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Abstract

Habitat classification, the process of mapping a site with its habitats, is a crucial activ-

ity for monitoring environmental biodiversity. Phase 1 classification, a 10-class four-tier

hierarchical scheme, is the most widely used scheme in the UK. Currently, no automatic

approaches have been developed and its classification is carried out exclusively by ecolo-

gists. This manual approach using surveyors is laborious, expensive and subjective. To

this date, no automatic approach has been developed.

This thesis presents the first automatic system for Phase 1 classification. Our main

contribution is an Automatic Image Annotation (AIA) framework for the automatic

classification of Phase 1 habitats. This framework combines five elements to anno-

tate unseen photographs: ground-taken geo-referenced photography, low-level visual

features, medium-level semantic information, random projections forests and location-

based weighted predictions.

Our second contribution are two fully-annotated ground-taken photograph datasets, the

first publicly available databases specifically designed for the development of multimedia

analysis techniques for ecological applications. Habitat 1K has over 1,000 photographs

and 4,000 annotated habitats and Habitat 3K has over 3,000 images and 11,000 anno-

tated habitats. This is the first time ground-taken photographs have been used with

such ecological purposes.

Our third contribution is a novel Random Forest-based classifier: Random Projection

Forests (RPF). RPFs use Random Projections as a dimensionality reduction mechanism

in their split nodes. This new design makes their training and testing phase more efficient

than those of the traditional implementation of Random Forests.

Our fourth contribution arises from the limitations that low-level features have when

classifying similarly visual classes. Low-level features have been proven to be inadequate

for discriminating high-level semantic concepts, such as habitat classes. Currently, only

humans posses such high-level knowledge. In order to obtain this knowledge, we create

a new type of feature, called medium-level features, which use a Human-In-The-Loop

approach to extract crucial semantic information.

Our final contribution is a location-based voting system for RPFs. We benefit from the

geographical properties of habitats to weight the predictions from the RPFs according

to the geographical distance between unseen test photographs and photographs in the

training set.

Results will show that ground-taken photographs are a promising source of information

that can be successfully applied to Phase 1 classification. Experiments will demonstrate



that our AIA approach outperforms traditional Random Forests in terms of recall and

precision. Moreover, both our modifications, the inclusion of medium-level knowledge

and a location-based voting system, greatly improve the recall and precision of even

the most complex habitats. This makes our complete image-annotation system, to

the best of our knowledge, the most accurate automatic alternative to manual habitat

classification for the complete categorization of Phase 1 habitats.
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Chapter 1

Introduction

Habitat classification is an essential ecological activity which helps humans structure

environmental knowledge and develop their understanding of the natural world. There

are many manual and automatic habitat classification schemes that have been developed

to this day. Their methodologies vary greatly depending on the subject, i.e. animals,

plants, insects, etc.; their geographical location, i.e. coastal, rural, urban, etc.; and the

types of data used, i.e. satellite imagery, aerial photographs, maps, etc.

This thesis deals with the problem of automatic Phase 1 habitat classification using

ground-taken geo-referenced photographs. Our research is focused on the classification

of wildlife habitats, more specifically, vegetation habitats, within the United Kingdom.

We will be following the Phase 1 classification scheme, standardised by the Joint Nature

Conservation Committee (JNCC) [102] and widely used by ecologists in the United

Kingdom.

From a Computer Vision point of view, and given the similarities between the classes

that we aim to classify, such as different types of grasses, heathland, water or wood-

land, automatic habitat classification can be regarded as a Fine-Grained Visual Cat-

egorization (FGVC) problem [24]. With this in mind, we have approached Phase 1

habitat classification from an image annotation perspective. We have created the first

automatic framework for Phase 1 classification, whose inputs are unseen ground-taken

geo-referenced photographs and whose output is a list of all possible habitats from more

probable to less probable. In summary, the main goal of this thesis is to study the perfor-

mance of our image-annotation framework for the specific purpose of Phase 1 Habitat

classification. Moreover, we aim to study the merits and limitations of ground-taken

imagery as the main source of information for automatic habitat classification and the

effect that pattern, colour and texture features have in this classification process.

1
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This thesis is organised in ten chapters. In this chapter, we describe the motivations and

the technical challenges behind automatic habitat classification using ground-taken im-

agery and we list the contributions made in this thesis. Chapter 2 presents an overview

of the state-of-the-art methods related to our research in both Ecology and Computer

Vision, with special emphasis in Habitat Classification and Image Annotation method-

s. Chapter 3 will describe what Phase 1 Habitat Classification is in more detail. In

Chapter 4 we present a brief study on the limitations that remote sensed data, and

aerial imagery in particular, present when automatically classifying Phase 1 habitats.

Chapter 5 presents a brief overview of the automatic annotation framework proposed

in this thesis. Chapter 6 describes in detail the type of ground-taken imagery we will

be working with in our framework. Chapter 7 describes the main novel contribution

of this framework, Random Projection Forests. Chapter 8 will introduce the concept

of Medium-level Knowledge and how its inclusion in our framework can improve the

classification process. Chapter 9 describes how we have used geographical information

during testing to obtain more accurate results. Finally, Chapter 10 summarises our con-

tributions in this thesis, discusses the merits and limitations of our approach and offers

some recommendations for future work.

1.1 Motivation and Technical Challenges

The worldwide fragmentation and destruction of habitats and their economic, biological

and ethical consequences are considered to be one of the biggest challenges currently af-

fecting our society [41]. Habitats are defined in the European Union Habitats Directive

as terrestrial or aquatic areas distinguished by geographic abiotic and biotic features,

whether natural or semi-natural [43]. Their classification and characterization has been

carried out for more than one hundred years [7] and environmental agencies of coun-

tries such as the United Kingdom, Spain, Germany, Switzerland, Denmark and The

Netherlands [138] maintain projects related to habitat monitoring.

The purpose of classifying habitats is twofold: firstly, it helps to reduce the complexity

present in the natural world. Secondly, by categorizing habitats, their characterization

and comparison can be done much more efficiently and effectively. While there are

multiple schemes that have been developed to date, one of the most widely used by

ecologists is the Phase 1 Habitat Survey scheme [102]. This standardised hierarchical

classification divides all habitats into ten broad categories and it was designed to provide

a detailed record of the vegetation and wildlife present in a determined area.

In essence, Phase 1 habitat classification can be regarded as a preliminary ecological

procedure which serves to monitor and describe the ecological properties of an area. It
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must be carried out before any other ecological activities that might affect an area can

be executed. Trained ecologists will extract as much information as possible about the

area and their classification and assessment will directly influence any other ecological

decisions that may affect the aforementioned area. Consequently, there are many appli-

cations to habitat classification, such as habitat monitoring and identification, landscape

ecology, and monitoring and conservation of rare species [111, 128, 158].

However, one of the main drawbacks of Phase 1 Habitat Classification is that it relies

very heavily on human surveyors [102]. This manual approach is laborious, expensive

and time consuming, since ecologists have to be deployed to the areas that need map-

ping. Additionally, it can also be extremely subjective, since there are many similarities

between some of the finer habitat classes. Having an accurate automatic Phase 1 clas-

sification would greatly facilitate this process. Approaches have been developed with

the aim of automating the habitat classification process [54] but, to our knowledge, no

automatic alternative uses ground-taken imagery and no automatic methods have been

presented for Phase 1 classification to this date.

One of the main reasons why fully accurate results have not been obtained is because

most of the methods developed use remotely sensed data. Aerial photography and

satellite imagery, in particular, seem to be the most popular choices for input data

[20, 23]. Given the level of detail that is necessary to distinguish between some of

the habitats collected in the Phase 1 Habitat Survey scheme, both aerial and satellite

imagery have been proven to be insufficient [180].

For this thesis we have chosen an alternative source of information: ground-taken im-

agery [182]. Geo-referenced ground-taken photographs present two main advantages over

aerial and satellite imagery. Firstly, ground-taken photography has a greater degree of

detail. For FGVC problems, such as habitat classification, this is a decisive trait, since

details will be crucial to differentiate between similar habitat classes. Secondly, they

can be obtained more easily than aerial and satellite imagery, since the only equipment

necessary is a digital camera or a smartphone. Moreover, it is also possible to use the

Internet to obtain this type of data, with crowd-sourcing websites such as Geograph

[154] or Flickr [125].

However, the use of ground-taken photography also presents some challenges. One of the

main challenges is the varied nature of the photographs. Remotely sensed data, such as

aerial or satellite imagery, commonly follows the same pattern and layout. The imagery

is taken under the same conditions every single time: the camera is at a constant distance

from the subject of the images and the angles between the camera and the subject are

always the same. On the other hand, the ground-taken photographs used in this thesis

are extremely varied in terms of layout, orientation and perspective. This was done
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purposely in order to create a robust database that recorded as many types of habitats

under as many different circumstances as possible. Nevertheless, this lack of control on

the conditions under which the photographs are taken results into two different issues.

First, the habitat class of the subject of the photograph might not be clearly discernibly

due to the perspective or the layout of the photograph. This can be problematic for

our automatic framework. For example, in Figure 1.1, the perspective of the image

makes distinguishing whether the scrub shown belongs to the Scrub class (in Class A)

or to the Hedge class (in Class J) difficult. That is one of the reasons an extensive and

varied database and very precise ground truth data is extremely important in our case.

Second, the lack of consistency in the perspective makes the locations of the photograph

different from the location of the subject of the photographs. As shown in Figure 1.2, the

location of the photograph will be one set of coordinates, while the habitats that appear

on it expand a greater territory. This means that if geographical location is introduced

in the classification process, some considerations need to be taken into account when

measuring the performance of the framework.

Figure 1.1: Limitations of perspective and layout in ground-taken photographs. Given
the perspective and layout of the image, it is difficult to distinguish whether the scrub

shown belongs to Class A (Woodland and Scrub) or Class J (Miscellaneous).

In this thesis we have developed an image-annotation framework for automatic Phase

1 habitat classification using ground-taken imagery. From an Image Processing per-

spective, approaching automatic habitat classification as an image annotation problem

presents an interesting and compelling set of technical challenges. Image annotation

is an increasingly popular topic in Computer Vision [76, 169] and image annotation

frameworks have been applied to medical, ecological and biological research [151].
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Figure 1.2: Perspective, layout and ground-taken photographs. Given the perspec-
tive and layout of the image, the subject of the photograph expands further than the

geographical location of the photograph.

However, what makes the problem of habitat classification a more challenging task

than common image annotation problems is the nature of the classes that need to be

recognised. Instead of conventional and clearly separable classes, such as building, flower,

tree, dog, cow, road, body, boat, mountain, forest [150, 167], Phase 1 combines two very

interesting characteristics. Firstly, it is a hierarchical classification. Phase 1 has ten

first-level classes and extends to four levels for a total of 150 different habitat classes.

Additionally, some of these classes may have similar components or similar types of

vegetation. For example, as mentioned previously, scrub can be present on its own, as

class A.2, or as part of a boundary habitat (Hedges, J.2). It can also appear as part

class D.1., Dry dwarf and shrub heath.

Secondly, its classes are difficult to identify even by human surveyors. When classifying
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Phase 1 habitats, the aim is not to classify trees, grass or water, for example, but to clas-

sify which kind of trees (broad-leaved or coniferous), grasses (improved, semi-improved

or unimproved) or water (standing or running) appear in the photographs. This task is

difficult even for trained Phase 1 experts and it may require previous knowledge of the

ecological properties of the area. In Computer Vision, this type of problem, in which

the classes to classify are very similar visually, is commonly referred to as Fine-Grained

Visual Categorization problems (FGVC) [25].

In summary, our goal is to test and study the advantages and disadvantages that our

image-annotation framework and ground-taken imagery provide when automatically

classifying Phase 1 habitats.

1.2 Contributions

In this thesis, we make the following contributions:

• Image-Annotation Framework: We approach automatic habitat classification as

an image annotation problem. We have developed and tested an automatic image-

annotation framework for Phase 1 habitat classification. Our framework combines

five main elements: ground-taken imagery, low-level visual features, medium-level

information, random projections forests and geographical location to annotate un-

seen photographs using the Phase 1 classification scheme. This is the first instance

in which ground-taken photographs have been combined with an Automatic Anno-

tation methodology for the ecological purpose of habitat classification. Moreover,

our framework is, to our knowledge, the first automatic framework specially de-

signed for the complete classification of Phase 1 habitats. Extensive experimenta-

tion shows that our framework can successfully classify Phase 1 habitats in terms

of precision and recall. [Chapter 5].

• Habitat 1K and Habitat 3K: Two fully annotated databases specially created for

ecological purposes. Habitat 1K is composed of 1,086 photographs and 4,223

annotations from five habitat classes: Woodland and Scrub (A), Grassland and

Marsh (B), Tall Herb and Fern (C), Heathland (D) and Miscellaneous (J). Habitat

3K has 3,094 ground-taken geo-referenced photographs. This database has been

ground-truthed by a Phase 1 expert and it includes 11,517 different instances of

habitats from seven out of the ten possible habitat classes. These are: Woodland

and Scrub (A), Grassland and Marsh (B), Tall Herb and Fern (C), Heathland (D),

Open Water (G), Coastland(H), Rock Exposure (I) and Miscellaneous (J). The

photographs of these databases do not follow any particular layout. Therefore,
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different perspectives, such as landscape shots, detail shots or ground shots are

all allowed. These databases have been made publicly available 1 and they are

the first visual databases specifically designed for the development of multimedia

analysis techniques for ecological applications. [Chapter 6]

• Low-level Visual Features Applied to Habitat Classification: We carry out a study

on the use of some of the most popular low-level visual features. Particularly, we

study the effect that texture (Tamura coefficients, Grey-Level Co-occurrence Ma-

trix), pattern (Colour Pattern Appearance Model) and colour (Colour Histograms

and Colour Moments) features have on Phase 1 habitat classification when using

ground-taken imagery. This helps us better understand the benefits and limitations

that ground-taken imagery present when classifying Phase 1 habitats. Results will

show that pattern and colour features obtain the most stable precision and recall

results in more than 80% of the testing scenarios. On the other hand, texture fea-

ture can obtain more accurate results than pattern and colour in particular cases,

such as the classification of Heath mosaics with Random Projection Forests, but

their general performance in all experiments is considerably less stable. [Chapter

7, Chapter 8 and Chapter 9]

• Random Projection Forests (RPF): Random Forests is an increasingly popular

machine learning technique that have been successfully applied to a varied number

of problems in the field of computer vision, such as image classification [132] and

image segmentation [167]. In the field of Ecology, they have also been applied

to habitat structure classification [11] and land cover [81]. We chose to use this

ensemble classifier because they combine the benefits of two other popular Machine

Learning techniques, NN-based methods and SVMs, without being as affected by

their disadvantages. Random forests are simple to implement and easy to modify

to be applied to multi-label problems, similarly to NN-based methods. On the

other hand, similarly to SVMs, they are accurate and do not suffer from a less

efficient testing phase. We propose an alternative to Random Forests that uses

Random Projections, a popular dimensionality reduction technique. With RPF, we

generate a random projection vector with values -1, 0, 1 in each of the nodes of our

decision tree and we project each feature vector according to the corresponding

random projection vector. The inclusion of projections makes the training and

testing processes more efficient without sacrificing accuracy in the results. Results

show that our initial design of Random Projection Forests, as shown in Chapter

7, is not only more efficient, but also outperforms Random Forests both in terms

of recall and precision. This difference in performance is clearly noticeable when

1http://www.viplab.cs.nott.ac.uk/download/habitat classification database.html
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classifying Woodland and Scrub (A), Grassland and Marsh (B) and Heathland (D)

habitats. [Chapter 7]

• Medium-Level Features: Low-level features have been proven to be inadequate

for discriminating high-level concepts, such as habitat classes belonging to Phase

1. These limitations caused significant lack of accuracy in second- and third-tier

habitats, such as boundaries and heathland mosaics. On the other hand, humans

are able to identify objects belonging to different classes quite effortlessly using

semantic information. In an effort to incorporate this higher-level information to

the classification process, we adopt a Human-In-The-Loop (HITL) approach [24]

to extract semantic information for the annotation process. Human-In-the-loop

is an interactive, hybrid human-computer interaction method for object classi-

fication which aims to benefit from the strengths of both humans (their ability

to differentiate between classes rapidly) and computers (their ability to compute

large amounts of data efficiently). We have developed an innovative way to im-

plement this HITL approach and we have successfully incorporated it to our AIA

framework: non-experts users are asked a series of ’yes’-or-’no’ questions about

the ground-taken photographs in our database and we transform their answers to

these questions, along with the certainty level they have on these responses, into

medium-level features. These features are then used as the input of our classi-

fier. Additionally, we combine these medium-level features with low-level visual

features to obtain more accurate results in the most challenging habitat classes:

Tall Herb and Fern (C) and Heathland (D). Experiments show that the inclusion

of medium-level features entails a considerable improvement over our initial design

of Random Projection Forests, particularly in terms of precision, which improves

up to 20%. This increase is particularly noticeable in Tall Herb and Fern habitats

(C) and complex habitats such as Hedge and Trees (J.2.3) and Heathland mosaics.

[Chapter 8]

• Location-Based Voting System: We include geographical information during the

annotation process. We take advantage of the geographical properties of habi-

tats to improve the accuracy of our framework. Geographically close areas have

similar ecological characteristics, since habitat properties do not generally change

abruptly. Therefore, near regions will have similar habitats. Since all the images

in the database are geo-referenced, we use their GPS coordinates to calculate the

distance between unseen photographs and the ground-taken photographs of the

leaves they have reached in the RPF. Consequently, we weight the different de-

cision trees in our RPF, with closer trees having more weight in the prediction

than further trees. Experiments will show that this final modification of Random

Projections Forests yields the most accurate recall and precision results from all



Chapter 1. Introduction 9

the scenarios tested in this thesis. In particular, complex mosaics and Coastland

(H) habitats, which have proven specially difficult to classify, experience a con-

siderable recall and precision improvement over past modifications. Consequently,

this final contribution, to our knowledge, makes our Random Projection Forests

with medium-level features and a location-based voting system the first and most

accurate automatic framework specifically designed for the classification of the

complete Phase 1 scheme. [Chapter 9]

1.3 Summary

In this chapter we have introduced the problem we aim to tackle in this thesis: au-

tomatic Phase 1 habitat classification. Moreover, we have described our contributions

and we have introduced the methodology which we will be following: Automatic Image

Annotation.

In the next chapter, we will present a comprehensive review of significant literature in

the areas of Ecology and Computer Vision, with the aim of delimiting the clear research

gap in current methodologies with regards to automatically classifying Phase 1 habitats.



Chapter 2

Literature Review

This thesis aims to incorporate work from two different disciplines: Ecology and Com-

puter Vision. Accordingly, in this chapter we give an overview of the state-of-the-art

methods related to our image annotation approach for the classification of habitats in

both areas with the aim of presenting the clear research gap in literature.

This chapter is divided into two sections: Section 2.1 reviews current methods for habi-

tat classification in Ecology. Section 2.1.1 reviews some of the most popular habitat

classification schemes currently used and explains why we have chosen to work with

the Phase 1 scheme in particular. We review merits and limitations of both manual

and automatic approaches in Section 2.1.2 and Section 2.1.3 respectively. On the other

hand, Section 2.2 examines related methods in the area of Computer Vision, focusing

on current image annotation methods. In this section we review related state-of-the-art

techniques for visual feature extraction, shown in Section 2.2.1, image annotation and

fine-grained visual categorization problems, shown in Section 2.2.3, and machine learn-

ing, shown in Section 2.2.4, with special emphasis in the machine learning technique we

have chosen, Random Forests, in Section 2.2.4.4. Finally, Section 2.3 briefly summarises

the contents of this chapter.

2.1 Ecology

In Ecology, habitat classification is defined as the process of mapping all habitats present

in an area according to a determined scheme [102]. The classification of habitats is

a crucial activity for structuring knowledge and developing our understanding of the

natural world. It has been carried out for more than two hundred years all over the

10
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world [138] with the first recorded instance of habitat classification done by Linnaeus

[51].

2.1.1 Habitat Classification Schemes

There are numerous terrestrial and freshwater habitat classification schemes that have

been developed worldwide. While the overall aim of all these classifications is the same,

to map the habitats present in a site, their characteristics vary depending on the nature

of the vegetation that needs to be classified and on the geographical area of these sites.

In this section we will introduce some of the most popular habitat schemes in Europe

including Phase 1, the scheme we will be using in this thesis. Moreover, we will also

compare these classifications to Phase 1 in order to better explain why we have chosen

Phase 1.

These habitat classification schemes are:

• European Nature Information System (EUNIS): This framework was first

implemented in the late 1990s by the European Environment Agency and continues

to be updated periodically [51]. EUNIS has a database that follows a very com-

prehensive classification scheme which records information about species, habitat

types and sites. Their data was collected in the framework of NATURA2000 [39].

Moreover, it was also compiled from the literature [51].

In this scheme, the concept of habitat is much broader than in Phase 1. In EUNIS,

habitats are defined as: “Plant and animal communities as the characterising

elements of the biotic environment, together with abiotic factors operating together

at a particular scale”. Table 2.1 shows the first-tier categories for only the Habitat

classes. The EUNIS classification is a hierarchical scheme. It has 11 first-tier

classes and four levels. After the fourth tier, the component units are drawn from

other classification systems and these are combined in the common framework.

Compared to Phase 1, which was designed specifically for habitats in the United

Kingdom, the EUNIS classification scheme is a comprehensive pan-European sys-

tem which aims to facilitate the collective description and collection of data across

Europe through the use of standardised criteria for habitat identification. It covers

all types of habitats from natural to artificial and from terrestrial to freshwater

and marine. For this reason, this scheme is very useful when comparing species,

habitats or sites of different European countries. However, since in our case we are

only interested in habitats from the UK, this scheme is not a suitable candidate.
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Table 2.1: EUNIS Habitat Classification Classes.

Code Habitat Class

A Marine habitats

B Coastal habitats

C Inland surface waters

D Mires, bogs and fens

E Grasslands and lands dominated by forbs, mosses or lichens

F Heathland, scrub and tundra

G Woodland, forest and other wooded land

H Inland unvegetated or sparsely vegetated habitats

I Cultivated agricultural, horticultural and domestic habitats

J Constructed, industrial and other artificial habitats

X Habitat complexes

• The International Union for Conservation of Nature (IUCN) Habitats

Classification Scheme: First introduced in 1994 by the IUCN, this world-wide

classification scheme is one of the most comprehensive approaches for the evalua-

tion of the conservation level of habitats and wildlife. Its main goal is to collect

information not only about the species present in an area, but also about their

conservation status.

This classification is a hierarchical scheme with eighteen broad classes and two

levels. In comparison with Phase 1, this classification collects more information for

some particular habitats, such as deserts and marine habitats. As shown in Table

2.2, IUCN’s classification has six different classes devised to categorise marine

or aquatic habitats (classes 9, 10, 11, 12, 13, 15), while Phase 1 only has three

(classes F, G, H). However, IUCN’s scheme fails to collect information about one

of the most complex and useful habitats found in rural areas: boundaries. Phase 1

considers five different types of boundaries in its Miscellaneous category (Hedges,

Fences, Walls, Dry ditches, Boundaries removed and Earth banks), while IUCN’s

classification does not distinguish between them and would consider all of them to

be part of the Other category.

• Fossit’s Irish Habitat Classification: Proposed in 2000 by Julie A. Fossit and

The Heritage Council, this scheme presents a standard classification for identifying,

describing and classifying wildlife habitats in Ireland [69]. It covers natural, semi-

natural and artificial habitats. Moreover, it classifies terrestrial and freshwater

environments, of inshore marine waters, and of urban and rural areas. As the

previous schemes, this classification is hierarchical with eleven broad classes and

has three tiers.

Similarly to Phase 1, its various levels can be applied depending on the scale of the

project, the details needed and the expertise of the surveyor. However, contrary
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Table 2.2: IUCN’s Habitat Classification Scheme

Code Habitat Class

1 Forest

2 Savanna

3 Shrubland

4 Grassland

5 Wetlands

6 Rocky Areas

7 Caves and Subterranean

8 Desert

9 Marine Neritic

10 Marine Oceanic

11 Marine Deep Ocean Floor

12 Marine Intertidal

13 Marine Coastal/Supratidal

14 Artificial - Terrestrial

15 Artificial - Aquatic

16 Introduced Vegetation

17 Other

18 Unknown

Table 2.3: Fossil’s Habitat Classification Scheme

Code Habitat Class

F Freshwater

G Grassland and marsh

H Heath and Dense Bracken

P Peatlands

W Woodland and Scrub

E Exposed Rock

B Cultivated and Built Land

C Coastal

L Litoral

S Sublitoral

M Marine Water Body

to Phase 1, Fossit created this classification as a first-step approach for general

habitat recording rather than as a basis for detailed study and evaluation [69].

The main aim of this classification was to create a standard scheme, which Ireland

lacked until Fossit’s scheme.

As can be seen, this classification has many common classes with Phase 1 (i.e.,

Woodland and Scrub, Grassland and Marsh, Coastal). However, like previous

classifications, it fails to take into account boundaries between habitats.

• Phase 1 Habitat Classification: A standardised classification scheme proposed

by the Joint Nature Conservation Committee (JNCC) [102]. It was first introduced
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Table 2.4: Phase 1 Habitat Classification Classes.

Code Habitat Class

A Woodland and scrub

B Grassland and marsh

C Tall herb and fern

D Heathland

E Mires

F Swamp, marginal and inundation

G Open water

H Coastland

I Rock exposure and waste

J Miscellaneous

in the 1970s in the United Kingdom and it is specially designed for rapid wildlife

mapping over large areas of the countryside. Similarly to all the previous schemes,

this classification is hierarchical and it comprises ten categories, shown in Table

2.4. It has four tiers that enable ecologists to select the level of detail necessary

on their survey depending on their expertise and the requirements of the project.

A more in depth description on the characteristics and the challenges of Phase 1

classification can be found in Section 3.1. Additionally, the whole classification

scheme can be found in [102]. In this thesis, we have chosen Phase 1 habitat

classification because it is widely used by ecologists and because it was specifically

designed to be applied in Great Britain and Ireland. This is very suitable for us

because all the images in our ground-taken photograph database are from Great

Britain.

2.1.2 Manual Habitat Classification

As mentioned in the previous section, Phase 1 classification relies heavily on human

surveyors to manually classify and map areas. This requires training the surveyors and

deploying them to a particular site that needs mapping. Then, using maps, the ecologists

will survey the whole area and annotate the habitats found in their path. Figure 2.1

shows how a group of Phase 1 surveyors may classify habitats manually.

The process of manually classifying Phase 1 habitats is summarised in [102] as:

1. The surveyor visits every parcel of land within the survey area.

2. The vegetation that surveyors encounter in their path is mapped onto a habitat

map (usually using 1:10,000 scale). Often this can be done from a road or footpath

without the need to walk the ground but, depending on the area, surveyors might

need to enter the sites.
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Figure 2.1: Manual Habitat Classification. Trained human surveyors manually clas-
sify habitats in Titchfield Haven, United Kingdom, July 2011.

3. Phase 1 guidelines establish standard alphanumerical and colour codes for each

habitat class. Surveyors use them to classify habitats into one of around 150 spec-

ified habitat types, allowing rapid visual assessment of the extent and distribution

of habitat types.

4. Along with creating maps, surveyors are encouraged to take target notes. These

notes record habitat descriptions, site-related information such as species, commu-

nities or presence of any species of conservation concern, and any other information

of interest.

5. Once the area is mapped, statistics may be obtained regarding the extent and

distribution of each habitat type.

6. The end products of a Phase 1 survey are: habitat maps, target notes and statistics,

together with a descriptive and interpretive report.

As can be inferred, this manual approach has several drawbacks [102]. These include:

• Specific training: Phase 1 habitat classification requires additional training for

ecologists. Consequently, time and resources must be allocated to train ecologists

or to hire experts.
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• Previous knowledge: Previous knowledge of the site is often required to accurate-

ly classify its habitats. Phase 1 habitat classification collects information about

ecological characteristics that may not be completely visible to the surveyors. For

example, geographical properties of the ground, such as whether it is calcareous,

neutral or acid ground are required to classify grasslands. Trained ecologists will

consult the geographical properties of the area they have to map in advance in or-

der to obtain this information. Common sources of information include: Natural

England [61], the Environment Agency [3], the MultiAgency Geographic Informa-

tion for the Countryside [62] and the Joint Nature Conservation Committee [40].

Additionally, it is also common for ecologists to consult satellite or aerial imagery

of the site before visiting the area to gather more information.

• Labour intensive: Ecologists need to cover the whole site that needs mapping on

foot. If the area is large or difficult to access, this can be a very labour-intensive

task.

• Time consuming: Depending on the size and the characteristics of the area that

needs mapping, covering the whole site may be very time consuming. Moreover,

the time that it takes to deploy the experts to and from the area of the survey also

needs to be taken into account.

• Costly: Related to the two previous points, depending on the area that needs

mapping, it could be necessary to either employ more than one ecologist or to

allocate more time to map the areas that need classifying. Additional expenses to

take into consideration also include the cost of transporting the surveyors to and

from the site and other costs that may occur during the survey.

• Physical Output: In general, ecologists will use pen and paper when surveying a

site and classifying its habitats. One of the outputs produced by ecologists are

classification maps, an example of which is shown in Figure 2.2. In order to ensure

that the information is not lost or misplaced, these maps are digitalised or scanned

for safekeeping once the survey is finished. This process can be tedious and, if the

weather conditions are bad, for example, if it is raining or snowing during the

survey, this can negatively affect the state of the maps. Moreover, if maps are

digitised instead of only scanned, the people in charge of digitizing these maps can

introduce errors.

• Timing of the Survey: Phase 1 is recommended to be undertaken between the

months of April and October, when deciduous and annual plant species are more

easily identifiable, due to weather constrictions that may make habitat classifica-

tion difficult [55]. This greatly restricts the time in which is possible to obtain new

and updated data.
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Figure 2.2: Habitat Map. Output from a trained Phase 1 ecologist for the area of New
Forest, United Kingdom. BW stands for Broadleaved Woodland, I stands for Improved
Grassland, SI stands for Semi-Improved Grassland and SAG stands for Acid-grassland

Semi-Improved

• Subjective: Given the similarities between some of the habitats classified in Phase

1, such as Semi-Improved and Improved grasslands, their classification can be

subjective or inconsistent.

2.1.3 Automatic Habitat Classification and Remote Sensing

In order to improve manual habitat classification, there are several automatic habi-

tat classification methods that have been developed for different classification schemes.

Examples of these include [35, 54]. It is interesting to notice that, to our knowledge,

no previous work has been done for the automation of Phase 1 habitat classification

in particular. Consequently, the approaches reviewed in this section use other classi-

fication schemes. Moreover, none of the automatic approaches developed to date use

ground-taken photographs as the main source of data.

An automatic habitat classification approach, like the one proposed in this thesis and

those reviewed here, could ideally eliminate the disadvantages presented in the previous

section regarding manual habitat classification. Users would need no additional training

to use the automatic system and they might not even need to be ecologists. For example,



Chapter 2. Literature Review 18

the EUNIS framework enables non-expert users to search for habitat information by

geographical site or by species [51].

Moreover, these users would not have to have previous knowledge about the site they

want to classify. In fact, this external knowledge could be implemented into the au-

tomatic system in different forms. For example, [38] combined Light Detection And

Ranging (LiDAR) height and intensity information with multi-spectral imagery to map

coastal habitats in the Basque Country. Moreover, [163] combined Shuttle Radar Topog-

raphy Mission (SRTM) data and Landsat TM imagery to classify habitats in neotropical

environments. In our case, our framework could ultimately combine multiple sources of

information such as aerial imagery and ground-taken photographs. As we will show in

Chapter 8, contextual information could also be taken into consideration in the classifi-

cation process and could even be used as part of the input. For example, if imagery was

used as input, information such as the time of the year in which the image was taken,

the geographical location of the site and even past results from other surveys from the

same area could be added automatically. In particular, in our work, we have combined

low-level visual features, medium-level contextual features and geographical location in

the classification process.

Additionally, there would be no need to transport any humans to these sites which would

save time, labour and money. The outputs would be already digitised and human errors

would not be introduced during this process. Moreover, the system’s decision making

process would be uniform. Consequently, the classification would be equally uniform

and there would not be any subjectivity involved in the process. Finally, the output

statistics needed could be easily calculated using a computer and the already digitised

information.

Most of the automatic approaches proposed in the literature use remote sensing imagery

[54]. Consequently, remote sensing is defined as “the science and art of obtaining infor-

mation about an object, area, or phenomenon through the analysis of data acquired by

a device that is not in contact with the object, area, or phenomenon under investiga-

tion” [117]. Remote sensing data is data that has been obtained using remote sensing

methods. Common types of remote sensing imagery that has been used for habitat and

species classification include: aerial imagery [45], satellite photography [111], LiDAR

[38] and hyperspectral imagery [212].

The use of remote sensing imagery has several advantages over manual approaches:

they are more exhaustive, data can be periodically recorded and they can be used

to record spectral information in non-visible regions of the electromagnetic spectrum

[54]. Moreover, while the data collection phase might be time consuming and requires

specialised equipment, the classification process is faster and more efficient.
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2.1.3.1 Pixel-Oriented and Object-Oriented Classification Methods

Classification methods using remote sensing can be divided into two classes: pixel-

oriented methods and object-oriented methods. In pixel-oriented methods, each pixel is

classified individually and independently of the other pixels within the image. This type

of classification is referred to as spectral pattern recognition. On the other hand, object-

oriented classifiers use spectral and spatial pattern recognition. This means that when

classifying a pixel, its surroundings and how the same pixel’s value change over time

are taken into consideration during the classification process. Object-oriented method-

s normally involve two steps: first, the image is segmented into discrete objects and

then each object is classified. These methods approach classification in a way similar to

how humans approach digital imagery interpretation, which uses different types of in-

formation, such as colour, shape, size, texture, pattern and context to group pixels into

meaningful objects [117]. Pixel-oriented methods frequently obtain less accurate results

and this can be attributed to the fact that, by taking only one pixel into consideration,

there is a lot of spatial, temporal and contextual information that is being ignored in

the classification process.

Object-oriented methods usually obtain more accurate results. Consequently, they are

more popular when developing automatic habitat classification systems [117]. For ex-

ample, in [54], Dı́az Varela el al. used satellite imagery to classify habitats in the

western end of the Cantabrian Coast, in Spain. They compared the performance of a

Nearest-Neighbour and a maximum likelihood classifiers using an object-oriented and

pixel-oriented approach and object-oriented methods outperformed pixel-oriented meth-

ods. [37] also followed an object-oriented methodology, using multi-temporal satellite

imagery as part of their system for detecting shoreline changes for tideland areas and

obtain an error rate of less that 15.5%. Moreover, [111] used a hierarchical induc-

tive classification of satellite imagery to identify native grasslands in eastern Kansas.

They used discriminant analysis of ground occurrence data that was extrapolated to

distinguish high-quality from low-quality grasslands. [212] also followed an object-based

methodology, by extracting texture measures from hyperspectral imagery and using a

neural-network approach. They successfully applied it to map vegetation Everglades and

obtained a 94% accuracy. In [5] coastal and marine ecological classification standard us-

ing satellite-derived and modeled data products for pelagic habitats in the Northern Gulf

of Mexico. And [45] used aerial images to classify wetlands and deep-water habitats of

the United States.
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2.1.3.2 Limitations of Remote Sensing Data and Methods

Currently, most remote sensing methods focus on land cover or land use over habitat

classification [7, 79, 81, 177]. While land cover and land use share some similarities with

habitat classification, the classification schemes used and the applications are extremely

different. For example land cover and land use classifications collect very little to none

biodiversity or species information [179]. Consequently, they cannot be applied to habi-

tat monitoring or rare species monitoring and conservation. Research has been done on

how to translate between land cover methodologies and habitat classification [145, 179].

