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Abstract

This thesis is devoted to the study of multiphase jet fragmentation us-

ing Smoothed Particle Hydrodynamics (SPH). The theoretical aspects of three

hydrodynamic instabilities, namely the Kelvin-Helmholtz instability (KHI),

Rayleigh-Taylor instability (RTI), and Rayleigh Plateau instability (RPI) are

reviewed. The linear growth rate of the combined KHI and RTI are derived

by means of linear perturbation in chapter 2. The linear growth rate of the

multiphase RPI is presented in chapter 7.

An overview of the Smoothed Particle Hydrodynamics is given in chapter 3.

A pseudo-consistent SPH scheme is presented for the simulation of multiphase

flow problems. Additionally, two interface stabilisation models are presented:

quasi-buoyancy model and gas-repulsion model. When used in combination with

the pseudo-consistent SPH scheme, these models are found to be superior than

those presented in the weakly-compressible SPH literature and allows for the

simulations for density ratio up to three-magnitudes.

The development of an idealised KHI and a KHI subjected to constant grav-

itational acceleration (stratified shear instability) is examined in chapter 5. The

extracted linear growth rate are compared with the theoretical growth rate pre-

sented both in the literature and in chapter 2 for the purpose of validation. The

development of a single- and multi-mode RTI are studied by means of SPH in

chapter 6. Chapter 7 presents the results for the three-dimensional RPI occur-

ring between two fluids. Based on the knowledge acquired in chapter 5-7, the

multiphase jet fragmentation driven by the previously mentioned hydrodynamic

instabilities are presented in chapter 8. Finally, the major research findings and

recommendations are summarised in chapter 9.
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Empty your mind, be formless, shapeless - like water.
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Now water can flow or it can crash.

Be water, my friend.

-Bruce Lee
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Chapter 1

Introduction

1.1 Motivation

Jets, collimated streams of matter that carry higher momentum than their

surrounding ambient medium, are found in many scientific and technological

applications. In astrophysics, jets play a significant role in young stellar objects

[8, 9, 10], proto-planetary nebulae [11, 12] as well as active galactic nuclei [13, 14].

In technological applications, jets are important in precision cutting machinery

[15, 16, 17], ink-jet printing technologies [18, 19, 20] and jet-engine propulsion

systems [21, 22]. Jets occur at a vast variety of length-scales and are driven by

many physical effects. For instance, astrophysical jets have length-scale that vary

from O(1016m) to O(1022m) where the jet medium consist of plasmas travelling

in the supersonic regime [23, 24] under the influence of magnetohydrodynamical

effects. In combustion engine propulsion systems, jets have a typical length-scale

of O(10−3m) and their characteristics are influenced by the presence of solid

boundaries, the ambient medium as well as heat transfer mechanisms [21, 25, 26].

Jets in a ink-jet printer have a typical length-scale of O(10−3m) driven by the

combination of viscous effects and surface tension [27, 28, 29].
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Figure 1.1: Experimental results presented in the literature. (top left) free jet subjected to
multi-mode acoustic perturbations [1], (top right) liquid jet impingement onto a solid boundary
[2], (bottom left) buoyant jet, (bottom right), jet in a cross flow [3].

Given their wide range of applications, jet flows have received significant

attention from the physical science and the engineering community. From an

academic point of view, researchers are primarily interested in the conditions for

the transition from laminar flow to turbulent flow. From a practical point of

view, engineers are interested in flow regimes that lead to the atomisation of jets

into droplets, the thermal and hydrodynamic characteristics of jet impingement

on solid boundaries, as well as jet flows subjected to different orifice designs.

Jet flows have been investigated by many researchers since the 14th century.

One of the earliest accounts of jet flow can be found in the work of Leonardo-da-

Vinci in the Codex of Leicester [30], where the author investigated qualitatively

that the break-up of a water jet into droplets is due to the competition between
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gravity and the cohesive force between water particles. Since then, extensive

research has been conducted to further understand jet flows under different con-

ditions. Over a period of time, this has evolved into four fields: free jet flow

[31, 32], jet impingement [33, 34, 35], buoyant jet flow [36] and jet in cross-flow

[37, 38, 39]. Given the relevance of these flow scenarios in industrial applications,

the research question naturally differs as well. For instance, the study of free jet

flow is relevant to nozzle and orifice design optimisations, where researchers aim

to answer questions such as the rate of jet break-up, the average droplet size, and

the generation of secondary droplets after the primary break-up has occurred.

The study of jet impingement is relevant to cooling and lubrication processes in

oil-engine systems [40, 41, 42]. In particular, researchers are interested in the

rate of cooling and the control of splashing when a jet impacts a solid boundary

[35, 43]. The understanding of buoyant jets is crucial to sewage or industrial

waste water treatment processes, where researchers aim to quantify the rate

of dilution and its dependence on the initial stratification of the ambient fluid

[44, 45, 46, 47]. Finally, jets in a cross-flow are commonly found in combustion

chambers and chemical reactors, where researchers aim to understand the mixing

process occurring at the interface between fluids [48, 49, 50].

The dynamics of jets is governed by the interplay of hydrodynamic insta-

bilities occurring at the interface between the jet medium and its surrounding

ambient medium. For instance, a low Mach number liquid jet subjected to a con-

stant acceleration is governed by three hydrodynamic instabilities: the Kelvin-

Helmholtz instability, the Rayleigh-Taylor instability and the Rayleigh-Plateau

instability. The Kelvin-Helmholtz instability is driven by the shearing motion

between fluid layers. The Rayleigh-Taylor instability becomes important when

the pressure gradient due to gravity opposes the change in density between the

two fluids. Finally, the Rayleigh-Plateau instability is crucial if the jet occurs in

a flow regime dominated by effects of surface tension.
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Figure 1.2: Hydrodynamic instabilities relevant to this thesis. From top to bottom, the
Kelvin-Helmholtz instability (photo credit: Brooks Martner, NOAA), Rayleigh-Taylor instabil-
ity (photo credit: James Riordon, AIP), Rayleigh-Plateau instability (photo credit: A. Wagner
et al).
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Developments of the theory behind hydrodynamic instability prospered dur-

ing the 18th-19th century. This area focuses on the stability and instability of

fluid flow problems. A flow is considered stable if all initially small perturbations

remain small in time. Whereas the flow is deemed unstable if at least one ini-

tially small perturbation is amplified into a large perturbation after some finite

time. It is well understood from experiment that the growth of hydrodynamic

instabilities mentioned above can rapidly lead to a transition laminar flow to

turbulent flow [51]. More importantly, the onset of turbulence leads to velocity

fluctuations that generate eddies of sizes. The interaction of these eddies gives

rise to a chaotic behaviour which challenges the physical modelling of turbulent

flow. Turbulence is a complex subject. Richard Feynman once said:”Turbulence

is the most important unsolved problem of classical physics” [52].

Advances in computational fluid dynamics (CFD) over the past decades have

enabled researchers to study the dynamics of hydrodynamic jet by means of

numerical simulations. The conventional mesh-based CFD techniques rely on

the discretisation of the Navier-Stokes equations onto a mesh, where the field

quantities are numerically approximated at the nodal mesh points. Generally

speaking, there are two main approaches within the CFD community to model

turbulence: direct numerical simulation (DNS) [53, 54] and the utilisation of

turbulence models [55, 56]. The essence of the DNS is to resolve all small scale

motions without the use of additional models. Nevertheless, this approach re-

quires a resolution which is far beyond the computational resource offered by

state-of-the-art computers. At the time of writing this thesis, the highest Reynold

number achieved with DNS approach is Re = 5200 and utilises 786K CPUs [57]

applied to a channel flow. On the other hand, the majority of research groups

have taken the practical path of developing sub-grid turbulence models [55, 56]

that encapsulate the effects of turbulence. While the conventional turbulence

models are widely available in commercial CFD codes, the fundamental aspect
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of hydrodynamic instabilities as well as the onset of the transition from laminar

to turbulent flow remains a challenging topic in fluid dynamics [51].

Furthermore, despite the popularity of CFD for the simulation of turbu-

lent jets, these methods are known to suffer from three shortcomings. Firstly,

mesh-based methods generally suffer from numerical diffusion which violates the

conservation of mass and momentum [58]. Secondly, the use of an adaptive mesh

refinement procedure introduces additional computational complexity. Thirdly,

the use of interface tracking techniques are mandatory when the spatial distri-

bution of physical quantities are discontinuous. In addition, the performance of

these front tracking techniques varies depending on the specific implementation

[59]. To avoid these shortcomings, extensive research has been conducted to

simulate fluid flow by means of mesh-free methods such as Smoothed Particle

Hydrodynamics. Gingold and Monaghan [60], Lucy [61] first introduced SPH

to study hydrodynamic problems in astrophysics. In recent years, it has been

extended to simulate subsonic terrestrial fluid flow problems [62]. The mesh-free

particle nature of SPH does not require the use of interface tracking routines and

as such it is advantageous for modelling flows with large morphological variations

as well as being Galilean invariant and satisfies conservation of mass, momentum,

and energy.

Witnessing the comparative advantages of SPH over conventional CFD meth-

ods, a collaborative research project was initiated between the School of Physics

and Astronomy, School of Mathematical Science and the Department of Mechan-

ical, Materials and Manufacturing Engineering at the University of Nottingham

in partnership with Rolls Royce Plc. in 2010. The aim of this project is to

conduct a feasibility study into the propagation of hydrodynamics jets in an

ambient medium, including simulation of multiphase flow with SPH. The aim of

this project is further broken down into five major objectives: (i) review of the

theoretical hydrodynamic instability literature, (ii) assess and review existing
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multiphase SPH schemes, in particular those relevant to weakly-compressible

hydrodynamics, (iii) development of a multiphase SPH scheme suitable for high

density ratios, (iv) systematic investigation of multiphase hydrodynamic instabil-

ities: Kelvin-Helmholtz instability, Stratified Shear instability, Rayleigh-Taylor

instability and Rayleigh-Plateau instability, and (v) development of SPH software

that is suitable for aero-engineering applications.

1.2 Outline of present work

In chapter 2, we review the theoretical aspects of two fundamental hydrody-

namic instabilities that are relevant to multiphase jet fragmentation. We extend

the results in the literature by deriving a linear growth rate for the combined

Kelvin-Helmholtz instability (KHI) and Rayleigh-Taylor instability (RTI) from

the linearised Navier-Stokes equation. In particular, we focus on two scenarios

where the linear growth rate can be derived analytically, namely for inviscid fluids

with a smoothed interface and viscous fluids with a sharp interface. This allows

for a quantitative comparison of the effects of viscosity, gravity, and smoothing

of the initial density and velocity distribution against the results reported in the

literature as well as the numerical results from SPH simulations in the subsequent

chapters of this thesis.

The Smoothed Particle Hydrodynamics method is introduced in chapter 3.

The first part of the chapter discusses the principles of SPH for solving the fluid

dynamical equations. The concept of a kernel density estimate used in mesh-free

methods is discussed, followed by the desired properties of kernel functions. We

demonstrate that the spatial derivative approximations found in the literature

can be derived from a generalised spatial derivative approximation. Based on

the generalised spatial derivatives, we show that a consistent set of SPH fluid

dynamical equations can be derived from the Euler-Lagrange equation. Finally,
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we discuss SPH artificial viscosity models and equation-of-states commonly em-

ployed in the SPH literature.

The second part of the chapter focuses on multiphase SPH. A survey of the

literature of multiphase SPH methods within the astrophysical and terrestrial

fluid dynamics community is presented. A pseudo-consistent multiphase SPH

scheme suitable for low density ratios is introduced. Afterwards, we identify

additional challenges in modelling multiphase flow in weakly-compressible SPH

and present additional models to enhance the stability of the multiphase SPH

scheme for density ratios up to three magnitudes. The performance of these

SPH schemes is compared against other multiphase schemes in the terrestrial

fluid dynamics SPH literature.

The SPH software implemented and used for the simulations presented herein

is described in chapter 4. A survey of the literature is given to review the fea-

tures of existing SPH codes in the research community. Details regarding the

data structure, neighbour-list search algorithm, boundary treatment methods

and time integration scheme implemented in our SPH code Draco are discussed.

Chapter 5 presents the results of the multiphase KHI. In particular, we focus

on the idealised KHI (without the influence of gravity) and the KHI subjected

to gravity, also known as the stratified shear instability (SSI) [63]. The results

are compared with the linear growth rates derived in chapter 2 and those found

in the literature [5, 7, 64, 65, 66].

The numerical results for single- and multi-mode RTI are presented in chap-

ter 6. In order to validate the single-mode results, the numerical results are

compared with the linear growth rate [5] during the linear regime and the drag-

buoyancy model [67, 68, 69, 70] during the nonlinear regime. The fitted coefficient

for the self-similar relationship reported in the literature [71, 72, 73, 74] is used

for the comparison between numerical results, theory and experiments for the

multi-mode RTI.
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The numerical results for the Rayleigh-Plateau instability (RPI) are presented

in chapter 7. A pre-investigation study is performed to validate the surface ten-

sion model introduced by Adami et al. [75] for some standard test cases. The RPI

is then simulated in three dimensions, where the influence of artificial viscosity

parameters, initial perturbation and Atwood number is studied.

Based on the knowledge acquired from the three hydrodynamic instabilities,

we apply the multiphase SPH scheme in chapter 8 to simulate the fragmentation

of a hydrodynamic jet driven by the KHI, RTI and RPI separately. The simula-

tions herein give qualitative insight into the modelling of laminar hydrodynamic

jet with SPH. Finally, a summary of our major research findings and list of

recommendations for future work is given in chapter 9 .
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Chapter 2

Theory

2.1 Introduction

In this chapter, the theoretical aspects of hydrodynamic instabilities are re-

viewed. In particular, the discussion herein concentrates on the analytical linear

growth rates for two fundamental instabilities, namely the Kelvin-Helmholtz in-

stability (KHI) and the Rayleigh-Taylor instability (RTI). A Literature review

regarding the numerical and experimental work will be provided in the respective

chapters (chapter 5 for KHI and chapter 6 for RTI).

The content of this chapter is organised as follows: starting from the three

dimensional Navier-Stokes equations, linear stability analysis is applied to obtain

a system of linearised differential equations that models the initial stage of the

instability. Based upon Squire’s theorem and Rayleigh inflection point theorem,

a generalised model equation that encapsulates the combined growth rate of KHI

and RTI is presented. We demonstrate the derived growth rates from the model

confirms earlier results in the literature. Finally, we apply the model to examine

the scenarios relevant to the SPH simulations presented in chapters 5-6.
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2.2 Background

Kelvin [76] and Helmholtz [77] pioneered the investigation of shear instabilities

by studying the relative motion between two adjacent fluids subjected to a tan-

gential velocity difference. This phenomenon has subsequently become known as

the Kelvin-Helmholtz instability (KHI). In the absence of damping mechanisms

such as gravity, viscosity and surface tension, the interface between the two

fluids is unstable and consequently any perturbation grows with time. Parallel

to the discovery of KHI, Rayleigh [78] and Taylor [79] investigated the instability

between fluids of different densities subjected to acceleration; therefore coined

the name Rayleigh-Taylor instability (RTI). The RTI occurs, for example, when

a high density fluid is superposed onto a low density fluid and both fluids are sub-

ject to gravitational acceleration. In this case, the instability is unconditionally

unstable, hence any perturbation grows provided the density gradient opposes

the pressure gradient.

The KHI and RTI are the most fundamental forms of hydrodynamic insta-

bilities and can be observed nature. For example: internal waves propagating

in planetary atmospheres [80, 81], mixing processes occurring in the ocean [82],

astrophysical jet collisions [83], supernova explosions [84] and inertial fusion re-

actors [85, 86]. Given their crucial importance, the analytical theory for these

instabilities has undergone significant development since the 18th century. Chan-

drasekhar [5] derived the linear growth rate of the KHI and RTI, assuming the

base-flow1 consists of two fluids separated by a sharp interface. In that case,

the growth rate of the combined instabilities depends on the perturbation wave-

number (k), the tangential velocity difference (∆u), the gravitational acceleration

(~g), and the density ratio between the fluids.

Following the work of Chandrasekhar [5], there has been extensive research

over the past decades to incorporate additional physical effects into the linear

1In the context of hydrodynamic stability, the unperturbed flow is a base-flow[87]
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growth rate. Miles [88] derived the necessary condition for the growth of KHI

in a stratified medium. Bayly et al. [89] investigated the transition of the KHI

into the turbulent regime. Bellman and Pennington [90] as well as Mikaelian [91]

derived the linear growth rate of a RTI taking into account the effects of viscosity

and surface tension. Junk et al. [64] extended the work of Chandrasekhar [5] to

derive the analytical growth rate for a sharp interface viscous KHI. Recently,

the research group of Wang et al. [7, 65], Ye et al. [66] published a series of

articles in the context of plasmas physics concerning the linear growth rate for

the combined KHI and RTI for smoothed initial velocity and density profiles.

The growth rates reported in the early research literature [5, 76, 77, 78, 79]

are available in standard hydrodynamic instability texts [92, 93, 94]. Although

the exact formulation of the base-flow varies from one text to another, linear

stability analysis is employed to linearise the system of Partial Differential Equa-

tions (PDEs) that describes the fluid flow. Nonetheless, these growth rates are

based on sharp interfaces and they are not suitable for modelling scenarios where

smoothed base-flow profiles are considered. Therefore, a model that encapsulates

the growth of the KHI and RTI is derived from the Navier-Stokes equations for

incompressible fluids to allow for a quantitative comparison between SPH results

and linear growth rates for smoothed initial profiles.
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2.3 Mathematical model

Figure 2.1: Pictorial description of three-dimensional hydrodynamic instabilities.

The dynamics of Newtonian fluids are governed by a system of PDEs, given

in Cartesian coordinates as (2.1)-(2.5)
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where ~v = (u, v, w) represents the velocity field in a Eulerian frame of refer-

ence and the gravitational acceleration is defined as ~g = (0,−g, 0). Equation

(2.1)-(2.3) is the momentum equation for incompressible fluids, equation (2.4) is

the continuity equation, and equation (2.5) is the incompressible criterion. For
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simplicity, a base-flow is assumed only in the y direction and the perturbation

wave vector is orthogonal to the y direction such that ~k = (kx, 0, kz) as shown in

Figure 2.1. Applying the perturbations [95, 96],

ρ ≈ ρo + ǫρ̃+O(ǫ2)

u ≈ uo (y) + ǫũ+O(ǫ2)

v ≈ ǫṽ +O(ǫ2)

w ≈ ǫw̃ +O(ǫ2)

P ≈ Po + ǫP̃ +O(ǫ2),

(2.6)

to equation (2.1)-(2.5) and neglecting the terms above O(ǫ2) yields a system of

PDE that describes the dynamics of a first-order perturbed O(ǫ) fluid system.
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∂uo

∂y

)

= −∂P̃

∂x
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where ~r = (x, y, z) is the position vector and n ∈ C is the temporal frequency.
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Applying the perturbations to equation (2.7)-(2.9) yields

ρo

[

i(n+ uokx)ũ+ ṽ
duo

dy

]

= −ikxP̃ + νρo

(

−k2ũ+
d2ũ

dy2

)

+ ν (ρo + ρ̃)
d2uo

dy2
,

(2.13)

ρoi (n+ uokx) ṽ = −dP̃

dy
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(
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dy2

)

− ρ̃g, (2.14)

ρoi (n+ uokx) w̃ = −ikzP̃ + ρoν

(

−k2w̃ +
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dy2

)

. (2.15)

Similarly, the continuity equation (2.10) becomes

ρ̃ =
iṽ

n+ kxuo

∂ρo
∂y

, (2.16)

and the incompressible version of the continuity equation (2.11) becomes

i(kxũ+ kzw̃) =
dṽ1
dy

. (2.17)

The system of equations (2.13)-(2.17) are applicable to three-dimensional hydro-

dynamic instabilities. Nevertheless, the derivation of a three-dimensional growth

rate is extremely complicated. Therefore a model reduction is usually performed

to reduce a three-dimensional problem to a two-dimensional problem. The valid-

ity of such a model reduction is motivated by Squire’s theorem, which guarantees

the growth of a two-dimensional shear flow problem to be strictly greater than

its corresponding three-dimensional shear flow problem.

Theorem 2.3.1. Squire’s theorem: For each unstable three-dimensional wave

solution of a perturbed system, there exist an associated two-dimensional wave

solution which is unstable at a higher wave-number.

Although the original Squire’s theorem [97] is only applicable to inviscid

incompressible flow, many extensions have been proposed in the literature for

more complicated scenarios. Yih [98] extended the Squire’s theorem for multi-
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phase viscous flows. Hesla et al. [99] formulated Squire’s theorem for stratified

fluids, including the effects of surface tension. Chen and Fried [100] found that

the Squire’s theorem is applicable to the RTI provided that there is no mass

transport process across the interface. The Squire’s transform is applied to the

three-dimensional problem. Combining equation (2.13)-(2.14) by eliminating the

pressure gradient term results in the following equation.

d
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dy
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(2.18)

Equation (2.18) describes the growth of KHI and RTI between incompressible

Newtonian fluids, and it is a generalisation of the model equations found in

classical hydrodynamics literature. When combined with appropriate initial and

boundary conditions, it forms an initial boundary value problem such that the

linear growth rates may be determined. For instance, for a single phase viscous

fluid in a confined geometry, and neglecting the influence due to gravity, equation

(2.18) reduces to the Orr-Sommerfeld equation for viscous parallel flow [101, 102,

103]. A further simplification can be made when the fluid is inviscid. In that

case, equation (2.18) simplifies to the Rayleigh’s equation for inviscid parallel

flow [78]. For inviscid fluids under the influence of gravity, equation (2.18) is

analogous to the Taylor-Goldstein equation [94].

Nonetheless, the scenarios mentioned above suffer from three major limita-

tions from a modelling perspective. Firstly, the initial conditions of the base-flow

vary across the literature. This introduces difficulties for the comparison between

SPH and analytical theory. Secondly, it is not possible to examine the combi-
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discontinuous [5] piecewise linear [104, 105] smoothed [7, 65, 66, 106]

Figure 2.2: Common base-flow velocity profiles in the literature.

nation of the effects due to viscosity, gravity and stratification in a systematic

manner. Thirdly, a fully explicit analytical growth rate for multiphase viscous

shear instability subjected to smoothed base-flow has not been obtained. In prac-

tice, the utilisation of computational methods is necessary to obtain the linear

growth rates. Given these reasons, our discussionherein concentrates on scenarios

where the analytical growth rates can be explicitly determined. Cases where the

growth rate can only be obtained using numerical techniques are beyond the

scope of this thesis.

Thus far we have focused on derivation of the model equation (2.18), and de-

tails regarding the formulation of the base-flow has been deliberately postponed

until this point. The condition for the growth of the instability is governed by

another important result in mathematical hydrodynamics, known as the Rayleigh

inflection point theorem. The common base-flow velocity profiles in the shear flow

literature are plotted in Figure 2.22.

Theorem 2.3.2. Rayleigh inflection point theorem: For the occurrence of invis-

cid shear instability, it is necessary but not sufficient for the base-flow velocity

profile to contain at least one inflexion point within the domain of interest.

2The theorem does not cover the sharp profile scenario as the second derivative of a Heaviside
step function is defined in terms of distributional derivatives.
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2.4 Linear growth rates

In this section, we apply the model equation (2.18) to determine the linear growth

rates relevant to chapter 5-6. Consider the following base flow distributions

uo(y) =











u1 − ∆u
2
e−|y−yo|/Lu y > yo

u2 +
∆u
2
e|y−yo|/Lu y < yo

, (2.19)

ρo(y) =











ρ1 − ∆ρ
2
e−|y−yo|/Lρ y > yo

ρ2 +
∆ρ
2
e|y−yo|/Lρ y < yo

, (2.20)

where yo = 0 is the position of the interface of the base-flow and u1,2, ρ1,2 are

the far-field velocities and densities away from the fluid interface. The difference

in tangential velocities with respect to the initial interface (horizontal velocities)

and density across two fluid layers are defined as ∆u = u1 − u2 and ∆ρ =

ρ1−ρ2. In addition, Lu (Lρ) represents the half thickness of the velocity (density)

transition layer, also known as the velocity (density) gradient in literature [7, 65,

66]. Some typical velocity profiles are plotted in Figure 2.3, the density profile

is in the same fashion. It follows from our definition that a larger gradient

corresponds to a smoother interface, whereas the sharp interface conditions in

classical hydrodynamics is given by Lu,ρ = 0.

2.4.1 Sharp interface fluid instabilities

This section focuses on the scenarios with sharp interface, where the fluids are

initially separated at the interface, where the base flow properties remain con-

stant in their respective regions. A kinematic and dynamic boundary condition

are required to close the set of equations. The kinematic boundary condition

ensures no flux across the interface. Therefore suppose that the initial interface

undergoes a slighted perturbation η(x, t) = Aei(kx+nt), so that the location of the
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Figure 2.3: Initial velocity profile for various velocity transition layer width (Lu).

interface is given by y = yo+η(x, t). The kinematic boundary condition requires

the Lagrangian derivative of the interface to vanish [94]. This may be written as

∂η

∂t
+ uo

∂η

∂x
= v̂ y = yo + η(x, t). (2.21)

In our case, the kinematic boundary condition simplifies to

i(n+ kuo)η = v̂ y = yo + η(x, t). (2.22)

The dynamic boundary condition requires normal stress balance across the in-

terface [94, 96, 107], which can be obtained from the integral of equation (2.18).

[

ρo (n+ uok)
dv̂

dy
− ρokv̂

duo

dy
+ kν (ρo + ρ̃)

d2uo

dy2
+ iρoν

d3v̂

dy3
− 2ik2ρoν

dv̂

dy

]yo+ǫ

yo−ǫ

+

∫ yo+ǫ

yo−ǫ

[

ik4ρoνv̂ − k2ρo (n+ uok) v̂ + ik2ν
dv̂

dy

dρo
dy
− k2v̂g

n+ kuo

dρo
dy

]

dy = 0.

(2.23)
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The integration region in equation (2.23) is an the infinitesimal distance near

the interface |y − yo| = ǫ and η → 0. The fluids away from the interface are

required to satisfy

ρ1,2

{

[

(n+ ku1,2)− 2iνk2
] d2v̂

dy2
+ iν

d4v̂

dy4
− k2[(n+ ku1,2)− iνk2]v̂

}

= 0. (2.24)

In addition v̂ must be continuous across the interface (2.21) and to ensure bound-

edness of the solution, it is also required that v̂ vanishes as y → ±∞. Thus, it

is described by the piecewise function

v̂ =











A(n+ ku1)e
−ky y > yo

A(n+ ku2)e
ky y < yo

. (2.25)

Applying the dynamic boundary condition (2.23) at the interface results the

dispersion relation which describes the temporal growth of the KHI and RTI for

sharp interface initial distributions.

n2+2

[

k(α1u1 + α2u2)−
ik2ν

2

]

n+k2(α1u
2
1+α2u

2
2)−ik3ν(α1u1+α2u2)+kgAT = 0,

(2.26)

where α1,2 is defined as follows

α1 =
ρ1

ρ1 + ρ2
, α2 =

ρ2
ρ1 + ρ2

. (2.27)

The linear growth rate for sharp interface base flow is given by (2.26)

n = −k(α1u1 + α2u2) + i

[

k2ν

2
±
√

k2α1α2∆U2 +
k4ν2

4
+ kgAT

]

, (2.28)

where AT is the Atwood number defined as

AT =
ρ1 − ρ2
ρ1 + ρ2

. (2.29)
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Note that the perturbation quantities in equation (2.12) is proportional to eint,

where n is a complex number (n = nr+ inc). The real part Re(n) = nr describes

the oscillatory component and the imaginary part Im(n) = nc describes the

growth (or) decay of the initial perturbation. In particular, nc < 0 corresponds

to the instability whereas nc > 0 corresponds to the decay of the initial pertur-

bation.

Inspecting (2.28), one should be aware that the sharp interface initial con-

ditions are unstable for all wave-numbers, with the high wave number mode

grows fastest. Nonetheless, in numerical solutions the high wave number modes

are likely to be seeded by the noise in the initial conditions; hence making the

comparison of numerical simulations and analytical growth rate difficult. The

sensitivity to initial conditions for KHI have been analysed in the literature

[58, 108, 109]. Analysing the results of numerous mesh-based simulation codes,

Robertson et al. [58] reported that the numerical diffusion in presence of a bulk

flow softens the initial sharp interface; therefore the small-scale structure of the

KHI are resolution dependent. In particular, their results indicates that for low

resolution simulations, the KHI instabilities may not develop even in the presence

of bulk flows. However, they showed that such KHI do develop with sufficient

resolution. In addition, the authors argued the presence of a bulk flow softens

the initially sharp discontinuity between fluids. This changes the growth of

the unstable modes, which gives rise to small-scale structures that qualitatively

reassembles artificial secondary instabilities near the interface that is resolution

dependent. Furthermore, a series of simulations was also carried out to investi-

gate the sharp and smoothed interface KHI. Analysing their numerical results,

the authors reported the sharp interface initial conditions actually amplifies the

growth of the small-scale noise. In contrast, the utilisation of smoothed interface

initial conditions stabilise the growth of the small-scale noise. As a consequence,

this allows the seeded perturbation mode to growth unimpeded. McNally et al.

21



[108] performed SPH simulations (with artificial conduction [110]) for sharp and

smoothed initial conditions. The authors reported similar findings as Robert-

son et al. [58] that small-scale noise in the initial conditions is responsible for

the growth of secondary instabilities at the interface, and the smoothed ini-

tial conditions guarantee the dominated growth to be the seeded perturbation.

Summarising the above, although it is less mathematically challenging to derive

analytical growth rates for sharp interface initial conditions, such idealisation is

a pathological case which lacks the physical motivation and is disfavoured for

numerical simulations.

Sharp interface Kelvin-Helmholtz Instability

In the absence of gravity, equation (2.28) simplifies to the growth rate presented

in Junk et al. [64] for a sharp interface viscous KHI. The classical growth rate for

inviscid KHI in Chandrasekhar [5] is recovered by direct substitution (i.e. ν = 0,

g = 0). In Figure 2.4, the square of the growth rates is plotted as a function of

the wave number for numerous kinematic viscosities. It is found that viscosity

suppresses the growth with increasing wave numbers. In addition, the growth

rate is found to decrease with increasing Atwood number as shown in Figure 2.5.

The growth of a sharp interface viscous KHI is governed by various parameters

(e.g ∆u, k, AT , ν), where AT and ν are responsible for the suppression of the

growth rate, and the tangential velocity difference ∆u, and wavenumber k are

responsible for the increase of the KHI growth rate. This explains the nature of

the KHI that for fixed viscosity and perturbation wave number, an increase in

density ratio suppresses the instability. Whereas, an increase in the tangential

velocity difference amplifies the instability.
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Figure 2.4: Viscous KHI growth at various kinematic viscosities plotted against wave number,
with g = 0m/s2, ρ1 = 10kg/m3, ρ2 = 1kg/m3, u1 = 1m/s, u2 = −u1, AT = 0.8̄. The solid line
corresponds to the growth rate for classical inviscid KHI. The presence of viscosity in the fluid
system results in a less pronounced growth rate for all wave numbers.

Figure 2.5: Analytical growth rate of a viscous KHI plotted as a function of Atwood number,
with k = 10m−1, ρ1 = 10kg/m3, u1 = 1m/s, u2 = −u1. An increase in viscosity leads to an
overall suppression of the linear growth rate for all Atwood numbers.
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Sharp interface Rayleigh-Taylor Instability

When both fluids are subjected to a gravitational field, the fluid system in un-

stable against the RTI provided the density of the top fluid is greater than the

density of the bottom fluid. For simplicity, we consider the case without tan-

gential velocity difference, the classical growth rate for inviscid RTI presented

in Chandrasekhar [5] can once again be interpreted as a special case of equation

(2.28). A comparison between the inviscid and viscous growth rates suggests the

presence of viscosity suppresses the RTI. More interestingly, the growth function

exhibits a concave cave as shown in Figure 2.6. The growth increases rapidly in

the low wave number region towards a maxima kmax = 1/2(gAT/ν
2)1/3 prior to

the successive decrease for k > kmax as shown in Figure 2.6. Furthermore, it can

Figure 2.6: Viscous RTI growth plotted as a function of Atwood numbers, with ρ1 = 1kg/m3,
g = 1m/s2 and ν = 1× 10−4m2/s.

be shown that the evolution of the interface as given by the dynamic amplitude

a(t) increases with time and has the bi-exponential form

a(t) = C1e
nct + C2e

−nct, (2.30)
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where the constants C1,2 = 0.5 are determined from the initial and boundary

condition. Details of this derivation can be found in appendix 9.2.1.

2.4.2 Smoothed interface fluid instabilities

We next consider the inviscid instabilities for finite velocity and density gradients.

The growth rates for KHIs, RTIs, as well as stratified shear instabilities (SSI) are

presented in a systematic manner. For inviscid fluids, equation (2.18) simplifies

to the differential equation in [7, 65, 66].

d

dy

[

ρo (n+ uok)
dv̂

dy
− ρokv̂

duo

dy

]

− k2ρo (n+ uok) v̂ −
k2v̂

n+ kuo

dρo
dy

g = 0. (2.31)

Utilising the approximate separable form of the vertical velocity function

v̂ (y) = (n+ kuo) e
−k|y| [5] and integrating (2.31) gives

∫ +∞

−∞

[

ρo (n+ kuo) v̂ +
gv̂

n+ kuo

dρo
dy

]

dy = 0. (2.32)

Solving the integral analytically yields the dispersion relation

n2 + 2k(α1u1 + α2u2)n+ k2(α1u
2
1 + α2u

2
2) +

kgAT

kLρ + 1
+

AT∆uk2 (n+ kū)

k + 1/Lu + 1/Lρ

+

k3

4

∆u2

k + 2/Lu

− ∆uk2AT (n+ kū)

k + 1/Lρ

− ∆uk2 [nAT + k(α1u1 − α2u2)]

k + 1/Lu

= 0,

(2.33)

where ū = (u1 + u2)/2 denotes the velocity at the interface. Note that the

perturbation herein (2.12) is proportional to ei(
~k·~r+n·t), whereas perturbation

quantities in Wang et al. [7, 65], Ye et al. [66] for smoothed initial conditions.

Furthermore, the growth rate is proportional to e(i
~k·~r+n·t). Despite the difference

in notations, our results are consistent with the literature for smoothed initial

conditions [7, 65, 66]. The dispersion relation (2.33) is utilised to study the KHI,
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RTI and SSI between two superposed inviscid fluid layers for smoothed base-flow.

In order to perform a systematic analysis, the smoothed interface KHI is first

considered, followed by the smoothed interface RTI. Lastly, the KHI subjected to

the damping of gravity is discussed in the context of stratified shear instability.

Smoothed interface Kelvin-Helmholtz Instability

The influence of the density gradients and velocity gradients is studied separately.

The simplified analysis forms the basis to understand the finite velocity and

density gradients KHI.

(Lu > 0, Lρ = 0): In the absence of density gradient, the growth of KHI

is dependent on the following parameters (k, ∆u, Lu, AT ). Figure 2.7 plots the

growth rates at different Atwood numbers as a function of velocity gradient.

It is found the velocity gradient leads to a less pronounced KHI growth rate.

This is because the tangential velocity difference between adjacent horizontal

fluid layers decreases with increasing velocity gradient; hence resulting in a less

pronounced KHI. In contrary, for a fixed density gradient and an infinitesimal

velocity gradient (Lu → 0), the relative tangential velocity between horizontal

layers is effectively the same as the relative far-field velocities ∆u and the corre-

sponding growth rate therefore converges to the classical value as given by the

dotted lines in Figure 2.7.

(Lρ > 0, Lu = 0): In the finite density gradient, zero velocity gradient case,

the growth rate is dependent on (k, ∆u, Lρ, AT ). In Figure 2.8, the KHI growth

rate is plotted as a function of density gradient. It is found that an increase in

density gradient reduces the local density ratios between adjacent fluid layers;

therefore, results in a more pronounced growth rate than the classical results

reported in Chandrasekhar [5].

(Lρ > 0, Lu > 0): Our results suggest an increase in velocity gradient

suppresses the growth rate, and the increase in density gradient amplifies the
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growth rate. Nevertheless, it is unclear how the combination of finite velocity

and density gradient effects the overall KHI growth rate. For this purpose, we

define the length scale ratio as D = Lρ/Lu, with the velocity gradient being

the parametrised variable. Figure 2.11 plots the growth rates at different length

scales ratios. It is observed that when the density gradient is larger than the

velocity gradient (D > 1), the destabilising effect of a smoothed density field

dominates the stabilising effect of velocity smoothing near the interface, resulting

in a slightly larger growth rate than the equal length scale case (D = 1). More

importantly, it is found that the high wave number modes are heavily suppressed

as Lu,ρ →∞ as shown in Figure 2.9-2.10. Overall speaking, the use of smoothed

initial distributions yields smaller KHI growth rates than the classical values.

Smoothed interface Rayleigh-Taylor Instability

In the absence of tangential velocity difference, the fluid system is stable against

KHI and unstable against RTI. The smoothed interface growth rate is then de-

pendent on the following parameters (k, AT , Lρ). It is found that the presence

of a finite density gradient reduces the local Atwood number between adjacent

fluid layers; therefore, decreases in growth of RTI as illustrated in Figure 2.12.

Stratified shear Instability

Finally, the inviscid stratified shear instability is examined. The SSI is dominated

by the KHI, with the density of the bottom fluid is larger than that of top fluid

and both fluids are subjected to a gravitational acceleration. The gravity and

density ratio (Atwood number) terms in equation (2.33) are both responsible for

damping the growth of the instability, when compared against the inviscid KHI.

The SSI is a conditionally unstable system that depends on four key parameters

(k, ∆u, AT , g). Except the velocity difference, all of these parameters act to

suppress the growth of the instability. Figure 2.13 plots the square of the growth
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Figure 2.7: The square of the linear KHI growth rate plotted against velocity gradient, with
g = 0m/s2, Lρ = 0, u1 = 1m/s, u2 = −u1, k = 1. The dotted lines corresponds to the classical
linear growth rate for KHI.

Figure 2.8: The square of the linear KHI growth rate plotted against density gradient, with
g = 0m/s2, Lu = 0, ρ1 = 10kg/m3, k = 1, u1 = 1m/s, u2 = −u1. The dotted lines corresponds
to the classical linear growth rate for KHI.
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Figure 2.9: The square of the linear KHI growth rate plotted for different wave numbers with
Lρ = 0.001, g = 0m/s2, u1 = 1m/s, u2 = −u1 for multiple length scale ratios D.

Figure 2.10: The square of the linear KHI growth rate plotted for different wave numbers with
Lu = 0.001, g = 0m/s2, u1 = 1m/s, u2 = −u1 for multiple length scale ratios D.
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Figure 2.11: The KHI growth rate for finite velocity and density gradients plotted as a function
of velocity gradient for numerous length scales ratios D, with g = 0m/s2, ρ1 = 10kg/m3,
AT = 0.25, k = 1, u1 = 1m/s, u2 = −u1m/s. The classical linear growth rate is plotted in red.

