, structured mesh of 5120 hexahedrons; round symbols, unstructured mesh with only 1860 
tetrahedrons. 

To summarise the convergence analysis of the CC1, CC2 and VC schemes, the relative errors 
plots are shown in Figure 4.10, and the L2 -norm error is computed for every solution together 

with the maximum relative error value, Table 4.4, Table 4.5 and Table 4.6. 

b) 80 c) 

x 

Figure 4.10 - Relative error plots: round symbols, eCl; delta symbols, Ce2; diamond symbols, VC. 
a) 1860 tetrahedrons mesh; b) 5182 tetrahedrons mesh; c) 11199 tetrahedrons mesh 

Mesh 1860 tetr. CCI CC2 VC 
L *2error 1.76x 10-": 1.25xlO-2 1.84x10-2 

Max. relative error 63.9% 99.9% 66% 

Table 4.4 - Error analysis: Mesh 1860 tetrahedrons 

Mesh 5182 tetr. CCI CC2 VC 
L *2error 6.96xlO-3 Ｑ Ｎ Ｔ Ｕ ｸ Ｑ ｏ ｾ 9.36x 10-3 

Max. relative error 64,8% 42% 26,3 

Table 4.5 - Error analysis: Mesh 5182 tetrahedrons 

Mesh 11199 tetr. CC1 CC2 VC 

L*2error 4.60xI0-3 8.7x I 0-3 Ｔ Ｎ Ｓ ｸ ｉ Ｐ ｾ

Max. relative error 35% 34% 11% 

Table 4.6 - Error analysis: Mesh 11199 tetrahedrons 
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It is important to point out that the apparent high relative error obtained mainly at the centre of 

the domain, is due to the dimensionless form used in the definition of the relative error (£q. 

2.23). This results in a division by a very small value of the potential in the centre region of the 

domain. The error tables show that increasing the order of integration in the cell centred scheme 

leads to a very small improvement, whereas a more significant reduction of the errors is 

observed in case of the VC scheme. The VC is the only method able to compute a solution 

nearly as accurate as that one obtained using the structured mesh (L*2error=9.0x IO'" and 

maximum relative error equal to 1 ,82%). 

In the comparison between the structured and unstructured mesh results, it must be said that the 

finest unstructured, mesh made of 11199 tetrahedrons, features a characteristic length 

(tetrahedron edge) which is double the size of the space interval adopted to build the 5120 

hexahedrons mesh. The better performance of the VC scheme is not a surprise for this problem, 

where the mass conservation is crucial in the two shock regions characterised by high advection. 

To understand more about the conservativeness of the numerical schemes investigated here, a 

comparison between the computed and the analytical flux is shown in Figure 4.11. With the 

help of the analytical solution (2.30) it can be shown that the analytical flux function is equal to 

zero all over the domain. This is due to the particular function chosen for the velocity field. 

a) b) 0.15 c) 0.08 
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Figure 4.11 - Comparison computed/analytical flux: round symbols, CCI; delta symbols, CCl; 
diamond symbols, ve. Full line, analytical. Empty symbols, left flux; Full symbols, right flux. a) 
1860 tetrahedrons mesh; b) 518l tetrahedrons mesb; c) 11199 tetrahedrons mesh 

For clarity, only a few sample faces are selected for the flux analysis which focuses on the 

higher gradient region corresponding to the left shock. In the case of the ec I and CC2 schemes, 

the flux in each face is reconstructed twice using the interpolations which are associated with 

the two control volumes (left and right) sharing the face. Although the left and the right values 

of the flux computed by the eCI and CC2 schemes should be identical in principle (see section 

4.3), a difference which reduces as the function gradient becomes smaller can be observed, 

Figure 4.11. In addition to the gap between the left and right values, CCI and CC2 feature a flux 

error which is much larger than that one which characterises VC. 
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4.5.2 Three-dimensional advection-diffusion problem with variable 

velocity 

In this section the CCI, CC2 and VC schemes are validated in the three-dimensional advection-

diffusion problem with a variable velocity field presented in section 2.7.2. In this example, two 

different meshes are tested: a structured mesh with 36x36x36 points corresponding to 42875 

cells, and an unstructured one characterised by 31494 tetrahedrons and 6276 nodes. Both 

computational grids present a non-uniform points distribution with a refinement in the region 

where the diffusive shock is expected, see Figure 4.12. The number of non zero entries of the 

global system matrix for the unstructured mesh is equal to 153486 in the case of CC I and CC2 

and to 85798 in the case of VC. To assess the accuracy of the CC 1, CC2 and VC methods, the 

profile extracted from a diagonal of the plane xy at z=O.98, which joins the high gradient region 

comer with its opposite one, is considered. The solution and the relative error plotted in this 

profile are shown in Figure 4.13. 

a) b) 

Figure 4.12 - Meshes used for the solution of the three-dimensional advection diffusion problem: a) 
structured mesh, 42875 hexahedrons; b) unstructured mesh 31494 tetrahedrons. 
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Figure 4.13 - Solution and relative error plots in the diagonal profile of the plain xy at z=O,98. 
Diagonal end points: (x(=l, y(=O), (xz=O, yz=l). a) Comparison between the CC1-structured mesh 
solution with the analytical solution. b) relative error plots: square symbols, CC1-structured mesh; 
round symbols, CCI-unstructured mesh; delta symbols, CC2-unstructured mesh; diamond 
symbols, VC-unstructured mesh 

98 



The analysis is completed with the computation of the Lrnorm and maximum relative error 

reported in Table 4.7. 

Unstructured Mesh CCI CC2 VC 
L*2error l.S7x10-J l.S3xl0-j S.S9xlO-4 

Max. relative error 49.8% 31.1% 21% 

Table 4.7 - Error analysis: Mesh 11199 tetrahedrons 

Finally, the CCI solution on the structured mesh produced an L*rnorm error equal to 3.0SxI0-3 

and a maximum relative error equal to 96%. The apparent high relative error is due to the 

dimensionless form used in the definition of the relative error CEq. 2.23), which results in a 

division by a very small value of the potential in the region opposite to the corner where the 

shock occurs. While no major differences are noticed in the relative error plots, more 

interesting information is contained in the global error analysis reported in Table 4.7. For this 

particular problem, the use of a structured mesh produces less accurate solutions. This is due to 

the refinement required in the shock region which causes a significant element distortion when 

hexahedral elements are employed to discretise the domain. For the unstructured mesh the 

method which features the lowest errors is the VC scheme. 

4.5.3 Unsteady One-dimensional advection-diffusion problem 

The one-dimensional advection-diffusion problem for a single species c described in section 

3.5.1 is considered here again to investigate the effect of the unstructured meshes. Two 

computational grids already introduced in section 4.5.1 are used for the simulation: a uniform 

structured mesh of SI20 hexahedrons (80X8X8), and the unstructured mesh made of 11199 

tetrahedrons which features a characteristic length scale (tetrahedron edge) double in size when 

compared to the space interval of the structured mesh, Figure 4.8. A zero flux boundary 

condition is imposed at the lateral walls as well as at the end cross section of the computational 

domain, i.e. at x = I. The Peclet number tested is equal to 500. To compare the numerical 

results with the analytical solution (3.23), the simulations must be stopped before the travelling 

wave reaches the end boundary at x = 1, i.e. before numerical reflexion affects the solution 

field in the domain considered. A time step equal to 0.00 I is used, and the simulation stopped at 

I=O.S, allowing the front to propagate until the middle point of the computational domain. The 

solutions obtained by CCI, CC2 and VC using the unstructured mesh, and CCI using the 

structured mesh, are plotted together with the analytical solution in Figure 4.14. 
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Figure 4.14 - Solution comparison, zoom around the diffusive shock region [0.3-0.7]. Square 
symbols, CCI-structured mesh; round symbols, CCI-unstructured mesh; delta symbols, CC2-
unstructured mesh; diamond symbols, VC-unstructured mesh 

The use of the unstructured mesh introduces an additional diffusive error which can be reduced 

by increasing the order of the integration (CC2, and VC). In the case of the cell centred scheme, 

there is also the problem of the mass conservation, which becomes more important for 

unstructured meshes. In this problem the conservativeness of the method plays a key role, and 

the discrepancy between the left and right flux observed for the CCI and CC2 schemes in 

section 4.5.1 can produce solutions which are significantly no-mass conservative, Table 4.8. 

Numerical method and mesh Value of the flux function at x=0,5 for 
1=0,5 (analytical value equal to 0,5) 

CCI SI-POE - Structured mesh 0,5237 
CCI S2-POE - Structured mesh 0.4947 

CC I - Unstructured mesh 0,5833 
CC2 - Unstructured mesh 0,5246 
VC - Unstructured mesh 0,5001 

Table 4.8 - Mass conservation analysis for the single species transport problem at Pe=500: Mesh 
11199 tetrahedrons 

This problem can be mitigated by increasing the order of the integration. In fact switching from 

CCI to CC2 improves the mass conservation. In table 4.8 a comparison between the stencil SI-

POE and S2-POE is also reported for the CCI solutions on the structured mesh. In this case, 

adopting larger interpolation enhances the conservativeness of the method. However, this does 

not happen in the case of unstructured meshes. 

4.5.4 Unsteady three-dimensional reactive-transport problem 

The unsteady reactive-transport problem described in section 3.5.2.2 is simulated again using 

unstructured meshes to test the accuracy of the CCI, CC2 and VC schemes. A uniform grid 

made of 40x20x20 hexahedron-cells and an unstructured mesh which features about 18,000 

tetrahedrons and 3,800 nodes, are employed to discretise the domain, Figure 4.15. The number 
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of non zero entries of the global system matrix for the unstructured mesh is equal to 95766 in 

the case ofCC1 and CC2 and to 55440 in the case ofVC. 

Figure 4.15 - Mesh used in the computation of the three-dimensional advection diffusion reaction 
problem: a) structured mesh, 16000 hexahedrons; b) unstructured mesh, 18000 tetrahedrons. 

A time step of 0.00 Is is used and the numerical results at the time intervals of t=0.02s, FO.05s, 

t=O.ls and 0.15s are analysed. It is not possible to note any significant difference between the 

results obtained using the structured and the unstructured mesh when plotting the same profiles 

considered in Figure 3.12 (chapter 3); in both cases the computed solution is very close to the 

analytical one. So instead of reporting another series of profile plots, the L2 -norm error analysis 

for the solution computed in the unstructured grid is reported in Table 4.9. 

Method and mesh t = 0.02s t = 0.05s t = O.ls t = 0.15s 
used 

CC 1 - structured 1.4 x 10-2 3.3x 10-3 5.9x10-4 1.8x I 0=4 
CC 1 - unstructured 3.5x lO-2 l.Ox 10-2 3.8x10-3 2.0x lO-3 

CC2 - unstructured 4.2x10-2 1.2x l0-2 2.1 x l 0:) 8.4x 10-4 
VC - unstructured 2.5x lO-z 6.6x 10-3 1.8xl0:J 8.8x lO-4 

Table 4.9 - Unsteady three-dimensional advection-diffusion-reaction problem, Llerror error analysis 
mesh 

For this problem, the error analysis shows that the improvements achieved by increasing the 

order of integration in the cell centred scheme (CC2), and by using the VC dicretisation are of 

the same order. 

4.5.5 Shape Parameter Values 

The optimal values of the shape parameter are collected in tables following the same structure 

and order ofthe numerical example presented in the section. 
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CC1 CC2 VC 
Mesh 1860 tetr. 1.0 0.1 1.0 
Mesh 5182 tetr. 1.0 1.0 0.01 
Mesh 11199 tetr. 1.0 1.0 4.0 

Table 4.10 - Shape parameter values, c*s, used in the convergence analysis of the CV-HRBF on 
unstructured meshes carried out in section 4.5.1 

CC1 CC2 VC 
1,0 1.0 3.00 

Table 4.11 - Shape parameter values, c*s, used in the steady three-dimensional simulation carried 
out to test the CV-HRBF on unstructured meshes, section 4.5.2 

Numerical method and mesh ｓ ｨ ｾ ･ j)arameter cs· 
CC1 Sl-PDE - Structured mesh 1,0 
CC1 S2-PDE - Structured mesh 2.0 

CC1-Unstructured mesh 0.1 
CC2 - Unstructured mesh 0.5 
VC - Unstructured mesh 0.01 

Table 4.12 - Shape parameter values, c*s, used in the single species one-dimensional transport 
problem carried out to test the CV-HRBF on unstructured meshes, section 4.5.3 

Method and mesh used Shape parameter cs* 
CC 1 - structured 1.0 

CC I - unstructured 0.4 
CC2 - unstructured 0.6 
VC - unstructured 0.1 

Table 4.13 - Shape parameter values, c*s, used in the single species three-dimensional reactive 
transport problem carried out to test the CV-HRBF on unstructured meshes, section 4.5.4 

4.6 Conclusion 

A second order integration scheme and the vertex centred (VC) discretisation have been 

implemented in the CV -HRBF method to improve the convergence of the scheme for 

unstructured meshes. The numerical solution of one and three-dimensional advection-diffusion 

problems suggested that both approaches lead to good improvements, and that the VC is 

strongly recommended when the mass conservation is a crucial parameter of the problem being 

solved. 
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5 NUMERICAL SOLUTIONS FOR A SATURATED ZONE 

OF THE SEMI-CONFINED AQUIFER 

5. 1 Introduction 

Good groundwater management is of crucial importance in many arid areas of the world, where 

the majority of the water for domestic and agriculture use is supplied by the aquifer system. In 

general, a continuous monitoring of the quantity and the quality of the water stored in the 

aquifer, along with accurate studies of the groundwater system, are needed to fulfil this task. A 

few monitoring wells are used to measure a series of parameters, but not much infonnation is 

available between the measurement points. This lack of infonnation can be tackled with the 

numerical modelling of the groundwater system, which also provides a very powerful tool to 

simulate future scenarios after an adequate calibration with the measure data. 

Different numerical techniques have been proposed for simulating groundwater systems during 

the last three decades. The finite differences method has been used in one of the most popular 

groundwater flow software, MODFLOW (US-Geological-Survey); which is still widely used by 

the scientific community and the industry. Its success is due not only to the simplicity of its 

fonnulation, but also to the code's relative openness, in particular since the advent of 

MOD FLOW 2000 and the (perceived) associated ease of meshing complex problems, especially 

among practitioners. However such simplicity and customisation ability have its downside. In 

particular, the code's inability to represent complex boundaries and the associated boundary 

conditions as a result of its formulation, Henk et al. (2001), or the difficulty to accurately 

compute large gradients found in the vicinity of injection or pumping wells, Warren and Martin 

(1997). 

Another numerical technique applied successfully to solve subsurface flow problems in both 

confined and unconfined aquifers is finite the element method (FE) method. Some examples can 

be found in (Ahmed (2005), Yeh et al. (1993), Srivastava and Yeh (1992), Paniconi and Putti 

(1994». In all these works, Galerking FE methods were used to solve the partial differential 

equation. A well known software that uses this technique is FEMWATER, Yeh (1987). Yet the 

classical Galerkin FE still suffers from local mass conservation issues, a key consideration for 

water management applications. More sophisticated variants have appeared more recently, e.g. 
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CVMFEM by Cai et al. (1997), which can be seen as an evolution of the so called mixed FE 

method, itself an enhancement on the Galekin formulation. 