Those methods that focus on habitat classification tend to either focus on mapping

particular habitat species instead of using complete schemes, such as [176, 212], or to

create their own classifications depending on the site to map, such as [54, 111]. The

former leads to relative or incomplete results [4] and the latter leads to results which are

very dependant on the site and not easily comparable with other classifiers. For example,

in [54], instead of using a standardised habitat scheme, the authors developed their

own hierarchical classification with fifteen first-tier classes according to the geographical

characteristics of the particular site they were classifying. While their results were very

promising, their classification was tied to the particular site they were mapping. The

same problem arises from [124], in which the authors combined aerial photography, CASI

and HyMap data to classify forests in Australia. Once again, the authors created a new

scheme instead of using an standardised classification.

Moreover, the use of remote sensing imagery to classify habitats is frequently hampered

by the presence of complex habitats, such as mosaics with combinations of different

habitats, complex canopy structures and transitions of vegetation types [67, 187]. These

problems are very common in mountain areas, fragmented ecosystems, tropical environ-

ments or fine patterned landscapes [34, 99].

Additionally, in the specific case of Phase 1 classification, the use of remote-sensed

imagery to categorise habitats presents additional disadvantages. Table 2.5 summarises

the limitations of aerial and satellite images in comparison with manual Phase 1 habitat

classification [102].

In conclusion, several automatic habitat classification methods have been developed to

date. However, no automatic Phase 1 habitat classification system has been created.

Additionally, most of the automatic systems use remote-sensed imagery, such as satellite

or aerial imagery. Remote-sensed imagery on its own has several limitations, specially

for the case of Phase 1, which requires a large level of detail. Moreover, it can be

difficult to obtain. These are the reasons why we have created an automatic framework
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Table 2.5: Comparison of manual Phase 1 habitat survey and automatic habitat classification using aerial photography and satellite imagery [102].

Classification Methods Manual survey Aerial Photography Aerial Satellite Photography

Data Coverage Complete ground cover possi-
ble

Incomplete for some dates.
Variable quality

Complete cover but data can
be obscured by clouds

Data Collection Direct recording in the field
by humans

Relies on tone and pattern of
spectral reflectance

More limited range of tones
but greater contrast than aeri-
al photography

Equipment No sophisticated or expensive
equipment required

Needs complicated and expen-
sive equipment

Needs complicated and expen-
sive equipment

Accuracy Accuracy depends on field
surveyors

Images are accurate Images are accurate

Interpretation Interpretation problems Interpretation can be difficult Interpretation can be difficult

Habitat Coverage Yields complete set of Phase 1
habitat categories

Yields limited set of habitat
categories

Yields limited set of habitat
categories

Canopy Information Gives information on canopy
and groundlayer

Information on canopy only
(unless repeated at different
seasons)

Information on canopy only
(unless repeated at different
seasons)

Species Information Gives information on domi-
nant and other plant species

Little species information Very little species information

Conservation Evaluation Can be used for conservation
evaluation

Limited used for conservation
evaluation

Limited use for conservation
evaluation
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for habitat classification and why we will be working with ground-taken images for the

automatic classification of Phase 1 habitats in this thesis.

2.2 Computer Vision

From a Computer Vision point of view, automatic habitat classification using ground-

taken imagery presents a collection of interesting challenges with a wide array of possi-

bilities.

In this thesis, we have created a framework that follows an image-annotation approach

and combines feature extraction, random projections and multi-label random forests.

The literature for these areas of Computer Vision is vast, varied and ever-growing.

In this section we review the most relevant and state-of-the-art methods with direct

applications to our problem.

2.2.1 Feature Extraction

Features are one of the cornerstone concepts in modern Computer Vision. A feature is

defined as “a piece of information which is relevant for solving the computational task

related to a certain application” [88]. The selection of appropriate features is one of the

most challenging tasks in Computer Vision problems, since it will directly influence the

performance of the approaches chosen and it is data and problem dependent [114].

In image processing, the aim of extracting features is to collect the most compact but

descriptive information about an image. By extracting meaningful features and using

them as input in the classifiers, we do not have to work with all the pixels in an im-

age, which can be time consuming and, depending on the task we wish to accomplish,

unnecessary. Thus, extracting features is a dimensionality reduction mechanism whose

goal is to improve efficiency and reduce storage space.

Defining feature vectors remains one of the most common and convenient means of

data representation for classification and regression problems [88]. There is a large

number of methods that have been developed with the goal of extracting meaningful

and descriptive features [87] and features have been successfully applied to numerous,

diverse and popular Computer Vision problems, such as object and scene recognition

[169] and human action recognition [164]. Moreover, they have also been applied to

multiple ecological problems, such as land use\land cover [74, 100], change detection

[37] and habitat monitoring [31, 192].
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Depending on their processing primitives, we can classify feature extraction methods into

three categories: pixel-level, regional-level and image-level feature extraction. A pixel

can be defined by two properties, its colour feature, normally represented by its RGB

values, and its geometric position (x,y) within the image. Notable works on pixel-level

feature extraction include [166], which proposes extracting features from a pixel while

also taking into consideration its neighbours. The authors randomly crop rectangles from

the neighborhood of the pixel and extract features from these. This feature together

with the location of the rectangle are assembled as a two-tuple and considered to be the

feature of the pixel.

Regional-level feature extraction is one of the most popular feature-extraction approach-

es. There are a multitude of regional-level features that have been proposed in the liter-

ature. Some of the most successful include: colour histograms, colour SIFT [191], texton

histograms [195], Tamura features [175], Gray-Level Co-occurrence Matrices (GLCM)

features [84], Histogram of Oriented Gradient (HOG) [48], geometry features [178] and

Scale-Invariant Feature Transform (SIFT) [123] features. Additionally, [19] proposes a

kernel descriptor that can turn pixel attributes into regional features.

Once regional information is extracted, they are combined to create a final regional

feature. This combination may be as simple as concatenating the regional information.

However, concatenation is the least recommendable method, as it would produce features

of large dimensions and worsen “the curse of dimensionality” [14], which is one of the

biggest problems in image processing.

Instead of concatenating the information, one of the most common approaches is to

combine them using a “bag-of-words” methodology. A bag-of-words approach uses a

pre-trained codebook and assigns each feature an index, referred to as a word, in this

codebook. The final feature is then the histogram of all the words in the image [169].

Other methods include the covariance matrix representation [189, 215], graph represen-

tation [12] and fisher vector representation [142].

Moreover, recent works in feature extraction propose the creation of higher-level features,

referred to as image-level features. These features are obtained by using the outputs of

classifiers. [116] combines the results of several object-recognition classifiers as higher-

level features and uses them for image classification. [156] develop this idea further,

by using the output of many separate action detectors as higher-features, which are

used for action recognition. In another example, [75] create high-level features with the

output from a segmentation algorithm. These higher-level features are then combined

with low-level features to generate object-consistent regions.
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In our case, since we are working on automatically classifying different types of vegeta-

tion, we are specially interested in regional-level features. Particularly, we will be using

colour, texture and pattern features, such as colour histograms, the Tamura coefficients

and the GLCM matrix features. The reason for this is that we wish to mirror the sur-

veyor’s method on how to distinguish between habitats. However, we also study the

performance of other well-known regional features, such as SIFT and HoG, in order to

further study the performance of ground-taken imagery.

2.2.2 Random projections

As mentioned in Section 2.2.1, the “curse of dimensionality” is one of the main problems

in Computer Vision. The concept of “Curse of dimensionality” was first introduced by

Richard Bellman in 1961 [14]. It refers to the problems caused by increasing the number

of dimensions of a mathematical space. It is a major obstacle in high dimensional data

analysis because increasing the number of dimensions results in an exponential increase

in sparsity between samples [201]. That is, as the number of dimensions increases,

points that were close, spread further apart. This can result in inaccuracies during the

classification process. Particularly in image processing, it often refers to the increase in

the number of dimensions of the feature vectors the classifiers use.

There have been many approaches developed to remedy the issues brought by the

“curse of dimensionality”. [204] divided these methods into two categories: Function-

Approximation approaches [91], popular in the past but not so widely used in current

research, and Dimension-Reduction approaches, the most popular methodology used

currently. A traditional example of dimension-reduction method is Principal Compo-

nent Analysis (PCA) [49]. Arguably the most popular method currently used in image

processing, PCA is a statistical procedure that reduces the dimensionality of the data

by finding a low-dimensional subspace that maximises data variance.

Random Projections is another example of a dimension-reduction method. Dimension-

reduction methods, particularly Random Projections, make use of the Johnson-Lindenstrauss

lemma [30] in order to decrease the number of dimensions of the data. This lemma states

that:

Given 0 < ε < l, a set X of m points in RN , and a number n > 8ln(m)/ε2, there is a

linear map f : RN → Rn such that

(

1− ε)‖u− v‖2 ≤
∥

∥ f(u)− f(v)‖2 ≤ (1− ε)‖u+ v‖2 (2.1)

for all u, v ∈ X
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This entails that small set of points in a high-dimensional space can be embedded into

a space of much lower dimension in such a way that distances between the points are

nearly preserved. In the case of Random Projections, this dimension reduction is done

by projecting the original data onto a subspace using a random matrix, whose columns

have unit length [101]. This is commonly done by processing the scalar multiplication

between the random projection matrix and the original data. The result data is labelled

as the projection of the original data. These projections, whose dimensions will vary

depending on the sparsity of the random projection matrix chosen, are then used as the

new input for the classifiers. As can be seen, the required computation for applying

Random Projections to data is quite small, since the only operation that needs to be

executed is the scalar multiplication of the random projection matrix and the data itself.

Comparisons between both PCA and Random Projections are frequent, since, due to its

popularity, PCA is commonly used as a benchmark for dimension-reduction methods’

performance. In comparison with PCA, Random Projections are data independent and

less computationally expensive [57]. Nevertheless, according to [71], Random Projec-

tions also can be outperformed by PCA, depending on the classifier used and, more

importantly, depending on the number of dimensions of the reduced dataset. As shown

in 2.1, the number of reduced dimensions needs to be at least 8ln(m)/ε2 for the random

projections to be effective. If the number of reduced dimensions is too small, random

projections can perform erratically.

However, given their relatively simple computation, Random Projections have steadily

become more popular in the Computer Vision community and they have been used

in a variety of problems in both image and signal processing [59]. They have been

applied to hyperspectral imagery [57, 70], speech recognition [174] and face recognition

[82, 203]. Moreover, [2], similarly to our work in [182] use random projections matrices

with values -1,0,+1 and conclude that these values are specially suited for database

dimension reduction.

2.2.3 Image Annotation

In this thesis, we approach habitat classification using ground-taken imagery as an au-

tomatic image annotation problem. In this scenario, the annotations are the different

Phase 1 habitat classes. Consequently, our goal is to correctly identify which habitat

classes are present in which photographs or, in other words, which annotations belong

to which photographs.

Automatic image annotation (AIA) is an increasingly popular approach often used in

the Computer Vision community. AIA was developed as mechanism to deal with the
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exponential increase in visual data [185]. For example, Flickr surpassed 6 billion pho-

tographs in 2011, only six years after its foundation [125] and Geograph is hosting almost

4 million photographs from England, Ireland and the Isle of Man as of April 2014 [154].

Traditional image retrieval techniques proved to be lacking when dealing with such a

large number of images, specially due to the gap between content-based image retrieval

and classification and image semantics understandable by humans [213]. This gap is

often referred to in literature as the semantic gap [185].

AIA methods can be regarded as particularly well-suited methods to bridge the semantic

gap between low level features and high level semantics. In essence, AIA methods were

developed to facilitate the search and navigation of large numbers of images. In [213],

the authors propose AIA as an alternative to content-based and text-based annotation

image retrieval.

The main aim of AIA methods is to automatically learn semantic concept models, in

the form of annotations, from a large number of samples, images in our case. Then, new

unseen images are labeled using these models. For this, semantically labelled images are

collected and significant features, such as those discussed in Section 2.2.1, are extracted.

These are used in conjunction with a machine learning algorithm that, once trained, will

be used to annotate unseen samples.

AIA methods can be divided into three categories: single labelling annotations, multi-

labelling annotations and annotations which use metadata to annotate images [213]. Our

problem is inherently a multi-label problem, since the ground-taken photographs that we

have collected contain a variable number of habitats. Moreover, we have used metadata

in the decision-making process. Consequently, in this thesis, we have created a hybrid

annotation framework which mixes approaches from the second and third categories.

There are many methods that have been developed for image annotation with general

classes, also referred to as basic-level classes [209]. For example, [150] combined image

annotation with semantic information and bag-of-features to classify photographs ac-

cording to twenty-one classes such as building, grass, tree, cow, water, chair, road and

cat. [167] used semantic texton forests to annotate and classify images with a similar

classification scheme. [25] combined interactive and online learning to create a frame-

work that was able to annotate bird images. [112] also developed a method for indoor

and outdoor scene recognition based on partitioning an image into increasingly finer

sub-regions and computing their histograms.

However, what makes the problem of habitat classification different from other image

annotation problems is the nature of the classes that need to be recognised. Most

of the existing AIA research focuses on object [22, 66, 150] or scene [112] recognition
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and annotation. In those works, the classes are easily identifiable, they do not share

semantic properties and their classification is regarded as basic-level categorization (i.e.

distinguishing between a boat and a cow, a chair and a building).

However, instead of conventional and clearly separable classes, such as building, flower,

tree, dog, cow, road, body, boat, mountain, forest [150, 167], Phase 1 is a hierarchical

classification whose classes are difficult to identify and tell apart even for human survey-

ors [102]. As mentioned in Chapter 1, the aim in this case, instead of classifying trees,

grass or water, for example, is to classify which kind of trees (broad-leaved or conifer-

ous), grasses (improved, semi-improved or unimproved) or water (standing or running)

appear in the photographs. In Computer Vision, this type of problems are referred to

as fine-grained visual categorization problems (FGVC) [24]. FGVC, in contrast to the

concept of basic-level categorization presented previously, is also known as subordinate-

level categorization [209]. In FGVC problems, the aim is the accurate discrimination

between classes that share similar semantics [205].

FGVC has gained much interest in the Computer Vision field in the last few years

mainly due to its many applications and its technical challenges, since it tackles catego-

rization problems that are difficult even for humans. Examples of FGVC applications

include the categorization of leaves [108], flowers [136], dogs [120] and, more recently,

birds [15]. As can be inferred, FGVC methods and approaches are extremely fitting for

biological problems, specially those where taxonomy impose a set of mutually exclusive

subcategories [15].

Additionally, FGVC and image annotation are deeply connected. This is due to the fact

that most FGVC datasets and approaches work with different types of annotations and

related metadata in order to extract as much information as possible from the images,

which can help improve the performance of such difficult classification tasks. Some alter-

natives have been developed in order to eliminate the use of annotations or, alternatively,

visual code-words, another popular approach applied to FGVC. An example of this is

found in [210], in which the authors used a large number of random image templates

instead in order to classify the unseen test samples. However, most of the state-of-the-

art FGVC methods continue to use annotations as part of their framework due to their

flexibility and the large amount of information they can provide [15, 58, 78]. For ex-

ample CUB-200-2011, created by [199], is a dataset for birds with parts and attributes

and Leeds Butterflies, created by [200], includes segmentations and text descriptions of

butterflies.

Moreover, a methodology that has been successfully introduced in FGVC problems is

the human-in-the-loop (HITL) approach [26]. Since FGVC problems are difficult for

both human and computers, HITL methods aim to be an intermediate solution which
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combines the strengths of both and to progressively minimise the amount of human

labour [24]. HITL methodology can be easily applied to many different problems, such

as criminology [140], port design [29] and aviation [171]. However, it is particularly

suitable for FGVC problems. For example, [26] developed a HITL method for bird

classification and [151] used HITL technology for skin-lesion image recognition.

In summary, automatic image annotation is a very broad topic whose research has been

expanding and developing greatly during recent years. It has been regarded as a method-

ology whose purpose is to bridge the semantic gap often associated with content-based

image classification. Moreover, it has obtained excellent results in many classifications

problems [15, 112, 167]. In our case, and given the semantic similarities between the

classes that we aim to categorise, a FGVC image-annotation approach seems the most

appropriate option to apply.

2.2.4 Classification Methods

The term classifier belongs to Machine Learning, the discipline that studies the con-

struction and behaviour of systems that can learn from data. In Computer Vision,

classifiers are used to determine the most probable class of an unknown object. In our

approach, we will use a classifier to annotate unseen ground-taken photographs. Given

an unseen ground-taken photograph with a undetermined number of habitats present,

our classifier’s aim is to obtain a probability distribution or a histogram of all possible

habitats in our unseen sample, sorted according to their probability of occurrence. Since

we know all the possible habitats that are recorded in Phase 1, our problem is defined

as a supervised classification problem [18]. Moreover, since our photographs can contain

more than one habitat in them, we will be focusing on multi-label classifiers.

In the following sections, we will review some of the most popular classification methods

used in the literature: Support Vector Machine (SVM), k-Nearest Neighbour (k-NN)

and, finally, Random Forests. We aim to present some of the limitations that k-NN and

SVMs have for the particular problem of automatic habitat classification and discuss

how Random Forests can overcome these limitations.

2.2.4.1 Support Vector Machines

Support Vector Machine (SVM) is arguably one of the most used Machine Learning

methods in Computer Vision. It is extremely popular due to several reasons: it has

a straightforward geometric interpretation, a sound theoretical justification and, con-

trary to other methods, it is less likely to overfit. SVMs are parametric classifiers used
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for supervised learning problems. Consequently, they can be applied to classification,

regression and novelty detection problems [18].

The aim of the linear SVMs, the simplest form of SVMs, is to learn a hyperplane that can

clearly separate the training data depending on the ground-truth or their labels. This

separation is obtained by maximizing the margin between different classes. Additionally,

by using a kernel approach, SVMs can work with non-linear data.

The traditional kernel-based SVMs use only one kernel matrix. Nevertheless, depending

on the problem, this can be inadequate. While there are many types of kernel functions,

these functions have many parameters which are difficult to tune. However, there are

situations, for example if features need to be combined, in which more than one kernel

is necessary.

From this necessity, Multiple Kernel Learning (MKL) methods were developed. MKL

methods use a series of kernels and try to learn the optimal linear combination of them.

Originally proposed in [110], it has spurred many modifications, such as [139, 206, 219].

Moreover, it has been used in many Computer Vision problems [194, 197]. A compre-

hensive comparison of several MKL methods can be found in [83], in which the authors

found that there were not significant differences between these methods in terms of per-

formance accuracy. MKLs are still being questioned in the literature. This is due to the

implication that each kernel is fixed for all the samples in the training set [207], which

can be considered a restrictive constraint. However, research on non-linear combinations

of the different kernels also has been recently developed, particularly in [52, 207].

Despite their success, SVM methods, along with MKL, have several drawbacks. SVMs

are inherently designed as two-class classifiers [18]. There have been several methods

proposed to apply SVMs in multiple-label problems, such as our automatic habitat

classification problem. One of the most popular approaches is referred to in the literature

as the one-versus-the-rest approach and it was originally proposed in [193]. It consists

in constructing as many SVMs as classes has the classification problem. The kth model

is trained with the data from class k as the positive examples and the data from the

remaining classes as the negative example. However, this method can lead to inconsistent

results if an input is assigned multiple classes at the same time [18]. Additionally, this

division of the training set would be very imbalanced, since, given a class, the set with

negative examples (that is, the set with all the positive examples for all the other classes)

will generally be much larger than the set with positive examples. Moreover, it makes

the assumption that the input only belongs to one class, which, for example, would

not apply to our case, since the ground-taken photographs we will be working with can

contain between 1 and 6 different habitats. Other modifications have been introduced,

such as [113, 146, 202] but they involve a complicated training phase. This also results in
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a significant increase in the training time and, also, in more computation requirements

during testing [18].

2.2.4.2 Multi-label K-Nearest Neighbour

Another method that can be used in for classification is k-Nearest Neighbour (k-NN)[18].

Contrary to SVMs, k-NN is a non-parametric classifier. Used for classification and re-

gression, k-NN is an instance-based learning method, where all computation is postponed

until the classification, or the testing, phase. The k-NN algorithm is among the simplest

of all machine learning algorithms but it has also obtained surprisingly accurate results

[18]. The only requirement to use it is to store all the training samples and their labels

at the same time in memory. When we want to classify a test sample, the only step

that needs to be performed is to calculate the distances between the test sample and the

k closest samples in the training set. The prediction, that is, the label to be assigned

to the unseen testing sample, is the most popular label within the nearest k training

samples, with k being a natural number.

As exemplified in [214], the k-NN classifier has been considered a baseline method,

with a performance that cannot surpass that of discriminative classifiers, particularly

SVMs. However, [21] challenged this notion by proving that NN-based classifiers could

surpass SVM’s performance for image classification tasks. [13, 129, 188] investigated

and developed this idea further in their work.

In Computer Vision, k-NN has been successfully applied not only to image classification,

but to image parsing [119, 178], scene completion [93] and even image annotation [86,

126]. Moreover, it has also been applied to Phase 1 habitat classification with aerial

imagery in one of our works [180].

2.2.4.3 Limitations of Support Vector Machines and Multi-label K-Nearest

Neighbour

K-NN presents some advantages over SVMs. First, its implementation is simpler and

more straightforward. The training stage, which is complicated and time-consuming for

SVMs, is practically non-existent for k-NN methods. This is extremely helpful when

the size of the training set is large. Moreover, if the size of the training set were to

change, which is very common in image annotation problems, when the databases used

are constantly being updated, this would not affect the k-NN classifier. If the training

set were to increase in size, the only step to carry out would be to include the new

samples and if the training set were to decrease in size, we would only need to delete the
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desired training samples. However, SVMs would require a new training phase with the

updated training set. Additionally, k-NN classifiers can be used without any problems

when the number of classes is very large. On the other hand, this presents a complicated

challenge for SVMs classifiers. Moreover, k-NN methods can be easily modified to be

used as a multi-label classifier, while, as mentioned previously, the same process for

SVMs is much more complicated [18].

However, k-NN methods also present some drawbacks. First, all training samples must

be allocated in memory at the same time. If the training set or its number of dimensions

is large, this entails in large storage requirements. Nevertheless, the most obvious issue

is the time complexity of the testing phase. If the size of the training sample is n in

Rm, then the prediction time for one test sample will be O(nm). Some efficient data

structures have been created to accelerate the searching speed, for example kd-trees.

However, these are only successful with low-dimensional data [60]. On the other hand,

linear and kernel SVMs would require, respectively, a prediction time of order O(m) or

O(cm), where c indicates the number of support vectors and it is commonly much smaller

than n. In order to decrease the time complexity of k-NN methods, the Approximate

Nearest Neighbour (ANN) approaches were developed. These include methods such as

Locality-Sensitive Hashing (LSH) [141] and randomised kd-trees [133]. ANN is applied in

problems where an approximate but faster guess is good enough than the actual correct,

but also slower, prediction. The final drawback regarding k-NN methods, which also

affects ANN methods, is related to the “semantic gap” problem. That is, just because

the results retrieved are visually similar, this does not immediately guarantee the same

semantic meaning. Or in other words, two samples that share similar visual or feature-

related properties can belong to two completely different objects. This is consistent with

the unsupervised nature of the k-NN algorithm and its ability to weight dimensions.

2.2.4.4 Random Forests

In the last few years, another machine learning method that has gained popularity is

Random Forests. Random Forests, also known as Decision Forests, can be applied to

both classification and regression problems [46]. They were first introduced in 1995 in

[94], where the author applied it to handwritten digit recognition. However, it was in

[28] where they were consolidated as powerful and accurate learning models.

Random Forests have been compared to other Machine Learning techniques and they

have obtained successful results, as shown in [33]. Additionally, they have even been

applied to a large number of computer vision problems, such as image classification

[22, 127, 132], image labeling [106], action recognition [218], object detection [77] and
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image annotation [75]. Moreover, they have also been used in Ecology problems, such

as land-cover classification [81], urban trees mapping [147], habitat structure classifi-

cation [11], groundwater-dependent vegetation pattern modeling [144], ecohydrological

modeling [143] and land cover [81], genomic data analysis [37] and even age estimation

[131]. More prominently, they also have been used in the Microsoft Kinect for XBox

360 [80, 168, 198]. Consequently, they have proven to be successful classifiers fit to be

applied to a wide set of problems.

A Random Forest is composed of a set of independent decision trees. Each tree is trained

separately on a random subset of the training data and the final prediction is obtained by

combining the predictions of each of the independent decision trees. Therefore, Random

Forests are, in essence, an ensemble method [157]. Another popular example of ensemble

method is AdaBoost [72]. AdaBoost repeatedly calls a chosen weak learning algorithm,

such as decision forests, a number of times [73]. Research has shown that using an

ensemble of learners, also referred to as or weak classifiers, on unseen data can produce

greater accuracy [157]. This is known as generalization [6].

A decision tree is a hierarchical structure composed of nodes and edges. Depending

on their nature, nodes will have associated either a test function (internal nodes) or a

prediction (leaf nodes). The most important aspect of the decision trees that compose

the Random Forests is that each tree is randomly different from the other decision trees

in the Random Forest. This leads to de-correlation between the predictions and im-

proves generalization [46]. This randomness also helps with increasing the robustness of

the model with regards to noisy data. Traditionally, randomness is introduced during

training [28]. The two most widely-used methods are bagging and randomised node

optimization [28, 94]. The former is popular because it yields greater training efficien-

cy, while the latter is beneficial because it yields margin-maximization properties and

because it uses all the training data to train each tree. However, these methods are not

mutually exclusive and are often used together.

In a typical classification scenario, given a labelled training set, the aim is to learn a gen-

eral mapping which associates previously unseen test data with their correct classes [46].

In this case, a decision tree in a decision forest will commonly be constructed following

these steps: given {si}
N
i=1, a set of training samples, and {yi}

N
i=1, its corresponding labels

which belong to a classification C, the first step is to extract a set of features {Fi}
N
i=1

from the training test. The samples that reach each internal node will go to the left

child or the right child of the node depending on the results of the split function. The

main aim is for the split function to be as discriminative and informative as possible.

Traditionally, the Information Gain is used to divide the data. The Information Gain is
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calculated as shown in 7.2. The split that maximises the information gain in the final

distribution is the split chosen.

IG = H(S)−
∑

i∈{1,2}

|Si|

|S|
H(Si) (2.2)

With H(S) being the Shannon entropy, which is defined as:

H(S) = −
∑

c∈C

p(c)log(p(c)) (2.3)

As one of the most significant parameters that define a Random Forest, research on

possible split functions is vast: [22, 209] studied linear split functions, while [121] pro-

posed semi-supervised splitting functions. However, no clear all-around solution for the

problem of splitting data has been found to date. This is reasonable, since finding an

accurate and informative splitting criterion is inherently data and problem dependent

[28, 46].

As we mentioned previously, in a Random Forests, each decision tree will provide one

prediction for the unseen test samples. That is, each tree in the Random Forest will cast

a vote. The prediction given by the Random Forest as a whole is obtained by combining

the independent predictions of the separate decision trees. The simplest combination,

given N samples and a forest of size T, shown in 2.4, is the linear combination of all the

predictions in the forest.

P (c) =
1

N

∑

t=1

NP Tt(c) (2.4)

However, this voting mechanism follows the assumption that all predictions are equally

good. In other words, a linear combination reflects that all trees are equally accurate

at labelling the unseen data. This is often not correct, as some trees might be better

at classifying than others [152]. Research on voting mechanisms is not as developed as

research for other modifications of Random Forests, such as optimal feature selection

or split function generation. However, it is becoming increasingly popular. For exam-

ple, [152] weights the predictions of each tree by using internal parameters to compare

unseen samples with samples used during training. Those trees with more similar sam-

ples obtained a higher weight. [186] present a comprehensive classification of voting

mechanisms and studies their genetical impact in the classification process.
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In general, a Random Forest can be defined by a set of five different parameters [46]: the

forest size, the maximum depth of the decision trees, the amount and type of randomness,

the split function, the choice of features and the voting system.

A large portion of the research on Random Forests has focused on studying the effects

that the modification of these parameters have in terms of accuracy and generalization.

Notably, [47, 167] studied the effect of forest size in classification accuracy, while [168]

studied the relationship between overfitting and the forests’ depth. Additionally, [211]

used stratified sampling to separate the features into strongly or weakly informative

and combined them during the training phase. [63] used the proximity between leaf

nodes, via a proximity matrix, to classify unseen examples. Furthermore, [89] created a

framework for feature selection and [9] studied the characteristics of different importance

measures used for feature selection in Random Forests with the goal of identifying the

true predictor among a large number of candidate predictors.

However, these parameters are not the only elements that can be modified to improve

Random Forests. It is possible to modify how the actual trees are constructed. Modifi-

cations to the construction method include the creation of Alternating Random Forests

[160]. These forests are constructed by minimizing the losses by giving weight to the

training samples. [153] created Rotation Forests which use Principal Component Anal-

ysis in random subsets of the training data before the training phase. [131] define

Entangled Decision Forests, which are built breath-first according to a priority queue

and [105] also use a breath-first approach to include contextual information during the

training process. Finally, [16] created Dynamic Random Forests which, inspired by

boosting algorithms, continuously resample the training data.

In this thesis, we will be working with Random Forests to automatically classify Phase

1 habitats. We believe that Random Forests are the best choice of classifiers given the

supervised multi-label nature of our problem. Random Forests are a simple yet accurate

and efficient alternative to other machine learning methods, such as k-NN and SVMs.

They combine the best features of theses classifiers: accuracy and generalization (SVMs),

and multi-class classification and simple implementation (k-NN). Moreover, the inherent

hierarchical structure of the decision trees, similar to the hierarchical structure of the

classification scheme we are using, and the discriminative power of the Random Forests

can aid the decision-making process.
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2.3 Summary

In this chapter we have reviewed significant literature in the two fields we are working

in: Ecology and Computer Vision. From the Ecology perspective, we have reviewed

some of the most popular habitat classifications schemes and we have introduced the

classification scheme we will be using: Phase 1. Moreover, we have reviewed both manual

and automatic habitat classification methods and we have described their limitations

with regards to Phase 1 habitat classification. From the Computer Vision perspective,

we have reviewed literature related to the main methods that are used in our framework:

feature extraction, random projections, image annotation and supervised multi-label

classifiers and we have discussed their drawbacks when applied to habitat classification.

In the next chapter we will describe in detail the characteristics of the Phase 1 habitat

classification scheme in order to clarify some of the most important challenges of Phase

1 habitat classification.



Chapter 3

Phase 1 Habitat Classification

Habitat classification is the process of mapping an area following a determined habi-

tat classification scheme. It is an essential ecological activity which provides crucial

information about the wildlife of a site and its ecological properties. Moreover, it has

many ecological applications such as landscape ecology, habitat monitoring and, more

importantly, rare species conservation [102].

The aim of this chapter is to describe in detail why Phase 1 was the classification

chosen, how it is organised and what are some of its main merits and limitations. As

we have shown in the previous chapter, while many automatic approaches to habitat

classification have been developed, no automatic approach has been proposed for the

Phase 1 habitat classification scheme. This is mainly due to the level of detail necessary

to distinguish between Phase 1 habitats. This level of detail cannot be found in remote-

sensed imagery. In this thesis, we study the use of ground-taken photographs as the

main source of information for Phase 1 classification.

This chapter is divided into four sections. Section 3.1 describes Phase 1 classification,

previously introduced in Chapter 2, with more detail. Section 3.2 describes the merits

and limitations of Phase 1 as a classification scheme. Section 3.3 describes how Phase 1

habitats can be divided from a Computer Vision approach. Finally, remarks and a brief

summary are presented in Section 3.4.

3.1 Phase 1 Habitat Classification

The Phase 1 scheme was standardised by the Joint Nature Conservation Committee

(JNCC) [102]. The first draft was produced in 1986 and the current version, which

36
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was produced in 2010 and the version we will be using, is a revision of the 1986 draft

[102]. It is specially designed for rapid wildlife mapping over rural and coastal areas

in Great Britain. Therefore, it only collects information about the vegetation of a site.

The information provided by the Phase 1 survey can be used to assist effective nature

conservation, for example by highlighting areas in need of special protection, and by

providing a clearly defined baseline for monitoring change. The information can also

assist local authorities and planners in forming policy and strategy for the rural and

coastal areas, and enable them to make well informed and speedy planning decisions.

Importantly, it provides planning authorities with statistics that can be used to sup-

port the case for the conservation of threatened habitats, especially in work connected

with planning appeals. All the guidelines, standards and definitions necessary to train

ecologists are collected in [102], published by the JNCC.

In this thesis, we are using Phase 1 Habitat Classification for four main reasons.

• Phase 1 is one of the most widely-used schemes by ecologists all over the United

Kingdom. Examples include [27, 32, 42, 161].

• Even though Phase 1 is extremely popular in the United Kingdom, there is no

previous work on how to automate its classification process. This research gap

presents an interesting opportunity to study how Computer Vision and Machine

Learning methods can help to make the process easier and, ultimately, more ac-

curate.

• It is the scheme used by The Ordnance Survey, who provided part of the ground-

taken imagery that we are using and with whom we worked closely.

• It collects information about the types of habitats that can be found in particular in

rural and coastal England, including boundaries. Contrary to other classification

schemes, such as EUNIS, which included European habitats not present in the

UK, all Phase 1 classes occur within Great Britain and Ireland.

As a classification, Phase 1 follows a strict hierarchical structure. Table 3.1 shows the

first-level and second-level habitats of the classification.

Phase 1 is specially designed for rural and coastal areas of Great Britain, although

it can also be applied to urban areas. The classification is composed of ten first-tier

categories, shown in the previous chapter in Table 2.4. It has four levels and a total of

150 habitat types. Each habitat type is uniquely identified by an alphanumeric code and

a colour or a pattern. The alphanumeric code also follows a hierarchical nomenclature:

the first tier is identified by letters, from A to J, and the rest of the levels are identified
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Table 3.1: Phase 1 Habitat Classification Classes. Two levels shown.

Habitat Class

Code First Tier Second Tier

A Woodland and Scrub
Woodland
Scrub

B Grassland and Marsh

Parkland Scattered Trees
Neutral Grassland
Calcareous Grassland
Improved Grassland
Poor Semi-Improved Grassland
Recently-Felled Woodland
Acid Grassland

C Tall Herb and Fern
Bracken
Ledges
Other

D Heathland

Dry Dwarf Shrub Heath
Dry Dwarf Shrub Heath
Lichen/bryophte heath
Montane Heath/ Dwarf Herb
Dry Heath/Acid Grassland Mosaic
Wet Heath/Acid Grassland Mosaic

E Mire

Bog
Flush and Spring
Fen
Bare Peat

F Swamp and Marginal Inundation
Swamp
Marginal and Inundation

G Open Water
Standing Water
Runing Water

H Coastal
Intertidal
Saltmarsh

I Rock Exposure and Waste
Natural
Artifical

J Miscellaneous
Cultivated/Disturbed Land
Boundaries



Chapter 3. Phase 1 Habitat Classification 39

by numbers, which are appended to their corresponding letter. For example, Neutral

Grassland Unimproved is also identified by the colour orange and by the code B.2.1. In

this case, the B indicates that the habitat belongs to the Grassland and Marsh category,

the 2 indicates that it belongs to the Neutral Grasslands and the 1 indicates that it is

Unimproved. [102] contains the full classification, with the alphanumeric codes.

3.2 Merits and Limitations of Phase 1

It is important to notice that election of Phase 1 as the classification scheme to be used

in our framework entails several benefits and challenges. Phase 1 is, by nature, a very

detailed classification scheme. Surveyors not only record the Phase 1 habitat classes

that are present in a site, but are also encouraged to make target notes. These target

notes specify interesting or out-of-ordinary information, such as particular vegetation

species, percentages of appearance of different plants in complex habitats or relevant

comments about the distribution and relationships between different habitats, etc. As

can be inferred, this type of information provides a great deal of relevant information

which can help end users gain a much deeper understanding of the ecological properties

of a site. However, target notes are difficult to incorporate into a Machine Learning

framework, such as ours, since these notes generally do not follow an specific layout

nor are they present in all surveys. Therefore, there needs to be a trade off between

a fast and efficient automatic classification and the amount of information that this

classification will provide.