Figure 2.12: RTI growth rate plotted as a function density gradient at different Atwood num-
bers. The corresponding classical growth rates are plotted in dotted lines.
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rate for different length scale ratios. It is found that the results closely reassemble

the previous results for smoothed interface KHI in Figure 2.12. That is, for a fixed

density gradient, the growth rate decreases with increasing velocity gradient. In

contrast, for fixed velocity gradient, the presence of a larger density gradient

(or equivalently a larger length-scale ratio D) leads to a more pronounced SSI.

In addition, the growth rates for the finite density and velocity gradients case

are found to be significantly lower than the classical expectations as shown in

Figure 2.13.

Figure 2.13: The square of growth rate plotted against velocity gradient, with g = 1kg/m3,
Lρ = 0.001 AT = 0.81, k = 1, u1 = 1m/s, u2 = −u1. The classical linear growth rate for KHI
is plotted in red.

2.5 Summary

In this chapter, the theoretical aspects of two fundamental instabilities - namely

the Kelvin-Helmholtz instability and Rayleigh-Taylor instability were reviewed.

The linear perturbation was applied to obtain first order accurate equations

from the three dimensional Navier-Stokes equations. Motivated by the Squire’s
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theorem and the Rayleigh inflection point theorem, the model equation which

describes the combined KHIs and RTIs was constructed (2.18).

The analysis considered in this chapter have been partitioned into two parts:

(i) sharp interface viscous cases (section 2.4.1) and (ii) smoothed interface in-

viscid cases (section 2.4.2). A parameter study was conducted to gain insight of

how each parameter affects the growth of the instability. It was found that an

increase in density ratio and viscosity suppresses the KHI, whereas an increase

in the tangential velocity difference amplifies the KHI. We also found that the

viscosity causes major suppression for the large wave number modes while the

growth correspond to the small wave number modes are less influenced. Similarly,

the increase in viscosity was also found to suppress the growth of RTI. However,

in the case of a pure RTI the growth rate is strictly negative (i.e. nc < 0);

therefore even though viscosity acts to slow down the growth of a RTI, it would

never cause an overall stabilisation to the instability.

The evolution of inviscid KHI and RTI with smoothed velocity and density

base-flow distribution was examined. In lieu of density gradient, an increase in

velocity gradient strongly suppresses the KHI. In contrast, for sharp velocity

gradient, an increase in the density gradient amplifies the KHI growth rate when

the density gradient has infinitesimal thickness. We found that the presence

of a finite density and velocity transition layer leads to an overall suppression

of the KHI growth which is significantly smaller than the classical values. In

smoothed density distribution RTI, the growth rate decrease with increasing

density gradient. In the context of SSI, a larger density gradient amplifies the

growth of the instability, whereas a larger velocity gradient damps the growth

of the instability. Nonetheless, for realistic flow scenarios, both the velocity

and density transitions layers are of finite widths, and the generation of these

boundary layers results in a smaller growth rate than the classical expectations.

Finally, we would like to point out that the analysis performed in this chapter
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provides an extension to the existing semi-analytical hydrodynamic theories. In

particular, the model equation (2.18) is applicable to incompressible multiphase

viscous fluid systems and encapsulate the essential physical phenomena which

KHI and RTI take place. While our discussion focusses on cases where analytical

solution is feasible, in principle it is possible to extend the analysis by solving the

model equation (2.18) numerically for the viscous smoothed initial distribution

case. This enables one to construct a systematic comparison study between

semi-analytical theory and results obtained from numerical simulations.
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Chapter 3

Smoothed Particle

Hydrodynamics

3.1 Introduction

This chapter serves both as a review of the SPH literature and as a discussion

of the models required for high density contrast multiphase flows. This mate-

rial in this chapter is divided into two parts: the first part reviews the SPH

principles (section 3.3-3.10), while the second part of the chapter (section 3.11)

is devoted to multiphase SPH. Sections 3.3-3.4 discuss the fundamentals of the

Lagrangian scattered data approximation and the essential properties of SPH

kernel functions. Section 3.5 examines the theoretical accuracy of the continuum

approximation and the particle discretisation of SPH. Section 3.7 demonstrates

that the spatial derivative formulation found in the literature can be derived

directly from the chain rule. In section 3.8, we demonstrate that a consistent

set of SPH fluid dynamical equations can be derived from the discretised fluid

Lagrangian with the inclusion of an arbitrary function φ. The properties of the

artificial viscosity models and popular equation of states employed in SPH are

discussed in sections 3.9-3.10. The second part of the chapter (section 3.11) is de-
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voted to multiphase SPH. A literature review of multiphase SPH is presented in

section 3.11.1. In particular, our discussion focuses on the challenges faced when

applying SPH to high density ratio weakly-compressible multiphase fluid systems.

Two interface stabilisation models are presented in sections 3.11.3-3.11.4. Their

performance are compared against other methods from the weakly-compressible

SPH literature.

3.2 Literature review

The field of numerical analysis has prospered since the 19th century. One of

the primary applications of numerical analysis is the area of numerical solutions

of PDEs, within which there are two areas of particular focus: the mesh-based

method such as the Finite Difference Method (FDM) and Finite Volume Method

(FVM) determine fluid quantities of a set of fixed nodal points, and the mesh-free

methods based on the concept of scattered data interpolations. Recent advances

in mesh-based methods have lead to the development of adaptive mesh refine-

ment (AMR) techniques that offer dynamic increase of resolution where needed.

The combination of these methods (FDM, FVM) and AMR techniques forms

the basis of modern day CFD simulation codes in both academia and industrial

research. Nonetheless, mesh-based methods are known to suffer from numer-

ous shortcomings. Firstly, mesh-based methods generally suffer from numerical

diffusion (spurious advection) which violates the conservation of mass and mo-

mentum [58]. Secondly, the AMR procedure introduces additional complexity

when mapping a set of predefined nodal points to a new set of discretisation

points. Thirdly, the use of interface tracking techniques are mandatory when the

spatial distribution of physical quantities (e.g. velocity, density) are discontinu-

ous; however, the performance of these techniques varies depends on the specific

implementation [59].
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Due to the various disadvantages of mesh-based methods, extensive research

has been conducted to develop mesh-free methods. Unlike their mesh-based

counterparts, mesh-free methods enable arbitrary scalar or vector functions to

be estimated from a set of scattered interpolation points. There are generally two

classes of mesh-free methods: probabilistic and deterministic. The former class

are generally known as Monte Carlo method and it has advantageous properties

over classical mathematical methods for high dimensionality problems which

involves many independent variables [111]. Deterministic mesh-free methods

have also undergone significant development over the past decades, some of the

popular deterministic mesh-free methods include: Smoothed Particle Hydrody-

namics (SPH) [60, 61], Radial Basis Function (RBF) [112, 113], Moving Particle

Semi-implicit method (MPS) [114] and Particle-in-cell (PIC) [115]. Despite the

differences in their specific formulations, the deterministic mesh-free methods

are based on the concept of a kernel density estimate [116]1 performed on a set

of scattered data points. In the context of fluid dynamics, if these scattered

data points follow the fluid flow, then the methods are called Lagrangian par-

ticle methods. SPH was pioneered by Lucy [61] and Gingold and Monaghan

[60] in the 1970s to simulate gas dynamics problems in astrophysics and fission

hypothesis. It is one of the earliest Lagrangian particle methods in the literature

and has been widely employed in astronomy to simulate the evolution of large

scale astrophysical structures. An extension was later made by Monaghan [62]

to simulate free surface flows. The following paragraphs present a review of the

concept of SPH.

1A kernel function is the same concept as a probability density function in statistics.
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3.3 SPH interpolation

The concept of SPH is to estimate physical quantities as integral interpolants.

This allows functions to be evaluated from a set of scattered Lagrangian inter-

polation points. Each interpolation point carries a mass mi, density ρi, viscosity

µi, pressure pi, velocity ~vi, position ~ri and other fluid quantities depending on

the problem of interest. A scalar function f(~r) can be written in terms of the

convolution integral

f(~r) =

∫

Ω

f(~r ′)δ(~r − ~r ′)d~r ′, ∀~r ∈ Ω (3.1)

where Ω is the domain of interest, d~r ′ is the differential volume element and

δ(~r − ~r ′) is the Dirac-delta function

lim
ǫ→0

δǫ(r) =























0 r < ǫ
2

1/ǫ − ǫ
2
< r < ǫ

2

0 r > ǫ
2

. (3.2)

The interpolation approximation (3.1) can be generalised by replacing the Dirac-

delta function with a kernel function W (~r − ~r ′, h) that depends on the distance

between the region of interest ~r and the arbitrary field point ~r ′ and a length-scale

known as the smoothing length h [112]. In order to preserve the properties of a

Dirac-delta function, the kernel function must satisfy

lim
h→0

W (~r − ~r ′, h) = δ(~r − ~r ′), (3.3)

and
∫

Ω

δ(~r − ~r ′, h)d~r ′ = 1. (3.4)
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The first condition (3.3) requires that for an infinitesimal smoothing length the

kernel function should behave similarly to a Dirac-delta function. The second

condition (3.4) requires the integral of the kernel function to be unity and it is

called the normalisation condition. If conditions (3.3)-(3.4) are satisfied, then the

integration (3.1) is formally defined as the kernel density estimate [112, 116, 117]

of the function f(~r).

〈f(~r)〉 =
∫

Ω

f(~r ′)W (~r − ~r ′)d~r ′. (3.5)

The kernel density estimate (3.5) is applied such that the continuum fluid is

represented by a set of Lagrangian interpolation points known as particles. Re-

placing the differential volume by the volume of SPH particles d~rj
′ ≈ Vj gives

〈f(~r)〉 =

∫

Ω

f(~r ′)W (~r − ~r ′, h)d~r ′ (3.6)

≈
∑

j

mj

ρj
f(~rj)W (~r − ~rj, h). (3.7)

As a result, the interpolation of the function f(~r) at the location of a particle i

is given by the particle approximation (Vj = mj/ρj), where mj and ρj are the

mass and mass-density of particle j.

fi(~ri) =
∑

j

Vjf(~rj)W (~r − ~rj, h). (3.8)

Equation (3.8) is the discrete particle form of the kernel density estimate (3.5),

where the influence of a nearby particle j is proportional to its volume (Vj) and

the inter-particle distance, the smoothing length (h), and the value the function

f at the sampling points.
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3.4 Kernel functions

In the previous section, we have shown that if the kernel function fulfils the

normalisation condition and converges to a Dirac-delta function for infinitesimal

smoothing length, the kernel density estimate of a continuum scalar field can be

represented by the particle approximation (3.8). For SPH to be called a truly

mesh-free method, its kernel function must satisfy additional properties, one of

which is the partition of unity [118].

Definition 1. [118] Let Ω ⊂ R
Ndim , Ndim ∈ [1, 3] be an open bounded domain.

Let {Ωi}i∈Np
be a family of open set in R

Ndim and

• the family of open set {Ωi}i∈Np
generates a cover of the domain Ω (i.e.

Ω ⊂ {Ωi}i∈Np
).

• there exist a set of continuous functions {Wi}i∈Np
such that supp{Wi} ∈ Ωi

• Wi(~r) ∈ [0, 1] ∀~r ∈ Ωi

• ∑i Wi(~r) = 1 ∀~r ∈ Ωi

then the set of interpolation basis functions (i.e. kernel functions) {Wi}i∈Np

forms a partition of unity subordinate of the open set {Ωi}i∈Np
that covers Ω.

The first property requires the global domain Ω to be partitioned into a set of

sub-domains which are allowed to overlap each other as long as the subsequent

set {Ωi}i∈Np
covers the entire domain. The second property states that within

each of the partitioned sub-domain, there exits some compactly supported in-

terpolation basis function {Wi}i∈Np
. The third and fourth conditions restrict

the boundedness of the interpolation basis functions such that the weights are

positive and range from zero to unity. To gain better intuition for these properties

see Figure 3.1.
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Figure 3.1: SPH domain where the shaded circles represents the support of the kernel functions,
where Ω1,2 are the sub-domains of individual kernel function, Ω represents the entire fluid
domain of interest, and ∂Ω represents the boundary of the fluid domain. Particles residing
within the domain Ω are coloured in green. Whereas particles with truncated kernel are
coloured in blue.

In addition to the conditions inherited from the partition of unity, there are

further requirements to the kernel function motivated by the physical nature of

classical mechanics. In order to take into account effects of short-range forces,

the kernel is required to decrease monotonically away from its center. This

implies particles located further away from the center of the kernel contribute

less to the overall kernel interpolation2. Finally, because SPH aims to solve

the strong form of the hydrodynamic equations, the kernel function should be

k-th order differentiable, where the constant k generally refers to the highest

order spatial derivative in the PDE system. For inviscid hydrodynamics, the

highest spatial derivative corresponds to the pressure gradient (i.e. k = 1). The

desired properties of kernel functions are summarised in Table 3.1. Utilising the

properties in Table 3.1, the SPH kernel function can be expressed in terms of the

dimensionless form

W (|~r − ~r ′|, h) = 1

hNdim
W (q), (3.9)

2Although in the original SPH article Gingold and Monaghan [60] employ an infinite support
(C∞) Gaussian function, its steeply monotonically decreasing characteristic effectively satisfies
the requirement of a compactly supported kernel.
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• supp{W (~r − ~r ′)} ∈ Ωi compactly supported
• lim|~r−~r ′|→∞W (~r − ~r ′, h)→ 0 monotonically decreasing
• W (~r − ~r ′, h) ∈ [0, 1] positive definite
• W (~r − ~r ′, h) = W (~r ′ − ~r, h) = W (|~r − ~r ′|, h) radially symmetric
•
∫

Wi(~r − ~r ′, h) = 1 normalised to unity
• W (~r − ~r ′, h) ∈ Ck(RNdim), k ≥ 1, Ndim ∈ [1, 3] sufficiently differentiable
• limh→0 W (~r − ~r ′, h) = δ(~r − ~r ′) Dirac-delta convergence
• provides an accurate density estimate
• stable against particle pairing

Table 3.1: Desired properties of SPH kernel functions.

where q is the dimensionless quantity q = |~r − ~r ′|/h. Monaghan [119] demon-

strated the cubic-spline (CS) kernel (3.10) to be computationally accurate for

most test cases. Since then, it has become a standard SPH kernel function in

literature. The CS kernel has the form

WCS(q) = GCS























1− 3
2
q2 + 3

4
q3 0 ≤ q ≤ 1

1
4
(2− q)3 1 < q ≤ 2

0 q > 2

(3.10)

where GCS is the normalisation constant, where GCS = 1/h, 10/(7πh2), 1/(πh3)

for one, two and three dimensions. This kernel has the advantage of possessing

compact support and sufficiently differentiable for inviscid hydrodynamics prob-

lems. Thus, provided the support of the kernel is properly filled and particles are

well distributed, the particle approximation is second order accurate [119, 120].

The cubic-spline kernel and its first two derivatives are plotted in Figure 3.2.

Although this kernel has been widely adopted in SPH simulations, Schuessler

and Schmitt [121] pointed out that the gradient of the CS kernel is unstable for

large number of neighbours (or equivalently large h in weakly-compressible SPH)

and pairing instability (also known as particle clumping) may occur depending

on the ratio of the smoothing length h to initial particle separation distance dnat,
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Figure 3.2: Cubic-spline kernel and its first two derivatives. The improvement proposed by
Couchman et al. [4] to cure pairing instability is plotted in blue.

i.e. κ = h/dnat. This is because the CS kernel function has an inflection point

at q = 2/3 such that the kernel gradient contains a minima at q = 2/3 and

tends to zero towards the origin. This implies the mutual repulsive force due

to the pressure gradient decreases for neighbouring particles within the region

0 ≤ q ≤ 2/3 of the kernel gradient. Hence, two particles spaced closer than

q ≤ 2/3 form a pair that eventually coincides at the same spatial location which

decreases the effective resolution of SPH.

There have been investigations to remedy the pairing instability. Couchman

et al. [4] suggested using an augmented form of the gradient of the CS kernel,

W ′
CS(q) = GCS



































−1 0 ≤ q ≤ 2
3

−3 q + 9
4
q2 2

3
≤ q ≤ 1

−3
4
q2 1 < q ≤ 2

0 q > 2

(3.11)

with W (q) and the normalisation GCS unchanged. In this case, particles within

the region 0 ≤ q ≤ 2/3 have the same gradient value and the pairing instability
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is eliminated. Price [122] pointed out that the kernel gradient (3.11) is no longer

correctly normalised. Hence, the kernel gradient contains a higher sampling rate

within the region q < 2/3 which may potentially lead to substantial systematic

error in the inter-particle pressure gradient forces [122]. More importantly, the

use of the modified gradient creates an inconsistency between the kernel function

and its gradient which may potentially violate conservation of energy.

Morris [123] was the first to point out that the stability of a kernel function

against the pairing instability is related to the properties of its Fourier trans-

form. In particular, the stability is significantly improved for large number of

neighbours provided that the Fourier transforms decays rapidly. Read et al. [109]

discovered the use of a higher order core-triangular kernel (HOCT4) with 422

neighbour particles improves the performance of SPH in mixing problems (c.f.

section 3.11). The major distinctions between the HOCT and cubic-spline kernel

is that the former has a larger weighting at the origin and does not have an

inflection point.

Dehnen and Aly [124] compared the convergence properties of different SPH

kernels. In contrast to the conventional understanding of the pairing instability

based on the inflection point argument, they pointed out that the pairing in-

stability is caused by the re-ordering capability of SPH that has a tendency to

re-order particles into a lower energy state. Moreover, they conducted a series

of test cases using the family of Wendland kernel functions [117] and demon-

strated that the kernels are stable for large number of neighbours even though

the Wendland functions have inflection points. Furthermore, they proposed that

the appropriate condition for stability against the pairing instability is that the

Fourier transform of the kernel function is non-negative. An extensive discussion

about Wendland kernels functions can be found in [112, 117, 124]. Unless stated

otherwise, the simulations in this thesis are performed using the 5th degree class
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Figure 3.3: Fifth order Wendland kernel (Quintic kernel) and its first two derivatives.

2 Wendland kernel similar to those in [125, 126, 127], and has the form

Wwendland(q) = GW5











(1− q
2
)4(1 + 2q) 0 ≤ q < 2,

0 q > 0
(3.12)

where GW5 = 7/(4πh2) in two dimensions and GW5 = 7/(8πh3) in three dimen-

sions. The Wendland (Quintic) kernel and its first and second derivatives are

plotted in Figure 3.3.
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3.5 Accuracy of SPH interpolation

3.5.1 spatial discretisation error

The interpolation error analysis is performed considering a one-dimensional case.

Taylor expanding around ~r and keeping terms up to second order gives

〈f(~r)〉 =

∫

Ω

f(~r ′)W (~r − ~r ′, h)d~r ′

=

∫

Ω

[

f(~r) +
df

d~r
(r − r′) +

1

2

d2f

d~r 2
(~r − ~r ′)2

]

W (~r − ~r ′, h)d~r ′

= f(~r)

∫

Ω

W (~r − ~r ′, h)d~r ′ +
df

d~r

∫

Ω

(~r − ~r ′)W (~r − ~r ′, h)d~r ′ +

1

2

d2f

d~r 2

∫

Ω

(~r − ~r ′)2W (~r − ~r ′, h)d~r

= f(~r) +
1

2

d2f

d~r 2

∫

Ω

(~r − ~r ′)2W (~r − ~r ′, h)d~r .

Since the kernel function must satisfy the properties in Table 3.1 of being an even

radially symmetric even function, the odd order terms vanish and the highest

order residual term corresponds to the second order Taylor expansion. It can be

shown that the spatial discretisation error is second order accurate O(h2) (see

Appendix 9.2.2).

3.5.2 Consistency

Another important aspect of a mesh-free methods is its reproducing capabilities.

Formally, an interpolation method is k-th order consistent if any polynomial up

to order k can be represented. In what follows, we discuss zero-th and first order

consistency considering the interior region of a fluid domain.

Condition 3.5.1. For a zero-th order polynomial f(~r) = co, the kernel density
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estimate must satisfy

f(~r) =

∫

Ω′

coW (~r − ~r ′)d~r ′

= co

∫

Ω′

W (~r − ~r ′)d~r ′

= co.

Condition 3.5.2. For a zero-th order polynomial f(~r) = co, the kernel gradient

must satisfy

∇f(~r) = co

∫

Ω′

∇W (~r − ~r ′)d~r = 0 (3.13)

Condition 3.5.3. For a first order polynomial f(~r) = co+c1~r, the kernel density

estimate must satisfy

f(~r) =

∫

Ω′

(co + c1~r
′)W (~r − ~r ′)d~r ′ = co + c1~r.

Based on the normalisation condition (3.4) and subtracting ~r ′ on both sides

gives,
∫

Ω′

(~r − ~r ′)W (~r − ~r ′)d~r ′ = 0. (3.14)

Summarising the above, condition (3.5.1) requires a constant function to be

reproduced and condition (3.5.2) requires the gradient of a zero-th order poly-

nomial to be zero. Finally, condition (3.5.3) requires the first moment of the

kernel function to vanish. The higher order reproducing conditions are gen-

eralised in the literature [118, 128, 129, 130, 131]. Note that the consistency

conditions (3.5.1)-(3.5.3) are derived for continuous kernel interpolation, with

the assumption that the integration domain lies within the interior region Ω′.

However, these conditions are no longer satisfied when the integration region
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involves boundaries ∂Ω as illustrated in Figure 3.1. This phenomena is known as

truncated kernel, and it is a major disadvantage of all mesh-free methods based

on kernel density estimate [112, 116, 117]. This is because in lieu of boundary

particles, the support of the kernel is not fully filled. Hence, despite the fact

that the kernel function is radially symmetric, the contribution from outside the

domain are not taken into account (see Figure 3.1), and the kernel interpolation

violates the normalisation condition (3.4) and conditions (3.5.1)-(3.5.3). The

particle analogue of (3.5.1)-(3.5.3) are given as

Condition 3.5.4. For a zero-th order polynomial f(~r) = co, the SPH particle

approximation must satisfy

f(~ri) =
∑

j

co
mj

ρj
W (~ri − ~rj, h). (3.15)

Condition 3.5.5. For a zero-th order polynomial f(~r) = co, the SPH particle

approximation must satisfy

∇f(~ri) =
∑

j

co
mj

ρj
∇iW (~ri − ~rj, h) = 0. (3.16)

Condition 3.5.6. For a first order polynomial f(~r) = co+ c1~r, the first moment

of the SPH particle approximation must satisfy

∑

j

mj

ρj
(~ri − ~rj)W (~ri − ~rj, h) = 0. (3.17)

Even though the consistency conditions (3.5.1)-(3.5.3) are satisfied for con-

tinuous kernel interpolation, it is not guaranteed that the particle form of these

conditions (3.5.4)-(3.5.6) will be satisfied. In fact, it is well known that the

accuracy of the SPH particle approximations decreases when particles are irreg-

ularly distributed [109, 130, 131, 132]. The inconsistency is attributed to the
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discrepancy between the continuous and discrete kernel interpolation. That is,

the SPH particle approximation does not reproduce the zero-th order polynomial.

By the same token, the anti-symmetric condition (3.5.5), and the first-moment

condition (3.5.6) do not hold for irregular particle distributions. Further discus-

sions on improvements for restoring consistency have been proposed in literature

[128, 129, 130, 131, 132].

3.6 Smoothing length

In astrophysics, SPH is very often used in conjunction with tree based gravity

solver to simulate the evolution of astrophysical objects. The presence of voids

and highly dense regions within these simulations requires adaptive smoothing

length that can resolve the dynamics in computationally efficient manner. This

approach is commonly known as the variable h SPH in literature and it has been

become a standard implementation in the astrophysics community. Numerous

techniques have proposed in the literature for choosing the smoothing length:

1. keep the number of neighbours Nn approximately constant [133].

2. adapt the smoothing length to be proportional to the number density,

namely h ∼= n1/Ndim , n =
∑

j Wij [120].

3. evolve the smoothing length according to hi = ξ(mi/ρi)
1/Ndim .

4. evolve the smoothing length according to the time derivative of the conti-

nuity equation.

dhi

dt
=

1

3
hi∇ · ~vi (3.18)

Nonetheless, the variable smoothing length approach introduces a so called ∇−h

term error that needs to be corrected. Since the density variation is negligible

for the low Mach number fluid problems considered in this thesis, a decision
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was made to use a constant smoothing length for all particles. Further details

regarding to the implementation aspects of our fixed smoothing length SPH code

will be described in chapter 4.

3.7 Spatial derivatives in SPH

Since SPH solves PDEs which govern fluid dynamics, it is unquestioned that

the accuracy of the spatial derivatives holds a significant role in its accuracy.

Without lost of generality, we consider the derivation of the divergence if a vector

function ~f(~r), the spatial derivatives of scalar function can be derived in the same

fashion. Monaghan [119] recommended two golden rules for the construction of

SPH spatial derivatives. The first golden rule states that when deriving kernel

approximations, one should assume the kernel function is a Gaussian function.

The second golden rule states that one should rewrite formulas with density

inside operators. Many variations of SPH spatial derivatives can be derived

using these golden rules. In what follows, we review the basic spatial derivatives

used in SPH in section 3.7.1 and show that other popular choice of SPH spatial

derivatives can be derived based on the combined use of the chain rule and the

Monaghan’s second golden rule in section 3.7.2.

3.7.1 SPH divergence formula I

As a first approximation, the divergence of a vector function can be computed

directly from the kernel interpolation. The spatial derivatives of a vector function

~f(~r) can be approximated from equation (3.5). Assuming the kernel function

satisfies the properties in Table 3.1, the spatial derivative of ~f(~r) is given as

〈∇ · ~f(~r)〉 = ∇ ·
[
∫

Ω

~f(~r ′)W (~r − ~r ′d~r ′)

]

=

∫

Ω

~f(~r ′)∇ ·W (~r − ~r ′)d~r ′.

(3.19)
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Applying the particle approximation gives

〈∇ · ~fi(~ri)〉 =
∑

j

mj

ρj
~fj · ∇iWij. (3.20)

While equation (3.20) serves as a straight forward method for gradient approxi-

mation, it suffers from zero-th order inconsistency. Thus, the direct application

of such derivatives is rarely used in practice.

3.7.2 SPH divergence formula II

Many variations of SPH divergence can be found in the literature. Following

Read et al. [109], applying the chain rule to the combined spatial derivative

approximation based on an arbitrary scalar function φ and density gives

∇ ·
(

ρ

φ
~f

)

= ~f ∇ ·
(

ρ

φ

)

+
ρ

φ
∇ · ~f. (3.21)

It is found that equation (3.21) is a generalised form of the spatial derivative in

SPH and covers the variations presented in the literature. For instance, substi-

tuting φ = 1 in equation (3.21) gives

〈∇ · ~fi(~ri)〉 = −
1

ρi

∑

j

mj(~fi − ~fj)∇iWij, (3.22)

which is used for the approximation of velocity divergence in Balsara [134]. Sim-

ilarly, substituting φ = ρ2 in equation (3.21) gives

〈

∇ · ~fi(~ri)
ρi

〉

=
∑

j

mj

ρj

(

~fj
ρ2i

+
~fi
ρ2j

)

∇iWij. (3.23)

50



Furthermore, if φ = ρ then equation (3.21) simplifies to

〈∇ · ~fi(~ri)〉 = −
∑

j

mj

ρj
(~fi − ~fj) · ∇iWij. (3.24)

Equation (3.24) is zero-th order consistent. In fact, if one considers φ = ρ2−ϕ

where ϕ ∈ R then equation (3.21) results in the spatial derivative approximation

in [110, 118].

〈ρi∇ · ~fi(~ri)〉 = −ρ2−ϕi

∑

j

mj

ρ2−ϕj

(~fi − ~fj)∇iWij. (3.25)

3.8 SPH Lagrangian fluid dynamics

The SPH equations can be derived from two different viewpoints. On one hand,

one can discretise the spatial derivatives in the fluid dynamical equations based

on the SPH gradients in section 3.7 and explicitly show that the corresponding

SPH scheme satisfies conservation of mass, momentum and energy. On the other

hand, it is possible to derive SPH from the Lagrangian of non-dissipative hydro-

dynamics and the principle of least action. Monaghan and Price [135] showed

that the standard SPH scheme can be derived from the discrete fluid Lagrangian

[136], an extension is made in Price and Monaghan [120] which includes the ∇h

error term in the derivation. While the derivation in the literature mainly con-

cerns standard SPH [120, 135, 137, 138], the derivation presented herein extends

the earlier results and demonstrates a consistent set of SPH fluid dynamical

equations based on any arbitrary scalar function φ can be derived from the

Euler-Lagrange equation. Consider the Lagrangian of a perfect fluid [136, 139]

L =

∫

ρ

(

~v · ~v
2
− e(ρ, s)

)

dV, (3.26)
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where dV represents the differential volume of a fluid particle. Following the

work of Price and Monaghan [120], the Lagrangian for a set of discrete particles

is given as

L =
∑

j

mj

[

v2j
2
− ej (ρj, sj)

]

. (3.27)

The Lagrangian herein is dependent on the mass, density, internal energy per

unit mass and entropy per unit mass (sj) of the particles. The SPH momentum

equations are derived from the Euler-Lagrange equation of a particle system,

namely

D

Dt

(

∂L
∂~vi

)

− ∂L
∂~ri

= 0. (3.28)

Substituting the particle Lagrangian (3.27) into the first term of the Euler-

Lagrange equation (3.28) gives

D

Dt

(

∂L
∂~vi

)

=
D

Dt

[

∂

∂~vi

∑

j

mj

(

~v 2
j

2
− ej (ρj, sj)

)

]

. (3.29)

Assuming the mass particles is time independent, equation (3.30) simplifies to

the force acting on a particle i, namely

D

Dt

(

∂L
∂~vi

)

=
D

Dt
(mi~vi) . (3.30)

The second term of the Euler-Lagrange equation (3.28) is written as

∂L
∂~ri

=
∂

∂~ri

[

∑

j

mj

(

v2j
2
− ej(ρj, sj)

)

]

= −
∑

j

mj
∂ej
∂ρj

∣

∣

∣

sj

∂ρj
∂~ri

.

(3.31)

For an adiabatic reversible process (ds = 0), the differential volume is given by

DV = −1/ρ2Dρ. In addition, the relation between internal energy and pressure
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work is described by the first law of thermal dynamics

de = −PdV + Tds. (3.32)

Replacing the differential volume in equation (3.32) by dV = −1/ρ2dρ gives the

relation

∂ej
∂ρj

∣

∣

∣

sj
=

P

ρ2
(3.33)

Substituting (3.33) into equation (3.31) gives

∂L
∂~ri

= −
∑

j

mj
P

ρ2
∂ρj
∂~ri

(3.34)

Expressing the velocity divergence in the continuity equation (2.4) by the gen-

eralised spatial derivative formula (3.21) gives

Dρi
Dt

=
∑

j

mj
φi

φj

~vij · ∇iWij, (3.35)

which is commonly known as the differential form continuity equation density es-

timate. In contrast, one can consider the integral form of the continuity equation,

which is known as the summation density approach in the literature

ρi =
∑

j

mj
φi

φj

Wij. (3.36)

To avoid confusion, a dummy index q is introduced for the approximation of the

density of particle j. Rewritting equation (3.36) in terms of the dummy index

gives

ρj =
∑

q

mq
φj

φq

W (~ri − ~rq, h) . (3.37)
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Utilising the second identity in Appendix 9.2.3, the spatial derivative with respect

to particle j is given as

∂ρj
∂~ri

=
∑

q

mq
φj

φq

∇jWjq (δji − δqi) . (3.38)

Substituting (3.38) into the second term in the Euler-Lagrange equation (3.28)

gives

∂L
∂~ri

= −
∑

j

mj
Pj

ρ2j

∑

q

mq
φj

φq

∇jWjq (δji − δiq) . (3.39)

Rearranging the double sum one gets

∂L
∂~ri

= −
∑

j

∑

q

mjmq
Pj

ρ2j

φj

φq

∇j.Wjq (δji − δiq) (3.40)

The properties of Kronecker Delta function allows us to partition the above

expression into its partial sums

∂L
∂~ri

= −
[

miPi

ρ2i

∑

q

mq
φi

φq

∇iWiq −mi

∑

j

mjPj

ρ2j

φi

φq

∇jWji

]

, (3.41)

where the first term corresponds to j = i and the second term corresponds to

q = i. Replacing the dummy index q by j in the first term and utilising the

identity in Appendix 9.2.1 (equation (9.24)) gives

∂L
∂~ri

= −
∑

j

mimj

[

Pi

ρ2i

φi

φj

+
Pj

ρ2j

φj

φi

]

∇iWij. (3.42)

Substituting equation (3.30), (3.42) into the Euler-Lagrange equation (3.28) re-

sults in the generalised momentum equation weighted by an arbitrary scalar

function φ

D~vi
Dt

= −
∑

j

mj

[

Pi

ρ2i

φi

φj

+
Pj

ρ2j

φj

φi

]

∇iWij. (3.43)
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Finally, taking the time derivative of (3.32) gives the SPH internal energy equa-

tion

De

Dt
=

Pi

ρ2i

∑

j

mj
φi

φj

~vij∇iWij. (3.44)

It can be shown that φ = 1 for standard SPH. Note that the derivation herein

focuses on fixed smoothing length, an extension can be easily made for variable

smoothing length as shown in Monaghan [140] for standard SPH. The major im-

plication of the results herein is that to achieve a set of consistent SPH equations,

it is desirable to utilise the same function φ for the discretisation of the spatial

derivative, failing to do so may void the conservation of energy and momentum.

For completeness, the proof of Galilean invariance and conservation properties

of total linear and angular momentum are explicitly shown in Appendix 9.2.4.

3.9 SPH viscosity

The conservation of mass, momentum and energy across a shock region is given

by the Rankine-Hugoniot conditions [141, 142, 143, 144, 145] which requires

the transformation of kinetic energy into internal energy via viscous heating.

However, this is by nature a rapid process occurring at a length scale of the

mean free path, which is significantly smaller than the typical resolution scale

offered in macroscopic hydrodynamic simulations. It is therefore common to

utilise artificial viscosity schemes in numerical hydrodynamic codes.

3.9.1 Standard artificial viscosity

Among the many available artificial viscosity schemes in the literature, the Von

Neumann-Richtmyer model [146] and the Landshoff model [147] have gained sig-

nificant attention due to their simplicity and computational efficiency. Von Neu-

mann [146] introduced: In practice, a linear combination of the Von Neumann-
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Richtmyer model [146] and the Landshoff [147] model are usually employed for

the artificial viscosity in the mesh-based literature. Similar concept has been

adopted in SPH artificial viscosity [60] and it has the particle-wise form of

Πij =















−αAV c̄ijµij+βAV µ2
ij

ρ̄ij
~rij · ~vij < 0

0 ~rij · ~vij > 0

, (3.45)

and

µij =
~vij · ~rij
r2ij + ξh2

, (3.46)

where c̄ij, ρ̄ij are the harmonically averaged speed of sound and density respec-

tively. The numerator ~vij · ~rij measures the local divergence of a particle pair

{i, j}. The denominator r2ij + ξh2, takes into account the separation between

particles, and the softening factor ξ = 0.01 is introduced to prevent numerical

divergence. The viscosity terms were originally only imposed during compression

only; therefore its contribution is always positive. The linear term proportional

to the artificial viscosity parameter αAV represents the combination of shear and

bulk viscosity. The quadratic term proportional to the βAV term represents the

Von Neumann-Richtmyer viscosity and prevents inter-particle penetration [128].

The standard artificial viscosity is Galilean invariant and conserves momen-

tum. It also vanishes for rigid-body rotation (~vij · ~rij = 0). The use of a

particle-wise measure of the divergence (i.e.~vij · ~rij) has both advantages and

disadvantages over the mesh-based artificial viscosity model. One advantage is

that it takes into account the local particle distribution. A major disadvantage is

that the divergence may not vanish even for a pure shear flow when particles are

not regularly distributed. The values chosen for artificial viscosity parameters are

also problem dependent. For instance, for gravity driven flow of liquids the arti-

ficial viscosity parameters are commonly chosen as αAV = 0.1, βAV = 0, whereas

the standard choice in astrophysics literature is αAV = 1 and βAV = 2αAV .
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3.9.2 Balsara switch

Whilst the purpose of artificial viscosity (3.45) is to inhibit particle interpene-

tration and damp small scale disordered motion, it is known that the standard

SPH artificial viscosity introduces spurious shear viscosity [64, 137, 148, 149].

Thus it is common for modern SPH implementations to utilise the standard

SPH artificial viscosity in combination with what is known as a Balsara switch.

The Balsara switch [134] is a shear reduction method which takes into account

the relative strength between compression ∇ · ~vi and vorticity ∇ × ~vi within

the kernel averaged velocity field. The localised velocity divergence and curl are

computed via

∇ · ~vi = −
1

ρi

∑

j

mj~vij∇iWij, (3.47)

and

∇× ~vi =
1

ρi

∑

j

mj~vij ×∇iWij. (3.48)

The Balsara factor is then given as

fi =
|∇ · ~vi|

|∇ · ~vi|+ |∇ × ~vi|+ ξfci/h
, (3.49)

where a softening factor ξf = 0.01 is introduced to avoid numerical divergence.

In the case of strong compression |∇·~vi| ≫ |∇×~vi|, the Balsara factor approaches

unity. On the other hand, the Balsara factor reduces to zero when the particle

is subjected to large vorticity |∇ × ~vi| ≫ |∇ · ~vi|. The average Balsara factor

between a particle-pair (fij) is then applied as a multiplicative factor to the

standard artificial viscosity model (3.45) to adjust the strength of the actual

artificial viscosity applied.
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3.9.3 Monaghan real viscosity

The Monaghan real viscosity model [119] is based on the linear part of the

standard artificial viscosity term (3.45), except that it is always active regardless

the particle pair is undergoing pair-wise compression or not.

Πij = −8
(νi + νj)~rij · ~vij

ρ̄ij + ξh2
. (3.50)

Furthermore, assuming the fluid particle pair has the same densities and kine-

matic viscosities, a comparison between (3.50) and (3.45) for βAV = 0 suggests

the relation [120]

ν =
αAV ch

8
. (3.51)

3.9.4 State-of-the-art viscosity models

Time dependent viscosity

Morris and Monaghan [150] introduced the concept of time-varying artificial

viscosity coefficients, hereafter called TDV. In this concept, each particle are

given its artificial viscosity parameter which evolves according to a simple source

and decay equation.

dαi

dt
= −αi − αmin

τi
+ Si, (3.52)

where αmin represents the minimum artificial parameter allowed in the simula-

tion, τi is the e-folding time which is given by

τi =
hi

C1ci
, (3.53)
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where C1 = 0.2 is a parameter to control at decay rate of αi to αmin after a shock

have occurred. The source term

Si = max(−∇ · ~vi, 0), (3.54)

causes the artificial viscosity parameter to grow when the particle enters a shock

and causes it to decay to a small value away from the shock. Rosswog et al.

[151] suggested one can also limit the maximum artificial viscosity allowed in the

simulation by replacing the source term by Si = max(−∇ · ~vi(αmax − αmin), 0),

where the typical values are set to be αmin = 0.1 and αmax = 1.5.