Finite volume has not been used so widely up to now. All groundwater flow applications based 

on the CV approach, which have been found during this literature review, are no more than ten 

years old. Jinglian and Bharat (1998) applied an unstructured CV scheme to model groundwater 

contaminant transport. Liu et al. (2002), (2003) and (2005) used an unstructured CV method to 

simulate salt water intrusion in costal aquifers, transport in heterogeneous aquifers systems, and 

saturated and unsaturated flow respectively. All models reported in these applications are two-

dimensional. 

In this chapter the CV-HRBF method is applied to a series of three-dimensional groundwater 

flow problems, modelling the saturated zone of an unconfmed aquifer. Because the unsaturated 

zone is not included in the computational domain, the phreatic surface acts as a moving 

boundary, where the free surface kinematic and dynamic conditions must be imposed. 

Different approaches to track the phreatic surface during its transient evolution are available in 

the literature. In Lagrangian methods the computational mesh moves together with the fluid, 

featuring the well known drawback of a rapid increase in element aspect-ratio as the grid 

deforms, introducing a significant numerical error. A more robust approach is the Arbitrary-

Lagrangian-Eulerian (ALE) method, Hirt et al. (1972). In this case the mesh is free to move 

with respect to the fluid, and algorithms to adapt a time-varying grid to the phreatic surface can 

be adopted. The ALE method has been applied successfully to many free surface problems, e.g. 

Mayer et al. (1998), Souli and Zolesio (2001), Lo and Young (2003). Although, it requires a 

high computational cost due to the global re-meshing procedure, particularly in three-

dimensional problems. Finally, there are different Eulerian methods available, which do not 

involve any kind of mesh motion by definition. Between these, the 'marker and cell' approach 

(MAC) of Welch et al. (1966) (see also Viecelli (1969» and the 'volume of fluid' (VOF) 

method ofHirt and Nichols (1981) are the most popular. The main idea of these two approaches 

is to track fluid regions rather than a moving boundary. In the MAC method the dynamic 

pressure condition is applied to the entire cell containing the free surface. whereas in the VOF 

this condition is applied more precisely to the moving boundary. In fact VOF approximates the 

dynamic boundary position inside a cell by means of a volume fraction function. In these two 

approaches, loss of accuracy is found by not imposing correctly the free surface conditions of 

the moving interface. However they are very simple to implement. 
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To describe a free surface more accurately with the Euler method, one could use a height 

function. This approach can be impractical when the configuration of the free surface is 

complex, but is very well suited to the case of the phreatic surface, for which the motion is 

constrained to be vertical, and only small gradients are expected. However, when the use of the 

height function is combined with the CV or FE method, redefining the mesh as the phreatic 

surface intersects more elements is not a trivial problem. This procedure requires are-meshing 

algorithm which acts only locally to the phreatic surface, so that the aspect-ratio and skewness 

of the involved elements remain bounded between reasonable values. 

In this chapter, an efficient algorithm is presented in order to perform a local re-meshsing as the 

phreatic surface elevation varies inside the aquifer. The algorithm is valid for any moving 

boundary that follows a constrained direction. However, it is not suitable for moving boundaries 

that features large gradients. 

5.2 Governing equation 

When only the saturated zone of the aquifer is modelled, the governing equation is given by the 

conservation of mass (Eq. 5.1), obtained under the assumption of Darcy flow 

i,j = 1,nd (5.1) 

In (5.1) r/J = Z + %g is the piezometric head, with z being the elevation, p the pressure, p 

the density of the fluid, g the gravity acceleration and nd the number of dimensions; So is the 

specific storativity (volume of water added to storage, per unit volume of porous medium, per 

unit rise in piezometric head), [K] is the hydraulic conductivity tensor, and r represents 

source points in the aquifer. The seepage velocity and the Darcy's flux are given respectively by 

ot; q =-K-
j Ij Ox. 

J 

V. =q/ 
I 1] 

(5.2) 

(5.3) 

where 1] is the soil porosity. For small or medium scale problems, the conservation of mass 

expressed by (5.1) can be simplified assuming zero storativity and dropping the time dependent 
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tenn, Bear (1987). Under this assumption the problem becomes quasi-static, with the governing 

equation given by the steady non-homogeneous diffusion equation 

fJ fJt/J 
-(K.-)+r=o 
Ox. II Ox. 

I J 

(5.4) 

and the transient component defined only by the boundary conditions. 

Considering the porous medium as homogeneous but anisotropic, the tensor [K] can be written 

as 

(5.5) 

with K), K2 and K3 constant all over the domain, and a reference frame coinciding with the 

principal directions of the anisotropic porous medium. To model the springs and the sinks 

placed in the aquifer the following source tenns are taken: 

(5.6) 
m n 

where Wm and pm are the strength of the point sources and point sinks respectively and 

b'(x-xm) denotes the dirac-delta function atxm. However, when the screen of a pumping 

well is quite long it cannot be approximated as a point sink. A more accurate model is given by 

describing the pump as an array of point sinks, each point being a segment of the well or by 

using a line integrated sink singularity. 

In the saturated model, the transition region between the saturated and unsaturated zones is not 

modelled, but is instead considered to be a simple surface (phreatic surface). With this 

assumption, the media below the phreatic surface is completely saturated and the phreatic 

surface acts as a moving boundary of the domain being simulated. If z is the vertical direction, 

the phreatic surface at a given time t can be described by a two-dimensional function, 

z = h ( x, y, t). This equation can be rewritten in implicit fonn as follows 

FS (x,y,z,t) = z-h(x,y,t) = 0 (5.7) 
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In the absence of natural replenishment and other superficial sources or sinks, only the dynamic 

and kinematic boundary conditions must be applied on the phreatic surface, i.e. imposing the 

pressure to be equal to the atmospheric value, and the material derivative of FS to be equal to 

zero. Using the seepage velocity definition, the kinematic and the dynamic conditions take the 

following form 

ｾ ］ ｨ

oh _ Kij ｾ ｮ ｓ ｉ ｜ Ｗ ｆ ｳ ｬ ］ ｯ
at 'f/ Ox} I 

(5.8) 

where n,s is the i-component of phreatic surface normal vector. 

5.3 Mathematical formulation 

After dividing the computational domain into a number of non-overlapping control volumes, the 

differential equation (5.4) can be integrated over each of these as follows 

(5.9) 

The left hand side of equation (5.9) is discretised using the CV-HRBF method as shown in 

chapter 2. The source term in the second member is implemented in a numerical code, bearing 

in mind the Dirac delta function properties, and the fact that it is equal to the sum of the 

pumping and injecting rate values of the sink/source points present in the volume. 

r = ｻ ｾ ｗ Ｂ Ｈ ｸ Ｂ ,t)O(X-X")o+ ｾ ｐ Ｇ Ｈ ｘ Ｇ ,t)o(x-x') 
(5.10) 

5.4 Phreatic surface tracking 

The algorithm reported below has been developed for simulation of groundwater flow problems 

with a view to tracking the phreatic surface. The points placed on the moving boundary are 

constrained to move only vertically and the phreatic surface is always expected to be continuous 

and smooth without large elevation gradients. 
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In this formulation, only prisms aligned with the vertical direction are allowed to mesh the 

region swept by the moving boundary. This assumption is the key point of the present algorithm 

(see Orsini et al. (2009», which exploits the fact that the moving boundary points (MBPs) move 

in a prefixed direction. Consider a prism that has the top triangular face place on the dynamic 

boundary, and the quadrilateral faces parallel to the direction of the moving boundary motion, 

Figure 5.1. The three track points PI, P2, and P3 are used to assign the kinematic and the 

dynamic conditions and to compute the local displacements of the moving boundary. Since the 

direction of the displacements is known a priori, the edges et, e2, and e3, Figure 5.1, can be 

adjusted in length to track the surface. This approach can be adopted only when the 

displacements are relatively small in comparison to the size of the cells. For large 

displacements, additional cells must be added as the dynamic boundary is moving away from 

the domain, whereas some cells need to be removed as the dynamic boundary is moving in, 

reducing the size of the domain. This procedure avoids the generation of deformed elements 

characterised by large aspect-ratio and skewness. 

---'7 outside domain 

!=.=. 
Inaide dam.n 

Figure S.l - Prism cut by the moving boundary 

To develop an adding-removing cells algorithm, columns of prisms can be adopted, and the 

points of the dynamic boundary are free to move on the vertical lines that define the columns. 

Each prism in every column is investigated to determine whether or not it has to be included in 

the domain for a certain configuration of the moving boundary. The analysed prism is 

considered to be inside the computational domain if at least one of the MBPs is above its mid 

plane, Figure 5.2 (here the computational domain is below the moving boundary). 

a) b) c) 
oullid. dolTllin 

I Moving boundary 
motion dr.dion 

Inaide domain 

Figure S.2-Prism position detection: a) prism and its mid plane; b) the cell is inside the domain; c) 
the cell is outside the domain 
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If the prism is inside the domain, one must detennine whether the dynamic boundary will 

change its original shape or not. To do so, a region (the M-region in Figure 5.3) is defined 

between the mid planes of the prism under investigation and the one above it. The element is 

reshaped in two circumstances: if at least one MBP is inside the M-region or if there is at least 

one point above and one below the M-region. 

outside domain 1\/ 
r - • --

) ｍ ﾷ ｾ ｾ • 

...... ......... 

M ... •• ....... "'I .. ｾ ｾ Ｚ Ｚ ｾ ｾ ｾ Ｎ
-••• •• *." 

motion drec:tion 

ｾ ｾ. .. ." " .. ｾ Ｚ .... :.' ...... , ｾ Ｎ Ｇ Ｂ

':<0:" Io-':r-:;'" 
inside domain , ......... ;' c::::> Investigated ,. -; Element 

'\ / 
Figure 5.3 - Definition of M-region for the element under investigation 

The cell change depends on the number of MBPs placed in, above and below the M-region. The 

following rules drive the local remeshing process. 

e When a MBP falls inside the M-region the corresponding corner of the top face of the 

prism will be moved on the MBP itself. 

e Once the cell is inside the domain, if there are MBPs placed below the M-region they 

will become the corners of the new cell. In fact every MBP found below the M-region 

will lead to the corresponding vertical edge to collapse on the MBP itself. 

A few examples of possible local mesh modifications are given next to help understand how the 

algorithm works. With three MBPs in the M-region the cell will remain a prism but the top face 

will move to track the boundary, Figure 5.4. When two MBPs are placed on the M-region the 

position of the third has to be taken into account to detennine the new type and shape of the 

element. If the third point is above the M-region, then the cell will still be a prism, with its top 

face internal to the domain, Figure 5.5. If instead the third point is below the M-region. then the 

new cell type will be a pyramid, with one of the faces placed on the moving boundary. Figure 

5.6. When only one MBP stays in the M-region, it is possible to distinguish three more sub-

cases depending on the position of the other two. If one of the two is above and the second one 

is below the M-region, the new element will be a pyramid without any face placed on the 

moving boundary, Figure 5.7. 
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Figure 5.4 - Local remeshing: all three moving boundary points are placed on the M-region; 

outside domain 

I MOIling boundary 
motion ciredion 

inside domain 

Figure 5.5 - Local remeshing when two moving boundary points fall in the M-region: the third one 
is above the M-region 

outside domain 

ｾ
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Figure 5.6 - Local remeshing when two moving boundary points fall in the M-region: third one is 
below the M-region 

outside domain 

I MOIling boundary 
motion cireclion 

Intide domain 

Figure 5.7 - Local remeshing when only one moving boundary points is placed in the M-region: the 
other two are one below and one above the M-region. 

When both are above the M-region then the element will remain a prism with only one point in 

the moving boundary, Figure 5.8. Finally, when both are below the M-region the new element 

will be a tetrahedron with one of the four faces placed on the movi ng boundary, Figure 5.9. The 

last case worth considering is encountered in the event of one (or more) whole prism(s) being 

crossed by the moving boundary; this happens when the circumstance previously mentioned of 
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at least one MBP above and one below the M-region occurs. An example is shown in Figure 

5.10 where two of the three MBPs are below the M-region and one is above it. In this case the 

element under consideration turns into a tetrahedron without any face placed on the dynamic 

boundary. Note that in this instance the top element is quite distorted, and becomes even more 

so, as the number of elements crossed by the moving boundary in the same column increases. 

One of the assumptions under which the present algorithm has been developed, is the absence of 

large elevation gradients. If this hypothesis is not satisfied, the procedure can generate elements 

characterised by very high values of skewness, reducing the accuracy of the flux computation 

and generating ill-posed local problems to be solved inside the CV -HRBF scheme. However 

this is unlikely for groundwater flow applications. 

ｾ
Ｂ Ｂ Ｇ Ｇ Ｇ Ｇ Ｗ outside do.,..ln 

I I rTi ｾ ］ .:;::;.:;> w; ....... · 
Figure 5.8 - Local remeshing when only one moving boundary points is placed in the M-region: the 
other two are both above the M-region. 
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I Moving boundary 
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inside donnain 

Figure 5.9 - Local remeshing when only one moving boundary points is placed in the M-region: the 
other two are both below the M-region. 

outside domain 
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Figure 5.10 - Local remeshing when one moving boundary points is placed above the M-region and 
the other two are placed below it 

The algorithm described above adapts the computational mesh to the phreatic surface 

configuration, which is updated at every time step. The quasi-static assumption introduced in 
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section 5.2linearises the problem with respect to the dynamic boundary. Then, starting from the 

solution at the previous time step, the kinematic condition is used to move the phreatic surface 

on the new configuration. The displacement increment for every point of the surface can be 

obtained from the second of the equations (5.8) when rewriting the normal vector as a gradient 

of the implicit function FS (aF
s 

= IV FS I ｮ ｾ ) 
Ox; 

dh = (K a¢> aFs J I-AI dt 
MBP ij Ox Ox 

j MBP I TJ 
(5.11) 

It is evident from equation (5.11), that in order to obtain dhMBP one must compute the 

piezometric head gradient, and the derivatives of FS on the considered MBP. The gradient 

( a¢> J I-AI is reconstructed using the RBF interpolations in which the MBP has been 
Oxn MBP 

collocated during the solution at the previous time step. When more than one interpolation 

formula is available, the average of the multiple reconstructed values seems to be the most 

stable alternative. To compute the derivative of the phreatic surface shape function FS, a two-

dimensional RBF interpolation (see section 1.1.1, Equations from (1.1) to (1.4» is performed 

for every MBP . Such two-dimensional interpolation is local, i.e. only the MBP and a few of 

its neighbours (about 10-15) are considered to interpolate F S locally. 

Once the phreatic surface configuration has been updated, the new boundary location and the 

value of the piezometric head required to impose the dynamic condition are known. A new 

steady problem (5.4) can then be solved to find the piezometric head distribution of the next 

time step. 

5.5 Computational cost 

For particular problem described by the governing equation (S.4), together with the free-surface 

condition (5.8), the PDE operator does not change with respect to the time. The inverse matrices 

of the local systems, or the reconstruction vectors multiplied by the inverses (see section 4.4), 

are computed as a pre-processing step at the beginning of the computation and stored in 

memory. This cannot be done for local systems associated with the deforming elements that are 

located in proximity of the phreatic surface. For such elements not only the system needs to be 

112 



refonned, but also the interpolation stencil. However this only happens for a small percentage of 

the total number of elements, i.e. the elements that contain the phreatic surface, and their first or 

second level neighbours, depending on the type of stencil configuration adopted. All the 

operations related to the re-meshing that is caused by the moving boundary are local. This 

makes the entire algorithm very efficient. 