Furthermore, falling in line with the FGVC nature of the problem, some of the habitats

recorded might be difficult to classify even for trained surveyors. Distinguishing between

grasses (class B), particularly, can be extremely challenging, since data regarding the

geological properties of the ground are needed, i.e. acid, neutral or calcareous ground

results in acid (B.1), neutral (B.2) or calcareous (B.3) grass. These different grasses, with

extremely different ecological properties, may look exactly the same to the untrained

or unexperienced eye. To avoid this situation, surveyors might research information

about the site they have to classify in advance. They will incorporate that knowledge,

and their previous experience, to the classification process. Incorporating that previous

experience and external information presents a challenge. In this thesis, we propose two

modifications specifically aimed to include this type of contextual information albeit in

another manner. These modifications are medium-level features and a location-based

voting system. The medium-level features, described in Chapter 8 will incorporate

semantic information about what humans perceive in the photos while the assignation
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of weight to the predictions of the classifier according to their GPS location, shown in

Chapter 9, will prioritise previously-collected information from the same area.

Additionally, Phase 1 is also very versatile and can be adjusted to be used depending

on the conditions of the survey. Given the requirements or the aims of the survey, the

needs of the end user and the surveyor’s experience, it may not be necessary to use all

four levels in the classifications process, and using two or three levels might be enough.

3.3 Phase 1 and Computer Vision

For the purposes of our research, we have divided the habitats recorded with Phase 1 in

two ways depending on different characteristics. This is very useful to better understand

the results obtained by our framework in Chapter 7, Chapter 8 and Chapter 9.

First, we can divide habitats into natural or artificial habitats. Natural habitats are

habitats which are not composed of artificial or treated materials. They might be main-

tained by humans, but they were created naturally. Artificial habitats have been created

by humans. Following this division, habitats such as Amenities (J.1.2 or canary yellow)

or fences are artificial habitats, while habitats such as Sand Dune (H.1.6), Grassland

and Marsh (B) and Standing Water (G.1) would be considered natural.

Another more helpful division separates habitats depending on their complexity. In

this case, we regard habitats as either simple or complex. We define simple habitats as

those habitats composed by vegetation belonging to one and only one of the ten first-tier

classes. There may be more than one type of vegetation in these habitats, but all of them

must belong to the same first-tier category. Moreover, there are no requirements about

the layout that these habitats must have to follow or impositions about how they have to

be used. On the other hand, complex habitats are composed by habitats from different

first-tier classes or habitats which have to follow a particular layout. For example,

Mixed Woodland (A.1.3) is a habitat composed by Coniferous (A.1.2) and Broad-leaved

(A.1.1) woodland. Since both types of vegetation belong to the same class, A.1.3 would

be defined as a simple habitat. However, a Dry Heath/Acid Grassland Mosaic (D.5),

composed of Heath (class C) and Grassland (class B), would be considered a complex

habitat. Hedges (J.2.3), in particular, present an interesting and challenging case. While

they are composed by Woodland (A.1) and Scrub (A.2) habitats, both habitats from

class A, Hedges are required to follow a very specific layout: they have to be arranged

in a single row and they have to be used to separate two sites or two other habitats.

Consequently, Hedges would be considered complex habitats. This last division will be

extremely useful when studying the performance of our framework, since automatically
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classifying complex habitats, instead of classifying each simple habitat separately, is easy

for human surveyors but can be quite challenging for a computer. It is important to

notice that these surveyors may incorrectly classify the habitats, but they can generally

rapidly classify which habitats are composed of several types of vegetation, which is a

arduous task for computers. How our automatic system classifies simple habitats versus

complex habitats will offer insight into its accuracy and the usefulness of ground-taken

photographs.

3.4 Concluding Remarks

In this chapter we have presented a detailed description of Phase 1 Habitat Classification,

the classification scheme we will be working with in this thesis. Moreover, we have given

four main reasons why the Phase 1 scheme was chosen to be used in our framework and

we have discussed its merits and limitations as a classification. As a final note, from now

on, in this thesis we will use the term habitat classification to refer to Phase 1 habitat

classification specifically.

In the next chapter we will present a brief study on the limitations that remote-sensed

imagery, particularly aerial photographs, when applied to the automatic classification

Phase 1 habitats in more detail.



Chapter 4

Automatic Habitat Classification

Using Aerial Imagery

In Chapter 2 we discussed the limitations of both remote sensed data and content-based

image retrieval and classification approaches when automatically classifying habitats.

The aim of this chapter is to study and discuss these limitations in the particular case of

content-based automatic habitat classification using aerial photography. Moreover, we

present specific results that help clarify the reason behind these limitations. For this,

we will study the performance of aerial imagery and local invariant features when classi-

fying and retrieving four of the habitats that appear more frequently in rural England:

Woodland, Scrub, Grassland and Arable land.

Moreover, in order to obtain more information about the use of aerial imagery for Phase

1 classification, we have approached automatic habitat classification under two different

scenarios: a classification scenario and a retrieval scenario. In the classification scenario,

the objective is to correctly classify the query image using photos from a database. In

the retrieval scenario, the objective is to retrieve the photographs from the same habitat

as the query image. We evaluate the performance of aerial imagery in these two scenarios

by calculating the recall of the system.

This chapter expands the work published by the author of this thesis in [180] and it is

divided in five sections. Section 4.1 describes the types of data we have worked with

and shows several visual examples. Section 4.2 describes the methodology followed for

the automatic classification of Phase 1 habitats. As mentioned previously, we have

approached this as both a retrieval and as a classification problem. Moreover, we have

used a k-NN methodology in both scenarios. Section 4.3 shows the testing scenarios for

42
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both the classification and the retrieval approaches. Finally, Section 4.4 shows the recall

results for both scenarios and Section 4.5 presents a discussion on these results.

4.1 Data

We have used five different types of data. Examples of each are shown in Figure 4.1.

These data include:

• Corel Dataset: We used 20,546 images from the Corel dataset to generate the

codebook during training [50]. These photographs are extremely diverse and con-

tain objects, scenery, patterns, people, animals, paintings and food. This variety

guaranteed that robust codebook would be built. All of them are 256x384 pixels.

Moreover, there are black and white and colour images.

• OS Master Map - Topography Layer: Master Map is a database that collects

information about every fixed feature in Great Britain larger than a few metres

[173]. It is one continuous digital map. The topography layer, in particular,

represents topography at a scale of 1:1250. Moreover, it is subdivided into a

number of themes: land area classifications’ buildings, roads, tracks and paths, rail,

water, terrain and height, heritage and antiquities, structures, and administrative

boundaries. It is organised by polygons which represent the area on the ground

that the feature covers, in National Grid coordinates

• OS Master Map - Imagery Layer: An aerial photograph composed by a variable

number of plots with different lighting conditions [173]. These raster images are

usually large in size and, consequently, difficult to manipulate. Therefore, using

the whole image during testing would be time consuming and would not yield

accurate results, since all the plots with the different habitats would be combined.

• Query set: Instead of using the whole raster image in the testing phase and then

using a spatial extension in the retrieval process [208], we divided the raster image

using the topography layer from OS MasterMap [173]. This process is referred

to as “clipping” the raster images. The query set is composed by all the images

obtained from clipping the imagery layer with the topography layer. The Phase 1

ground-truth associated with this data was classified by an expert.

• Test set: This set is a ground-truth catalogue of the Phase 1 habitats we are aiming

to retrieve and classify. It was classified by an expert in Phase 1 Habitat Survey

[102] and collected and organised by the author of this thesis. It is composed

of 1072 images and it includes the following habitats: arable without crops (231
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(a) Corel Database

(b) Master Map (c) Raster Image

(d) Query Set (e) Test Set

Figure 4.1: Data Used In Our Content-Retrieval Approach. We use these four types
of data in our content-retrieval system.

images), arable with crops (115), grassland (285), scrub (80) and woodland (361).

All the images have the same dimensions, 456x456 pixels and, as shown in Figure

4.1 the lighting conditions were purposely chosen to be very diverse.
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4.2 Methodology

The methodology that we have used to study the performance of aerial imagery is

based on the famous work of [169], which used a bag-of-visual-words approach. In

[169], visual words were extracted to describe video frames and to detect and retrieve

objects under varying conditions. Moreover, it was also an extension on our past work,

presented in [181], in which we followed a similar approach to classify and retrieve

historical photographs from the same landmarks taken in different times.

As discussed in Chapter 2, the use of visual words is an extremely useful methodology

for image classification which helped alleviate the problem of “the curse of the dimen-

sionality”. They are frequently used because they enable users to describe images using

only a compact numerical vector. It does not matter how large or small these images

are, they all are described by these numerical vectors, whose size is determined by the

number of visual words users choose. Consequently, the complicated task of comparing

two or more images is reduced to calculating the distances between their respective fre-

quency vectors. To obtain these frequency vectors, a codebook, along with the visual

words of each image are needed.

In relation to [169], we introduced three improvements aimed to increase efficiency and

decrease the effect of high-dimensionality feature vectors. These improvements are:

1. Not extracting Maximally Stable (MS) regions: In [169], Sivic and Zisserman

extract SIFT descriptors only from the MS regions within the images. In our

case, we do not use MS regions. As a result, more SIFT descriptors are extracted

from the images. This larger number of features is then used when creating the

codebook, which makes it more detailed and robust.

2. Reduced number of visual words: Sivic and Zisserman used a 16,000-visual-word

codebook [169]. In our case, we were able to obtain accurate results only using

100 visual words in our codebook. This makes the training process much faster

and more efficient.

3. Frequency Sensitive Competitive Learning (FSCL): Instead of using traditional

k-means, we use FSCL [148] when creating the codebook. Consequently, we avoid

choosing local minima as the centroids.

Figure 4.2 shows the complete overview of the system. As can be seen, it can be divided

into three phases: (a) preprocessing, (b) training and (c) testing. The training and

preprocessing phase can be carried out off-line. Moreover, the training only needs to
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be done once. Preprocessing, however, may have to be done several times if new raster

data, or new locations, are introduced. Even though we are approaching automatic

habitat classification from two different perspectives, retrieval and classification, the

methodology followed is the same in both cases. The main difference appears during

the testing phase, in which the goals are different, as shown in Section 4.2.1 and Section

4.2.2. These phases can be described as:

• Preprocessing: This first phase can be carried out concurrently with the training

phase. The main aim of this phase is to create the query images. Therefore, the

goal is to prepare the testing samples for the retrieval and classification process.

During this phase, the Imagery Layer from the testing site is clipped with the

Topography Layer, which contains a polygon for each different feature, or habitat,

present in the raster image. By the end of this phase, the query set is completed.

• Training: in this case, since we are using a k-NN approach, the training phase

is quite simple and straightforward. The main aim of the training phase is to

extract relevant features and create a codebook. Given the varied nature of the

aerial photography, we chose to extract Scale-Invariant-Feature-Transform (SIFT)

descriptors [196]. These descriptors are suitable candidates to describe images be-

cause they detect lighting-, perspective-, orientation - and scale-invariant regions.

After the features are extracted, a codebook is produced.

A codebook is a glossary of the most descriptive visual words, called in this case

code words. While [169] used a 16,000-code-word codebook, we chose a much

smaller number in order to obtain a balance between resources needed and perfor-

mance accuracy. Therefore, in our case, a 100-code-word codebook was calculated.

For this, k-means clustering was applied to the Corel Database [50]. We chose the

Corel Database for two main reasons:

1. It is extremely varied. These photographs include scenery, patterns, people

and objects. Moreover, there are black and white and colour photograph-

s. Figure 4.1 shows a sample of the types of images used to generate the

codebook. This diversity implies that the resulting code words will be very

robust, descriptive and significant.

2. It is completely independent of the testing images. Consequently, the same

codebook could be used with different testing sets. It could even be used with

other types of imagery, such as satellite and ground-taken photographs.

Finally, instead of using the histogram of the images as the feature vectors, we

use its inverse frequency vector. The inverse frequency vector describes each aerial
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image and it is generated by measuring the frequency of appearance of the code

words in relation to its own visual words [169]. By using the inverse frequency,

visual words that appear less, and therefore are more descriptive of the different

habitats, will have more weight when describing the images.

• Testing: The final phase is testing of the images. This phase is different depending

on whether we are aiming to retrieve or classify the habitat images. For retriev-

ing, the query image is known during testing and the aim is to retrieve as many

instances of the same habitat from the test set as possible. For classifying, the aim

is to make a prediction about the unknown test image, using a k-NN methodology.

4.2.1 Retrieval

In this case, as shown in Figure 4.3, the habitat class of the query image is known

during testing. The objective is to retrieve all the photos from the database (query set)

that belong to the same category as the query image. This is done by calculating the

Euclidean distance between the frequency vectors that describe the query image and the

images in the test set. Once the distances are calculated, these are indexed from closest

to further away.

4.2.2 Classification

Following a classification approach, as shown in Figure 4.4, the habitat class of the

testing (query) image is unknown. Consequently, the objective is to make a prediction

about its class by using its closest images in the test set. k-NN is used to decide the

class of the query image by averaging the k first results [44].

4.3 Experiments

To test the two scenarios, imagery from two different locations was classified by an expert

and used in our system. These locations are referred to as the query area and the test

area. As their name indicates, the query area is used to generate the query set and the

test area is used to generate the test set. Both areas belong to the Hampshire region in

the United Kingdom. Figure 4.5 shows the two different areas on a map. Additionally,

Table 4.1 shows the number of images corresponding to the four habitats retrieved and

classified in both sites.
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(a) Preprocessing

(b) Training

(c) Testing

Figure 4.2: Automatic Habitat Classification and Retrieval Using Aerial Imagery.
Overview of the whole system.
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Figure 4.3: Retrieval Using Aerial Imagery. As shown, the class of the query image
is known. The objective is to retrieve all instances of the same habitat in the test set.

Figure 4.4: Classification Using Aerial Imagery. As shown, the class of the query
image is unknown. The objective is to predict which habitat is present in the image.

Figure 4.5: Training and Query Areas. Both areas are in the Hampshire county, in
the UK.
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Table 4.1: Training and Testing Set. Number of images of each habitat extracted
from the query and the test area.

Habitat Query Area Test Area

Arable 68 346
Grassland 411 285

Scrub 12 80
Woodland 259 361

4.4 Results

There are diverse metrics that have been used to measure the performance of Computer

Vision problems. In our case, we have used the recall metrics to assess the accuracy of

the system [216].

Recall, also called sensitivity in the literature, is defined as the fraction of relevant

instances that are retrieved. Following [216], the are calculated as follows: let Nh be the

number of the images in the test set whose habitats are labeled by an expert, and Nc

the number of images whose habitats our system correctly suggests. Recall is defined as

shown in Equation 4.1:

recall(w) = Nc/Nh (4.1)

It is important to notice that this measure is often paired with the more strict metric

precision. However, in our case, since we only aimed to get an understanding of the

behaviour of aerial imagery and the effects of k-NN and SIFT features, we decided to

use recall to evaluate the system.

4.4.1 Retrieval

The retrieval accuracy of the approach, shown in Figure 4.6, was measured by calculating

its recall. An average of the number of correct answer retrieved was calculated by varying

the number of retrieved images from one to the number of images of that habitat class

in the test set. Figure 4.6 shows the results obtained.

Results show that as the number of results retrieved increases, the proportion of correctly

retrieved photos decreases, which is consistent with the approach followed. Moreover,

recall results concerning grassland and scrub are significantly low. This is mainly due

to the fact that scrub and grassland habitats can have similar intensity properties and,

consequently, the visual words extracted from the images can be similar. Therefore,

using aerial imagery to distinguish between them can be a difficult task. This is not the

only identification problem that aerial imagery entails. Figure 4.7 shows four different
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(a) Grassland (b) Arable

(c) Scrub (d) Woodland

Figure 4.6: Recall for the retrieval of habitats Grassland, Arable, Scrub and Wood-
land.

cases in which distinguishing between habitats, even manually, is difficult. In each row,

two images from the test set are shown. Even though the images belong to different

habitat classes, their similar intensity and visual properties make their identification

problematic, even for humans.

On the other hand, woodland intensity characteristics are very distinguishable from the

other habitat classes. Consequently, its recall ability is high, over 65%, in all cases.

Additionally, we present five different sample results, shown in Figure 4.8, Figure 4.9,

Figure 4.10, Figure 4.11 and Figure 4.12. In all cases we present the query image, which

belongs to the query set, and the first five results obtained, which in turn belong to the

test set.

As can be seen in Figure 4.8, the fact that our retrieval system only takes into consider-

ation intensity level and not colour features to create the codebook makes possible the

retrieval of arable land without crops when the query image is arable land with crop-

s. Figure 4.9 is a serves to illustrate one of the limitations of aerial imagery discussed

previously and shown in Figure 4.7. Similarities in intensity levels and visual proper-

ties make the distinction between grassland and scrub habitats a difficult task. Some

of those limitations also affect the results shown in Figure 4.11 and in Figure 4.10, in

which four out of the first five results are accurate. Finally, Figure 4.12 shows accurate

results for Woodland retrieval, a direct consequence of the noticeably different visual
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(a) Grassland (b) Scrub

(c) Arable (d) Grassland

(e) Arable (f) Scrub

(g) Arable (h) Grassland

Figure 4.7: Aerial Imagery Limitations. Habitats of each row have similar properties,
which makes their classification difficult even for humans.

characteristics of woodland habitat samples in relation with the samples from the other

habitats.

4.4.2 Classification

The classification accuracy of the method, shown in Table 4.2, was measured by applying

k-NN and varying k, the number of neighbours taken into account when classifying the

query image.

As can be seen, as k increases, the number of correctly classified images decreases. This

is particularly noticeable in grassland habitats where the classification accuracy drops
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Table 4.2: Habitat classification using k-NN. Percentage of correctly classified images as k increases

Habitats
Values of k

1 3 5 7 9 11 13 15 17 19 21 23 25

Arable 10.98% 12.72% 11.56% 11.56% 10.12% 10.12% 10.40% 8.96% 8.67% 8.09% 8.67% 8.38% 8.09%
Grassland 57.19% 42.81% 8.07% 5.61% 5.61% 5.26% 5.96% 5.96% 6.32% 5.26% 5.26% 4.91% 5.26%

Scrub 5.00% 3.75% 6.25% 3.75% 3.75% 5.00% 5.00% 2.50% 2.50% 2.50% 3.75% 2.50% 3.75%
Woodland 18.84% 34.07% 38.78% 43.49% 45.43% 46.81% 46.26% 47.37% 47.65% 49.03% 50.42% 50.42% 50.69%
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(a) Query: Arable

(b) Arable (c) Arable (d) Arable

(e) Arable (f) Arable

Figure 4.8: Retrieval Visual Example. The first five results retrieved by our frame-
work are correct.

from 42.81% (122 correctly classified images) with k = 3 to 8.07% (23 correctly classified

images) with k = 5. This is a consequence of intensity similarities between different

habitats, particularly scrub and grassland, as previously discussed in Section 4.4.1. On

the other hand, and in conjunction with the results obtained in the retrieval scenario,

results related to woodland habitats, whose characteristics are more distinguishable,

increase as k increases, achieving a 50.42% of correctly classified photos when looking

at the first 25 results.

4.5 Discussion

From the results shown in Section 4.4, it can be appreciated that aerial imagery and

content-based image retrieval approaches based on low-level visual features, such as

visual words, can be applied to habitat classification. However, they have limitations
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(a) Query: Grass-
land

(b) Grassland (c) Scrub (d) Scrub

(e) Woodland (f) Woodland

Figure 4.9: Retrieval Visual Example. Our system is unable to retrieve more than
one correct result.

for both the retrieval and classification of Phase 1 habitats. The visual similarities

between aerial images that represent different habitats, particularly grassland and scrub,

as shown in Figure 4.7, present a problem when using remote-sensed data. Moreover, the

limitations can be caused by similar visual properties are exacerbated by the fact that

this content-retrieval framework only extracts low-level visual features. Therefore there

is a large amount of information that is not used in the system, particularly semantic

information, which can be crucial to distinguish between habitats.

In essence, the system presented in this chapter offers a brief study on aerial imagery,

local low-level features when applied to habitat classification and it can be seen as a

starting point. Moreover, it can also be used to study traditional classification and re-

trieval methods, such as k-NN based approaches, and its limitations when automatically

classifying habitats. As discussed in Chapter 2, NN-based methods, while useful for

some classification tasks, have multiple limitations when applied to Fine-Grained Visual

Categorization problems.

Particularly, if the aim is to extend k-NN to manage and work with large databases, as

is our case, k-NN methods present three main technical challenges. NN-based methods
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(a) Query: Grass-
land

(b) Grassland (c) Grassland (d) Grassland

(e) Grassland (f) Scrub

Figure 4.10: Retrieval Visual Example. In this case, the system correctly retrieves
four of the five first results.

require all training samples to be stored and available at the same during testing. Con-

sequently, the first challenge is the design of efficient data structures that enable the

storage of thousands, or even millions, of training samples. The second challenge comes

from the necessity of retrieving the closest k neighbours during testing. As the value of

k increases, this retrieval process will take more time. Finally, k-NN methods, specially

when used only with low-level visual features, can aggravate the “semantic gap” prob-

lem [90]. This challenge comes from the fact that two objects from completely different

classes can have similar visual properties and, therefore, be considered neighbours by

NN-based methods’ standards. On the other hand, random-forest based methods like

the one we have developed in this thesis, do not present any of these issues.

4.6 Concluding Remarks

In this chapter, we have studied the use of remote sensing data, in particular aerial

imagery, and content-based image retrieval and classification for the automatic classifi-

cation of four Phase 1 habitats: Woodland, Grassland, Arable land and Scrub. Recall
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(a) Query: Scrub

(b) Scrub (c) Woodland (d) Scrub

(e) Scrub (f) Scrub

Figure 4.11: Retrieval Visual Example. As shown, our system mistakes Woodland
for Scrub in the second result.

results show that aerial imagery is insufficient to classify Phase 1 habitats, particularly

in the case of distinguishing between Grassland and Scrub habitats.

In the next chapter, we will present a novel alternative framework to classify habitats

based on automatic image annotation, feature extraction and ground-taken imagery.

This will be the first main contribution of the thesis.
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(a) Query: Wood-
land

(b) Woodland (c) Woodland (d) Woodland

(e) Woodland (f) Woodland

Figure 4.12: Retrieval Visual Example. All results retrieved by our framework are
correct.



Chapter 5

Automatic Image-Annotation

Framework

5.1 Introduction

As shown in Chapter 4, remote-sensed data and content-based retrieval methodolo-

gies present some limitations when applied to automatic habitat classification. In this

thesis, we present an alternative to this methodology by approaching automatic habitat

classification as an image annotation problem. Moreover, instead of using remote-sensed

imagery, which lacks the level of detail necessary to distinguish between some Phase 1

wildlife species, we use geo-referenced ground-taken imagery as the main source of data.

The aim of this chapter is to introduce the first contribution of this thesis: our auto-

matic image-annotation framework for the classification of habitats using ground-taken

photographs. This chapter is structured as follows: Section 5.3 describes in more detail

how automatic image annotation works and presents an overview of the whole automatic

image-annotation framework. Section 5.4 describes briefly the components of our frame-

work. These components will be discussed and described in more detail in the following

chapters. Finally, Section 5.5 presents a summary of the chapter and some concluding

remarks.

5.2 Image Annotation: Methodology and Challenges

As previously discussed in Chapter 2, Automatic Image Annotation (AIA) is the pro-

cess of automatically assigning metadata, such as keywords or labels, to a digital image.

59
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Also referred to as Automatic Image Tagging [10] or Linguistic Indexing [115], AIA ap-

proaches have been gaining popularity in recent years due to the exponential increase

in size that visual databases have experienced. A clear example of this can be found in

Flickr, the image hosting website, which currently has over 6 billion photographs and

over 1.3 million daily uploads of annotated public photos [125]. As can be inferred,

searching databases of this size in an efficient and accurate manner is an extremely diffi-

cult task. AIA methods have been used traditionally as image-retrieval tools to organise

and search images from a visual database using either visual features or, more efficient-

ly, keywords [217]. An example of annotation-aided image retrieval using keywords is

shown in Figure 5.1. Figure 5.1 shows an screen capture of how the database Geograph

[154], which has almost 4 million photographs, can be efficiently browsed or searched

using the annotations that users have created along with the photographs they have

uploaded.

Figure 5.1: Geograph Search-By-Keyword Functionality. Photographs in the Geo-
graph database can be searched using a combination of keywords.

AIA methods have obtained very successful results in retrieval tasks. However, AIA can

also be applied to other Computer Vision problems. Particularly, it has been applied

with much success to image classification [15, 108, 120]. In this case, AIA is regarded as

a multi-class image classification problem in which the number of classes and the number

of samples are relatively large [136]. In this thesis we follow this idea and we consider

AIA a multi-class image classification problem in which the classes, or annotations,

correspond to the habitat classes in the Phase 1 classification scheme.

AIA methodology applied to image classification follows a similar structure as other

Computer Vision approaches, such as face or object recognition [203] or natural scene

recognition [112]. An overview of this process is shown in Figure 5.2. First, an image
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database is chosen or, as is our case, created. This database may be fully [183] or par-

tially [216] annotated. These annotations serve as the ground-truth in the classification

process. Once the database is chosen, image analysis is carried out on the images and

feature vectors are extracted. Then, a machine learning technique is used to train a

classifier. In our case, since we know all the categories present or possible annotations,

our classifier is a supervised classifier. The chosen machine learning classifier has two

inputs: the features extracted in the previous step and the annotations in the database

that serve as the ground-truth. In essence, the main goal is to train a classifier that,

using the annotations and visual information in our database, will automatically and

correctly annotate new unseen images. Consequently, these approaches can be regarded

as methods that learn the correlations between certain image features and certain words

or annotations [104].

Figure 5.2: Overview of AIA as Image Classification. The common steps followed to
be able to automatically annotate and classify images are shown.

From a Computer Vision perspective, AIA presents a series of interesting challenges.

Notably, acquiring the appropriate ground-truth can be difficult and, most of all, time

consuming. To be used in conjunction with AIA methods, visual databases are required

to store not only pertinent images but also their corresponding annotation information.

Therefore, space needs to be allocated to store the additional metadata contained in the

annotations. Moreover, depending on the size of the database, the number of classes,

the number of annotators and the annotation process of the ground-truth, the collection

and organization of the ground-truth can be time consuming. However, in contrast to

manually classifying images, or habitats in our case, it will only be needed to be done

once before training the classifier, not every time a survey of a site is needed.

Nevertheless, the most interesting challenges involved in AIA are related to the vari-

able nature of annotations and the dataset that is used. The characteristics of these
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annotations will determine not only the type of problem to solve, but also its nature,

i.e. supervised or unsupervised, and even the type of classifier that can be used, i.e.

single-label or multi-label. It is important to notice that the annotation process can

vary extensively depending on the task, the type of classification chosen and the manner

in which the database was collected. For example, as commented previously, the anno-

tations might have been added by one person or multiple people. If only one person is

responsible for annotating all the images in the dataset, completing the task can take

a significant amount of time. Nevertheless, the classification will be more consistent,

since only one point of view will be reflected. On the other hand, employing several

people, or even using crowd-sourcing methods, like websites such as Geograph [154] do,

dramatically decreases the time needed for the manual annotation process. However,

the larger the group of people responsible for annotating the images and the larger the

dataset, the more difficult it will be to assess the quality of the annotations present in

the database and consequently, the accuracy of the ground-truth. In our case, in order

to have a more consistent classification, we have employed only one person, the author

of this thesis, in the ground-truth annotating process for one of the databases, Habitat

1K. For the other database, Habitat 3K, we have used a crowd-sourcing mechanism,

which was then refined by the author of this thesis.

Additionally, the degree of completeness of the annotations will determine whether or

not the classification of images from the database is a supervised, in which case all data

will be completely annotated, or a semi-supervised problem, in which case some of the

data might be unlabelled [18]. An example of the first case is our dataset Habitat 3K

[182], which is completely annotated with the pre-determined vocabulary given by the

150 Phase 1 habitat classes. [136] also follows this type of supervised approach, with

either 17 or 102 flower classes taken into consideration in the classification process. An

example of the second case is presented when trying to classify images from the dataset

collected with the popular tool LabelMe[155]. LabelMe allows free annotations and,

as a consequence, the database can never be considered completely annotated. Free

annotations make the classification process a particularly challenging task, since objects

of the same category can be annotated with different labels, such as synonyms or plural

and singular labels. An example of this is shown in Figure 5.1, in which it can be seen

that the tags “deciduous tree” (singular) and “deciduous trees” (plural) are both present

when annotating photographs in Geograph [154]. While this will not prove a problem

for humans, who are capable of recognizing that, for example, “automobile” and “car”

represent the same concept, as do “cat” and “cats”, training a machine to learn this can

be difficult.

Furthermore, the images in the dataset may have a fixed number of annotations or a

variable number of annotations. Following the examples presented above, the dataset
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collected by [136] belongs to the first case, since all the photographs contain one and only

one annotation regarding the type of flower present in the photograph. On the other

hand, our dataset Habitat 3K [183], as well as the LabelMe dataset [155], the Geograph

dataset [154] and the dataset used for the popular Pascal Challenge [65], belong to the

second category. The latter case is a much more challenging classification task, since it is

impossible to know during testing how many results or predictions need to be taken into

account before presenting the results. Solutions for this include choosing a fixed number,

for example the average of the annotations [182], or even establishing a threshold on the

probabilities of the predictions, so that the only predictions that are returned are the

predictions whose probabilities of occurrence is larger than the threshold.

Moreover, the number of annotations per image will also determine if the classifier needed

will be a single-label classifier, such as traditional Support Vector Machines (SVMs), or

a multi-label classifier, such as the Random Projection Forest classifier presented in this

thesis. Whether the problem is a single-label or a multi-label task will directly inform

the classifier choice in the AIA approach, since, as it was discussed in Chapter 2, there

are classifiers which are difficult to expand to include multiple labels, for example SVMs,

and classifiers that are easily transformed into multi-label classifiers, such as NN-based

methods and Random Forests [18].

Finally, annotations can be localised within the images or they can be global, as shown

in Figure 5.3. For example the LableMe dataset belongs to the first category, while the

dataset presented in [136] and the Geograph database [154] belong to the second. More-

over, the location of the annotations can be recorded in different ways. For example, the

dataset created for the Pascal Challenge [65], located objects using the smallest bound-

ing box around the object while in Habitat 1K and Habitat 3K, the datasets created

in this thesis, the annotations are localised using polygons. The use of polygons gives

more flexibility and accuracy when extracting local features. However, the annotating

process is more time consuming. In our case, we have studied the effect of both scenar-

ios, as shown in Chapter 7, by extracting global features from the whole photographs

and from each annotation polygon separately and evaluating them with our framework

in both cases. However, results, as it will be presented in Chapter 7 showed that, for

the case of pattern features, the use of polygons as input did not dramatically impact

the performance of the classifier, but it did hinder its efficiency.

5.3 Image Annotation Framework

In this thesis, we have followed an AIA methodology and we have created an image-

annotation framework that can be applied to the automatic classification of habitats
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(a) Sky (blue), Hedge (yellow), SI Grassland
(red)

(b) Woodland, Hedges, SI Grassland

Figure 5.3: Localised and Global Annotations. (a) Shows an image with localised
annotations and (b) shows a photograph with global annotations. Both images belong

to our Habitat 3K database. SI stands for Semi-Improved.

using ground-taken imagery. The image-annotation framework and its main components

are shown in Figure 5.4. As can be seen, our framework is composed of five main

elements: the source data, feature extraction of low-level and medium-level features, the

classifier and a weighed voting system.

In essence, our approach can be regarded as a method that takes into consideration

“closeness” between photographs during the classification process. That is, during train-

ing, we take into consideration visual closeness by extracting significant low-level and

medium-level features. Then, during testing, we take into consideration geographical

closeness to assign weight to the predictions offered by each decision tree in the Ran-

dom Projection Forest.

As with the vast majority of Machine Learning classifiers, the classification process is

divided into two phases: training and testing. In our framework, these can be described

as:

• Training: First, significant features are extracted from the ground-taken pho-

tographs in the training set. They can be low-level visual features or a combina-

tion of low-level visual features and medium-level knowledge. These features, in

combination with the annotations (the ground-truth data), are used as the train-

ing input of our classifier, Random Projection Forests. At the end of this phase, a

Random Projection Forest has been trained and it is prepared to annotate unseen

ground-taken photographs.

• Testing: Similarly to the training phase, significant features are extracted from

the testing subset in our ground-taken photograph database. These are injected in

the root node of our classifier and propagated through the internal nodes of all the

decision trees in our Random Projection Forest. Each tree in the forest will provide
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a prediction about the classes present in the testing photographs. A prediction

takes the form of a list of all the possible Phase 1 habitats sorted according to their

corresponding probability of appearance in the photo. If the geographical location

of the test photograph is not used, all predictions will have the same weight in

the final prediction and be linearly combined. That is, each tree will cast a unit

vote for the final classification. However, if the geographical location of the test

photograph is used, each prediction will be weighted depending on the distance

between the samples in the leaf nodes and unseen the test photograph. The final

classification will be obtained by linearly combining these weighted predictions. At

the end of this phase, a prediction in the form of a unique list of all the habitats,

from most probable to least probable, is produced.

5.4 Components

As shown in Section 5.3, our image-annotation framework for automatic habitat classi-

fication is composed of: source data (ground-taken photographs), the features extracted

from this data (low-level and medium-level features), a classifier which uses these fea-

tures (Random Projection Forests) and a location-based voting system for predictions

(calculated according to the GPS location of the images). In this section, we will briefly

introduce all of them. Each element will be further described in the following chapters.

5.4.1 Source data: Ground-taken Imagery Annotated Database

The first element of our framework are annotated ground-taken photographs. They

constitute the second contribution of this thesis. Ground-taken photographs offer two

main advantages over remote-sensed imagery. These are:

• Easier Collection: Ground-taken photographs are easier and cheaper to obtain.

There is no special equipment required, such as special cameras or access to satel-

lites or planes. Ground-taken photographs can be obtained by using a digital

camera and visiting a site of interest or by using crowd-sourcing mechanisms, such

as websites like Flickr [125] or, as in our case, Geograph [154]. The first option

offers more control over the characteristics of the photographs. However, habitats

will be limited to the sites that can be visited by the collectors or the users. For

example, if users were located in Nottingham, obtaining photographs from coast-

land habitats might be a challenge. On the other hand, the second option offers

a wider array of possible habitats to take into consideration. Users only need to
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search for coastland tag in the Geograph database. Nevertheless, as it will be

discussed in later chapters, using third-party photographs implies a lack of control

over the conditions under which the photographs were taken and the quality of

the ground-data.

• Finer Level of Detail: Ground-taken photographs can provide more detail.

This is extremely useful when classifying second or even third-tier habitats. In

Chapter 4 it was shown how aerial imagery is insufficient to distinguish between

Grasses or Scrub. Moreover, satellite imagery can include clouds or their shadow,

which would make the classification process even more challenging. Additionally,

in both cases, the layout of the images is always the same, the camera always being

orthogonal to the ground. This lack of variation, while useful to make the source

data uniform, can negatively affect the classification of finer habitats. However,

ground-taken imagery can include photographs from different types of habitats

under many different conditions.

In this thesis, we work with two different datasets: Habitat 1K and Habitat 3K. Figure

5.5 shows four examples of the photographs we are using as our main source data.