Inviscid SPH

While the TDV has demonstrated improvements over standard SPH artificial

viscosity by lowering undesired effective viscosity, Cullen and Dehnen [152] men-

tioned that this method still suffer from some limitations. Firstly, they pointed

out that αmin > 0 results in unwanted dissipation. Secondly, there is a time

delay between the peak in the viscosity and the shock front. This is because

the integration of the differential equation (3.52) does not provide the rapid

increase of αi required for strong shock problems. Thirdly, the source term Si

fails to vanish between pre and post-shock region. More importantly, the authors

demonstrated that the source term fails to distinguish between velocity discon-

tinuities within the support of the kernel and converging flows. Having seen

the issues of TDV, Cullen and Dehnen [152] proposed a novel shock indicator

with two strongly desirable features: able to distinguish shocks from convergent

flows, and able to discriminate between the pre- and post-shock regions. Instead

of using the SPH estimated divergence, the success of their shock indicator make

uses of a second-order derivative of the flow velocity. In particular, the total

time-derivative of the velocity divergence (i.e. ∇̇ · ~v = d(∇ · ~v)/dt) is computed
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by differentiating the continuity equation with respect to time

− ∇̇ · ~v =
d2lnρ

dt2
, (3.55)

where ∇̇ · ~v < 0 signifies a non-linear increase in density and steepening of flow

convergence which typically occurs in the pre-shock region, whereas ∇̇ · ~v >

0 suggests a post-shock region. Their shock indicator has the form of Ai =

ξi max(−∇̇·~vi, 0), where ξi is a limiter to suppress false detections. Furthermore,

instead of directly solving the artificial viscosity ordinary differential equation,

their work relies on the concept of varying the artificial viscosity parameter of a

particle from zero to a localised artificial viscosity parameter within the kernel

support (αloc) as given by

αloc,i =
αmaxhiA

2
i

~v2sig,i + h2Ai

, (3.56)

where the signal velocity is given by

~vsig,i = max
~rij<hi

(c̄ij −min(0, ~vij · ~rij)). (3.57)

It is therefore guaranteed that both A and the localised artificial viscosity pa-

rameter within the kernel support αloc both decays to zero at the moment of

passing through a shock (maximum convergence). Finally, the artificial viscosity

parameter of a particle is computed by solving the first order differential equation

dαi

dt
=

(αloc,i − αi)

τi
, (3.58)

where the decay time-scale if defined to be τi = hi/0.2~vsig,i.
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Higher order SPH switch

Motivated by Cullen and Dehnen [152] and the earlier work of Price [110], Read

and Hayfield [153] introduced a novel approach based on a second order accurate

switch technique to modelling flows with discontinuities which we will called

SPHS hereafter. The success of SPHS is based on the high order flow conver-

gence detector and the introduction of appropriate dissipation terms. While the

discussion herein focuses on viscosity, this method is very versatile in principle

it can be further generalised for all advected fluid quantities such as mass flux,

artificial viscosity, and density. Unlike the work of Cullen and Dehnen [152],

the authors considered the spatial derivative of the velocity divergence in their

dissipation switch, and the dissipation parameter is given by

αloc,i =











αmaxhi|∇(∇·~vi)|

h2
i |∇(∇·~vi)|+hi|∇·~vi)|+ξlocci

∇ · ~vi < 0

0 ∇ · ~vi ≥ 0
(3.59)

where ξloc = 0.05 and the αloc,i parameter is a measure of the amount of dis-

sipation for each particle. The dissipation is active when a SPH particle is

experiencing a net compression within the support of the kernel ∇ · ~vi < 0,

namely in a convergent flow, and the magnitude of dissipation is proportional

to the rate of change of the local compression (i.e. ∇(∇ · ~vi)) within the kernel.

To further improve the accuracy of gradient estimators in equation (3.59), the

author propose a second order polynomial to each fluid quantities similar to the

earlier work of Maron and Howes [154]. Once αloc,i has been determined, the

artificial viscosity parameter αi is determined by the following conditions:

αi = αloc αi < αloc

dαi/dt = (αloc − αi)/τi αmin < αloc,i < αi,

dαi/dt = (αmin − αi)/τi αmin > αloc,i

(3.60)
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where the time-scale of the decay is defined as τ = hi/max
j

(vsig,ij). In essence,

this guarantees a SPH particle αmin to adapt to the localised value within its

kernel αloc. In the case of convergent flows, their algorithm is able to detect

the rate of change of the localised distribution of the velocity divergence, and

therefore introduce the appropriate dissipation in time by changing the artificial

viscosity of the particle via equation (3.60).

3.10 Equation of State

The equation-of-state (EoS) determines pressure as a function of state variables

such as density or internal energy. The two most commonly employed equation-

of-state in SPH are the ideal-gas EoS and the Tait EoS, both of these will be

discussed herein. The ideal-gas EoS is commonly used in astrophysical applica-

tions

P (ρ, e, γ) = (γ − 1)ρe. (3.61)

It relates the pressure (P ) of a particle to its density and internal energy. In

astrophysical simulations, the baryons are assumed to be a mono-atomic gas

with heat capacity ratio of γ = 5/3 . The ideal-gas EoS can be written in terms

of internal energy using the e = cvT , where cv is the specific heat at constant

volume.

For an adiabatic process in ideal-gas, the relationship between temperature,

density and pressure, is given by the Poisson’s law [155]

T

To

=

(

P

Po

)
γ−1
γ

=

(

ρ

ρo

)γ−1

, (3.62)

where To, Po and ρo are the background temperature, pressure and density re-
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spectively. Rearranging (3.62) to obtain the relation for relative pressure gives

∆Pi(ρ, ρo, γ) = P − Po = Po

[(

ρ

ρo

)γ

− 1

]

. (3.63)

Utilising the definition of the adiabatic speed of sound (c2 = ∂P/∂ρ), the back-

ground pressure has the form of Po = ρc2SPH/γ. Note that an artificial speed of

sound cSPH is employed instead of the real speed of sound such that the fluid

flow remains in the low Mach number regime (M < 0.1). Equation (3.63) is

the Tait EoS as commonly used within weakly-compressible SPH [62, 128] for

terrestrial fluid dynamics applications.

Unlike the ideal-gas EoS, the Tait EoS is a barotropic EoS which considers the

relative pressure of a fluid with respect to its initial reference pressure. When

temperature effects are significant in a weakly-compressible flow (e.g. natural

convection, conduction), one can either apply the Boussinesq approximation or

a modified Tait EoS that includes temperature. For small temperature variations,

the Boussinesq approximation assumes a linear relationship between density and

temperature in the effective gravity term in the momentum equation

(ρ− ρo)|~g| ≈ −ρo βthermal(T − To)|~g|, (3.64)

where βthermal is the thermal expansion coefficient defined as

βthermal =
1

ρ

(

∂ρ

∂T

)

p

. (3.65)

It is obvious that an upward acceleration due to buoyancy is obtained when

ρ < ρo and T > To. Alternatively, one can combine the Tait EoS (3.63) and the

Poisson’s Law (3.62) to obtain a modified Tait EoS (3.66) that encapsulates the
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effects of both density and temperature

∆Pi(ρ, T, ρo, To, γ) = Po

(

ρi
ρo

Ti

To

− 1

)

. (3.66)

3.11 Multiphase SPH

3.11.1 Survey of multiphase SPH literature

In recent years, some researchers have explored the use of SPH for multiphase

flows. Analysing the performance of mesh-based simulation codes and SPH,

Agertz et al. [148] pointed out that the conventional SPH formulation is not

capable of resolving multiphase flows due to errors in density estimates and

discontinuities in internal energies near to fluid interfaces. The combination of

biased density estimates and the discontinuity in physical quantities disrupts

the dynamic boundary condition and generates an artificial pressure jump near

the interface, an effect also known as artificial surface tension in the literature.

The multiphase SPH literature in astrophysics and terrestrial fluid dynamics are

summarised in following sections.

Astrophysics

The current state-of-the-art multiphase SPH within astrophysics are largely

based on three strategies:

i) introduce SPH schemes that ensure a single-valued pressure at the interface

by construction. Initially proposed by Ritchie and Thomas [156], smoothed-

pressure SPH relies on the concept that fluids on either side of an interface

are required to satisfy the dynamic boundary condition. For inviscid fluids,

this is given by the equilibrium in pressure at the interface (c.f chapter4,

equation (4.3)). Based on this concept, the authors introduced an internal
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energy weighted density estimate and an alternative form of the equations

of motion which conserves momentum and at the same time guarantees a

single-valued pressure.

This approach was extended by Read et al. [109] to resolve mixing problems.

The authors discovered standard SPH schemes suffer from two major error

sources that suppress mixing, i.e. the leading order term in the momentum

equation known as the E0,i = 0 error and the local-mixing error in the pres-

sure gradient approximation. While the E0,i = 0 decreases with increasing

number of neighbours, increasing the neighbour count can lead to the pairing

instability which causes a decrease in effective resolution. To combat this

situation, the authors proposed combining the SPH formulation presented in

Ritchie and Thomas [156] with a higher order kernel function would properly

remedy mixing problems in SPH. Recently, Saitoh and Makino [157] intro-

duced a density-independent SPH. In contrast to conventional SPH, their

SPH scheme is based on smoothing the internal energy density rather than

the mass density. The authors demonstrate success in resolving numerous

multi-fluid problems, including the KHI between two ideal gases. Inspired by

the results of Saitoh and Makino [157], Hopkins [158] proposed a generalised

equation of motion for any choice of volume element. The idea behind this

concept is that one shall use pressure as a discretisation variable such that

the pressure distribution is smoothed by default. In this case, volumes of the

particles are estimated from the equation of state once the pressure is known.

This can significant reduce the pressure jump which arises from error in the

density estimates. Nevertheless, the smoothed-pressure SPH variants are

known to break down as the density ratio increase or if the ratio of internal

energy increases therefore limiting their capabilities in model high density

ratio multiphase flows.
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ii) introduce correction terms to artificially smooth out discontinuities in phys-

ical quantities (e.g. internal energy, chemical composition). Price [110]

introduced an artificial conduction term to smooth out internal energy as

SPH particles of different phases approach each other. Recently, Read and

Hayfield [153] introduced the SPHS that detects flow convergence, marking

regions where the fluid properties are allowed to diffuse discontinuities in all

physical quantities. As discussed in section 3.9.4, SPHS is a very versatile

method, and the authors have demonstrated the use of this switch for simu-

lating multiphase flows of high density ratios in a multi-mass setup such as

a KHI for density ratios up to 8.

iii) Construct higher order solutions of the Euler equation using a local poly-

nomial fit to recover gradient information from a set of disordered SPH

particles [154, 159, 160]. A major advantage of this approach is that the

corresponding SPH scheme avoid clumping and banding instability as well

as reduces the spurious shear viscosity. Nevertheless, the problem due to

pressure discontinuity near the interface is not resolved in these higher or-

der SPH schemes unless the E0,i = 0 error is subtracted from the equation

of motions. A detailed discussion of these methods is beyond the scope to

this, inclined readers are referred to [154, 160].

Terrestrial fluid dynamics

As well as development in the context of astrophysical SPH, multiphase modelling

has also been studied in the context of weakly-compressible SPH. Colagrossi and

Landrini [161] used a density re-normalization at intermediate time steps, a large

artificial surface tension and high wave speed for the low density fluid, and a

smoothing of the velocity field. Apart from the non-physical aspects, very small

time steps are required in their SPH scheme. Flebbe et al. [162] first introduced

the particle number density approach. Hu and Adams [163, 164] applied this
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approach in fluid engineering to estimate the density for multiphase flows, where

particles of different fluids are both assumed to occupy an equal volume. Al-

though this approach has been widely applied in the weakly-compressible SPH

literature, it suffers from severe limitations which need to be properly addressed.

(i) In essence, the number density estimate assigns density by spatially-weighted

kernel averaging. Nonetheless, this approach is valid only if multi-mass SPH

particles are considered, and it is congruent to the standard SPH formulation

where equal-mass SPH particles are utilised in the setup of multiphase simula-

tions. This implies if no additional treatment is applied, the number density

of the low (high) density fluid will be over(under) estimated hence leading to

a spurious pressure gradient near the inference. (ii) Another restriction of this

concept is that the particle volume and the change of volume (∆V/V ) due to

compression must remain the same for different fluids. The latter means that

the choice of the speed of sound ratio is rather limited, usually leading to an

un-physical speed of sound ratio between the two fluids (c.f. section 3.11.2) that

results in prohibitively small time-steps as the density ratio increases. (iii) Fi-

nally, the number density is based on summation density estimate which is not

suitable free-surface flow applications within weakly-compressible SPH. Grenier

et al. [165] extended the number density approach to model free surface flows.

Their approach involves the use of the standard SPH density estimate with a

Shepard correction taking into account particles of the same phase. The volume

estimate of a particle is made by evolving the continuity equation. In addition

a repulsive force between particles of different fluids is introduced to stabilise

the interface and prevent artificial surface tension instabilities. Monaghan and

Rafiee [166] introduced a SPH method for high density ratios. The model is

based on the combined use of an alternative form of the SPH continuity equa-

tion and the momentum equation of Ritchie and Thomas [156] as well as a

surface stabilisation term that aims to suppress spurious pressure gradient near
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the fluid interface. Kruisbrink et al. [167] proposed a quasi-buoyancy correction

term to simulate multiphase flow at high density ratios (c.f. section 3.11.3).

Their approach demonstrated acceptable results for modelling stratified flow as

well as an internal gravity wave for multiphase fluid with a density ratio of 100.

Recently, Korzilius et al. [168] proposed a multiphase model based on kinetic

collision theory of two incompressible particles (c.f. section 3.11.4). Their model

demonstrates success at the simulation of multiphase flows in rapidly rotating

circular geometries and a multiphase dam break for density ratios up to three

magnitudes.

Fully incompressible analogues of SPH have also gained popularity in the

fluid dynamics simulation community, two of the best known examples are the

Moving Particle Semi-Implicit method (MPS) and Incompressible SPH (ISPH).

Unlike weakly-compressible SPH, these methods are truly incompressible such

that both volume and mass of particles remain constant throughout the sim-

ulation. The number density approach is used to obtain the local smoothing

of physical quantities of neighbour particles, and the pressure of particles are

determined by solving the pressure Poisson equation iteratively during each time

step. The workings of MPS and ISPH are similar except for the methods used

to solve the Poisson equation. A detailed review for these methods is beyond the

scope of this thesis, inclined readers are referred to Souto-Iglesias et al. [169].

3.11.2 Pseudo-consistent SPH

The analysis in section 3.8 demonstrates a consistent set of SPH fluid dynamical

equations which with the inclusion of any arbitrary scalar function φ, can be

derived from the Euler-Lagrange equation (3.28) and satisfies the conservation

properties of classical mechanics. In search of an appropriate SPH formulation,

Read et al. [109] considered an alternative viewpoint where each of the conserva-

tion laws has its own arbitrary function φ. The authors performed a perturbation
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analysis on the SPH fluid dynamical equations and discovered the accuracy of

SPH discretisation is directly influenced by the choice of these functions, with

the leading order error term in the momentum being the predominate problem.

In what follows, we discuss the importance of an appropriate choice for φ and

demonstrate the concept of smoothed-pressure SPH [109, 156] can be extended

to the context of weakly-compressible SPH. Taylor expanding the pressure of a

nearby particle j around the particle of interest i gives

Pj ≈ Pi + ~rij · ∇iPi +O(h2). (3.67)

Substituting (3.67) into (3.43) and rearranging the terms yields

D~vi
Dt
≃ −

∑

j

mj

[

Pi

ρ2i

φi

φj

+
Pi + ~rij · ∇iPi +O(h2)

ρ2j

φj

φi

]

∇iWij. (3.68)

Rearranging the terms with respect to the kernel and the pressure gradient gives

D~vi
Dt
≃ −Pi

ρi

∑

j

mj

ρj

[

φi

φj

ρj
ρi

+
φj

φi

ρi
ρj

]

∇iWij −
1

ρi

∑

j

mj

ρj

φj

φi

ρi
ρj
~rij · ∇iPi +O(h),

(3.69)

where the first term in equation (3.69) is previously known as the E0,i error [109],

and the second term is called E1,i error herein. The accuracy of the perturbed

momentum equation (3.68) and hence (3.43) is given by the extent to which

E0,i = 0 and E1,i = I, with the E0,i = 0 being the dominant factor Read et al.

[109]. Analysing these error terms, Read et al. [109] identified three reasons

which prevented the E0,i term from vanishing. Firstly, E0,i should vanish due

to the asymmetry property of the kernel gradient; however, it ceases to vanish

when particles are irregularly distributed. Secondly, E0,i is proportional to the

density ratio between the fluids. It is therefore desired to choose φ = ρ such

that the density ratio does not contribute to the amplification of the E0,i error.

Finally, the local mixing instability is responsible for inhibiting mixing at a
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kernel level even if the initial setup is at pressure equilibrium [148, 156]. Agertz

et al. [148] pointed out that the local mixing instability can be understood as a

consequence of the fact that the summation density is computed in every time-

step and the internal energy is updated via time-integration. Therefore, as soon

as the simulation begins, a low density (high temperature) particle approaching

the interface encounters more high density (low temperature) particles, leading to

an increase in its density. Whereas a high density (low temperature) particle near

the interface encounters more low density (high temperature) particles; therefore

its density decreases. This consequently leads to a multi-valued pressure at the

interface, resulting in a spurious pressure gradient.

As previously mentioned, the spurious pressure gradient can be remedied by

employing artificial conduction schemes [110, 153] or a density estimate that

guarantees single-valued pressure by construction [109, 156]. In this thesis, we

focus on the latter given its relevance to the multiphase SPH scheme herein.

The concept of the smoothed pressure SPH formulation can be further un-

derstood by considering the following: suppose two ideal-gas particles with the

same heat capacity ratio are located in the support of the SPH kernel. Pressure

equilibrium requires Pi ≈ Pj. It then follows that

ρi
ρj
≈ ej

ei
. (3.70)

Equation (3.70) provides the internal energy weighted density estimate of a single

particle pair. Applying the SPH particle estimate(3.36) with φ = 1/e gives the

internal energy density estimate [109, 156]

ρi ≈
∑

j

mj
ej
ei
Wij. (3.71)

It is worth reviewing the underlying assumptions in the derivation of the internal
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energy density estimate. Firstly, the particles are assumed to have the same heat

capacity ratio. While it is acceptable in astrophysics to assume all SPH particles

have γ = 5/3 for diatomic gas, in general the γ of two fluids need not to be the

same (e.g γ = 7.0 for water and γ = 1.4 for air). Secondly, the physical argument

Pi ≈ Pj is only applicable for inviscid fluids. In principle, the dynamic boundary

condition requires stress balance across the interface [94]. Thirdly, both fluids

are assumed to be ideal-gases. This poses strong limitations on the feasibility of

the internal energy density estimate for other EoS because many flow scenarios

are modelled by the Tait EoS (3.63) where the pressure of a fluid is not influenced

by internal energy (temperature). One can of course utilise the same physical

argument based on balancing pressure to reconstruct SPH schemes for barotropic

fluids. Replacing the ratio of internal energy in (3.71) by the ratio of the particles

densities (ρi/ρj) gives

ρi =
∑

j

mj
ρi
ρj
Wij. (3.72)

However, this density estimate (3.72) requires iterative solvers which can po-

tentially lead to computational overhead. To overcome this challenge, one shall

consider the differential form of the continuity equation rather than the sum-

mation density estimate. Substituting φ = ρ and taking the time derivative of

(3.36) gives

Dρi
Dt

=
∑

j

mj
ρi
ρj
~vij · ∇Wij + χij, (3.73)

χij =
∑

j

mj
ρi
ρj

(

1

ρi

dρi
dt
− 1

ρj

dρj
dt

)

Wij, (3.74)

this is previously known as ǫ in [109]. The error term χ can be further simplified

to the difference of velocity divergence at the previous time-step
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χij = −
∑

j

mj
ρi
ρj

(∇ · ~vi −∇ · ~vj)Wij

= −
∑

j

mj
ρi
ρj
∇ · ~vijWij.

(3.75)

We argue that the error term χij which arises from the differential form of

the continuity equation χij is negligible if at least one of the following conditions

are satisfied: firstly, if the compressibility of both phases are the same then the

divergence of the particle pair offsets each other in equation (3.75). However, as

we will demonstrate in the later parts of this section, this requirement imposes

strict limitations on choosing the ratio between artificial speed of sound and the

heat capacity ratio. Secondly, consider the limiting case of a truly incompressible

flow where ∇ · ~v = 0 by definition for all particles. While this is generally not

true for compressible flows, one should expect similar behaviour for sufficient

low Mach number (M < 0.1) as considered in weakly-compressible flows. Note

that the error term (3.74) should play a significant role as the Mach number

increases; however, the investigation of multiphase flows in transonic and su-

personic regimes are beyond the scope of this thesis. Thirdly, the continuity of

tangential velocity condition (c.f. chapter 4, section 4.4.1) requires the tangential

velocity component between two fluids to be the same; therefore it is expected the

relative velocities of nearby particles decreases with increasing resolution. Hence,

it is expected the contribution from the χij error term in the differential form of

the continuity equation (3.73) should be significantly smaller than the first order

term for weakly-compressible flows. Furthermore, since the density ratio factor in

equation (3.73) is estimated from the densities at the previous time-step, the use

of the differential continuity equation approach does not require the utilisation

of iterative solvers.

The inclusion of φ in section 3.8 allows one to obtain SPH equations that
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are consistent and that conserve mass, momentum and energy. Especially, the

SPH equations used in this thesis utilise φ = ρ for the continuity equation and

momentum equation, and φ = 1/e for the internal energy equation. The derived

SPH scheme has numerous advantages over the standard SPH formulation and

the internal energy density estimate. The differential continuity equation evolves

the density based on the relative velocities of the particles; hence, it allows for the

handling of free-surface flow even when a fixed smoothing length is used. This

property is highly desirable and is not be possible for the summation density

estimates when fixed smoothing length is used. The SPH scheme conserves

linear and angular momentum. Finally, the SPH scheme relaxes the assumption

in the equation-of-state and the heat capacity ratio between fluids. It is worth

addressing the potential limitations of the presented multiphase SPH scheme:

that is, because the density ratios is actually replaced by the internal energy ratio

in the energy equation, our multiphase SPH can only approximately conserve

total energy; hence, it is called a pseudo-consistent SPH hereafter.

The pseudo-consistent SPH scheme discussed above forms the basis of the

multiphase method presented in this thesis. It is found that our pseudo-consistent

SPH scheme can generate satisfactory results for low density ratio multiphase

flows. Nonetheless, there are additional challenges when modelling multiphase

flow using weakly-compressible SPH. Bear in mind that weakly-compressible

SPH employs a fixed smoothing lengths, and the multi-mass particle and equal

separation is adopted for the initial conditions setup (c.f. chapter 4, section 4.2).

This essentially introduce a mass discontinuity near the interface. More impor-

tantly, recall that the Tait EoS (3.63) determines the pressure relative to some

background pressure Po, it can be seen from (3.69) that Eo,i ∝ Po as soon as

the density changes from its reference value. Thus, choosing a large background

pressure in the Tait EoS (3.63) results in an amplification of the Eo,i error. This

naturally leads to a more fundamental question of whether or not the two fluids
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should have the same background pressure Po. To answer this question, we

consider a simplified multiphase system consisting of a water and air particle.

Figure 3.4 illustrates the pressure computed directly from the Tait EoS (3.63)

Figure 3.4: Relative pressure determined from Tait EoS (3.63) plotted as a function of the
rate of compression. The use of fictitious properties enforces the pressure gradient to vanish.
Nonetheless, this leads to non-physical speed of sound ratios and prohibitive time-steps. The
use of realistic fluid properties generates a large pressure gradient at the interface proportional
to the compression ratio of the fluids.

plotted as a function of the rate of compression (∆ρ/ρ). The solid line repre-

sents the pressure of the water, the black dots correspond to the pressure of

air particles computed using fictitious properties (i.e. by satisfying Po,i = Po,j)

and the open circles correspond to pressure of air particles computed using real

properties. Inspecting the results, one can immediately observe that the pressure

of the air and water particles coincide when the background pressures are the

same Po,air = Po,water. Utilising the definition of the background pressure from

the Tait EoS (3.63), it is required that

Po,air = Po,water

ρairc
2
SPH,air

γair
=

ρwaterc
2
SPH,water

γwater

.

(3.76)
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Rearranging equation (3.76) for the artificial speed of sound ratio gives

cSPH,air

cSPH,water

=

√

ρwaterγair
ρairγwater

. (3.77)

Direct substitution of the state properties of air (ρair ≈ 1kg/m3, γair = 1.4)

and water (ρwater ≈ 1000kg/m3,γwater = 7) into equation (3.77) reveals the

artificial speed of sound of an air particle is approximately 14 times larger than

the artificial speed of sound of a water particle (i.e. cSPH,air ≈ 14cSPH,water).

This conflicts with reality as the speed of sound in air is significantly lower

than the speed of sound in water (i.e. cair = 343.21m/s and cwater = 1481m/s at

20oC). This phenomena which we called the discontinuity in background pressure

hereafter is one of the major challenges in the modelling of multiphase flows

using weakly-compressible SPH. Although some literature has employed the same

background pressure for both fluids [161, 163, 164], our results is consistent

with the claim made by Monaghan and Rafiee [166], Kruisbrink et al. [167]

that enforcing the same background pressure leads to physically incorrect (non-

physical) speed of sound ratios.

The necessity of correct speed of sound ratios can be further illustrated by

an independent study of multiphase systems situated in a confined space and

subjected to slight compression via a adiabatic process. Rewriting first law of

thermodynamics (3.32) as

de = −PdV =
P

ρ

dρ

ρ
. (3.78)

The definition of the adiabatic speed of sound gives the auxiliary relation

dP

ρc2
=

dρ

ρ
. (3.79)
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Substituting (3.79) intro (3.78) gives

de =
P

ρ

dP

ρc2
. (3.80)

In the absence of surface tension and viscous effects, the dynamic boundary

condition requires Pi = Pj and dPi = dPj. Thus, the ratio between the work due

to compression for the two fluids is given by

dei
dej

=

(

ρjcSPH,j

ρicSPH,i

)2

. (3.81)

Equation (3.81) implies that in order to have an accurate measure between the

ratio of the pressure-volume work, it is desirable in weakly-compressible SPH

simulations to keep the density and γ of the fluids at their real values, and the

ratio of the artificial speed of sound to be the same as the realistic speed of sound

ratio (i.e. cSPH,i/cSPH,j = ci/cj).

Apart from the mass discontinuity and the discontinuity in background pres-

sure, additional challenge arises when modelling high density ratio stratified flows

with SPH. Consider a stagnant flow consisting of two fluids A and B. The pres-

sure distribution within the two stratified fluid layers is hydrostatic as shown

in Figure 3.5. The pressure gradient changes at the interface due to the density

difference. The continuum fluid around the interface is at rest due to an equi-

librium of surface forces; however, this is not the case when the continuum of

fluid is modelled using SPH. It is because a lower density particle i experiences a

higher pressure from it neighbour particles j of the high density fluid, resulting

in an overall upward movement in the vertical direction. It would stay at rest if

its hydrostatic pressure distribution was extrapolated within the kernel scale as

shown in Figure 3.5.

It is worth stressing that in a realistic high density ratio multiphase flow

subjected to gravitational acceleration, the mass discontinuity, the disconti-
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Figure 3.5: Stagnant stratified flow and the piecewise hydrostatic pressure distribution plotted
in dots.

nuity in background pressure and the problem with maintaining a hydrostatic

pressure profile all contribute to the interface numerical instabilities in weakly-

compressible SPH simulations. With the aim to overcome these challenges,

two models have been introduced to improve the performance of the pseudo-

consistent multiphase SPH scheme for high density ratios: the quasi-buoyancy

correction model and the gas repulsion model. The concepts of these models will

be discussed in the following subsections.

3.11.3 Quasi-buoyancy correction model

The quasi-buoyancy correction model is based on a buoyancy force acting on a

partially submerged particle. It is introduced to stabilise the interface of high

density ratio flows subjected to a constant gravitational field. The model has

been applied to simulated two phase channel flows, internal gravity waves and

RTI for a density ratio of 1.8, where acceptable results were obtained [167]. The

model can be derived by taking into consideration of two-phase system {A,B},

where ρo,A ≤ ρo,B. The initial configuration is shown in Figure 3.5. Suppose

that a fluid particle i of phase A is partially submerged in the bulk of fluid the

particles in phase B. The force due to buoyancy on particle i is given by

~Fi,buoyancy = −(ρm − ρi)Vi~g, (3.82)
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where ρm is the mixture density of the surrounding fluid B within the support

of the kernel function. Expressing the mixture density in SPH form gives

(ρm − ρi) =
∑

j∈B

(ρm,j − ρi)VjWij. (3.83)

Replacing the ρm− ρi term in equation (3.82) by equation (3.83) yields the SPH

form of the buoyancy force

~Fi,buoyancy = −
∑

j∈B

(ρm,j − ρi)ViVj~gWij. (3.84)

This result is formulated as a pressure gradient force correction by taking the

opposite sign (i.e. ~Fi,buoyancy = −~Fi,correction). This concept is applicable to

gravity driven flows such as internal gravity waves and stratified channel flows

where the effects of viscosity are negligible. Re-writing equation (3.84) in terms

of volumes results in a pressure gradient correction force (the negative of the

buoyancy force)

~Fi,correction =
∑

j∈B

(ρm,j − ρi)ViVj~gWij. (3.85)

Consider the limiting case where a low density particle is entirely surrounded by

high density neighbour particles. Physically, the buoyancy force should result

in an upward motion. Nonetheless, the buoyancy force is entirely suppressed by

the pressure gradient force correction (3.84), this leads to the stabilisation of the

interface which is un-physical. A reduction factor Ci,effective is given to determine

the strength of the applied quasi-buoyancy correction, and it is defined as

Ci,effective =
|Seff

i,B |
Si,A + ξh2

, (3.86)

78



where a constant ξ = 0.01 is introduced to avoid numerical divergence. The

numerator is given by the weighted volume of nearby particles of phase B,

Seff
i,B =

∑

j∈B

sign(~g · ~rij)VjWij. (3.87)

The denominator Si,A accounts for the submergence of particles of interest by

comparing the base density of the neighbour particle with the base density of

itself, namely ρo,A.

Si,A =
ρm − ρo,A
ρo,B − ρo,A

. (3.88)

Applying the SPH particle approximation of the mixture density (3.87) yields,

Si,A =
∑

j

ρo,j − ρo,A
ρo,B − ρo,A

VjWij. (3.89)

The contribution from nearby particles j ∈ A vanishes. Hence, the denominator

simplifies to

Si,A =
∑

j∈B

VjWij. (3.90)

The reduction factor ratio (3.86) is essentially the ratio between the effective

submergence (3.87) and the SPH evaluation of the mixture density (3.90). In-

corporating the reduction factor and applying the volume estimates into equation

(3.85) yields the acceleration due to the quasi-buoyancy pressure gradient cor-

rection.

~ai,correction = Ci,effective

∑

j∈B

mj

(

1

ρi
− 1

ρj

)

~gWij. (3.91)

3.11.4 Gas repulsion model

Although the quasi-buoyancy model proposed in section 3.11.3 successfully re-

covers the hydrostatic pressure gradient, is not applicable for problems without a

gravitational field. Thus, a multiphase SPH model is developed for flow problems
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with or without gravity and operates for density ratios up to three magnitudes.

The gas repulsion model [170] is motivated by kinetic collision theory. The idea

of collisions in SPH is not entirely novel [171, 172], but it has not been applied

in the way proposed herein. The model is derived taking into consideration of

two boundary cases, namely a fully elastic collision and an inelastic collision.

Consider a fully elastic collision: since no energy is dissipated, the conserva-

tion of both momentum and energy is satisfied. The momentum conservation is

given by

~pi,a + ~pj,a = ~pi,s + ~pj,s, (3.92)

where ~pij,a and ~pij,s correspond to the momentum before and after the collision

respectively. The energy conservation is given by

~p 2
i,a

2mi

+
~p 2
j,a

2mj

=
~p 2
i,s

2mi

+
~p 2
j,s

2mj

, (3.93)

The separation velocities of the particles are uniquely determined from equation

(3.92)-(3.93) as

~vi,s =
(mi −mj)~vi,a + 2mj~vj,a

mi +mj

, ~vj,s =
(mj −mi)~vj,a + 2mi~vi,a

mi +mj

. (3.94)

In a fully inelastic collision, the post collision velocities of both particles are

identical. Since energy is dissipated, there is only conservation of momentum.

The post-collision velocity is given by [170]

~vi,s =
~pi,a + ~pj,a
mi +mj

. (3.95)

Defining CR as the coefficient of restitution and formulating the separation ve-

locities as a linear combination of the elastic (3.94) and inelastic (3.95) collision
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gives

~vi,s =
(mi − CRmj)~vi,a + (1 + CR)mj~vj,a

mi +mj

. (3.96)

It can be easily verified that CR = 0 corresponds to an inelastic collision (3.95)

and CR = 1 corresponds to an elastic collision (3.94). The change in velocity of

a particle i before and after the collision is

∆vi = ~vi,s − ~vi,a =
−mj

mi +mj

(1 + CR)~vij,a. (3.97)

The change in velocity should only be applied to the inter-particle direction, as

given by the unit vector ~eij = ~rij/|~rij|. The relative velocity along the inter-

particle direction is

~vij,a = (~vij,a · ~eij,a)~eij,a =
(~vij,a · ~rij,a)~rij,a

|~rij|2
. (3.98)

Substituting (3.97) into (3.98) yields the velocity of particle i after the collision

with particle j

~vi,s = ~vi,a −
∑

j

mj

mi +mj

(1 + CR)
(~vij,a · ~rij,a)~rij,a

|~rij|2
. (3.99)

The particle collision concept is based on velocities. To make the step to forces we

assume for the contact time-scale between two particles is ∆tcollision = |~rij|/|~vi,a|.

Note that ∆tcollision may be much smaller than the time step in the simulation.

Combining equation (3.99) with the definition of the contact time-scale gives

~vi,s − ~vi,a
∆tcollision

= −
∑

j

mj

mi +mj

|~vi,a|(1 + CR)
(~vij,a · ~rij,a)~rij,a

|~rij|3
(3.100)

which is an expression for the acceleration. This suggests the formulation of the

force due to a collision closely reassembles the viscous force. In that sense the

concept may be considered as a time dependent SPH viscosity model. However,
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there is a clear distinction between the standard artificial viscosity model and

the gas repulsion model presented herein. The essential difference is that the

force may become extremely high, since the collision takes place in very short

contact times which is far beyond the resolvable time-scale in traditional viscosity

models.

Example 3.11.1. In order to study the performance of different multiphase

SPH schemes, we consider a stagnant flow of a liquid-gas system. The density of

the top and bottom fluids are ρair = 1kg/m3 and ρliquid = 103kg/m3 respectively.

The pressure distribution within the two stratified fluid layers is hydrostatic,

where both fluids are modelled by the Tait EoS. The background pressure of

the top fluid is Po,gas = 160.7Pa (i.e. γgas = 1.4, cSPH,gas = 15m/s) and the

background pressure of the bottom fluid is Po,liquid = 1.286× 105Pa (i.e. γ2 = 7,

cSPH,liquid = 30m/s). The realistic heat capacity ratio of are used for both fluids,

and the speed of sound ratio is selected such that cSPH,gas < cSPH,liquid.

The numerical results at t = 1s are plotted in Figure 3.6. Inspecting the

results, it is obvious that both the standard SPH and the continuity equation

fail to capture a stabilised interface. Similar results are found for the pseudo-

consistent SPH scheme when a density ratio of 1000 is considered. Furthermore,

the number density (see Figure 3.6 c) fails to maintain a stable interface when

the background pressure of the fluids are not the same. Our experiment results

suggest the model proposed by Monaghan and Rafiee [166] fails to maintain a

stabilised interface as illustrated in Figure 3.6 (d). Moreover, the model contains

an artificial coefficient (0.08) that is case dependent; however, no guidelines was

provided in their work for the appropriate choice of the coefficient.

It is found that the quasi-buoyancy model (section 3.11.3) and the gas repul-

sion model (section 3.11.4) out performed the other weakly-compressible SPH

models and generated a relatively stable interface. The combination of high den-

sity ratios and more realistic speed of sound ratios which has not been presented
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(a) standard SPH (b) pseudo-consistent SPH

(c) number density [162, 163, 164] (d) Monaghan interface stabilisation [166]

(e) quasi buoyancy model [167] (f) gas repulsion model [170]

Figure 3.6: Numerical results for the stagnant tank example.
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in the weakly-compressible SPH literature. More importantly, the presented

model does not contain case dependent coefficients which often requires extensive

calibrations.

Finally, we would like to point out the implications of this test. Firstly, for

high density ratios it is important in weakly-compressible SPH to have correct the

speed of sound ratio. Particularly, the modelling pressure-work due to compress-

ibility and temperature effects. It is found that most of the multiphase models in

weakly-compressible SPH literature are not capable of resolving a fundamental

case like such as stagnant flow when the equal background pressure condition is

violated.

3.12 Multiphase pseudo-consistent SPH

To finalise this chapter, we describe the SPH equations used in the subsequent

chapters of this thesis. The density and acceleration of a SPH particle are com-

puted from the discretised form of the continuity equation which corresponds to

φ = ρ:

Dρi
Dt

=
∑

j

mj
ρi
ρj
~vij · ∇iWij, (3.101)

and the momentum equation:

D~vi
Dt

= −
∑

j

mj

(

Pi + Pj

ρi ρj
+Πij

)

∇iWij. (3.102)

In order to keep the formulation generalised, the inclusion of the multiphase

models in section 3.11.3 and section 3.11.4 have been omitted. The SPH internal

energy equation (3.103) follows from the first law of thermal dynamics and takes

into consideration the work done due to compression and the transfer of internal
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energy due to viscous heating

Dtei = −
∑

j

mj

(

Pi

ρ2i

ej
ei

+
1

2
Πij

)

~vij · ∇iWij. (3.103)

The key features of the multiphase SPH scheme can be summarised as follows:

1. Artificial speed of sound: Our gas dynamic simulations employ the real

speed of sound that is computed during the simulation, a fixed artificial

speed of sound is employed for weakly-compressible SPH. In particular,

there are two major restrictions for the choice of the speed of sound. That

is, the speed of sound should (i) enforce incompressibility M < 0.1 and (ii)

allow for practical time-stepping conditions.

2. Update densities via the φ = ρ continuity equation and momen-

tum equation: Particle densities are updated from the multi-fluid flow

SPH continuity equation given in equation (3.101). Similarly, the momen-

tum equation in [109, 156] is adopted to improve the stabilisation of the

interface for multiphase flows.

3. Fixed smoothing length for all SPH particles: With the purpose

of modelling weakly-compressible flow, our SPH implementation utilises a

constant smoothing length throughout the simulation for all particles.

4. Density differences are represented by multi-mass SPH particles:

The density differences between fluids are reflected by SPH particles of

different masses and equal initial volumes.
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3.13 Summary

In this chapter, we reviewed the single and multiphase SPH literature. The

first part of this chapter was dedicated to the review of single phase SPH. In

particular, the principles of the scattered data approximation and the essential

properties of SPH kernel functions were discussed in section 3.3-3.4. An error

analysis was performed in section 3.5 to examine the theoretical accuracy of the

continuum approximation and particle discretisation used in SPH, followed by

a discussion of spatial derivative formulations in the literature in section 3.7.

We demonstrated that a consistent set of SPH fluid dynamical equations can be

derived from the discretised fluid Lagrangian with the inclusion of arbitrary scalar

function φ in section 3.8. The artificial viscosity models and equation-of-states

employed in SPH simulations were described in section 3.9-3.10.