5.6 Numerical results 

First a three-dimensional test case is run in order to validate the accuracy of the CV -HRBF 

method in solving anisotropic diffusion equations. The method is then used to simulate a series 

of groundwater problems, which consider the operations of extraction and recharge in a semi-

confined aquifer. A convergence analysis has been carried out for all test cases reported in this 

section. Thus, the results presented for each example correspond to the obtained mesh-

independent solutions. A multiquadric RBF is employed in the interpolation algorithm, both in 

the validation test case and in the groundwater simulations. The shape parameter is computed 

for each interpolation stencil as a fraction of the maximum distance, see section 2.6, but 

different approaches are adopted in the selection of the c; values. In the validation test case, 

where an analytical solution is available for comparison with the numerical results, the value of 

the shape parameter is chosen iteratively, using a 'guessing and check' method in order to 

minimise the absolute L2-nonn error. Instead, for the groundwater simulations the value of c; 
is taken to be equal to 0.16, a value that leads to a good level of accuracy. 

Only the first order CC control volume scheme is used throughout the simulations, though in 

principle there is no reason why the VC scheme introduced in chapter 4 could not be applied to 

the problems presented in the following section. In addition, the configuration S I-PDE 

described in section 2.7.3 is adopted to fonn the interpolation stencils, which in the case of 

prismatic elements gives a total number of 12 points (6 dirichlet + 6 PDE points). 

5.6.1 Validation: Three-dimensional anisotropic diffusion problem 

In this section the CV-HRBF is validated in a three-dimensional problem characterised by a 

homogeneous but anisotropic diffusion for which an analytical solution exists. The equation 

solved is 

i,j = l,nd (5.12) 
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where nd is the number of dimensions, x is the generic position vector and X C gives the 

location of a source point placed outside the computational domain. The diffusion tensor is 

considered to be diagonal 

1,1 

Equation (5.12) has a general analytical solution given by 

(5.13) 

where 

The domain chosen for this simulation is a cube with a unitary length edge [1 x l x l] . The origin 

of the reference frame is placed in the geometric centre of the cube, and the source point 

coordinates are equal to (0.75,0.75,0.75). Dirichlet boundary conditions are imposed in the six 

faces using the analytical solution (5.13), where the diagonal terms of the diffusion tensor are 

taken as Dl = D3 = 1 and D2 = 0.1. As it can be inferred from equation (5.13), the potential <P 

decays with a rate which is inversely proportional to the distance from the source point, thus 

larger gradients are expected to occur in the region closest to the source point. In this case a 

mesh refinement around the comer (0.5, 0.5, 0.5) of the chosen domain is required in order to 

reproduce the solution gradients, Figure 5.11. 

" 
.(), 

Figure 5.11 - Mesh used to solve the three-dimensional anisotropic diffusion problem: a) three-
dimensional view; b) view aty=O.5; b) view at z=O.5; 
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The semi-unstructured mesh used for the computation is generated by extrusion from a 

triangular two-dimensional grid; it features about 41000 prisms and is of the same type of the 

meshes used later in this chapter for groundwater problems. The optimal value of c; found is 

equal to 0.8, for which L; error = 3.5 x 10-3 
• 
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Figure 5.12 - Solution 3D plots: 1) y=O.4S, 2) z=O.4S. a) - analytical solution; b) CV-RBF solution. 
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Figure 5.13 - Profile extracted aty=0.48, z=O.47, Ｍ ｏ Ｎ Ｕ ｾ ｏ Ｎ Ｕ ［ a), comparison between the CV-HRBF 
and the analytical solution b), relative percentage error. The symbols represent the analytical 
solutions; the full lines refer to CV-RBF solution 

To assess the accuracy of the method, the numerical results are presented in two slices extracted 

in proximity of the high gradients regions. The first one is a plane of constant y value, at y=0.48, 

and the second one a plane of constant z value, at z=0.48. For these two slices three-dimensional 

solution plots are reported in Figure 5.12, where the analytical solution is also plotted on these 

planes for comparison purposes. Corresponding detailed profiles are plotted in two dimensions 

in Figure 5.l3 and Figure 5.14 for clarity. The good agreement between analytical and 

numerical solutions shows the CV-HRBF ability to solve anisotropic diffusion problems. 
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Figure 5.14 - Profile extracted at z=0.48, x=0.47, Ｍ ｏ Ｎ ｓ ｾ ｏ Ｎ ｓ ［ a), comparison between the CV-HRBF 
and the analytical solution b), relative percentage error. The symbols represent the analytical 
solutions; the fullUnes refer to CV-HRBF solution. 

5.6.2 Pumping-injecting 

In this problem, two wells placed 20 meters below the phreatic surface are modelled. One is 

used to inject water into the aquifer and the other to pump water out. The effects of the 

recharging and extracting actions on the aquifer are investigated. Starting from an unperturbed 

field, the time necessary to reach the balance and the final configuration of the phreatic surface 

are the main answers expected from a numerical simulation. The considered domain is a strip of 

semi-confined aquifer 550 meters long and 150 meters wide, where a constant height 

distribution of 50 metres represents the initial configuration of the phreatic surface, Figure 5.15. 

Saturated zen. 

660m 

Figure S.lS - Pumping injecting: geometry 

The two wells, placed in the centre of the computational domain, are 50 meters apart and 20 

meters from the bottom of the aquifer. Each well is modelled as two source (or sink) points 

having the same strength, and placed at the ends of a 2.5 meters long vertical segment. The 

pumping rate, chosen to match the injecting rate, is 50 m31h. No flux is allowed in two of the 

four side boundaries, at z = Om and z = 150m, which are taken to be impervious along with 

the bottom of the aquifer. Finally, in the two remaining side boundaries, at x = Om 
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and x = 550m a constant piezometric head equal to 50 meters is imposed (the boundary 

conditions used for the simulation are summarised in Table 5.1). 

Boundary position Boundary condition equation 
x=Om, x=550m t/J = 50m 

z=Om, z=150m, y=Om at/J/an = 0 
Phreatic surface Eq. (5.8) 

Table 5.1 - Pumping injecting, boundary conditions 

The porous medium is considered to be homogeneous and anisotropic, with an effective 

porosity 7] = 0.2 and a hydraulic conductivity in the vertical direction which is ten times 

smaller than in the horizontal (Kx = Kz = 1.0 m/ h; K y = 0.1 m/ h). 

The computational mesh is made of prisms. In fact, due to the small scale of the problem, 

prisms are used throughout, giving the moving boundary freedom to sweep the entire height of 

the domain. The original mesh features 24 layers, uniformly distributed in the vertical direction, 

covering a total height of 60 meters and allowing a maximum positive displacement of 10 

meters (the initial elevation of the phreatic surface is equal to 50 meters). About 40,000 cells are 

used, with a refinement around the region where the pumping and injecting well s are placed, 

Figure 5.16. 
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Figure 5.16 - Injecting, computational mesh: a) top view; b) front view; c) lateral view; 

A quasi-static approximation is taken, solving (5.4) as a steady problem between each time step 

of the motion of the phreatic surface. Using a time step equal to 1 hour, the simulation is 

stopped after 300 hours, by which time the solution is deemed to have reached steady state. The 

increments of the phreatic surface point displacements computed at every time step, are used in 

order to monitor the global change in the solution. Only when the Lrnorm of all increments is 

less then 10-4 m the solution is considered to be converged to a steady state configuration. The 
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final solution is also checked to guarantee that any flu x imbalance is negligible. The three-

dimensional configuration of the phreatic surface at the steady state solution is shown in Figure 

5.17. It is possible to observe the maximum displacements occurring in the region above the two 

wells, as expected: the maximum computed deflection equal to -2.33m is found at 

(XMde/ = 213m; z Mde/ = 75m), whereas the maximum elevation of O.76m occurs at 

(XMel = 358m; zMel = 75m). The asymmetry between maximum deflection and elevation can 

be explained by consideration of the distance between the moving boundary points and the 

wells. The points placed above the recharging well are pushed up, moving away from the well, 

hence reducing its influence on the surface. Conversely, the phreatic surface points above the 

pump are drawn down towards the aquifer, experiencing an enhanced influence from the well as 

they move closer to it. 

y 

ｾ ｸ
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40 

Figure 5.17 - Pumping Injecting: 3D plot of the phreatic surface once the flux balance is reached 
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Figure 5.18 - Pumping Injecting, contour and vectors plot: a) plane at z=76 m; b) plane at y=22.5 m 
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Finally, the constant piezometric head contours and the velocity field are shown in Figure 5.18 

for two cross sections which split the domains in two vertical parts in its centre. The first plane 

is parallel to the vertical direction, Z = 75m, whereas the second one is an horizontal cross 

section through the centre of the pumps at y = 22.5m. Flow recirculations are observed in both 

sections due to presence of the impervious walls and of the phreatic surface, which are in close 

proximity to the wells. 

5.6.3 Infiltration well 

An infiltration well is subsequently modelled, which recharges the aquifer directly into the 

saturated zone. The well features a diameter equal to 3 meters and is long enough to go through 

the unsaturated zone to reach the ground surface. The domain modelled consists of a small 

square area (2500 m2
) of a semi-confined aquifer with a constant phreatic surface elevation, 

equal to 31 meters in the initial configuration, Figure 5.19. Following the beginning of the 

recharge operation, a rise in the position of the phreatic surface is expected, with the 

displacement of the phreatic surface depending on how the recharge is carried out. In this 

model, the well is kept at a constant piezometric head, 4 meters higher than the phreatic surface 

elevation, i.e. the piezometric head at the bottom of the well is 35 meters. 

Saturated zone 

Figure 5.19 - Infiltration well model 

A constant piezometric head equal to the initial phreatic surface elevation (31 meters) is 

assigned to all the side boundaries, at x = Om , x = 50m, Z = Om , and z = SOm, whereas a 

zero flux condition is imposed at the vertical walls of the well and in the impervious layer 

placed at the bottom of the aquifer, y = Om. Although the unsaturated zone of the aquifer is not 
I 

taken into account, the well vertical walls must be included in the model. This is because the 

phreatic surface can rise around the walls of the infiltration well. In Table 5.2 a summary of the 

boundary conditions that are applied to the model is reported. 
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Boundary position Boundary condition equation 

x=Om, x=50m, z=Om, z=50m ¢=31m 

z=Om, vertical walls of the well o¢/on =0 

Bottom opening of the well ¢=35m 

Phreatic surface Eq. (5.8) 

Table 5.2 - Infiltration well, boundary conditions 

The porous medium is considered homogeneous and anisotropic, with Kx = Kz = 1.0m/h; 

Ky = 0.3 m/ h , and with an effective porosity 1] = 0.2. About 60000 prisms are used to 

generate the original mesh, and a significant refinement is provided below and around the 

infiltration well, Figure 5.20. Due to the discontinuity in the piezometric head required to model 

the infiltration well, large gradients are present in both the vertical and horizontal directions in 

this region. 
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Figure 5.20 - well, computational mesh: a) top view; b) well cross section at z=2Sm; c) side view 

The recharge operation is simulated using a relatively small time step equal to 6 minutes, in 

order to avoid the instability of the high gradient region. The experiment is stopped after 270 

hours, when a steady state solution is reached (i.e. the ｾ Ｍ ｮ ｯ ｲ ｭ of the displacement increments 

of the phreatic surface points is less than 10-4m). For this configuration the maximum phreatic 

surface elevation occurs around the well, and the displacement compared to the initial solution 

is l.3m, Figure 5.21. Two slices are extracted to analyse the steady solution inside the domain: a 

vertical cross section at z = 25m and a horizontal cross section at y = 28m just below the 

infiltration well, Figure 5.22. In the vertical plane, the velocity field features recirculations 

below the opening of the infiltration well and in the region where the phreatic surface is 

interrupted by the walls of the well. In this small scale problem, the prediction of such 

recirculations is crucial to accurately represent the fmal configuration of the phreatic surface. 

An erroneous prediction of the maximum elevation around the infiltration well would introduce 
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a large error in the whole domain. Finally it is worth noting that the model is able to correctly 

predict the radial behaviour of the horizontal velocity field, Figure 5.22.c. 
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Figure 5.21 - Infiltration well: 3D plot of the phreatic surface for the steady solution 
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Figure 5.22 - Infiltration well, contour and vectors plot a) plane at z=25 m; b) plane at z=25 m, 
zoom in the region around the infiltration well; c) plane at y=22.5 m. 

5.6.4 Infiltration we ll - Pumping 

In this problem, the coupling between an infiltration well and an extraction pump placed 15 

meters below the phreatic surface is modelled. The infiltration well recharges the aquifer 

directly into the saturated zone, and the quantity of water avai lable for the infiltration is taken to 

be equal to the amount of water extracted by the nearby pumping well. This extracting well is 

placed only 25 meters away from centre of the infiltration weJl, Figure 5.23. 

The infiltration well and the pump are implemented in a strip of a semi-confined aquifer, 75 

meters long and 50 meters wide. The phreatic surface elevation is equal to 31 meters 

everywhere in the initial configuration.The simulation is designed to monitor how the aquifer 

responds when the infiltration and the pumping are simultaneously started. The imposed 

infiltration rate is close to the limit of what the aquifer can absorb, and is equal to the pumping 

rate of the water being extracted 
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Saturated zone 

• 
Figure S.23 - Infiltration well-pumping model 

Once the infiltration rate is fixed, it is possible to infer the piezometric head gradient, and the 

Neumann boundary condition imposed in the bottom opening of the infiltration well. Since the 

opening surface is horizontal, only the vertical components are considered 

/-K 8¢ A 
- )' well 

By A...u 

(5.14) 

where ｾ ･ ｬ Ｏ is the area of the bottom opening of the infiltration well and K y the hydraulic 

conductivity in the vertical direction. The pump is represented with a point sink placed 15 

meters below the phreatic surface. A constant piezometric head equal to the initial phreatic 

surface elevation (31 meters) is assigned in all the side boundaries (x = Om ,x = 75m, z = Om 

, z = 50m), whereas a zero flux condition is imposed at the vertical well walls and at the 

impervious layer placed at the bottom of the aquifer (y = Om). A summary of the boundary 

conditions is presented in Table 5.3 below. 

Boundruy position Boundruy condition equation 
x=Om, x=50m, z=Om, z=50m t/J = 31m 

z=Om, vertical walls of the well ot/J/on = 0 
Bottom opening of the well ot/J/on = -VI17/ky 

Phreatic surface Eq. (4) 

Table S.3 - Infiltration well-Pumping, boundary conditions 
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The porous medium is modelled as homogeneous and anisotropic, with Kx = Kz = l.Om/ s; 

Ky = 0.3 m/ s , and a porosity 1] = 0.2. About 60000 prisms have been used to mesh the 

domain with a mesh refinement around and below the infiltration well, Figure 5.24. 

Figure 5.24 - Infiltration well-Pumping, computational mesh: a) top view; b) well cross section at 
z=25m; c) side view 

A time step equal to 6 minutes is used here and the simulation is stopped after 30 hours when a 

steady state solution is reached. The L2-norm of the displacement increments of the phreatic 

surface points is equal to 10-4 m and a flux balance is achieved. In the steady state configuration, 

the phreatic surface shows a maximum elevation equal to OAm around the infiltration well, and 

a minimum deflection of -O.14m in the region above the pump, Figure 5.25. The velocity field 

computed in the vertical section across the infiltration weB, Figure 5.26.a, shows three main 

flow regimes: the circulation between the pump and the infiltration well, the water sucked by 

the pump from the aquifer, and finally the motion of the infiltrated water towards the outside of 

the considered domain. As can be observed in Figure 5.26.a, the majority of the water infiltrated 

into the aquifer is taken in directly by the pump. The velocity field in the horizontal plane at 

y=29 meters, just below the infiltration well, Figure S.26.b, shows the interaction between the 

three flow regimes. 