Habitat 1K contains 1,086 images and over 4,000 habitat annotations. The database

was ground-truthed by a Phase 1 expert and annotated by the author of this thesis.

The photographs have a resolution of 3648x2736 pixels. They were taken during the

months of February, June and July in the Hampshire county, in England by research

staff from The Ordnance Survey and by the author of this thesis. All photographs are

geo-referenced. In this dataset, the lighting and perspective conditions, while diverse, are

more controlled. Additionally, given their geographical location, habitats from classes

A (Woodland and Scrub) and B (Grassland and Marsh) appear more frequently.

Habitat 3K contains 3,094 ground-taken photographs and over 11,000 habitat annota-

tions. Habitat 3K contains all the photographs from Habitat 1K and an additional 2,000

photographs obtained from Geograph [154]. It was annotated by the author of this thesis

using ground-truth data from the Geograph tag system and the ground-truth obtained

previously. Similarly to Habitat 1K, all the photographs are geo-referenced. The aim of

creating Habitat 3K was twofold. First, we wanted to include new habitat types, special-

ly those which were difficult to reach given our location. Consequently, Habitat 3K has

many more habitats present, such as Rock Exposure and Waste habitats or Coastland

habitats. Secondly, we wanted to increase the size of our database and to introduce more

variation in the habitats already present in our original database. In comparison with

Habitat 1K, the lighting and perspective conditions of this dataset are much more var-

ied, a clear consequence of using third-party photographs. Moreover, the photographs
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are much more scattered through England. Instead of having many photographs of few

different sites, as it was the case of Habitat 1K, we have a few photographs from many

different sites.

The characteristics of Habitat 1K and Habitat 3K are described in more detail in Chapter

6.

5.4.2 Feature Extraction: Low-Level and Medium-Level Features

Feature extraction is an extremely popular Computer Vision approach which is specially

used in Image Processing problems to work with large amounts of images in an efficient

manner. Since all the images in the database, no matter how similar or different their

characteristics, are described using the same parameters, feature extraction also serves

as a homogenization process. Moreover, it can be seen as a method of dimensionality

reduction, which helps the “Curse of dimensionality” [109].

The main aim of extracting features is to collect the most descriptive but compact

information from an image. It is important to notice that the selection of features is

an extremely decisive task. However, it is also highly problem-dependent [56]. Different

types of problems will call for different types of features and extracting and combining a

vast number of diverse features will not necessarily yield better accuracy than extracting

a small but representative number of features, as will be demonstrated in Chapter 7 and

in Chapter 8. For example, low-level shape features will be specially suited for tasks such

as face recognition [203], while colour features might be more suited for problems such

as bird classification [25]. Therefore, the aim in extracting features is to find a balance

between the dimensionality of the features extracted and the quality of the information

collected.

In order to work more efficiently with the ground-taken photographs, we extract low-

level features from them. Moreover, we have created a new type of feature, referred to

as Medium-Level Features, with the aim to extract more relevant information from the

images. Consequently, the second element of our framework are the features we extract

from our annotated ground-taken database.

5.4.2.1 Low Level Feature Extraction

Low-level features collect local or global statistics about different aspects of an image.

Low-level visual features are one of the most popular types of features commonly ex-

tracted in Image Processing problems. Extracting low-level visual features enables us
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to work with a large number of high-definition photographs in an efficient and accu-

rate manner. Moreover, they also allow for an easier comparison between images with

different characteristics.

Commonly, low-level visual features can be divided into, at least, three groups [109]:

colour features, such as colour histograms, texture features, such as the Tamura coeffi-

cients [175], and shape features, such as the Hough transform [98]. However, there is a

large number of other features which extract other types of relevant information, such

as pattern features [148].

As mentioned in the previous section, feature selection is dependent of the problem to

solve. In our case, since we are aiming to classify different types of natural habitats,

we will focus on extracting colour, texture and pattern features. This is due to the fact

that examining colour, texture and pattern similarities between habitats is similar to the

process followed by trained ecologists when surveying a site. In particular, we have used

pattern features [148] as a guideline for the behaviour of our classifier under different

testing scenarios. We chose to do this because the pattern features we extract, called

Colour Pattern Appearance Model (CPAM) features, have two main advantages over

colour and texture features: they are more compact, with only a 128-dimension feature

vector, and, at the same time, they collect a large amount of information on both the

colour and pattern texture of the images. Moreover, they have obtained successful results

in image classification tasks [148, 151].

Low-level visual features are one of the components of the ground-taken photograph

databases we have created as part of this thesis. Consequently, low-level feature extrac-

tion will be described in more detail in Chapter 6.

5.4.2.2 Medium Level Feature Extraction

While low-level features have been proven to be effective for image classification and

image annotation tasks [169], they have some limitations with regards to the type of

information they can effectively extract. In particular, low-level features are not suitable

for the extraction of higher level or semantic information which can be crucial when

classifying FGVC problems. This entails that objects that are easily identifiable to

humans, might be complicated for computers to differentiate due to their similar visual

properties. This is normally referred to as the “semantic gap” problem [18]. For example,

a human can easily differentiate between a water habitat (class G) and the sky. However,

given their similar colour, texture and pattern properties, it might be more difficult for

a computer to classify both correctly, as will be shown in Chapter 7. Semantic features
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were developed as a medium to bridge the semantic gap and to include higher level

information in the decision-making process.

In our case, semantic features can be very useful when automatically classifying habitats.

In order to include higher-level information, we create and extract a second type of

feature: medium-level features, which are the third contribution of this thesis. We also

refer to them as medium-level knowledge. We follow the method described in [151] to

incorporate medium-level information in the classification process using a Human-in-

the-Loop approach.

To collect this medium-level knowledge, users were shown photographs from the Habitat

1K or Habitat 3K dataset and they were asked twenty three yes-or-no questions about

the different types of natural objects that they can identify within the images. These

natural objects included: trees with leaves, trees without leaves, trees with and without

leaves, bushes, grass with flowers or non-uniform grass, uniform grass, reed, fern, herbs,

heath, water, crops, boundaries, walls, fences, the sky, other (i.e. cars, people, buildings,

animals). Along with the answer to each question, users are asked to measure the degree

of confidence they have on their own assessment, which ranged from 0(not sure at all)

to 5 (completely sure).

Medium-level knowledge and medium-level features will be described in full detail in

Chapter 8.

5.4.3 Machine Learning Classifier: Random Projection Forests

As discussed in Chapter 2, Random Forests (RFs) are ensemble classifiers. RFs are

increasingly popular in Computer Vision due to their simple implementation and accu-

rate results. In our case, we have decided to work with Random Forests because their

characteristics fit perfectly with our problem, automatic habitat classification.

Random Forests combine all the benefits that NN-based methods and SVMs entail

without being critically affected by their more significant limitations. Similarly to NN-

based methods, Random Forests’ parameters are easy to tune and simple to implement.

As with SVMs, they are efficient. However, contrary to these methods, Random Forests

do not require complicated computation producers, like SVMs, or large storage of space

in memory, like NN-based methods, to be applied. Moreover, they can be easily modified

to be used on multi-label image annotation problems and to include semantic data.

Moreover, in order to improve some of the efficiency issues of RFs, we have created a

new type of RF: Random Projection Forests (RPFs). These RPF constitute the third

contribution of this thesis. They combine traditional RF and Random Projections,
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introduced in Chapter 2 as a widely successful dimensionality-reduction mechanism. In

RPF, at each split node, we will project the feature vectors that have reached that node,

reducing them to only a scalar value. Results, shown in Chapter 7 will show that our

novel approach is not only more efficient that traditional RFs, but also more accurate,

particularly in the case of second- and third-tier habitats.

Random Projection forests will be described in more detail in Chapter 7.

5.4.4 Location- Based Voting System

Traditionally in Random Forest, each tree in the ensemble casts a unit vote, also referred

to as a prediction, on the classes present in the unseen test image. These unit votes are

commonly linearly combined to create the final prediction. This voting system method

assumes that all trees in the ensemble are equally accurate classifiers. However, literature

has shown that not all trees in a random forest are equally good at classifying unseen

samples images [152].

In our case, we take advantage of the geographical properties of habitats to determine

which trees might be more accurate in the classification process. Geographically close

areas have similar ecological characteristics, since habitat properties do not generally

change abruptly. For example, ground properties will not change from calcareous (class

B.2) to neutral (class B.3) suddenly. Therefore, near regions will have similar habitats.

Moreover, even if abrupt changes in habitat types were to occur, for example the sudden

change between an inland cliff (class I.1.1) and acid grassland (class B.1) at the bottom

of the cliff, a robust annotated database, such as the Habitat 1K database we have

created, would have enough geo-referenced photographs of the site to accurately reflect

that particular combination of habitats.

Since all the images in the database are geo-referenced, we benefit from this premise

and we use their GPS coordinates to assign weight to the predictions. Weights are

assigned according to the distance between the test sample and the images that are

in the leaf node the sample has reached. By minimizing the distance and assigning

weight, the predictions of trees with closer leaves influence the final classification more.

However, it is important to notice that while some trees’ predictions will weight more

than others, all predictions are taken into consideration in our framework. Therefore, the

final contribution of this thesis is a novel voting system which takes into consideration

the geographical location of the photographs during the testing phase.

The inclusion of geographical location in the testing phase will be described in more

detail in Chapter 9.
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5.5 Concluding Remarks

In this chapter we have described what Automatic Image Annotation is and how it can be

successfully applied to automatic habitat classification. Additionally, we have discussed

some of the main challenges that AIA methods present. Moreover, we have presented

our first contribution: an image-annotation framework for the automatic classification

of habitats. We have given an overview of the whole framework and we have briefly

introduced its components: its source data, feature extraction, the Machine Learning

classifier used to annotate the photographs and the weighted voting system.

In the following chapters, we will describe in detail how each element of the framework

works and how it relates to the other components of our system. The next chapter will

describe the first element of our framework: the ground-taken photograph database,

which is the first fully annotated database created for the classification of habitats.
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Figure 5.4: Image Annotation-Based Habitat Classification. Our framework consists of four elements: the photographs, the features extracted,
the classifier and the location-based voting system.
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Figure 5.5: Ground-Taken Photographs Used In Our Framework. Photographs (a)
and (b) belong to Habitat 1K and (c) and (d) belong to Habitat 3K.



Chapter 6

Ground-Taken Photograph

Database

As shown and discussed in Chapter 3, remote-sensed data has proven to be insufficient

to accurately classify Phase 1 habitats. In this thesis, we study the use of an alterna-

tive source of data: ground-taken photographs. Our image annotation framework uses

these types photographs to automatically classify habitats. For this purpose, we have

created two different annotated datasets: Habitat 1K and Habitat 3K. These are, to

our knowledge, the first ground-taken photograph datasets specially created and used

for the purpose of automatic habitat classification. Moreover, our framework is also, to

our knowledge, the first type of system which uses these types of photographs for the

problem of habitat classification.

This chapter is divided into five sections. Section 6.1 describes the overall characteristics

of the photographs we will be using and Section 6.2 gives a brief description of the

three components of the databases we have created and annotated: the ground-taken

photographs, the annotations and the low-level visual features we have extracted from

them. Section 6.3 gives a detailed description of the first component: the ground-

taken photographs from our datasets. Section 6.4 describes how the annotations were

collected, created and stored and how they can be used in conjunction with the visual

datasets. Additionally, Section 6.5 describes the third element of the databases, the

low-level visual features extracted from the ground-taken photographs, which are also

publicly available. We finish this chapter with concluding remarks and a brief summary

in Section 3.4.

74
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6.1 Ground-Taken Imagery: Definition

In this thesis, we use ground-taken photographs to automatically classify Phase 1 habi-

tats. We define the term “ground-taken photograph” formally as:

A ground-taken photograph is a digital photograph taken by a human on the

ground. There are no limitations to the subject of the photograph. Additional-

ly, there are no limitations to its layout in terms of orientation or perspective.

These photographs may be taken with any type of digital or mobile camera.

These photographs may or may not be geo-referenced.

This definition of ground-taken photograph is very broad, as it includes both indoors

and outdoors photographs. Moreover, it does not restrict its subject. Multiple examples

of ground-taken photographs are shown in Figure 6.1.

However, given our goal, the ground-taken photographs that we will be working with

need to have some additional restrictions. We are interested in outdoor ground-taken

photographs, specifically those taken in rural and coastal areas in the United Kingdom,

Europe, for which Phase 1 was specifically designed by the JNCC [102]. There must be

at least one discernable habitat instance, either natural (i.e. grasslands, dunes, etc.) or

artificial (i.e. walls, fences, parks). Moreover, these instances must be the focus of the

photograph.

Thus, for example, in Figure 6.1, we are not interested in working with any of the ground-

taken photographs from the first row: (a) would not be used in our database because

it contains an indoor scene, (b) is an outdoor scene but it is not a photograph taken in

the United Kingdom and contains no habitats and (c), even though it was taken in the

United Kingdom, does not have the habitats as the main focus of the photograph. It is

important to notice that there are no restrictions as to the layout of the photographs.

Consequently, all three photographs from the second row in Figure 6.1 can be used in

our framework: (d) shows a ground shot of New Forest, (e) shows a landscape shot of

Titchfield Haven which includes three habitats and (f) shows an artificial or man-made

boundary habitat, a wall, taken in rural England. These photographs are, in fact, part

of our Habitat 3K database.

As can be seen, there are no limitations to the number of habitat classes within a photo-

graph, nor to how they might appear on said photographs. This has been done purposely

with the aim of including as much variety and as much information as possible in our

database. Additionally, by including the same habitats under many different circum-

stances (i.e. different times of the year, different perspectives, different orientations,

etc.) our database will become more representative and robust.
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Ground-taken Photographs.

We have chosen to work with ground-taken photographs in our framework for two main

reasons. First, remote-sensed imagery has been proved to be insufficient for the auto-

matic classification of Phase 1 habitats. Second, satellite and aerial photographs are

more difficult to obtain. On the other hand, ground-taken photographs can be obtained

more easily. Web sites such as Geograph [154] or Flickr [125], can be used to obtain

ground-taken imagery with habitats on them. By using these crowd-sourcing sites, we

benefit from their large collection of photographs to create a vast and robust database

in a relatively effortless manner.

6.2 Annotated Ground-Taken Databases For Automatic

Habitat Classification

Following the definition given in Section 6.1, we have compiled two different datasets

to study the use of ground-taken imagery for the automatic classification of habitats.

These datasets are called Habitat 1K and Habitat 3K. Moreover, we have an interme-

diate ground-taken image database, referred to as Geograph 2K. Each database has a

particular purpose: Habitat 1K was collected with the aim of studying the character-

istics of ground-taken photographs and its applicability to habitat classification when

the conditions of the images were controlled. The main four first-tier habitats are rep-

resented in Habitat 1K: Woodland and Scrub (A), Grassland and Marsh (B), Tall Herb

and Fern (C), Heathland (D) and Miscellaneous (J). Geograph 2K was collected through

crowd-sourcing methods in order to add more variation and more habitat instances to
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our database. From the union of Habitat 1K and Geograph 2K, we created Habitat 3K.

Habitat 3K stores information about seven of the ten first-tier habitats: Woodland and

Scrub (A), Grassland and Marsh (B), Tall Herb and Fern (C), Heathland (D), Open

Water (G), Coastland (H), Rock Exposure and Waste (I) and Miscellaneous (J)

All databases used are composed of the same three elements:

• Ground-taken photographs: These photographs are digital photographs of outdoor

scenes taken in rural or coastal England and whose focus are the habitats present,

as established in Section 6.1

• Annotations: Each photograph will be annotated with the habitats present in it.

The annotations are stored in an XML file, which is easy to create, work with and

manipulate.

• Low-level visual features: These low-level visual features include colour, pattern

and texture information.

6.3 Ground-Taken Photographs

6.3.1 Habitat 1K

Habitat 1K is the first version of the annotated database created as a contribution for

this thesis. It was created with the aim of studying the usefulness of ground-taken

photographs for automatic habitat classification under somewhat controlled conditions.

Therefore, Habitat 1K can be seen as a starting point to the use of ground-taken imagery

for automatic Phase 1 classification.

It contains 1086 ground-taken photographs of rural England. The photographs were

taken in the Hampshire County during the summer of 2011 and the winter and summer

of 2012. Consequently, most of the habitats present in the database belong to classes A

(Woodland and Scrub) and B (Grassland and marsh).

6.3.1.1 Specifications

The specifications of the Habitat 1K are summarised in Table 6.1.

Additionally, Table 6.2 summarises the number of instances of each Phase 1 habitat

present in the database and Figure 6.2 shows the same information as an histogram.

Moreover, all the photographs are geo-referenced. The geographical location of all images
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Table 6.1: Specifications of database Habitat 1K

Characteristics Description

Number of Images 1086
Resolution 3648x2736pixels

Number of Habitats 4223
Average annotations per image 3.88

Maximum annotations per image 6
Minimum annotations per image 1

Camera Model Sony Cybershot DSCHXvb

taken in 2011 and 2012 are shown projected in a map in Figure 6.3 and Figure 6.4,

respectively.

6.3.1.2 Collection and Ground-truth

This database was collected during two different seasons in four different sites. Pho-

tographs from New Forest and Titchfield Haven were taken by the author of this thesis

during the months of June and July of 2011. On the other hand, photographs from

Christmas Commons were taken by researchers in The Ordnance Survey [173] in Febru-

ary 2012. Researchers in The Ordnance Survey also took the photographs from Wild-

grounds Nature Reserve in July 2012.

All four sites were surveyed by the same Phase 1 expert, which guaranteed an agreement

in the classification. Figure 6.5 shows two of the Phase 1 maps produced by this expert

during the surveys: (a) shows the classification map from Titchfield Haven and (b) and

shows the maps from New Forest. The information obtained was digitised by the author

of this thesis using The OS MasterMap [173] and ArcGIS [64].

6.3.1.3 Visual Examples

Figure 6.6 shows a collection of sixteen photographs taken from our Habitat 1K database.

Photographs (a) to (d) were taken in New Forest, while photographs (e) to (h) were taken

in Titchfield Haven. Moreover, Figure 6.7 shows photographs from Christmas Commons,

from (a) to (d), and photographs from Wildgrounds Nature Reserve, from (e) to (h).

These photographs are a prime example of the level of variability of the conditions are

with regards to perspective, layout, lighting, number of habitats present. As can be

seen, even though these are variable, there is still some control over the conditions of

the photographs.
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Table 6.2: Habitat 1K. Habitats Instances in our database Habitat 1K

Habitat Number of instances

Woodland broad leaved 406
Woodland coniferous 48

Woodland mixed 206
Scrub dense 298

Scrub scattered 22
Acid grassland unimproved 2

Acid grassland semi improved 150
Neutral grassland unimproved 127

Neutral grassland semi improved 391
Improved grassland 299
Marshy grassland 36

Poor semi improved grassland 3
Bracken continous 55
Bracken scattered 10

Tall ruderal 30
Dry dwarf shrub heath acid 40
Dry dwarf shrub heath basic 7

Dry heath acid grassland mosaic 88
Fen 1

Standing water 1
Running water 17

Cultivated arable 66
Hedge and trees species rich 111
Hedge and trees species poor 232

Fence 235
Wall 14

Dry ditch 9
Bare ground 12

Sky 1048
Others 259

6.3.1.4 Merits and Limitations of Habitat 1K

Habitat 1K was created with the specific goal of assessing how useful ground-taken

photographs could be for automatic Phase 1 classification. Moreover, it was also created

to study the performance of our image-annotation framework. For this, the database

had to comply with two main requirements related to balance. First, it had to have a

manageable size. Large enough to obtain reliable results but also small enough to be

managed by a single person. Second, it had to be robust and variable enough in terms

of perspective, layout, lighting and types habitats present. In summary, the aim was to

create manageable database which presented a balance between different conditions, in

order to make the database robust, but the goal was also to create a database in which

there was control over these aforementioned conditions, to fully study if important and
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relevant information could be extracted from this type of photographs in contrast to

remote sensing imagery. Consequently, Habitat 1K should be used when there is an

interest in testing a smaller number of habitats under controlled conditions.

Creating this type of database also helped to identify some of the advantages and lim-

itations of ground-taken photography in comparison with remote sensing imagery. For

example, similarly to aerial imagery, ground-taken photograph is subject to lighting

conditions. However, the level of detail in terms of pattern, texture and colour is much

more visible in ground-taken photographs.

Nevertheless, the main challenge of ground-taken photographs, which is not present in

remote sensed data, is the discordance between the location of the photographer and the

location of the habitats being photographed. That is, the location of a photograph does

not necessarily have to reflect the location of the items that appear in the photographs.

This is due to the angle and orientation properties of the photograph. While the angle

in remote sensed data is constant, perpendicular to the ground [117], in the case of

ground-taken photographs, as shown if Figure 6.8, it can vary a great deal. This will be

one of the main challenges of using geographic location in the classification process and

it will further discussed in Chapter 7, Chapter 8 and 9.
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(a) New Forest - July 2011

(b) Titchfield Haven - July 2011

Figure 6.3: Habitat 1K. Ground-taken images taken in 2011 projected on a map.
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(a) Christmas Common - February 2012

(b) Wildgrounds Nature Reserve - July 2012

Figure 6.4: Habitat 1K. Ground-taken images taken in 2012 projected on a map.
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(a)

(b)

Figure 6.5: Phase 1 Habitat maps filled by an expert.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Habitat 1K. (a) to (d) show photographs from New Forest, taken in July
2011. (e) to (h) show photographs from the Titchfield Haven in July 2011.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Habitat 1K. (a) to (d) show photographs from Christmas Commons,
taken in February 2012. (e) to (h) show photographs from the Wildgrounds Nature

Reserve in July 2012.



Chapter 6. Ground-Taken Photographs Database 87

(a)

(b)

Figure 6.8: Habitat 1K. Differences in perspective. (a) shows a ground-shot while
(b) shows a landscape shot. Both types of perspectives are present in our Habitat 1K

database.
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6.3.2 Geograph 2K

Results from studying the use of Habitat 1K with our approach, as shown in Chapter

7 and onwards, proved that ground-taken photographs were indeed a promising source

of information for automatic classification. Consequently, the next logical step was to

include more variability in our database in order to further test our image-annotation

approach. As mentioned in the previous section, one of the main characteristics of

Habitat 1K was its manageable size. This size was convenient for a preliminary study

on the merits of ground-taken photographs and our annotation framework for automatic

habitat classification. However, it also left out many other habitat types and different

types of sites.

In an effort to include more variability on the photographs conditions and the habitats

present in them and to increase the number of images in the database, Geograph 2K was

created. Geograph 2K has 2094 photographs and it contains photographs from all over

Great Britain. Moreover, it not only includes rural areas but also coastal environments.

6.3.2.1 Specifications

The specifications of the Geograph 2K are summarised in Table 6.3.

Table 6.3: Specifications of database Geograph 2K

Characteristics Description

Number of Images 2008
Resolution 640x480pixels

Camera Model Different Models
Number of Habitats 7121

Average annotations per image 3.55
Maximum annotations per image 5
Minimum annotations per image 1

As shown in Table 6.3, the resolution of the images is much lower. However, the number

of habitats in significantly larger. Table 6.4 summarises the number of instances of each

Phase 1 habitat present in the database and Figure 6.9 shows the same information as

an histogram. It can be seen that Geograph 2K contains eight out of the ten Phase

1 first-tier classes: Woodland and Scrub (A), Grassland and Marsh (B), Tall herb and

fern (C), Heathland (D), Open Water (G), Coastland (H), Rock Exposure and Waste

(I) and Miscellaneous (J). These are the first collected instances of classes G, H and I.

Moreover, contrary to the Habitat 1K database, we had no control over the location of

the photographs. Consequently, these are much more sparsely distributed.
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Table 6.4: Geograph 2K. Habitats instances in the database Geograph 2K

Habitat Number of instances

Woodland broad leaved 617
Woodland coniferous 179

Woodland mixed 248
Scrub dense 216

Recently felled woodland broad leaved 3
Acid grassland unimproved 28

Acid grassland semi improved 226
Neutral grassland unimproved 13

Neutral grassland semi improved 417
Improved grassland 98
Marshy grassland 163

Bracken continuous 132
Tall ruderal 76

Dry dwarf shrub heath acid 331
Dry dwarf shrub heath basic 9

Dry heath acid grassland mosaic 348
Wet heath acid grassland mosaic 1

Fen 1
Marginal vegetation 1

Standing water 0
Running water 885

Intertidal mud sand 157
Intertidal shingles cobbles 118
Intertidal boulders rocks 104
Boulders above high tide 1

Sand dune dune grassland 2
Sand dune dune heath 4
Sand dune open dune 2

Maritime cliff slope hard cliff 175
Maritime cliff slope soft cliff 47

Maritime cliff slope coastal grassland 1
Maritime cliff slope coastal heathland 3

Inland cliff acid neutral 132
Scree acid neutral 13
Cultivated arable 77

Cultivated introduced shrub 1
Intact hedge species rich 1

Hedge and trees species rich 176
Hedge and trees species poor 7

Fence 90
Wall 91

Dry ditch 1
Buildings 139

Sky 1654
Others 133
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6.3.2.2 Collection and Ground-truth

Geograph 2K was collected by the author of this thesis using the Geograph crowd-

sourcing website. Geograph maintains a database of over four million ground-taken

photographs. Moreover, it also stores associated metadata, such as geographical location

and the time of the photo, for all of these photographs. Geograph’s aim is to collect,

publish, organise and preserve representative images and associated information for every

square kilometre of Great Britain, Ireland, and the Isle of Man [154]. Its photographs,

as well as its associated information, are freely available to the public.

Geograph photographs can be tagged and annotated. Consequently, we collected 2094

additional photographs using this search-by-tag feature and by searching for the ground-

taken photographs with any of these tags: Arable, Boundary, Coastal, Flat landscapes,

Grassland, Heath, Scrub, Hedge, Lakes, Park and Public Gardens, Rivers, Streams,

Drainage, Rocks, Scree, Cliffs, Wall, Woodland, Forest, while excluding theses tags:

Housing, Dwellings, Suburb, Urban fringe, Business, Retail, Services, Docks, Harbours,

Roads, Road transport.

The photographs were taken year-round in England, Ireland and the Isle of Man by

different people and using different types of cameras. Moreover, they were classified and

digitised using their tags by the author of this thesis.

6.3.2.3 Visual Examples

Figure 6.10 shows six different examples of the types of photographs present in Geograph

2K. As can be seen, the habitats present in this database are much more varied than those

in Habitat 1K. It is also important to notice that the lighting conditions, perspective

and layouts present are also much more varied.

6.3.2.4 Merits and Limitations of Geograph 2K

Geograph 2K was created with the aim of increasing the number of photographs in

our database and the types of habitats present in it. In comparison with Habitat 1K,

Geograph 2K has double the number of images and it includes habitat from three new

classes: Open Water, Coastland and Rock Exposures and Waste. Moreover, it includes

photographs from all over Great Britain. The photographs were also taken during dif-

ferent years and under different weather and seasonal conditions.

This makes Geograph 2K much more varied than Habitat 1K and, consequently, more

robust. However, there is a trade off between this increase in variety and the control we
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have over the photographs in the database. First, all the images have a drastically lower

resolution. Habitat 1K photographs have a resolution of 3648x2730 pixels, while Geo-

graph 2K photographs have a resolution of 640x480 pixels. This was a “necessary evil”,

as the 2000 photographs were downloaded from the Internet. Moreover, the ground-

truth of this set of photographs was also obtained through Geograph and then modified

and refined by the author of this thesis. This means that the ground-truth information

was obtained through crowd-sourcing methods, with the users who uploaded the im-

ages being the ones introducing the tags and classifying the habitats. This makes this

classification process less consistent than the process followed with Habitat 1K.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Geograph 2K. (a) to (g) show photographs from the database Geograph
2K. Differences in perspectives, layout and lighting are clearly identifiable. This is
mainly due to the crowd-sourcing nature of the photographs, which were taken at

different times by different people.
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6.3.3 Habitat 3K

The second database contribution of this thesis is Habitat 3K. Habitat 3K is the com-

bination of the two databases previously introduced, Habitat 1K and Geograph 2K. It

combines the characteristics of both databases and it contains over 11,000 habitat in-

stances from eight out of the ten first-level classes. Habitat 3K was created with the

goal of further testing our approach under more variable conditions and taking into

consideration more habitats.

6.3.3.1 Specifications

The specifications of the Habitat 3K are summarised in Table 6.5.

Table 6.5: Specifications of database Habitat 3K

Characteristics Description

Number of Images 3094
Resolution 640x480p and 3648x2736p

Camera Model Different Models
Number of Habitats 11344

Average annotations per image 3.66
Maximum annotations per image 6
Minimum annotations per image 1

Additionally, table 6.6 summarises the number of instances of each Phase 1 habitat

present in the database and Figure 6.11 shows the same information as an histogram.

Moreover, Figure 6.12 shows how the three databases compare to each other in terms of

first-tier habitat classes.
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Table 6.6: Habitat 3K. Habitats instances in the database Habitat 3K

Habitat Number of instances

Woodland broad leaved 1023
Woodland coniferous 227

Woodland mixed 454
Scrub dense 514

Scrub scattered 22
Recently felled woodland broad leaved 3

Acid grassland unimproved 30
Acid grassland semi improved 376
Neutral grassland unimproved 140

Neutral grassland semi improved 808
Improved grassland 397
Marshy grassland 199

Poor semi improved grassland 3
Bracken continuous 187
Bracken scattered 10

Tall ruderal 106
Dry dwarf shrub heath acid 371
Dry dwarf shrub heath basic 16

Dry heath acid grassland mosaic 436
Wet heath acid grassland mosaic 1

Fen 2
Marginal vegetation 1

Standing water 1
Running water 902

Intertidal mud sand 157
Intertidal shingles cobbles 118
Intertidal boulders rocks 104
Boulders above high tide 1

Sand dune dune grassland 2
Sand dune dune heath 4
Sand dune open dune 2

Maritime cliff slope hard cliff 175
Maritime cliff slope soft cliff 47

Maritime cliff slope coastal grassland 1
Maritime cliff slope coastal heathland 3

Inland cliff acid neutral 132
Scree acid neutral 13
Cultivated arable 143

Cultivated introduced shrub 1
Intact hedge species rich 1

Hedge and trees species rich 287
Hedge and trees species poor 239

Fence 325
Wall 105

Dry ditch 10
Buildings 139

Bare ground 12
Sky 2702

Others 392
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Figure 6.12: Datasets Comparison.Instances of each first-tier habitat in Habitat 1K,
Geograph 2K and Habitat 3K databases.
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6.3.3.2 Visual Examples

Figure 6.13 shows a collection of six images taken from the Habitat 3K database. As

can be seen, there are clear differences is resolution of the images, lighting conditions

and the layout of the photographs.

6.3.3.3 Merits and Limitations of Habitat 3K

Habitat 3K is the result of combining the ground-taken photographs from Habitat 1K

and Geograph 2K together. Consequently, it combines all the merits and limitations

from both datasets, as discussed in Section 6.3.1.4 and Section 6.3.2.2. Its size is three

times the size of Habitat 1K and it contains more than twice the number of habitats.

Moreover, much like Geograph 2K, it contains habitats from eight out of the ten possible

Phase 1 first-tier habitat classes, including Coastland habitats. Consequently, Habitat

3K should be used when interested in testing under a mixture of conditions: diverse

and varied conditions over two thirds and some controlled condition over a third of the

database.

Additionally, it contains a mixture of high and low resolution photographs, taken during

all twelve months of the year in Great Britain. Finally, its classification is a mixture

of the classification done by an expert in Phase 1 and the classification obtained from

Geograph’s tagging system.

6.4 Annotations

All images in both Habitat 1K and Habitat 3K were annotated by the author of this

thesis following the same procedure and using the same tool. This image annotation tool

was developed by the University of Bonn and it was specially designed for MATLAB

[107]. Its interface is shown in Figure 6.14.

In essence, each annotation has of two main components: a polygon, which delimits

where in the image a habitat appears, and its corresponding label, which follows the

Phase 1 classification scheme. Examples of five annotated images are shown in Figure

6.15, Figure 6.16, Figure 6.17, Figure 6.18 and Figure 6.19. However, as can be seen

in Figure 6.14, there is more information that can be included in the annotation, such

as the degree of confidence in the annotation, the occlusion index of the object and the

degree of representativeness of the object with regards to its class.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Habitat 3K. Photographs from the 1st column belong to Geograph 2k.
Photographs from the 2nd column belong to Habitat 1K. The differences in lighting and

perspective are clearly identifiable.
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Figure 6.14: Image annotation tool. The tool also collects information about the source and the type of view of the whole image and the
representatives, occlusion and the uncertainty of each annotation.
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The information about the annotations is conveniently stored in an XML file per pho-

tograph. An example of this file is shown in Code 6.1. This XML file corresponds to

the ground-taken photograph shown in Figure 6.6(c).

<annotation >

<filename >DSC03245.png</filename >

<folder >All Images </folder >

<sourceImage >Habitat 1K</sourceImage >

<sourceAnnotationXML >Version 2.40</sourceAnnotationXML >

<rectified >0</rectified >

<viewType >ground_taken </viewType >

<scale >n/a</scale >

<imageWidth >3648</imageWidth >

<imageHeight >2736</imageHeight >

<transformationMatrix >n/a</transformationMatrix >

<object >

<name>Improved_grassland </name>

<objectID >73494601513464 </objectID >

<occlusion >0</occlusion >

<representativeness >80</representativeness >

<uncertainty >n/a</uncertainty >

<deleted >0</deleted >

<verified >0</verified >

<date>18-Mar -2012</date>

<sourceAnnotation >Mercedes </sourceAnnotation >

<polygon >

<pt>

<x>1</x>

<y>1</y>

</pt>

<pt>

<x>3648</x>

<y>1</y>

</pt>

<pt>

<x>3648</x>

<y>2736</y>

</pt>

<pt>

<x>533.2525 </x>

<y>2736</y>
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</pt>

<pt>

<x>1</x>

<y>2736</y>

</pt>

</polygon >

<objectParts >n/a</objectParts >

<comment > </comment >

</object >

</annotation >

Listing 6.1: XML annotation file from a ground-taken photograph

As can be seen, this information in the XML file includes: who made the annotations,

when it was made, which classification scheme it follows, the location of the image, the

location of annotation file, the locations of the different polygons within the image and

its corresponding classes. Having this information stored in an XML file makes its use

and manipulation easier when working with MATLAB, the environment we have used

to develop our framework.

However, while easy to work with and to manipulate, this approach presents a clear limi-

tation. It assumes that the limits of all habitats are clearly distinguishable and separable

in our photographs This is not always the case, as the frontiers between habitats might

be fuzzy. An example of this is shown in Figure 6.10(e), in which the limits between the

sand and the water are not clear cut.

6.5 Low-Level Features

Visual-database retrieval and search are becoming increasingly popular activities. How-

ever, image databases are increasing their size exponentially [125, 154]. As a conse-

quence, indexing and retrieving thousands or even millions of images is a difficult task

that needs to combine both high accuracy and low execution time. This has inspired

a wide variety of research approaches, such as content-based image retrieval [118, 169],

image classification [148] and image annotation [76]. Not incidentally, most of these ap-

proaches have the same preliminary step: dimensionality reduction by feature extraction

[68].

In Pattern Recognition, local features are defined as points or regions of interest in

the images. The use of features involves two main tasks which are connected: feature

selection and feature extraction. As discussed in [56], feature selection and extraction
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can be regarded as the most important step in the pattern recognition framework, since

the selected features will directly influence the design of the classifier and, consequently,

the results of the system.

The main aim of feature selection and extraction is to find the most compact and de-

scriptive and relevant combination of features to use during the classification process.

Selecting the correct features is not only a crucial step but also quite a challenging task,

since the right grouping of features is problem-dependent [56]. Consequently, a set of

features that might be successfully applied to face recognition, might yield less than

accurate results for a different task, such as object recognition.