The second part of the chapter was devoted to multiphase SPH. Starting with

a review of the multiphase SPH literature, we discussed the underlying problem

faced by standard SPH in handling discontinuities and reviewed the strategies

that attempt to solve this matter. Section 3.11.2 introduced a pseudo-consistent

formulation of SPH and discussed its advantages and potential limitations. Addi-

tional challenges in applying the pseudo-consistent SPH to weakly-compressible

multiphase flows systems: mass discontinuity, discontinuity in background pres-

sure, and the difficulty in maintaining a stable interface for high density ratio

stratified flows were discussed in detail. It was found that enforcing the same

background pressure leads to a physically incorrect speed of sound ratios; hence

resulting in prohibitively small time-steps and un-physical pressure-work ratio

between fluids. With the aim to overcome these challenges, two interface stabil-

isation models were presented in section 3.11.3-3.11.4. It was found that these

models out performed common multiphase models in the weakly-compressible

SPH literature.
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Chapter 4

Software Implementation

4.1 Introduction

This chapter is dedicated to the SPH software Draco developed for the simu-

lations in this thesis. It is a software project launched and developed by the

author, and currently it is made available to research groups at the University

of Nottingham, University of Eindhoven, and Tianjin University. The current

version of Draco supports both single and multiphase fluid dynamics as well as

boundary conditions relevant to aerospace engineering applications.

The material in this chapter is organised as follows: section 4.2 provides a

survey of existing SPH codes in the research community. Section 4.3 describes

the key features of our SPH code. Details regarding the code developmental

history are discussed in section 4.3.1. The data structure and the neighbour-

list search algorithm used in Draco are discussed in section 4.3.2 and 4.3.3.

The boundary treatment methods are reviewed in section 4.4. Finally, the time

integration scheme is discussed in section 4.5.
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4.2 Literature review

A survey of the SPH software in the research community indicates there are gen-

erally two types of SPH codes, namely the ones designed for astrophysics and the

ones designed for terrestrial fluid dynamics. In astrophysics, SPH is often com-

bined with a gravity solver to model the evolution of astrophysical phenomena

that occur in the supersonic regime. Its applications range from cosmology [173],

galaxy merging [174], and late-giant impactor problems in planetary astrophysics

[175, 176, 177]. In terrestrial fluid dynamics, SPH has been applied to simulate

fluid flows in the subsonic regime such as channel flows [178, 179], dam-breaks

[180], sediment transport [181] and wave impact problems in coastal structures

[182].

Despite the similarities in the SPH concept among these sub-fields, the spe-

cific implementations differ in numerous ways. First of all, astrophysical ap-

plications usually involve compressible hydrodynamics occurring with a vast

dynamical range in density, energies and length-scales. Due to the enormous

variation in density, a variable smoothing length is commonly used in astro-

physics. Nonetheless, this introduces an additional error which arises from the

partial derivative of the kernel function [137, 183]. In contrast, terrestrial fluid

dynamics SPH codes model fluid flows with only a small variation of density,

such that a constant smoothing length is usually applied throughout except in

the shallow water codes when h indicates water depth [184, 185].

Secondly, motivated by tree N-body gravity techniques [186], astrophysical

SPH utilises tree algorithms1 for particle neighbour searching. This approach is

generally known as the k-nearest neighbour algorithm, where the tree implemen-

tation in SPH is a specific example of the broad family of k-nearest neighbour

algorithm [187, 188, 189]. Within terrestrial fluid dynamics applications, a cell-

linked list algorithm is usually employed [190]. Note that the cell-linked list is

1oct-tree for three-dimensions and quad-tree for two-dimensions
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inefficient for variable smoothing length and by default does not reassemble the

k-nearest neighbour, unless a sort is implemented to organise the neighbour list

based on the inter-particle distance.

The third difference is considered as a consequence of the two differences men-

tioned above, and it is only relevant for multiphase simulations. In astrophysics,

the initial setup usually makes use of the so-called equal-mass, variable separation

strategy. That is, the higher density fluid is represented by a collection of SPH

particles with more particles per unit volume. In terrestrial fluid dynamics, the

multi-mass, equal separation strategy is employed. In this case, the setup make

use of multi-mass SPH particles with equal initial volume. Each strategy has its

own advantages and limitations, and often it is controversial to adapt a single

strategy. On one hand, the equal-mass, variable separation approach does not

suffer from a mass discontinuity. Yet, it suffers from computational and memory

inefficiency for multiphase flows with large density ratios. On the other hand,

the multi-mass, equal separation approach is both computationally and memory

efficient even for large density ratios. Nonetheless, it creates a mass discontinuity

between the fluids that requires additional interface stabilisation models such as

those discussed in chapter 3.

The popular SPH codes in the research community are summarised below.

Hydra is a simulation code written in Fortran-77 [4] that combines the standard

SPH with inter-particle gravity solver. It was one of the earliest cosmological sim-

ulation codes publicly available to the field and has motivated the development

of parallel codes for conducting large scale simulations in computational cos-

mology. Gadget-2.0 is a MPI parallel SPH implementation written in ASCI-C

[133]. It has been applied to simulate many large scale astrophysical phenom-

ena, including the evolution of the cold dark matter model [191], hydrodynamical

simulations of cosmological structure formation [192] as well as the evolution of

galaxy clusters [193]. OSPH is a modification of Gadget-2.0 targeted for multi-
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phase SPH simulations [109]. SPHysics is a set of SPH codes co-developed by

researchers at the Johns Hopkins University, the University of Vigo, the Univer-

sity of Manchester and the University of Rome La Sapienza. It is designed for

free surface flow problems often encountered in civil engineering such as break

waves [194], wave impacts on solid boundaries [195], and dam-break [196, 197].

There are three versions distributed within the research community: (i) a serial

version written in Fortran-90 for free surface flows, (ii) parallelSPHysics, a

CPU parallel version written in Fortran-90 and MPI, and (iii) DualSPHysics,

a GPU thread parallel version written in C++ and CUDA [198, 199]. At the

time of writing this thesis, SPHysics serves as the major software used by the

weakly-compressible SPH research community.

4.3 SPH code - Draco

The primary objective of Draco is to facilitate a mesh-free computational tool

that aids the research and development of aeroengines with our industry partner

Rolls Royce plc. The code is written in ASCI C/C++, and has been tested on

multiple operating systems and processors. The SPH implementation Draco is

designed as a general purpose SPH software with flexibility in mind. Therefore,

it supports different SPH formulations, equations-of-state, fluid property and

boundary treatments methods, all of which are of relevant to aerospace engi-

neering applications.

4.3.1 Development history

The development of SPH codes within the University of Nottingham’s SPH team

started from Hydra [4]. Hopton [178] modified Hydra to simulate open channel

flow. Nonetheless, it does not support a graphical user interface for the set-up and

visualisation of results. Having seen these limitations, Kruisbrink implemented
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a MATLAB version of SPH hereinafter called MATLAB-Hydra that aggregates the

setup and simulation in a consistent manner. Despite the congruent mathemat-

ical SPH formulation, the major differences between these implementations lies

in the neighbour search algorithm and time integration scheme. The modified

version of Hydra[178] utilises the cell-linked-list algorithm for SPH neighbour

detection and supports a second order accurate predictor-corrector time inte-

gration scheme. Whereas the naive search algorithm O(N2
p ) and forward Euler

scheme are implemented in MATLAB-Hydra. The algorithmic differences imply

that the contribution from neighbouring particles during the density and mo-

mentum evaluation is not taken into account at the same order; this creates

additional challenges in code alignment. A series of validation tests were con-

ducted by the author to align the two codes to eight decimal places, when the

contributions from particles are sorted to the same order.

With the aim of facilitating a robust SPH software package for the advance-

ment of aerospace engineering research, a new software project Draco is launched

by combining the advantages of the different versions of Hydra. A performance

analysis indicates that the use of a compiled programming language is favoured

over scripting languages (e.g. MATLAB, Python) for SPH implementations. In

addition, given that the neighbour search is the most time consuming part of SPH

simulations, an efficient and robust neighbour search algorithm is crucial to the

success of running high resolution simulations. The first order accurate forward

Euler scheme is chosen for storage efficiency. Finally, unit testing [200, 201] is

necessary and should be performed regularly to maintain the code quality.

4.3.2 Software architecture

Draco utilises the object oriented programming paradigm where the data struc-

ture is organised into the Structure-of-Arrays (SoA). The program consist of

seven major classes. The base class Simulation stores the physical quantities
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of the particle system subjected to investigation. The SPH class is responsible

for the construction and transversal of the cell-linked list during the simulation.

The TimeIntegration class implements the adaptive time-stepping integration

scheme based on the forward Euler scheme. The Kernel class contains different

kernel functions and supports both run-time computation and interpolation of

kernel values from a pre-computed table. To ensure the consistency of results

across different computer platforms, a set of unit tests has been implemented in

each of the classes mentioned above.

Additionally, there are three classes responsible for the organisation of the

data in Draco. The CaseSpecification class is responsible for parsing the initial

conditions, parameter files generated from case setup scripts in MATLAB-Hydra

and the checking the correctness of all compiled options in the makefile. It

produces the Log and SimulationResults folders. The former stores the initial

conditions, parameters and compilation flags validation file. The latter stores

the simulation results. The Parameter class contains constants and enumerators

used in the simulation (e.g fluid domain, artificial viscosity parameters) and it

can be easily extended to more advanced applications. Finally, the Output class

is responsible for producing the output file in SimulationResults folder which

stores the simulation results at predefined output time intervals. A class diagram

in the Unified Modelling Language (UML) is provided in Figure 4.1 to illustrate

the static behaviour of the classes, attributes and methods. The collaboration

between sequential function calls is shown in the flow diagram in Figure 4.2.

4.3.3 Cell linked list

The cell-linked-list algorithm proposed in Allen [202] is implemented in Draco.

During each time-step, the maximum extent of the domain in each direction is

first determined. The number of cells in each direction is then given by the

ratio between the extent and the kernel scale. The particles are assigned to
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Figure 4.1: UML class diagram of Draco.
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Figure 4.2: UML flow diagram of Draco.
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the respective cells depending on their positions using a O(Np) cell-linked-list

construction algorithm (Algorithm1). This algorithm generates two arrays: (i)

the HeadChain array stores the first particle in each cell, and (ii) an array of

pointers cellLinkedList which stores the successive index of particles within

the same cell. A pictorial description is provided in Figure 4.3.

Input: The position of a set of particles ~r = {~r0, ~r1, . . . , ~rNp−1}
Input: The minimum position among all particles ~rmin

Output: The HeadChain array that stores the first particle in each cell
Output: The cellLinkedList array that stores the index of the successive particle

within the same cell
for i← 1 to Np do1

//cast the particle to its appropriate local cell in each direction2

for k ← 0 to Ndim do3

cell[k]=min((~ri[k]− ~rmin[k])/cutoffLength[k],numCell[k]-1)4

//assemble global index5

globalIndex=cell[0]+numCell[0]*cell[1]+numCell[1]*numCell[0]*cell[2]6

//assign new values to cell list and the head chain7

cellLinkedList[i]=HeadChain[globalIndex]
HeadChain[globalIndex]=i8

Algorithm 1: The cell linked list construction algorithm

Once the cell-linked-list has been constructed, inter-particle operations (e.g.

evaluation of densities, accelerations) are computed via the cell-linked-list transver-

sal algorithm (Algorithm2). The cell-linked-list transversal algorithm checks

the adjacent cells2 to identify potential SPH neighbour particles. The use of a

cell-linked-list has the following advantages: (i) it reduces the complexity from

O(N2
p ) into O(Np) operations. (ii) the pair-wise fashion ensures the number of

computations is further reduced by a factor of two, (iii) it is memory efficient

since it does not require the storage space for local neighbour-list on a particle

basis [203].

28 cells in two-dimensions and 26 cells in three-dimensions
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Input: The position of a set of particles ~r = {~r0, ~r1, . . . , ~rNp−1}
Input: The HeadChain array that stores the first particle in each cell
Input: The cellLinkedList array that stores the index of the successive particle within the same cell
for cellX← 0 to numCell[0]− 1 do1

for cellY← 0 to numCell[1]− 1 do2
for cellZ← 0 to numCell[2]− 1 do3

// compute globalIndex4
globalIndex=cellX+numCell[0]*cellY+numCell[0]*numCell[1]*cellZ
for cellNeighbourX← cellX− 1 to cellX+ 1 do5

for cellNeighbourY← cellY− 1 to cellY+ 1 do6
for cellNeighbourZ← cellZ− 1 to cellZ+ 1 do7

//calculate scalar cell index for neighbour cell8
globalCellIndexNeighbour=(cellNeighbourX+numCell[0])%numCell[0]+
((cellNeighbourY+numCell[1])%numCell[1])*numCell[0]+
((cellNeighbourZ+numCell[2])%numCell[2])*numCell[0]*numCell[1]
i = HeadChain[globalIndex]
// set up periodic boundary condition9
setupWrapping(shift,globalCellIndexNeighbour) while i 6= NULL
do

// j is the neighbour particle10

j = HeadChain[globalCellIndexNeighbour]
while j 6= NULL do11

if i < j then12
if |~ri − ~rj | < 2h then13

//compute pair-wise interactions · · ·14

j=cellLinkedList[j];15

i=cellLinkedList[i];16

Algorithm 2: The cell linked list transversal algorithm

4.4 Boundary Conditions in SPH

The interaction of a fluid with its boundaries are of crucial importance in ter-

restrial fluid dynamics. Therefore, extensive research is conducted within the

weakly-compressible SPH community on the treatment of boundaries. The phys-

ical interpretation and implementation of boundary treatment methods are dis-

cussed in the following paragraphs.

4.4.1 Physical interpretation of boundary conditions

There are generally two types of boundary condition, namely the kinematic

boundary condition and dynamic boundary condition. Although there are many

variations such as walls, inflow and outflow boundaries in the CFD literature,

these are considered specific cases of the kinematic and(or) dynamic boundary

conditions.
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Figure 4.3: Cell-linked list structure in two-dimensional case. The cell index array in each
direction is utilised to compute the unique global cell index that defines a cell value.

Consider two fluid particles of different phases in the configuration shown in

Figure 4.4, their velocity components tangential and normal to the interface are

described by v‖ and v⊥. On a particle basis, the kinematic boundary condition

requires that the velocity component normal to the interface of particle i is of

equal magnitude but opposite sign to that of particle j

vi⊥ = −vj⊥ ~rj, ~rj ∈ ∂Ωs. (4.1)

At the fluid interface it is required that the tangential velocity components

are the same. This is known as the continuity of tangential velocity condition

and is a good approximation for immiscible Newtonian fluids [94, 96, 107].

vi ‖ = vj ‖ ~rj, ~rj ∈ ∂Ωs. (4.2)

For viscous fluid where surface tension is insignificant, the dynamic boundary
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Figure 4.4: Generalised boundary between two particles.

condition simplifies to the stress balance











Pi = Pj

τi = τj











~ri, ~rj ∈ ∂Ωs, (4.3)

where τ represents the viscous stress tensor [94].

Fluid-fluid and fluid-solid boundaries

Generally speaking, the fluids on the respective sides of the interface must satisfy

the kinematic boundary condition (4.1), continuity of tangential velocity condi-

tion (4.2) and the dynamic boundary condition (4.3). These condition constrain

particles at either side of the interface are expected to remain on their respective

side of the interface without penetrating through to the other side. Similarly,

for a rigid wall moving at a constant velocity Vrigid, nearby fluid particles should

adapt the tangential velocity of the wall Vrigid ‖, whereas the normal velocity
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Figure 4.5: The fluid domain convention used in Draco. The inlet sub-domain is coloured in
green, the outlet sub-domain is coloured in orange. The particles residing in the fluid domain
are coloured in blue and purple, where the interface is give by δΩs. Similarly, the free surface
is given by δΩfreesurface. The computational domain has a width of κh such that it ensures
the support of the kernel is properly filled for all fluid particles.

component must be zero in order to obtain a non-permeable wall.

vi ‖ = Vrigid ‖ and vi⊥ = 0 ~ri ∈ Ωfluid. (4.4)

Free-surface boundaries

For free-surface flow, the kinematic boundary condition (4.1) implies that fluid

particles initially on the free surface shall remain part of the free-surface and the

dynamic boundary condition (4.3) enforces the momentum balance across the

interface such that the pressure at the interface is equivalent to the atmospheric

pressure. Since the ambient pressure is set to be the background pressure Po

in a free-surface flow in the absence of surface tension and viscous effects, the

dynamic condition is

P (~ri, t) = Po ~ri ∈ ∂Ωfree surface. (4.5)
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Inflow/Outflow boundaries

An inflow boundary allows for spatially dependent initial velocity profiles as well

as different fluid properties.

vi⊥ = vinlet⊥ and vi ‖ = vinlet ‖ ~ri ∈ ∂Ωinlet. (4.6)

In Draco, an inflow boundary is represented by a block of inlet particles selected

prior to run-time. In order to have a properly filled kernel, the dimension of the

inlet block is required to be larger than the radius of the kernel function κh.

During the course of the simulation, a new inlet particle is generated once its

precursor inlet particle has entered the fluid domain. The new inlet particle has

the same properties as its precursor inlet particle and it is placed at the rear end

of the inlet particle block as marked green in Figure 4.5.

An outflow boundary is employed when fluids exit the fluid domain, where

both the tangential and normal velocities of the outflow remain constant in the

direction normal to the boundary

∂voutlet⊥
∂n̂

= 0 and
∂voutlet ‖

∂n̂
= 0 ~ri ∈ ∂Ωoutlet. (4.7)

The particle domains in Draco are shown in Figure 4.5. The domain treatment is

applicable to external and internal flows. In addition, the inlet/outlet boundaries

allow the number of SPH particles to dynamically increase during the simulation.

Another aspect is that the width of the computational domain ∂Ωcomputational is

typically set to κh, such that all fluid particles have a properly filled kernel.

Periodic boundaries

Periodic boundaries are implemented to simulate periodic flows. SPH particles

in a boundary cell contribute to the density and dynamical evaluations of fluid
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particles located in cells at the opposite side. In addition, fluid particles exiting

the fluid domain are placed in the opposite side of the domain as illustrated by

the red particle and the orange particle in Figure 4.3.

4.4.2 Wall boundaries

Within SPH, walls are typically modelled by wall particles, ghost particles and

mirror particles. A distinction can be made between frozen wall particles at

the wall, ghost particles behind the wall, or mirror particles dynamically gener-

ated behind the wall, as introduced by Monaghan [62, 204]. In these concepts,

the force exerted by the wall onto a fluid particle is modelled by force in the

inter-particle direction, which should enforce non-permeable wall boundary via

pressure gradient and impose a no-slip wall condition via viscous force due to

artificial viscosity.

Ghost Particles

Ghost particles are used to simulate the behaviour of static or virtually moving

walls. During the simulation, the positions, densities and velocities of the ghost

particles remain constant. Hence, when a ghost particle j resides in the support

of the kernel of a fluid particle i, it contributes to the pressure gradient and

viscous force evaluation of particle i; hence, it is consistent with the dynamic

boundary condition and the continuity of tangential velocity condition.

Wall Particles

Wall particles were introduced by Monaghan [62] as a non-penetration boundary

condition in free surface flows. In this concept, a wall is represented by an

array of particles. A wall particle exerts a repulsive force along the inter-particle
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direction similar to the Lennard-Jones potential in molecular dynamics [205].

F (|~ri,wall|) =











Crep,LJ

[(

dnat

|~ri wall|

)qo
−
(

dnat

|~ri wall|

)q1] ~ri,wall

|~ri,wall|
|~ri,wall| ≤ dnat

0 |~ri,wall| > dnat

, (4.8)

where qo, q1 are dimensionless parameters and Crep,LJ is a calibration factor.

This formulation of the Lennard-Jones potential is strictly repulsive as F (|~ri,wall|)

vanishes for particles located outside the influence zone of the wall |~ri,wall| > dnat.

The wall particle force depends on three parameters, with the condition qo > q1.

The conventional choice suggested by the literature [62] is qo = 4, q1 = 2. These

values are obtained from on a series of numerical experiments performed for free-

surface flows. Nevertheless, it is unclear how the choice of these parameters may

influence the flow field in other applications. More importantly, the utilisation

of wall particles does not provide sufficient neighbour particles behind the wall

and results in a truncated kernel as discussed in chapter 3.

Mirror Particles

Mirror particles model the behaviour of a solid wall by copying the properties of

their parent fluid particles. Their velocities have the following form

~vmirror ‖ = αmirror~vi ‖ and ~vmirror⊥ = −~vi⊥, (4.9)

where the constant αmirror controls slip behaviour at the wall, namely αmirror = 1

for a free-slip condition and αmirror = −1 for a no-slip condition. In addition,

their velocity component normal to the wall is of equal magnitude and opposite

direction, such that the non-permeable behaviour of a wall is ensured.

~vmirror ‖ = −~vi ‖ and ~vmirror⊥ = −~vi⊥. (4.10)
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In the beginning of each time-step, the mirror particles are generated prior to the

construction of the cell-linked list. This ensures fluid particles near the virtual

wall |~ri,wall| < κh has a fully filled kernel and a symmetric pressure distribution

across the wall. The mirror particle contributes to the density and dynamical

evaluation of neighbouring fluid particles, except that they are deleted from the

particle system prior the execution of the time integration subroutines.

Continuous Wall Boundary

This concept is based on continuous modelling by introducing a boundary surface

force rather than an inter-particle force. A repulsive force normal to the wall is

exerted when fluid particles are in close proximity to the wall boundary. The wall

repulsion is modelled as a reaction force due to fluid compression as described by

Hooke’s law. For an adiabatic process, this is proportional to the bulk modulus of

elasticity of the fluid K = ρc2. The radial force on a fluid particle is proportional

to the pressure increase due to its compressibility and the assumed contact area.

The compression is described by the ratio between the change of the volume of a

particle with respect to its initial volume (∆V/V ). Assuming the initial volume

of the particles are the same, a dimensional analysis suggests the force due to

compression has the form ~Fn,i ∝ −mc2∆V/V (~ei · n̂wall)n̂wall. The repulsive force

normal to the wall is given by

~Fn,i = −miNdimCrepc
2
i

|~ri,wall| − rrep
|~ri,wall|2

(~ei · n̂wall)n̂wall |~ri,wall| < rrep, (4.11)

where Crep ∼ O((cSPH/c)
2) is a scaling coefficient between the real speed of

sound and the artificial speed of sound in SPH. Thus, the continuous wall force

is active when the distance between the wall and fluid particle is closer than the

pre-defined activation distance rrep which is typically set to 0.5dnat.
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Remark on wall boundaries

While different boundary handling methods have been implemented in Draco,

each of the these methods suffered from certain limitations. In practice, the

choice of a suitable boundary condition depends on the situation and requires

the critical judgement by the researcher. For instance, the ghost particles suffer

from particle penetration for large impact velocities. The mirror particle requires

dynamic memory allocation/deallocation in each time step incurs computational

cost. Additionally, its current implementation is only suitable for straight walls.

Finally, the wall particles and continuous wall suffer from the truncated kernel

and requires case specific parameter tuning. More importantly, these concept

can only enforce a non-permeable wall which does not correctly account for the

physical effects due to the wall shear.

4.5 Time integration

The spatial operators in the fluid dynamical equations are written in the SPH

formulation, resulting in a system of ordinary differential equations in time. Al-

though implicit numerical integration schemes allow for the utilisation of larger

time-steps and improved stability, it requires solving a linear system at each

time-step which can potentially be computationally expensive. Hence, explicit

time integration schemes are commonly employed in SPH. The forward Euler

numerical integration scheme is implemented in Draco. This scheme is chosen

for storage efficiency [206]. During each time-step, the density is first evaluated

ρn+1
i = ρni +

Dρni
Dt

∆t, (4.12)

where ∆t represents the time-step, and theDρni /Dt is the change in the density of

a particle with respect to time. After the pressure is evaluated from the updated
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density, and the forces on a particle are evaluated, the velocity of a particle is

updated via

~v n+1
i = ~v n

i +
D~v n

i

Dt
∆t. (4.13)

Similarly, the internal energy of a particle is updated according to

en+1
i = en +

Deni
Dt

∆t. (4.14)

Finally, the position of the particle is updated according to

~r n+1
i = ~r n

i + (~v n
i + ~v n

i,XPSH)∆t. (4.15)

The XSPH velocity correction [119, 204] is computed via

~v n
i,XSPH = ǫXSPH

∑

j

~vij
ρij

Wij, (4.16)

and ǫXSPH = 0.01 is employed. The numerical integration scheme is first or-

der accurate and conditionally stable. The adaptive time stepping is based on

three Courant-Friedrichs-Levy (CFL) conditions for the velocity, acceleration

and change of density

∆tv =
h

√

|~v|2max

, ∆ta =

√
h

4
√

|~a|2max

, ∆tρ =
ρo

(Dρ/Dt)max

. (4.17)

The time step is then obtained from

∆t = min(ωv∆tv, ωa∆ta, ωρ∆tρ), (4.18)

where the coefficients ωv, ωa, ωρ are predefined by the user at compile time.

The default values are ωv,a = 0.01 and ωρ = 1. Although other time-stepping

conditions such as conditions for viscous force and pressure gradient force exist in
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literature [4, 137, 138, 183], in most cases the CFL conditions above are sufficient

for the simulations considered herein.

4.6 Summary

The features of the SPH software used in this thesis - Draco were discussed in this

chapter. A survey of literature was presented to identity the popular SPH codes

in the research community. It was found that the major difference between SPH

codes in astrophysics and engineering were the utilisation of a variable smoothing

length and different neighbour search algorithms.

After reviewing the precursor versions of Hydra [4, 178] and MATLAB-Hydra,

the decision was made to implement Draco in C++ using the object oriented

programming paradigm. The combined use of the object oriented programming

paradigm and test driven development approach [200, 201] successfully reduced

the code alignment and debugging processes. To optimise computational speed,

a cell-linked-list algorithm was implemented for SPH neighbour searching and

an adaptive time-stepping scheme based on the forward euler method was im-

plemented for the time integration of the dynamical system.

Draco offers numerous boundary treatment methods including inflow/outflow,

solid walls and periodic boundaries for terrestrial fluid dynamics applications.

It is worth mentioning that at the time of writing this thesis, an appropriate

treatment of solid wall boundary that strictly satisfies the no-slip condition and

wall shear remains an open topic in the weakly-compressible SPH community.

However, in many cases we found the ghost particles gives acceptable results for

non-permeable walls provided that the effects due to wall shear are insignificant.

106



Chapter 5

Kelvin-Helmholtz Instability

5.1 Introduction

The growth of the Kelvin-Helmholtz instability generated at the interface be-

tween two ideal gases is studied by means of SPH. A series of simulations is

performed to investigate the influence of viscosity, smoothing, the thickness of

density and velocity transition layers.

In order to conduct a systematic study, the analysis in this chapter are di-

vided into two parts. The first part of the chapter concentrates on the idealised

KHI test in literature for density ratio of two (section 5.3-5.4). The idealised

test-case serves as an excellent bench-mark case which allows for a fundamental

study of the performance of a multiphase SPH scheme. The second part of the

chapter focusses on the stratified shear instability (SSI) results from the growth

of perturbations at the shearing interface between two fluids via the KHI in the

presence of a constant gravitational field (section 5.5-5.6).

The rest of this chapter is organised as follows: section 5.2 presents a survey

of literature regarding the experimental and numerical work. section 5.3 outlines

the initial conditions. The numerical results for the idealised KHI will be first

presented in section 5.4. The numerical results of a fiducial model will be first
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illustrated in section 5.4.1. The influences of the following aspects are then inves-

tigated: (i) section 5.4.2 discusses the influence of artificial viscosity, (ii) section

5.4.3 studies the dependence of local resolution (κ), which governs the number of

SPH neighbours (Nn). (iii) Section 5.4.4 discusses the influence of the thickness

of the velocity and density transition layer.

Based on the knowledge acquired from the idealised KHI test, we conduct

an elaborated study on the stratified shear instability that is relevant to terres-

trial fluid dynamics. Section 5.5 outlines the initial conditions of the SSI. The

numerical results of a fiducial model of SSI are presented in section 5.6.1 before

considering the effects of resolution, Reynolds number, Richardson number and

Atwood number. Finally, the major research findings will be summarised in

section 5.7.

5.2 Literature review

Kelvin [76] and Helmholtz [77] pioneered the investigation of shear instabilities by

studying the relative motion between two adjacent fluids subjected to tangential

velocity difference. This phenomenon has subsequently become known as the

Kelvin-Helmholtz instability. Given its crucial importance in a wide range of

applications [7, 63, 82, 83, 84, 85, 86], the KHI has been study experimentally

and numerically since the 18th century.

Most of the KHI experiments were carried out under terrestrial conditions

where the fluids are subjected to a gravitational acceleration. In particular, if

the denser fluid initially lies underneath the less dense one, the KHI manifests

into the so called stratified shear instability [63]. The instability is characterised

by the Richardson number (Ri), which determines the dominant factor of the

instability. For example, Ri > 1 implies buoyancy forces are important as the po-

tential energy is dominant, whereas Ri < 1 implies the kinetic energy is dominant
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and buoyancy forces are unimportant. The shear instability has been actively

researched since the 19th century. Miles [88] and Howard [207] introduced the

celebrated Miles-Howard theorem for the stratified instability. The authors re-

ported a critical Richardson number of Ri = 0.25 for incompressible fluids, above

which the instability remains stable. The experimental work has also facilitated

better understanding of the shear instability. Thorpe [208] conducted the well

known tilted-tank experiments to investigate the onset of turbulence between

two immiscible fluids and found good agreement between the experimental mea-

surements and the analytical prediction. Linden [209] investigated the mixing

of stratified flows for numerous Richardson numbers and noted that the boarder

the thickness of the velocity interface results in a lower kinetic energy and equiv-

alently stronger buoyancy effects which lead to a less pronounced growth of the

instability.

Advances in computer technologies equipped modern day researchers with

the tools to investigate fluid flow numerically, with many research groups devel-

oping numerical methods to simulate the KHI. For example, Patnaik et al. [210]

applied the finite difference method to simulate the KHI between two stratified

fluids by applying the Boussinesq approximation. The authors studied the min-

imum Richardson number required for the onset of KHI at Reynolds number

(Re) of 100 and found good agreement with linear stability analysis. Whereas

other research groups have focussed on the long-term evolution of the instability:

Klaassen and Peltier [211] studied the long-term evolution of the KHI between

two stratified viscous fluids using a mesh-based method and concluded that the

two-dimensional KHI does not lead to secondary instabilities in the transition to

three-dimensional motion. Caulfield and Peltier [212] compared the evolution of

two-dimensional and three-dimensional stratified mixing layer results simulated

by means of DNS and concluded that the three-dimensional KHI is dominated

by the convective instability at the central core of the KHI billow. Brüggen
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and Hillebrandt [63] simulated the two-dimensional and three-dimensional SSI

between two ideal gases using the finite difference code Zeus. In contrast to

the simple linear stability criterion, their results indicate efficient mixing can

occur for Richardson numbers substantially higher than Ri = 0.25. The authors

reported that the dimensionality of the problem did not affect the steady state

behaviour of the simulation, but did alter the dynamics of the onset of the in-

stability. Hazel [213] studied the effects of the initial velocity (density) profiles

perpendicular to the interface and pointed out that in reality the development of

a SSI not only depends on the Richardson number, but also on other parameters

such as the formulation of the initial velocity and density profiles. Similarly,

Miczek [214] constructed semi-analytical solutions and conducted FVM simula-

tions for various initial velocity (density) profiles and concluded that the ratio

between the density gradient and the velocity gradient plays a crucial role in

the growth of stratified shear instability. Summarising the above, the current

literature suggests that the idealisation of the linear stability analysis has lead

to some ambiguity in the critical Richardson number which describes the neces-

sary condition for the onset of the instability. In many cases, the onset of the

instability was found to be dependent on the exact form of the initial profiles

used in the setup [63, 213, 214].

There has been a concerted effort to compare the performance of mesh-based

methods with SPH. Junk et al. [64] investigated the evolution of both inviscid

and viscous KHI and compared numerical results between mesh-based codes

and SPH in conjunction with the artificial conduction scheme introduced by

Price [110]. Similarly, McNally et al. [108] examined the performance of various

mesh-based codes and SPH (with artificial conduction) for smoothed velocity and

density profiles, and reported that the mesh-based simulation and SPH are both

in good agreement with the analytical predictions. Hubber et al. [215] compared

the convergence properties between SPH and various mesh-based codes. Their
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results suggested that a higher order smoothing kernel and larger number of

neighbours improves the performance of SPH when simulating the KHI.

There has also been some development in the weakly-compressible SPH com-

munity to model KHI. Shadloo and Yildiz [149] studied the evolution of a KHI

subjected to surface tension and gravity by means of the number density ap-

proach. The authors reported that the SPH results are sensitive to the artificial

viscosity parameter prescribed. However, because their simulations terminated

before the non-linear development had occurred and the initially perturbation

only correspond to a single; hence more advance phenomena such as the gen-

eration of shearing layer and vortex pairing were not presented in their work.

Shakibaeinia and Jin [216] studied the KHI using the MPS method and claimed

that spurious fluctuations in pressure are responsible for the disruption of the

growth of KHI. In addition, their numerical method failed to model the core of

the cat-eye vortices and generated a spurious vacuum layer at the vortex cores.

5.3 Initial Conditions

The fluid domain is constrained within x ∈ [0, L] , y ∈ [0, H], where the aspect

ratio is normally set to unity (i.e. L/H = 1). Periodic boundaries are applied

in both directions. The initial perturbation of the fluid interface is given by the

horizontal velocity profile

u (y) =















































u1 − ∆u
2
e−

|y−0.25|
Lu 0 ≤ y < 0.25

u2 +
∆u
2
e−

|y−0.25|
Lu 0.25 ≤ y < 0.5

u2 +
∆u
2
e−

|(1−y)−0.25|
Lu 0.50 ≤ y < 0.75

u1 − ∆u
2
e−

|(1−y)−0.25|
Lu 0.75 ≤ y ≤ 1

, (5.1)
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where u1 and u2 are the far-field horizontal velocities and ∆u = u1 − u2. The

far-field velocities are defined to be u1 = 0.5m/s and u2 = −u1. In order to

perturb the fluid system, an initial velocity perturbation function

v (x, y) = δv sin (kx)















e−|y−0.25| 0 ≤ y < 0.5

e−|(1−y)−0.25| 0.5 ≤ y ≤ 1

, (5.2)

is applied to prescribe the vertical velocities of the particles, where the amplitude

is δv = 0.01∆u. The exponential factor ensures the magnitude of initial vertical

perturbation decays rapidly away from the interface. The perturbation wave

number is defined to be k = 2π/λ, where the wavelength λ = L/2 corresponds

to the initialisation of two KHI modes along the horizontal direction. Similarly,

the initial density profile is given by

ρ (y) =















































ρ1 − ∆ρ
2
e
−

|y−0.25|
Lρ 0 ≤ y < 0.25

ρ2 +
∆ρ
2
e
−

|y−0.25|
Lρ 0.25 ≤ y < 0.5

ρ2 +
∆ρ
2
e
−

|(1−y)−0.25|
Lρ 0.5 ≤ y < 0.75

ρ1 − ∆ρ
2
e−

|(1−y)−0.25|
Lρ 0.75 ≤ y ≤ 1

, (5.3)

where ρ1 and ρ2 denote the densities of the two fluids. For the particular setup

considered herein, the higher density fluid is initially situated in the central band

of the vertical domain 0.25 < y < 0.75. Unless otherwise mentioned, the time (t)

quoted herein is given in terms of the inviscid sharp interface Kelvin-Helmholtz

time-scale, namely τKH = (ρ1 + ρ2)/(k∆u
√
ρ1ρ2) [5]. In all cases, multi-mass

SPH particles all with equal initial separation distance are utilised to setup the

simulations, where both fluids are modelled with the ideal-gas equation-of-state

with the heat capacity ratio γ1,2 = 5/3.
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5.4 Results and Discussion

The instability resulting from the initial conditions presented in section 5.3. The

four major parameters that influence the numerical solution are the viscosity,

the local resolution parameter (or equivalently the number of neighbours), and

the thickness of the density and velocity transition layers. Each of these will

be investigated in the subsequent sections and compared against our fiducial

reference model.

In order to validate the numerical results, we compare the absolute error

(∆nc) and the relative error (η) with the analytical expectations in the literature.

In particular, the results are compared against three dispersion relations: first of

all, the classical growth rate (i.e. nc,classical = τKH
−1) refers to the inviscid growth

rate derived from sharp initial distributions [5]. Secondly, in section 5.4.2 the

extracted growth rates are compared against the viscous growth rate derived in

[64] for sharp velocity and density initial distributions. Finally, we compare the

measured growth rate, nc,smooth, to the inviscid analytical growth rate presented

in [7, 65, 66] for more physically realistic initial distributions.

5.4.1 Fiducial Model

The fiducial simulation utilises a total of Np = 65536 particles organised in

uniform grid, where the initial particle separation distance is dnat = L/256. The

smoothing length is defined as h = κdnat, where κ = 2.33 (Nn = 68). The KHI is

simulated up to t = 7 which enables a detailed investigation of both the linear and

the non-linear evolution of the instability. In order to remedy the jump condition

to physical quantities, the initial density and velocity gradient are specified to be

Lu,ρ = 2ddnat. This results in smoothing of the physical properties over four layers

of particles either side of the interfaces at y = 0.25 and y = 0.75. The standard

artificial viscosity parameters (αAV = 1, βAV = 2) are utilised in conjunction with
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the Balsara switch to avoid particle interpenetration. The density and internal

Figure 5.1: The density distribution in the top half of the vertical domain plotted at the
times indicated. The initial density discontinuity is smoothed out as the KHI evolves into the
non-linear regime.

Figure 5.2: The energy distribution in the top half of the vertical domain plotted at the
times indicated. The initial energy discontinuity is smoothed out as the KHI evolves into the
non-linear regime.
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energy at various indicated times are plotted in Figure 5.1-5.2. As expected, the

density and energy distribution becomes increasingly diffused as the instability

evolves into the non-linear regime. Figure 5.3 plots the relative error in pressure

along the vertical direction at various times, with the maximum measured error

of 7% near the interfaces. As the instability emerges into the non-linear regime

physical quantities such as density and energy become further smoothed out,

thus reducing the associated error in pressure from 7% to 5%.

Figure 5.3: Fractional error in the pressure relative to the initial pressure in the vertical
direction at the times indicated. The maximum measured relative error of 7% is observed near
both interfaces at time t = 2. The location of the initial interface at y = 0.25, and y = 0.75 is
indicated by dotted vertical lines.

The numerical results at different times are shown in Figure 5.4, with a fixed

time increment of ∆t = 0.2 between each panel. During the early stage 0 . t . 1,

the vertical perturbation generates a small amplitude wave-like structure near

the fluid interface. At this stage, the instability is in the linear regime at which

the amplitude of the perturbation follows an exponential growth. The instability

continues to evolve into the non-linear regime as the destabilising effects of the

horizontal shearing motion further amplifies the initial perturbation. By t ≈ 1.2
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the instability has emerged into the non-linear regime and the formation of the

KHI billows are clearly observed. In the absence of dissipative mechanisms,

the amplitude of the KHI billows continue to roll-up and eventually lead to the

formation of the well known cat-eye vortex at t ≈ 1.7. At t ≈ 2 the cat-eye vortex

has fully developed, and secondary instabilities begin to appear at the edges of

the vortices. Nevertheless, it is very likely that these secondary KHI billows are

dominated by numerical noise in the kernel density estimate. In addition, the

secondary KHI billows occur at length-scales that are far beyond the resolution

scale considered in our simulations.