Figure 5.25 - Infiltration well-Pumping: 3D plot of the phreatic surface for the steady solution 
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Figure 5.26 - Infiltration well-Pumping. contours at constant piezometric head (m) and vectors. a) 
Plane at z=25 m; b) plane at y=29 m 

5.6.5 Injection field test case in a large diameter well performed in 

Campina De Faro (Portugal) 

Another infiltration well is modelled to simulate the experiments carried out from one of the 

GARBADINE project partners in the field test site of Campina De Faro, south Portugal. 

Between the different techniques proposed to recharge the aquifer, the direct injection into the 

saturated zone was also considered during the GARBADINE project, and in the site of Campina 

De Faro a recharge prototype station based on this idea was built. The water pumped out from a 

deep confined aquifer was injected into the above semi-confined aquifer through a large 

diameter well. The confined and the semi-confined aquifers are separated by an impermeable 

layer, and they can be considered two independent systems. The estimated water table elavation 

of the semi-confined aquifer is about 50 m, and the 5 meters diameter well is immersed 7 meters 

into the saturated zone. Only a portion of 50 m x 50 m of the semi-confined aquifer is modelled 

in this section, since the deeper aquifer where the water is extracted does not have any effect on 

the zone under recharge. The sketch ofthe model is shown with dimensions in Figure 5.27. 

Saturated zone 

50m 

Figure S.27 - Infiltration well model of the experimental site of Campina De Faro in Portugal 
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Three different injection experiments were carried out, and between each of them the semi-

confined aquifer was allowed to recover the original configuration to avoid overlapping effects. 

No other pumping actions were taking place in the area, except the experiment in question. The 

longest injection, which is the main interest of the model considered here, was performed by 

supplying the well with water at a constant rate of 20 m3/h for 50 hours. During the entire 

experiment, the water level in the well was recorded to investigate the absorbing capacity of the 

aquifer. 

In the numerical model, a constant piezometric head equal to the initial phreatic surface 

elevation (50 meters) is assigned to all the side boundaries, at x = Om , x = SOm, Z = Om ,and 

z = SOm • whereas a zero flux condition is imposed at the vertical walls of the well and in the 

impervious layer placed at the bottom of the aquifer. y = Om. For the bottom opening of the 

well neither the value of the piezometric head nor the water flux are known: the only data which 

is given is the well recharge rate. Q = 20m3/h. During an interval At the volume of water 

supplied to the well. minus the volume of water that infiltrates into the aquifer, gives the 

increment or decrement of the water contained in the well 

(5.15) 

where ｾ ･ ｬ ｬ is the area of the bottom opening of the infiltration well, fl.h is the increment of the 

water level inside the well. qw is the volumetric rate of the water infiltrating into the aquifer. 

This mass balance can be exploited to derive a Robbin (or mixed) condition to be applied at the 

bottom opening of the well. 

Considering an infinitesimal interval, equation (5.15) can be rearranged as follows 

dh Q qw -=-----
dt ｾ ･ ｬ ｬ ｾ ･ Ｏ ｬ

(5.16) 

Recalling the definition of the piezometric head. rp = z + % g , and neglecting the effect of the 

dynamic pressure during the infiltration (due to the small velocity expected). the value of rp at 

bottom opening of the well can be expressed as 

(5.17) 
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where H is the elevation of the bottom opening (43 m in this case), which is a constant. So in 

equation (5.16), the differential of the water level at the bottom of the well can be taken to be 

equal to the differential of the piezometric head, dh = d(>. Taking the increment dh positive for 

increasing y, see Figure 5.27 for the reference system, and expressing qw by the Darcy's law, 

equation (5.16) can be rewritten as 

d(> =JL- K 0(> 
dt ｾ ･ ｬ ｬ y Oy 

(5.18) 

(5.19) 

Finally using a first order finite difference approximation to discretise the time in equation 

(5.19) the following expression is obtained 

(5.20) 

Equation (5.20) is the Robbin condition that will be applied to the bottom opening of the well. A 

summaty of the boundaty conditions is presented in Table 5.4 below. 

Boundary position Boundary condition equation 
x=Om, x=50m, z=Om, z=SOm (> = 50m 

z=Om, vertical walls of the well o(>/on = 0 
Bottom opening of the well Eq. (5.20) 

Phreatic surface Eq. (5.8) 

Table 5.4 - Campina De Faro infiltration well, boundary conditions summary 

The unconfined aquifer is mainly made of sand, for which a porosity 77 = 0.33 is used in the 

model. The values of the hydraulic conductivity are varied during the calibration in order to 

match the well water level data recorded during the experiments, and approximated initial 

values are computed based on the infiltration rate observed during the experiment ( 35-45 

meters/day). About 150000 prisms are used to generate the original mesh, and a significant 

refinement is provided below and around the infiltration well, Figure 5.28. 
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Figure 5.28 - Campina De Faro infiltration well, computational mesh: a) well cross section at 
z=2Sm; b) top view 

Following the experiments, the injection starts with the phreatic surface and the water level 

inside the well having the same elevation (50 meters), so that the system is in equilibrium. In 

equation (5.20) Q=20m3/h is imposed for the first 50 hours of the simulation. After which 

the well water supply is stopped, and the recharge operation continues with water accumulated 

in the well for another 50 hours, at which point the simulation is stopped. A relatively small 

time step equal to 3 minutes is used, in order to avoid the instability caused by the high gradient 

region. The flow paths and the piezometric contours plots look very similar to those reported for 

the infiltration well studied in section 5.6.3, whil e the maximum elevation of the phreatic 

surface computed for t = SOh at the wall of the well is equal to 0.27 meters. The calibration of 

the model is carried out by comparing the evolution in time of the experimental water level 

inside the well with the computed one. Repeating the simulation for different values of the 

hydraulic conductivity, the best match is found for Kx = Kz = 1.0 m/ hand K y = 0.04 m/ h , 

see Figure 5.29. 
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Figure 5.29 - Campina De Faro infiltration well: water level inside the well . Full black line, CV-
JlRBF; Symbols, experimental data. 
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The well water level reported in Figure 5.29 is relative to the elevation of the well bottom 

opening (H = 50m). Such a level is computed at each time step as the average of the 

piezometric head values that are reconstructed on the nodes located at the bottom opening of the 

well, and by substracting H from the average. In fact, the peizometric head values computed in 

the centre of the opening are larger than those found near the wall. This is due to the dynamic 

pressure effects, which are neglected in this model. However such variation is less than a meter. 

As can be observed from Figure 5.29, the numerical simulation is able to reproduce the 

experiments, although it shows some discrepancies in the region where the water supplied to the 

well is equal to the amount of water that infiltrates into the aquifer. This happens 40 to 50 hours 

after the recharge starts, where the experimental data shows that the water level inside the well 

tends to flatten. The numerical solution also seems to be different from the field data during the 

water level drop; and this is probably a consequence of the inaccurate prediction in the previous 

phase. 

The error found between the experimental data and the numerical solution reflects the 

uncertainty of the data available for the mathematical model. The thickness of the saturated 

zone, which is assumed to be equal to SO meters, is only estimated. Probably another calibration 

should be performed by varying this value. In addition, by looking at the field data it appears 

that the modelled recharged operation started when the effects of the previous recharge were 

still present, and the system was not completely in equilibrium. Finally, in this simple model the 

clogging is not taken into account. This is another phenomena that could also affect the 

distribution of the piezometric head and water level, in particular during the phase of non-

pumping, where the difference between the numerical and experimental results appear to be 

larger. 

5.7 Conclusion 

The CV -HRBF has been used to model the saturated zone of the unconfined aquifer, thus 

showing the capabilities of the method in dealing with porous media flows. A mesh adapting 

algorithm which performs a local re-meshing as the phreatic surface moves vertically has been 

presented. It has been found that the local meshless character of the CV-HRBF introduces 

several flexibilities in the groundwater numerical modelling. In fact, by using this numerical 

approach, the dynamic boundary condition can be applied in an arbitrary number of points on 

the phreatic surface, independently from the mesh element. 
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6 MULTI-DOMAIN PROBLEMS 

6.1 Introduction 

Domain decomposition methods are often used in numerical analysis to tackle engineering 

applications where the solution in a single domain would be impossible due to the nature or the 

size of the problem. Consider for example a problem where two adjacent regions require the 

solution of a different type of partial differential equations (e.g. fluid-structure interaction), in 

this case the coupling is only possible via splitting the domain in two parts and imposing some 

adequate matching conditions at the interface between the two. In other problems, the type of 

partial differential equation to be solved is the same all over the computational domain, but the 

material properties are strongly heterogeneous. In this circumstance, some of the parameters that 

appear in the equation to be discretised can be practically considered discontinuous. In order to 

capture the discontinuities caused by this type of heterogeneities, the domain can be divided in 

different zones that individually feature a smooth variation of the physical properties. This 

approach, commonly named as multi-zone, has been used for a long time in the numerical 

analysis of solid mechanics problems but applications can also be found also for heat transfer 

problems. Another recent application of the domain decomposition technique is due to the 

growing popularity of parallel processing over the last two decades. The parallel processing is 

adopted when the problem to be solved does not fit in the memory of a single machine. It is also 

used to reduce the computational time needed to complete a simulation. In general, the 

computational domain is divided into sub-domains and each of them is assigned to a different 

processor, which might share memory with other processors or not depending on the computer 

architecture, Saad (1996). The number of software packages that use the parallel computation 

technology is growing quickly, in fact no significant improvements are expected for the single 

CPU speed in the near future and computer development is now focused on parallel processing. 

In the literature, the domain partitioning algorithms are divided into two main categories: the 

overlap and the non overlap domain decomposition. In the overlapping approach, the original 

domain is divided into a prescribed number of non-overlapping sub-domains. Each sub-domain 

is then extended including a relatively small overlapping region between the neighbouring sub-

domains. Each sub-domain is treated independently as a singular boundary value problem and it 

communicates with its neighbours through the overlapping regions, where artificial boundary 

conditions are updated repeatedly by the use of iterative algorithms (e.g. Schwarz iterative 
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approach). The overlapping region makes this method unsuitable for cases where the sub-

domains are characterised by different partial differential equations or high heterogeneous 

material properties. In fact this technique is mainly adopted for parallel computation, Quarteroni 

and Valli (1999). On the contrary, the non-overlap domain decomposition methods are more 

universal, and can be used for multizone problems as well as for parallel processing. The 

domain is divided into non-overlapping sub-domains that share interface surfaces, and in each 

sub domain the original numerical scheme is implemented. The boundary conditions to be 

applied at the sub-domain surfaces are generally unknown because they depend on the solution 

of the global domain. In the case of a direct solution physical matching conditions (e.g. function 

and flux continuity for second order PDEs) can be considered to close the system. Instead in the 

case of iterative approaches, there is not a real constraint on the type of boundary conditions that 

can be imposed at the zone interfaces, as long as these are suitable to define a well-posed 

boundary value problem for the adjacent sub-domain (e.g. alternative Schwarz iterative 

scheme). 

A few recent works have been found in the area of the control volume methods that use non-

overlapping domain decomposition methods based on iterative approaches. An overview can be 

found in Cautres et al. (2004), where a domain decomposition. algorithm for non-matching cell 

centred finite volume meshes is proposed. In this work, a mixed (Robbin) condition is used at 

the sub-domain interface, which presents the inconvenience of a weighting coefficient for the 

Dirichlet contribution that can be chosen arbitrarily, and that can significantly affect the 

convergence rate of the algorithm. 

Direct solution methods such as substructuring or Schur compliment methods have also been 

applied to finite volume schemes in the case of non-overlapping domain decomposition. Faille 

et al. (2004) compare the performance of different transmission operators for non matching 

finite volume grids and highly heterogeneous coefficient both across and inside the sub-

domains. The continuity of the solution and its normal derivative on the· interface is guaranteed 

by imposing 'mortar matching conditions'; i.e. considering two adjacent sub-domains 01 and 

02 ' at the interface, 0012 , 01 imposes the value of the function on 02 ' while 02 imposes the 

value of the derivative on 0, . The sub-domain 0, is called the master because it imposes the 

value of the function and 02 is called the slave. The transmission operators relate the function 

value and its derivative of the two sub-domains (e.g. for non matching grids some interpolation 

operator is required). More details about other available interface conditions can be found in the 

references quoted in this work. 
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In this chapter, a non-overlapping non-iterative multi-domain formulation for the CV-HRBF 

scheme will be presented. The main idea is to exploit the local Hermitian RBF mesh less 

collocation method to satisfy a physical matching condition at the subdomain boundaries. In the 

last decades, different domain decomposition methods have been applied to the RBF meshless 

collocation methods with the intent of overcoming the well known ill-conditioning problems. 

Wong et a1. (1999), developed a multizone algorithm for the mutiquadric scheme to reduce the 

matrix size in order to simulate the flow circulation pattern in a real-life hydrodynamic model. 

Zhou et a1. (2003) tested the overlapping domain decomposition with both multiplicative and 

additive Schwarz iterative techniques for the Kansa's (unsymmetric) RBF collocation method to 

circumvent the ill-conditioning problems resulting from the use of RBF as a global interpolant. 

More interesting for the remainder of this chapter, Hernandez Rosales and Power (2007), 

proposed a non-overlapping domain decomposition algorithm for the Hermite radial basis 

function meshless collocation method. In this work both the continuity of the function and of its 

flux across the zone boundary interfaces are imposed, and both conditions are satisfied 

simultaneously at each interface nodal point using a Hermitian interpolation. The same 

algorithm will be adopted in the local matching of the non-overlapping domain decomposition 

approach proposed for the CV -HRBF method. 

6.2 Non-overlapping non-iterative domain decomposition 

formulation for the CV-HRBF method 

Without loss of generality, the non-overlapping domain decomposition algorithm and the 

schematic diagram showing implementation details are presented for two-dimensional 

structured volume elements. However, the proposed method is also valid for nd-dimensional 

problems, using structured and unstructured meshes. 

The unsteady advection-diffusion-reaction problem described in section 3.2 is considered here 

again to introduce the multi-zone formulation of the CV-HRBF. The entire domain 0 

delimited by an is partitioned into Nsub non-overlapping subdomains, 

Figure 6.1, each of them presenting smooth variation of diffusion and velocity. The partitioning 

can be described as follows 

n = 1, Nsub with On no", = 0 n:to m 
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Where a dOn is the intersection between the sub-domain n and the physical boundary ao, and 

aOnm contains the interfaces between On and its neighbouring sub-domains. 

!l1 aO l3 
AO,") 

!l3 
!l2 8023 

Figure 6.1 - Non-overlapping domain decomposition 

In the sub-domain n the problem is defined by the following partial differential equation 

i,j = 1,nd (6.1 ) 

together with the following boundary and initial conditions 

¢(x,o) =¢o on (6.2) 

on (6.3) 

where til' is the generic variable (e.g. temperature, concentration, etc), D; is the term ij of 

diffusivity tensor in the sub-domain nand Uj the component i of the velocity. Discretising the 

time derivative by the weighted Crank-Nicholson time-stepping scheme as done in section 3.2, 

equation (6.3) can be rewritten in a concise form 

(6.4) 

where the operators L7 (¢) and L7-At (¢) valid in the domain On are defined as follows 

(6.5) 

(6.6) 
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Each sub-domain is discretised with an element mesh, and the elements located in the two sides 

of the sub-domain interfaces are considered matching. In the case of the cell centred CY-HRBF 

scheme, the only one considered for this presentation, equation (6.4) is integrated over a finite 

number of control volumes coinciding with the mesh elements as explained in chapter 2. The 

flux reconstruction of each control volume uses an element based REF interpolation, which will 

be required to satisfy adequate matching conditions in the case of proximity to a sub-domain 

interface. Consider for example the element Ej adjacent to the sub-domain boundary aolm , 

Figure 6.2; in this case two of the four neighbouring elements belong to different sub-domains 

(°2 , °3 ) and they are not included in the stencil of the element Ej • This stencil interpolation is 

formed by the three elements contained in the sub-domain °1 and that have as centroids CII , 

C Il and C13. 