Once relevant features have been selected, feature extraction is carried out to efficiently

reduce the dimensionality of the data into a compact and descriptive feature vector. In

our AIA framework, we have chosen the extraction of low-level visual features as our

first step. Low-level visual features collect statistics about different aspects of an image,

such as color [162, 165], texture [85, 175], pattern [148] or shape [158, 196] information.

Extracting low-level visual features enables us to work with a large number of high-

definition photographs in an efficient and accurate manner. Moreover, as discussed in

Chapter 2, feature extraction helps combat “the curse of dimensionality” [18] in the

classification process. Moreover, features also allow for an easier comparison between

images with different characteristics.

Using mathematical notation and applying it to our case, in which we work with colour

ground-taken photograph and global features, the aim of feature extraction is to transfor-

m a N-by-3-dimensional matrix, the colour ground-taken photograph, X = [x1,x2,x3]
T ,

with xi = [xi1, xi2, ..., xin] by finding f , such that X is mapped into a M-dimensional

vector Y = [y1, y2, ..., ym]T , with m < n. Y can therefore be expressed as Y = f(X).

In this thesis, we extract a total of eleven different low-level visual features. We have

divided them into four main categories according to the nature of the information that

is extracted: pattern features, color features, texture features and other features. Other

features include a set of six features commonly used in Pattern Recognition problems. In

particular, we are interested in studying how pattern, color and texture features perform

in our framework. Moreover, we are also interested in how their performance compares

to the performance of other popular features used in Pattern Recognition.

6.5.1 Pattern Features

A pattern is defined by the Oxford dictionary as “an arrangement or sequence regularly

found in comparable objects or events” [8]. Pattern information combines both colour
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and spatial information. Consequently, pattern features are extremely useful when dis-

tinguishing between similar habitat classes. An example of this is shown in Figure 6.20,

which shows different types of heath mosaics, easily distinguishable to the human eye

because of their differences in pattern.

(a) (b)

Figure 6.20: Pattern Information. Pattern is crucial when distinguishing between
habitats. These two Heath habitats are easily identifiable to humans due, in part, to

their pattern information.

We have chosen to extract Color Pattern Appearance Model (CPAM) [148] features for

this purpose. CPAM features were one of the earliest bag-of-visual-words style image

content representation features. Moreover, they have been successfully applied to im-

age retrieval [148] and image annotation [216]. CPAM features are extracted using two

codebooks, referred to as achromatic and chromatic codebook. Together, they are used

to capture both color and texture patterns of tiles within the photographs. For this rea-

son, because it collects colour and texture pattern information in an extremely compact

manner, we chose to use CPAM feature as the main guideline to assess the performance

of our framework. As mentioned in Section 5.4.2, CPAM features were the first features

that we extracted of all testing scenarios to assess the validity of each experimentation

approach. Depending on the results, we either decide to continue further testing or

not. This is clearly exemplified in Chapter 7, when testing the use of blocks within the

images as the input of our classifier yielded surprisingly inaccurate results and served to

identify why the use of tiles was not appropriate for the task of habitat classification.

Consequently, we discarded the idea of using of blocks as input in further experiments

with our system.

In essence, CPAM features are global histograms capturing the frequencies of the code-

words that have been used to encode patches of the image for both codebooks. In

our experiments, we used a 64 codewords achromatic codebook and a 64 codewords

chromatic codebook. Consequently, using CPAM features enable us to encode each of

the ground-taken photographs in our database as a 128-dimension vector which collects

pattern information.
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6.5.2 Colour Features

Colour is defined as by the Oxford dictionary as “the property possessed by an object of

producing different sensations on the eye as a result of the way it reflects or emits light”

[8]. Colour features are one of the most popular features extracted in Pattern Recog-

nition problems [165] because color properties in general provide extensive information

about the nature and characteristics of the objects that need to be classified.

In this thesis, we extract colour features because, as mentioned, colour information is

very powerful descriptive tool to distinguish objects in general and habitats in particular.

For example, it can be used to distinguish between broad-leaved(A.1.1) and coniferous

woodland (A.1.2). As shown in Figure 6.21, broad-leaved woodland is commonly bright

green during spring and summer or completely brown during autumn and winter while

coniferous woodland is dark green during all four seasons.

(a) A.1.1 - spring (b) A.1.1 - autumn

(c) A.1.1 (l) and
A.1.2. (r) - spring

(d) A.1.2. - winter

Figure 6.21: Colour Information. These two Woodland habitats can easily be differ-
entiated due to their different colour properties. (l) stands for left and (r) for right.

In our case, we extract two simple but powerful global colour features:

• Colour Histograms: A histogram is defined as the statistical representation of the

frequency of appearance of a pixel value [165]. The use of histograms as colour

features has been researched at length in works such as [162]. Histograms are ex-

tremely useful because they collect global information about the colour distribution

within an image. In our case, we will be extracting 256-bin colour histograms from

each of the channels of three different colour spaces. These colour spaces are: RG-

B, HSV and CIEL*a*b*. Consequently, each photograph will generate nine colour
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feature vectors, which will be arranged in a 256-by-9 matrix. Moreover, since not

all the images in our Habitat 3K database have the same size, we normalise their

histograms by we dividing each bin by the number of pixels of the photograph.

It is important to notice that, if we were to have applied NN-based methods to an-

notate the images in our database, the use of such large 256-bin histograms would

have proven problematic and would have made the testing phase quite inefficient

[97]. A common solution would have been to create smaller colour histograms,

for example 10-bin colour histograms, and group pixel values together. This so-

lution would not be useful in our case since most of the colours that appear in

the photographs are different shades of basic nature colours, particularly green

and brown. Consequently, in our case, we are specially interested in collecting

slight changes or differences in colour, since they can mean, as shown previously

in Figure 6.21, that broad-leaved woodland is present in the photograph, instead

of coniferous woodland. However, since we are using Random Forests, we can use

256-bin histograms without sacrificing efficiency. Random Forests take a random

number of features in each node instead of all of them at once. Moreover, as we

will propose in Chapter 7, we can even improve efficiency by taking all features

into consideration during training but projecting them at each node [183]. Conse-

quently, Random Forests are proven once again to be a much more suitable choice

for automatic habitat classification.

• Colour Moments: The second type of colour feature we extract are colour moments

[190]. They have been successfully applied in popular Computer Vision problems,

such as object category retrieval [118]. Similarly to colour histograms, colour mo-

ments assume that the colour within an image can be represented as a probability

distribution. All probability distributions are characterised by a number of unique

moments. Therefore, the colour characteristics of an image, which follows a prob-

ability distribution, can be used to calculate its unique moments. We calculate six

possible moments. As with colour histograms, we extract these measures from the

photographs three different colour spaces: RGB, HSV and CIEL*a*b.

6.5.3 Texture Features

Defined in [1] as “an ensemble of repetitive subpatterns, which follow a set of well defined

placement rules”, the concept of texture is difficult to define formally. However, it is

an easy concept for humans to identify [175]. As studied in [53], texture features are

related to higher frequencies in the image spectrum.
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Along with pattern and colour features, texture features also offer important and dis-

criminative information for the classification of habitats. For example, as shown in

Figure 6.22, the texture of the photographs alone, without taking into consideration the

colour, is enough for humans to clearly identify that the habitats shown in each figure,

scrub and bracken respectively, are different. To exemplify this, we have converted both

images to grayscale.

(a) (b)

Figure 6.22: Texture Information. Although difficult to formally define, differences in
texture are easily identifiable to humans. These two habitats are clearly from separate

classes, due to their different texture properties.

In our case, we will extract two of the most popular texture features developed to date:

• Grey Level Co-occurrence Matrices (GLCM): One of the most popular texture

features, GLCM measure the frequency with which two pixels appear next to each

other within a pre-determined distance [85]. We will use a distance of 1 in each

direction, obtaining 8 different directions: north, south, east, west, northeast,

northwest, southeast and southwest. Consequently, each image in our database

will generate 8 GLCMs matrices.

• Tamura Coefficients: Introduced in [175] by Tamura et al, These coefficients relate

to the human visual perception process. [175] developed six possible coefficients

that range from most relevant to least relevant. These coefficients are: coarseness,

contrast, directionality, line-likeness, regularity and roughness. In our case, we

will use the first three, which have been proven to perform accurately when used

together [96]. Coarseness, selected in [175] as the most important of the coefficients,

aims to identify the largest texture in a image. Contrast determines the variations

in the grey levels of the images and how polarised are black and white distributions.

Finally, the directionality coefficient aims to identify global properties within the

images, such as pronounced curves or long lines.
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6.5.4 Other Features

Along with the three types of features previously described, we chose to use six of

the most popular low-level features developed to date with the aim of comparing their

performance against pattern, colour and texture features. These features are have been

used in a multitude of works [137, 158, 169, 196] and have been applied to problems such

as image classification [137] and object recognition and image retrieval [169]. The main

aim of extracting and testing these features is to further study the effect that feature

selection has on habitat classification and to get a better understanding of what colour,

texture and pattern features can do for a more accurate classification process.

The features we have extracted are: Geometric Blur (GB) [158], Global Image Descriptor

(GIST) [137], Pyramid Histogram of Oriented Gradients (PHOG) [158], Scale-invariant

Feature Transform (SIFT) [196], Pyramid Histogram of Visual Words (PHOW) [167],

Self-similarity Feature (SSIM) [158].

6.6 Concluding Remarks

In this chapter we have introduced the notion of ground-taken photographs. Moreover,

we have presented the second contribution of this thesis: the public and fully annotated

datasets Habitat 1K and Habitat 3K. We have described their characteristics and lim-

itations for the specific problem of Phase 1 classification and we have shown numerous

visual examples. We have described how the annotation process works and how annota-

tions are stored and manipulated. Finally, we have described the type of low-level visual

features that will be used in our framework and the motivation behind their selection.

In the next chapter we will present the second element of our framework and our next

contribution: Random Projection Forests. This Machine Learning classifier combines

Random Projections and Random Forests and it is used to predict the habitats present

in unseen photographs.
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Random Projection Forests

In Chapter 6, we introduced the type of source data we will work with and the first ele-

ment of our framework: ground-taken photographs. Moreover, we described the type of

low-level information that we extract from them in order to work with the photograph-

s in an efficient and homogenous manner. In this chapter, we describe in detail how

these data and these features are used in the context of automatic habitat classification.

Consequently, we introduce the second element in our image-annotation framework and

our third overall contribution: our Random-Projection-based classifier. This Machine

Learning classifier, used to automatically annotate unseen ground-taken photographs,

is referred to as Random Projections Forests (RPFs). RPFs are a modification of the

traditional Random Forests as defined in [28]. They combine Random Forests and Ran-

dom Projections, previously discussed in Chapter 2 as a dimension-reduction method, to

automatically classify and annotate images more efficiently. We have carried out exten-

sive experiments to assess the performance of Random Projection Forests in comparison

to Random Forests for the task of automatic habitat classification. Moreover, we have

studied the effects of pattern, colour and texture features on the classification process

with both classifiers and both of our databases. Recall and precision results showed that

Random Projection Forests are suitable candidates for our image-annotation framework

and that they are more efficient and more accurate than RFs when automatically clas-

sifying Phase 1 habitats.

This chapter is divided into eight sections. Section 7.1 describes the motivation behind

using Random Forests. Section 7.2 shows how traditional random forests are constructed

and discusses it most relevant limitations. Section 7.3 presents our third contribution:

Random Projection Forests. It describes in detail how random projections forests are

constructed and discusses its advantages in comparison to traditional random forests.

Section 7.4 describes how Random Projection Forests can be applied to automatic image

114
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annotation problems in general and to the problem of habitat classification using ground-

taken photographs in particular. Furthermore, Section 7.5 describes the first series

of experiments that we carried out. The aim of these experiments was to test the

effects of combining ground-taken images, low-level visual features, particularly pattern,

colour and texture features, and random projection forests. Section 7.6 shows the results

obtained from these experiments and compares them with traditional random forests.

Moreover, it presents a discussion on the results obtained, with particular focus on the

effects of colour, texture and pattern features when automatically classifying habitats.

To conclude, Section 7.7 summarises the contents of the chapter.

7.1 Motivation: Limitations of NN-based Methods and

SVMs

As mentioned in Chapter 2, there are multiple Machine Learning approaches that can

be used for the task of image annotation and classification. Two of the most widely used

currently are Nearest Neighbour methods and Support Vector Machines. Particularly,

Nearest Neighbour (NN) methods have proven to be a popular choice in the Computer

Vision community given its simplicity and its relatively non-existent training phase [18].

However, as shown in Chapter 4, NN-methods cannot be easily extended to use large

amounts of data. Moreover, using NN-based methods to classify photographs presents

a series of limitations in terms of efficiency. First, since NN methods require all training

samples to be available during testing, the use of a large dataset would entail large

storage requirements. Moreover, as the number of retrieved neighbours, represented

by the parameter k, increases, the retrieval process will take more time. Finally, the

combination of NN methods and feature extraction can negatively affect the “semantic

gap” problem [90], since two objects might have similar visual properties, which might

make them neighbours in the K-NN space, but they might belong to two completely

different classes.

Other type of Machine Learning approaches that have been used are Support Vector

Machines (SVMs). However, as discussed in Chapter 2, SVMs also present a set of

limitations that make them unsuitable for the task of automatic image annotation.

Firstly, SVMs are notoriously complicated to train, since they require fine tuning of

a wide set of parameters. However, their main drawback is that they are single-label

classifiers by nature. That is, SVMs are designed to return only one result. This,

combined to their complicated nature, makes modifying them to be used in multi-label

problems, such as habitat classification, a complicated and challenging task.
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In this thesis, we use Random Forests to counter these limitations. Firstly, the hierarchi-

cal tree structure of the random forests allows for efficient classification of visually similar

samples. Moreover, the use of the annotations stored in our ground-taken databases,

Habitat 1K and Habitat 3K, can transform our classifier from an unsupervised to a

supervised classifier. Consequently, the use of annotation information and their rela-

tionship with the photographs will guide the generation of the decision trees, which will

make the decision process take into consideration not only visual features but semantic

concepts as well. Additionally, Random Forests combine the simplicity of NN-based

methods in terms of implementation and, more importantly, they can be easily modified

to be applied in multi-label problems, such as Phase 1 classification.

Furthermore, previous work has shown that ensemble classifiers tend to obtain higher

accuracy on previously unseen data [76]. Moreover, random forests have been success-

fully applied to a varied number of problems in the field of computer vision, such as

image labeling [76], image classification [132] and even image segmentation [167]. They

have also been applied to the field of Ecology, in tasks such as habitat structure classifi-

cation [11], groundwater-dependent vegetation pattern modeling [144], ecohydrological

modeling [143] and land cover [81].

In summary, in this thesis, we have chosen to research the use Random Forests because

they present a promising alternative to the two most popular classifiers nowadays, NN-

based methods and SVMs. Random Forests are able to combine their merits and lessen

their limitations.

7.2 Random Forests

Random forests are composed of an ensemble of randomly trained decision trees. De-

cision trees have been used for quite a long time [149] with successful results in image

classification tasks [22, 28, 81, 92, 147]. As shown in [28, 46], binary decision trees are

composed by a collection of nodes and edges. These components follow a hierarchical

structure in which there are no loops. Figure 7.1 shows an example of a binary decision

tree with three levels.

As can be seen in Figure 7.1, nodes are usually numbered breadth-first, starting with

the root node at 1. Moreover, trees have two different types of nodes: internal nodes,

represented by circles, and terminal nodes, represented by squares. Internal nodes are

also referred to as split nodes, because their function is to divide or split the received

data into its children nodes. The root node is a special case of an internal node because

it is were the data is injected into the classifier. On the other hand, terminal nodes are
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Figure 7.1: Decision Trees. Decision trees are composed of nodes and edges. Split
nodes will separate the input data and leaf nodes will offer a prediction on the classes

present within the data.

often referred to as leaf nodes. Split nodes, except the root have one incoming edge and,

given that we are working with binary trees, two outgoing edges. Moreover, leaf nodes

receive one incoming edge but do not produce any outgoing edges.

Decision trees are a Machine Learning technique used to make predictions on unseen

data. These predictions are stored in the leaf nodes. As discussed in [46] decision trees

can be regarded as a mechanism to iteratively split complex problems into a hierarchy of

simpler ones. In turn, a Random Forest is a classifier which is composed of an ensemble

of randomly trained decision trees. First introduced in [94] and further consolidated

in [28], decision forests were shown to obtain better generalization than boosting and

C4.5-trained trees on several tasks [95].

A random forest is defined by a series of parameters: its size, the maximum allowed tree

depth, its type of randomness, the choice of weak learner model, the training objective

function and the features selected. A variation in those parameters will affect the per-

formance of the RF as a whole. However, this variation should not dramatically affect

the performance of the RFs. That is, the aim is to generate stable RFs in which small

variations of the input parameters should yield small variations in the results obtained.

In order to do this, it is important to extract a significant group of features and to select

an appropriate split function for the internal nodes.
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Like many other Machine Learning techniques, constructing and using RF consists of

two phases: the training phase and the testing phase.

• Training: This first phase is commonly carried out off-line and aims to generate

stable RFs by optimizing the parameters of the split functions [46]. Traditionally,

randomness is introduced in this phase. The two most popular methods to intro-

duce randomness in the training phase are training data sampling [28], such as

bagging, and randomised node optimization [94]. This guarantees that each deci-

sion tree will be randomly different from the other decision trees in the random

forest. Additionally, each tree will stop being constructed when one of these two

stopping criteria is met: the trees have reached their maximum allotted depth or

the number of samples in the nodes is less than a threshold, commonly 1. As men-

tioned previously, each decision tree in the forest will be composed of two types of

nodes: internal and leaf nodes.

– Internal Node: The split nodes are in charge of dividing samples by optimizing

the split function. This process has the following steps:

1. For each Random Forest, a random number M between 1 and the max-

imum number of input features is selected. M indicates the number of

splits that will be considered in each internal node. A large M will result

in more accurate decision trees, since more splits will be tested. However,

it will also require more computation resources.

2. For each split node and until M random features have been selected, a

random feature is chosen.

3. For each selected random feature, the values of the samples related to

that feature are extracted.

4. A variable number of thresholds, L, is selected. Typically, threshold

values will range between the minimum and the maximum feature value

from the samples.

5. For each possible threshold value T , samples are split into left or right

child. This split is done following 7.1.

{

pi ≥ Lj go to left child

otherwise go to right child
(7.1)

Where pi is the value of the selected feature in the ith sample of the split

node and Lj is the jth threshold taken into consideration.

6. Once all samples have been divided into right or left child node, the

Information Gain of that split is calculated. The IG assesses which s-

plit produces the highest confidence in the final distributions [46]. It is
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calculated as:

I = H(S)−
∑

i∈{1,2}

|Si|

|S|
H(Si) (7.2)

with S being the set of randomly selected features and H(S) being the

Shannon entropy [28].

7. Steps 2 to 6 are repeated M times.

8. The feature-and-threshold combination that produced the split with the

highest IG is then selected. Samples are split into left and right child

nodes according to this combination.

The calculation of the Information Gain is not trivial and, depending on the

parameters of the Random Forest, it will have to be repeated a large number

of times. The larger the dimension of the feature vector and the larger the

number of features activated in the calculation of the IG, the less efficient

RFs become and the longer the training phase will take. As a result, the

process of training a Random Forest can be computationally expensive. In a

Random Forest in which M features will be selected in each split node and

in which L thresholds will be tested, for each decision tree T , with N split

nodes, the calculation of the IG will have to be repeated MxLxTxN times.

For example, in a Random Forest with 150 trees of depth 9 (512 nodes, 264 of

those split nodes) in which 10 thresholds and 50 random splits are considered,

a small number considering that feature vectors can have thousands of values,

the IG will have to be calculated 19,800,000 times.

– Leaf Node: The leaf nodes will learn a prediction during training. In classi-

fication tasks, each leaf will store the normalised probability distribution of

each class, or habitat in our case, according to the samples that have reached

that leaf. Consequently, if we apply it to our case the probability in each leaf

l is calculated as

P Tk(h) =
|hi|

|hk|
(7.3)

with Tk being the kth decision tree in the random forest T , |hi| being the

frequency of the hth habitat in the ith leaf node and |hk| being the frequency

of appearance of the habitat h in the leaves of the kth decision tree.

• Testing: The aim of this phase is to give a prediction about previously unseen

images. Contrary to the training phase, the testing phase does not include ran-

domness of any kind, which makes it completely deterministic. In this phase, the

features extracted from the unseen data are injected into the root node of each of

the trees in the forest. These features are then propagated through the internal

nodes in each tree. At each split node, the split function is applied to the incoming
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set of features and, depending on the result, they are directed towards the left or

right child node. This process is repeated until a leaf node is reached. Since we are

working with an ensemble of decision trees, each tree will offer a prediction. Final-

ly, the predictions will be combined into one single prediction using a the voting

mechanism. As discussed in Chapter 2, there are many voting mechanisms that

have been developed to date. The most common method is to linearly combine

and normalise the predictions of each tree. Therefore, each tree in the random

forest will cast a unit vote. However, as we will explore in Chapter 9, research has

proven that not all the decision trees in a random forest are equally good at classi-

fying unseen data. Consequently, it is possible to implement a voting mechanism

that will assign weight to the different predictions before linearly combining them

in order to improve accuracy.

7.3 Random Projection Forests

The traditional implementation of Random Forests presents some limitations when the

dimensions of its basic parameters, i.e. size, depth and number of randomly selected

features in each node, increase. Particularly, increasing the random number of features

taken into consideration in each node can be quite time-consuming when the feature

vector dimensions’ increase. In order to fix these limitations, we have created Random

Projection Forests (RPFs).

RPFs are the third contribution of this thesis. They were designed to be more efficient

and accurate than traditional RF. RPFs are more efficient than RFs in terms of execution

time during training and testing, as will be shown in Section 7.6, particularly when

increasing two of its parameters: the size of the forest and the number of random

features to be taken into consideration in the split nodes.

In Random Projection Forests, randomness is introduced in two ways. First, we use

different random subsets of the training data to train different decision trees, referred to

as bootstrapping [18]. Then, we use Random Projections [101] to reduce the dimension-

ality of the feature vectors. Random Projections have been used in conjunction with

Random Forests in [103]. However, [103] follow a simple approach by projecting the

input feature vectors before training traditional Random Forests. This choice is not

ideal, since it limits the effect of the randomness that Random Projections could infuse

Random Forests with and, consequently, does not benefit from Random Projections as

much as they could. In our case, we generate a random projection in each internal

node and we use it to project the samples that reach said node. Similarly to traditional
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random forests, RPFs are composed of two different types of nodes: split nodes and leaf

nodes.

As with Random Forests, the input of RPFs are the annotations of our database and

the feature vectors extracted from the photographs themselves. Each forest is generated

by training each binary decision tree breadth-wise until one of the stopping criteria is

met. Similarly to the stopping criteria introduced in Section 7.2, RPFs will stop being

constructed when the number of samples that reach a node is 1 or when the tree has

reached its maximum allowed depth.

• Split nodes : These nodes store a test function that splits the data. As mentioned

in the previous section, during training, the aim is to optimise the threshold of the

split functions in each node so the trees can be as accurate as possible [46]. Our

approach is based on random projections [17], previously discussed in Chapter 2.

Random Projections are a dimensionality reduction mechanism that enables us to

project large feature vectors into scalar values using orthogonal vectors.

In our case, we use random projections to split incoming samples of an internal

node to its two child nodes. Let F = (f1, f2, . . . , fn) be the n-dimensional input

feature vector of a node, R = (r1, r2, . . . , rn) be an n-dimensional random vector,

generated as follows

ri =















−1 with probability 1
3

0 with probability 1
3

+1 with probability 1
3

(7.4)

with i = 1, 2, ..., n.

We then project the input onto the random vector. This is done by calculating

the inner product between the feature vector F and the random projection vector

R as p = FRT . Once the feature vector has been projected, each feature vector

is reduced to a single scalar value, and samples are distributed to the left or the

right child node according to a threshold as:

{

p ≥ T go to left child

otherwise go to right child
(7.5)

where T is a threshold value.

As can be seen, each feature vector, once projected, will be reduced to only one

scalar value, the projection itself. This makes our RPFs much more efficient than

traditional RFs. Since the projected feature vectors are simple scalar values, the
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calculation of the threshold value is quite simple. After projecting all the samples

that have reached an internal node, we generate a user-input number of equidis-

tant thresholds, 10 by default, that range from the minimum projection to the

maximum. Then, we select the threshold that maximises the Information Gain

(IG). The IG, which can be calculated as shown in Equation 7.2, is then used to

select the split function which produces the highest information gain in the final

distributions [28].

The computational requirements needed to train a Random Projection Forest are

much smaller than those required to train a Random Forest. Instead of considering

M splits in each internal node, all samples are projected into one scalar value, an

operation that only requires a multiplication. Moreover, in a Random Projection

Forest in which L thresholds will be tested, for each random-projection decision

tree T with N split nodes, the IG will be calculated LxTxN times. Following

the example introduced in Section 7.2, in a Random Projection Forest with 150

trees of depth 9 (512 nodes, 264 of those split nodes) in which 10 thresholds are

considered, the IG will have to be calculated 396,000 times. That is 19,404,000

less IG calculations than in the corresponding scenario with Random Forest.

• Leaf nodes: At this stage, the leaf nodes are the same as those of traditional RFs.

In our case, they store a normalised probability distribution of the occurrence of

all possible habitats. This probability is calculated as shown in Equation 7.3.

The whole procedure of building a random projection decision tree is summarised in

Algorithm 1. The pseudocode describing how to build a Random Projection Forest is

shown in 2.

7.4 Random Projection Forests For Image Annotation

We have designed Random Projection Forests with the aim of applying them to auto-

matically annotate unseen ground-taken photographs with the habitats present in them.

In Section 7.2 we described how RPF are constructed, or, in other words, their training

phase. In this section we describe how they can be applied to Image Annotation or,

alternatively, their testing phase.

The testing procedure for RPFs is similar to the that of the traditional RFs. Once

features are extracted from the unseen test image, these are injected in each of the root

nodes of the projection trees that form the RPF. At each split node, the feature vector

will be projected by calculating the inner product between the feature vector and that
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Algorithm 1 Random Projection Decision Tree: Training. Thresholds is an integer
that indicates the number of thresholds that will be tested with the Information Gain

procedure train projection decision tree(depth,features, thresholds)
no nodes← 2depth − 1
rpdt = initialise forest(no nodes, features) ⊲ Initialises tree and root
for n = 1 to no nodes do

samples = rpdt(n).features ⊲ Incoming samples
if n < no nodesandsize(samples) > 1 then ⊲ n is a split node

rpdt(n).rp = calculate random projection() ⊲ RP assigned to node n
rpdt(n).p = rpdt(n).rp ∗ rpdt(n).features′ ⊲ Features are projected
rpdt(n).max threshold = calculate IG maximum(rpdt(n), thresholds)
divide samples(rpdt(n)) ⊲ Divides samples according to max threshold

else ⊲ n is a leaf node
calculate tree probabilities(rpdt)

end if
end for
return rpdt

end procedure

Algorithm 2 Random Projection Forests: Training.

Input: size,depth, samples, thresholds
Output: forest

for i = 1 to size do
features = calculatebootstrapsample(samples)
forest(i) = train projection decision tree(depth, features, thresholds)

end for
calculate forest probabilities(forest)

return forest

particular node’s random projection vector. Then, the feature vector will be propagated

to either the left or the right child node according to the result of the comparison

between the projected vector and the threshold, as shown in Equation 7.5. This process

will be repeated until the feature vector reaches a leaf node in each of the trees in the

forest. In this implementation of RPFs, each tree will cast a unit vote. Consequently,

the predictions of each tree in a RPF of size N will be linearly combined and then

normalised, as shown in 7.6.

P (h) =
1

N

N
∑

t=1

P Tt(h) (7.6)

where P (h) is the probability of occurrence of the habitat h in the unseen photograph

and P Tt(h) is the probability of occurrence of the habitat h according to the decision

tree t.
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7.5 Experiments

A series of experiments was carried out to evaluate the use of ground-taken photograph-

s, random projection forests and low-level visual features when applied to automatic

habitat classification.

We set up these experiments with the goal of studying the effects on the performance

of an specific set of parameters. Moreover, we decided to compare Random Projection

Forests against traditional Random Forests to obtain a more in-depth study of its effects.

These parameters are:

• Depth variations: As mentioned previously in this chapter, stability is a crucial

trait in Random Forests. In order to measure how stable our RPFs are, we carried

out a small experiment, in which we compared results obtained using RPFs and

RF with depths varying from 5 to 10.

• Input: Once the depth is set, we study the results obtained by varying the input

of our framework. To do this, we use three different types of input. Figure 7.2

shows the differences in input information in each case.

These three categories are:

– Whole images: Features are extracted from the photographs as a whole. Con-

sequently, each photograph in our database produces one feature vector.

– Annotation Segments: Features are extracted from each different annotated

polygon within a photograph. Consequently, each photograph in our database

will produce a variable number of feature vectors, depending on the number

of habitats present in it.

– Blocks: The ground-taken photographs are divided in square blocks of varying

sizes and features are extracted per tile. The size of these tiles are 64 and

1024 pixels. Consequently, we will obtain 1974 and 24 feature vectors per

image, respectively.

• Colour, pattern and texture features: Human surveyors will normally take into

account colour, pattern and texture information in their classification. Conse-

quently, we are extremely interested in studying if these features in particular can

also be applied in our automatic system. In order to do this, we will compare

performances of these features versus the performance of the “Other Features”

presented previously Chapter 6. The features extracted were previously described

in Chapter 6. These are: colour features (Color Histogram and Color Moments),
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 Input 1: Whole Image 

Ground-Taken Photograph 

Input 2: Annotations 

Input 3: Blocks 

1 Feature Vector 

3 Feature Vectors 

4 Feature Vectors 

Figure 7.2: Input Feature Vectors For The Classifiers. Each input type generates a
different number of feature vectors per photograph.

texture features (Tamura Coefficients and GLMC), pattern features (CPAM) and a

combination of six of the most common visual features currently used in Computer

Vision problems (GB, GIST, SIFT, SSI, PHOW, PHOG).

• Database: Given the different nature of the databases created in this thesis, Habi-

tat 1K being collected under controlled circumstances and Habitat 3K being col-

lected using crow-sourcing methods, we also aim to study their performance when

the input data and the features extracted are modified. Moreover we aim to s-

tudy the effect that increasing the number of habitats presents and the number of

instances of each habitat also results in improved results.

In essence, the experiments helped us determine the best configuration of these pa-

rameters to obtain an equilibrium between accuracy and efficiency when automatically

classifying habitats.

7.5.1 Performance Metrics

In order to assess the performance of RPFs and low-level visual features when automat-

ically classifying habitats, two separate metrics were calculated: recall and precision.
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Firstly, the recall and precision have been measured using the implementation proposed

in [216]. Let Nh be the number of photographs in the test set whose habitats are

correctly labeled by an expert and are part of our ground-truth. Let Nsys be the number

of photographs that are suggested for each habitat in our system, and Nc the number

of images whose habitats our system correctly suggests. The precision and recall are

defined as shown in Equation 7.7 and Equation 7.8.

recall(w) = Nc/Nh (7.7)

and

precision(w) = Nc/Nsys (7.8)

Moreover, in order to measure the robustness and the performance of our approach,

in all experiment scenarios in this chapter and following chapters, the database was

randomly divided ten different times. Each time the training set contains 2
3 of the

photographs and a test set contains the rest of the images. Therefore, the recall and

precision results shown in the next sections are an average of the results obtained with

the ten randomly-generated training and testing sets.

7.6 Results

Before starting our series of experiments to assess the effects of the low-level features

and our databases as previously described, we had to test first two crucial aspects of our

RPFs: their efficiency and their stability. RPFs would be considered efficient if their

training and testing execution times were better than RFs executions times. Moreover,

they would be considered stable if small changes in some parameters, particularly the

sizes and the depth of the trees, produced only small changes in the performance of the

forest.

First, in order to asses the efficiency of RPFs, we calculated the execution times of

training forests of sizes from 1 to 150. We compared these results with those obtained

from using RF. In this case, colour, texture and pattern features from the images as a

whole were used as the input of both sets of forests. Moreover, we trained ten sets of

forests and calculated the average execution times. Additionally, in the case of RFs,

we took into consideration 2
3 of the features extracted. The choice to select 2

3 of the

features was not random: we chose this particular number because it is the same amount
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of features that are projected with our approach. When we project the feature vector,

only 1
3 of the features will be ignored, since they are projected with the value 0. The

other 2
3 of the features will be projected with the values 1 and -1. Consequently, we are

comparing efficiency when the same number of features are activated in the split nodes.

Experiments showed that our RPFs performed equally or more efficiently in all cases.

When the sizes of the forests was relatively small, less than 20 in general, both approaches

would take similar times. However, once the number of trees in the forest increased,

RPFs would take less time to generate. This is consistent with the operations taken into

account in each split node. RPFs only require an arithmetic operation, a multiplication,

while RFs will test several sets of random features to find the configuration with a

higher Information Gain. Table 7.1 shows a particular example of this. To make the

visualization easier, Table 7.1 show the average execution times of RFs and RPFs with

trees of depth 9. As can be seen, execution times are similar, with a difference of less

than 0.1 seconds in favour of RFs, when the size of the forest is small but, as it increases,

RPFs take less time to train its forest, even reaching a difference of over 4.5 seconds.

Table 7.1: Average Execution Times. These results were obtained training Random
Forests and Random Projection Forests of deph 9 and with a varying size between 1

and 150.

Execution Time (s)

Size RF RPF
1 0.5460 0.5772
10 4.7892 4.8360
20 9.6721 9.4069
30 14.6329 12.4785
40 19.2193 18.0181
50 24.5078 21.6513
60 29.2502 27.3158
70 33.7586 31.6682
80 38.7974 36.8942
90 43.4463 40.2327

100 48.7659 45.2403
110 54.4599 50.5599
120 59.0308 55.0528
130 63.2740 58.5316
140 68.6872 63.1180
150 72.6965 68.1724

In order to obtain more information about the stability and performance of our frame-

work, we also compared our Random Projection Forests with Random Output Space

Projections (ROP) [103], which used random projections of the output to train random

forests. We calculated execution times, recall and precision using pattern, colour, texture

and all features together with trees with depth from 2 to 10 and with forests with sizes
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from 1 to 150. Table 7.2 shows the average execution time, recall and precision of all

scenarios. As can be seen, Random Output Space Projections had a much more efficient

execution time than both Random Forests and Random Projection Forests. However,

their performance when classifying habitats, which are extremely visually similar, was

considerably less accurate, particularly in terms of precision. For this reason, we de-

cided to keep using Random Projections in each of our nodes instead that in the input

only and we also decided to compare our framework with traditional Random Forests

in terms of recall and precision.

Table 7.2: Execution time in seconds, recall and precision averages of Random Forests
(RF), Random Output Space Projections and Random Forests (ROP) [103] and Ran-

dom Projections Forests (RPF).

RF ROP RPF

Time 36.595 25.196 33.984
Recall 0.313 0.21 0.408

Precision 0.26 0.12 0.265

Second, in order to assess the stability of our RPFs we decided to test the approach

and study its average recall results for first-tier habitats when the depth of the trees

ranged from 2 to 10 and the size of the trees varied from 1 to 140. Following the same

configuration as in the previous experiment, texture, pattern and colour features from

the images as a whole were used to obtain the recall of our approach when the size

and depth of our RPF were varied. Moreover, to get a better understanding of their

stability, we compared our results with those results obtained from using RFs under the

same circumstances. Figure 7.3 shows the results in the particular case of habitats of

class A (Woodland and Scrub). As can be seen, RPFs are considerably stable, as RFs,

since small changes in size and depth result in small changes in the results.