The post billow development stage of the instability reveals additional fea-

tures which have been omitted in previous work [64, 149, 216, 217]. From

3 . t . 4, the fully developed KHI billows which have the form of cat-eye

vortices are driven by the horizontal shearing motion between the fluid layers.

This results in the collapse of the finite amplitude KHI billows. The evolution

of the instability then enters a transition period where the collapsed billows gen-

erate a shearing layer near the interface. This transition is however short lived,

4 . t . 5, as the rotating fluid particles situated inside the cat-eye vortices

experience a centrifugal force which then leads to the retardation of the upper

right billow and the bottom left billow. The retarded movement of the billow

eventually disrupts the evolution of the horizontal shearing layer, and the force

imbalance between the vortices consequently leads to the onset of the so called

vortex pairing process at t ≈ 6. During the pairing process in t = 6.2− 6.4, the

billows coalesce to form a larger billow at both interfaces. Finally, the merging

processes is complete by t ≈ 7 which results in the formation of two single KHI

vortices that dominate the entire fluid domain.

5.4.2 Dependence on artificial viscosity parameters

αAV : In order to understand the influence of artificial viscosity, a series of stimu-
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Figure 5.4: Numerical results of the fiducial model plotted at times between t = 0.2− 7, with
a fixed increment of ∆t = 0.2 plotted from left to right, top to bottom.
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αAV = 0.25 αAV = 0.50 αAV = 0.75 αAV = 2.0

Figure 5.5: Numerical results generated by different indicated artificial viscosity parameter
αAV plotted at t = 2. The top row corresponds to results that utilised the conventional
artificial viscosity, and the bottom row corresponds to the results generated with the combined
use of a Balsara switch and conventional artificial viscosity.

lations is conducted for the sharp interface KHI using different artificial viscosity

parameters. The utilisation of initial conditions with a sharp interface enables a

direct comparison between our numerical results and the analytical growth rates

including viscosity presented in Junk et al. [64]. Two sets of simulations are

carried out: the first set of simulations utilise the standard artificial viscosity

while the second set studies the combination of the standard artificial viscosity

and a Balsara switch.

The numerical results corresponding to the different viscosity parameters are

plotted in Figure 5.5, where the top (bottom) row corresponds to the results

without (with) the utilisation of a Balsara switch. Even a cursory visual in-

spection of the numerical results reveals the influence of the Balsara switch.

Without the Balsara term we found that, for the conventional artificial viscosity,

the numerical results are strongly dependent on the prescribed artificial viscos-

ity parameter αAV . For example, focussing on αAV = 2 (see Figure 5.5, top)

the utilisation of the standard artificial viscosity results in the suppression of

the initial perturbation modes. The introduction of the Balsara switch largely

reduces the suppression and the development of a full rotation of the billow is
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clearly observed at all the tested values of αAV (see Figure 5.5, bottom row).

In order to validate the results quantitatively, a discrete Fourier transform

introduced in McNally et al. [108] is conducted to filter out the vertical velocity

amplitudes corresponding to the initial perturbation at each output time interval

∆t = 0.2. A selection of these vertical velocity amplitudes for different values of

αAV are shown in Figure 5.6. The slope of the velocity amplitude data is fitted

during the linear regime between t = 0.2 and t = 0.8 to estimate the growth

rate of the imposed perturbation in each SPH simulation. These fitted growth

rates are used as input for the dispersion relation [64] to determine the SPH

effective kinematic viscosity νsph. Afterwards, a linear interpolation is applied to

determine the relationship between the effective viscosity and the SPH viscosity

parameter αAV as shown in Figure 5.7.

Inspecting Figure 5.6, it is clear that the velocity amplitude exhibits an initial

decay prior to the expected linear growth of the instability being established. We

suspect this decay is caused by the interaction of the high frequency noise seeded

by the initial particle distribution, which is rapidly damped out by the artificial

viscosity. The seeded growing perturbation mode corresponding to λ = L/2

becomes dominant as the instability emerges into the linear regime. Analysing

the data for conventional artificial viscosity, a linear relationship is found between

the effective viscosity and αAV with a slope of 0.147 and an intercept of 0.017.

The intercept indicates the intrinsic SPH viscosity which is inherited from the

numerical discretisation (see Figure 5.7). The extracted growth rate, the effective

viscosity, and the absolute and relative error between the extracted growth and

classical inviscid growth rate [5] are reported in Table 5.1. A comparison of the

data in Table 5.1 allows the quantification of the earlier observations regarding

the suppression of the growth rate caused by the conventional artificial viscosity.

For instance, the simulation for αAV = 1 corresponds to an effective viscosity of

νsph = 0.17m2/s and a relative error of ηclassical = 62% when compared against
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Figure 5.6: Vertical velocity amplitude for the conventional Monaghan artificial viscosity (as
indicated) without a Balsara switch. The classical inviscid solution presented in [5] is plotted
in red.

the classical inviscid growth rate. The utilisation of a Balsara switch signifi-

cantly reduces the effective viscosity to νsph = 0.06m2/s, with the corresponding

relative error of ηclassical = 12%. Similar results are observed for other viscosity

parameters. The fitted curve between αAV and effective viscosity νBAL has a

slope of 1.68 × 10−4 and an intercept of 0.06 (see Figure 5.7). It is also worth

pointing out that the reported effective viscosity is significantly higher than the

values given in [183] (see [183] equation 100), namely νsph,theory = αAV cihi/8. For

the fiducial model νsph,theory ≈ 0.0018m2/s, however the estimated viscosity from

the fitted growth rate indicates a viscosity of νsph ≈ 0.06m2/s. Furthermore, if

one utilises the definition of the Reynold’s number, Re = λu/νsph, the effective

Reynold’s number in the presented simulation is Re ∼ O(101), suggesting the

simulations herein are well within the laminar regime.

βAV : The influence of the second artificial viscosity parameter βAV is studied

following the same procedures described above. In order to avoid particle pen-
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Figure 5.7: The interpolated effective viscosity between the Monaghan artificial viscosity pa-
rameter αAV with the corresponding viscosity νAV . The interpolated effective viscosity νBAL

for the combined use of artificial viscosity and Balsara switch are plotted as dotted lines.

Figure 5.8: Vertical velocity amplitude for the conventional standard artificial viscosity (as
indicated) and the Balsara switch. The slope of the classical inviscid solution presented in
Chandrasekhar [5] is plotted in red.
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standard AV
α νsph nc ∆nc,classical ηclassical ∆nc,smooth ηsmooth

0.25 0.07 4.7 1.2 20 0.85 15
0.50 0.09 4.0 2.0 33 1.59 29
0.75 0.12 3.0 2.9 49 2.51 45
1.00 0.17 2.3 3.7 62 3.31 59

Balsara switch
α νsph nc ∆nc,classical ηclassical ∆nc,smooth ηsmooth

0.25 0.06 5.1 0.84 14 0.48 9
0.50 0.06 5.1 0.85 14 0.49 8
0.75 0.08 5.1 0.78 13 0.43 8
1.00 0.06 5.1 0.87 15 0.51 9

Table 5.1: Fitted growth during the initial linear stages development for different viscosity
parameters. The first set of data corresponds to the simulations with standard artificial vis-
cosity(rows 1-4), and the second set of data corresponds to simulations where the combination
of standard SPH viscosity and Balsara switch were utilised (row 5-8) . The artificial viscosity
parameter (1st column), kinematic viscosity (νsph) (2nd column), extracted growth rate (nc)
(3rd column), the absolute error (∆nc,classical, ∆nc,smooth) (4

th-6th column) and relative error
given in % (ηclassical,ηsmooth) (5

th-7th column).

etration, the first parameter is fixed at αAV = 0.25 and the parameter βAV is

varied between βAV = 1− 4. The results for different values of βAV at t = 2 are

shown in Figure 5.9. A visual inspection of the results indicates that the evolution

of the KHI is weakly dependent on the value of the prescribed βAV . The vertical

amplitude for various values of βAV as indicated are plotted in Figure 5.10. A

linear relation is also recovered between the viscosity parameter βAV and the

effective kinematic viscosity, with a slope of 5.2× 10−3 and an intercept of 0.057

as shown in Figure 5.11. The extracted growth rate, the effective viscosity and

the absolute and relative error between the SPH results and classical inviscid

theory [5] are reported in Table 5.2. It is apparent that the growth rates and the

viscosities are remarkably similar between different rows. Nonetheless, because

the standard artificial viscosity model with αAV = 0.25 is utilised in these cases,

the additional viscosity from the first order viscosity parameter αAV is therefore

responsible for the discrepancy between the extracted and classical growth rate.
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βAV = 1.0 βAV = 2.0 βAV = 4.0

Figure 5.9: Numerical results generated by different artificial viscosity parameters βAV , with
fixed αAV = 0.25 plotted at t = 2.

Figure 5.10: Vertical velocity amplitude for various values of βAV as indicated for a conventional
Monaghan artificial viscosity with αAV = 0.25. The slope of the classical inviscid solution of
[5] is plotted in red.

βAV νSPH nc ∆nc,classical ηclassical ∆nc,smooth ηsmooth

1 0.06 5.1 0.81 14 0.45 8
2 0.07 4.8 1.1 19 0.75 12
4 0.08 4.4 1.5 26 1.18 21

Table 5.2: The fitted growth rates for different values of βAV . The effective viscosity
(νSPH)(2nd column), the fitted growth rate (nc) (3

rd column), the absolute error (∆nc,classical,
∆nc,smooth) (4

th-6th column) and relative error (ηclassical, ηsmooth) (5
th-7th column).

5.4.3 Dependence on local resolution κ

The fiducial model is simulated with everything else being fixed except the local

resolution parameter, κ, which is varied between κ = 1.25 − 2.33 while fixing
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Figure 5.11: The fitted relation between the artificial viscosity parameter βAV and the inter-
polated kinematic viscosity.

the global resolution (i.e. total number of SPH particles the same as our fidu-

cial model). As previously mentioned in chapter 2, the sharp interface initial

conditions are pathological cases. In practice, the interface is better described

using the smoothed initial condition approach [7, 65, 66]. The dependence of

local and global resolution are deferred until section 5.6.2 for the stratified shear

instability. Recall that weakly-compressible SPH formulation employs a fixed

smoothing length for all SPH particles, and the parameter κ controls the support

of the kernel function (larger values of κ imply more neighbours on average). An

alternative approach is to allow the smoothing length to vary while the number

of neighbours is kept fixed. The numerical results corresponding to different val-

ues of κs are shown in Figure 5.12. Although the simulation terminates during

the linear regime, a visual inspection of Figure 5.12 clearly suggests the local

resolution parameter can significantly alter the numerical results even at the

initial stage of the instability. This is because when multi-mass SPH particles

are utilised in conjunction with a fixed smoothing length, the kernel weighted
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density estimate of physical variables will be biased against the higher density

fluid particles once the volume of the SPH particles departs from its initial vol-

ume, resulting in noise at the interface where the fluid properties such as density

and velocity varied rapidly. Inspecting Figure 5.12, one can clearly observe that

the interface layer between fluids appears to be more regularised for larger val-

ues of κ. While an increase in κ suppresses the noise problem at the interface

during the linear regime, one should pay attention to the implied consequence

of choosing a large smoothing length in weakly-compressible SPH simulations.

That is, by employing a large smoothing factor which is fixed throughout the

simulation one automatically commits oneself to the limited kernel resolution.

The smallest scale motion that can be followed is of order the SPH kernel size.

In other words, any motion smaller than the size of the kernel should be regarded

as noise. Furthermore, since the higher density fluid is represented by particles

of higher mass, during the simulation the number of interpolation points that

can describe the small-scale motion are effectively reduced. Although these lim-

itations are irrelevant during the linear regime, but as the growth of the KHI

billow emerges into the cat-eye vortex a fixed smoothing length approach would

be limited by its resolution scale to accurately resolve the dynamics within the

cat-eye vortex. More importantly, as mentioned in Read et al. [109], one should

be aware that the utilisation of a large smoothing length can lead to a more

devastating consequence, namely the pairing instability.

Figure 5.13 illustrates the vertical velocity amplitudes for different local res-

olution parameters during the linear regime. Inspecting the results, it is found

that an increase in κ results in an increased growth rate which converges to the

analytical expectation given in [7, 65, 66]. The extracted growth rates and their

errors compared to the classical and smoothed interface solution are reported in

Table 5.3. Note that the convergence to the analytical growth rate [7] is clearly

observed as κ increases. For example, for κ = 1.25 a relative error of 56% is
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κ = 1.25 κ = 1.50 κ = 1.95 κ = 2.33

Figure 5.12: Numerical results of the fiducial model simulated with different values of the
resolution parameter κ plotted at t = 2.

reported, whereas the relative error of the growth rate decreases to 10% for

κ = 2.33.

Figure 5.13: Vertical velocity amplitude for the local resolution parameters (as indicated). The
slope of the classical growth rate [5] is plotted in red.

κ Nn nc ∆nc,classical ∆nc,smooth ηclassical ηsmooth

1.25 20 2.4 3.5 3.1 59 56
1.50 28 4.2 1.7 1.3 29 24
1.95 47 4.2 1.7 1.3 28 24
2.33 68 5.0 0.9 0.5 15 10

Table 5.3: The fitted growth rates for various smoothing scales as indicated. The number of
neighbour particles (2nd column), the extracted growth rate (nc) (3rd column), the absolute
error (∆nc,classical, ∆nc,smooth) (4

th-5th column) and relative error (ηclassical,ηsmooth) (6
th-7th

column).
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5.4.4 Dependence on the thickness of the velocity and

density transition layers

While it has been reported in the literature [58, 108, 109] that smoothed initial

conditions are better suited for SPH simulations, a comprehensive study of the

influence of the depth of the initial interface has not been attempted in the

literature. To finalise our study, we investigate the role of the width of the

initial velocity and density transition layer. In order to formulate a systematic

analysis, the density and velocity gradient are varied independently from Lu,ρ =

2dnat − 6dnat and simulated up to t = 2. Figure 5.14 illustrates the vertical

velocity amplitude for different initial velocity gradients. Inspecting the velocity

amplitudes, it is found an increase in the initial velocity gradient results in a

less pronounced KHI. The extracted growth data and the associated difference

between the classical (sharp transition) and smoothed analytical growth rates

are reported in Table 5.4 (see also Table 5.4, rows 1-3). The SPH results are in

good agreement with the analytical expectation of [7], with an average relative

error of 〈ηsmooth〉 = 12% and depart from the classical growth rate [5], with an

average relative error of 〈ηsmooth〉 = 22%.

The influence of the density gradient is also studied in a similar fashion. Fig-

ure 5.15 illustrates the vertical velocity amplitude for different initial smoothed

density interface widths. As we have shown in chapter 2, for a sharp velocity

interface (Lu = 0) an increase in initial density gradient leads to a decrease in

the local Atwood number between each differential horizontal layer which con-

sequently results in a more pronounced KHI growth than the classical values.

In contrast, we find an increase in initial density gradient results in a smaller

growth rate than the classical expectation (Table 5.4 row 4-6) and results in an

average relative error of 〈ηsmooth〉 = 17%.

Finally, we study the scenario where both the initial velocity and density
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Lu nc nc,smooth ∆nc,classical ∆nc,smooth ηclassical ηsmooth

2 5.0 5.51 0.89 0.51 15 9
4 4.8 5.22 1.10 0.37 19 7
6 3.9 4.92 1.98 0.95 33 19

Lρ nc nc,smooth ∆nc,classical ∆nc,smooth ηclassical ηsmooth

2 5.1 5.99 0.83 0.89 14 15
4 4.7 6.03 1.22 1.33 21 22
6 5.2 6.07 0.68 0.83 11 14

D nc nc,smooth ∆nc,classical ∆nc,smooth ηclassical ηsmooth

10 5.1 5.76 0.81 0.65 14 11
20 5.1 5.81 0.77 0.66 13 11
40 5.2 5.84 0.77 0.69 13 12

Table 5.4: The fitted growth rates for various initial velocity gradient (top) and density gradient
(bottom) values as indicated. The extracted growth rate (nc) (2nd column), the analytical
growth rate presented in [7] (3rd column), the absolute error (∆nc,classical, ∆nc,smooth) (4

th-5th

column) and relative error (ηclassical,ηsmooth) (6
th-7th column).

transition layers are of finite width (i.e. Lu,ρ > 0). In this case, the velocity

gradient Lu = 2dnat is chosen as the base parameter and the ratio between the

density and velocity gradient, namely D = Lρ/Lu is varied from D = 10 − 40

in order to study how the initially smoothed distribution effects the evolution of

the KHI in SPH simulations.

The numerical results and the extracted vertical amplitudes are plotted in

Figure 5.16-5.17 respectively. As expected, the combined smoothing of the ve-

locity and the density transition layers leads to an overall suppression of the

KHI compared to its classical analytical growth rate. In addition, the extracted

growth rates are found to be in acceptable agreement with the linear growth rate

in chapter 2 with an average relative error of 〈ηsmooth〉 = 11%.

Further comparison of the errors corresponding to the three different sets

of simulations in Table 5.4 suggests that the finite velocity and density gradient

simulations are always in better agreement with the smoothed linear growth rates

[7, 65, 66] than the sharp velocity and density transition simulations. Note that

in theory it is possible to prescribe sharp discontinuous initial conditions, but the

inherent smoothing properties of SPH smooth out the initial condition as soon
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as the simulation begins. This explains the inconsistency between SPH results

and sharp interface linear growth rate [5]. Furthermore, when the width of the

density transition layer exceeds the width of the velocity transition layer, the

concept of a sharp interface is no longer relevant and the instability is expected

to behave similar to a localised single phase KHI.

Figure 5.14: The extracted vertical velocity amplitude for different velocity gradients Lu. The
increase in velocity gradient suppresses the growth of the KHI.

129



Figure 5.15: The extracted vertical velocity amplitude for different density gradients Lρ. The
increase in velocity gradient suppresses the growth of the KHI.

Figure 5.16: The vertical velocity amplitude growth for different length scale ratios D (as
defined in the text).
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Figure 5.17: Numerical results of the fiducial model simulated with ratios of density and
velocity gradients D = 10 (top), D = 20 (middle) D = 40 (bottom) plotted at various time-
steps.
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Stratified shear instability

5.5 Initial Conditions

The two-dimensional stratified shear instability is confined in a semi-infinite par-

allel plane x ∈ [0, L] , y ∈ [0, H], where the aspect ratio is normally set to unity.

The initial conditions are similar to the ones in section 5.3, except ghost par-

ticles with constant velocities are placed at the top and bottom of the vertical

computational domain to simulate the behaviour of moving walls. The initial

density profile is given by

ρ (y) =















ρ1 − ∆ρ
2
e
−

|y−yo|
Lρ 0 ≤ y < yo

ρ2 +
∆ρ
2
e
−

|y−yo|
Lρ yo ≤ y < H

. (5.4)

The horizontal velocity profile

u (y) =















u1 − ∆U
2
e−

|y−yo|
Lu 0 ≤ y < yo

u2 +
∆U
2
e−

|y−yo|
Lu yo ≤ y ≤ H

. (5.5)

is utilised to prescribe the horizontal velocities of the particles. The density (5.4)

and velocity (5.5) profiles define the interface at yo = H/2, at which the density

and horizontal velocity are ρ(yo) = (ρ1+ρ2)/2 and u(yo) = (u1+u2)/2. In order
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Figure 5.18: The initial gradient Richardson number for different length scale ratiosD = Lρ/Lu

along the top half of the vertical computational domain for g = −0.1m/s2 and Lρ = 0.01L.

to perturb the fluid system, an initial seed vertical velocity perturbation function

v (x, y) = δvy sin(kx)e
−k|y−yo|, (5.6)

is applied with an amplitude δvy = 0.01∆u. The exponential factor in (5.6)

ensures the vertical velocity perturbation vanishes away from the interface. The

gradient Richardson number Rig is defined as the ratio between the square of

the Brunt-Väisälä frequency and the velocity shear. For small vertical velocity

perturbation, the gradient Richardson number is given by

Rig =
|~g|
ρ

∂ρ/∂y

(∂u/∂y)2
(5.7)

The local gradient Richardson number in the vertical direction for the indicated

length scale ratios are plotted in Figure 5.18. The gradient Richardson number
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reported here follows from equation (5.7) evaluated at the interface yo,

Rig(yo) =
4|g|L2

u AT

∆u2 Lρ

. (5.8)

For a fixed density ratio, gravitational acceleration and velocity shear, the gradi-

ent Richardson number essentially indicates how much broader the smoothing of

the velocity is than that employed for the density. As the velocity smoothing is

extended further than the density smoothing the effective kinetic energy in this

region is reduced and so the Richardson number increases.

Furthermore, it is necessary to distinguish the gradient Richardson number

(Rig) reported here and the conventional Richardson number in classical hy-

drodynamics literature [88, 207, 208]. The gradient Richardson number Rig

accounts for the effects of velocity and density boundary layers. In contrast,

the conventional Richardson number is only suitable for fluid system: (i) with

discontinuous initial velocity profile and (ii) small density differences such that

the Boussinesq approximation applies.

The shear instability is described by a set of dimensionless parameters, namely

the Atwood number (AT ), the gradient Richardson number (Rig), the ratio of

widths of the velocity transition layer and the density transition layer (D) and the

Reynolds number (Re = λu1/νsph [218]). The kinematic viscosity reported herein

is given by the relation νsph ≈ αAV ch/8 (Price [183] equation 100). With the aim

of quantitative comparison in mind, the extracted growth rates are compared

against the classical growth rate [5] and the linear growth rate for smoothed

initial profiles presented in chapter 2, both of these can be found in chapter 2.

The error metrics for reported in this section are defined in the same fashion as

the ones in section 5.3.
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5.6 Results and Discussion

The stratified shear instability that evolves from the initial conditions set-up as

described in section 5.5 is simulated. The instability is characterised by seven

parameters, five of which are physical and the remaining two are numerical. The

physical parameters are the Reynolds number, which sets the relative speed of

the shearing layers, the viscosity of the fluids (αAV ), the width of the density

transition layer (Lρ) the gradient Richardson number (Rig), which sets the rel-

ative widths of the initial density and velocity transition layers and the Atwood

number (AT ), which defines the density ratio of the two fluids. The numerical

parameters are N , the number of particles across the simulation box of width,

L, which defines the mean inter-particle separation: dnat = L/N . Note that

for the particular geometry described herein the ratio L : H = 1, so N2 = Np

as well as the local smoothing parameter κ. The dependence of the simulated

outcome on each of these parameters will be investigated in the following sections

by comparing against a fiducial reference model defined below.

5.6.1 Fiducial Model

The fiducial simulation contains a total of Np = 4× 104 particles, with 3.5× 104

fluid particles and 5×103 ghost particles. The initial particle separation distance

is dnat = L/N , where each horizontal row consist of N = 200 particles and

the local resolution parameter is κ = 1.95 in this case. The standard artificial

viscosity [204] is used in conjunction with the Balsara switch, with artificial

viscosity parameters chosen to be (αAV = 0.5, βAV = 0). Furthermore, the

Balsara switch is not active for ghost particles such that SPH fluid particles near

the lateral boundaries adapt to the shearing velocity of static ghost particles.

The initial density gradient is Lρ = 0.01L, and the ratio between the velocity

and density gradient is D = 0.365, a choice that sets the Richardson number
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to Rig = 0.01 as illustrated in Figure 5.18. The density ratio between fluids

is 2, which corresponds to an Atwood number of AT = 0.3̄. The instability is

simulated up to t = 10 which enables a detailed investigation of both the linear

as well as the non-linear evolution of the instability.

The numerical results are shown in Figure 5.19, with a fixed time increment

of ∆t = 0.5 between each panels. During the early stage 0 . t . 1.0, the vertical

generates a small amplitude wave-like structure near the interface. Particles that

were initially above (below) the interface are marked in red (green) so that there

evolution can be easily tracked. At this stage, the SPH results can be compared

against the linear analytical predictions to examine the accuracy of the presented

SPH method. By t ≈ 1.5, the instability has emerged into the non-linear regime.

The perturbation continues to grow in time 1.5 . t . 2.5 as the de-stabilising

effects of velocity shearing overcome the stabilising effect due to gravity, and the

roll-up behaviour of the KHI billows generate the well known cat-eye vortices at

t . 2.5.

During the post billow development stage t ≥ 2.5, the fluid particles situated

at the edge of the KHI billows are unstable against the KHI and RTI. The

secondary instability causes the upper fluid to sink towards the bottom of the

interface due to gravity, which suppresses the growth of the instability. The

competition between gravity and shearing motion can be seen during 3.0 . t .

3.5. This eventually stops the KHI billow to grow further, and lead to the

transformation into a shearing layer at t ≈ 4.0. During the transformation, the

cat-eye vortices are heavily suppressed 4.0 . t . 4.5, and eventually the two

vortices merge into each other at t ≈ 5.0. This marks the beginning of the

vortex pairing process, which lasts between 5.0 . t . 7.0. During the vortex

pairing process, the fluid particles in the inner region of the original cat-eye

vortices remain in the inner core region of the paired vortex. Moreover, additional

instabilities can be seen at the edges of the merged vortex (see Figure 5.19, t =
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7.5). Finally, the pairing process completes at t ≈ 7.5, resulting in a single vortex

at the center of the computational domain. The numerical results are in good

qualitative agreement with the Re = 500 simulations in Klaassen and Peltier

[211].

Figure 5.19: Numerical results of the fiducial model plotted at the times indicated. Particles
with initial vertical positions above (below) the interface marked in red (green).

5.6.2 Resolution Dependence

For an SPH simulation there are two relevant length scales that influence resolu-

tion. The global resolution is set by the number of particles (Np), as this defines

the mean inter-particle separation (i.e. dnat = L/N), where N =
√

Np for the

test cases herein. The local resolution refers to the number of particles within in

the support of the kernel function which smooths quantities represented by the

smoothing length h = κdnat.
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N = 100 N = 200 N = 400

Figure 5.20: Density plot for different global resolutions at t = 2.5. The low resolution sim-
ulation is shown on the left side, the fiducial resolution is shown in the middle, and the high
resolution simulation is shown on the right hand side. The scatter plot marker size are scaled
with respect to the number of particles per row.

In order to study the effects of global resolution, the fiducial model is simu-

lated with the same set of parameters except with the global resolution varying

from N = 100 to N = 400 while keeping other parameters unchanged. The

numerical results at t = 2.5 are shown in Figure 5.22 (top row). Qualitatively

we note: (i) despite the resolution change the amplitude of the KHI billows

appear to be remarkably similar, and (ii) the dynamics occurring at the inner

region of the KHI vortices are better resolved with a higher global resolution.

Figure 5.20 further illustrates the qualitative behaviour for the low N = 100,

medium N = 200 and high N = 400 resolution simulations considered herein.

Note that, despite the similarities in the general structure, a comparison between

the results plotted in Figure 5.20 indicates that a deficiency in global resolution

results in poor resolution within the inner core region. The vertical velocity am-

plitudes corresponding to various global resolutions are plotted in Figure 5.21.

We confirm that the velocity amplitudes are weakly dependent upon the global

resolution.

As the qualitative results suggest the amplitude of the vertical velocity is

weakly dependent on the number of SPH particles employed, one should expect

the roll-up behaviour should occur earlier in the higher resolution simulations.
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This is because as the resolution increases, the intrinsic error due to the dis-

cretisation of a fluid continuum into a discrete set particles decreases; therefore

resulting in a more rapid growth rate as predicted by analytical theory. To

quantify the effects of global resolution, the extracted growth rates are com-

pared against the analytical predictions in a similar manner to section (5.4.2).

The extracted growth rate as well as the absolute and relative errors are reported

in Table 5.5. As expected, an increase in global resolution results in an increased

growth rate (see Table 5.5, column 3). Finally, we would like to point out that

while the results herein confirm the findings of Shadloo and Yildiz [149], the

improvements due to increasing global resolution is hardly observable via visual

inspection Figure 5.20. In fact, our studies suggest that one should rather rely

on the numerically extracted growth rates.

Figure 5.21: Vertical velocity amplitude for the different global resolutions. The classical
growth rate [5] is plotted in red.

The local resolution scale in SPH is controlled by the smoothing length,

which defines the region over which local quantities are smoothed. Detailed

dynamics occurring on length-scales smaller than the smoothing length cannot
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N = 100 N = 150 N = 200 N = 250 N = 400

κ = 1.25 κ = 1.50 κ = 1.95 κ = 2.00 κ = 2.33

Figure 5.22: Numerical results at t = 2.5 simulated with global resolutions between N = 100
and N = 400 (top row) and local resolutions between κ = 1.25− 2.33 (bottom row).

N nc ∆nc,classical ∆nc,smooth ηclassical ηsmooth

100 3.7 2.3 1.1 38 238
150 3.7 2.2 1.0 38 22
200 3.8 2.2 1.0 37 21
250 3.9 2.0 0.9 34 18
400 4.1 1.8 0.6 30 13

Table 5.5: The fitted growth rates during the initial stages of KHI growth for different
global resolutions as indicated in the 1st column. The extracted growth rate (nc) (2nd col-
umn), the absolute errors (∆nc,classical, ∆nc,smooth) (3

rd− 4th column) and the relative errors
(ηclassical,ηsmooth) given as percentages (5th − 6th column).

be accurately resolved. Larger smoothing lengths include more particles under

the SPH kernel, improving the stability of the implementation at the expense

of reducing the effective number of resolution elements. Generally a balance is

sought between having enough SPH neighbours to limit numerical issues while

keeping as large a number of independently resolved regions as possible.

For the purpose of comparison, we simulated the fiducial model with the local

resolution parameter varying between κ = 1.25 and κ = 2.33. The numerical

results at t = 2.5 are plotted in Figure 5.22 (bottom row). Unlike the subtle

difference seen for global resolution, it is found that the κ = 1.25 results signifi-

cantly deviate from the larger κ runs in the following aspects: firstly, the roll-up
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κ Nn nc ∆nc,classical ∆nc,smooth ηclassical ηsmooth

1.25 20 2.3 3.7 2.52 62 53
1.50 28 3.2 2.8 1.6 47 33
1.95 47 3.8 2.2 1.0 37 21
2.33 68 4.0 1.9 0.7 32 16

Table 5.6: The fitted growth rates during the initial stages of the KHI growth for different local
resolutions. The local resolution parameter, κ (1st column), the number of neighbour particles
(2nd column), the extracted growth rate (nc) (3

rd column), the absolute errors (∆nc,classical,
∆nc,smooth) (4th-5th column) and the relative errors (ηclassical,ηsmooth) given as percentages
(6th − 7th column).

behaviour is completely absent. Secondly, particles near the interface have been

driven away from the interface. Moreover, a comparison of the velocity ampli-

tudes in Figure 5.23 suggests an increase in κ generally results in a larger growth

rate (see Figure 5.23, κ = 1.25). This is attributed to an insufficient number

of particles within the SPH smoothing kernel; hence significantly reducing the

effective velocity shear between each vertical layer. In general the lack of suf-

ficient local resolution to encapsulate the dynamics causes serious problems in

regions where the physical properties such as velocity and density change steeply.

The extracted growth rates are compared against the analytical predictions in

Table 5.6. It is found that at fixed global resolution (here N = 200), both

the absolute and relative error decrease with increasing local resolution. The

absolute error ∆nc,smooth decreases from 2.5 to 0.7, and the relative error ηsmooth

decreases from 53% to 16% as κ increases from 1.25 to 2.33.

5.6.3 Dependence on Reynolds number

In order to understand the role of the SPH artificial viscosity, the fiducial model

is repeated until t = 2.5 using viscosity parameters between αAV = 0.125 and

αAV = 2.0. For the purpose of comparison, two sets of simulations were con-

ducted, namely with and without the Balsara switch. The numerical results cor-

responding to the different viscosity parameters are shown in Figure 5.25, where
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Figure 5.23: Vertical velocity amplitude for the different smoothing factors κ applied to the
simulation of the fiducial model. The classical inviscid growth rate [5] is plotted in red.

the top (bottom) row corresponds to the results without (with) Balsara switch.

Even a cursory visual inspection of the numerical results the clear influence of the

Balsara switch. Without the Balsara switch, the numerical results are strongly

dependent on the artificial viscosity parameter αAV . For example, focussing on

αAV = 2 (see Figure 5.25, top right) the standard artificial viscosity results in

the suppression of the initial perturbation modes. The Balsara switch largely

reduces the suppression and the development of a full rotation of the billow is

clearly observed at all the tested values of αAV (see Figure 5.25, bottom right).

Inspecting the vertical velocity amplitudes for the simulations without Bal-

sara switch (see Figure 5.24, thin lines), it is found that while the growth of

the initial perturbation can be seen for the low viscosity (i.e. αAV = 0.125)

simulation, the amplitude decreases with increasing αAV . In contrast, the verti-

cal velocity amplitudes of the second series of simulations utilising the Balsara

switch show little dependence on αAV (see Figure 5.24, thick lines) and are al-

ways above the set of thin lines corresponding to the simulations performed with
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Balsara switch.

In order to quantify our findings, the effective viscosity (νsph), Reynold’s

number (Re), extracted growth rates (nc), and the corresponding errors are re-

ported in Table 5.7. We confirm that without a Balsara switch the growth rate

is sensitive to αAV . In particular, a negative growth rate (i.e. decay) is observed

for αAV ≥ 0.5. A comparison of data in Table 5.8 indicates that the utilisation

of a Balsara switch generates growth rates that are essentially independent of

the choice of αAV . In order to understand this behaviour, we examine the Bal-

sara factor fi in the context of the initial velocity profiles. Firstly, recall the

Balsara switch fij measures the relative strength of compression versus vorticity

for each SPH particle pair. Secondly, the initial velocities profile (5.5)-(5.6) is

constructed such that particles away from the interface yo = H/2 have similar

horizontal and vertical velocities. During the linear regime, the relative velocities

are approximately zero everywhere except near the interface. Hence, the Balsara

switch as well as the viscosity term Πij diminish outside the velocity transition

layer |yi − yo| > Lu. At this point the flow behaves as inviscid everywhere, ex-

cept near the interface where the artificial viscosity is active to prevent particle

interpenetration. Therefore it is not surprising that the expected growth rates

are in better agreement with analytical predictions based on the assumption of

inviscid and incompressible fluids [5, 7]. For example, comparing the extracted

growth rates for standard artificial viscosity simulations (see Table 5.7) with the

smoothed profile growth rate nc,smooth = 4.8 gives an average absolute error of

〈∆nc,smooth〉 = 5.8, and average relative error of 〈ηsmooth〉 = 121%. However,

with the utilisation of a Balsara switch (see Table 5.8), the average absolute

error 〈∆nc,smooth〉 reduces from 5.8 to 1.3. Similarly, the average relative error

〈ηsmooth〉 reduces from 121% to 27%.

The results with Balsara switch (see Table 5.8) further suggest that the ex-

tracted growth rates are in better overall agreement with the smoothed profiles
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in Wang et al. [7] (nc,smooth = 4.8) than the classical growth rate given in [5]

(nc,classical = 6.0). In addition, we would like to point out that previous articles

[64, 109, 138, 153] compared the extracted growth rates for sharp interface profiles

although smoothed initial conditions are used to setup the simulations. As we

have illustrated, the presence of thickness velocity and density transition layers

(i.e. Lρ,u > 0) reduces the relative velocity between vertical layers, resulting in a

smaller growth rate. Therefore we do not advise comparing SPH results obtained

with smoothed initial profiles with the analytical growth rate for sharp initial

profiles. Instead, a more sensible comparison can be made by comparing the

extracted growth rate with the linear growth rate for smoothed initial profiles

obtained from equation (2.33) in chapter 2.

αAV νsph Re nc ∆nc,classical ∆nc,smooth ηclassical ηsmooth

0.125 3.10× 10−4 803 2.2 3.8 2.6 63 54
0.25 6.21× 10−4 401 1.0 5.0 3.8 84 80
0.5 1.24× 10−3 200 -1.5 7.5 6.3 125 132
1.0 2.42× 10−3 100 -2.8 8.8 7.7 148 160
2.0 4.97× 10−3 50 -3.8 9.7 8.6 164 179

Table 5.7: The fitted growth rates during the initial linear stages development for different vis-
cosity parameters for simulations with standard artificial viscosity and no Balsara switch. The
artificial viscosity parameters αAV (1st column), the kinematic viscosities (νsph) (2

nd column),
the Reynold’s number (Re) (3rd column), the extracted growth rates (nc) (4th column), the
absolute errors (∆nc,classical, ∆nc,smooth) (5

th− 6th column) and the relative errors (ηclassical,
ηsmooth) [%] (7th − 8th column).

αAV nc ∆nc,classical ∆nc,smooth ηclassical ηsmooth

0.125 3.5 2.5 1.3 41 27
0.25 3.5 2.4 1.3 41 26
0.5 3.5 2.4 1.3 41 26
1.0 3.5 2.5 1.3 42 27
2.0 3.4 2.6 1.4 43 29

Table 5.8: The fitted growth rates during the initial linear stages development for different
viscosity parameters for simulations with standard artificial viscosity and Balsara switch. The
artificial viscosity parameters αAV (1st column), the extracted growth rates (nc) (2nd col-
umn), the absolute errors (∆nc,classical, ∆nc,smooth) (3

rd− 4th column) and the relative errors
(ηclassical, ηsmooth) [%] (5th− 6th column). The kinematic viscosity and Reynold’s number are
the same as those listed in Table 5.7.
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Figure 5.24: Vertical velocity amplitude for different values of the conventional Monaghan
artificial viscosity (as indicated) and with/without the Balsara switch (thick/thin lines). The
slope of the classical inviscid solution presented in [5] is plotted in red.

αAV = 0.125 αAV = 0.25 αAV = 0.5 αAV = 1.0 αAV = 2.0

Figure 5.25: Numerical results generated by different indicated artificial viscosity parameters,
αAV , plotted at t = 2.5. The top row corresponds to results that utilised the conventional
artificial viscosity without a Balsara switch, and the bottom row corresponds to the results
generated with the combined use of a Balsara switch and conventional artificial viscosity.

5.6.4 Dependence on Gradient Richardson number

The gradient Richardson number is a useful way of quantifying the influence of

buoyancy in a stratified shear flow simulation. In order to study the gradient

Richardson number dependence, we simulate the stratified instability for Rig =
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0.1 − 0.5 measured as illustrated in Figure 5.18. The width of the smoothed

density interface is fixed at Lρ = 0.01L, with other parameters such as the αAV ,

global resolution N and local smoothing parameter κ being same as the fiducial

model. The numerical results corresponding to different gradient Richardson

numbers are plotted in Figure 5.26. A visual inspection of the numerical results

suggests an increase in Rig corresponds to a less pronounced instability. Recall

that the larger the gradient Richardson number Rig, the stronger the influence of

gravity (which is damping the system), and the weaker the kinetic energy which is

acting to destabilise the system. The extracted vertical velocity amplitude during

the linear regime are plotted in Figure 5.27. Inspecting the results, we found that

the fluid system remains stable for Rig > 0.3 where a negative growth rate (i.e.

decay) is obtained (see Table 5.9, column 3). Although the critical growth rate

are in general agreement with the inviscid sharp-interface hydrodynamic theory

(i.e. Rig,c ∼ 0.3 herein, whereas Ri,c = 0.25 [88],[207]), the SPH growth rates are

found to be heavily suppressed for large gradient Richardson number compared

to analytical growth rates in [5, 7] (see Table 5.9, column 5-8).