0) 
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EI 

r------
C\3. 

Cu. 
, 
-------
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ｾ ｾ ･ Ｍ Ｍ ｲ ｾ ｾ __ ｾ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｌ
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I 

Figure 6.2 - Interpolation stencil for an element located in the sub-domain interface. Round 
symbols, PDE points; square symbols, control volume centroids (Dirichlet operator); cross symbols, 
sub-domain interface points (Matching conditions points). The three different shades of grey 
indicate the three stencils that belong to the three sub-domains il h ill and il 3. 

The Hermitian interpolation fl defined by the elements with centres CII , C12, C13, and 

associated with EI is used to reconstruct the flux over the corresponding control volume. Such 

interpolation must satisfy continuity of the function and flux across the faces/a and./i3 placed in 

the sub-domain interfaces aO l2 and 8 013 respectively. Being defined inside the domain 01 ' 

(pi will include only the trial centres that belong to °1 , aO l2 and a0 13 

¢I = Laj'¥ j + La/I' j + LajF 1 ('¥ j )+ Laj'¥ j + LajF 1 ('¥ j ) 
nele, nfi2 nfi2 nfi) nfl3 

L ajL: ('¥ j ) + PM-I 

(6.7) 

nLop, 

133 



where nelel is the number of neighbour elements included in the interpolation stencil, n/12 and 

nil3 are numbers of matching points considered for the faces /12 and.liJ respectively, and nLoPI 

is the number of points where the PDE operator L! is applied. Finally the flux operator Fn is 

defined as 

(6.8) 

where n:nt is the i-component of the sub-domain interface normal pointing out the sub-domain 

In the interpolation (6.7) the number of trial centres in which the continuity of the function will 

be imposed is equal to the number of centres where the flux condition will be applied. This is 

not a coincidence, in fact as in Hernandez Rosales and Power (2007), the same location is 

chosen to simultaneously satisfy the two conditions. This double collocation technique can be 

adopted due to the robustness of the Hermite interpolation used in this scheme. 

In order to apply the required matching conditions to ｾ ｉ at the sub-domain interface, two other 

interpolations associated with the elements E2 and E3 need to be defined 

fji = ｾ a/I' j + ｾ ｡ ｪ 'I' j + :LajF2 ('I' j) + I ajL; ('I'j) + PM-1 
nl:lez njiz nji2 nLoP2 

(6.9) 

(jl = Iaj'l'j+ Iaj'l'j+ IajF
3 ('¥j)+ I ｡ ｪ ｌ ｾ Ｈ Ｇ ｉ Ｇ ｪ Ｉ Ｋ ｐ ｍ ｟ Ｑ

nell!] nji3 nji3 nLoPJ 
(6.10) 

Note that in the present implementation, the expressions (6.9) and (6.10) for the interpolations 

ｾ Ｒ and ｾ Ｓ respectively, are valid only for the formation of the local system associated with the 

element E1• In this local problem, only the fluxes of interest for the control volume that 

coincides with El are considered. For example, when the problem associated with the element 

E2 is under construction, an interpolation formula ｾ Ｎ Ｒ that differs from that reported in equation 

(6.9) will be used. Similarly to the matching conditions considered for ｾ ｉ , in ｾ Ｎ Ｒ Ｎ the fluxes 

across both fil and fiJ will be taken into account. 
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Returning to the example of the local problem associated with Eh it is worth noting that the 

Hermitian interpolations (6.7), (6.9) and (6.10) do not present any boundary operator. In fact for 

the sake of simplicity the stencils in Figure 6.2 have been chosen away from any domain 

boundary. If a boundary condition needs to be satisfied, the boundary operator can be 

introduced in the Hermitian interpolation as explained in chapter 2. The continuity of the 

function and of the flux in those stencil points located in the interfaces an12 and anl3 can be 

expressed as 

(6.11 ) 

(6.12) 

As observed above, the function and the flux continuity can be imposed in the same location, 

since a Hermitian interpolation is being used. This circumstance leads to a simplification of the 

flux operator in the case of a continuous velocity field across the zone boundary. In fact, having 

imposed the same value of the function for the two interpolations across the interface, and 

having a continuous velocity, the flux operator reduces to: 

F n ( ) = n Dn a ( ) 
, IJ Ox. 

1 

(6.13) 

The local problem needed to define the interpolation (A, can now be formulated applying the 

Dirichlet condition on the control volume centroids of the three stencils (to make the value of 

the global unknowns explicit in the right hand side), the operator ｌ ｾ Ｌ L! and E, to their 

corresponding PDE points, and the matching conditions (6.11) and (6.12) to the interface points 

in order to close the local system [A][ a] = [b]. 

The procedure explained above, to form the local problem associated with an element En that 

belongs to a sub-domain nn and adjacent to a sub-domain interface, can be generalised by 

fixing a practical rule. The local problem corresponding to the element En will only include the 

matching conditions in cell faces that are shared with elements located in other sub-

domains nm , with m"¢ n. Indicating with NEOO the number of neighbouring elements of En 

located in different sub-domains nm , the general interpolation associated with En can be 

expressed as 
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(6.14) 

The remaining NEOD 'supporting interpolations' contain only one cell face in which the matching 

conditions are applied 

rPm = I aj'I'j + Ia/Pj + IajFm('I'j)+ I ｡ ｪ ｌ ｾ Ｈ Ｇ ｉ Ｇ ｪ Ｉ Ｋ ｐ ｍ ｟ Ｉ
neiem ｮ ｪ ｾ Ｌ Ｂ ｮ ｪ ｾ Ｌ Ｂ nL0Pm 

(6.15) 

with m= 1, NEOD 

This algorithm is easy to implement for a control volume method, because it exploits the mesh 

structure already available, to select the elements and therefore the interpolations, to be included 

in a local problem where multiple sub-domains must be considered. In addition, it avoids the 

formation of relative large local systems, because the matching conditions are only applied 

where necessary. For example, in the case of Figure 6.2, the system associated with the element 

E1 only takes account of the flux across /12 and fi3 of primary importance for the cell flux 

computation considered, while that across 123 is not included. Excluding such flux, avoids the 

solution of a system that couples 4 interpolations (corresponding to Et. E2, E3, E4) in favour of a 

small one that takes account of only three (corresponding to Et. E2, E3)' However in the global 

assembling procedure, the flux across hJ will also be considered in the flux reconstruction for 

the control volumes coinciding with the element E2 and E4. 

The matrices of the local systems present a block structure whose general form is shown in 

equation (6.16) 

An MTRn\ MI'R n,NEOD 0 0 0 

MTSr;,n MTT;,\ MIT. \,Nroo MTSr;,n 0 0 

[A] = MTSTNEOD,n MTT MIT, 0 0 MTSTN n (6.16) NEOD ,) NEOD,NEOD roD' 

0 ｍ ｔ ｾ Ｌ ｮ 0 0 ｾ 0 0 

0 0 0 

0 0 0 MTR"n 0 0 AN 
roD 

and the corresponding interpolation coefficient and right hand side arrays are shown in (6.17) 

and (6.18) 
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... a 
Int,NEOD 

... a ] NEOD 

... B ] NEOD 

(6.17) 

(6.18) 

In equations (6.l6), (6.17) and (6.l8), An, an and Bn correspond to the points of the 

interpolation ¢/ located strictly inside the sub-domain On. while Am. am and Bm are 

associated with the trial centres of rPm defined in Om' In the block matrices (6.16), MTR" m 

and MTST".m couple the interpolation rPn 
and rPm at the interface points that belong to 

ao viewed as trial and test points respectively; whereas MTTm m represent the relation nm • 

between the matching points. The explicit matrix for the example of Figure 6.2 is reported in 

section Error! Reference source not found. for further clarifications. 

The coefficients of the interpolation rPn are contained in a subset of the array [a], with part of 

them associated with the trial centres internal to the sub-domain On ([an]), and the remaining 

part with those centres located at the sub-domain interfaces ([ a1nt,\ . . . a lnl N J). Due to 
• ROD 

the coupling introduced by the matching conditions, these coefficients depend not only on the 

unknowns values of cell centres located in the zone On' but also on the unknown values of the 

zones Om' with m=l, NEOD• The flux reconstruction of the control volume built on the element 

En, corresponds to a line on the global matrix that couples the unknown values at the cell centres 

( ﾢ ｾ ,¢; ) coming from different sub-domains. 

In the example illustrated in Figure 6.2 at the beginning of this section, the element E\ with 

faces on two different zones, has intentionally been chosen to show the wide flexibility of this 

method in handling sub-domain interface conditions. The local mesh less character of the CV-

HRBF method allows continuity of the flux to be imposed in the face integration points, 

ensuring a very accurate mass conservation across the zone boundaries. Also, due to the use of a 

Hermitian interpolation, multiple matching conditions can be imposed in a singular point shared 

by more than two sub-domains. For example, the continuity of the flux across bothjj] andjj3 

can be guaranteed at the cross point that belongs to OJ' 02 and °3 , see Figure 6.2; in fact in 

such a location both matching conditions shown in formula (6.l1) and (6.12) can be applied. 
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An additional flexibility is the freedom to apply the POE operator on the top of the matching 

conditions. This technique has already been proven to be very effective in previous works, 

where it significantly improved the accuracy of the interpolation in proximity of a domain 

boundary, La Rocca and Power (2008). In the case of the CV-HRBF multi-domain formulation, 

the POE operators of the zones converging in the interface points can be applied, in addition to 

the matching conditions. Figure 6.3 shows two interpolation stencils located in the proximity of 

the zone boundary 8Q I2 where the POE operators ｌ ｾ and ｌ ｾ of the left and right sub-domains 

are both applied to the left and the right RBF interpolations in the same locations where the 

matching conditions are satisfied. 

L,' L/ 

r------ ------, 
Q1 

I I Q2 I • • I 

I I 

/', ｾ ------, r------ - " PI -I 

ｾ ｾ
I 

I • • • • I 

I I 

'------- -- ｾ ｾ - I -------- " po 
I I 
I • • I 
I I 

!..------ I -------

Figure 6.3 - POE collocation for sub-domain boundary points. Interpolation stencil located at the 
zone boundary ann. Round full symbols, POE points; Round empty symbols, points where both 
operators Ll and L2 are applied; square symbols, control volume centroids (Dirichlet operator); 
cross symbols, subdomain interface points (Matching conditions) 

This collocation strategy returns a non-singular local system, providing that the POE operators 

are linearly independent from the matching operators. In the case of identical POEs, the local 

system will still be non singular, because the POE operators are applied to different 

interpolations. The zone boundary points must satisfy the PDE operators defined in the 

converging zone. This acts as a refinement of the interpolation stencil; in fact it increases the 

size of the local system. In some cases this extra cost is justified by a significant improvement 

in the interpolation, and it can avoid a refinement of the element mesh in the region nearby the 

zone boundary. This will be shown in the numerical tests presented in this chapter. 

Although the cell centred discretisation scheme is adopted to present and test the proposed 

multi-domain formulation of the CV-HRBF method, the same approach can be applied without 

any restriction to the vertex centred scheme introduced in chapter 4. This is a direct 

consequence of the fact that the matching condition is applied to the RBF interpolations 
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associated with the mesh elements, and at this local level the CV -HRBF cell centred and vertex 

centred schemes differ only for the collocation strategy. 

6.3 Numerical result 

The multi-zone formulation of the CV -HRBF is validated in two steady state one-dimensional 

problems, for which an analytical solution is available. Two and three-dimensional steady state 

problems, characterised by high heterogeneity and for which only a numerical solution is 

possible are also presented to investigate the capabilities of the multi-domain CV-HRBF 

method in dealing with multi-dimensional geometries. Finally a test in a one-dimensional 

unsteady transport problem is reported as a preliminary result of an on-progress validation of 

the method for the study of more complex transport phenomena. In all the test cases a 

multiquadric RBF is used in the local interpolation, and the shape parameter values are specified 

for each problem. Unless stated otherwise, the multiple operator collocation strategy is used for 

those locations where the interface matching conditions are satisfied. Two different 

configurations of the local interpolation stencil are used for the steady and unsteady problems as 

previously explained in chapter 2 and 3. 

6.3.1 One-dimensional heat transfer problem in a beam consisting 

of three piecewise homogeneous zones 

A one-dimensional channel 6 metres long is divided in three sub-domains having same length, 

and in each of them a pure diffusion steady problem (Dn a2 ¢/ / ax2 = 0) is imposed as the 

governing equation. The problem can be considered as a linear one-dimensional heat transfer 

problem in a beam composed of three sections made of a different material. Dirichlet boundary 

conditions are assigned at the two ends of the beam (r (0) = 2, r ( 6) = 1). The analytical 

solution inside each sub-domain is given by: 

(6.19) 

Where the constants an and bn can be determined by imposing the continuity of the 

temperature, Tn = Tn+l and of the flux, Dn arn 
/ ax = Dn

+
1 arn

+
1 
/ ax , across the sub-domain 

interfaces, and taking into account the boundary conditions. 

The problem is solved numerically in a three-dimensional channel of dimensions [6m X O.5m X 

O.5m], and zero-flux conditions are imposed in the side boundaries to retain the one-
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dimensionality of the solution. A structured computational grid with 60 cells in the longitudinal 

direction x and 5 cells in the transversal directions y and z is adopted in the numerical tests. Two 

sets of heat transfer coefficients were chosen for the validation of the numerical scheme 

(6.20) 

(6.21) 

The CV-HRBF solutions, obtained by using a constant value to the multiquadric RBF shape 

parameter, cs== 1.0, are shown in Figure 6.4 for the two sets of coefficients (6.20) and (6.21). 

a) 1 r---..--, 

0.8 

0.6 

I-

0.4 

0.2 

Figure 6.4 - Comparison between numerical and analytical solutions. Full line, numerical solutions; 
symbols, analytical solutions. a) - set of coefficients (6.20); b) - set of coefficients (6.21) 

The numerical solutions show a very good agreement with the analytical ones, and this is 

confirmed from a very small L2error: 4.89x 1 O·s in the case of (6.20) and 7.3 8X 1 0-6 for (6.21) 

The results shown above are obtained by applying the POE operators in the same location of the 

matching conditions as explained in the section 6.2, Figure 6.3. It is interesting to observe the 

benefit of such collocation strategy, and for that reason another test is carried out, applying only 

the matching conditions to the points located in the zone boundary. The results are shown in 

Figure 6.5. The spurious oscillations for the set of diffusion coefficients (6.21) appear when 

reconstructing the solution in the mesh nodes close to the region nearby the sub-domain 

interfaces. It is clear that at least for this case the PDE operators applied to the matching points, 

despite returning a larger local system, significantly improve the local interpolation. Two 

alternatives were found to be effective to remove the error shown in Figure 6.5. Instead of using 

the multiple collocation technique, increase the size of the control volume stencil for the local 

interpolation including more data points (stencil S2-POE, section 2.73), or refine the element 

mesh in proximity of the zone boundaries. Both approaches lead to a more demanding 

computational cost in the solution of the global system, in fact including more data points in the 
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interpolations adds non-zero entries to the global matrix, and refining the element mesh 

increases the size of the global matrix. 