(a) RPF (b) RF

Figure 7.3: Stability of RPFs and RFs. We show the recall when classifying Woodland
and Scrub (A) habitats with Habitat 1K.

It is important to notice that, given the results from the previous experiments and, in

order to present the remaining results in a more compact and comprehensive manner,
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we decided to choose a fixed depth of 9 for the trees. That is, each tree in the RPFs or

in the RFs will be composed of 512 nodes, unless the opposite is stated.

The two previous experiments led to us conclude that RPFs were a viable alternative to

RFs. They are stable and have better execution times than traditional Random Forests.

The next logical step was to begin testing the performance of the classifier itself when

annotating habitat classes with more depth.

However, before starting to annotate unseen test samples, we decided to complete one

more experiment in which we studied the effect of different types of input photographs.

We decided to test this in order to find the best configuration for the rest of the exper-

iments in terms of source data. As mentioned previously, we contemplated three cases:

the whole photograph as an input, using the polygon annotations and using blocks with-

in the images. Moreover, we tested both first and second-tier habitats using our Habitat

1K database. Figure 7.4 shows the results obtained for first-tier habitats. We show the

precision and recall results we obtained for all three cases when the depth of the trees

was set at 9 and the size of the forests was 150.

(a) Recall (b) Precision

Figure 7.4: Effect of Input in RPFs. Results show that using the Whole Image (WI)
obtains better results than using Segmented Annotations (S) and square Blocks of 64

(B64) or 1024 (B1024) and pixels.

Results were consistent thorough all scenarios and, contrary to our preliminary thoughts,

using the whole image as the input yielded the best results both in terms of efficiency

and accuracy. This is particularly noticeable in the precision results shown in Figure 7.4.

As can be seen, using the whole image as the input yielded the best precision results in

all testing cases.

In particular, tiles proved to be very inaccurate when classifying habitats in terms of

precision. While their recall was more accurate than the use of whole images for Wood-

land and Scrub (A) and Grassland and Marsh (B) habitats, their precision results in

general were quite low, reaching less that 1.5% in the cases of Grassland and Marsh
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(B), Tall Herb and Fern (C) and Heathland (D). Moreover, 64x64 tiles were special-

ly inaccurate when classifying second-tier complex habitats, such as Hedges and Trees

(J.2.3). This is not surprising, since Hedges and Trees (J.2.3) and Heathland mosaics

(D) are composed of several types of vegetation that belong to other habitats as well.

Correspondingly, if a block only represented a small portion of one type of vegetation

that could be part of several habitats, such as acid grass being part of Acid Grassland

habitats, Dry Heath/Acid Grassland mosaics and Dry Heath/Scrub mosaics, classifying

it correctly becomes virtually impossible when only taking into consideration low-level

visual features. This was mainly because the small size of the tiles was insufficient for

the information of such habitats to be collected. Moreover, using 64x64 tiles proved to

be a challenge, since the training phase became less efficient. The use of tiles entailed

that 1,974 tiles were generated by each photograph, with a total of 2,143,764 tiles in

Habitat 1K, 714,588 of those used for testing and 1,429,176 used for training.

However, as can be seen, when the size of the blocks increased from 64x64pixels to

1024x1024 pixels, recall results improved considerably. This is consistent with the results

obtained from the whole images: the larger the area we extract features from, the more

accurate the results. 1024x1024 pixel tiles divide the photographs from our Habitat 1K

database in twenty-four tiles, which were large enough to contain more information, such

as the combination of several simple habitats to create a complex habitat.

On the other hand, the use of the annotated polygons yielded better results than the

use of blocks and, as shown in Figure 7.4 for the case of Tall Herb and Fern (C), even

better results than using the whole images. However, their precision results were lower

than using the whole image. Moreover, the trade-off between accuracy and efficiency

was not good enough to choose annotated polygons in further experiments. That is, the

recall improvement over the results of using whole images was small even though the

computation resources required were larger.

Using the whole photographs as the input entailed a much faster training phase and

resulted in the majority of the most accurate results. Moreover, complex habitats ob-

tained better recall and precision results, since all the information within the images

was taken into consideration. Consequently, due to their balance between efficiency and

accuracy, we decided to continue our experiments using the photographs as a whole.

Once this experiment was finished and the whole images were chosen as the most suitable

candidates for the input of our system, we decided to test our framework’s performance

when classifying habitats present in unseen ground-taken photographs. As mentioned

previously, we were particularly interested in studying the effects that low-level features

had in relation to our two datasets, Habitat 1K and Habitat 3K, and in further comparing

the performance of RFs with RPFs.
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In order to assess the effect of low-level visual features, Random Forests and Random

Projections Forests, we have tested ten scenarios with each or our databases. These

scenarios are:

1. RPF with colour features. This scenario is referred to as RPF - Color in the figures.

2. RPF with pattern features. We refer to this as RPF - Pattern in the figures.

3. RPF with texture. This is called RPF - Texture in the figures.

4. RPF with all three features linearly combined. This scenario is referred to as RPF

- All in the figures.

5. RPF with other features. In order to make visualization easier, we have not includ-

ed these results in the graphs. However, the findings from this set of experiments

will be commented and compared with the results obtained in the other experi-

ments.

6. RF with colour features. This scenario is referred to as RF - Color in the figures.

7. RF with pattern features. We refer to this as RF - Pattern in the figures.

8. RF with texture features. This is referred to as RF - Texture in the figures.

9. RF with all three features linearly combined. In order to make visualization easier,

these results are not included in the graphs. However, the findings from this set

of experiments and how they compare with the other feature combinations will be

discussed.

Moreover, we divided the results obtained according to the hierarchical structure of

Phase 1. Consequently, first we calculated recall and precision results for first-tier habi-

tats and then for second- and, in some cases third-, tiers. We have divided these results

into two additional sections: Section 7.6.1 presents results obtained when only classi-

fying first-tier habitats and Section 7.6.2 presents results obtained when looking into

second- and third-tier classes. Finally, we present some visual examples obtained during

our testing in Section 7.6.3.

7.6.1 First-Tier Classes

Figure 7.5 shows the recall and precision results obtained in the testing scenarios in-

troduced previously when using features extracted from whole images from Habitat 1K,

referred to H1K from now on, as the input. Additionally, Figure 7.6 shows the same

metrics when testing our framework with features extracted from whole photographs
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from Habitat 3K, referred to as H3K, as the input. We tested forests with sizes ranging

from 1 to 150 and with depths ranging from 2 to 10. However, in order to present the

results in a clear and concise manner, we set their depth to 9 in the previous figures.

Nevertheless, the performance of both systems was similar and stable in all cases.

Looking at the graphs as a whole, it can be noticed that recall results are higher than

precision, regardless of the approach followed and the features extracted, with Miscella-

neous (J) being the only exception. This is consistent with the more relaxed nature of the

recall measure in comparison with precision, as mentioned in Section 7.5.1. Moreover,

at a broad glance, it is clear that Woodland and Scrub (A), Grassland and Marsh (B)

and Miscellaenous (J) are the most successfully classified habitats with H1K, while H3K

obtains higher accuracy for Woodland and Scrub (A) and Open Water (G) habitats.

This is due to two main reasons: in both cases, both successfully classified habitats are

either the habitats with most instances (Woodland and Scrub, Grassland and Marsh)

or they are very visually different from the rest of the habitats present in the database

(Open Water). The first reason entails that the habitats are presented under many dif-

ferent circumstances and conditions and the second reason makes those habitats stand

out from the other habitats present in the database, therefore their classification is more

straightforward.

On the other hand, Tall Herb and Fern (C) and Heathland (D) are the most challenging

habitats to classify when using H1K and Tall Herb and Fern (C) and Rock Exposures

and Waste (I) obtain the least accurate results when using H3K. Following the ideas

discussed previously, this is to be expected. In both cases, both habitats are the classes

with the least instances in the database. For example, in H1K, Grassland and Marsh have

1008 instances versus a mere 95 instances collected from Tall Herb and Fern habitats.

Likewise, Woodland and Scrub have 2243 instances in H3K, with Rock Exposure and

Waste having only 145. The effect that the number of instances has on the performance

is also exemplified by the behaviour of Heathland habitats (D) in H1K and H3K. Their

classification in general improves greatly in H3K given their much larger number of

instances in the database, 824 in H3K against 135 in H1K.

Moreover, similar visual properties between habitats also entail a lower performance.

All inaccurately classified habitats can easily be confused with other habitats. Tall herb

and Fern (C) can be easily mistaken for Scrub (A.4), and Rock Exposure and Waste

(I) share many similarities with Coastland (H) habitats, particularly Maritime Cliffs

(H.2). This last case is what produces such unstable precision results when classifying

Coastland (H) habitats, as shown in Figure 7.6.

The impact of visual similarity in the classification process is further shown in Table 7.3

and Table 7.4, which present the confusion matrices for all first-tier habitats for both



Chapter 7. Random Projection Forests 133

H1K and H3K when classified using only colour features. In order to obtain a more

accurate resuls, we used the annotations as the input of the classifier in each case and

we took into consideration only the most probable result obtained with our framework.

In Table 7.3 and Table 7.4, each row represents the habitat of the annotation and each

column represents the most probable annotation that our system predicted for that

case. Ideally, the matrix would be a diagonal matrix, in which each habitat is correctly

classified. However, as can be seen, similarities in visual properties result in common

misclassifications. This is clear large number of cases in which Tall Herb and Fern (C)

and Heathland (D) are misclassified as Woodland and Scrub (A) and Grassland and

Marsh (B) due to their similar visual characteristics of both habitats with Scrub (A.4)

habitats.

If we look into the experiments more in depth, we can also find quite interesting results.

First of all, in general and regardless of the low-level features taken into consideration,

Random Projections Forests is able to outperform Random Forests when classifying

first-tier habitats in the majority of the cases. Moreover, this improvement is specially

noticeable and particularly important when looking at the systems’ precision. An ex-

ample of this is the case of Woodland and Scrub (A) habitat, in which the precision of

using RPFs clearly surpasses RFs in both H1K and H3K. These results, combined with

the results obtained previously regarding the efficiency and stability of both approach-

es, serve to illustrate the validity of RPFs and their applicability not only to habitat

classification, but also, potentially, to other classification tasks.

Another interesting result can be seen when comparing the different types of features

extracted. As we previously discussed, the pattern features we have chosen [148] combine

both color and pattern texture information. Consequently, they were the best candidates

to extract information from the images in a compact and descriptive manner. As a

result, the fact that they obtain most of higher recall and precision measures is not

a surprise and supports our decision of having chosen them as guidelines to study the

initial performance of our system. Moreover, it is interesting to notice that these pattern

features perform equally well with both classifiers, RPFs and RPs, and they generally

generate the best set of results obtained with each classifier.

However, what is more intriguing is the performance that texture features have obtained

in our whole system. Initially, we regarded texture features as as as useful and informa-

tive as colour features. This is in part supported by its recall results when used with

H3K, where they perform slightly less accurately than our other features. In the case

of Open Water (G), they even obtain one of the most accurate recall measures, close to

98%. Nevertheless, it is their performance in terms of precision in all cases what clearly
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Table 7.3: Confusion Matrix of H1K and RPFs trained with colour features. Correct classification percentages are shown in bold, while common
misclassification scenarios are shown in italics.

A B C D E F G H I J

A 62.65% 4.08% 16.33% 4.69% 0% 0% 0% 0% 0% 12.24%
B 8.33% 66.77% 12.50% 11.41% 0% 0% 0% 0% 0% 0.99%
C 44.21% 13.68% 1.05% 35.79% 0% 0% 0% 0% 0% 5.26%
D 34.8% 22.22% 24.441% 2.22% 0% 0% 0% 0% 0% 16.30%
E 0% 0% 0% 0% 0% 0% 0% 0% 0% 100.00%
F 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
G 0% 0% 0% 0% 0% 0% 33.33% 0% 0% 66.67%
H 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
I 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
J 4.08% 4.98% 0.60% 2.01% 0% 0% 0% 0.00% 0.00% 88.32%
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Table 7.4: Confusion Matrix of H3K and RPFs trained with colour features. Correct classification percentages are shown in bold, while common
misclassification scenarios are shown in italics.

A B C D E F G H I J

A 52.92% 9.99% 17.83% 13.73% 0% 0% 0% 0% 0% 5.53%
B 5.10% 52.14% 5.35% 18.37% 0% 0% 0% 0% 0% 19.04%
C 42.57% 6.60% 3.63% 34.32% 0% 0% 0% 0% 0% 12.87%
D 29.98% 43.81% 0.97% 5.83% 0% 0% 0% 0% 4% 15.41%
E 0% 0% 0% 0% 0% 0% 0% 0% 0% 100.00%
F 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
G 0% 3% 0% 4% 0% 0% 35.55% 0% 22% 35.66%
H 6% 11% 0% 0% 0% 0% 0% 3% 37% 43%
I 8% 0% 0% 3% 0% 0% 0% 67% 0% 22%
J 4.11% 2.66% 0.53% 1.01% 0% 0% 0% 0.00% 0.16% 91.53%
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implies that texture alone is not descriptive enough to accurately classify first-tier habi-

tats. This is exemplified in the classification of Woodland and Scrub (A), Grassland and

Marsh (B) and Miscellaneous (F) habitats for both H1K and H3K, in which they obtain

up to 20% less accuracy than any other method. Moreover, this inaccurate performance

independent from the classifier used, as texture features obtain the less accurate results

with both RFs and RPFs.

The performance of texture features is particularly striking when it is compared with

the results obtained from using colour features. Even though the colour features we have

extracted, colour histograms and colour moments, are quite simple, their performance

is undoubtedly better than the performance of the texture features. Moreover, colour

features are more stable, with the differences between its recall and precision results not

being as abysmal. In some cases, such as the classification of Tall Herb and Fern (C)

in H1K or Woodland and Scrub (A) both in H1K and H3K, they can even outperform

pattern features. In summary, this dissonance in performances between texture features

and colour and pattern features serves to emphasise the importance of colour information

in the classification process. Moreover, it has helped determine that, contrary to pattern

and colour features, texture alone is not a suitable candidate for habitat classification.

Another important point is given by the performance obtained by uniting the colour,

texture and pattern features. Instead of increasing dramatically the results with our

system, its results are generally worse than those obtained using pattern, and sometimes

colour, features alone. This supports the idea the combination of multiple features might

not be the best solution to a classification problem such as ours, not only because the

training phase will be more computationally expensive, but also because the results

obtained might not be the most accurate.

This notion is also supported by the results obtained from uniting the “Other” visual

features. These results are not in the graphs to make the visualization of the most

relevant features easier. However, their performance was comparable to the lowest per-

formance of the texture features, with recall not surpassing 30% and with a precision of

less than 20% accuracy with their best configuration, which was found when classifying

Woodland and Scrub (A) with RPFs. Consequently, these features are less accurate

than colour, pattern in all cases. These results also help stress the crucial significance

of feature selection and its problem-dependent nature. As can be seen, regardless of

the classifier used or the database chosen, SIFT, GIST, GB, PHOG, PHOW and SSI

features are unsuited for the task of habitat classification.

Finally, we can also compare results obtained when using Habitat 1K and Habitat 3K.

As can be seen, as the number of instances in our databases grow, so do the general

recall ability and precision performance of the system. This is consistent with the image
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annotation framework we have created, in which the more robust the input database and

the more significant the features extracted, the more accurate our classification should

be. As mentioned previously, this is clearly visible in the case of Heathland (D) habitats.

Its precision in particular improves dramatically, from around 10% precision at most in

H1K to almost 30% in the case of RPF and pattern features.

However, it is also important to comment that the results obtained in this section, while

a starting point, are far from perfect. Even though recall is high, with more than 50%

recall in four out of the five habitats collected in H1K and four out of the seven habitats

stored in H3K, it is also very low, less than 10%, for the rest of the habitats. Moreover,

precision results are similar or, in the case of H1K, even lower. This is not surprising,

since as we mentioned previously, the use of low-level visual features only in a FGVC

problem such as habitat classification, in which classes are extremely visually similar,

will entail a loss of information, particularly semantic information, that could be crucial

in the classification process. As a direct consequence of this, we can only expect these

results to be less accurate when classifying second- and third-tier habitats, since the

similarities between classes on these levels are even more pronounced.

7.6.2 Second-Tier and Third-Tier Classes

Figure 7.7 shows the recall and precision results obtained in the same testing scenarios as

the previous section when using features extracted from whole photographs from H1K as

the input. Additionally, Figure 7.8 shows the same metrics when testing our framework

with features extracted from whole photographs from H3K. Testing was done varying

the size of the forests between 1 and 150 and the depth was varied between 2 and 10.

However, as can be seen in the previous figures, we have set the size of the forests to 120

and the depth of the forests to 9. Since the performance of both systems was similar

and stable in all cases, this was done in order to make the visualization of the results

easier.

Looking at all the graphs as a whole, we can see that, similarly to the classification of

first-tier habitats, the recall metric is more accurate than the precision measure in all

cases. Moreover, as projected in the previous section, both metrics have experimented a

significant decrease in accuracy. Precision metrics, in particular, are the most affected.

This is to be expected, since we are only extracting visual information while, at the

same time, trying to classify classes which are extremely visually similar.

Notably, precision for habitats within the classes Tall Herb and Fern (C) and Heathland

(D) in H1K are particularly inaccurate. Moreover, second-tier habitats from Tall Herb

and Fern (C), Heathland (D), Coastland (H), Rock Exposure and Waste (I) obtain the
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lowest precision when using H3K as the input. This is consistent with the comments

from the previous section in which we discussed the limitations that visual features have

when classifying FGVC classes.

Additionally, it can also be appreciated that complex and artificial habitats obtain par-

ticularly low precision and a average recall results. Heathland mosaics (D.1. and D.2.)

and Mixed Woodland (A.2) obtain some of the lowest precision results, even reaching 0%

in some cases. Fence (J.2.4) habitats experiment similar results. Nevertheless, Hedges

and Trees (J.2.1), another complex habitat, obtains quite good recall results with RPFs

and texture or pattern features but generate a precision close to 1%.

On the other hand, the recall and precision of the two classes with more instances in our

databases, Woodland and Scrub (A) and Grassland and Marsh (B) do not experiment

such a dramatic decrease between recall and precision. Broad-leaved Woodland (A.1)

and Acid (B.1) and Neutral (B.2) Grassland obtain the highest recall results in H1K

and in H3K. As mentioned in the previous section, this is mainly due to the fact that

both databases have a larger number of these habitat classes in them.

Moreover, following the previous trend, it can be seen that RPFs keep outperforming

RFs in all cases, particularly when measuring the recall of the different approaches.

This helped further establish RPFs as a more adequate candidate for the classification

of habitats, albeit both systems proved to be generally inaccurate for the task of second-

and third-level habitat classification.

In terms of the effectiveness of the features extracted, the experiments revealed a similar

situation to the previous scenarios in terms of the performance of pattern features.

CPAM features obtained the best precision and recall results in general in almost all

scenarios, with Neutral Grassland (B.2) in H3K and both Heathland mosaics (D.1 and

D.2) in H3K and H1K being the clearest exceptions. However, contrary to the previous

set of experiments, colour and texture features experimented a shift in performance.

Texture features obtained much more accurate results, oftentimes even outperforming

colour features, such as in the classification of Intertidal Mud/Sand (I.1) mosaics Neutral

Grassland (B.2) and, in one particular occasion, in the case of the recall for Dry Heath

and Acid Grassland Mosaics (D.2), even outperforming the use of pattern features. It

is because of this that we decided to keep using texture in our future experiments.

However, it should be noted that the use of texture features, both with RPFs and RFs,

also produced some of the most variable and unstable results. For example, their recall

accuracy for Broad-leaved Woodland (B.1) and Dry Heath/Grassland mosaic clashes

with their inability to classify Fences (J.1.3), Marshy Grassland (B.3) and even Mixed

Woodland (A.2). On the other hand, the use of pattern features produce more stable,

albeit less accurate on occasion, results.
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On the other hand, colour features experienced a decline in accuracy in both recall

and precision metrics. These two situations are linked, since the colour characteristics

between members of the same classes can be too subtle while texture characteristics

might be more pronounced. For example, the texture of a Dry Heath/Acid Grassland

mosaic is quite different from a Dry Heath/Scrub mosaic, while the colour characteristics

might be similar, since Scrub and Acid Grassland can share the same shades of green.

Regarding the effects of each of the databases, it can be seen that the situation was

reversed in comparison to the classification of first-tier habitats. In this case, results

for H1K habitats were more accurate than results from H3K. This is consistent with

the nature and purpose of both datasets. H1K photographs were taken under more

controlled situations. Moreover, all four sites visited were from the same geographical

area, Hampshire. Consequently, the variation of second- and third- tier habitats was

not as large. For example, most of the woodland photographed was Broad-leaved (B.1),

and most of the grassland was Neutral Grassland (B.2). These are, not incidentally,

the two most accurate classified habitats. On the other hand, H3K photographs were

taken under an extremely varied number of conditions. They were taken by a number of

different people, located all across Great Britain, using different equipment and during

different times and years. Consequently the variation present, which greatly helped first-

tier classification, harmed second- and third-tier classification because the instances for

each different combination of conditions were not enough.

Moreover, another set of interesting results can also be found when looking at the new

categories introduced with H3K. For example, Open Water (G) obtains some of the

highest recall results of the whole framework. However, its precision results are lower.

This is mainly due to the reflection effects of the water. Consequently, the colour,

pattern and even texture between some of the instances in the Open Water category

were similar to those of the habitats which were reflected in the water.

Another important result comes from the classification of Inland Cliffs (I.1.1) and Mar-

itime Cliffs (H.3). This is a great example on the limitations of visual features, since

both habitats are composed of essentially the same type of geographical object, a cliff.

It is only their location with respect to water what makes them different habitats. As a

result, it is clear that visual features alone cannot help their correct classification.

In summary, these sets of experiments helped determine that, while RPFs are viable

alternative to RFs, the current design had clear limitations for the accurate classification

of second- and third-tier Phase 1 habitats. These limitations were mainly due to the type

of features we were extracting. That is, the information that was being extracted was

not enough to clearly differentiate between extremely similar classes, such as a Maritime

Cliff (H.3)and an Inland Cliff (I.1.1) or between Tall Herb (C.1) and Scrub (A.4). The
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same way the “Other” set of features had proven to be insufficient to classify first-tier

habitats, the same low-level features that had obtained reasonably good results for first-

tier habitats now had clear limitations when applied to a finer level of classification.

This motivated us to contemplate the integration of another type of features in our

framework. In particular, we chose to include semantic information, which is crucial

when distinguishing between practically identical classes. This information would ex-

tract relevant information that was already in the photographs but that low-level visual

features could not collect. A way to introduce semantic information in the classification,

such as the approach we present in Chapter 7, would entail a higher performance in

terms of recall and, more importantly, precision in both classification scenarios.

7.6.3 Visual Results

Figure 7.10 and Figure 7.5 present two particular visual examples of our H1K and H3K

databases, respectively. Moreover, Table 7.5 and Table 7.6 results obtained from our

experiments. Both of them show the unseen test photographs and gives the first five

results obtained with RPF and RF when extracting pattern features, colour features,

texture features and all the features together. Additionally, correct results are shown in

bold and italics.

These examples serve to further illustrate the finding from these experiments. As can

be seen in both examples, RPFs are more accurate than RFs in all cases. Moreover, the

best classification results are obtained using pattern features.

7.7 Concluding Remarks

In this chapter, we have described in detail the Machine Learning approach we have

developed and used to automatically classify habitats: Random Projection Forests. This

is the third contribution of this thesis. In particular, we have described how they are

built, how they can be applied to image annotation and how they compare to Random

Forests. Moreover, we have carried out extensive testing to demonstrate their stability

and to study their performance when combined with low-level visual features.

Finally, we also present the first part of our fourth contribution: a study on the effects

that colour, texture and pattern features have on automatic habitat classification. Re-

sults have shown that, while low-level visual features can be used as the first step in

the classification, they present some limitations when classifying second- and third- tier

habitats, which have extremely similar visual properties.
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In the next chapter, we develop and present a new type of feature, specially created to

help with this problem by including semantic information in the classification process

as part of the input. We refer to these features as medium-level features.
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) J. Recall (j) J. Precision

Figure 7.5: Random Projection Forests. Recall and precision results for first-tier
habitats from Habitat 1K
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) G. Recall (j) G. Precision
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(k) H. Recall (l) H. Precision

(m) I. Recall (n) I. Precision

(o) J. Recall (p) J. Precision

Figure 7.6: (Cont.) Random Projection Forests. Recall and precision results for
first-tier habitats from Habitat 3K
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) J. Recall (j) J. Precision

Figure 7.7: Random Projection Forests. Recall and precision results for second- and
third-tier habitats from Habitat 1K
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) G. Recall (j) G. Precision
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(k) H. Recall (l) H. Precision

(m) I. Recall (n) I. Precision

(o) J. Recall (p) J. Precision

Figure 7.8: (Cont.) Random Projection Forests. Recall and precision results for
second-tier habitats from Habitat 3K
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Figure 7.9: Visual Example From H1K. Habitats present are: Acid Grassland - Semi-
Improved, Scrub and Bracken.

Table 7.5: Results. We show the five most probable results obtained with our exper-
iments.
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Figure 7.10: Visual Example From H3K. Habitats present are: Woodland - Broad-
leaved, Running Water, Scrub, Acid Grassland - Semi-Improved

Table 7.6: Results. We show the five most probable results obtained with our exper-
iments.
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Improved Grassland Dry Dwarf/Shrub Heath



Chapter 8

Medium-Level Features

As discussed in the Chapter 7, the use of low-level visual features has some limitations.

In particular, low-level visual features cannot, by nature, collect semantic information,

which can be crucial to distinguish between habitats that belong to completely differ-

ent classes but that share similar visual characteristics. In this chapter, we propose

the use of semantic features, referred to as medium-level features, in combination with

low-level visual features to improve the performance of our Random Projection Forests.

The generation, selection and extraction of medium-level features constitute the fifth

contribution of this thesis. Medium-level features are extracted from ground-taken pho-

tographs using a Human-in-the-Loop approach. We have created a set of thirty-six

questions regarding the objects present in the photographs and we use the answers to

these questions and the certainty users have on their answers to create medium-level

features. Experiments were carried out to test the addition of semantic features to our

framework and their effect when combined with low-level features. As will be shown

in the results, the inclusion of medium-level knowledge in our framework improves the

accuracy of the classification, with recall and precision improving significantly in the

case of complex habitats.

This chapter is structured as follows. Section 8.1 explains the motivation behind adding

Medium-Level Knowledge in our framework and how they can be used to help with

the problems brought by the “Semantic Gap”. Section 8.2 describes how this Medium-

Level Knowledge is extracted and how it can be transformed into features, referred to

as Medium-Level Features. Moreover, it also describes how it can be incorporated in

our image annotation framework. Finally, it also describes in detail the set of medium-

level annotations that we have created. Moreover, Section 8.3 gives a brief description

of the medium-level annotations and features that were extracted for our two habitat

classification databases, Habitat 1K and Habitat 3K, along with some statistics and

150
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some visual examples. Section 8.4 describes the type of experiments we have carried out

to assess their performance when combined to RPFs. Moreover, Section 8.5 presents the

results obtained from the experiments and discusses them in depth. Finally, Section 8.6

presents a brief summary of the contents of the chapter and some brief final remarks.

8.1 Motivation

Low-level feature selection and extraction methods have been successfully applied to

many popular Computer Vision problems, such as face recognition [203], image retrieval

[169] and even image annotation [76]. However, as shown in the results obtained in

Chapter 4 and Chapter 7, relying solely on low-level visual features entails some limita-

tions.

As mentioned in Chapter 6, low-level features commonly extract only visual information

in the form of global or local statistics. However, there are objects that, while belonging

to completely different classes, might have similar visual properties. This makes their

automatic classification process extremely complicated if only visual features are taken

into consideration. For example, based on colour, texture or pattern features alone, it is

impossible to distinguish a tree that belongs to a Woodland (A.1) habitat or a tree that

belongs to a Hedge and Trees (J.1.2.) formation. In these cases, there is a clear gap

between the visual characteristics of the objets within a photograph and their semantic

meaning.

This phenomenon is known in the Computer Vision field as the “Semantic Gap” [18].

The semantic gap is defined by [170] as “the lack of coincidence between the information

that one can extract from the visual data and the interpretation that the same data

have for a user in a given situation”. This concept clearly identifies the limitations that

visual information has when classifying objects. Moreover, it also points that there is

a lack of “interpretation” information taken into consideration during the classification.

In other words, the Semantic Gap can be caused or aggravated by traditional feature

extraction methods, which focus only on visual information extraction, while there is

a lot of semantic or interpretation information that could aid the classification process

that it is not extracted following these traditional feature extraction approaches.

In an effort to bridge this gap, the introduction of semantic information in the classifica-

tion process has been proposed. However, low-level feature extraction methods are not

suited for the collection of such semantic information. As a result, a new type of feature,

often referred to higher-level features, has been proposed [36]. Higher-level features are

designed to incorporate semantic information about the objects within an image. They
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(a) Semi-Improved Grassland (b) Improved Grassland

Figure 8.1: Visual Similarity of FGVC Problems. The two images belong to different
Grass categories. However, they are extremely visually similar.

can be used on their own or they can be combined with other types of features [134, 135].

Moreover, they can take many forms, as shown in [135, 151, 184]. Furthermore, can be

extracted automatically [36] or, as is our case, they can be extracted using humans [184].

Additionally, they can be applied to a wide range of problems, not only in the field of

Computer Vision [122], but also in other fields, such as Signal Processing [130].

It is particular crucial to notice that the semantic gap problem is even more pronounced

and has more effect in Fine-Grained Visual Categorization problems, such automatic

habitat classification. As described in Chapter 2, FGVC problems aim to accurately

classify between classes that are visually similar and have similar semantics [205]. For

example, current research on FGVC includes the automatic classification of different

types of leaves [108], flowers [136], dogs [120] and birds [15, 25]. As can be seen, the

classes to identify in FGVC problems share very similar visual properties and it is often

that they can be indistinguishable to the untrained eye. Figure 8.1 shows an example of

this based on our problem, automatic habitat classification. It can be seen how similar

Semi-Improved Grassland and Improved Grassland can be both visually, both of them

are mainly green objects with similar texture, and semantically, they are both types of

grasses.

In our case, we employ humans to extract semantic information in an effort to improve

the classification. We refer to this semantic information as medium-level knowledge, and,

from them, we create medium-level features. We introduce medium-level features in our

framework to incorporate crucial semantic information that low-level features are unable

to extract in the classification process. Additionally, the aim of using humans to collect

this semantic information is to create a system that can benefit from both humans’

strengths, such as being able to differentiate between different classes just by looking at

a photograph, and computers’ strengths, such as being able to carry out complicated

calculations at a fast speed. Consequently, in order to take into consideration visual



Chapter 8. Medium-Level Features 153

and semantic information during the classification of habitats, we combine low-level and

medium-level features.

In summary, we are adding semantic information, in the form of medium-level features,

to our image annotation framework in order to bridge the limitations of introduced by

low-level features and the semantic gap. The combination of low-level and medium-level

features is designed to help classify habitats which share very similar visual properties

and improve accuracy of our framework as a whole.

8.2 Medium-Level Annotations and Features

As mentioned in the previous section, higher-level knowledge can take many forms and

can be applied in different ways through the classification process. In this chapter, we

propose the inclusion of semantic information in the classification process as an extension

of our framework in order to improve accuracy. We refer to this semantic information

as medium-level knowledge or medium-level information.

In particular, we expand the Random Projection Forest design presented in Chapter

7 to include higher-level semantic information as part of the input. To do this, and

following the automatic image annotation approach we have created, we collect medium-

level knowledge as annotations. Figure 8.2 shows an overview of how the process of

creating medium-level information is carried out and how medium-level annotations are

transformed into medium-level features. As can be seen, the process can be divided into

two phases: the generation of the knowledge as annotations and the generation of the

corresponding features.

8.2.1 Knowledge and Annotation Generation

In this first phase, human users are needed to generate medium-level knowledge. These

users are not required to have previous knowledge of habitat classification. They do not

need to be Phase 1 experts, or even ecologists. The inclusion of users in the classification

process is an approach that has been used in the Computer Vision community for several

years [25]. This methodology is commonly referred to as a “Human-in-the-loop” (HITL)

approach.

First proposed in [24], HITL approaches have been successfully applied in FGVC prob-

lems, as shown in [25, 26]. Since FGVC classification is challenging for both humans and

computers, HITL methods were proposed to be an intermediate solution which would

progressively minimise the amount of human labour necessary to classify FGVC classes
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Figure 8.2: Medium-Level Information and Features. In our case, N is equal to 36
and certainty in measured between 0 (not sure at all) and 5 (completely sure).

[24]. HITL methodology can be easily applied many different problems, such as crimi-

nology [140], port design [29] and even aviation [171]. However, it is particularly suitable

for FGVC because it brilliantly utilises the ability that humans have to differentiate be-

tween objects. For example, [24] developed a HITL method for bird classification and

[151] used HITL technology for skin-lesion image recognition.

In HITL methods, a user is shown a photograph and, then, asked a series of questions

regarding the contents of said photograph. As can be inferred, the selection of the

questions is crucial. A set of sufficiently descriptive and discriminative questions must

be prepared, since they will determine the information that will be collected from the

photographs. These questions do not have to follow any particular pattern. They can be

completely open, multiple-choice or they can be simple “yes”-or“no” questions [24, 151].

In our case, we have developed a set of twenty-three “yes”-or“no” questions. This object-

based set of questions that aims to collect information about which habitats are present

within an image. Consequently, all the questions follow the same pattern: “Is/Are there

any X object/s in the photograph?”, with X being each of the thirty-six objects. The

list of questions is presented in Table 8.1.
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Table 8.1: Questions Asked To Users. With this questions, we extract Medium-Level
Knowledge which will be then transform into Medium-Level Features

Is/Are there any X object/s in the photograph?

Trees - leaves Grass - not green
Trees - no leaves Sand - mud

Trees - mixed leaves Small rocks
Scrub Big rocks

Grass - with flowers Water - standing
Grass - uniform Cliff - water

Grass - reed Cliff - no water
Bracken or fern Spring

Tall herb Summer
Heath Atumn

Water - runing Winter
Arable land Brown

Boundary - scrub/trees Yellow
Wall Red
Fence White
Sky Blue

Grass - bright green Green

Moreover, in order to make the extraction of information more efficient and less tiresome

for the users, the questions are all asked at the same time with the help of a drop-down

menu. This information is then converted into annotations. This whole process is

iterative and follows these steps:

1. The users are presented with a ground-taken photograph.

2. For each distinguishable object that they are able to identify in the photographs:

(a) Users create a polygon that contains said object If they are unable to create

the polygons, due to habitat regions not being clear enough to delimit where

they start or finish, their annotations will refer to the whole photograph.

(b) Users answer the twenty-three questions by choosing which objects are present

in the photograph if they want.

(c) For each answer, users also score their level of confidence in their response.

The level of confidence follows a scale between 0 and 5, with 0 being “not

sure at all” and 5 being “completely sure”. If their confidence is not filled,

we assume a confidence of 5. This answers will be used in the next step to

create the medium-level features.

3. Once the users have finished with all the objects in the image that they can dis-

tinguish, the information they have provided is converted into an annotation and
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stored. The coordinates of the polygon are stored in an XML file, in a similar

fashion as the ground-truth annotations were stored.

8.2.2 Feature Generation

To create the medium-level features, we use the confidence measures collected in the

previous step. For each image x in the database, all the users responses stored in a

23-dimension feature vector H(x) = (h1, h2, , h23) that is generated as follows:

hi =

{

ci if the answer to qi is “yes”

0 if the answer to qi is “no”
(8.1)

Where ci is the degree of confidence that the user has in that the object of question i

is present in the photograph x. Consequently, the vector H is what we will refer to as

medium-level features.