Rig D nc nc,smooth ∆nc,classical ∆nc,smooth ηclassical ηsmooth

0.1 0.115 3.5 3.4 2.5 0.09 42 3
0.2 0.081 1.7 2.9 4.2 1.1 71 40
0.3 0.066 0.67 2.6 5.3 1.9 88 73
0.4 0.057 −0.09 2.4 6.1 2.5 101 103
0.5 0.052 −0.51 2.2 6.5 2.7 108 123

Table 5.9: The fitted SSI growth rates during the initial stages for simulations with different
Richardson numbers. Listed are the gradient Richardson number parameter (1st column),
the length scale ratio (D) (2nd column), the extracted growth rate (nc) (3rd column), the
analytical growth rate for smoothed initial conditions (nc,smooth)(4

th column), the absolute
errors (∆nc,classical, ∆nc,smooth) (5th-6th column) and the relative errors (ηclassical,ηsmooth)
given as percentages (7th-8th column).

146



Figure 5.26: Numerical results for different initial gradient Richardson numbers from Rig =
0.1−0.5 (top to bottom) within the time interval t = 1−3, with a fixed increment of ∆t = 0.5
plotted from left to right. Particles correspond to the initial vertical positions near the interface
(|yi − yo| ≤ 4dnat) are coloured to illustrate the evolution of inter-facial particles during the
instability.

5.6.5 Dependence on Atwood number

To finalise our study, we consider a case study to investigate the influence of the

Atwood number, focussing on the simulation of three Atwood numbers, namely

AT = 0.3̄, 0.6̄, 0.8̄ for Rig = 0.1 and Re = 200. These Atwood numbers cor-

respond to density ratios of 2, 5 and 8 respectively. The numerical results are

plotted in Figure 5.28, and the single-phase (AT = 0) results are also presented

for completeness. As expected, the growth rate of the induced KHI decreases
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Figure 5.27: Vertical velocity amplitude for different Richardson numbers as indicated.

with increasing density ratio between the two fluid layers. In addition, we found

the result exhibit remarkable qualitative differences: firstly, the roll-up behaviour

of the instability is more pronounced for low Atwood number (i.e. AT = 0.3̄)

than for the larger Atwood number simulations. Secondly, in the large Atwood

number simulations the destabilising effects of velocity shear cannot successfully

overcome the stabilising effect caused by gravity. Hence, the bulk movement of

the fluid did not result in the conventional roll-up behaviour observed in the

AT = 0.3̄ simulation. Instead, the velocity shearing between the fluid layers

manifested itself by stripping of heavier fluid particles away from the interface

(see Figure 5.28, AT = 0.8̄), resulting in the formation of ligaments as the up-

rising heavier fluid penetrates into the lighter ambient fluid. However, we think

it is likely that the ligaments in the high density ratio AT = 0.8̄ simulation

are caused by the spurious pressure gradient. It is because for the multi-mass

initial conditions, the mass ratio is proportional to the density ratio; therefore, an

increase in density ratio introduces a mass discontinuity which lead to the error
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in the density estimate for the smoothed-pressure SPH variants [109, 156, 157].

In fact, our results indicate pseudo-consistent SPH suffers from similar problems

for resolving high density ratio shear flows. However, the mass discontinuity can

be resolved using mass flux switching technique introduced in Read and Hayfield

[153].

Comparison of the growth data in Table 5.10 indicates both the absolute

(6th column) and relative error (8th column) decreases for higher Atwood num-

ber. We suspect this is primarily due to the overall decrease in growth rate for

large Atwood number. Note that both sharp and smoothed linear growth rates

decrease for larger Atwood number, as the kinetic energy from velocity shear

becomes significantly smaller than the potential energy which stabilises the fluid

system.

AT nc nc,smooth nc,classical ∆nc,classical ∆nc,smooth ηclassical ηsmooth

0.3̄ 3.8 3.4 6.0 2.1 0.46 36 13.6
0.6̄ 3.4 3.3 4.8 2.00 0.080 29 2.41
0.8̄ 3.0 2.9 3.8 0.78 0.0088 21 0.31

Table 5.10: The fitted growth rates during the initial stages of the KHI for different Atwood
number. Given are the Atwood number (1st column), the extracted growth rate (nc) (2

nd col-
umn), the analytical growth rate for smoothed initial conditions (nc,smooth) (3

rd column), the
classical growth rate (nc,classical) (4

th column), the absolute errors (∆nc,classical, ∆nc,smooth)
(5th-6th column) and the relative errors (ηclassical,ηsmooth) given as percentages (7th-8th col-
umn).
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t = 1s t = 2s t = 3s t = 4s t = 5s

Figure 5.28: Numerical results for different Atwood numbers plotted at times between t =
1s− 5s, where Rig = 0.1, Re = 200. From top to bottom, AT = 0.0 (1st row), AT = 0.3̄ (2nd
row), AT = 0.6̄ (3rd row) and AT = 0.8̄ (4th row).
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5.7 Summary

The Kelvin-Helmholtz instability between two superposed fluids was simulated

by means of the pseudo-consistent multiphase scheme. The analysis conducted

was divided into two parts, the first part studies the idealised KHI without taken

into consideration the damping effects of gravity, and the second part focusses on

the evolution of KHI subjected to gravitational effects, known as the stratified

shear instability.

A series of numerical simulations was carried out to investigate the effective

viscosity in the SPH simulations. Despite the differences in the kernel function,

multiphase treatment and momentum equation employed, our findings are in

good agreement with previous research [64, 149]. That is, the growth of the KHI

is strongly dependent on the artificial viscosity parameter utilised. In addition, a

linear relationship was found between the artificial viscosity parameter αAV and

the effective viscosity with a slope of 0.147. The use of Balsara switch reduces the

slope from 0.147 to 1.68 × 10−4. Furthermore, the growth of the KHI exhibits

a very weak dependence on artificial viscosity parameter βAV , with the linear

dependence between βAV and effective viscosity found to be 5.22 × 10−3. The

maximum Reynold’s number estimated herein is Re ∼ O(101) suggesting the flow

problems considered are well within the laminar regime. Therefore, we conclude

that the utilisation of a Balsara switch is crucial to the success of modelling

inviscid KHI in SPH. Furthermore we would encourage further comparison on

shear flows such as KHI using modern switch techniques available literature

[152, 153, 219].

In the first part of this chapter we focussed on the KHI for a density ratio of

two, there are two potential limitations for the present pseudo-consistent weakly-

compressible multiphase method. Firstly, the differential form density estimate

based on the SPH continuity equation is suitable for low Mach number problems
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[62, 166, 167]. Secondly, the multi-mass approach is not suitable to high density

ratios. It is because in a multi-mass approach, the density ratio is proportional

to the mass ratio of the particles. Hence, the kernel density estimate are biased

against the heavier particles which may potentially affects the accuracy of kernel

density estimates in SPH. In fact, we would advise the use of either a switch

technique [110, 153] or interface stabilisation model [167, 170] for high density

ratio shear flows.

The effects of the local resolution parameter κ were also investigated nu-

merically. It was found that during the linear regime, a larger local resolution

parameter results in a more accurate growth rate [7] as well as a regularised

interface. Nonetheless, the utilisation of large κ in combination with multi-mass

SPH particles limits the capability of resolving fine scale structures that are

less than ∼ 2h. For example, the occurrences of instabilities within the core

region of the cat-eye vortices are not well resolved in the presented simulations.

Finally, the evolution of the KHI for different velocity and density gradients

was studied systematically. For the sharp density, finite velocity gradient cases

(Lu = 0, Lρ > 0), the simulations are in good agreement with the analytical

prediction, with the average relative error of 〈ηsmooth〉 = 12%. Similarly, the

sharp velocity, finite density gradient cases (Lρ = 0, Lu > 0) had an average

relative error of 〈ηsmooth〉 = 17%. The generalised scenario where both velocity

and density transition layers are of finite width (Lu,ρ > 0) was also studied.

The smoothed initial density distribution reduces the local density ratio between

each successive layer, where the simulation results were found to have an average

relative error of 〈ηsmooth〉 = 11%.

Based on the knowledge acquired from the idealised KHI simulations, we

investigated the development of a multiphase stratified shear instability (a KHI

between two fluids of different densities under the influence of a gravitational

field). Motivated by recent analytical theory [7, 65, 66] and numerical simu-
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lations [58, 108], smoothed initial velocity and density profiles were utilised to

study the SSI. The influence of numerical resolution, kinematic viscosity (ef-

fective Reynold’s number), gradient Richardson number, and Atwood number

were studied systematically. Similar to the results from the idealised KHI, we

found that the growth rate of the SSI is largely independent of the SPH viscosity

parameter αAV when a rotation preserving Balsara switch is used. The numer-

ical results also suggest both the global and the local resolution play a role in

the growth of the shear instability. At the highest global resolution considered

(i.e. N = 400), the extracted growth rate is nc = 4.2 with an relative error of

ηsmooth = 13%. Whereas for a fixed global resolution of N = 200, the highest

local resolution simulation (i.e. κ = 2.33) yields a growth rate of nc = 4.0, with

the corresponding relative error of ηsmooth = 16%. We conclude that the conver-

gence of SPH to the expected analytical result for a smoothed initial density and

velocity profile is achieved with increasing resolution.

A series of simulations was conducted to investigate the influence of Richard-

son number. As expected, the growth rate decreases with increasing gradient

Richardson number, as the higher velocity gradient Lu corresponds to less kinetic

energy to overcome the stabilisation effects of stratification. For the particular

set of parameters considered herein, the growth of the instability was observed for

Richardson number up to Ri = 0.3. It is worthwhile mentioning that the growth

of the instability depends not only on the Richardson number, but also depends

on the velocity and density distribution of the base-flow [63, 214]. As a final re-

mark, we suggest an in depth study of the thickness of the initial transition layers

and their influence in the non-linear evolution of the stratified shear instability.

Finally, we undertook a case study into the effect of varying the Atwood number,

which quantifies the density contrast between the two fluids. It was found that

for density contrasts of 10 (and Atwood number of 0.8̄) the development of the

KHI is qualitatively different with ligatures of the high density fluid forming.
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Even so, the growth rate of the instability is broadly in line with the analytic

prediction which also slows with increasing Atwood number due to the relatively

increased influence of gravity.

We conclude that a carefully constructed implementation of SPH can be read-

ily used to model the onset and late-time development of the KHI instability in

the presence of a gravitational field and between fluids of somewhat different

densities. The growth rate of the instability is close to that predicted by ana-

lytical theory that includes the effect of a smoothed density transition in both

density and velocity between the two layers. While the presented computational

algorithm is implemented in a cell-linked list SPH code, in theory the numer-

ical scheme proposed is also suitable for a tree-SPH code implementation. In

fact, we would suggest a comparison between the multi-mass approach utilised

herein and the alternative equal-mass (constant number of neighbours) setup

employed elsewhere in the literature as it is unclear which SPH scheme is best

suited to multiphase problems. For example, at room temperature the density

ratio of water-air is of O(103). The equal-mass SPH setup therefore requires ap-

proximately 1000 water particles for each air particle. Whereas, the multi-mass

SPH setup requires the mass ratio between the particles of the different phases,

mwater/mair = 1000. Nonetheless, this implies the small-scale motions occurring

near the interface will be encapsulated into the motion of a single water particle.

Thus, the utilisation of multi-mass SPH particles may suffer from the limitations

of deficient resolution scale for fine-scale motions.
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Chapter 6

Rayleigh-Taylor Instability

6.1 Introduction

The proper modelling of Rayleigh-Taylor instability is important in many fluid

dynamical simulations. Previous work on RTI with mesh-based methods encoun-

tered problems in modelling the vast morphological variations of the interface in

the non-linear regime and, hence, several research groups have started exploring

alternative methods. This chapter presents the simulation results of single and

multi-mode RTI. Single-mode RTI is used to validate the SPH model against the

analytical growth rate in the early linear stage and against the drag-buoyancy

model at the non-linear stages of the RTI.

This chapter is organised as follows: section 6.2 provides a survey of literature

regarding to the numerical simulation and experiential work of RTI. Section 6.3

discusses the physical models from literature used in our validation cases. The

numerical results for single and multi-mode SPH, including comparison with an-

alytical and experimental results are presented in section 6.5. The major research

findings are summarised in section 6.6.
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6.2 Literature review

Rayleigh [78] and Taylor [79] were the first to study the instability of two immis-

cible and incompressible fluids subjected to acceleration, therefore the Rayleigh-

Taylor instability (RTI) is named after them. Following Sharp [220], the evo-

lution of a single-mode RTI can be divided into three stages: during the first

stage, the dynamic amplitude of the perturbation is small compared to its wave-

length, and its growth is accurately modelled by linear stability theory. In the

second stage, the formation of the bubbles due to the uprising light fluid and

a jet-like spike caused by the sinking heavy fluid occurs as the two fluids inter-

change position (c.f. Figure 6.1). When the amplitude becomes comparable to

the perturbation wavelength, linear growth rate given in chapter 2 is no longer

valid. In the third stage, the RTI can be described by the drag-buoyancy model

[68, 69, 70], where the bubbles and spike are considered as separate entities.

The balance between drag and buoyancy force then provides an estimate of the

terminal velocities of the bubbles and spike. During this stage additional fine

structures appear. In the absence of ablative effects, material diffusion, and sur-

face tension, the bubble and spike evolution is characterised by two parameters

namely, the Atwood number and the Reynolds number Re =
√
LgL/ν [221],

where L is the width of the domain. Recent experimental work [222] suggests

that for low Atwood numbers and high Reynolds numbers the shear motion

between the fluids leads to secondary KHIs. Whereas the RTI for large Atwood

numbers is dominated by buoyancy effects.

While the single-mode RTI serves as a simplified model and benchmark test,

more realistic RTI scenarios may involve a spectrum of superimposed waves.

In multi-mode RTI, each perturbation frequency has an unique growth rate,

leading to a multiple of RTI bubbles and spikes. Recent work suggests that

the interaction between different RTI modes may be responsible for transition
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into turbulence, which is one of the frontier topics in fluid dynamics that is

currently under active investigation [223, 224, 225]. However, finding an ana-

lytical solution that encapsulates the coupling between RTI modes is extremely

mathematical challenging [226]. Therefore, direct comparison of experiments,

simulations and analytical solutions is uncommon in the literature. Instead, the

comparison between experiments and simulations is made using the self-similar

scaling relationship of the bubble-front hb = ΘAT gt
2, where Θ is a constant of

proportionality.

Apart from the theoretical developments discussed in chapter 2, the RTI has

also been investigated experimentally. Cole and Tankin [227] studied the single-

mode RTI at a water-air interface by means of acoustic perturbation of the fluid

interface. To circumvent the difficulties in measuring the initial perturbation

height in experiments, the authors proposed a fitted curve method that compares

the dispersion relation for the experimental data with analytical theory and found

good agreement with linearised theory up to second order perturbation. Andrews

and Spalding [73] conducted experiments on two-dimensional RTI at AT = 0.08.

The experiments included multi-mode RTI, where the fluids are placed in a

vertical tank with a horizontal axle placed at the middle of the tank, and the

instability is triggered by tilting the tank. The authors studied the effects from

different tilt angles and Rayleigh-Taylor induced mixing between fluids. Their

experimental results confirm the self-similar scaling law of the bubble front by

Youngs [71, 72] with the measured constant of proportionality of Θ = 0.04.

The RTI has also been investigated by means of numerical simulations. For

conventional numerical methods, RTI poses serious challenges due to the vast

morphological variations in the non-linear regime. Glimm et al. [74] reviewed

mesh-based methods and showed that in many cases, extensive use of mesh re-

finement and interface tracking routines lead to additional computational com-

plexity for resolving RTI. Further, the authors pointed out that the discrepan-
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cies between reported simulation results from various research groups originate

from the mass and viscosity diffusion properties in mesh-based methods. Thus,

some researchers migrated towards mesh-free methods for simulating RTI. For

instance, Moscinski et al. [228] conducted molecular dynamics simulations for

RTI, whereas Nie et al. [229] proposed a multiphase Lattice Boltzmann method

to simulate the two-dimensional RTI.

There have been numerous attempts to simulate RTI with mesh-free meth-

ods. Cheng et al. [230] introduced the MPS method to simulate RTI between

two fully incompressible fluids and reported a good agreement between their

simulations results and the linear growth rates. Furthermore, features observed

in experiments such as formation the of bubbles and the stripping of particles

at the edges of the spike are also presented in their work. Shadloo et al. [231]

simulated the single-mode RTI using ISPH with primary attention to the role

of surface tension, which has been implemented using a SPH version of the con-

tinuum surface force [232]. They conducted a parametric study to evaluate the

damping effects of surface tension and found that (i) surface tension suppresses

the growth of RTI, and (ii) the initial particle distribution significantly influences

the symmetry of the instability along the vertical direction and (iii) their sur-

face tension model accurately recovers the Young-Laplace pressure of a droplet.

Furthermore, while focussing on the effects of surface tension and initial particle

distribution, their work did not investigate the effects of density ratios, viscosity

and how the inherent smoothing properties from SPH may potentially influence

the final numerical solution.

6.3 Validation models from literature

This section focusses on the models in the literature which describes the later

stages of the RTI, namely the drag-buoyancy model for single-mode RTI and
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the self-similar scaling law for the more realistic multi-mode RTI. These models

will be used in conjunction with the linear analytical growth rate presented in

chapter 2 as benchmarks in their respective regimes for the simulation results

presented in section 6.5.

Figure 6.1: Features of single-mode RTI instability. The development during the nonlinear
stage results in two bubbles, a down-falling spike which comprises of three jets. The left and
right jets are caused by the secondary KHI roll-up, and the central jet is by the down-falling
of the heavy fluid due to gravity.

6.3.1 Non-linear regime: Drag-Buoyancy Model

When the dynamic amplitude of the same order to the perturbation wavelength,

the RTI enters the nonlinear regime where the stability theory is no longer valid.

Figure 6.1 shows the structure of a single-mode RTI during the nonlinear regime.

The RTI has developed into a mushroom shape, with the formation of two bub-

bles and one spike in the axis of symmetry at x = 0.5L. The onset of KHI causes

the edges of the heavy fluid spike to roll-up and form two jets at the sides of the

spike.

To capture the late-time behaviour of the RTI, researchers have devised the

drag-buoyancy model [68, 70, 71]. The model considers the bubbles and spike as
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separate entities. The equation of motion of the bubble has the form,

(ρ2 + CAρ1) Λ
dv

dt
= −ρ1v2CDλ+ (ρ1 − ρ2) Λ|~g|. (6.1)

Similarly, the equation of motion of the spike has the form

(ρ1 + CAρ2) Λ
dv

dt
= −ρ2v2CDλ+ (ρ1 − ρ2) Λ|~g|, (6.2)

where ρ1 > ρ2, CA and CD are the added mass coefficient and drag coefficient,

v is the vertical velocity, λ is the perturbation wavelength, and Λ is the volume.

Starting from the left hand side of the equation (6.1) and (6.2), the first term rep-

resents the fluid inertia of the corresponding feature, the second term represents

the added mass of the surrounding fluid. The third and fourth terms represent

the Newtonian drag and buoyancy force. Assuming the bubbles and spike have

the same added mass coefficient and drag coefficient, the terminal velocities of

the bubble (vb) and spike (vs) are then explicitly given by

vb =

√

2AT

1 + AT

|~g|λ
CD

, vs =

√

2AT

1− AT

|~g|λ
CD

. (6.3)

The average velocity of the bubble and spike velocity then follows the relation

vave = Γ





√

π|~g|
k

AT

1 + AT

+

√

π|~g|
k

AT

1− AT



 , (6.4)

where Γ = C
−1/2
D is a constant of proportionality. The drag-buoyancy model has

received significant attention and validation in the literature. In particular, the

constant of proportionality Γ is often reported in comparisons between simula-

tion and experiments. Alon et al. [67] found the constant of proportionality of

the average velocity to be Γ = 0.22 independent of AT . Layzer [68] analysed the

limiting case AT = 1 using potential flow analysis and showed that the drag coef-
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ficient in two-dimensions is CD = 6π or equivalently Γ = 0.23. Their results were

later confirmed by Ramaprabhu et al. [233] using various mesh-based codes. Fur-

thermore, Waddell et al. [234] reported the estimated constant of proportionality

for the average velocity from empirical experiments to be Γ = 0.217±6.0×10−3.

6.3.2 Multi-mode RTI scaling

Parallel to the developments in single-mode RTI, the multi-mode RTIs has re-

ceived significant attention in the late 20th century. In multi-mode RTI, the

bubbles of different sizes undergo complex interactions, such as competition and

merging during the nonlinear regime. Youngs [72] found the dynamic height of

the multi-mode RTI bubble can be described by a self-similar relation

hb(t) = ΘAT |~g|t2, (6.5)

where hb(t) defined as the dynamic height of the bubble and Θ is a constant

of proportionality. The self-similarity relation is motivated by both experiments

and numerical simulations: using mesh-based simulations, Youngs [71, 72] found

Θ = 0.04−0.05. Glimm et al. [74] compared the reported Θ in the literature and

argued the numerical diffusion effects in mesh-based simulations are responsible

for the discrepancies between the Θs obtained by different research groups. An-

drews and Spalding [73] conducted a series of two-dimensional experiments and

found Θ = 0.04. The constant of proportionality extracted from SPH results will

be compared against the values reported in the literature in section 6.5.3.

6.4 Initial Conditions

The single-mode RTI is simulated in a semi-confined geometry. The fluid domain

is x ∈ [0, L] , y ∈ [0, H], where the aspect ratio is L/H = 1 : 4. The initial
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perturbation of the fluid interface is given by

η(x) = ǫo cos(kx) +
H

2
, (6.6)

with initial amplitude ǫo = 0.1L and wave number k = 2π/L. The dynamic

amplitude a(t) is given by the half distance between the crest and trough of the

perturbed mode that grows with time. To impose a no-slip condition, static

ghost particles are introduced at the left, right and bottom of the domain. The

initial pressure is prescribed by the piecewise pressure profile

P (x, y) =











ρ2 g [η(x)− y] + ρ1 g[H − η(x)] y < η(x)

ρ1 g (H − y) y ≥ η(x)
. (6.7)

The initial density of the fluid particles is computed from the Tait equation

of state. Finally, the mass of SPH particles is then given by product of the

initial densities and the initial volume of the particles. The single-mode RTI is

simulated for three Atwood numbers: AT = 0.3̄, 0.6̄ and 0.8̄, where the base

density of the heavier fluid is kept at ρo,1 = 103kg/m3 in all cases.

6.5 Results and Discussion

The simulation results for both the single-mode and multi-mode Rayleigh-Taylor

instability are presented in this section. To validate the SPH model, the sim-

ulation results are subjected to quantitative comparison against the models in

literature discussed in chapter 2 and section 6.3. In particular for the single-mode,

we compare the early-stage results with linear stability theory and the late-stage

results with the drag-buoyancy model [68, 70, 71]. For the multi-mode RTI, we

compare our results with the bubble front predictions from Youngs [71, 72] and

those reported in Andrews and Spalding [73].
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6.5.1 Data Extraction and Analysis

In order to validate the results quantitatively, we extract the growth rate (nc)

and the terminal vertical velocities of bubble (vb) and spike (vs) from the RTI

simulation data. The extraction of growth rate is a three-step process:

1. The dynamic amplitude a(t) is extracted from the simulation data by

taking half the distance from the peak to trough positions at each time-

snapshot.

2. The extracted amplitudes are fitted to the bi-exponential function (Equa-

tion (2.30) in chapter 2) using a least-squares algorithm to obtain the

growth rates (nc).

3. The growth rates are then substituted into the dispersion relation (Equa-

tion (2.28) in chapter 2) to determine the effective kinematic viscosity in

each SPH simulation.

The comparison between fitted viscous growth rates and inviscid growth rates

then shows how the SPH viscosity suppresses the growth of the RTI. Further-

more, two methods are introduced to evaluate the terminal velocities of the

bubbles and spikes. The direct extraction method determines the velocity for the

corresponding features from the positions of the SPH particles that represents

at the frontal area. That is, the bubble (spike) velocity is defined by the vertical

velocity of the low (high) density SPH particle which has the maximum (mini-

mum) y-component during each time-step. In contrast, the fitted amplitude slope

method extracts the velocity from the linear fit of the positions of the intermedi-

ate stage of the corresponding feature. The slope of the linear fit then provides

a measure for the terminal velocity of bubble (spike) in each SPH simulation.
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6.5.2 Single-mode Rayleigh-Taylor Instability

Three major parameters may influence the RTI simulation results: the density

ratio (Atwood number), the artificial viscosity (Reynolds number), and the nu-

merical resolution (i.e. global resolution Np, and the local resolution κ). Each of

these will be investigated in the following sections in comparison to our fiducial

reference model.

Fiducial Model

Our fiducial model for Atwood number AT = 0.3̄, αAV = 0.1, Re = 100, κ = 2.33

and dnat = 0.01, with a total of Np = 4.92 × 104 particles. Figure 6.2 shows the

time evolution of the RTI. The perturbed interface starts growing as soon as the

simulation begins. The numerical solution then departs from the linear regime

at t ∼ 1.2 as the heavy and light fluid interchange position. At later times

t & 1.5, the development of bubbles become more apparent as the light density

fluid gradually rises towards the top of the vertical domain due to buoyancy. A

spike is formed around the plane of symmetry at x = 0.5L the heavy fluid sinks

towards the bottom of the domain. During 3.0 . t . 4.5, the spike evolves into

a mushroom shape, as the onset of KHI at the side jets results in two secondary

vortices. During 4.5 . t . 6.0, the RTI has emerged into the fully non-linear

regime, where the vortices at the sides of the spike evolve into elongated jet-like

structures. At t & 6.0, additional KHI modes appear at the edges of the spike,

leading to additional vortices at the sides of the RTI spike. Finally, at t ∼ 7.5 the

RTI spike has fully developed, resulting in three jets: the central jet at x = 0.5L

which remains well collimated and two side jets spike dominated by the shear

between fluid layers.

The development of the RTI is in qualitative agreement with the time evo-

lution reported in the particle simulation literature such as Figure 7 in Shadloo

et al. [231] obtained using ISPH and Figure 4 in Jeong et al. [217] obtained by
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t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0 t = 4.5 t = 5.0

t = 5.5 t = 6.0 t = 6.5 t = 7.0 t = 7.5

Figure 6.2: The evolution of single-mode RTI for our fiducial model plotted at the times
indicated. The time is measured in units of

√

L/g.
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Figure 6.3: Time evolution of the amplitude, spike and bubble relative to their original position
for AT = 0.3̄. The overall increase in amplitude is caused by the formation of spike as the
heavier fluid accelerated towards the bottom of the computational domain.

means of MPS. Though with the current resolution (dnat = 0.01), our method

resolves the secondary KHIs much better than Jeong et al. [217] (dnat = 0.02).

However, some differences are observed when comparing SPH and mesh-based

simulations (see Sahu and Vanka [221], Figure 2-4) as the evolution of KHI in

the mesh-based simulations appears to be much more pronounced. We suspect

these differences are caused by the combination of different resolution (49200

SPH particles vs. 169092 grid cells) and artificial viscosity (Reeff = 100 vs.

Re = 256 − 2048 in [221, 235]). As we will discuss in section 6.5.2, the SPH

standard artificial viscosity translates into a much higher effective viscosity than

the viscosity in mesh-based simulations; thus, limiting the Reynolds number

achieved in the present SPH simulation.

Figure 6.3 shows the dynamic amplitude, spike and bubble evolution. The

overall increase in the dynamic amplitude is dominated by the down-falling spike

position. Focussing on the linear regime, we show that the evolution of the
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Figure 6.4: The amplitude of RTI growth for AT = 0.3̄ case with artificial viscosity parameter
αAV = 0.1 at the early stage of the RTI.

dynamic amplitude a(t) and the corresponding curve predicted from linear theory

(equation (2.30) in chapter 2 or [90]) are in good agreement with each other in

Figure 6.4. Note that the theoretical growth rate for inviscid fluid is nc,inviscid =

1.37 [s−1]. Yet, this inviscid growth rate cannot be compared with the SPH

growth rate, due to the inherent SPH artificial viscosity (see Figure 6.8).

Finally, the constant of proportionality corresponding to the average terminal

velocities of the bubble and spike (see Equation (6.4)) is estimated to be Γdirect =

0.222 for the direct extraction method and Γfitted = 0.216 for the fitted amplitude

slope method. In both cases, the estimated Γ for our fiducial model is consistent

with the values reported in the literature [68, 233, 234, 236].

Dependence on Atwood number

To study the influence of density ratios, we compare two simulations with Atwood

numbers AT = 0.6̄ and 0.8̄, with our AT = 0.3̄ fiducial model described in section

7.7.1. Figure 6.5 shows the time evolution of the two simulations, though only
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t = 1.0 t = 2.0 t = 3.0

t = 1.0 t = 2.0 t = 3.0

Figure 6.5: Time evolution of single mode RTI for Atwood number AT = 0.6̄ (top) and
AT = 0.8̄ (bottom) at the different time measured in units of

√

L/g.

focussing on three distinctive time steps i.e. t [
√

L/g] = 1, 2, 3. The time-steps

are chosen to illustrate the difference in the RTI morphology for different Atwood

numbers. It is found that during the nonlinear regime the asymmetric behaviour

between the spike and bubble is more pronounced for large Atwood numbers.

Furthermore, the shearing motion in large Atwood number simulations strips

SPH particles away from the edges of the heavy fluid spike rather than generat-

ing the KHI vortices. Figure 6.6 illustrates the dynamic amplitude, bubble and

spikes evolution at different Atwood numbers. The development of RTI is also
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AT nc νeff vb,direct vb,fitted vs,direct vs,fitted Γdirect Γfitted

0.3̄ 1.10 1.00× 10−2 0.13 0.12 −0.23 −0.22 0.22 0.21
0.6̄ 1.59 1.29× 10−2 0.17 0.17 −0.46 −0.47 0.22 0.22
0.8̄ 1.78 1.24× 10−2 0.18 0.17 −0.63 −0.64 0.22 0.22

Table 6.1: Simulation results for different density ratios. The columns show the respective
Atwood number AT , the fitted growth rate (nc), the effective viscosity (νeff), the terminal
velocities of bubble and spike derived from either direct extraction or fitted slope method
(vb,s) (c.f. section 6.5.1), and the constant of proportionality for the average terminal velocity
(Γ).

Figure 6.6: Time evolution of the amplitude (solid line), spike (dotted line) and bubble (dashed
line) relative to their original position for different Atwood numbers. The large Atwood number
AT = 0.8̄ grows more rapidly than the lower Atwood number simulations AT = 0.3̄ and
AT = 0.6̄.

more pronounced for larger Atwood number and resulting in larger growth rates.

Table 6.1 summarises our results for these simulations: the Atwood numbers,

density ratios, the fitted growth rate nc, effective kinematic viscosity νeff and

the terminal velocities of bubble and spike from both direct extraction and the

fitted amplitude slope method. Similar to the results for the AT = 0.3̄ case, the

estimated growth rates for AT = 0.6̄ and AT = 0.8̄ are lower than the classical

growth rate [5] due to the influence of artificial viscosity.

As the constant of proportionality of the terminal velocity in the drag-
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buoyancy model is independent of the density ratio of the two fluids, we ob-

tained the average of it for all three simulations with different Atwood number

AT . Based on the data in Table 6.1, we found 〈Γ = 0.221〉 for both the direct

extraction and fitted slope method, which is in good agreement with the results

in the literature [68, 233, 234, 236].

Dependence on artificial viscosity parameter

In order to understand the role of damping due to the standard artificial viscosity,

we compare our fiducial simulation with αAV = 0.1 (Re = 100) with simulations

performed using artificial viscosity parameters αAV = 0.05 − 0.25. Figure 6.7

shows the results of two simulations with αAV = 0.15 and αAV = 0.25. The

corresponding Reynolds numbers are Re = 85 and Re = 70, respectively. It

is found that the shape of the central region jet remains highly collimated and

show little dependence on the artificial viscosity parameter (Reynolds number),

while the interface of the side jets of the lower Reynolds number simulations

is smoother than that in the fiducial model as shown in Figure 6.2. Moreover,

the secondary KHI vortices at the edges of the spike are completely absent at

αAV & 0.15 (Re . 85). This suggests the increase in αAV significantly suppresses

the growth of shear instabilities at the edges of the spike. More importantly, the

artificial viscosity not only suppresses the secondary KHIs, but also damps the

growth of RTI. Figure 6.8 shows the amplitude of the AT = 0.3̄ RTI simulation

at different artificial viscosity parameters. A comparison between the amplitude

data with the inviscid growth amplitude function confirms our earlier claim in

section 7.7.1 and illustrates that the deviation between the SPH solution and

inviscid theory is due to the effects of artificial viscosity.

In Figure 6.9, we investigate the time evolution of the bubble/spike positions

for different artificial viscosities more closely and confirm the growth rate decays

with increasing viscosity. Figure 6.10 shows the corresponding velocity evolu-
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t = 3.0 t = 4.0 t = 5.0 t = 6.0 t = 7.0

t = 3.0 t = 4.0 t = 5.0 t = 6.0 t = 7.0

Figure 6.7: Time evolution of our single-mode RTI simulation with different viscosities αAV =
0.15 i.e. Re = 85 (top) and αAV = 0.25 i.e. Re = 70 (bottom), respectively. The time is
measured in units of

√

L/g.

tion of the bubble and spike. The boxed region highlights the evolution during

1.0 ≤ t ≤ 2.0, where re-acceleration of the spike occurs. Until t ∼ 1.5 the spike

slows down, before it then re-accelerates until it has reached its terminal velocity.

This re-acceleration occurs earlier for lower viscosity simulations. We suspect

the increase of viscosity delays re-acceleration of the spike by damping out two

mechanisms: (i) small scale numerical noise in SPH simulations that grows faster

than the dominating mode and (ii) the interaction between secondary vortices at

the fluid interface. Note that while the damping of small scale noise is a desired
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αAV nc νeff Re vb,direct vb,fitted vs,direct vs,fitted
0.05 1.16 8.11× 10−3 123 0.14 0.15 −0.24 −0.24
0.10 1.10 1.00× 10−2 100 0.12 0.12 −0.22 −0.22
0.15 1.06 1.17× 10−2 85 0.12 0.12 −0.20 −0.20
0.20 1.02 1.31× 10−2 77 0.11 0.11 −0.20 −0.19
0.25 0.99 1.43× 10−2 70 0.10 0.10 −0.18 −0.19

Table 6.2: Simulation results for different artificial viscosity parameters. The columns show
the respective artificial viscosity (αAV ), the growth rate (nc), the kinematic viscosity (νeff), the
effective Reynolds number (Re), as well as the terminal velocities of bubble and spike derived
from either direct extraction or fitted slope method (vb,s).

behaviour, the damping of secondary vortices undesired, since the SPH viscosity

decreases the growth of the bubble/spike as shown in Figure 6.9. Table 6.2 sum-

marises the growth and velocity data at different artificial viscosity parameters.

As expected, the RTI growth rate nc decreases with increasing viscosity (lower

Reynolds number). Furthermore, a linear relationship is found between the arti-

ficial viscosity parameter (αAV ) and the effective viscosity (νeff), with a slope of

3.08 × 10−2 and an intercept of 6.82 × 10−3. The source of intrinsic viscosity is

primarily due to insufficient particle resolution, which will be further discussed

in the next section. Note that while it is acceptable to interpret the slope as

an indication of the relationship between the artificial viscosity and effective

viscosity, one shall not infer αAV = 0 simply corresponds to an intrinsic viscosity

of νeff = 6.824 × 10−3[m2/s]. This is because SPH simulations can easily suffer

from particle interpenetration in lieu of artificial viscosity models.

Resolution Dependence

To study the global resolution dependence of our simulation, two additional

fiducial simulations with coarse-grained resolutions corresponding to the initial

inter particle separations dnat = 0.04 and dnat = 0.02 are simulated. The am-

plitudes for different global resolutions are shown in Figure 6.11. Inspecting the

growth data for different resolutions in Table 6.3, it appears the low resolution
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Figure 6.8: The amplitude of RTI growth for AT = 0.3 case simulated using different artificial
parameters αAV . The growth of RTI is suppressed compared to the inviscid growth due to the
influence of increasing artificial viscosity parameters.

Figure 6.9: Positions of bubble (solid line) and spike (dashed line) as a function of time for
different artificial viscosity parameters relative to the initial interface at y = H/2.

simulations have a more dissipative effect than the high resolutions simulations.

Consequently, for the low resolution presented herein, SPH is not capable of
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Figure 6.10: Vertical velocities of bubble (solid line) and spike (dashed line) front as a function
of time for artificial viscosity parameters. The boxed region indicates the time period of
re-acceleration that is delayed with increasing viscosity.

resolving the shear motion accurately. Note that while the difference is subtle

during the early stage of the instability, the growth of KHI plays a crucial role

to the break-up of the spike during the later stages.

dnat Nfluid nc νeff vb,direct vb,fitted vs,direct vs,fitted
0.04 2500 0.94 1.63× 10−2 0.08 0.09 −0.15 −0.15
0.02 10000 0.94 1.62× 10−2 0.10 0.11 −0.21 −0.20
0.01 40000 1.10 1.00× 10−2 0.12 0.12 −0.23 −0.22

Table 6.3: Illustration of fitted growth during initial stages of different resolutions for Atwood
number AT = 0.3. The growth rate (nc) (1st column), the number of fluid particles (Nfluid)
(2nd column), effective viscosity (νeff) (3rd column), velocity of bubble, spike computed via
direct extraction: (4th, 6th column) and velocity of bubble and spike computed via fitted slope
method: (5th, 7th column).

The kernel smoothing factor κ is varied from κ = 1.50 to κ = 2.33 to study

the effects of local resolution. For a constant global resolution, a larger smooth-

ing factor accounts for more neighbours within the kernel function. Therefore,

additional smoothing is applied to smear our the interface discontinuity. The

RTI amplitudes for different κ values plotted in Figure 6.12 suggests the early
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Figure 6.11: Growth amplitude of RTI with Atwood number AT = 0.3 for various global
resolutions.