0.8 

0.6 

I-

0.4 

0.2 

01 2 3 ｸ ｩ ｾ Ｇ Ｉ 5 

Figure 6.5 - Comparison between numerical and analytical solutions in the case of only matching 
conditions applied to the zone boundary points, set (6.12). Full line, numerical solutions; symbols, 
analytical solutions. 

6.3.2 Heat transfer problem in a circular cylinder with a circular 

hollow 

An infinite circular cylinder made of three rings characterised by constant but different 

properties is considered, Figure 6.6. In absence of an advection velocity and heat sources the 

governing equation that drives the heat transfer inside each ring can be expressed in cylindrical 

coordinate coordinates as follows 

n =1,3 (6.22) 

where Dn is the thermal conductivity in the ring nand r is the radial distance. 

Figure 6.6 - Cylindrical domain consisting of three rings with different thermal properties, cro s 
section. 
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Two different values of temperature are imposed in the inner and outer circular boundaries, 

rl (ro) = 1 and r3 (r3) = 2, and continuity of flux and temperature are applied at the contact 

region between two rings (rn = r n
+

1
, Dn arn lor = Dn+l arn+

1/or for r = rm with m=I,2). A 

general analytical solution of the equation (6.15) is expressed by Carslaw and Jaeger) 

(6.23) 

where an and bn are constant to be determined from the boundary and matching conditions. 

Expanding equation (6.22) two alternative forms can be derived 

(6.24) 

(6.25) 

Equations (6.25) describes a one-dimensional advection-diffusion problem with a variable 

reaction coefficient, Dn 1,2 , and a negative advective velocity, - Dn I r. The discretisation 

process of this problem with the CV-HRBF method uses both forms (6.24) and (6.25): Equation 

(6.24) is more suitable for the local strong formulation, whilst equation (6.25) must be adopted 

in the control volume equation to apply the divergence theorem to the advection term. The 

problem is solved numerically in a three-dimensional channel whose geometry is defined by: 

'0 ｾ x = , ｾ '3 ' with '0 = 1m and '3 = 7 m 

o ｾ y ｾ O.5m, 0 ｾ z ｾ 0.5m, 'i = 3m and '2 = 5m 

As in the previous example, two sets of heat transfer coefficients are tested in the numerical 

solution 

(6.26) 

(6.27) 

The mesh used is fairly coarse and it features 61 cells in the x-direction, 20 each sub-domain 

and 5 cells in the y and z-directions, all uniformly distributed. The numerical solutions obtained 
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using a constant shape parameter, Cs = 1.0, are shown in Figure 6.7, where a good agreement 

with the analytical solutions can be observed. The corresponding values of the L2ermr' 3.84xl 0-4 

for the set of coefficients (6.26), and 6.18xlO-3 for the set of coefficients (6.27), confirm the 

accuracy of the two solutions. 

a) 2 

1.8 

1.6 
ｾ

1.4 

1.2 

b) 2 

1.8 

2 

Figure 6.7 - Comparison between numerical and analytical solutions. Full line, numerical solutions; 
symbols, analytical solutions. a) - set of coefficients (6.26); b) - set of coefficients (6.27) 

Having established the robustness of the CV-HRBF approach in dealing with multizone 

problems, by the comparison of the obtained solutions with the corresponding analytical ones in 

the previous two examples, in the next three cases more general problems without analytical 

solution are presented. 

6.3.3 Two-dimensional heat transfer problem in a plate consisting of 

three piecewise homogeneous zones 

The heat transfer in a rectangular two-dimensional plate consisting of three piecewise 

homogeneous materials is considered, Fig. 6.6. 

0 3 

0 1 O2 
y 

x 
....... 

h=O.5m 

Figure 6.8 - Two dimensional heat transfer problems in a plate consisting of three piecewise 
homogeneous materials, geometry. 
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This numerical test presents a single point shared by more than two zones, and it is appropriate 

to validate the multiple matching condition of the CV-HRBF multi-domain fonnulation. The 

non-overlapping domain decomposition, follows the material topology of the plate. In each sub-

domain the heat transfer equation is given by Dn a2 ¢n / axj

2 = O. The heat transfer coefficients 

of the material are taken to be D' = 100 m2 / s, D2 = 1 m2 
/ sand D3 = 10m2 

/ s , and the 

problem definition is completed by imposing the following boundary conditions: 

T=2 

T=l 

aT =0 
an 

x=Om, Om::::;y::::;0.5m 

x=lm, Om::::;y::::;0.5m 

y = Om, y = O.Sm, Om::::; x ::::; 1m 

The matching conditions are obtained by imposing the continuity of the temperature, 

Tn = Tn+', and of the heat flux along the nonnal direction to the zone interface, 

Dn ( am / aXj ) n:nI = Dn+1 ( aTn+1 
/ Oxj ) n:nt . 

0.5 I 
0.4 

E"0.3 1 

fI.1liiiJjL / Ｍ ＼ ｬ Ａ Ｍ .... ｾ - -- -r-
ｾ>-0.2 
ｾ

r-- ｾ Ｎ ｾ ｾ ｾ Ｍ Ｚ Ｚ0.1 r --., ..: 
r 

°0 
I 

0.2 0.4x(m)0.6 0.8 1 

Figure 6.9 - Isothermal contours and heat flux lines in the plate. 

Although the physical domain is a two-dimensional plate, the problem is solved numerically in 

a three-dimensional slice, O.OSm thick and imposing zero-flux conditions in the two side 

boundaries (z=Om and z=O.OSm). The mesh used to discretise the domain features 80 cell in the 

x-direction, 40 cells in the y-direction and 4 cells in the z-direction, all uniformly di tributed. 

For this problem there is no analytical solution, and a convergence analysis wa carried out to 

ensure that the results reported are mesh-independent. Tn Figure 6.9 the isothermal contours and 

the heat flux pathways show the thermal field obtained from the numerical solution using a 

constant shape parameter in the multiquadric RBF, Cs = 0.05. 
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In figures 6.8-a) and 6.8-b), cross profiles extracted at different locations in the domain are 

reported. In the point (x = 0.5, Y = 0.3) where the three zones 0 1 , O 2 and 0 3 converge the 

solution reconstructed by the use of the local RBF interpolation shows obvious gradient 

discontinuities. 

Figure 6.10 - Cross profiles. a) - profiles at constanty: square symbols,y=O.I; delta symbols,y=O.2; 
cross symbols, y=0.25; diamond symbols, y=0.3; round symbols, y=O.4. b) - profiles at constant x: 
right triangle symbols, x=O.45; left triangle symbols, x=O.5. 

No artificial smoothing effects are introduced, as it happens in classical multi-zone approaches 

where the value in this type of singular points is often computed as a post-processing average of 

the neighbour location values. This kind of singular point is usually ignored by the vast majority 

of the numerical schemes that recur to several tricks to circumvent the problem, e.g. Gao et al. 

(2007). Alternatively, it is possible in some numerical techniques to impose the complete set of 

matching conditions by defining an over-determined system of equations which can be solved in 

a least square sense with the associated approximation error, see for example the DRM-MD 

technique of Popov and Power (1999). More recently Bui and Popov (2009) introduced an 

overlapping domain decomposition technique valid for any BEM formulation, in order to obtain 

a system of equations that is always closed. 

6.3.4 Pumping into a confined aquifer in presence of a clay layer 

The groundwater flow inside an aquifer characterised by different geological layers, is another 

engineering application for the multi-zone approach. The properties of the medium can vary 

drastically from one layer to another one (e.g. in presence of a sand or clay layer) and at the 

interface between the two, the hydraulic conductivity features a discontinuity. The natural 

domain partitioning for this type of problem consists of assigning a sub-domain to each 

geological layer. Inside which, the soil properties present a smooth variation. If only the 

saturated zone of the aquifer is taken into account, and only small scale problems are 

considered, the governing equation in each layer is taken directly from equation (504) 
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(6.28) 

As explained in chapter 4, (pn = zn + pn / pg is the piezometric head with zn being the 

elevation, pn the pressure, p the density of the fluid, g the gravity acceleration; [Kn ] is the 

hydraulic conductivity tensor, and r represents source points in the aquifer. Note that the 

superscribing n refers to the sub-domain n. Equation (6.28) differs from equation (6.1) only for 

the source term r, so considering a¢t / at = 0, Uj

n = 0, Kr = 0 and taking the diffusion 

tensor equal to the hydraulic conductivity tensor, all the considerations reported in section 6.2 

remain valid. 

300m 
( 

Figure 6.11 - Single Pump model geometry 

2m 
++ 

A single pump injection into a confined aquifer that is characterised by geological layers with 

different soil properties is considered in this test problem. A well screen is placed in a portion of 

a confined aquifer 300 meters long and 150 meters wide, and a clay layer 10 metres thick is 

situated opposite the pump, 15 metres from the bottom of the aquifer, Figure 6.11. Only the 

active part of the screen well is modelled. The conductivity of the clay layer is considered to be 

homogeneous and isotropic, while the surrounding medium is assigned an anisotropic 

conductivity constant in space, Table 6.1. 

Zone Conductivity Tensor 

Aquifer K! = K; = 1.0mjh ｋ ｾ = 0.3mjh 

Clay Layer K2 = K2 = K2 = O.Olmjh 
JC y z 

Table 6.1 - Single Pump model, Soil properties 

The pumping rate is 50 m3 Ih, and the well is modelled as an array of eight point sources, with 

each point being a segment of the well 2.5m long. A constant piezometric head of 50 meters is 
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imposed in the side boundaries, and no flux is allowed in the bottom and top surfaces of the 

confined aquifer. 

Boundary position Boundary condition equation 

x = Om, x = 300m, z = Om, z = 150m ¢ =50m 

y = Om,y= 50m 8¢/8n = 0 

Table 6.2 - Single pump model, Boundary conditions 

The matching conditions are given by 

About 58000 hexahedral cells are used to discretise the problem, and the computational grid is 

made of 20, uniformly distributed layers. A slight refinement is present around the well to 

capture the high gradient expected in the vicinity of the injection points, Figure 6.12. 

a) 50 8:EHHEmEIH 

E 
>: 

o 
x(m) 

Figure 6.12 - Single Pump model mesh: a) lateral longitudinal view, b) top view 

As in the previous test case, no analytical solution can be found for this problem. Therefore, the 

validation of the solution was carried out by refining the mesh until the point where no 

significant changes were observed in the numerical results. After this analysis, the me h shown 

in Figure 6.12 was found to be fine enough to obtain a converged solution. A variable shape 

parameter (see section 2.6), cst = 1.0, is used in this simulation to take account of the non 

uniform distribution of the cell. The piezometric head contours and the flow path obtained from 

the numerical solution are shown for two cross sections at z = 75m and y = 25m, Figure 6.13. 

From the vertical section, z = 75m, it can be observed that most of the water flows around the 

clay layer as expected, whereas in the horizontal section, y = 25m, it is interesting to notice the 

path modifications for the part of the flow that infiltrates into the clay layer. Finally, two 

piezometric head profiles extracted from the cross section at z = 25m are reported in Figure 6.14 

to show more in detail the discontinuities that occur across the clay layer interface. 
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Figure 6.13 - Piezometric head contours and flow path: a) z = 75m, entire domain; b) z = 75m, zoom 
in the region nearby the well; c) y = 25m. 
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Figure 6.14 - Piezometric head profiles: a) z = 75m,y = 25m, Om ｾ ｸ ｾ 300m, b) z = 75m x = 150m, 
ｏ ｾ ｲ Ｍ Ｚ 50m 

6.3.5 One-dimensional unsteady transport problem in a channel 

consisting of two zones featuring different Peclet number 

A one-dimensional transport problem for a single species e in a channel consi ting of two 

adjacent zones is considered in this section. The governing equation inside each sub-domain can 

be formulated in dimensionless parameters as 

ae" ac" 1 a2 en 
-+-=----at ax Pe" ax2 

(6.29) 

where Pe" is the P6c1et number for the zone n. The two sub-domains are taken to be of the 

same length, e = 0.5 , and the following initial and boundary conditions are imposed 
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cl (X,O) = 1 

c2 (x,O) = 1 

c1 (0,1)=2 

OSxSl 

o :$; x :$; 2£ 

c2 (2f, I) = 1 

whereas the matching condition the zone interface, at x = £ , can be expressed as follows 

1 Den 1 DC"+! 

Pe" Ox = Pe,,+l & 

with n = 1 for this simple case where only two sub-domains are considered. 

It is worth noting that applying the left and right PDEs in the same points where the matching 

conditions are imposed, does not work for this test case. In this circumstance, the values of the 

concentration at the previous time step need to be reconstructed in such locations, and this kind 

of procedure seems to introduce instabilities that can develop quickly as the time advances. This 

is not completely unexpected; in this approach the solution at the new time step depends on the 

values reconstructed at the zone interface, which are always critical value to reproduce 

accurately. This problem does not occur in the case of small values of the Peclet numbers (20-

30), or when the same Peclet number is imposed in the two zones, but it becomes uncontrollable 

otherwise. To improve the solution and avoid dispersive errors of the type of those shown in 

Figure 6.5, larger stencil of cells are considered to form the local interpolations in proximity of 

the zone interface. As explained in section 6.3.1 this approach leads to a global matrix with 

larger number of non-zero entries, although when only the interpolations close to the zone 

interfaces are enlarged, the extra computational cost in the solution of the global system is 

contained. 

No analytical solution can be found for the present problem, and the accuracy of the solution is 

estimated using the global residual (3.26). The numerical solution is computed in a three-

dimensional mesh of size [2,5&,5&] where &, equal to 0.0125, is the discretisation 

increment in the x direction and zero flux conditions are applied to the lateral boundaries to 

retain the one-dimensionality of the problem. Two pairs of Peclet number are tested, (6.31) and 

(6.32), and their values are chosen by fixing the first value at 10 and increasing the other until 

the point at which the numerical solution becomes unstable for the mesh described above. The 

two pairs chosen are reported below 
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Pet = 100 Pe2 = 10 (6.30) 

Pel = 10 Pe2 = 500 (6.31) 

In both cases the time step is taken to be equal to 0.001, and a constant shape parameter equal to 
0.03 is chosen. The solutions and their residuals at the instant t = 0.3, t = 0.5, t = 0.7 and 

t = 1.0, for the two pairs of Peclet number (6.30) and (6.31) are reported in 
Figure 6.1 and Figure 6.16 respectively. 

a) 2 b) 0 
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Figure 6.15 - Peclet number pair (6.30). a), CV-HRBF solution; b), Residual, zoom in the interface 
region. Square symbols, 1=0.3; Delta symbols, 1=0.5; Round symbols, 1=0.7; Cross symbols, 1=1.0 

The Peclet number limit for the upstream region is five times smaller than that one achievable 

for the downstream zone. Having a higher advection in the upstream region causes a very large 

gradient in the upstream side of zone interface, Figure 6.15-a), requiring an extra refinement of 

the mesh in this area. In fact the solution forms an advective front under the high Ptklet number 

conditions of the upstream zone, and a diffusive front in the low Peclet zone. The discontinuity 

itself acts as a barrier to the propagation of the advective front. 

a) 2 b) 0.003 
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Figure 6.16 - peclet number pair (6.31). a), CV-HRBF solution; b), Residual, zoom in the interface 
region. Square symbols, 1=0.3; Delta symbols, 1=0.5; Round symbols, 1=0.7; Cross symbols, 1=1.0 
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In both cases, the residuals grow around the zone interface, Figure 6.1S-b) and Figure 6.16-b), 

although their values are small, and the solution could be improved by using a non-uniform 

mesh denser at the zone boundary. The value of the residual is not computed in the zone 

boundary, x = C, in fact in this location neither the left nor the right PDE operators are defined, 

and an estimation of their numerical residual would not add any useful indication to the 

accuracy of the solution. Note that in Figure 6.1S-b) and Figure 6.l6-b) the residual is equal to 

zero; this is only a post-processing flag used for points of the domain where the residual is not 

computed. 