It is important to notice that our framework presents two modifications over traditional

HITL approaches, such as the methods presented in [24–26]. First, in the HITL method-

ology described in [24], the answer to one question directly influences the selection of the

following questions. This process is repeated iteratively until a prediction can be made.

This type of approach is consequent for the classification tasks chosen in [24]. That is,

bird classification. In [24], only one object within the photographs is being classified and

the questions asked about the birds in the photographs revolve around their characteris-

tics, such as the colour of their feathers, the shape of their beak, etc. Questions need to

be prioritised and changed because not all possible combinations of characteristics are

possible and because an species might be determined by a variable number of answers.

For example, birds with an orange beak might always have black feathers on their wings

but the shape of their heads might be a defining quality. Consequently, asking about

the shape of their head is crucial and might give an accurate prediction only with those

two answers, while inquiring about the colour of the wings might collect unnecessary

information for the classification process. In a way, we can regard the questions and the

objects of these questions as dependent of each other.

In our case, we have chosen to simplify this process. Users are shown all the questions

at the same time and they only have to choose which objects they see in the images,

where they are localised and their level of confidence in their answer. Consequently, one

answer does not affect other questions. The motivation behind this decision is rooted

in the notion that we are classifying several objects, or habitats, in each photograph

and the presence of one type of habitat in the image does not necessarily determine the
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presence of another habitat. For example, the appearance of bright-green grass does not

interfere with the appearance of sand. That it, we assume that all the objects present in

an image are independent from each other. Consequently, all questions must be asked

every time.

Our second modification is with regards to the extent to which humans are used in the

framework. [24–26] include human input iteratively. In our case, we asked the questions

once to the users. Then, we transform their answers into features which are used as the

input of the classifier. The main reason behind this decision is efficiency, since engaging

users in multiple cycles of image annotation was time-consuming and labour intensive.

8.3 Medium-Level Features in Habitat 1K and Habitat 3K

The extraction of medium-level feature for Habitat 1K and Habitat 3K was done fol-

lowing the steps described in the previous section. The annotation process was done

using the same annotation tool used to ground-truth our ground-taken databases [107].

We modified the tool to include the twenty-three questions instead of the Phase 1 clas-

sification scheme. To collect the information, we recruited three people who annotated

the photographs with medium-level information in four different sessions. Each im-

age was annotated once by one of the participants. Consequently, each photograph

in our ground-taken database generated one medium-level feature vector. An alterna-

tive method would have been to collect multiple feature vectors from each photograph.

This would have given us different points of view and additional information about the

ground-taken photographs. However, time constraints prevented this. Moreover, it is

important to point out that, following traditional HITL methodologies [151], none of

the users were trained ecologists.

Table 8.1 shows the frequency of appearance of the answers in both databases. Addition-

ally, Figure 8.3 shows four examples of annotated photographs in which the annotations

were global, as in the first column, and localised, shown in the second column.

8.4 Experiments

A series of experiments were carried out to test the inclusion of medium-level features to

our framework. Following the findings from Chapter 7, we decided to focus our experi-

ments on extracting features from the images as a whole and comparing the performance

of the modified RPF framework with the original RPF system.
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Table 8.2: Frequency of Appearance of Each Annotation in H1K and H3K.

Objects Habitat 1K Habitat 3K

Trees - leaves 43 193
Trees - no leaves 364 913

Trees - mixed leaves 238 375
Scrub 380 958

Grass - with flowers 541 1252
Grass - uniform 137 184

Grass - reed 69 197
Bracken or fern 130 250

Tall herb 23 119
Heath 91 745
Water 19 118

Arable land 67 119
Boundary - scrub/trees 217 436

Wall 12 95
Fence 153 241
Sky 916 2557

Grass - bright green 134 134
Grass - not green 0 39

Sand - mud 0 167
Small rocks 0 152
Big rocks 0 28

Cliff - water 0 84
Cliff - no water 0 183

Spring 352 75
Summer 431 122
Autumn 17 0
Winter 169 0
Brown 984 1007
Yellow 0 52

Red 0 28
White 0 4
Blue 1043 30

Green 967 47

Correspondingly, we set up these experiments with the specific goal of studying the effect

of medium-level features, RPFs and global feature vectors. Similarly to Chapter 7, we

studied this by generating results on the performance of RPFs when varying an specific

set of parameters. These parameters are:

• Medium-level features: Results from Chapter 7 demonstrated the clear limitations

of low-level visual features, particularly when classifying second- and third- tier

habitats. In this chapter, we have introduced the concept of medium-level features,

which were extracted using and HITL approach and store semantic information.
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(a) Trees-leaves(red), Sky(blue), Heath (yel-
low), Green

(b) Grass - Bright green, Boundary, Scrub,
Sky, Green, Blue

(c) Cliff - no water (red), Sky (blue) (d) Yellow, Heath, Sky, Water, Brown

Figure 8.3: Photographs Annotated With Medium-Level Tags. Users decided to use
global tags for photographs (a) and (c) and a mixture of global and localised tags for

photographs (b) and (d).

In these experiments, we aim to test their efficacy when compared to RPFs which

do not use them.

• Colour, pattern and texture features: Following our findings from the previous

chapter, we extract and compare the performance of our classifier when colour fea-

tures (Colour Histogram, Colour Moments), texture features (Tamura, GLCM),

pattern features (CPAM) and all of them combined are extracted and combined

with medium-level features. We project that visual features will continue produc-

ing high recall results for first-tier habitat classification while medium-level features

will increase precision accuracy when classifying second- and third- level habitats.

We also compare performances of these features against the performance of the

“Other Features”, a combination of six of the most common visual features current-

ly used in Computer Vision problems (GB, GIST, SIFT, SSI, PHOW, PHOG). For
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clarity purposes, these results will not be shown in the graphs, but we will describe

their performance in their respective sections.

• Database: Given the different nature of the databases created in this thesis, Habi-

tat 1K being collected under controlled circumstances and Habitat 3K being col-

lected using crowd-sourcing methods, we also aim to study the effect of semantic

information on their performance.

Moreover, we decided to compare the original design of Random Projection Forests

against Random Projection Forests with medium-level features to obtain a more in-

depth study of their effect. Additionally, to ensure consistency between the results, we

follow the same methodology as in Chapter 7 and we calculate the recall, precision and

the confusion matrix of results obtained.

8.5 Results

In order to assess the effect of medium-level visual features and Random Projections

Forests, we have tested ten scenarios with each or our databases. These scenarios are:

1. RPF with colour features and medium-level features. This scenario is referred to

as MLF - Color in the following figures.

2. RPF with pattern features and medium-level features. We refer to this as MLF -

Pattern in the following figures.

3. RPF with texture and medium-level features. This is called MLF - Texture in the

figures.

4. RPF with all three features linearly combined and medium-level features. This

scenario is referred to as MLF - All in the following figures.

5. RPF with other features and medium-level features. In order to make visualization

easier, we have not included these results in the graphs. However, the findings from

this set of experiments will be commented and compared with the results obtained

in the other experiments.

6. RPF with colour features. This scenario is referred to as RPF - Color in the

following figures.

7. RPF with pattern features. We refer to this as RPF - Pattern in the following

figures.
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8. RPF with texture. This is called RPF - Texture in the following figures.

9. RPF with all three features linearly combined. This scenario is referred to as RPF

- All in the following figures.

10. RPF with other features. In order to make visualization easier, these results are

not included in the graphs. However, the findings from this set of experiments and

how they compare with the other feature combinations will be discussed.

Similarly to Chapter 7, we divided the results obtained according to the level of detail of

the habitats classified. We have calculated the recall and precision for first tier-habitats

in Section 8.5.1, while Section 8.5.2 presents results for second- and third- tier habitats.

We compare each set of results with the Random Projections Forests results obtained

in the previous chapter. Finally, we present some visual examples obtained during our

testing in Section 8.5.3.

8.5.1 First-Tier Classes

Figure 8.4 shows the recall and precision results obtained in the testing scenarios in-

troduced previously when using features extracted from whole images from H1K as the

input. On the other hand, Figure 8.5 shows the same metrics when testing our frame-

work with features extracted from whole photographs from H3K as the input. We tested

forests with sizes ranging from 1 to 150 and with depths ranging from 2 to 10. However,

in order to present the results in a clear and concise manner, we set their depth to 9 in

the mentioned figures. Nevertheless, the performance of both systems was similar and

stable in all cases.

Looking at the results as a whole, we can see that, similarly to the results obtained

in Chapter 7, the recall results tend to be higher than the precision results in most

cases. The biggest difference in results is found in the case of H3K and Open Water

(G) habitats, which experience a recall close to 100% in all experiments but, in terms of

precision, these results drop to 40%. This situation also occurred in Chapter 7. However,

it is interesting to notice that for the rest of the experiments, the differences between

recall and precision result are not as pronounced.

Moreover, Tall Herb and Fern (C) and Heathland (D) continue being the most difficult

classes to classify for H1K, while Rock Exposure and Waste (I) obtains the most inaccu-

rate results when using H3K. This follows the trend discussed in Chapter 7 and should

not be surprising, since the number of instances of these habitats in their respective

databases are much lower. On the other hand, Woodland and Scrub (A), Grassland and
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) J. Recall (j) J. Precision

Figure 8.4: Medium-Level Features. Recall and precision results for first-tier habitats
from Habitat 1K
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Marsh (B) and Miscellaneous (J) continue being the most accurately classified classes

in all cases. Additionally, it can be clearly observed that the addition of medium-level

knowledge has aided Heathland (D) classification, with Heathland results, as a whole,

experimenting an increase in accuracy in all new testing scenarios.

Looking at the experiments more closely, it can be seen that the inclusion of medium-

level features matches or improves the performance of their equivalent experiment with

only low-level features in all scenarios tested. This supports our belief that their selec-

tion and extraction is clearly useful for the FGVC problem that is automatic habitat

classification. Medium-level features help with the visual similarities between some of

the most problematic classes, such as Tall Herb and Fern (C) and Heathland (D). In

fact, looking at the confusion matrices for the experiments with medium-level features,

shown in Table 8.3 and Table 8.4, we can see that the misclassification of some habitats

has been reduced by the introduction of semantic information. An example of this is

shown when classifying Inland Cliff (I.1.1) habitats versus Maritime Cliff (H.3) (includ-

ed in Coastland) habitats. The usefulness of medium-level features is clearly visible in

the case of Tall Herb and Fern (C) in H1K, in which the combination of pattern and

medium-level features present a great improvement over the results obtained with on-

ly pattern features. As mentioned previously, Tall Herb and Fern (C), while a simple

habitat in nature, it is one of the most difficult first-tier habitats to classify due to its

visual similarities with other habitats, such as Scrub (A.4), as shown in Table 8.3 and

Table 8.4, and also due to their lack of frequency of appearance in H1K. However, the

inclusion of semantic information affects its classification positively.

Another set of interesting results comes from comparing the different types of features

extracted and how they interact with our medium-level features. As was the case of

the results presented in Chapter 7, pattern features continue being the most accurate

ones in most of the cases. This is not surprising, since the feature vectors obtained

from extracting pattern and medium-level features contain color, texture pattern and

semantic information in the most compact way. Their combination with medium-level

features produces the majority of the most accurate results, both in terms of recall and

precision. Additionally, colour features continue performing adequately well, obtaining

similar results as the use of all the features put together.

Finally, texture features keep obtaining the least accurate classification results in all

testing experiments except one. This clear exception is found in the case of Heathland

(D) in H1K, in which texture and medium-level features, which generally perform quite

inaccurately, actually outperform pattern and medium-level features. This is due to

the clear influence of medium-level annotations. The HITL approach we have followed
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Table 8.3: Confusion Matrix of H1K once medium-level features have been added to Random Projection Forests

A B C D E F G H I J

A 72.86% 4.08% 6.12% 4.69% 0% 0% 0% 0% 0% 12.24%
B 7.84% 68.75% 12.50% 9.92% 0% 0% 0% 0% 0% 0.99%
C 44.21% 13.68% 20.00% 16.84% 0% 0% 0% 0% 0% 5.26%
D 34.81% 22.22% 7.41% 18.52% 0% 0% 0% 0% 0% 17.04%
E 0% 0% 0% 0% 0% 0% 0% 0% 0% 100.00%
F 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
G 0% 0% 0% 0% 0% 0% 33.33% 0% 0% 66.67%
H 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
I 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
J 4.08% 4.98% 0.60% 2.01% 0% 0% 0% 0.00% 0.00% 88.32%
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Table 8.4: Confusion Matrix of H3K once medium-level features have been added to Random Projection Forests

A B C D E F G H I J

A 57.82% 9.99% 13.51% 13.73% 0% 0% 0% 0% 0% 4.95%
B 4.89% 58.11% 4.63% 15.80% 0% 0% 0% 0% 0% 16.57%
C 33.99% 5.61% 13.86% 34.32% 0% 0% 0% 0% 0% 12.21%
D 27.55% 37.74% 0.24% 20.63% 0% 0% 0% 0% 2% 11.41%
E 0% 0% 0% 0% 0% 0% 0% 0% 0% 100.00%
F 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
G 0% 2% 0% 3% 0% 0% 43.08% 0% 18% 33.55%
H 4% 10% 0% 0% 0% 0% 0% 20% 28% 38%
I 7% 0% 0% 3% 0% 0% 0% 59% 9% 22%
J 3.40% 2.25% 0.32% 0.85% 0% 0% 0% 0.00% 0.05% 93.14%
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enabled us to use the classifying strengths of humans, who might not be able to differen-

tiate between different classes of heath mosaics, but who are very good at differentiating

between what constitutes heath and what makes it different from all other habitats. On

the other hand, the “other features“ remain one of the most inaccurate features, with

recall remaining at 39% at most and precision remaining at10% the best case, which

was Woodland and Scrub (A) classification with RPFs and medium-level features, once

again proving the problem-dependent nature of feature extraction and the importance

of feature selection.

Looking at the results from an input point of view, we can see that the performances

of H1K and H3K, particularly in the case of recall, are quite similar. The figures show

a more balanced set of results between the databases than in the previous chapter.

This is again a main consequence of introducing medium-level features. However, it is

important to notice that, while medium-level features improve accuracy in all accounts in

our framework, there are some cases in which the results obtained are still too inaccurate.

Examples of this include the classification of Tall Herb and Fern (C), Coastland (H) and

Rock Exposure and Waste (I) habitats with H3K, in which precision results average only

a 10% accuracy. For these cases, the inclusion of semantic information has proven to

be an development in the right direction, but it is still lacking. As a direct consequence

of this, we can expect the results for second- and third-tier habitats to improve, albeit

slightly, when combining medium-level features and low-level features.

8.5.2 Second-Tier and Third-Tier Classes

Figures 8.6 show the recall and precision results obtained in the same testing scenarios

as in Section 8.5.1. Additionally, Figures 8.7 show the same metrics when testing our

framework with H3K. Similarly to the other testing scenarios, we are using the whole

photographs when extracting the features. We tested the forests varying their size

between 1 and 150 and their depth between 2 and 10. However, in order to make the

results easier to visualise, we have set the size of the forests to 120 and the depth of the

forests to 9 in the graphs, since the performance of both systems was similar and stable

in all cases.

Looking at the results as a whole, it is clear that the relationship between the recall and

precision metrics, seen in the previous sets of experiments, is maintained. In all cases,

recall measures are higher than precision metrics. Moreover, habitats from Tall Herb

and Fern (C) and Heathland (D) continue being the most difficult to classify with our

framework in H1K. In the case of H3K, Coastland (H) habitats, particularly Intertidal

mosaics (H.2) and Rock Exposure and Waste (I) habitats obtain the less accurate results.
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On the other hand, habitats from Woodland and Scrub (A) and Grassland and Marsh

(B) remain the most accurately classified. It is important to notice that there is a

particular increase in the classification results for Mixed Woodland (B.2). This increase

in maintained in all scenarios where medium-level features are included except in recall

results for texture and medium-level features. Consequently, we can conclude that this

improvement is mainly due to the inclusion of semantic information.

Looking at the experiments more closely, it is clear that the inclusion of medium-level

features has aided the classification of second- and third- level habitats a great deal.

Those experiments in which medium-level features were used obtain more accurate met-

rics, particularly in terms of precision, with a raise close to 20%, as exemplified in Tall

Herb and Fern (C) results. Medium-level features have also obtained higher recall result-

s, albeit these improved results are not as consistently drastic as those seen in precision

measures. These improvements are more noticeable in the case of complex habitats, such

as Mixed Woodland (B.1.2), Heathland mosaics (D.1 and D.2) and, particularly, Hedge

and Trees (J.2.3) both in H1K and H3K. All of these complex habitats experiment a

significant increase in their recall and, to some degree, in their precision as well. This

is consistent with the type of information that we have extracted. Complex habitats

are in essence the types of habitat that most benefit from semantic information. This is

mainly due to their shares visual similarities with other multiple habitats, such as the

habitats of the vegetation that composes them.

Artificial habitats have clearly benefited from the introduction of semantic information

in the classification process. The main artificial habitats in both datasets are boundary

habitats, Wall (J.2.5) and Fence (J.2.4.) habitats. We can see in the results that

the have experimented an improvement in recall and precision close to 30% and 25%,

respectively. This is a reasonable consequence of the inclusion of medium-level features.

When considering only visual features, these habitats are generally difficult to classify

accurately because, in contrast to other types of habitats, such as Grasslands (B) and

Woodlands (A) which appear very prominently in all the photographs in which they are

depicted, they occupy a smaller fraction of the images. Consequently, most of the visual

information extracted from our global features will revolve around those larger habitats.

However, when we introduced semantic information and asked for the appearance of

“boundaries”, we were extracting information specially centered around these particular

habitats. Moreover, humans are exceptionally good at distinguishing artificial habitats,

such as fences and walls, from natural habitats, such as grass and cliffs. Therefore, the

certainty levels of the answers for these questions were always the highest possible and,

consequently, they had more weight during training.
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Moreover, looking at the performance of the medium-level features alone, it can be seen

that there is a clear variation between their effect on the different types of habitat classes,

regardless of their combination with other extracted features and the database used. For

example, while Coastland (H) habitats obtain slighter better recall and precision results,

their increase in accuracy is not as significant as the case of Heathland (D) habitats. In a

way, it seemed like the medium-level features had different levels of impact depending on

the habitat types. In an effort to understand the variable effect of medium-level features,

we revised the feature vectors generated by our medium-level knowledge and found that,

in most cases, lower increases in accuracy were caused by uncertain answers to our set

of questions. That is, the users who had annotated the photographs had chosen lower

certainty levels, generally between 0 and 2, when classifying these habitats. Moreover,

some of the users, in an effort to collect as much information as possible, had created

and labelled the same polygons containing habitats with two or more annotations, all

of them with low levels of certainty. This was particular prominent in the case of Cliffs,

both Maritime and Inland, and Intertidal habitats. Close to two thirds photographs

containing cliffs did not contain visual clues about whether or not the cliff was situated

near water. Consequently, some of the users decided to annotate the images with two

annotations, “Cliff - water” and “Cliff - no water” at the same time, assigning both

answer low certainty levels. This was also particularly prominent in Intertidal mosaics,

in which users’ were not sure about the distinctions between “Shingles” and “Sand”.

This practice, a direct consequence of involving humans in the classification process, led

to some lower quality features being extracted. However, an easy method to solve this

problem, which we could not carry out due to time constraints, is to have more than

one user classify each photograph in the database. That way, each photograph would

generate several medium-level feature vectors, ideally between four and seven, which

could then be combined using weights so more common answers would receive higher

weight than less frequent or more uncertain answers. By weighting medium-level features

a single user’s uncertainties would not affect the classification process as directly. We

consider this improvement as part of the future work that will be discussed in Chapter

10.

Considering the other different features we have selected and extracted, pattern features

continue being the best option of a more accurate classification. Moreover, texture

features remain the most inaccurate and unstable features both when used on their own

and when combined with medium-level features. On the other hand, colour and all the

features combined together obtain reasonably good results which, while not as accurate

as pattern features, outperform texture features in all cases in both datasets.

Finally, comparing the performance of both datasets, it can be observed that, as studied

in Chapter 7, the habitats with more instances in each database are the ones which are
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more accurately classified. Moreover, while the differences in results were more striking

when we compared RF and RPFs, in this case, the results obtained from both datasets

are quite similar in overall precision and recall terms.

In summary, these series of experiments served to corroborate that the inclusion of

medium-level features helps our framework obtain higher recall and precision results.

The inclusion of semantic information has been of particular help with complex habitat-

s, such as Trees and Hedges (J.2.3) habitats. In these cases, the recall, and the precision

to a lesser extent, experiment a noticeable increase. However, there are still improve-

ments that could be done, specially in terms of improving precision results of habitats

such as Coastland (H), Rock Exposure and Waste (I) and Heathland (D). Even though

these habitats experiment a tangible increase, they still obtain low precision results.

Since the inclusion of external semantic information yielded such promising results, we

decided to study which other types of information could be used to aid the classification

process. With this in mind, we started to consider the inclusion of metadata from the

photographs, as the next type of information to include in our classifier.

8.5.3 Visual Results

Figure 8.8 and Figure 8.9 present two particular examples from H1K and H3K, respec-

tively. Moreover, Table 8.5 and Table 8.6 show the five most probable results obtained

from with experiments. Additionally, correct results are shown in bold and italics.

Both of these examples serve to further illustrate the effects of medium-level features in

the classification process.

Table 8.8 shows how only the inclusion of semantic information is able to correctly

classify the artificial habitat of Fence (J.2.4) in all cases. A similar situation is shown in

Table 8.6, in which medium-level features ensure the classification of the unseen sample

as Maritime Cliff (H.3) in three of the four testing scenarios.

8.6 Concluding Remarks

In this chapter, we have presented the second type of features that are extracted from

the ground-taken photographs: medium-level features. These features are the fifth con-

tribution of this thesis. We propose the inclusion of semantic information as a method

to overcome the limitations that visual features present when distinguishing between vi-

sually similar classes, such as the case of habitat classification. We have used a Human-

In-The-Loop approach to extract semantic information and we have transformed this
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information into medium-level features that are used as the input of our Random Pro-

jection Forest classifier.

Experiments have shown that the inclusion of medium-level features improved the perfor-

mance of our Random Projection Forest classifier, with their combination with pattern

features yielding the most stable results. Complex and artificial habitats, in particular,

have benefited considerably with their addition in our framework. In the next chapter

we will present our final contribution: a location-based voting system for our classifier

designed to use the geo-references from the ground-taken photographs to improve the

performance of our classifier.
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) G. Recall (j) G. Precision
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(k) H. Recall (l) H. Precision

(m) I. Recall (n) I. Precision

(o) J. Recall (p) J. Precision

Figure 8.5: (Cont.) Medium-Level Features. Recall and precision results for first-tier
habitats from Habitat 3K
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) J. Recall (j) J. Precision

Figure 8.6: Medium-Level Features. Recall and precision results for second- and
third-tier habitats from Habitat 1K
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) G. Recall (j) G. Precision
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(k) H. Recall (l) H. Precision

(m) I. Recall (n) I. Precision

(o) J. Recall (p) J. Precision

Figure 8.7: (Cont.) Medium-Level Features. Recall and precision results for second-
tier habitats from Habitat 3K
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Figure 8.8: Visual Example From H1K. Habitats present are: Improved Grassland,
Woodland - Broad-leaved and Fence.

Table 8.5: Results. We show the five most probable results obtained with our ex-
periments. Note how the use of medium-level features is the only approach which can

successfully classify the Fence habitat.
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Improved Grassland Scrub

Neutral Grassland Improved Grassland

Acid Grassland - SI Neutral Grassland
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Neutral Grassland Fence
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Improved Grassland Woodland - Broad-leaved

Woodland - Broad-leaved Improved Grassland

Dry Heath/Acid Grassland Neutral Grassland

Scrub Fence

Bracken Scrub
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Figure 8.9: Visual Example From H3K. Habitats present are: Running Water and
Maritime Cliff.

Table 8.6: Results. We show the five most probable results obtained with our ex-
periments. Note how the use of medium-level features is the only approach which can
successfully classify the Maritime Cliff habitat in three of the four scenarios tested.
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Sky Running Water

Others Scree

Neutral Grassland Sky
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Running Water Inland Cliff
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Sky Maritime Cliff

Running Water Sky
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Dry Heath/Acid Grassland Running Water

Building Wall
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Sky Sky

Running Water Inland Cliff

Improved Grassland Maritime Cliff

Intertidal Boulders/Rocks Wall

Wall Running Water

A
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Dry Dwarf/Acid Grassland Sky

Sky Inland Cliff

Running Water Wall

Intertidal Boulders/Rocks Running Water

Others Others



Chapter 9

Location-Based Voting System

As mentioned in Chapter 6, Random Forests are characterised by a set of parameters,

such as the size of the forest, the nature of the features used as the input, the split

function and the voting system used to combine the predictions obtained in each tree

of the forest. In the two previous chapters, we introduced modifications to two of these

parameters, the input features and the split function of each internal node, and we

studied their effects on automatic habitat classification.

In this chapter, we propose a modification on the last of the parameters mentioned

above: the voting system. We present a novel voting system based on the use of the

geographical information stored in photographs of our database. We benefit from the

natural properties of habitats, which entail that neighboring areas have similar geological

and ecological properties. As a result, their habitats can be extremely similar. Therefore,

the predictions generated by leaves with photographs which are close to the unseen test

photograph should have more weight in the decision making process. Consequently, this

chapter presents the last contribution of this thesis and, incidentally, the last element of

our image-annotation framework: a voting system based on the inclusion of geographical

location during testing.

Experiments were carried out to evaluate the effect of location-based weighted voting

during testing. We have calculated the recall and precision of the complete framework

and results show that the whole system outperforms all other methods tested in this the-

sis, including traditional Random Forests. This makes our complete image-annotation

system, which combines Random Projection Forests with low- and medium-level features

and location-based testing, to our knowledge, the most accurate automatic alternative

to manual habitat classification for the complete categorization of Phase 1 habitats.

178
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This chapter is organised as follows: Section 9.1 describes the motivation behind the

idea of using geographical information during testing. Section 9.2 explains how GPS

coordinates can be used to weight the different predictions offered by the decision trees

in our Random Projections Forests. Moreover, Section 9.3 describes the experiments

carried out, Section 9.4 shows the results obtained from these experiments and discusses

their significance in comparison with the results obtained in previous chapters. Finally,

Section 9.5 offers concluding remarks.

9.1 Motivation

As discussed in Chapter 2, in traditional Random Forests, each tree in the ensemble

casts a unit vote on the classes present in the unseen test photographs. This implies

that all the decision trees in the forest are equally good at classifying an unseen test

photograph. However, this is often not the case, as some trees have been proven to be

better at classifying than others [152]. In this situation, it would be ideal to be able to

somehow identify and select the most accurate trees and to prioritise their predictions

over the predictions from less accurate trees. That is the goal of a weighted voting

system. In essence, the aim of modifying the traditional voting system used in RFs is

to find a mechanism in which more accurate trees are given more importance in the

decision-making process, while, at the same time, not ignoring the other decision trees

in the forest completely.

In our case, we decided to focus on modifying the voting system as our final contribution

for two main reasons. First, to use the data that was already stored our databases to the

fullest. In other words, we wanted to extract and use as much of the information already

stored in our database as possible. The same way that the use of low-level features only,

as shown in Chapter 6, entailed that important semantic information, already present in

the photographs, was not taken into account when annotating images, we felt that the

current implementation of Random Projection Forests did not take into consideration

other extremely crucial information already stored in our database, the geographical

information of the images, which could improve our results.

As can be seen, in comparison to other FGVC-oriented databases, such as the CUB-200-

2011 Database [199] and the Leeds Butterflies Database [200], Habitat 1K and Habitat

3K present an interesting difference which we have exploited in our location-based voting

system. Photographs in most of the FGVC-oriented databases are not related to one

another. Taking an example from [199], a photograph of a bird is in no way related to

other photograph of a bird, whether it is the same kind of bird or not. In other words,

there is no apparent way of linking the two photographs. In our dataset, however, this is
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not the case. Photographs are extremely related to one another. This relationship can

be measured by their geographical location, which is stored as their GPS positioning.

Therefore, the information that we have extracted from a photograph can, in fact, affect

the classification and annotation of the photographs which are linked or related to it.

Second, to benefit from the particular properties of automatically classifying habitats.

The reason we choose to work with geographical location instead of, for example, the

time of the day a photograph was taken, is related to the intrinsic characteristics and the

nature of the problem. It is not usual for habitat types to change quickly within an area.

It can happen in some rare cases, for example the abrupt change between a Maritime

Cliff (H.8) and the Ocean (G.2). However, in most cases, the geological properties of an

area will result in similar habitat classes. For example, as exemplified by the photographs

taken in New Forest as part of Habitat 1K, all the woodland present in the area was

Broad-leaved Woodland (A.1.1). Similarly, most of the grassland captured around the

lake in Titchfield Haven was Marshy Grassland (B.5). Correspondingly, since most

habitat properties do not generally change abruptly, geographically close areas will have

similar ecological characteristics. Therefore, in our case, we decided to take advantage

of this geographical property of habitats during the testing phase.

Moreover, the benefits of this location-based voting system could be applied to the

cases in which abrupt changes were to happen, such as the Maritime Cliff and the

Ocean example mentioned above. In this case, the only requirement to successfully

apply this location-based voting system would be to have a sufficiently robust database

that contemplated this type of abrupt change. This would not be difficult, since abrupt

changes often happen between the same types of habitats. Therefore, in a way by storing

multiple photographs with these “abrupt” changes occurring, they would be stop being

considered “abrupt” and the modified voting system could be applied.

Research has been developed on voting systems, with some alternatives suggesting the

inclusion of weights for the predictions as a particular convenient methodology [152].

Following this approach, the random forest will be constructed in a traditional fashion

and, during testing, the most accurate trees’ predictions will have more weight in the

final prediction. That is, their vote will be more important.

There are two main points that are important to notice when modifying the voting

system to include weighted predictions.

First of all, as can be inferred, the notion of a “more accurate” decision tree needs to

be clarified. That is, what constitutes an accurate tree, or an inaccurate tree, needs to

be clearly specified. This is extremely problem-dependent, since the type of source data

to be used can vary tremendously. Moreover, not only the nature of the problem will
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affect this choice, but also, the type of measures that need to be extracted to evaluate

the RF’s performance. For example, if only recall is to be calculated, like we did in

Chapter 4, the definition of an “accurate” tree would not need to be as strict, since

recall is usually a more relaxed measure. However, if precision is to be included in the

performance metrics, “tree accuracy” will have to be determined very carefully, since

precision tends to be a very difficult measure and giving priority to an incorrect set of

trees could result in performance metrics being disastrously low. Consequently, one of

the main challenges of weighting predictions is to actually decide how to structure the

assignation of weights.

Second of all, it is crucial that the less accurate trees should not be ignored. As intro-

duced in Chapter 2, one of the strengths of ensemble classifiers, and of RFs in particular,

is the fact the ensemble benefits from having many weak learners generating and offer-

ing predictions. Moreover, RFs benefit not only from being an ensemble classifier, but

for also introducing randomness in the classification process. The combination of weak

learners and randomness is one characteristics that makes RF such a robust classifier.

Consequently, discarding trees’ predictions only because they are non-compliant with

the “accuracy” measures that have been established would, eventually, hurt the overall

performance of the whole forest.

To solve the first, as mentioned above we use the GPS coordinates of the photographs

to establish how accurate the trees within the forest are. This is not a problem since all

the images in the database are geo-referenced. This is done by calculating the distance

between the test sample and the images that are in the leaf node the sample has reached.

Then, we weight the prediction that each tree casts according to their distance. By

minimizing the distance and assigning weight, the predictions of trees with closer leaves

influence the final classification more.

Moreover, to solve the second issue, our implementation of the weights makes sure that

all the predictions are taken into account. This is done by varying the weights between

1 and 2, instead of the usual [0,1] interval. Consequently, even the least accurate tree in

the forest, that is, the tree whose leaf images are the furthers away from the test sample,

will be taken into consideration in the decision-making process.

In summary, we will use the geographical information already stored in our database

to create a new voting system that will prioritise the predictions of the trees which are

closer to the unseen test photograph. In essence, our system can be seen as taking into

consideration two types of closeness: we take into consideration visual closeness during

training and, then, geographical closeness during testing.
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It is important to notice that there are some limitations, discussed in much more depth

in Section 9.4, that come from using this location-based voting mechanism. However,

they are mainly related to the type of data that we have used. Remote sensed data,

such as aerial or satellite imagery, lack the level of detail that we needed to classify

within Phase 1 species. However, they present a clear advantage over ground-taken

photographs and that is the structured layout of the images. While aerial and satellite

images orientation and perspective is always the same, orthogonal to the ground, lay-

outs and perspectives can vary a great deal in ground-taken imagery. This results is a

dichotomy between the geographical location of the place where the picture was taken

and the actual geographical location of the habitats present within the photograph. This

limitation is particularly manifested in the Geograph 2K database, since the collection

of those photographs was done using crow-sourcing methods and there was less control

over the characteristics of the photographs in terms of layout and perspective.

9.2 RPFs and Location-Based Voting

As mentioned in the previous section, the voting-mechanism modifications introduced in

this chapter affect only the testing phase of the Random Projection Forests. Correspond-

ingly, the training phase will be the exact same as previously described. Consequently,

in order to include this modification, we first need to construct the RPFs as shown in

Chapters 7 and Chapter 8. As in the other testing scenarios, we are using RPFs and

previously annotated ground-taken photography, commonly referred to as the training

set, with the aim of annotating unseen photographs with the habitats present in them.

Once the training phase has finished and the RPFs have been constructed, we start

the testing phase. The testing methodology followed is similar to the original RPF

design. During testing, features are extracted from the previously unseen images and

the resulting vector representing the test photograph is injected at the root node of all the

trees of a forest. These features can be the low-level features or the combination of low-

level features and medium-level features. The only requirement is complete agreement

between the features extracted to create the RPFs and the features extracted from the

unseen test photograph.

At each split node, the inner product between the test image feature vector and the

nodes random projection vector is calculated and it is distributed to either the left or

the right child node based on whether the inner product is greater or smaller than the

nodes optimal threshold value. This process is repeated until the data reaches one leaf

node in each of the decision trees in the forest.
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It is at this step that the location information stored in our database becomes relevant.

This location information is stored in the Exif tags associated to each of the photographs

in our database. The Exchangeable Image File Format (Exif) tags store a variable

number of metadata regrading the characteristics of the photographs. It covers a broad

spectrum of information, such as date and time of the photograph, the make and model

of the camera used, the shutter speed and the geographical location. In particular,

the geographical location is stored as the latitude and longitude coordinates of the

photograph.

We use that latitude and longitude coordinates to calculate distances between the test

photograph and each of the photographs in each of the leaves that the test sample reached

when it was injected in the roots. In particular, we have chosen the to use the Haversine

distance to calculate the distance between photographs since it is more accurate than the

Euclidean distance [172]. We use MATLAB and the distance function implementation

developed in [172] to extract this information and to calculate the distances between

photographs.

Once all the distances are calculated, we attribute weight depending on the mean dis-

tance between the test sample and the samples of each leaf. Our weights are in the [1,2]

range, with 1 being the furthest and 2 being the closest. As mentioned previously, the

reason the weights vary from 1 to 2 instead of varying from 0 to 1 is because we want to

take all trees into consideration, even those which might be geographically further away.

Finally, the final probability distribution for all the habitats in a forest with N trees is

calculated as shown in Equation 9.1.

P (h) =
N
∑

t=1

w(t)P Tt(h) (9.1)

Where P (h) is the final probability of occurrence of the habitat h in the unseen test

photograph, P Tt(h) is the probability of the habitat h in each of the leaf nodes that the

test vector reaches and w(t) is the weight of each prediction. This weight is calculated

as shown in Equation 9.2.

w(t) = 1 +
1

N − 1
O(t) (9.2)

where

O(t) =
No(t)

maxto(t)
(9.3)

and
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o(t) =
1

Nt

∑

i=1

NtDistance[GPS(TI), GPS(ITi )] (9.4)

where NT is the number of images and ITi is the ith image in the leaf node of tree T

that the testing image reached, TI is the testing image and GPS(x) is the GPS location

of image x.