κ Nn nc νeff vb,direct vb,fitted vs,direct vs,fitted
1.50 28 0.94 1.64× 10−2 0.13 0.12 −0.18 −0.17
1.75 36 0.99 1.41× 10−2 0.15 0.14 −0.23 −0.22
1.95 47 1.01 1.35× 10−2 0.14 0.13 −0.23 −0.22
2.33 68 1.10 1.00× 10−2 0.12 0.12 −0.23 −0.22

Table 6.4: Illustration of fitted growth during linear regime generated by different smoothing
factors (κ) for the AT = 0.3̄ simulation. The number of neighbours within the kernel support
(Nn) (2

nd column), the growth rate (nc) (3
rd column), effective viscosity (νeff) (4

th column),
velocity of bubble, spike computed via method 1: (5th, 7th column) and velocity of bubble and
spike computed via method 2: (6th, 8th column). The growth data (nc) and effective kinematic
viscosity (νeff ) exhibits a decreasing relationship with increasing κ.

evolution of RTI is weakly dependent upon κ provided sufficient neighbour par-

ticles resides within the support of the kernel function. Table 6.4 summarises

number of neighbours, interpolated growth rate, the effective kinematic viscosity

for different smoothing factors in the dnat = 0.01 simulation. Note that the

effective viscosity decreases with increasing smoothing factor, resulting in an

overall increase in the growth rate of RTI. Upon closer inspection of Figure 6.13,

we observed that the fine scale structure of the KHI roll-up at the edges of the
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Figure 6.12: Growth amplitude of RTI with Atwood number AT = 0.3̄ for various kernel
smoothing parameters (κ).

spike are much better resolved for large κ, although the position of the spike

and bubble are similar for κ > 1.5. Moreover, the RTI simulations for large κ

behave more symmetrically along the vertical line at x = 0.5L. This is primarily

due to the fact that for small κ, the contribution from a high mass particle is

significantly larger than the contribution from the low mass particles. Therefore,

a slight offset in particle distribution would lead to a bias in density estimate,

consequently effecting the symmetry at y = L/2 in later stages of the instability.

In contrast, using a large smoothing length has the effect of smoothing out the

density jump at the interface and therefore aids to maintain the symmetry of the

instability for single-mode RTI.

6.5.3 Multi-mode Rayleigh-Taylor Instability

In real fluid systems, the initial perturbation consists of a spectrum of different

frequencies. The interaction between different RTI modes may then give rise

to turbulence. For completeness, we simulate the multi-mode RTI subjected to
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t = 3.0 t = 4.0 t = 5.0 t = 6.0 t = 7.0

Figure 6.13: Time evolution of AT = 0.3̄ RTI for numerous smoothing factors κ at times
between 3.0-7.0 in units of

√

L/g. Top κ = 1.5, middle κ = 1.75, bottom κ = 1.95. Difference
in both the symmetry and morphology of the KHI vortices can be clearly observed.
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random perturbation for AT = 0.3̄ with the aspect ratio of L/H = 2 : 1. The

simulation domain is x ∈ [0, L] and y ∈ [0, H] with no-slip boundary condition

applied at the sides and bottom of the simulation domain. The initial conditions

are similar to that in section 7.6, except that the fluid interface is described by

g (x) =

m′
max
∑

m′=m′
min

Am′ cos

(

2πm′

L
x

)

+Bm′ sin

(

2πm′

L
x

)

, (6.8)

where m′min = 20, and m′max = 40, and the coefficients Am′ , Bm′ ∈ [0− 1× 10−3]

are generated randomly from a Gaussian distribution.

The numerical results at times t = 0 − 5 are plotted in Figure 6.14. During

the early stage (t . 1.0), the small wave-number modes grow fastest. The asso-

ciated bubbles and spikes are generated as the heavy and light fluid interchange

positions (t ∼ 1.0). This results in a mixing layer where the thickness of the layer

increases with time (t ∼ 2.0). At later times (t ∼ 3.0), the interaction between

different modes leads to the merging of bubbles. The merged bubbles with larger

volume grow faster than the smaller bubbles due to buoyancy. As the merging

of bubbles and spikes occurs (t ∼ 4.0), the onset of KHI at the respective edges

can be seen. By (t ∼ 5.0) the merged spikes reach the bottom of the domain.

Similarly the merged bubbles reached the top of the domain.

In order to understand the effects of mixing in our simulation, we define the

mixing layer as the horizontal layer where the average density lies in between

those of the two fluids. The average density is computed by partitioning the

simulation data across the vertical direction into 100 equal width bins. Fig-

ure 6.15 plots the average density along the vertical direction, where the height

of the merged bubble increases with time. Figure 6.16 plots the evolution of

the multi-mode bubble and spike. The estimated coefficient for the multi-mode

bubble is found to be Θ = 0.048, which is within the range reported in the

literature [71, 72, 73, 74].
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t = 0.0 t = 1.0

t = 2.0 t = 3.0

t = 4.0 t = 5.0

Figure 6.14: Numerical results for AT = 0.3̄ RTI subjected to multi-mode random perturba-
tions. The time is measured in

√

L/g.
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Figure 6.15: Average fluid density of the mixing layer plotted against the vertical direction for
multi-mode RTI subjected to random perturbation. The time is measured in

√

L/g.

Figure 6.16: Position of bubble and spike for the multi-mode RTI plotted against time. The
time is measured in

√

L/g.
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6.6 Summary

The two-dimensional single- and multi-mode Rayleigh-Taylor instability between

two immiscible fluids were simulated in this chapter. The Lagrangian nature of

SPH serves as a powerful alternative to mesh-based numerical methods as it

is capable of resolving multi-fluid flow phenomena without the use of interface

tracking routines. The effects of Atwood number, Reynolds number and res-

olution were investigated. It was found that the development of low Atwood

number RTI can be influenced by the KHI, whereas for large Atwood number,

the shear motion results in the stripping of SPH particles at the edges of the

spike. Furthermore, we found that the artificial viscosity suppresses both the

RTI growth rate and the development of secondary KHI vortices. For Re = 100,

the KHI roll-up was clearly observed. Whereas, the KHI vortices are absent at

lower Reynolds numbers (Re . 85). The maximum Reynolds number consid-

ered in this chapter was Re = O(102), which was well within the laminar regime.

Furthermore, a linear relation between artificial viscosity and effective viscosity

was found, with the slope of 3.08× 10−2 and intercept of 6.82× 10−3.

Two methods of extracting the vertical terminal velocities were introduced:

direct extraction and fitted amplitude slope extraction method. The extracted

constant of proportionality was found to be Γ = 0.221 for both the fitted slope

method and the direct extraction method, and agrees well with previous experi-

mental results [68, 233, 234, 236].

A series of numerical simulations was also carried out to study the dissipative

effects due to global resolution. As expected, the effective viscosity decreases

with increasing global resolution (more SPH particles). Furthermore, the low

resolution also led to the suppression of the KHI hence the simulation has a

higher effective viscosity.

The multi-mode Rayleigh-Taylor instability was also examined. The numer-
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ical results indicate the mixing layer generated by the merging of bubbles and

spikes tends to grow in time, and the time evolution of the merged bubble front

follows the scaling relation (see equation (6.5)) with the constant of proportion-

ality estimated to be Θ = 0.048.

Summarising, weakly-compressible SPH was found to be a powerful alter-

native to other particle methods [217, 230, 231] and mesh-based methods [74,

221, 235]. It is superior to the incompressible SPH variants [217, 231] because it

does not require the use of iterative solvers to enforce incompressibility; hence,

reducing the total computation time. The Lagrangian particle-nature of SPH au-

tomatically handles stripping and fragmentation without using interface tracking

routines as required by meshed-based methods. However, the major shortcoming

of SPH is that the artificial viscosity model damps out the shear motion between

fluids, resulting in the suppression of both the growth rate and the increase of

effective viscosity. This behaviour is crucial for small Atwood number RTI. The

presence of viscosity in the flow problem makes the comparison between the

SPH solution with inviscid analytical prediction difficult. However, our results

are consistent with the viscous analytical prediction. We would also like to point

out that for large Atwood number AT → 1, the RTI is dominated by buoyancy,

and the effects of viscosity are expected to be negligible. However, there is a need

improve the existing SPH viscosity model as well as a suitable turbulence model,

such that realistic flow conditions can be properly handled in high Reynolds

number regimes.
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Chapter 7

Rayleigh-Plateau Instability

7.1 Introduction

This chapter presents the simulation results for the three-dimensional Rayleigh-

Plateau instability (RPI) conducted using multiphase weakly-compressible SPH.

The instability governs the fragmentation of a low Weber number hydrodynamic

jet in the presence of low density ambient medium. Thus, the SPH simulation

of a hydrodynamic jet at high density ratio requires a multiphase model and a

surface tension model that is capable of handling the necking behaviour which

is responsible for the break-up of a jet into droplets.

We apply the surface tension model of Adami et al. [75] motivated by con-

tinuum surface force (CSF) model. In addition, a Neumann boundary condition

near the interface is applied to allow for the discontinuous pressure jump due to

surface tension. The combination of surface tension model and multiphase SPH

scheme successfully demonstrates the break-up of a hydrodynamic jet, where

the density of the jet fluid and its surround ambient fluid differs up to three

magnitudes. Three validation cases are presented to evaluate the combination of

these models: (i) the square box test, (ii) the static droplet pressure comparison

with the Young-Laplace pressure, and (iii) the oscillation of a liquid droplet
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suspended in a gas.

The rest of this chapter is organised as follows: section 7.3 discusses the

theoretical aspects of the RPI. Section 7.4 describes the surface tension model

introduced by Adami et al. [75]. Section 7.5 presents the results for three test

cases employed to validate the combination of surface tension model with our

multiphase SPH scheme. The SPH results of the RPI are presented in section 7.7.

Finally, we summarise our findings in section 7.8.

7.2 Literature review

The RPI is crucial to the understanding of jet break-up and atomisation pro-

cesses that are drive by the effects of surface tension. In its simplest form, an

initially cylindrical liquid column is subjected to a surface perturbation. Due

to the difference in curvature, surface tension acts to minimize the area of the

liquid column, eventually leading to the break-up of the liquid column and the

generation of droplets. Plateau [237] pioneered the study of the jet break-up

experimentally and found that the break-up occurs provided that the length of

the liquid column exceeded the diameter of the jet by a factor of 3.13. His work

was later extended by Rayleigh [6], who conducted a linear stability analysis to

study the break-up of a liquid jet.

Since the work of Plateau [237] and Rayleigh [6], there has been a series of

theoretical studies that aim to encapsulate additional physical effects in the jet

break-up process. Weber [238] derived the analytical growth rate of a viscous

liquid jet and demonstrated convergence to the growth rate for an inviscid fluid

[6]. Lafrance [239] conducted a third order perturbation analysis of an inviscid

liquid jet, and found that interaction among the non-linear terms is responsible

for the generation of satellite droplets.

Advances in numerical analysis has motivated the study of RPI using numer-
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ical techniques. Mead-Hunter et al. [240] simulated the RPI occurring around

an optical fiber with FVM. Choi et al. [241] simulated the capillary instability

of a nano-scale surface tension driven flow of a Lennard-Jones fluid by means

of molecular dynamics. The authors reported good agreement with classical

theories and claimed that thermal fluctuations are responsible for the break-up

of nano-scale jets.

The past decade has also witnessed increased use of particle methods in jet

simulations. Shibata et al. [242] simulated the jet break-up using MPS. After

studying the effects of Weber number and Froude number, the authors reported

the break-up length deviated from the experimental data by 70%-80%, with a

relative error of 25% in the absence of gravity. Takashima et al. [243] simulated

the break-up process by means of ISPH and reported good qualitative agree-

ment with the experimental results, except for the pinch-off length. Sirotkin and

Yoh [244] introduced the corrected smoothed particle hydrodynamics method for

simulating surface tension driven flow. Their numerical scheme is based on the

combined use of the continuity equation approach (for density evaluation) and

the surface tension model of Morris [245]. They simulated the two-dimensional

jet break-up without taking into account the ambient fluid and found acceptable

agreement for the critical Weber number, which governs the transition from

jetting to dripping.

7.3 Theory of Rayleigh-Plateau Instability

This section discusses the theoretical aspects of the RPI. Firstly, we present the

analytical theory of the RPI. While the single-fluid linear growth rate have been

proposed, this work fills the gap in the literature to derive a linear growth rate for

a multiphase RPI where the presence of ambient fluid is taken into consideration.

Secondly, we summarise the major results in the literature that will be used in

185



the later sections for the comparison with SPH results.

7.3.1 Multiphase RPI growth rate

The linearised growth rate of the RPI for a jet fluid suspended in an ambient fluid

is presented. Our derivation is based on the assumption that the flow is axis-

symmetric, where the jet (inner) and ambient (outer) medium are both initially

static, and influence due to gravity is negligible. These assumptions allow the

RPI to be the dominant process. The continuity equation for incompressible,

axis-symmetric flow in cylindrical coordinates is given by [94, 96, 107]

1

r

∂

∂r
(rur) +

∂uz

∂z
= 0. (7.1)

The momentum equations in r̂ and ẑ are

ρ

(

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

)

= −∂P

∂r
, (7.2)

ρ

(

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

)

= −∂P

∂z
. (7.3)

Applying the position, velocity and pressure perturbation

ur ≈ ur0 + ǫur1 +O(ǫ2)

uz ≈ ǫuz1 +O(ǫ2)

P ≈ P0 + ǫP1 +O(ǫ2)

R ≈ R0 + ǫR1 +O(ǫ2)

, (7.4)

to equation (7.1)-(7.3) results in a system of linearised differential equations

∂ur1

∂r
+

ur1

r
+

∂uz1

∂z
= 0 (7.5)
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ρ
∂ur1

∂t
= −1

ρ

∂P1

∂r
(7.6)

ρ
∂uz1

∂t
= −1

ρ

∂P1

∂z
. (7.7)

Finally applying the following perturbation quantities
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to equation (7.5)-(7.7) and eliminating the pressure gradient term results in the

following second order ordinary differential equation

r2
dû2

r1

dr2
+ r

dûr1

dr
− [1 + (kr)2]ûr1 = 0. (7.9)

The solution of equation (7.9) is given by the piecewise function

ûr1(r) =











C1 I1(kr) r ≤ ro

C2 K1(kr) r ≥ ro

(7.10)

where I1, K1 are the modified Bessel functions of the first and second kind, and

C1, C2 are the constants of integration to be determined. Substituting equation

(7.10) into equation (7.6) and integrating with respect to r gives

−nC1 ρ1 I0(kr) = kP1(r) r ≤ ro,

C2 ρ2 K0(kr) = kP1(r) r ≥ ro.
(7.11)
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The constant of integrations C1 and C2 are determined by applying the linearised

kinematic boundary condition at the interface r = ro

∂R1

∂t
= ûr1. (7.12)

Substituting (7.8) and (7.10) into equation (7.12) and evaluating at the interface

yields the constants

C1 =
n

I1(kro)
, C2 =

n

K1(kro)
. (7.13)

Finally, the dynamic boundary condition for inviscid fluids requires the pressure

difference at the interface to be equivalent to the Young-Laplace pressure

∆P = σ∇ · n̂ = σ

(

1

R1

+
1

R2

)

, (7.14)

where the R1, R2 are the two principle radii of curvature. Since the cylinder is

subjected to a radial perturbation, the outside radius of curvature is

1

R1

=
1

Ro + ǫent+ikz
≈ 1

Ro

− ǫ

R2
o

ent+ikz, (7.15)

whereas the innter radius of curvature is

1

R2

= ǫk2ent+ikz. (7.16)

Substituting (7.11), (7.15)-(7.16) into (7.14) and collecting the O(ǫ) terms gives

the linear growth rate of the RPI between two inviscid and incompressible fluids

n2 =
kσ

r2oρ1

[1− (kro)
2] I1(kro)

Io(kro)
(

1 + ρ2
ρ1

Ko(kro)
K1(kro)

I1(kro)
Io(kro)

) . (7.17)
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Inspecting equation (7.17), it is found that the derived linear growth rate for

two fluids recovers the free-surface flow growth rate presented in Rayleigh [6] for

large density between jet and ambient medium as illustrated in Figure 7.1. The

theoretical break-up time (tbreak) is defined as the time at which the perturbed

cylinder breaks into droplets, and it is given by the inverse of the theoretical

growth rate (n) (i.e. tbreak = n−1 [s]). For the free surface case, the break-up

time is given by Rayleigh [6]

tbreak,theory ≈ 2.91

√

ρ1r3o
σ

. (7.18)

While the work of Rayleigh [6] applies to inviscid fluids, Weber [238] developed

the dispersion relation for a viscous fluid and reported that the growth rate as

well as break-up time not only depends on the wave number and the initial

radius, but also on the relative importance of the viscosity and surface tension

as measured by the Ohnesorge number (Oh =
√
We/Re)

nviscous =

√

σ

ρ1r3o

[

√

r2o
2
(k2 − k4r2o) +

9

4
Oh2 (kro)4 −

3

2
Oh (k ro)

2

]

. (7.19)

As for the multiphase finite viscosity case, the growth rate is expected to de-

pendent an additional parameter, namely the Atwood number. However, the

derivation of an analytical growth rate for a multiphase viscous RPI is beyond

the scope of this thesis.

7.4 Surface tension model

The surface tension model is based on the continuum surface force (CSF) intro-

duced by Brackbill et al. [246]. Morris [245] applied the CSF model to SPH and

proposed SPH representations of the normal vector and curvature. The surface

tension force is smoothed across the interface using a delta-function. The SPH
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Figure 7.1: The square of the analytical growth rate plotted for numerous density ratios. The
classical growth rate given in [6] is plotted as solid line.

version of the CSF method has been reviewed, aiming for a better evaluation

of the curvature, while the delta-function is only defined in the interface band.

The model of Adami et al. [75] is used with some modifications to allow for a

better scaling with droplet size and high density ratios. The CSF is applied as a

particle-wise force

~Fst = −σ curv n̂ δs, (7.20)

where σ is the surface tension coefficient, curv is the local curvature of the

interface, n̂ is the unit vector normal to the interface and δs is a interface delta

function. Following Adami et al. [75], the unit normal vector is evaluated from

a color variable

∇ci =
1

Vi

∑

j

(V 2
i + V 2

j )cij
∂W

∂rij
~eij n̂ij =

∇c
|∇c| . (7.21)
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The density weighted color defined as

cij =
ρj

ρi + ρj
ci +

ρi
ρi + ρj

cj, (7.22)

where ci,j are the color marker variable. During the simulation, the colour vari-

able is c = 1 provided there exists a neighbour particle of the other fluid within

the support of the kernel function, otherwise the colour variable is assigned c = 0.

The curvature is evaluated under the kernel gradient as

curvi = ∇n̂i = Ndim

∑

j n̂ij · ~eij ∂W
∂rij

Vj
∑

j rij
∂W
∂rij

Vj

. (7.23)

The term in the denominator is the kernel gradient correction. Finally, the delta

function is defined as gradient of the color function δs,i = |∇ci|. In practice, the

delta function is non-zero only in the interface band, and zero everywhere else

where the color function is zero. In the simulations, an effective surface tension

coefficient is employed to allow for a scaling with droplet size and correct Young-

Laplace pressure. That is, the real surface tension coefficient (σ = 0.073N/m at

20oC) is multiplied by the initial particle volume. To improve numerical stability,

we apply the Neumann boundary condition near the interface as follows: the

jet fluid particle experiences the pressure of its low density ambient neighbour

particles. A similar approach has been employed in the MPS scheme Shakibaeinia

and Jin [216] to allow for better numerical stability for surface tension driven

flow.

7.5 Validation cases

The surface tension model is validated in three test cases relevant to the RPI. The

first test case examines the capability of the SPH scheme to simulate multiphase

flow. The second test case studies the steady-state behaviour of static droplets
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suspended in an ambient fluid. A calibration curve provides the relation between

the actual surface tension coefficient and the numerical surface tension coefficient.

The third test case studies the oscillation of a high density elongated droplet

suspended in a low density medium. Unless otherwise mentioned, the following

parameters are utilised throughout this section: ρ1 = 1000kg/m3, ρ2 = 1kg/m3.

The speed of sound is c1,2 = 10m/s and γ1,2 = 1. Finally, the fluid domain is

constrained within x ∈ [0, L] , y ∈ [0, H], where the aspect ratio is normally set

to unity (i.e. L/H = 1, and L = 1mm).

7.5.1 Square box test

The square box test in the literature [75] is conducted with and without surface

tension to demonstrate the capability of the weakly-compressible SPH scheme

in terms of (i) handling multi-phase flow, (ii) to tackle large deformations, (iii)

modelling the physical behaviour of surface tension. Three simulations assess

the performance of the multiphase SPH scheme. The first simulation utilised

standard SPH, the second simulation used a multiphase scheme. Both simu-

lations are performed in the absence of surface tension. The third simulation

used the multiphase SPH scheme and surface tension. The results are shown

in Figure 7.2. It is found that standard SPH based on the summation density

approach suffers from the so-called artificial surface tension (see Figure 7.2, top

row). That is, the initially square fluid block turned into an ellipse even without

surface tension. Whereas the square box remains static in the multiphase simu-

lation (see Figure 7.2, middle row). Furthermore, the results with surface tension

(see Figure 7.2, bottom row) demonstrate the expected behaviour by generating

a stable interface and the deformation from a square into a circular droplet.
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Figure 7.2: Numerical results of the square droplet test in the time interval t = 0 − 0.2s.
Standard SPH without surface tension (top), multiphase weakly-compressible SPH scheme
without surface tension (middle), and SPH scheme with surface tension (bottom).

7.5.2 Static droplet

The pressure within a static droplet obtained with the multiphase weakly-

compressible SPH scheme is compared with the Young-Laplace pressure. A

parameter study is conducted to investigate the role played by the local resolu-

tion parameter (κ), the dimensions of the problem (Ndim) and the density ratio

(ρ1/ρ2). For a three dimensional droplet of radius ro = 2.5mm, σ = 0.073N/m,

the Young-Laplace pressure is PY L = 58.4Pa, whereas in our case the droplet

pressure is estimated to be PSPH = 65Pa. Thus, the absolute and relative error

are ∆Pdroplet = 6.6Pa and 11% respectively. The ratio of the pressure obtained

from SPH and the Young-Laplace pressure is plotted as a function of density ratio

as shown in Figure 7.3. The calibration curves depends on the density ratio, the
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local resolution and the number of dimensions of the droplet

PSPH = −ABlog(ρ1/ρ2) + C, (7.24)

the values of the fitted curve are given in Table 7.1. A series of out-of-sample

test are also conducted to assess the predictability of the fitted curves. In all

cases, the out-of-sample tests are consistent with the fitted curves.

κ Ndim A B C
1.5 2 0.81 0.23 1.93
1.95 2 0.64 0.18 1.71
1.5 3 0.39 0.17 1.54
1.95 3 0.34 0.16 1.49

Table 7.1: Fitted coefficients for the droplet pressure calibration curves.

Figure 7.3: Calibration curves for static droplet plotted for density ratios. The fitted curves
for two and three dimensional cases are indicated by the dotted (solid) lines.
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7.5.3 Droplet oscillation

The oscillation of a droplet surrounded by an ambient fluid is simulated. The

oscillation frequency of an inviscid droplet is described by the Rayleigh equation

[247]. In two-dimensions it is given by

ω2 = m(m2 − 1)
σ

ρR3
o

, (7.25)

where m is an oscillation mode, and Ro is the radius of the droplet. The principal

mode for two-dimensional case is m = 2, where the corresponding period is

tosc,theory = 2π

√

ρR3
o

6σ
. (7.26)

The oscillation of a two-dimensional droplet is simulated. The oscillation period

and pressure are compared against the analytical theory. The initial droplet has

the shape of an ellipse, with major axis a = L/2.5 and b = H/5. Some typical

results of an oscillating droplet are shown in Figure 7.4. The initial relative

pressure is zero, as if there is no surface tension. The surface tension then

quickly deforms the droplet by contracting the initially elongated ellipse into

a circular droplet. The droplet then recovers the approximated elliptical shape;

however, the major axis length decreased to 85% of its initial value due to viscous

dissipation. The history of the average droplet pressure is shown in Figure 7.5.

The pressure of the particles near the interface increases as soon as the simulation

starts. It is found that the pressure within the droplet is overestimated by a

factor of 2.13 (PSPH = 550Pa, PY L = 258Pa). Similarly, the oscillation period is

overestimated by a factor of 1.5 (tosc,SPH = 1.49ms, tosc,theory = 1.01ms). Since

the relation (7.26) is derived for inviscid fluids, it is reasonable to expect that the

increase in oscillation period is caused by the combination of viscous damping,

the presence of an ambient fluid, domain size and inertia.
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Figure 7.4: Numerical results of the two-dimensional droplet oscillation plotted at the times
indicated, with the colour indicated as pressure.

Figure 7.5: Average pressure of the oscillating droplet.
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7.6 Initial Conditions

The three-dimensional Rayleigh-Plateau instability is considered, where the fluid

domain is x ∈ [0, L], y ∈ [0,W ], z ∈ [0, H], where L/W = 1, L = 1cm and

H = 6.8cm. For simplicity, periodic boundary conditions are applied in all

directions. The initially cylindrical fluid column of radius ro = 2.5mm travels

at constant velocity Vz = −0.01m/s and is subjected to a radial perturbation

δr(z) = δaddnat cos(kz), where δa is the initial perturbation amplitude given in

terms of dnat. The perturbation δr(z) is applied to excite the initial system such

that the necking behaviour due to surface tension dominates the fluid flow as

shown in Figure 7.6.

We simulated the wavelength corresponding to the maximum growth given

by inviscid analytical theory λmax ≈ 9.02ro. The set-up is designed to generate

three primary droplets after the break-up has occurred. In all cases, the density

of the jet medium (ρ1) is larger than the density of the ambient medium (ρ2). In

a multiphase set-up, the RPI can be characterised by the following set of dimen-

sionless parameters: the Atwood number, the Weber number (We = ρ1roVz
2/σ),

the Reynold’s number (Re = roVz/ν), and the shear viscosity relative to the

surface tension is represented by the Ohnesorge number.

7.7 Results and Discussion

The simulation results for the Rayleigh-Plateau instability using is presented.

The influence of three parameters are examined: the initial perturbation ampli-

tude (δa), the Atwood number, and the Ohnesorge number (Oh). Each of these

will be investigated in the following sections in comparison to the fiducial model.
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Figure 7.6: Initial set-up of the Rayleigh Plateau Instability simulation.

7.7.1 Fiducial model (AT = 0.998, Re = 0.0128, We = 0.003,

Oh = 4.572)

The RPI with the initial condition described in section 7.6 is simulated until

t = 0.15s. The initial particle distribution is organised as a uniform grid, with

separation distance dnat = 6.25 × 10−4m. The simulation consists of Np =

27648 particles (6456 jet and 21192 ambient particles), where a local smoothing

factor κ = 1.5 is assigned. The SPH artificial viscosity parameter αAV = 2.0

is used. This corresponds to an effective kinematic viscosity of νsph,theory =

1.953× 10−3m2/s. The surface tension coefficient is σ = 0.073N/m.

The results of the fiducial model are shown in Figure 7.7. During the early

stage of the instability, the surface tension dominates the fluid flow t . 0.8s.

The onset of the instability soon leads to the break-up of the jet, resulting in

three droplets that span the vertical domain (t ≈ 0.12s). The droplets become

increasingly spherical as the surface tension acts to minimise the surface area of

a droplet (0.12s . t . 0.16s). The break-up time is observed to be tbreak,SPH ≈

0.12s, which is delayed by a factor of 2.6 when compared against theoretical

break-up. We suspect the combination of artificial viscosity and the presence
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of an ambient fluid may be responsible for causing the delay. Therefore, the

influence of these parameters will be investigated in the following sub-sections.

7.7.2 Dependence on Ohnesorge number

To investigate the influence of artificial viscosity, we simulated the RPI utilising

artificial viscosity parameters αAV = 2−4 with κ = 1.5 while keeping the Weber

number fixed at We = 0.003. A selection of the numerical results are shown

in Figure 7.9. Inspecting the results, we found that the break-up time increases

with the viscosity parameter αAV . In addition, a comparison with the post-break

up results of the reference case indicates the use of a large viscosity parameter

results in the scatter near the interface between the two fluids. For example, the

droplet in the reference case αAV = 2 appears to form tightly bounded droplets

after t = 0.15s, whereas for the highest viscosity simulation considered (αAV = 4)

the droplet interface exhibits a large scatter. Despite the scatter at the interface,

the particles near the center of the droplet have already formed the major portion

of the droplet by the time the steady state is reached at t ≈ 0.3s. We suspect

the interface scattering with increasing αAV is caused by the inertia between the

jet and ambient fluids. A linear relation is recovered between the break-up time

and αAV , with a slope of 0.049 and an offset of 0.038. One may extrapolate

that αAV = 0 corresponds to the break-up time tbreak = 0.038s, which deviates

from the analytical break-up time for inviscid fluid by ∼ 10.81%. Although

such extrapolation gives an indication of the inviscid break-up time, we found

that the utilisation of αAV < 2.0 results in inter-particle penetration during the

simulations.
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Figure 7.7: Numerical results of the fiducial model normalised with respect to the domain size
and plotted from t = 0.01s to t = 0.15s with a fixed increment of ∆t = 0.01s plotted from left
to right, top to bottom.
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Figure 7.8: Break-up time dependence of RPI plotted as a function of artificial coefficients
αAV .

7.7.3 Dependence on initial perturbation

It is reasonable to expect the break-up characteristics such as the break-up time

and the distance between droplets are dependent on the amplitude of the initial

perturbation. A series of simulations is conducted with δa = 0.5 − 2.5 to study

the influence of initial perturbation amplitude. The numerical results are shown

in Figure 7.10. Inspecting the results, it is found an increase in the perturbation

decreases the break-up time of the droplet. In addition, we observed that the

utilisation of a small perturbation (δa = 0.5) results in an asymmetric necking

process where the break-up has already occurred in the bottom half of the do-

main, whereas the break-up between the top-most and middle droplet remains in

progress (see Figure 7.10 first row third column). Similar results can be found in

the δa = 1 results. Although it is possible for antisymmetric break-up to occur

in nature, we suspect the asymmetry observed in our result is due to the limited

resolution. For the resolution considered herein, each vertical slice has a total of

256 particles (16 particles in each direction) organised in a uniform grid. Note
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Figure 7.9: Numerical results correspond to artificial viscosity parameters αAV = 3 (top row),
αAV = 4 (middle row) at times between t = 0.1s − 0.4s with a fixed increment of ∆t = 0.1s
plotted from left to right.

that while the setup considered here does fulfil a fundamental requirement for

the linear perturbation analysis, nevertheless, this small perturbation δa = 0.5

is beyond the resolvable scale given that each direction only has limited number

of particles. In practice, the unresolved perturbation maybe responsible for the

asymmetric break-up as seen in Figure 7.10.

7.7.4 Dependence on Atwood number

Since the classical solution presented in Rayleigh [6] is based on the free-surface

assumption, the influence due to the ambient fluid has not been taken into ac-

count. It is therefore interesting to study the dependence on the Atwood number.
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Figure 7.10: Numerical results of correspond to different initial perturbations δa = 0.5 (top
row) δa = 1 (middle row), δa = 2 (bottom row) plotted at t = 0.15s−0.3s, with fixed increment
of ∆t = 0.05s plotted from left to right.

A series of simulations were conducted by varying the density of the ambient fluid

(ρ2), while fixing the density of the jet fluid at ρ1 = 1000kg/m3. Some typical

results are shown in Figure 7.11. It is found that even though the break-up

occurred in all cases, the collection of SPH particles representing the droplets
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Figure 7.11: Numerical results correspond to density ratios: ρ1/ρ2 = 200 (AT = 0.99) (top
row), ρ1/ρ2 = 100 (AT = 0.98) (middle row), and ρ1/ρ2 = 20 (AT = 0.96) (bottom row) at
times between t = 0.1s− 0.4s with a fixed increment of ∆t = 0.1s plotted from left to right.

are strongly influenced by its surrounding ambient fluids. This is because for de-

creasing density ratio, the shearing motion between the jet fluid and the initially

static ambient fluid becomes increasing significant. According to the multiphase
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analytical growth rate presented in section 7.3, the presence of an ambient fluid

should lead to a delayed break-up time compared to the free-surface case. Similar

behaviour is observed in our simulations. A comparison between the extracted

break-up times and the multiphase analytical growth equation (7.17) suggests

the break-up time is delayed by a factor of two. This observation is consistent

with our earlier findings in section 7.7.2 which suggests the delay in break-up is

attributed to the viscous damping.

7.8 Summary

In this chapter, the three-dimensional Rayleigh-Plateau instability was simulated

by means of multiphase SPH in conjunction with a surface tension model moti-

vated by Adami et al. [75]. Three cases were carried out to asses the performance

of the surface tension model. In the square box case, we demonstrated that in the

absence of surface tension, the square droplet remains stable. In addition, the

expected deformation from square to droplet is observed when surface tension

is active. In the static droplet case, the surface tension was validated against

the Young-Laplace pressure. The accuracy of the droplet pressure was found to

be dependent on the density ratio between the fluids and the local smoothing

parameter. In the oscillating droplet case, the model is validated against the

Rayleigh equation [247], where the droplet pressure is overestimated by a factor

of 2.13.

The three-dimensional RPI was simulated, where the effects of Ohnesorge

number, initial perturbation, the Atwood number were investigated. It was found

that that the break-up time increases with the artificial viscosity parameter. A

linear relation between artificial viscosity and break-up time was found, with a

slope of 0.046. Extrapolation to αAV = 0 corresponds to tbreak,SPH = 0.038s,

which deviates from the analytical break-up time by 11%. In addition, it was
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found that the break-up time is linearly dependent on the amplitude of the initial

perturbation, with a slope of -0.12 and an intercept of 0.33.

Our results suggest that the inertia between the jet and ambient medium in

combination with the viscous effects is responsible for causing a larger scatter

in low Atwood number simulations. Whereas with increasing Atwood number,

the influence of the ambient fluid becomes insignificant and the break-up time

approaches the analytical solution derived from the inviscid single-fluid free-

surface flow approach.

While the implementation of the CSF surface model provided acceptable

agreement with theoretical results, a systematic investigation is necessary to

gain further quantitative understanding of the behaviour of the surface tension

model. At the current development stage, Draco suffers from performing high

resolution simulations in three-dimensions which hinders the quantitative analy-

sis performed herein. Finally, we would like to point out that the current surface

tension model is formulated for multiphase and as such requires the filling entire

kernel domain with particles. As we have shown for density ratios of 100 and

above, the influence of the ambient fluid is negligible. In practice, this would sig-

nificantly increase the computational resources in three-dimensional simulations.

Instead, we suggest surface tension models which do not require the introduction

of an ambient fluid such as Kruisbrink et al. [248].
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Chapter 8

Jet fragmentation

8.1 Introduction

This chapter concentrates on the numerical simulation of a hydrodynamic jet

using SPH. Based upon the results presented in the earlier chapters, we inves-

tigate the fragmentation of hydrodynamic jets driven by the Kelvin-Helmholtz

instability, Rayleigh-Taylor instability and Rayleigh-Plateau instability in combi-

nation with gravity. This chapter is organised as follows: section 8.3 presents the

results of a KHI driven jet fragmentation, section 8.4 presents the results of a RTI

driven jet fragmentation, section 8.5 presents the results of a jet fragmentation

process driven by the RPI. Finally, the major research findings are summarised

in section 8.6.

8.2 Literature review

Jets, collimated streams of matter that carries higher momentum than their

surroundings are found in many scientific and technological applications. In as-

trophysics, jets plays a significant role to young stellar objects, proto-planetary

nebulae as well as active galactic nuclei. In technological applications, jets are
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important in precision cutting machinery, ink-jet printing technologies, combus-

tion process of jet engine propulsion systems.

The SPH literature regarding to the simulation of jet flows can be subdivided

into two categories. The first category simulates the propagation of liquid jets

in a free surface flow setting where the influence of the ambient medium is not

taken into account. For example, Monaghan [62] simulated jet flow under gravity

and found acceptable agreement with steady and unsteady problems involving

free-surfaces and moving boundaries. Hou et al. [249] simulated the impingement

of a water jet onto a wall by means of single phase SPH. Although the results are

in good agreement with analytical theory, the authors reported the free surface

profile is heavily influenced by the artificial viscosity parameters. The second cat-

egory aims to simulate the interaction of astrophysical jets [250, 251, 252, 253];

however these articles utilise the conventional SPH scheme, which is known to

suffer for multiphase flow problems. At the time of writing this thesis the frag-

mentation of multiphase jets has not been attempted. This work presented in

this chapter therefore files the gap in the current SPH literature by simulating

multiphase jet fragmentation processes driven my multitude hydrodynamic in-

stabilities that would otherwise be impossible without an appropriate multiphase

scheme.

8.3 Jet fragmentation driven by Kelvin-Helmholtz

Instability

This section focusses on the fragmentation of a hydrodynamic jet driven by

Kelvin-Helmholtz instability. We consider the injection of a high density jet

medium (ρ1) into a low density ambient medium (ρ2). The fluid domain is

x ∈ [0, L], y ∈ [0, H] with an aspect ratio of L/H = 4. A jet of diameter Ljet =

0.5H is injected from the inflow boundary at x = 0 and 0.25H ≤ y ≤ 0.75H.

208



Its horizontal velocity profile is given by a Gaussian distribution centered at

y = 0.5H with a mean of u = 1m/s and standard deviation of 5dnat.

In real jet systems, it is common for the initial perturbation to consist of

a spectrum of frequencies which arises from the imperfection of the nozzle ge-

ometries or acoustic noise propagation within the ambient medium. To model

multi-mode behaviour, an initial vertical velocity perturbation of the following

form

f(x, y) =

{

n=40
∑

n=1

=

[

An sin

(

2πn

H
y

)

+Bn cos

(

2πn

H
y

)]

}

x

L
, (8.1)

is assigned to the ambient fluid particles, and the coefficients An, Bn ∈ (0 −

10−4) are generated randomly. The perturbation function is designed such that

the ambient fluid particles located downstream side experience a larger velocity

perturbation than the particles located upstream side. Figure 8.1 shows the setup

for the KHI driven jet fragmentation. Static ghost particles are placed at the top

and bottom of the domain to allow for two outlets at 0 ≤ x ≤ L−0.5Ljet. The jet

fragmentation is simulated with an 167456 initial particles (dnat = L/200). The

gas repulsion model is applied for interface stabilisation. The Monaghan artificial

viscosity (αAV = 1, βAV = 2) is used to inhabit particle interpenetration between

the two gases. The viscosity model is used in combination with a Balsara switch

to resolve the shearing motion near the interface.

8.3.1 Fiducial model

The KHI driven jet fragmentation setup described above is simulated for a density

ratio of 5 (i.e. ρ1 = 5kg/m3, ρ2 = 1kg/m3) up to t = 4s. The numerical results at

different times are shown in Figure 8.2, with a fixed time increment of ∆t = 0.25 s

between each panel. During the early stage of simulation 0s . t . 1s, the shear

motion between the jet and ambient fluid leads to the onset of KHI as soon as the

jet particles are injected from the nozzle into the fluid domain. As expected, the
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Figure 8.1: Initial setup for the KHI jet fragmentation case.

KHI grows fastest at the tip of the jet. This is because for fixed wave number and

density ratio, the inviscid growth rate of the KHI is proportional to the relative

velocity between fluid layers (nc ∝
√
∆U), at which its maxima is given by the

velocity at the front of the jet.

For 1.25 . t . 2s, the KHI continues to amplify around the front of the jet.

However, a full rotation of the KHI similar to those reported in chapter 5 for a

density ratio of 2 is not observed. Instead, the KHI manifests to the stripping of

particles near the edges of the jet (see Figure 8.2, t = 1.25s− 1.5s). The stripped

particles then reconnect to the central body of the jet by t = 2s, causing the

central portion of the jet 0.2L ≤ x ≤ 0.3L to undergo slight contraction.