6.4 Conclusion 

In this chapter, a non-overlapping non-iterative multi-domain formulation for the CV-HRBF 

scheme has been presented. The method exploits the robustness of the Hermite interpolation to 

satisfy locally physical matching conditions, i.e. imposing the continuity of the function and 

flux at the sub-domain interface. A double collocation technique has been implemented to 

impose the two conditions in the same set of points as done in Hernandez and Power (2007). In 

addition the Hermite interpolation is exploited even further to apply multiple flux continuities 

for those cases where more than two sub-domains converge in the same point. 

The robustness of the CV -HRBF approach in dealing with multizone problems, has been 

assessed using one-dimensional advection-diffusion problems for which an analytical solution is 

known. The solution of more general two and three-dimensional engineering problems has also 

shown the capability of the method to capture the CI discontinuities at the zone boundary that 

feature abrupt variations of the material properties. This has been possible also in those points 

where more that two sub-domains converge due to the multiple flux condition that can be 

applied with the CV-HRBF discretisation. 
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7 CONCLUSION 

7.1 Summary and conclusion 

A new numerical scheme has been developed, with the main objective being to exploit the 

possible advantages of coupling the meshless RBF collocation approach and the CV methods. 

The proposed method can be considered meshless only at the local level of the interpolation 

stencils, where an auxiliary initial/boundary value problem is solved for every cell, in order to 

define the cell shape functions from which the evaluation of the flux across the cell faces is 

obtained. This circumstance increases the accuracy of the flux computation, whilst providing an 

analytical upwind scheme, as the local interpolation satisfies the PDE operator and therefore 

contains information about the physics of the problem. In the hybrid control volume/meshless 

method proposed in this thesis, approximate solutions of the governing equation based on RBF 

collocation approaches are used as interpolation functions to improve the performance of a CV 

method for the first time. 

The method has been tested in a number of boundary value problems, for which an analytical 

solution is known, by testing different RBF collocation approaches, i.e. both the Kansas's 

(KRBF, unsymmetric) and Hermitian's (HRBF, symmetric) techniques. Having found the same 

level of accuracy between the CV-KRBF and CV-HRBF the second is preferred due to its 

robustness and the possibility of applying more than one linearly independent operators in the 

same location (e.g. 'double collocation technique'). 

A transient formulation of the CV-HRBF has been successively developed, in order to 

investigate the capability of the technique in the solution of reactive transport problems. The 

validation shows that the implicit upwinding intrinsic to the method leads to significant 

improvements in the stabilisation of the numerical solution, in particular in those cases where 

advection is dominant. In addition to the fully implicit time stepping scheme, the weighted 

Crank-Nicholson scheme has been tested, obtaining significant improvements in some of the 

problems considered. 

The main CV -HRBF idea of having flux reconstruction functions that locally satisfy the 

governing equation has also been applied in the case of weakly non-linear problems. The fully 
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kinetic formulation presented in chapter 3 for the solution of multispecies reactive transport 

problems is an example of how the non-linearity can be handled at local level. 

Although the CV -HRBF method it is independent from cell shape and mesh type, the use of 

unstructured meshes leads to a loss of accuracy (up to one order of magnitude in the 

experiments reported in this thesis). To improve the convergence of the CV-HRBF for 

unstructured meshes a second order integration scheme and the vertex centred (VC) 

discretisation have been implemented and tested in chapter 4. The numerical solutions of one 

and three-dimensional advection diffusion problems suggested that both approaches lead to 

good improvements, and that the VC is strongly recommended when the mass conservation is a 

crucial parameter of the problem being solved. 

The CV -HRBF has been used to model the saturated zone of the unconfined aquifer, showing 

the capabilities of the method in dealing with porous media flows. A mesh adapting algorithm, 

which performs a local re-meshing as the phreatic surface moves in a vertical direction, has 

been presented. It has been found that the local mesh less character of the CV-HRBF introduces 

several flexibilities in the groundwater numerical modelling. In fact using this numerical 

approach, the dynamic boundary condition can be applied in an arbitrary number of points on 

the phreatic surface, independently from the mesh element. 

Finally a non-overlapping non-iterative multi-domain formulation for the CV -HRBF scheme 

has been presented in chapter 6. The method exploits the robustness of the Hermite interpolation 

to satisfy locally physical matching conditions, i.e. imposing the continuity of the function and 

flux at the sub-domain interface. A double collocation technique has been implemented to 

impose the two conditions in the same set of points. In addition, the Hermite interpolation is 

exploited even further to apply multiple flux continuities for cases where more than two sub-

domains converge in the same point. The robustness of the CV-HRBF approach in dealing with 

multi zone problems has been assessed using one-dimensional advection-diffusion problems for 

which an analytical solution is known. The solution of more general two and three-dimensional 

engineering problems has also shown the capability of the method to capture the C1 

discontinuities at the zone boundary that feature abrupt variations of the material properties. 

This characteristic is preserved in those points where more that two sub-domains converge, due 

to the multiple flux condition that can be applied with the CV -HRBF discretisation. 

The flexibility and the accuracy gained by using a RBF mesh less collocation method in the 

c·ontrol volume reconstruction step, have been shown from a theoretical point of view, as well as 

in a number of numerical examples. The results reported in this thesis encourage the authors to 
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progress with development of the proposed approach, in particular when dealing with advective 

dominant problems and complex boundary conditions. 

7.2 Future work 

In this thesis the CV -HRBF has been used to solve a one-dimensional multispecies reactive 

transport problem. Work to enhance the capabilities of the software to handle multidimensional 

problem and the dispersivity terms is ongoing. The author expects to present the solution to 

more complex problems in the near future. 

Although in this work only quasi-linear problems have been considered, the technique can be 

applied in principle to more complex applications characterised by high non-linearity such as 

the Navier-Stokes system of equations, i.e. viscous flow problems. The task of obtaining a local 

approximation that satisfies the Navier-Stokes equations within the interpolation, is a topic of 

ongoing research by several groups. In particular, it is not clear how the non-linearity is to be 

considered at the local level. From previous experience, it is expected that a robust non-linear 

solver needs to be implemented at the global level, but most likely a simple Picard iteration can 

be used at the local level. Further research is needed to understand if using a local interpolation 

that satisfies the governing equation can reduce the overall number of non-linear iteration, and if 

so, by how much. 

154 



Bibliography 

Abgrall R. (1994): On essentially Non-Oscillatory Schemes on Unstructured Meshes: Analysis 
and Implementation, Journal of Computational Physics, 114,45-98. 

Ahmed S. (2005): Mathematical Formulation and Validation of a Mixed Finite Element-Finite 
Difference Model for simulating Phreatic surface Journal of Hydraulic Engineering, 
131(12), 1098-1105. 

Azaroual M.; Kerve3van C.; Durance M. V.; Brochot S.; Durst P. (2003). SCALE2000 
user's manual. BRGM. Orle'ans, France: 57. 

Baliga B. R.; Patankar S. V. (1980): A new finite-element formulation for convection-
diffusion problems, Numerical Heat Transfer, 3,393-409. 

Bear J. (1987). Modeling Groundwater Flow and Pollution. Dordercht, Reidel. 
Ben Salah M.; Askri F.; Ben Nasrallah S. (2005): Unstructured Control-Volume Finite-

Element Method for Radiative Heat Transfer in a Complex 2-D Geometry, Numerical 
Heat Transfer, Part B: Fundamentals, 48(5),459-475. 

Brown D. (2005): On Approximate Cardinal Preconditioning Methods for Solving PDEs with 
Radial Basis Functions, Engineering Analysis with Boundary Elements, 29(4),343-353. 

Bui T. T.; Popov V. (2009): Domain decomposition boundary element method with 
overlapping sub-domains, Engineering Analysis with Boundary Elements, 33(4), 456-
466. 

Cai Z.; Jones J. E.; McCormick S. F.; Russell T. F. (1997): Control-volume mixed finite 
element methods, Computers & Geosciences, 1, 289-315. 

Carlson R. E.; Foley T. A. (1991): The parameter R2 in multiquadric interpolation, Computers 
& Mathematics with applications, 21(9),29-42. 

Carslaw H. S.; Jaeger J. C. (1959). Conduction of Heat in Solids. Oxford, Oxford University 
Press. 

Cautres R.; Herbin R.; Hubert F. (2004): The Lions domain decomposition algorithm on 
non-matching cell-centred finite volume meshes, IMA journal of numerical ｡ ｮ ｡ ｬ ｹ ｳ ｩ Ｎ ｾ Ｌ
24(3),465-490. 

Cecil T.; Qian J.; Osher S. (2004): Numerical methods for high dimensional Hamilton-Jacobi 
equations using radial basis functions, Journal of Computational Physics, 196,327-347. 

Chilakapati A. (1995). 
Date A. W. (2005): Solution of transport equations on unstructured meshes with cell-centered 

colocated variables. Part I: Discretization, International Journal of Heat and Mass 
Transfer, 48, 1117-1127. 

Dubal M. R.; Olivera S. R.; Matzner R. A. (1993). Approaches to Numerical Relativity. 
Cambridge UK, Cambridge University Press. 

Dumbser M.; Kaser M. (2007): Arbitrary high order non-oscillatory finite volume schemes on 
unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, 
211,693-723. 

Faille I.; Nataf F.; Saas L.; Willien F. (2004). Finite volume methods on non-matching grids 
with arbitrary interface conditions and highly heterogeneous media. Domain 
Decomposition Methods in Science and Engineering Series. 40. 

Fasshauer G. E. (1997). Solving partial differential equations by collocation with radial basis 
functions. Surface Fitting and Multiresolution Methods. A. Le Mehaute, C. Rabut and 
L. L. Shumaker, University Press: 131-138. 

Fedoseyev A. I.; Friedmann M. J.; Kansa E. J. (2002): Improved muItiquadratic method for 
elliptic partial differential equation via PDE collocation on the boundary, Computers & 
Mathematics with Applications, 43,439-455. 

155 



Florez W. F.; Power H.; Chejne F. (2000): Conservative interpolation for the boundary 
integral solution of the Navier-Stokes equations, Computational Mechanics, 26(6), 
507-513. 

Fornberg B.; Flyer N. (2005): Accuracy of radial basis function interpolation and derivative 
approximations on I-D infinite grids, Advances in Computational Mathematics, 23( I), 
5-20. 

Franke C.; Schaback R. (1998): Convergence order estimates of meshless collocation methods 
using radial basis functions, Advances in Computational Mathematics, 8,381-399. 

Gao X.-W.; Guo L.; Zhang C. (2007): Three-step multi-domain BEM solver for 
nonhomogeneous material problems, Engineering Analysis with Boundary Elements, 
31(12),965-973. 

Grissa H.; Askri F.; Ben Salah M.; Ben Nasrallah S. (2007): Three-dimensional radiative 
transfer modeling using the control volume finite element method, Journal of 
Quantitative Spectroscopy and Radiative Transfer, 105(3),388-404. 

Hardy R. L. (1971): Multiquadric Equations of Topography and Other Irregular Surfaces, J. 
Geophys. Res., 76. 

Henk H.; Vic K.; Wim L. (2001): Selecting MODFLOW Cell Sizes for Accurate Flow Fields, 
Ground Water, 39(6),931-938. 

Hernandez Rosales A.; Power H. (2007): Non-overlapping domain decomposition algorithm 
for the Hermite radial basis function mesh less collocation approach: applications to 
convection diffusion problems, Journal 0/ Algorithms and Technology, (preprint). 

Hirt C. W.; Amsden A. A.; Cook J. L. (1972): An Arbitrary Lagrangian-Eulerian Computing 
Method for All Flow Speeds, Journal of Computational Physics. 14,227-253. 

Hirt C. W.; Nichols B. D. (1981): Volume of fluid (VOF) method for the dynamics of free 
boundaries, Journal o/Computational Physics. 39,201-225. 

Holger W. (2005): On the Convergence of a General Class of Finite Volume Methods, SIAM J. 
Numer. Anal .• 43(3),987-1002. 

Hon Y. C.; Mao X. Z. (1998): An efficient numerical scheme for Burgers' equation, Applied 
Mathematics and Computation. 95(1),37-50. 

Huebner K. (1975). The Finite Element Methodfor Engineers, John Wiley & Sons. 
Iske A.; Sonar T. (1996): On the structure of function spaces in optimal recovery of point 

functionals for END-schemes by radial basis functions, Numerische Mathematik. 74(2), 
177-201. 

Jayantha P. A.; Turner I. W. (2003): A second order finite volume technique for simulating 
transport in anisotropic media, International Journal 0/ Numerical Methods for Heat & 
Fluid Flow. 13(1), 31-56. 

Jayantha P. A.; Turner I. W. (2005): A Second Order Control-Volume Finite-Element Least-
Squares Strategy For Simulating Diffusion In Strongly Anisotropic Media, Journal of 
Computational Mathematics, 23(1), 1-16. 

Jiang G.-S.; Shu C.-W. (1996): Efficient Implementation of Weighted ENO Schemes, Journal 
o/Computational Physics, 126(1),202-228. 

Jichun L.; Chen C. S. (2003): Some observations on un symmetric radial basis fUllction 
collocation methods for convection-diffusion problems, International Journal for 
Numerical Methods in Engineering. 57(8), 1085-1094. 

Jinglian J. L.; Bharat K. S. (1998): 2D Groundwater Contaminant Transport Modeling by 
using the Finite Volume Method on an Unstructured Grid System, Applied 
Mathematics and Computation, 89( 1-3), 199-211. 

Jumarhon B.; Amini S.; Chen K. (2000): The Hermite collocation method using radial basis 
functions, Engineering Analysis with Boundary Elements, 24(7-8), 607-611. 

Kansa E. J.; Hon Y. C. (2000): Circumventing the Ill-Conditioning Problem with Multiquadric 
Radial Basis Functions: Applications to Elliptic Partial Differential Equations, 
Computers & Mathematics with applications, 39, 123-137. 

KEE R. J.; PETZOLD L. R.; SMOOKE M. D.; GRCAR J. F. (1985). Implicit methods in 
combustion and chemical kinetics modeling. Multiple Time Scales. J. U. Brackbill and 
B. I. Cohen. New York, Academic Press: 113-144. 

156 



Kurganov A.; Lin C.-T. (2007): On the Reduction of Numerical Dissipation in Central-
Upwind Schemes, Communications in Computational Physics, 2(1), 141-163. 

La Rocca A.; Hernandez Rosales A.; Power H. (2005): Radial basis function Hermite 
collocation approach for the solution of time dependent convection-diffusion problems, 
Engineering Analysis with Boundary Elements, 29(4),359-370. 

La Rocca A.; Power H. (2008): A double boundary collocation Hermitian approach for the 
solution of steady state convection-diffusion problems, Comput. Math. Appl., 55(9), 
1950-1960. 