By following the previous equations, the predictions from leaves whose samples belong

to the closest photographs to the unseen test image will have more weight in the final

prediction.

It is important to notice that this approach will work more accurately when the pho-

tographs in the database are close to each other, as is the case of Habitat 1K. In Habitat

1K, four areas were thoroughly mapped. Consequently, each photograph will have at

least one more photograph in the same area. However, if the photographs were to be

very scattered, as is the case of Geograph 2K and, consequently, some of the photographs

from Habitat 3K, using the distance alone could prove to be counterproductive, since the

closest samples could still be considered to be very far away in reality. Results obtained

using our Habitat 3K database, shown in Section 9.4 confirmed this. In this case, instead

of using a distance measure alone, it would be more appropriate to determine a radio or

a threshold before assigning weights. This way, only predictions from trees whose leaf

samples are within the radio would be weighted and the rest of the predictions would

carry a weight of 1.

9.3 Experiments

A series of experiments were carried out to test the addition of the location-based voting

system. Following the structure of both Chapter 7 and Chapter 8, we decided to focus our

experiments on extracting features from the images as a whole. Moreover, we compare

performances between RPFs with medium-level features and RPFs with medium-level

features and the location-based voting mechanism. We set up these experiments with

the specific goal of studying the effect of our novel voting mechanism. Correspondingly,

we studied this by generating results on the performance of RPFs when varying an

specific set of parameters. These parameters are:

• Location-based voting system: We study the effect of our location-based voting

system by comparing its performance in terms of recall and precision with the

results obtained in the previous chapter.
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• Colour, pattern, texture and medium-level features: Following our findings from

the previous two chapters, we extract and compare the performance of our clas-

sifier when colour features (Colour Histogram, Colour Moments), texture features

(Tamura, GLCM), pattern features (CPAM) and all of them combined are extract-

ed and combined with medium-level features. We hope that the combination of

visual semantic and geographical information will increase the accuracy of second-

and third- tier habitats. We also compare performances of these features against

the performance of the “Other Features”, a combination of six of the most common

visual features currently used in Computer Vision problems (GB, GIST, SIFT, S-

SI, PHOW, PHOG). As in previous chapter, the results regarding the “Other

features” have not been included in the graphs to help with the visualization of

the most relevant features, but they will described and discussed.

• Database: Given the different nature of the databases created in this thesis, Habi-

tat 1K being collected under controlled circumstances and Habitat 3K being col-

lected using crow-sourcing methods, we also aim to study the effect of semantic

information on their performance. We are particularly interested in the perfor-

mance of the new voting system when applied to H1K, since all the photographs

are very close to each other. We project less accurate results for H3K given the

geographical sparsity of the photographs.

Moreover, we decided to compare Random Projection Forests with medium-level features

against Random Forests with a location-based voting system to obtain a more in-depth

study of the effect of the weighted predictions. Furthermore, to ensure consistency

between the results, we follow the same methodology as in Chapter 7 and Chapter 8

and we calculate the recall, precision and confusion matrix of results obtained.

9.4 Results

In order to assess the impact of our location-based voting mechanism and Random

Projections Forests, we have tested ten scenarios with each or our databases. These

scenarios are:

1. RPF with colour features and medium-level features. This scenario is referred to

as MLF - Color in the result figures.

2. RPF with pattern features and medium-level features. We refer to this as MLF -

Pattern in the result figures.
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3. RPF with texture and medium-level features. This is called MLF - Texture in the

result figures.

4. RPF with all three features linearly combined and medium-level features. This

scenario is referred to as MLF - All in the result figures.

5. RPF with other features and medium-level features. In order to make visualization

easier, we have not included these results in the graphs. However, the findings from

this set of experiments will be commented and compared with the results obtained

in the other experiments.

6. RPF with colour features, medium-level features and the location-based voting

system. This scenario is referred to as GPS - Color in the result figures.

7. RPF with pattern features, medium-level features and the location-based voting

system. We refer to this as GPS - Pattern in the result figures.

8. RPF with texture, medium-level features and the location-based voting system.

This is called GPS - Texture in the result figures.

9. RPF with all three features linearly combined, medium-level features and the

location-based voting system. This scenario is referred to as GPS - All in the

result figures.

10. RPF with other features, medium-level features and the location-based voting

system. In order to make visualization easier, we have not included these results in

the graphs. However, the findings from this set of experiments will be commented

and compared with the results obtained in the other experiments.

Similarly to Chapter 7 and Chapter 8, we divided the results obtained according to the

level of detail of the habitats classified. We have calculated the recall and precision for

first tier-habitats in Section 9.4.1, while Section 9.4.2 presents results for second- and

third- tier habitats. We compare each set of results with the Random Projections Forests

results obtained in the previous chapter. Finally, we present some visual examples

obtained during our testing in Section 9.4.3.

9.4.1 First-Tier Classes

Figure 9.1 shows the recall and precision results obtained in the testing scenarios in-

troduced previously when using features extracted from whole images from H1K as the

input. On the other hand, Figure 9.2 shows the same metrics when testing our frame-

work with features extracted from whole photographs from H3K as the input. We tested
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forests with sizes ranging from 1 to 150 and with depths ranging from 2 to 10. However,

in order to present the results in a clear and concise manner, we set their depth to 9

in the previous figures. Nevertheless, the performance of both systems was similar and

stable in all cases.

Looking at the results as a whole, it can be appreciated that the recall measures remain

more accurate that the precision measures, similarly to the results presented in Chapter

7 and Chapter 8. There is only one exception to this case, present as well in Chapter

7, and that is the classification of Miscellaneous habitats in both H1K and H3K. In this

case, the voting system is able to return a much higher precision than recall, reaching

even 90% accuracy.

Moreover, it can be seen that this difference in results is not as significant as in the

previous chapters. In the majority of cases, this is due to precision results experimenting

a noticeably increase in accuracy. This is clearly exemplified in the case of Open Water

(G). In Chapter 8 we discussed the dip between its recall and precision results, which

was close to 50%. However, with the voting system, this difference has decreased to

close to 40%, with the recall remaining at around 100% and the precision increasing

from 40% to 60%. This is a direct consequence of our location-based voting system and

the fact that most of the coastland photographs in H3K being from the same area, the

south England.

Moreover, Woodland and Scrub (A) and Grassland and Marsh (B) continue being the

most accurately classified habitats in H1K, and, along with Open Water (G), the most

successfully classified habitats in H3K. On the other hand, Rock Exposure and Waste

(I) and Tall Herb and Fern (C), even though they experiment a slight improvement in

their results, remain the most difficult to classify.

If we look into the experiments more in depth, we find that, regardless of the combination

of features extracted or the databases used, our location-based voting system is able to

outperform the RPFs with medium-level features in most cases. In those rare occasions

in which the use location during testing does not outperform RPFs, such as is the case

of Woodland and Scrub (A) classification using texture features, it is shown that the

inclusion of the location during testing matches the performance of the RPFs without

the weighted voting system. This accuracy, in turn, makes the complete system tested

in this chapter, composed of low-level visual features, medium-level features, RPFs and

location-based voting, the most accurate alternative for automatic habitat classification

presented in this thesis and, to our knowledge, developed to date.

Another set of interesting results can be extracted when looking into the combinations

of features and location-based voting. Similarly to the trend presented in Chapter 7 and
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) J. Recall (j) J. Precision

Figure 9.1: Location-based Voting System. Recall and precision results for first-tier
habitats from Habitat 1K
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Chapter 8, pattern features continue to provide the most accurate results in terms of pre-

cision and recall. Moreover, colour and all the features together continue having similar

performances in terms of recall. However, colour features stand out when combined with

our weighed voting system. Their combination actually obtains much higher precision

than the combination of all features together and location-based testing. Additionally,

in occasion, colour features are able to outperform the precision obtained from pattern

features, if only slightly, as shown when classifying Heathland (D) habitats with H3K.

This serves to further exemplify the importance of colour information in the classifi-

cation process. However, pattern features continue generating the best overall balance

between recall and precision results together. Finally, texture features, regardless of the

inclusion of geographical location during testing, continue obtaining the less accurate

results.

The combination of pattern features and weighted testing is particularly successful at

classifying Tall Herb and Fern (C) habitats, one of the most difficult habitats to classify.

This is not surprising in the case of H1K, where most instances of Tall Herb and Fern (C)

were localised in New Forest, one of the surveyed sites. However, this improvement is also

present in H3K. This seemed to indicate that our assumptions about the geographical

location of the photographs present in H3K and their impact in the classification process

needed revising.

We looked more closely to this phenomenon and observed an interesting situation when

comparing the performances of both datasets more in depth. As mentioned previously,

when setting up the experiments, we were expecting a definite increase in H1K precision

and recall results, as a direct consequence of the database containing numerous pho-

tographs from only four particular sites. H1K photographs could be clearly separated

geographically and, moreover, presented a comprehensive description of the habitats

present in those for sites. Accordingly, results confirmed our expectations, particularly

in two of the most difficult habitats to classify, Tall Herb and Fern (C) and Heathland

(D). As can be seen in the results, both habitat classes experimented a raise over 10%

in precision and recall accuracy.

On the other hand, we expected the improvements on H3K to be less significant since

the pictures were more sparsely located. Instead of a small number of areas which were

thoroughly mapped, H3K contained photographs distributed for the whole of Great

Britain. However, we found that the inclusion of geographical location impacted quite

positively the results of H3K, particularly in terms of precision. An example of this is

shown when classifying Rock Exposure and Waste (I), Heathland (D) and Tall Herb and

Fern (C). In order to study this phenomenon we looked more closely at the geographical

distribution of our dataset and found that, while they photographs were indeed more
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sparsely distributed, in the cases where the recall and precision metrics experimented

a significant increase in accuracy, we had inadvertently chosen photographs who where

located within the radio we had established during testing. In retrospect, this was not

surprising, since the habitats included in this phenomenon were less frequent than those

which were not, for example, Inland Cliff occur less frequently thorough Great Britain

than Woodland habitats. Therefore, it is more likely that the larger the number of

instances that these less-frequent habitats are, the more likely their photographs were

taken around the same area. Consequently, small clusters of ten to fifteen photographs

were formed and our framework had been successful enough that, when testing unseen

samples, these had reached leaves in which photographs from these clusters were present.

In essence, by classifying only the visual and semantic information from the images, we

had still managed to include geographical information in an indirect way.

In summary, from all the modifications presented in this thesis during the last three

chapters, the combination of RPFs with medium-level features and the inclusion of

geographical location in the testing phase has generated the most accurate performance

when classifying first-tier habitats. This whole framework outperformed traditional

Random Forests in all cases and obtained recall and precision results over 50% in most of

the habitats present in both datasets. Consequently and taking into consideration these

results, we projected that the inclusion of geographical location during testing would

improve the recall, and particularly the precision, of second- and third- tier habitats.

9.4.2 Second-Tier and Third-Tier Classes

Figures 9.3 show the recall and precision results obtained in the same testing scenarios

as in Section 8.5.1. Additionally, Figures 9.4show the same metrics when testing our

framework with H3K. Similarly to the other testing scenarios in Chapter 7 and Chapter 8,

we are using the whole photographs when extracting the features. We tested the forests

varying their size between 1 and 150 and their depth between 2 and 10. However, in

order to make the results easier to visualise, we have set the size of the forests to 120

and the depth of the forests to 9 in the graphs, since the performance of both systems

was similar and stable in all cases.

Looking at the results as a whole, it can be appreciated that recall measures remain

being the most accurate in all scenarios tested. However, following the trend discussed

in the previous section, the differences in the precision and recall results is smaller than

in previous second- and third-tier testing. Moreover, habitats from the classes Woodland

and Scrub (A) and Grassland and Marsh (B) continue being the most easily classified,

due to the large amounts of photographs from them in both databases.
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On the other hand, Tall Herb and Fern (C) and Heathland (D) habitats remain the

most difficult to classify in H1K, their recall and precision, particularly in the case of

Heathland mosaics (D.1 and D.2) has improved considerably. Similarly, Coastland (H)

and Rock Exposure (I) habitats remain the less accurate in the case of H3K, but they

have also experimented a noticeable improvement in terms of recall and precision. In

particular, it can be seen that the problem we had before between classifying between the

Inland Cliff habitat and the Maritime Habitat is not as pronounced, with their recall

being close to 25% in most cases and their precision being close to 20% in all cases.

While these results are still low, they serve to demonstrate the impact that taking into

consideration the geographical location of the photographs have.

Moreover, if we look at the results more in depth, we can see that the inclusion of

location-based voting during testing as affected very positively the classification of

second- and third- tier habitats. This modification obtains more accurate results in

all cases, regardless of the database used as input. Consequently, it not only out-

performs RPFs with medium-level tags, but also the original design of RPFs and the

traditional RF implementation. As discussed in the previous section, this makes this

whole framework the most accurate system of all presented in this thesis.

In terms of feature combination, we can see that pattern features remain the most accu-

rate features in the majority of cases. This is clearly noticeable in the case of Heathland

(D) in H1K and Coastland (H) habitats in H3K. Similarly to the results obtained when

classifying habitat from the first-tier classes, colour features and all features put together

obtain similar results, with all features together obtaining a slight better recall but a

considerable less accurate precision in most cases. Furthermore, texture features con-

tinue being the least accurate and most unstable features when used with or without

location-based voting. This further proves that pattern features are the best option for

our framework because the collect the most relevant information in the most compact

manner.

Regarding the different types of habitats, we can see that complex habitats in particular

have benefited from the inclusion of geographical location in our framework. This is

noticeable in the Hedge and Trees (J.2.3) results, which experiment an increase of recall

and precision of over 10% in H1K and, perhaps even more strikingly clear, in the Heath-

land mosaics results, which increase their accuracy close to 15% in H1K. On the other

hand, artificial habitats, particularly the habitats Wall (J.2.5) and Fence (J.2.4) obtain

only slightly better results, not remotely close to the significant increase in accuracy that

medium-level features entailed, as seen in Chapter 8. This is understandable, since the

photographs from these habitats are fewer and were taken in many different locations,
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while photographs from complex mosaic habitats, such as the Heathland mosaics, were

more abundant and less geographically distributed.

Moreover, if we compare the performances of H1K against H3K, we can see that there

are clear differences in their precision results. Although, in general, it can be appreci-

ated that precision results remain low in all cases, it is in experiments with H3K where

precision results obtain their lowest results, with some cases not even reaching 15% accu-

racy. In these cases, it can be appreciated that the inclusion of the geographical location

during testing has not aided the classification process and, in some particular instances,

such as Scree and Inland Cliffs, it has even damaged their classification. This is clearly

due to one of the main limitations of ground-taken photography, previously discussed in

Chapter 6. As we mentioned in Chapter 6, the ground-taken photographs that we are

working with have a variety of layouts and they were taken from multiple perspectives.

As a direct result of this, the location of where the photograph was taken, which is part

of the metadata information stored in our database, might not accurately reflect the

location of the objects present in that photograph. For example, a photographs taken

with a wide perspective, cannot accurately store the geographic location of the habitats

present in that photograph. An example of this in our database concerns photographs

which show Inlnd Cliffs. Since Cliffs are generally large habitats, they can appear in

photographs that were taken kilometers away from them. Therefore, in those cases, the

geographical location of the photographs can hinder the classification process.

The reason this phenomenon affects H3K more prominently is because, as we have dis-

cussed at length, we had no control over the conditions under which the photographs

from H3K were taken. This resulted in photographs from H3K representing much more

variable conditions than photographs from H1K. In essence, this problem of the geo-

graphical location of the photographs versus the geographical location of the habitats

within the photographs can be regarded as a direct consequence of using crowd-sourcing

methods to collect photographs. On the one hand, using Geograph enabled us to collect

a larger number of photographs in a much shorter period of time and, more importantly,

it enabled us to collect instances from habitats that, given our geographical location,

were impossible to access for us, i.e. cliffs and coastland habitats. On the other hand,

we were required to to relinquish control over their characteristics and we had to accept

a broader variability on their layout, lighting and perspective conditions.

In summary, this final modification to RPFs has shown a definite impact in the perfor-

mance of our AIA framework, particularly in the case of complex habitats and second-

and third-tier classification. Moreover, while some habitats still obtain low precision and

recall, they have experimented clear improvements in recall and precision as a conse-

quence of each modification we have introduced. This can be seen more clearly in Table
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9.1, which presents the average recall and precision for all of the approaches presented in

the previous chapters. We have averaged all other parameters (databases used, features

extracted, forest size and tree depth) in order to show more clearly the effect of each of

the added contributions.

Table 9.1: Average precision and recall results for all modifications of our framework.
Each modification has entailed an improvement over the results obtained in the previous

version of the framework.

RF RPF MLF GPS

Recall 0.313 0.408 0.7125 0.7315
Precision 0.26 0.265 0.38 0.43

In general, experiments have shown that ground-taken photographs are a promising

source of information that can be successfully applied to Phase 1 habitat classification.

Moreover, the FGVC nature of the problem makes an AIA framework specially fitting

and Random Forest-based methodologies, such as the Random Projection Forests we

have created, are specially suitable to be used in this framework, since they combine

efficiency and accuracy. We have also seen how low-level visual features, specially pat-

tern features, can be used to certain extent as the first step of the classification. The

limitations these features present have been lessened with the inclusion of semantic in-

formation in the form of medium-level features. These features have helped establish

that the inclusion of human input in the classification process, while requiring addi-

tional precautions, can be extremely beneficial for complex or similarly visual habitats.

Finally, we have shown that, given the nature of the problem and the classes we aim

to identify, we can benefit from the geographical properties of habitats. We have done

so by introducing a location-based voting system that prioritises predictions of leaves

whose samples are closer to the testing samples. This final improvement has provided an

increase in recall and precision results in most cases and has made our Random Projec-

tion Forests with ground-taken photographs, medium-level features and location-based

voting the most accurate automatic alternative to manual Phase 1 habitat classification.

As a final note, it can also be seen that the larger the number of instances of each habi-

tat, the more accurate the results both in terms of recall and accuracy, as exemplified

by results obtained in all testing scenarios by Woodland and Scrub (A) and Grassland

and Marsh (B). Consequently, we can only foresee that larger datasets and the more

geographically close the photographs, the more accurate that the results generated in

all three levels of habitat classes will be.
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9.4.3 Visual Results

Figure 9.5 and Figure 9.6 present two particular examples from H1K and H3K, respec-

tively. Moreover, Table 9.2 and Table 9.3 show the five most probable results obtained

from the experiments.

Results from Figure 9.5 in particular serve to illustrate the positive effect that location-

based voting has had in H1K. Without geographical information, RPFs are only able to

classify Marshy Grassland (B.5) in one set of experiments, when using texture features.

However, considering that there are a large number of photographs from the same area,

Titchfield Haven, depicting Marshy Grassland in our database, using geographical loca-

tion during testing makes possible the correct classification of Marshy Grassland in all

cases.

9.5 Concluding Remarks

In this chapter we have presented the last element of our framework and our last con-

tribution: a location-based voting system for Random Projections Forests. We have

explained the motivation behind our decision to include geographical information in the

classification process and we have described how it can be implemented to be used dur-

ing the testing phase. Moreover, we have carried out a series of experiments designed to

measure the impact of this last modification in our system in comparison to the use of

medium-level features and RPFs. Results show from all possible scenarios testing in the

previous chapters, the inclusion of location-based voting mechanism to our RPFs with

medium-level features has produced the most efficient and accurate results in this thesis

and, to our knowledge, ever developed.

In the next chapter, we will summarise the contents of this thesis, we will reiterate our

contributions and, more importantly, we will discuss some of the limitations from our

current approach and offer some suggestions for further development.
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) G. Recall (j) G. Precision
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(k) H. Recall (l) H. Precision

(m) I. Recall (n) I. Precision

(o) J. Recall (p) J. Precision

Figure 9.2: (Cont.) Location-based Voting System. Recall and precision results for
first-tier habitats from Habitat 3K



Chapter 9. Including Geographical Location 197

(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) J. Recall (j) J. Precision

Figure 9.3: Location-based Voting System. Recall and precision results for second-
and third-tier habitats from Habitat 1K
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(a) A. Recall (b) A. Precision

(c) B. Recall (d) B. Precision

(e) C. Recall (f) C. Precision

(g) D. Recall (h) D. Precision

(i) G. Recall (j) G. Precision
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(k) H. Recall (l) H. Precision

(m) I. Recall (n) I. Precision

(o) J. Recall (p) J. Precision

Figure 9.4: (Cont.) Location-based Voting System. Recall and precision results for
second-tier habitats from Habitat 3K
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Figure 9.5: Visual Example From H1K. Habitats present are: Improved Grassland,
Woodland - Broad-leaved and Fence.

Table 9.2: Results. We show the five most probable results obtained with our exper-
iments.
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Sky Marshy Grassland

Woodland - Broad-leaved Dry Dwarf/Shrub Heath

Scrub Sky

Tall Ruderal Scrub

Dry Dwarf/Shrub Heath Bracken
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Figure 9.6: Visual Example From H3K. Habitats present are: RunningWater, Marshy
Grassland, Scrub, Dry Dwarf/Shrub Heath.

Table 9.3: Results. We show the five most probable results obtained with our exper-
iments.
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Woodland - Broad-leaved Woodland - Mixed
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Improved Grassland Acid Grassland - SI
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Sky Sky
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Sky Woodland - Broad-leaved

Woodland - Mixed Sky

Acid Grassland - SI Woodland - Mixed
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Woodland - Broad-leaved Scrub

Tall Ruderal Woodland - Mixed

Woodland - Mixed Neutral Grassland

Sky Sky

Scrub Woodland - Broad-leaved
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Concluding Remarks

In this thesis, we have studied the problem of automatic Phase 1 Habitat classification

using ground-taken photographs. For this purpose, we have developed an automatic

image annotation framework. This framework combines ground-taken photographs, low

and medium-level feature extraction and Random Projection Forests with a location-

based voting system to enable us to annotate unseen photographs with the habitats

present in them.

This final chapter is organised as follows: Section 10.1 summarises the contributions

of this thesis, while Section 10.2 explores some of the limitations of our framework and

suggests future work that can be carried out to improve its performance. Finally, Section

10.3 presents a complete summary of the work presented in this thesis.

10.1 Contributions

In this thesis, we have proposed an automatic image annotation framework for the

classification of Phase 1 habitats. We make the following contributions:

• Image-Annotation Framework [Chapter 5]: We have approached automatic habitat

classification as an automatic image annotation (AIA) problem. We have devel-

oped an automatic image-annotation framework for Phase 1 habitat classification.

Our framework, shown in Figure 10.1, combines five main elements to annotate

unseen photographs using the Phase 1 classification scheme. These elements are:

ground-taken photography, low-level visual features, medium-level semantic infor-

mation, random projections forests and location-based weighted predictions. Ex-

tensive experimentation shows that our framework can successfully classify Phase

202
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1 habitats in terms of precision and recall, making it the first and most accurate

automatic system specifically designed for the classification of the complete Phase

1 scheme.
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Figure 10.1: Image Annotation-Based Habitat Classification. Our framework consists
of: ground-taken photographs, low- and medium feature extraction, random projection

forests and a location-based voting system.

• Habitat 1K and Habitat 3K [Chapter 6]: We have compiled, organised and annotat-

ed two databases specially created for ecological purposes. Habitat 1K is composed

of 1,086 photographs and 4,223 annotations from five habitat classes: Woodland

and Scrub (A), Grassland and Marsh (B), Tall Herb and Fern (C), Heathland

(D) and Miscellaneous (J). Photographs were taken under controlled environmen-

tal conditions by the author of this thesis. Habitat 3K has 3,094 ground-taken

geo-referenced photographs. This database was collected using a crowd-sourcing

mechanism and it has been ground-truthed by a Phase 1 expert and the author

of this thesis. As a direct consequence of this, the environmental conditions of

Habitat 3K are widely variable. It includes 11,517 different instances of habitat-

s from seven out of the ten possible habitat classes. These are: Woodland and

Scrub (A), Grassland and Marsh (B), Tall Herb and Fern (C), Heathland (D),

Open Water (G), Coastland (H), Rock Exposure and Waste (I) and Miscellaneous

(J). The photos of both these databases do not follow any particular layout, with
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all types of shots, i.e. ground shots, detail shots or landscape shots, being al-

lowed. Moreover, they have been made publicly available and they are the first

image databases specifically designed for the development of multimedia analysis

techniques for habitat classification.

• Low-level Visual Features Applied to Habitat Classification [Chapter 7, Chapter

8, Chapter 9]: We carry out an study on the effects of a number of the most

popular low-level visual features. Particularly, we study the effect that texture

(Tamura coefficients and Gray-Level Co-occurrence Matrices), pattern (Colour

Pattern Appearance Model) and colour (Colour Histograms and Color Moments)

features have on Phase 1 habitat classification when using ground-taken imagery.

This helps us better understand the benefits and limitations that ground-taken

imagery present when classifying Phase 1 habitats. Results show that pattern

and colour features obtain the most stable precision and recall results in more

than 80% of the testing scenarios. On the other hand, texture features can obtain

more accurate results than pattern and colour in particular cases, such as the

classification of heath mosaics with Random Projection Forests, but their general

performance in all experiments is considerably less stable.

• Random Projection Forests (RPF)[Chapter 7]: Random Forests is an increasingly

popular machine learning technique. We chose to use this ensemble classifier be-

cause they combine the benefits of two other popular Machine Learning techniques,

NN-based methods and SVMs, without being affected by their disadvantages. Like

NN-based methods and contrary to SVMs, Random forests are simple to imple-

ment and easy to modify to be applied to multi-label problems. On the other hand,

similarly to SVMs and contrary to NN-based methods, they are accurate and do

not suffer from a less efficient testing phase. Additionally, random forests have

been successfully applied to a varied number of problems in the field of computer

vision, such image classification [132] and image segmentation [167]. In the field

of ecology, they have also been applied to habitat structure classification [11] and

land cover [81]. We propose a novel design of Random Forests that uses Random

Projections. With RPF, we generate a random projection vector with values {-1,

0, 1} in each of the nodes of our decision tree and we project each feature vector

according to the corresponding random projection vector. The inclusion of pro-

jections makes the training and testing process more efficient without sacrificing

accuracy in the results. Results show that our initial design of Random Projec-

tion Forests is not only more efficient, but also outperforms Random Forests both

in terms of recall and precision. This difference in performance is clearly notice-

able when classifying Woodland and Scrub (A), Grassland and Marsh (B) and

Heathland (D) habitats.
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• Medium-Level Features [Chapter 8]: Habitat classification is a Fine-Grained Vi-

sual Categorization (FGVC) problem in which classes, particularly second- and

third-tier classes, share many visual similarities. Consequently, the use low-level

visual features entails a series of limitations in the classification process. In order

to combat these limitations, we propose the inclusion of semantic information,

which can be crucial to distinguish between habitats, during the training phase.

We adopt a Human-In-The-Loop (HITL) approach, shown in Figure 10.2, to ob-

tain medium-level semantic information [24] and we include that information in

the classification process in the form of features. HITL is an interactive, hybrid

human-computer method for object classification which aims to benefit from the

strengths of both humans (their ability to distinguish between objects by incor-

porating semantic and contextual information) and computers (their ability of

computing large amounts of data efficiently). In our approach, non-experts users

are asked a series of ’yes’-or-’no’ questions about the ground-taken photographs

in our database and they are also required to grade the degree of certainty they

have in their answer. Additionally, we combine these medium-level features with

low-level visual features to obtain more accurate results in the most challenging

habitat classes: Tall Herb and Fern (C) and Heathland (D). Experiments show

that the inclusion of medium-level features entails a considerable improvement

over our initial design of Random Projection Forests, particularly in terms of pre-

cision, which improves up to 20%. This increase is particularly noticeable in Tall

Herb and Fern habitats (C) and complex habitats such as Hedge and Trees (J.2.3)

and Heathland mosaics.

• Location-Based Voting [Chapter 9]: In order to exploit the geographical properties

of the habitats we are classifying, we include geographical information during the

annotation process. We take advantage of the geographical properties of habitats

considering the following: geographically close areas have similar ecological char-

acteristics, since habitat properties do not generally change abruptly. Therefore,

near regions will have similar habitats. Since all the images in the database are

geo-referenced, we use their GPS coordinates to calculate the distance between

unseen photographs and the ground-taken photographs of the leaves they have

reached in the RPF. Consequently, we weight the different decision trees in our

RPF, with closer trees having more weight in the prediction than further trees. Ex-

periments show that this final modification of Random Projections Forests yields

the most accurate recall and precision results from all the scenarios tested in this

thesis. In particular, complex mosaics and Coastland (H) habitats, which have

proven specially difficult to classify, experience a considerable recall and precision

improvement over past modifications. Consequently, this final contribution, to our
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Figure 10.2: Medium-Level Information and Features. In our case, N is equal to 36
and certainty in measured between 0 (not sure at all) and 5 (completely sure).

knowledge, makes our Random Projection Forests with medium-level features and

a location-based voting system the first and most accurate automatic framework

specifically designed for the classification of the complete Phase 1 scheme.

10.2 Limitations and Suggestions For Improvement

As we mentioned in the previous section, the image-annotation framework presented in

this thesis was designed as an alternative to current Phase 1 classification, which is car-

ried out manually. Nevertheless, the current automatic design has some limitations with

regards to its performance, particularly in the case of second- and third-tier precision

results.

In this section, we discuss these limitations and offer possible improvements that could

be developed as further work. These limitations can be linked to four main aspects

of our framework: the input data, the features extracted, the classifier and the use of

location information. These are:

• Ground-taken Photographs: We have proven that ground-taken photographs are

a valid source of information for the automatic classification of Phase 1 habitats.
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However, the two current databases created and collected as part of this thesis

could be further improved to obtain more accurate results. Both Habitat 1K and

Habitat 3K contain an imbalance between two of their classes, Woodland and Scrub

(A) and Grassland and Marsh (B) and the rest of the classes present. Moreover,

within both categories, Broad-leaved Woodland (A.1) and Neutral Grassland (B.2)

amount the largest number of instances, with over 500 instances of difference with

habitats such as Bracken (C.1) or Fence (J.2.4). Considering that both A.1 and

B.2 habitats are amongst the most accurately classified in our framework and that

those habitats with the lowest number of instances, such as Tall Herb and Fern

(C), obtain the least accurate results, we project that increasing the number of

instances of the other habitats, particularly those which have been proven to be

more difficult to classify, such as Tall Herb and Fern (C), Coastland (H) and Rock

Exposures and Waste (I) would only benefit current performance results.

Moreover, the inclusion of more ground-taken photographs is not the only aspect

regarding our source data that could be improved. As discussed in Chapter 6

and demonstrated in Chapter 9, ground-taken photographs, while easier to obtain

and more detailed than remote-sensed data, present a clear limitation in terms

of geographical information. That is, the position of a photograph might not

accurately reflect the position of the habitats present within the photograph. This

makes the use of geographical information a complicated endeavour which can

result in inaccurate classification results.

We propose the inclusion of remote-sensed data in the classification process, not

as a source of information per se, but as a tool to correctly obtain the location

of the habitats present within the photographs. Research has been developed on

how to accurately project different elements within geo-referenced photographs

onto maps, as shown in [159], and we consider that the further development and

application of these methods could greatly benefit the performance of our current

system.

• Semantic Information: As mentioned in Chapter 9, semantic information is crucial

when trying to classify FGVC problems such as habitat classification. In this type

of classification problems, in which the classes are extremely visually similar, there

is a significant need for extracting other kinds of descriptive and discriminative

information to aid the classification process. In this thesis, we presented a new type

of semantic features, medium-level features, which were extracted using a HITL

approach. However, as we discussed in Chapter 9, uncertain answers from the

users employed to obtain this information could affect negatively the performance

of our system. This problem was exacerbated in our current system because we

only used one user to obtain one feature vector. Nevertheless, as further work, we
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propose employing more users, at least five, to extract different opinions on the

answers to the questions that help us create our medium-level features. This way,

the answers would be combined and the uncertainty of one user would not affect

as directly the classification process.

• Random Projection Forests: In Chapter 7 we explained that, in the current frame-

work design, we consider all habitats independent from each other. This assump-

tion was done consciously, since we had not carried out experiments to investigate

the relationships between habitats. However, as experiments helped to identify,

this is not always the case. In general, there are several types of habitat config-

urations that are more likely to appear together depending on the geographical-

location of the photographs. For example, Neutral Grassland (B.2) habitats in New

Forest are more likely to appear with Hedges and Trees (J.2.3) than with Running

Water (G.2) or Scree (I.1.2). This information could greatly aid the second- and

third-tier classification of Phase 1 habitats. Moreover, it is information that is al-

ready present our datasets, in the form of the frequency of appearance of particular

annotations with other specific annotations. We would only have to include this

information during training, using the geographical location of the photographs,

to benefit from knowledge that is already in our database. Therefore, we propose

the exploitation of habitat relationships as further work for our classifier.

• Location-based information: As explained in Chapter 9, our current system only

takes into consideration geographical location during testing. However, as we in-

troduced in the previous point, there are other aspects to geographical location,

and the consequent information that they could provide, that could aid the classi-

fication of visually similar Phase 1 classes. For example, Woodland in the area of

Titchfield Haven is more likely to be Broad-Leaved than Coniferous. Consequently,

another promising improvement to the framework would be to further exploit the

geographical location of the photographs and their relationship during training to

accurately classify second and third- tier habitats.

10.3 Summary

In summary, we have have created an automatic image-annotation framework for the

classification of Phase 1 habitats. Contrary to the habitat classification schemes reviewed

in Chapter 2, our framework is, to our knowledge the first system created to date which

classifies all possible Phase 1 habitats. In Chapter 2 and Chapter 3 we explained our

motivation for having chosen Phase 1 as our classification scheme and we discussed its

main merits and limitations.
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Our complete framework was presented in Chapter 5. Following chapters expand on

each element of our framework with Chapter 6 focusing on our source data, ground-taken

photographs, and the two databases we have collected and annotated, called Habitat 1K

and Habitat 3K; Chapter 7 introducing our novel classifier, Random Projection Forests;

Chapter 8 detailing a new type of semantic features, medium-level features, and lastly,

Chapter 8 introducing our location-based voting system. Each chapter gives a detailed

description of each component of the framework and expands on the motivations behind

their design, creation and their inclusion to our system.

Furthermore, we carried out extensive experiments with the aim of studying the perfor-

mance of ground-taken photographs, low- and medium-level features, Random Projec-

tion Forests and a location-based voting system. Results to these experiments, shown

in Chapter 7, Chapter 8 and Chapter 9, served to demonstrate the validity of RPFs as

classifiers, particularly for the case of Phase 1 classification. We compared the perfor-

mance of traditional Random Forest and each of the modifications introduced in our

design of RPFs and found that RPFs with pattern features, semantic information and

a location-based voting system produced the most stable and accurate results.

However, our current design has some limitations with regards to its performance, partic-

ularly in terms second- and third-tier habitat classification. With the aim of improving

this part of the classification process, we propose as further work the expansion of our

current databases to include a more balanced number of habitats present and the in-

clusion of more robust semantic features. These features would use several the answers

from users to estimate the presence of the semantic tags within the photographs. Ad-

ditionally, we propose the use of relationships between habitats during training and the

inclusion of geo-referenced multi-source data, such as satellite photographs, to help with

the perspective limitations of ground-taken photographs.

In essence, we regard our current image-annotation framework as a first step towards a

completely automatic Phase 1 habitat classification process. We consider that there is

still a lot of research that could be done and we envision that the inclusion of the sug-

gested further work will only help to improve the performance of the presented system.
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