As the jet propagates further downstream, it experiences additional pertur-

bations from the ambient fluid. This marks the beginning of the intermediate

stage of the simulation where the influence of the random perturbation becomes

important. Inspecting the results at t = 2.25s, it is observed that the excita-

tion of these random perturbation disrupts the symmetry at the jet front. The

random perturbation begins to dominate the flow for t ≥ 2.75s, where the asym-

metric nature can be seen near the jet front and the central body of the jet at

0.3L ≤ x ≤ 0.4L (see Figure 8.2 t ≈ 3s). During the late stage of the simulation

3.25s . t . 4s, the random perturbation generates a body wave motion that
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Figure 8.2: Numerical results of the fiducial model simulated up to t = 4s plotted with fixed
time interval ∆t = 0.25s from left to right, top to bottom. The left column corresponds to
0.25s ≤ t ≤ 2s and the right column corresponds to 2.25s ≤ t ≤ 4s.
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further distorts the symmetry of the jet. The body wave leads to the growth of

secondary instabilities at the sides of the jet 0.1L ≤ x ≤ 0.25L as it continues to

propagate downstream.

8.3.2 Dependence on density ratio

The influence of the density ratio is investigated by simulating the same case

setup for three different inlet densities ρ1 = 1, 2, 10kg/m3 while keeping the

density of the ambient fluid at ρ2 = 1kg/m3. The density ratio is denoted as

ρr := ρ1/ρ2 hereinafter. The numerical results are shown in Figure 8.3, with a

fixed time increment of ∆t = 0.5s.

Inspecting the results, we found that the development of jet flow differs even

at a very early stage (see Figure 8.3, t = 0.5s). For the ρr = 1, 2 cases, the jet

front evolves into a circular shape, whereas the corresponding structure remains

relatively static for the ρr = 5, 10 cases. Furthermore, the jet remains symmetric

during 1s . t . 1.5s, with the development of the KHI roll-up being most

apparent at t ≈ 1.5s for ρr = 1. In contrast, for the higher density simulations

ρr ≥ 5, the shearing motion near the interface leads to the stripping of particles

near the edges of the jet.

As the jet propagates further into the fluid domain, the random perturbation

eventually leads to asymmetric development for the ρr = 5, 10 cases at t ≈ 3s.

Note that while the same perturbation is applied to all cases, the asymmetric

behaviour of the jet arises at an earlier time for the high density ratio simulation.

It is because the KHI is more pronounced for low density ratio simulations and its

development dominates the jet flow, causing a delay in the excitations of random

perturbations. This behaviour is best illustrated by the results at 2.5s . t . 3s

in Figure 8.3 for the high density ratio simulation.

During the later stages 3s . t . 4s, the growth of the random perturbations

becomes obvious even in the ρr = 1 simulation. This generate a body wave
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motion that further distorts the symmetry of the jet. However, the influence

of the random perturbations is more important for the high density ratio sim-

ulations than that of the low density simulations (see Figure 8.3, t = 4s for

ρr = 1, 10). Our results demonstrate in a qualitative manner that the simulation

of KHI driven jet fragmentation can be achieved with an appropriate choice of

multiphase scheme, artificial viscosity mode (i.e. a Balsara switch) and boundary

conditions. Nonetheless, a direct comparison of our results and those reported

in the mesh-based simulation literature is not possible. This is because the cases

considered in the literature concern the development of a turbulent jet, whereas

we focus on the development of a laminar jet injected to an ambient fluid with

perturbed velocity field. In practice, the modelling of turbulent flow requires

either a high resolution DNS [53, 54] or the utilisation of a turbulence model

[140]. The modelling of turbulent flow is beyond the scope of this thesis.

8.4 Jet fragmentation driven by Rayleigh-Taylor

Instability

This section focusses on the fragmentation of a hydrodynamic jet driven by

Rayleigh-Taylor instability. The simulation setup is similar to the one used in

chapter 6, except for the initial vertical position of the perturbation function.

We simulate the RTI driven jet fragmentation in a two-dimensional semi-confined

fluid domain x ∈ [0, L], y ∈ [0, H], with an aspect ratio of L/H = 1 : 5. A initial

perturbation of the form f(x) = 0.75H +0.1 cos(kx), where k = 2π/L is used to

assign the initial fluid interface. This setup ensures the dominant RTI mode has

a wavelength corresponding to the size of the horizontal domain. Static ghost

particles are introduced at the sides and bottom of the fluid domain. The gas

repulsion model is applied to maintain the stability of the interface. The fluid

system is described by a total of Np = 54432 particles, out of which 50000 are
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Figure 8.3: Numerical results for the KHI driven jet fragmentation of a density ratio of 1 (1st

column), 2 (2nd column) and 10 (3th column) simulated up to t = 4s and plotted at fixed time
increment of ∆t = 0.5s from top to down.
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fluid particles (16670 high density particles and 33330 low density particles) and

4432 ghost particles.

8.4.1 Fiducial model

We simulate the case setup described above with the density of the top and

bottom fluid being ρ1 = 100kg/m3 and ρ2 = 10kg/m3 respectively (ρr = 10).

Figure 8.4 plots the simulation results at fixed time interval of ∆t = 0.5s. During

the initial stage 0 . t . 1[
√

L/g], the amplitude grows as the heavy and light

fluid exchange positions. The interface remains symmetric along the vertical

direction. At later times t > 1[
√

L/g], the development of the bubble becomes

increasing apparent as the light fluid rises toward the top of the fluid domain

due to buoyancy. Similarly, the down falling jet (spike) is observed as the heavy

fluid sinks towards the bottom of the fluid domain. At time 1.5 . t . 2[
√

L/g],

the development of the RTI jet (spike) can be clearly observed. For a density

ratio of 10, a full rotation which generates sides jets due to KHI is not observed.

Instead, the stripping of particles near the edges of the RTI jet is clearly observed

1.5 . t . 2[
√

L/g]. This is consistent with our earlier findings in section 8.3.

During the intermediate stage of the simulation 2.25 . t . 2.5[
√

L/g], the

RTI jet has emerged into the fully non-linear regime, where particles near the

edges of jet continue to elongate into jet-like structures. Furthermore, additional

KHI modes appear both at the edges as well as the bottom of the jet (see t .

2.5[
√

L/g]). Finally at t ∼ 3 the RTI jet has fully developed, with a single spike

at the center and two jets one on each side of the center jet.

8.4.2 Dependence on density ratio

The influence of the density ratio is investigated by simulating the RTI jet frag-

mentation at three different densities ratios ρ1 = 20, 50, 100kg/m3, where the
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t = 0.25 t = 0.5 t = 0.75 t = 1 t = 1.25 t = 1.5

t = 1.75 t = 2 t = 2.25 t = 2.5 t = 2.25 t = 3

Figure 8.4: Results for RTI driven jet fragmentation of density ratio ρr = 10 plotted at fixed
time-interval ∆t = 0.25[

√

L/g] between t = 0 to t = 3[
√

L/g]

lower density fluid is assigned to be ρ2 = 10kg/m3 in all cases. The numerical

results are shown in Figure 8.5. It is found that despite the density ratios, the

numerical results are remarkably similar during the initial stage of the simulation

0 . t . 1[
√

L/g]. However, the results begin to deviate from each other as the

development of the RTI occurs. For the lower density simulations ρr = 10, 20

the bottom of the RTI jet reassembles a circular shape. For the highest density

ratio simulation considered (ρr = 100) the expansion at the bottom of the jet is

completely absent. This is because the growth rate of the KHI at the jet front

decreases with the density ratio. Thus, when the density ratio between the heavy

and light fluid is sufficiently large, the growth of KHI becomes less relevant. The

216



same phenomenon applies when a solid (i.e. stone) falls under gravity in a tank

of water. In this case, the water level rises due to Archimedes principle and the

stone sinks towards the bottom of the tank without fragmenting into pieces.

t = 0.25 t = 0.5 t = 0.75 t = 1.0 t = 1.25 t = 1.5 t = 1.75 t = 2.0

Figure 8.5: Numerical results for RTI driven jet fragmentation corresponding to different
density ratios. From top to bottom the density ratios are ρr = 20, 50, 100 plotted at fixed
time-interval ∆t = 0.25[

√

L/g] between t = 0 to t = 2[
√

L/g].
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8.5 Jet fragmentation driven by Rayleigh-Plateau

Instability

This section focusses on the fragmentation of a hydrodynamic jet driven by the

Rayleigh-Plateau instability, which is more commonly known as jet break-up

in the engineering literature. We consider the primary break-up of an initially

static jet which is suspended from the top of a vertical domain. The initial

density of the jet and ambient fluid are ρ1 = 103kg/m3 and ρ2 = 10kg/m3. The

dimension of the fluid domain is x ∈ [0, L], y ∈ [0,W ], z ∈ [0, H], where L = 2cm,

W = 2cm, and H = 3cm. The dimension is specified such that the flow problem

is dominated by surface tension. To ensure a properly filled kernel for particles

near the boundaries, four layers of ghost particles are placed on each side of the

domain. The particle system is described by 26136 particles (dnat = L/16), out

of which 13848 are static ghost particles and 12288 are fluid particles (1564 jet

particles and 10724 ambient fluid particles).

Figure 8.6: Initial setup for the RPI jet break-up.

The jet has a radius of rjet = 0.25L and it is centered at (x, y) = (0.5L, 0.5W ).
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It has a length of Ljet = 2L as measured from the top of the fluid domain.

Two perturbations are applied to the initially cylindrical jet. Firstly, the initial

interface of the jet in the vertical direction is prescribed by the function

f(z) = rjet − 1.5dnat sin

(

π
z − 0.75H + Ljet

Ljet

)

(0.75H − Ljet) ≤ z ≤ 0.75H,

(8.2)

which modifies the curvature of the initial cylinder to a sinusoidal shape. Sec-

ondly, a spherical shape with radius rdroplet = 0.25L is initialised at the bottom

part of the jet to ensure a smoothly varying curvature at the bottom of the jet

as shown in Figure 8.6. The initial densities of the fluid jet particles are also

varied accordingly to account for the pressure rise due to the surface tension.

The conventional artificial viscosity model is used. We would like to point out

that the Balsara switch is not used in the RPI jet simulation since the estimation

of the velocity curl used in the Balsara switch is computationally expensive in

three dimensions. Therefore a decision was made to apply a smaller artificial

viscosity parameter αAV = 0.1, and βAV = 0 throughout.

The jet break-up is simulated until t = 0.24s. The CFL condition recom-

mended condition in the work of Adami et al. [75] is ∆t ≤ 0.25
√

ρjeth3/(2πσ).

However, our experience suggests that this CFL condition is too relaxed, lead-

ing to the oscillation in position/velocity for particles experience surface tension

force. Instead, we employ the default time-stepping criterion in Draco, and define

the minimum and maximum allowed time-steps to be 10−6s and 10−5s. Since the

jet is initially static, conventional dimensionless ratios such as the Weber number

We and Froude number Fr := V 2
z /(gro) are both nullity. Instead, the fluid prob-

lem is characterised by the ratio between the Weber number and Froude number

We/Fr := ρgr2o/σ, where the gravitational acceleration is ~g = −0.1m/s2ẑ.

219



8.5.1 Fiducial model

We simulate the case setup described above using the real surface tension coeffi-

cient of water σo = 0.073N/m at 20oC. This corresponds to a Weber-Froude num-

ber ratio of We/Fr ≈ 0.034, so that surface tension effects dominates. Figure

8.7 plots the simulation results for the fiducial model. The initial perturbation

amplifies as soon as the simulation begins (0 . t . 0.08s). At the region with

smallest radius z ≈ 0.4H, the positive curvature due to the convex interface

dominates the negative curvature due the concave interface. In this case, the

surface tension force manifests into a necking behaviour that causes particles to

migrate towards the unperturbed region of the cylinder.

The necking behaviour continues during 0.08 . t . 0.16s, where the top

part of the fluid jet contracts and the bottom part of the jet becomes increasing

spherical. The formation of a spike can be observed at t ≈ 0.14s. The jet

eventually breaks at t ≈ 0.16s, resulting in a droplet at the bottom part of

the fluid domain and a patch of fluid at the upper part of the fluid domain that

adheres onto the top walls represented by ghost particles. Upon closer inspection,

it is found that there exist a single particle at z ≈ 0.5H which does not belong

to either the patch of fluid at the top nor the droplet. Although similar results

have been reported in both the simulation and experimental literature, we do

not advocate the presence of satellite droplets due to the limited resolution used

herein. We suspect the generation of satellite drops may occur if higher global

resolution is considered.

8.5.2 Influence of surface tension coefficient

The influence of the surface tension coefficient is investigated by simulating the

RPI for several surface tension coefficients σ = 0.5σo, 2σo, 4σo. The results are

shown in Figure 8.8. As expected, the break-up occurs earlier in time as the
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t = 0.01s t = 0.02s t = 0.03s t = 0.04s t = 0.05s t = 0.06s

t = 0.07s t = 0.08s t = 0.09s t = 0.10s t = 0.11s t = 0.12s

t = 0.13s t = 0.14s t = 0.15s t = 0.16s t = 0.17s t = 0.18s

t = 0.19s t = 0.20s t = 0.21s t = 0.22s t = 0.23s t = 0.24s

Figure 8.7: Numerical results for the fiducial simulation of the RPI driven jet break-up, with
|~g| = 0.1m/s2 and σo = 0.073N/m.
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t = 0.04s t = 0.08s t = 0.16s t = 0.20s t = 0.22s t = 0.24s

Figure 8.8: Numerical results for different surface tension coefficients plotted at fixed time
instance, with a time interval ∆t = 0.01s between plots. From top to bottom, σ = 0.5σo, 1σo,
2σo, 4σo and |~g| = 0.1m/s2 in all cases.
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surface tension coefficient increases. The extracted and theoretical break-up

times are shown in Figure 8.9. It is found that the two curves exhibit the same

decaying trend. In particular, a constant of 3.72 is obtained from the fitted curve

and the theoretical expectation has a leading constant of 2.91. We would like to

point out the discrepancy between the results and theory is primarily caused by

the difference in the perturbation wave number. That is, the theoretical break-up

time is derived for the wave number which gives rise to the maximum growth of

the RPI applied to the entire vertical domain. Whereas the perturbation herein

corresponds to a wave number of k = π/L, which is applied only to the bottom

part of the cylindrical jet (0.75H − Ljet) ≤ z ≤ 0.75H.

Figure 8.9: Break-up time of RPI plotted as a function of surface tension coefficient. The
theoretical(numerical) break-up time is plotted as dashed line, where a slope of 2.91 is expected
from theory and 3.72 is obtained from our SPH results.

8.6 Summary

In this chapter, we simulated the jet fragmentation driven by three hydrodynami-

cal instabilities: the Kelvin-Helmholtz instability, the Rayleigh-Taylor instability
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and the Rayleigh-Plateau instability. The conditions considered in our work are

summarised in Table 8.1. In the fiducial model of the KHI driven jet fragmenta-

KHI jet RTI jet RPI jet
Ndim 2 2 3

initial fluid domain scale [m] 1 1 0.01
setup highest density ratio ρr 10 100 100

inflow/outflow X X ×
free surface × X ×

physical effects surface tension × × X

gravitational acceleration × X X

numerical model Balsara switch X X ×
Gas repulsion model X X X

Table 8.1: Summary of the conditions for jet fragmentations simulations considered herein.

tion (ρr = 5), we found that the KHI manifests itself by stripping off particles

near the edges of the jet which excite the random perturbations near the interface

and the frontal area of the jet. The excitation further disrupts the symmetry of

the jet and generated a body wave motion that deflects the central portion of

the jet. A series of simulations was performed to investigate the influence of the

density ratio where the asymmetric behaviour of the jet was found to increases

with density ratio.

The KHI driven jet simulations demonstrated the fragmentation in a qual-

itative manner. However, a direct comparison between our results with those

reported in the mesh-based simulation literature cannot be done without an ap-

propriate turbulence model. This is because the cases considered in the literature

focus on the development of a turbulent jet whereas the flow condition herein

aims to model jet flows in laminar regime. In experiments, the perturbation can

be caused by the imperfection of the nozzle and the propagation of sound waves

within the ambient fluid. The fragmentation of a jet is driven by the turbulence

generated at the inflow boundary rather than the perturbation of the ambient

fluid. As previously mentioned, a detailed model of the behaviour of turbulence
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requires either a high resolution direct numerical simulation or an appropriate

turbulence model [140].

The RTI jet fragmentation was simulated for four different densities ratios

ρr = 10, 20, 50, 100. Similar to the KHI jet fragmentation results, it was found

that the qualitative results deviate from each other as the development of the

RTI occurs. For the ρr = 10, 20 simulations, the development of the center

RTI jet (spike) leads to two subsequent jets one on each side of the central jet.

However, these jets were completely absent in the high density ratio simulation.

Furthermore, our results in previous chapters 5-6 suggest that the simulation of

KHI driven flows requires high resolution dnat = L/200. Nevertheless, at the

current level of development Draco suffers from limited resolution such that a

fully three dimensional simulation of KHI and is not possible.

The RPI driven jet fragmentation (break-up) process of an initially static

liquid jet falling under gravity was simulated. The numerical results successfully

demonstrate the break-up of a liquid jet submerged in a low density ambient

medium. A series of simulations were performed to investigate the influence

of the surface tension coefficient. As expected, the break-up time decreases

with increasing surface tension, where the fitted coefficient of the break-up time

dependence on surface tension coefficient was found to be greater than that of

the theoretical expectation (3.72 in SPH, 2.91 in theory). This is because the

perturbation herein corresponds to the wave number k = π/L and it was applied

to the bottom part of the cylindrical jet, whereas the theoretical break-up time

is derived for the wave number (k = 0.697/rjet).

Based on our experience, we suggest that a realistic simulation of a jet un-

der gravity with inlet particles requires the modification of the current inflow

boundary to take into account the acceleration due to gravity (see Table 8.1 row

1 and 4). Furthermore, the utilisation of a surface tension model that requires

filling the entire domain with ambient fluid particles requires high resolution
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simulation. Depending on the nature of the flow problem, in many cases the

influence of the ambient medium can be ignored. For instance, in water wave

modelling the presence of air is usually not taken into account, and the flow

problem is modelled as a free-surface flow problem. This is however not true

some applications such as high speed shear driven flow due to rapid air currents

are relevant.

The SPH jet simulations carried out in this chapter provide features at the

interface that would typically require additional refinement in a mesh-based CFD

code. Nonetheless, due to the limited resolution we are unable to study the jet

fragmentation process driven by the combination of KHI, RTI and RPI. Our ex-

perience shows a typical two-dimensional KHI driven jet fragmentation requires

approximately 160K fluid particles, the two-dimensional RTI jet fragmentation

simulation requires 50K fluid particles, and the three dimension RPI jet break-up

requires 12K particles. A rough estimate indicates a three-dimensional simula-

tion that encapsulate the effects of KHI, RTI and RPI requires approximately

75200K particles, which is far beyond the computational resolution offered by our

current SPH code. However, we think SPH would be is good candidate for the

sub-grid inter-facial models for mesh-based simulation of jet flows. In essence,

SPH can be used for resolving the dynamics only at the interface whenever

needed. This strategy allows researchers to benefit from the adaptive refinement

capabilities of a mesh-based simulation, as well as the Lagrangian nature of SPH

to resolve small scale hydrodynamic instabilities near the interface.

We would like to point out that while the initial conditions considered in

this chapter are based on idealised geometries, further research on jet flows can

be carried out by studying simulation conditions relevant to aero-engines such

as: the jet impingement on moving walls and rapidly rotating geometries, the

atomisation of jet into droplets subject to different nozzle geometries, and the

control of jets in cross-flows for lubrication and cooling purposes.
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Chapter 9

Conclusion and recommendations

In this thesis, we presented the results of multiphase Smoothed Particle Hydrody-

namics applied to jet fragmentation driven by three hydrodynamic instabilities,

namely the Kelvin-Helmholtz instability, the Rayleigh-Taylor instability, and the

Rayleigh-Plateau instability. The hydrodynamic instabilities have been studied

theoretically by means of linear stability analysis and numerically using our new

general purpose SPH software Draco, developed during the course of this thesis.

9.1 Concluding remarks

The Lagrangian nature of SPH does not require the utilisation of interface track-

ing routines. Nevertheless, conventional SPH suffers from problems when utilised

to simulate multiphase flow which have been studied extensively in this thesis.

The major research findings regarding the SPH simulation of these hydrodynamic

instabilities are summarised below:

• The linear stability analysis presented in chapter 2 allows for a systematic

investigation of the combined Kelvin-Helmholtz instability and Rayleigh-

Taylor instability occurring between two fluids. It was found that both

viscosity and gravity suppress the growth of a sharp interface Kelvin-
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Helmholtz instability. Whereas viscosity was found to suppress the growth

of the Rayleigh-Taylor instability, gravity was found to amplify it. For

an inviscid smoothed interface Kelvin-Helmholtz instability, increasing the

smoothed density gradient led to more pronounced growth. In contrast,

increasing the smoothed velocity gradient suppressed the linear growth

rate. Finally, the growth rate of a smoothed initial interface stratified

shear instability was found to be significantly smaller than the classical

expectation.

• A generalised purpose SPH software Draco was developed to simulate mul-

tiphase flows. Prior to the development of Draco, significant effort was

spent on the alignment between existing SPH codes Hydra and MATLAB-Hydra.

The current version of Draco aggregated the basic components for mod-

elling multiphase fluid dynamics problems occurring in aero-engines.

• A type of boundary condition known as a continuous wall was developed to

model a non-permeable wall. We found that similar to other solid bound-

ary concepts, fluid particles near the wall suffered from truncated kernel

behaviour that destroyed the accuracy of SPH. In practice, it is necessary

to initiate a pack of ghost particles behind the continuous wall to avoid the

undesired truncated kernel behaviour.

• A new multiphase model based on the quasi-buoyancy correction [167] was

proposed for interface stabilisation. The model was easy to implement, and

yielded the expected buoyant behaviour. The model did not require cal-

ibration and demonstrated significant improvement over some multiphase

schemes in the literature. However, a major disadvantage of this model was

that it was only applicable to flow problems under the influence of gravity.

• A new multiphase model motivated by kinetic collision theory called the

gas-repulsion model [170] was presented to model multiphase flow scenar-
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ios with and without the influence of gravity. The model considers two

boundary cases of particle collision, namely the elastic and inelastic cases.

In the elastic case, conservation of momentum was guaranteed. Whereas

for the inelastic case, a colliding particle pair obtained the same velocity.

The linear combination of the two cases were then written in SPH par-

ticle form, where a constant coefficient of restitution was pre-defined to

determine the elasticity of the fluid. This model demonstrated successes

in many test-cases [170]. However, an extensive study would need to be

carried out to quantify the actual viscosity represented by this model as

well as the dependence of the inherited viscosity as a function of CR.

• The standard SPH artificial viscosity [60] introduced spurious viscosity.

This hindered the comparison between SPH and the inviscid analytical

solution in the literature. The influence of spurious viscosity was found to

be case dependent. In shear dominated flow problems such as the Kelvin-

Helmholtz instability, the use of the standard SPH artificial viscosity was

partially responsible for the suppression of the linear growth rate. Similar

results were found in the small Atwood number Rayleigh-Taylor instability.

In this case, the spurious viscosity causes significant suppression of the

development of subsequent jets at the edge of the central region Rayleigh-

Taylor instability spike. Our numerical experiments showed the issue of

spurious viscosity can be remedied with the utilisation of a viscosity switch

such as that introduced by Balsara [134].

• The evolution of the Kelvin-Helmholtz instability was studied systemat-

ically for different velocity and density gradients. For the sharp den-

sity, finite velocity gradient cases, the simulations were in good agree-

ment with the analytical prediction, with the average relative error being

〈ηsmooth〉 = 12%. The sharp velocity, finite density gradient cases had an
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average relative error of 〈ηsmooth〉 = 17%. The generalised scenario for

finite width velocity and density transition layers was also studied, with an

average relative error of 〈ηsmooth〉 = 11%.

• The evolution of a multiphase stratified shear instability (a Kelvin-Helmholtz

instability between two fluids of different densities under the influence of

a gravitational field) for initial velocity and density profiles was simulated.

As expected, the growth rate decreased with increasing gradient Richard-

son number. The growth of the instability was observed for the gradient

Richardson number up to Rig,c = 0.3, whereas the critical Richardson

number of Ric = 0.25 was reported in classical hydrodynamics for sharp

interfaces.

• For the single-mode Rayleigh-Taylor instability, the SPH simulation results

were consistent with the sharp interface viscous growth rate. In particular,

the constant of proportionality of the terminal velocity ΨSPH = 0.22 was

in good agreement with the predictions from the drag buoyancy model [68,

233, 234, 236]. For the multi-mode Rayleigh-Taylor instability subjected to

random perturbations, the thickness of the mixing layer generated by the

merging bubbles and spikes was consistent with the self-similar relation

in the literature with Θ = 0.048 in the SPH simulation, as opposed to

Θ = 0.04− 0.05 in the literature [71, 72].

• The three-dimensional Rayleigh-Plateau instability was simulated up to a

density ratio of 1000. It was found that the break-up time increased with

the artificial viscosity parameter, with a slope of 0.046. Extrapolation of the

break-up time to no artificial viscosity case led to tbreak,SPH = 0.038s, which

deviated from analytical break-up time by 11%. A major disadvantage

of the multiphase surface tension model proposed by Adami et al. [75]

was the requirement of filling the entire domain with SPH particles. This
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was however impractical as certain real-life applications of surface tension

driven flows (e.g. droplets merging, droplet impingement onto a solid wall)

are usually treated as free-surface flows.

9.2 Recommendations for future work

• The software code Draco utilised in this thesis is implemented as a serial

CPU code. Given the limitations of running high resolution simulations,

a parallel version of the code Draco-GPU is currently under development

for our industrial partner. However, it is worth pointing out that parallel

SPH implementations (e.g. Gadget-2.0, SPHysics ) are already publicly

available. In particular, very often modification of SPH scheme are dis-

tributed among the astrophysics community for Gadget-2.0 [109, 153] so

that researchers can focus on further advancing the numerical methodology.

We strongly encourage the adoption of these open-source codes rather than

developing a parallel implementation from scratch unless there is a clear

advantage from a commercial point of view.

• At the current stage, there is no turbulence model implemented in Draco.

In order to model the effects of turbulence, one can either make use of a tur-

bulence model or direct numerical simulation which simulates the dynamics

of the entire range of spatial and temporal turbulence scales [125, 126, 254].

The commonly used turbulence model in SPH is a Large Eddy Simulation

model used in conjunction with a Smagorinsky model for the sub-particle

turbulence [255]. It is also worth commenting that SPH loses consistency

whenever particles are irregularly distributed within the kernel. However,

in a turbulent flow, particles would be naturally irregularly distributed. In

this case, the SPH kernel density estimate would be inaccurate. There-

fore, we recommend further research in combining consistency restoration
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schemes [129, 256] and turbulence modelling in SPH.

• The standard SPH viscosity and its variants have been widely applied in the

weakly-compressible SPH community. However, it is found that viscosity

switches are rarely used in weakly-compressible SPH literature. We suspect

that this is because the majority of investigations carried out by the weakly-

compressible SPH community aim to model gravity driven flows (e.g. dam

break, ocean wave propagation) where viscosity plays a less significant role

than topics considered in this thesis. Nevertheless, our experience suggests

the use of standard artificial viscosity in SPH introduces spurious shear vis-

cosity which makes the comparison between SPH results and the analytical

solution extremely difficult. In many cases, this results in fine tuning of the

artificial viscosity parameters to obtain the desired solution. Therefore, we

strongly encourage the weakly-compressible SPH community to adopt the

use of a viscosity switch similar to the Balsara switch [134] considered in

this thesis and the ones presented in the literature [152, 153].

• For multiphase fluid problems with rapid change of gradient in the physical

quantities (e.g. density, velocity), it may be useful to consider the utilisa-

tion of adaptive particle splitting and merging schemes [257, 258] to enable

resolution refinement near the interface.

• While the multi-mass setup approach used in this thesis compromise for

resolution, it introduces a mass discontinuity which requires further inves-

tigation. In particular, we would encourage the utilisation of the switch

introduced by Read and Hayfield [153].

• Given the success in resolving the Kelvin-Helmholtz instability, stratified

shear instability and the Rayleigh-Taylor instability, it is interesting to

extend the research to study the combined Rayleigh-Taylor instability and
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Kelvin-Helmholtz instability and compare the extracted growth rate from

SPH with the linear growth rate presented in chapter 2.

• We think the work presented in this thesis (numerical methods and the

software Draco) opens a new avenue of research topics for simulating low

Mach number astrophysical and geophysical flows with SPH. For instance,

the buoyancy and gas-repulsion model can be used to study the multiphase

Rayleigh-Benard convection (RBC), which is responsible for the heat trans-

port from the planetary core to the outer layers of terrestrial bodies. In

particular, the weakly-compressible SPH approach herein offers the choice

of temperature dependent equation of state (modified Tait EoS) or the clas-

sical Boussinesq approximation, which is uncommon in existing mesh-based

CFD software. Therefore, we think it is interesting to conduct further ex-

ploration studies of the multiphase RBC by means of SPH. A problem that

is closely related to the multiphase RBC is the double-diffusive convection

(a.k.a semi-convection). The double-diffusive convection is driven by two

density gradients with different rates of diffusion such as the salinity and

temperature. Recently, there has been speculation that the double-diffusive

convection may play a role in the formation of subsurface ice pockets in

Jupiter’s moon Europa, a particular geophysical environment that might

lead to conditions that harvest life [259]. Similarly, our work can be further

utilised to conduct numerical simulation of hydrothermal vent activities,

which is another plausible candidate that provides the chemical and bio-

logical conditions of origin of life [260].
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Appendix 1

9.2.1 Derivation of spatio-temporal RTI

Suppose a two initially static fluid system with densities ρ1 and ρ2, where ρ1 > ρ2

is subjected to a constant gravitational acceleration, and the fluid is separated

by an spatio-temporal moving interface y = yo + η(x, t). If the fluids are both

incompressible, irrotational and the growth of the initial perturbation satisfies

the Laplace equation

∇2Φ1,2(x, y, t) = 0, (9.1)

where Φ1 and Φ2 are the scalar velocity potentials for the corresponding fluids.

The kinematic boundary condition (2.21) simplifies to

v̂ =
∂η

∂t
y = yo + η(x, t). (9.2)

Substituting the velocity potential into (9.2) and eliminating all quadratic terms

gives

∂η

∂t
− ∂Φ1,2

∂y
= 0 y = yo + η(x, t). (9.3)

Given the Bernoulli equation[94]

∂Φ

∂t
+

1

2
‖∇Φ‖2 + gη +

P

ρ
= 0, (9.4)
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and omitting the second order term gives

∂Φ

∂t
+ gη +

P

ρ
= 0. (9.5)

Rearranging (9.5) and equating the pressure across the interface (i.e. P1 = P2)

yields

ρ1
∂Φ1

∂t
+ ρ1gη = ρ2

∂Φ2

∂t
+ ρ2gη y = yo + η(x, t). (9.6)

Assuming the initial perturbation has the form η(x, 0) = ǫo cos(kx). The Laplace

equation (9.1) subjected to the boundary conditions (9.3) and (9.6) is an initial

boundary value problem that can be solved using separation of variables. The

proposed eigenfunctions are

Φi(x, y, t) = φ(y, t) cos(kx), (9.7)

η(x, t) = a(t) cos(kx), (9.8)

where a(t) is defined as the dynamic amplitude of the perturbation. The initial

condition requires a(0) = ǫo and at|t=0 = 0. Substituting (9.7) into (9.1) leads

to a second order ordinary differential equation.

∂2φi

∂y2
− k2φi = 0 i ∈ 1, 2 (9.9)

The general solution of (9.9) has the form

φi = ai (t)
(

Λ1e
ky + Λ2e

−ky
)

i ∈ 1, 2. (9.10)
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To ensure boundedness of the solution, it is required that φi → 0 as y → ±∞.

Therefore, the velocity potentials have the form

Φ1(x, y, t) = A1(t)e
−ky cos(kx) y > yo (9.11)

Φ2(x, y, t) = A2(t)e
ky cos(kx) y < yo. (9.12)

Applying the kinematic boundary condition (9.3) and dynamic boundary condi-

tion (9.6) at the interface yields a second order homogeneous ordinary differential

equation for a(t),

d2a(t)

dt2
− kAT ga(t) = 0. (9.13)

Its general solution is

a(t) = C1e
nct + C2e

−nct, (9.14)

where the constants C1 and C2 depend on the initial and boundary conditions,

and the inviscid growth rate is given by nc =
√
AT gk.
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Appendix 2

9.2.2 SPH spatial discretisation error

Proof. The spatial discretisation error |〈f(~r)〉 − f(r)| is bounded by O(h2).

|〈f(~r)〉 − f(r)| =

∣

∣

∣

∣

1

2

d2f

d~r 2

∫

Ω

(r − r′)2W (~r − ~r ′, h)d~r
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∣

∣

∣

(9.15)
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≤ κ2

2

∣
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∣

d2f

d~r 2

∣

∣

∣

∣

h2 (9.19)

≤ Coh
2 (9.20)

≈ O(h2). (9.21)

9.2.3 Spatial derivatives of radially symmetric kernels

The proof of three important identities useful for the construction of SPH fluid

dynamical equations in section 3.8 are shown here. The identities concerns the

spatial derivatives of kernel functions of two particles {j, k} with respect to the

position of the particle of interest i.

Proof. Spatial derivative property of distance between two particles with respect
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to the particle of interest

∂|~rj − ~rk|
∂~ri

=
∂[(~rj − ~rk) · (~rj − ~rk)]

1
2

∂~ri

=

(

∂~rj
∂~ri
− ∂~rk

∂~ri

)

(~ri − ~rk)

[(~rj − ~rk) · (~rj − ~rk)]
1
2

=
(δji − δki)(~rj − ~rk)

|~rj − ~rk|

∴
∂|~rj − ~rk|

∂~ri
=

(δji − δki)(~rj − ~rk)

|~rj − ~rk|

(9.22)

Proof. Transitive property for SPH kernel gradient with respect to the position

of the particle of interest

∇iWjk =
∂Wjk

∂~ri

=
∂Wjk

∂|~rjk|
∂|~rj − ~rk|

∂~ri

=
∂Wjk

∂|~rjk|
(~rj − ~rk)

|~rj − ~rk|
(δji − δki)

= ∇jWjk(δji − δki)

∴ ∇iWjk = ∇jWjk(δji − δki)

(9.23)

Proof. Asymmetric property of SPH kernel gradient

∇iWij =
∂Wij

∂~ri

=
∂Wjk

∂|~rij|
∂|~rij|
∂~ri

=
∂Wjk

∂|~rij|
∂~rij
∂|~ri|

= −∂Wjk

∂|~rij|
∂~rij
∂|~rj|

= −∇jWij

∴ ∇iWij = −∇jWij

(9.24)
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9.2.4 Galilean invariance and conservation properties

In the section, we show mathematically that SPH is strictly Galilean invariant

and satisfy conservation properties in classical mechanics provided that the same

scalar function φ is used throughout. The proofs shown herein closely reassembles

earlier works for standard SPH [118, 137]. To simplify the derivations, a new

variable Ψ is introduced to account for the partial contribution of a particle to

the pressure gradient term

Ψi =
Pi

ρ2i

φi

φj

. (9.25)

Furthermore, the inter-particle pressure gradient term as given by Ψij = Ψi+Ψj

is symmetric (i.e. Ψij = Ψji).

Galilean invariance

A major advantage that SPH has over Eulerian mesh-based hydrodynamic code

is being Galilean invariant [58, 118, 137]. To demonstrate this property, one can

consider expressing a particle initially residing in a reference from {0} undergoes

the following coordinate transform

~r
{1}
i = ~r

{0}
i + ~Vot

~v
{1}
i = ~v

{0}
i + ~Vo.

(9.26)

For illustration purpose, we only consider the momentum equation (3.43). The

Galilean invariance of continuity equation(3.101) and energy equation (3.103)
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can be shown in the same fashion. Substituting (~r1i , ~v
1
i ) into equation (3.43)

D~v
{1}
i

Dt
= −

∑

j

mj(v
{1}
i − v

{1}
j )Ψij∇iWij

= −
∑

j

mj(~v
{0}
i + ~Vo − ~v

{0}
j − ~Vo)Ψij∇iWij

= −
∑

j

mj(~v
{0}
i − ~v

{0}
j )Ψij∇iWij

=
D~v

{0}
i

Dt
.

(9.27)

Conservation of momentum

To validate the conservation of momentum, we consider a particle system com-

prises of Np particles. The total linear momentum is given by the sum of the

linear momentum of individual particles ~P =
∑Np

i mi~vi. Assuming the mass is

independent of time, the change in total momentum (~P ) with respect to time is

d~P

dt
=

Np
∑

i

mi
D~vi
Dt

=

Np
∑

i

Np
∑

j

−mimiΨij∇jWjq

= −1

2

(

Np
∑

i

Np
∑

j

mimiΨij∇iWij +

Np
∑

i

Np
∑

j

mimiΨij∇iWji

)

= −1

2

(

Np
∑

i

Np
∑

j

mimjΨij∇iWij +

Np
∑

j

Np
∑

i

mjmiΨji∇jWji

)

= −1

2

Np
∑

ij

mimjΨij(∇iWij +∇jWji)

= 0.

(9.28)

240



Conservation of angular momentum

For a system of Np particles, the total angular momentum is given by ~L =

∑Np

i mi~pi.

d~L

dt
=

Np
∑

i

mi~ri ×
D~vi
Dt

= −
Np
∑

i

mi~ri ×
Np
∑

j

mjΨij∇iWij

= −1

2

(

Np
∑

i

Np
∑

j

mimjΨij~ri ×
∂Wij

∂|~rij|
~rij
|~rij|

+

Np
∑

i

Np
∑

j

mimjΨij~ri ×
∂Wij

∂|~rij|
~rij
|~rij|

)

= −1

2

(

Np
∑

i

Np
∑

j

mimjΨij~ri ×
∂Wij

∂|~rij|
~rij
|~rij|

+

Np
∑

j

Np
∑

i

mjmiΨji~rj ×
∂Wij

∂|~rij|
~rji
|~rij|

)

= −1

2

(

Np
∑

ij

mimjΨij(~ri − ~rj)×
∂Wij

∂|~rij|
~rij
|~rij|

)

= −1

2

(

Np
∑

ij

mimjΨij

|~rij|
∂Wij

∂|~rij|
~rij × ~rij

)

= 0.

(9.29)
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Conservation of energy

For a system ofNp particles, the total energy is given by E =
∑Np

i mi

(

ei +
1
2
~vi · ~vi

)

.

The change in total energy with respect to time is therefore

dE

dt
=

Np
∑

i

mi

(

Dei
Dt

+ ~vi ·
D~vi
Dt

)

=

Np
∑

i

mi

[

Np
∑

j

mjΨi~vij · ∇iWij − ~vi ·
Np
∑

j

mjΨij∇iWij

]

= −
Np
∑

i

Np
∑

j

mimjΨi~vj · ∇iWij −
Np
∑

i

Np
∑

j

mimjΨj~vi · ∇iWij

= −
Np
∑

i

Np
∑

j

mimjΨi~vj · ∇iWij −
Np
∑

j

Np
∑

i

mjmiΨi~vj · ∇jWji

= −
Np
∑

ij

mimjΨi~vj · (∇iWij +∇jWji)

= −
Np
∑

ij

mimjΨi~vj · (∇iWij +∇jWij)

= 0.

(9.30)
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