Lee C.; Liu X.; Fan S. (2003): Local multiquadric approximation for solving boundary value 
problems, Computational Mechanics, 30,396-409. 

Ling L.; Hon Y. C. (2005): Improved numerical solver for Kansa's method based on affine 
space decomposition, Engineering Analysis with Boundary Elements, 29(12), 1077-
1085. 

Ling L.; Opfer R.; Schaback R. (2006): Results on mesh less collocation techniques, 
Engineering Analysis with Boundary Elements, 30(4),247-253. 

Liu F.; Anh V.; Turner I.; Bajracharya K.; Huxley W. J.; Su N. (2005): A finite volume 
model for saturated-unsaturated flow and application to Gooburrum, Bundaberg, 
Queensland, Australia, Applied Mathematical Modelling, 30,352-366. 

Liu F.; Turner I.; Anh V.; Su N. (2003): A two-dimensional finite volume method for 
transient simulation of time- and scale-dependent transport in heterogeneous aquifer 
systems, The Korean Journal o/Computational & Applied Mathematics, 11(1-2),215-
241. 

Liu F.; Turner I. W.; Anh V. (2002): An unstructured mesh finite volume method for 
modelling saltwater intrusion into costal aquifers, Journal 0/ Applied Mathematics & 
Computing, 9,391-407. 

Liu Y.; Vinokur M.; Wang Z. J. (2006): Spectral (finite) volume method for conservation 
laws on unstructured grids V: Extension to three-dimensional systems, Journal of 
Computational Physics, 212(2),454-472. 

Liu Y.; Vinokur M.; Wang Z. J. (2006): Spectral difference method for unstructured grids I: 
Basic formulation, Journal o/Computational Physics, 216(2), 780-801. 

Lo D. C.; Young D. L. (2003): Arbitrary Lagrangian-Eulerian finite element analysis of free 
surface flow using a velocity-vorticity formulation, Journal 0/ Computational Physics, 
195, 175-201. 

Madych W. R. (1992): Miscellaneous error bounds for multiquadric and related interpolators, 
Computers & Mathematics with applications, 24(12), 121-138. 

Madych W. R.; Nelson S. A. (1990): Multivariate Interpolation and Conditionally Positive 
Definite Functions. II, Mathematics 0/ Computation, 54, 211-230. 

Manzini G.; Putti M. (2007): Mesh locking effects in the finite volume solution of 2-D 
anisotropic diffusion equations, Journal o/Computational Physics, 220, 751-771. 

May-Duy A. N.; Tran-Cong T.; Tanner R. I. (2006): New High-order Time-kernel BlEM for 
the Burgers Equation, CMES: Computer Modeling in Engineering and Sciences, 16, 
177-186. 

Mayer S.; Garapon A.; Sorensen S. (1998): A fractional step method for unsteady free-
surface flow with applications to non-linear wave dynamics, International Journal/or 
Numerical Methods in Fluids, 28,293-315. 

Micchelli C. A. (1986): Interpolation of scattered data: Distance matrices and conditionally 
positive definite functions, Constructive Approximation, 2( 1), 11-22. 

Moroney T. J.; Turner I. W. (2006): A finite volume method based on radial basis functions 
for two-dimensional nonlinear diffusion equations, Applied Mathematical Modelling, 
30(10), 1118-1133. 

Moroney T. J.; Turner I. W. (2007): A three-dimensional finite volume method based on 
radial basis functions for the accurate computational modelling of nonlinear diffusion 
equations, Journal o/Computational Physics, 225(2), 1409-1426. 

Nessyahu H.; Tadmor E. (1990): Non-oscillatory central differencing for hyperbolic 
conservation laws, Journal o/Computational Physics, 87(2),408-463. 

157 



Nguyen-Van H.; Mai Duy N.; Tran-Cong T. (2007): A simple and accurate four-node 
quadrilateral element using stabilized nodal integration for laminated plates, CMC: 
Computers. Materials and Continua. 6, 159-176. 

Ollivier-Gooch C.; Van Altena M. (2002): A High-Order-Accurate Unstructured Mesh Finite-
Volume Scheme for the Advection-Diffusion Equation, Journal of Computational 
Physics. 181, 729-752 

Orsini P.; Power H.; Lees M.; Morvan H. (2009): A Control Volume Radial Basis Function 
Techniques for the Numerical Simulation of Saturated Flows in Semi-confined Aquifer, 
Transport in Porous Media. 79(2), 171-196. 

Orsini P.; Power H.; Lees M.; Morvan H. (2009). Improving the convergence of the Hermite 
CVRBF method for unstructured meshes. Advances on the Meshless Local Petrov-
Galerkin (MLPG) Method (To appear). S. N. Atluri. 

Orsini P.; Power H.; Morvan H. (2008): Improving Volume Element Method by Meshless 
Radial Basis Function, CMES: Computer Modeling in Engineering and Sciences. 23(3), 
187-207. 

Orsini P.; Power H.; Morvan H.; Lees M. (2009): An implicit upwinding volume element 
method based on mesh less radial basis function techniques for modelling transport 
phenomena, International Journal for Numerical Methods in Engineering. 

Paniconi c.; Putti M. (1994): A comparison of Picard and Newton iteration in the numerical 
solution of multidimensional variably saturated flow problems, Water resources 
research, 30(12),3357-3374. 

Popov V.; Power H. (1999): The DRM-MD integral equation method: an efficient approach for 
the numerical solution of domain dominant problems, International Journal for 
Numerical Methods in Engineering. 44(3),327-353. 

Powell M. J. D. (1994): The uniform convergence of thin plate spline interpolation in two 
dimensions, Numerische Mathematik. 68, 107-128. 

Power H.; Barraco V. (2002): A comparison analysis between unsymmetric and symmetric 
radial basis function collocation methods for the numerical solution of partial 
differential equations, Computers and Mathematics with Application. 43,551-583. 

Quarteroni A.; Valli A. (1999). Domain decomposition methods for partial differential 
equations. Oxford, Oxford University Press. 

Rippa S. (1999): An algorithm for selecting a good value for the parameter c in radial basis 
function interpolation, Advances in Computational Mathematics. 11(2), 193-210. 

Rousse D. R. (2000): Numerical predictions of two-dimensional conduction, convection, and 
radiation heat transfer. I. Formulation, International Journal of Thermal Sciences. 
39(3), 315-331. 

Saad Y. (1988-2000). "SPARSKIT: A basic tool-kit for sparse matrix computations." from 
http://www-users.cs.umn.edul-saadlsoftware/SPARSKIT/sparskit.html. 

Saad Y. (1996). Iterative Methods for Sparse Linear System. Boston, PWS Publishing 
Company. 

Saaltink M. W.; Ayora C.; Carrera J. (1998): A Mathematical Formulation for Reactive 
Transport That Eliminates Mineral Concentrations, Water Resour. Res .• 34. 

Saaltink M. W.; Batlle F.; Ayora C.; Carrera J.; Olivella S. (2004). RETRASO, a code for 
modeling reactive transport in saturated and unsaturated porous media, Consejo 
Superior de Investigaciones CientA-ficas (CSIC) ; Universitat de Barcelona. 

Saaltink M. W.; Carrera J.; Ayora C. (2001): On the behavior of approaches to simulate 
reactive transport, Journal of Contaminant Hydrology. 48(3-4),213-235. 

Sanchez-Vila X.; Dentz M.; Donado L. D. (2007): Transport-controlled reaction rates under 
local non-equilibrium conditions, Geophys. Res. Lett .• 34. 

Sarler B.; Vertnik R. (2006): Meshfree explicit local radial basis function collocation method 
for diffusion problems, Computers & Mathematics with applications. 51(8), 1269-1282. 

Schaback R. (1995): Error estimates and condition numbers for radial basis function 
interpolation, Advances in Computational Mathematics. 3(3),251-264. 

Schaback R. (1995). Multivariate interpolation and approximation by translates of a basis 
function, Approximation Theory VIll, World Scientific Publishing Co. 

158 



Shu C.-W.; Oshert S. (1989): Efficient implementation of essentially non-oscillatory shock-
capturing schemes, II, Journal of Computational Physics, 83(1),32-78. 

Shu C.; Ding H.; Yeo K. (2003): Local radial basis function-based differential quadrature 
method and its application to solve two-dimensional incompressible Navier-Stokes 
equations, Computer methods in applied mechanics and engineering, 192,941-954. 

Sladek V.; Sladek J.; Tanaka M. (2005): Local Integral Equations and two Meshless 
Polynomial Interpolations with Application to Potential Problems in Non-homogeneous 
Media, CMES: Computer Modeling in Engineering and Sciences, 7( 1), 69-84. 

Sonar T. (1996): Optimal recovery using thin plate splines in finite volume methods for the 
numerical solution of hyperbolic conservation laws, lMA J Numer Anal. 16(4), 549-581. 

Souli M.; Zolesio J. P. (2001): Arbitrary Lagrangian-Eulerian and free surface methods in fluid 
mechanics Computer methods in applied mechanics and engineering. 191,451-466. 

Srivastava R.; Yeh T.-C. J. (1992): A three-dimensional numerical model for water flow and 
transport of chemically reactive solute through porous media under variably saturated 
conditions, Advances in Water Resources. 15,275-287. 

Steefel C. I.; Lasaga A. C. (1994): A coupled model for transport of multiple chemical species 
and kinetic precipitation/dissolution reactions with application to reactive flow in single 
phase hydrothermal systems, Am J Sci, 294(5), 529-592. 

Stedel C. I.; MacQuarrie K. T. B. (1996). Approaches to modeling reactive transport in 
porous media. Reactive Transport in Porous Media. P. C. S. Lichtner, C.I. and E. H. 
Oelkers. Washington, Mineralogical Society of America. 34. 

Stevens D.; Power H.; Lees M.; Morvan H. (2009): The use of POE centres in the local RBF 
Hermitian method for 3D convective-diffusion problems, J. Comput. Phys .• 228(12), 
4606-4624. 

Truscott S. L.; Turner I. W. (2004): An Investigation ofthe Accuracy of the Control-Volume 
Finite-Element Method Based on Triangular Prismatic Elements For Simulating 
Diffusion in Anisotropic Media, Numerical Heat Transfer, Part B: Fundamentals. 46, 
243-268 

Turner I. W.; Ferguson W. J. (1995): An unstructured mesh cell-centered control volume 
method for simulating heat and mass transfer in porous media: Application to softwood 
drying, Part I: The isotropic model, Applied Mathematical Modelling, 19( II), 654-667. 

US-Geological-Survey. (05-June-2009). from 
http://water.usgs.gov/nrp/gwsoftware/modflow.html. 

Van Genuchten M.; Alves W. (1982): Analytical Solutions of the One-Dimensional 
Convective-Dispersive Solute Transport Equation, United States Department of 
Agriculture, Agricultural research service,(Technical bulletin number 1661). 

Versteeg H. K.; Malalasekera W. (2007). The Finite Volume Method, Pearson Education 
Limited. 

Versteeg H. K.; Malalasekera W. (2007). The Finite Volume Method Pearson Education 
Limited. 

Vertnik R.; Zaloznik M.; Sarler B. (2006): Solution of transient direct-chill aluminium billet 
casting problem with simultaneous material and interphase moving boundaries by a 
mesh less method, Engineering Analysis with Boundary Elements, 30,847-855. 

Viecelli J. A. (1969): A Method Including Arbitrary External Boundaries In the MAC 
Incompressible Fluid Computing Technique, Journal o/Computational Physics, 4, 543-
551. 

Warren B.; Martin E. D. (1997): Modeling Axially Symmetric and Nonsymmetric Flow to a 
Well with MODFLOW, and Application to Goddard2 Well Test, Boise, Idaho, Ground 
Water. 35(4), 602-611. 

Welch J. E.; Harlow F. H.; Shannon J. P.; Daly B. J. (1966). 
Wendland H. (1995): Piecewise polynomial, positive definite and compactly supported radial 

functions of minimal degree, Advances in Computational Mathematics, 4( 1), 389-396. 
Wong A. S. M.; Hon Y. C.; Li T. S.; Chung S. L.; Kansa E. J. (1999): Multizone 

decomposition for simulation of time-dependent problems using the multiquadric 
scheme, Computers & Mathematics with applications. 37(8),23-43. 

159 



Wright G.; Fornberg B. (2006): Scattered node compact finite difference-type formulas 
generated from radial basis functions, Journal of Computational Physics, 212(1), 99-
123. 

Wu Z. (1992): Hermite-Birkhoff interpolation of scattered data by radial basis functions, 
Approximation Theory, 8(2), 1-11. 

Wu Z. (1998). Solving PDEs with radial basis functions and the error estimation; , Advances in 
Computational Mathematics. 

Yeh G. T. (1987). 
Yeh T.-C. J.; Srivastava R.; Guzman A.; Harter T. (1993): A numerical model for water 

flow and chemical transport in variably saturated porous media, Ground Water, Ground 
Water, 31(4),634-644. 

Zhou X.; Hon Y. C.; Li J. (2003): Overlapping domain decomposition method by radial basis 
functions, Applied Numerical Mathematics, 44( 1-2), 241-255. 

]60 



>< .-
"'C 
C 
G) 
Q. 
Q. 

<C 

ｲ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ Ｍ ｾ Ｇ

,......, ,......,,......, 
000 ........................ 

,......,,......, ,......, 
000 ........................ 

,......,,......, ,......, 
000 ................ ........ 

,......,,......, ,......, 
000 ................ ........ 

,......,,......, ,......, 
000 ........................ 

ｾ "j 

.................... ｾ ｲ Ｚ Ｎ Ｎ Ｎ Ｚ ｴ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ ｾ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ
ｯ ｯ ｾ ........ ooo 
ｾ Ｂ Ｂ Ｂ Ｂ ｉ Ｑ Ｚ Ｎ Ｎ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ Ｂ

I 

,......, 
Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ ｲ ［ ［ Ｚ Ｚ Ｚ Ｚ Ｍ Ｇ ｾ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ
00 7 000 .................. , .... "-.- ........................ 

I 

ｾ........ 
Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ ｾ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ ｾ .............. ,....... 
3- ........ 01000 ....... ｾ ............ ｾ ............... ｾ

........ 
1... • 

......... 
,....... 'T"""'" j 

ｑ Ｎ Ｎ ｾ ｾ ｾ ｾ ｾ ｾ ｾ ｾ
........ 1... ......... 1.... 

,......, --3-""""3--,......,,......... 3- ........ 3- ........ 000 ....... Lt. lit ........ -Ll.. IiiII ....................... 

Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｌ ｾ Ｌ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ Ｎ

000 ........................ 

,......, ,......,,......, 
000 ........................ 

-,.........-
000 ........................ 

--,......... 000 ........................ 



a) 
｢ Ｉ ｾ ..."...., 

I I. 
I .......... _-, 

I 

, , '. \ 

Figure Appl- Tbree-dimensional interpolation stencils stopped at tbe first level ofneigbbouring elements used for the unsteady simulations described in chapter 3. 
The square symbols indicate tbe locations wbere tbe Diricblet operator is applied, tbe circles indicate the locations where the PDE operator is applied. Note that 
Diricblet and the PDE operators are applied in tbe same location (i.e. double collocation) 

a) Interpolation stencils used for structured meshes made of hexabedron elements, 7 Diricblet points + 7 PDE point (total of 14 points) 

b) Interpolation stencils used for unstructured meshes made of tetrahedron elements, S Dirichlet points + S PDE point (total of 10 points) 
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