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Abstract 

Auxin plays a key role during many, if not all, developmental processes in plants. 

Notably, the hormone regulates the formation and emergence of lateral roots (LRs). 

In Arabidopsis thaliana the initiation of lateral root primordia (LRP) is induced by 

auxin and takes place deep within the parental root. Also, the emergence of the LRP 

through the overlying tissues is regulated by auxin. It has been shown that the gene 

LAX3 is expressed in cortical and epidermal directly overlying a LRP. External auxin 

induces LAX3's expression in all cortical and epidermal cells suggesting that it acts 

as the activating signaL 

There are two objectives in this study: the first one is to understand how the 

expression of LAX3 is regulated and the second one is to identify and characterise 

novel inhibitors of the induction of LAX3. 

It has been shown that mutations in ARF7 and ARF19 or IAA14/SLR are sufficient 

to block LAX3 auxin induction. Using classical genetics approaches, it is shown that 

ARF7 and ARF19 actually regulate LAX3 positively and negatively, respectively. 

Furthermore, a canonical Auxin Response Element present in the promoter of LAX3 

is shown to negatively regulate its expression. Using transcriptomics datasets, a 

regulatory network is proposed and several putative candidates have been selected. 

In order to obtain alternative approaches to dissect the induction of LAX3, a suite of 

13 inhibitors (representing 8 distinct classes of compounds) have identified. The 

major and most promising class has been investigated and shown to interfere most 

probably with the E2 conjugating enzymes. A model and preliminary results with 

some of the other inhibitors identified are proposed. 
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Chapter 1 Introduction 

1.1. Arabidopsis thaliana as a model organism 

Arabidopsis thaliana is a eudicot which belongs to the Brassicaceae family (Figure 1-1). 

Despite Arabidopsis having no economic value unlike other closely related crops such 

as broccoli or mustard, it has been used as the model plant for research on plant genetics 

and development for over 70 years. In 1946, Whyte called Arabidopsis the "Botanical 

Drosophila" in reference to the numerous wild type ecotypes identified (Whyte, 1946). 

Several advantages make Arabidopsis very well suited for classical genetics studies: it 

has one of the smallest plant diploid genome (125 Mbp) with a simple organisation (5 

chromosomes), it is a self-fertilizing plant which can be easily cross fertilized, the seed 

set is usually very large (> 10 000 seeds/plant) and the life cycle is very short (around 2 

months) (Meyerowitz, 1987; Meyerowitz, 2001). Another key advantage of Arabidopsis 

is the ease to transform its genome to obtain genetically engineered plants. 

In the year 2000, the Arabidopsis ecotype Columbia was the first plant to have its 

genome fully sequenced (The Arabidopsis Genome Initiative, 2000). The last version of 

TAIR (The Arabidopsis Information Resource, TAIR10, 18 November 2010) concluded 

that 57% of the 27 416 Arabidopsis genes have a known function. Interestingly, most of 

Arabidopsis genes fall into multigenic families: there are only 35% of single copy genes 

compared to 55% in Caenorhabditis elegans or 72% in Drosophila melanogaster. Since 

November 2011, the sequenced genome of forty one higher plants and trees is available. 

Comparative genomics studies showed that many gene sequences are conserved 



between highly divergent plants, such as maize (Zea Mays) and Arabidopsis thaliana 

(Schnable et aI., 2009). In the coming decade, it will be of particular interest to see 

whether gene functions are also conserved. 

Figure 1-1 Arabidopsis thaliana developmental stages. (A-D) Vegetative development: (A) 8, 
(B) 15, (C) 21 and (D) 27 days after germination. (E) Transition to flowering occurs usually 
four weeks after germination. (F) Plants reach maturity usually eight weeks after germination. 
(G) Detailed view of an Arabidopsis flower showing the four floral organs: the sepals (green 
tissues), the petals (white tissues), the stamens (with yellow anthers at the tip) and the carpel at 
the centre. (H) Flowers are arranged in a spiral around the floral stem. On one stem, different 
stages of flower and fruit development development can be observed. The youngest are near the 
apex whereas old flowers and youg fruits are found away from the apex. Bar is 1 cm except for 
the flower and (I) seeds where the bar is 1 mm. 

Reproduced from http://www-ij pb. versai lies. inra. fr/en/sgap/equipes/cyto/arabido. htm. 
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1.2. Plant hormones 

Plant growth and development is regulated by signalling molecules such as 

phytohormones. Major classes of phytohormones include auxins, gibberellins, 

cytokinins, ethylene, brassinosteroids, abscisic acid and jasmonic acid. Each of these 

simple organic compounds (Figure 1-2) has specific functions in the regulation of plant 

growth. Auxins (IAA) strongly influences the development of both aerial and root parts. 

Gibberellins (GA) regulate germination, as well as shoot and root growth (Ariizumi and 

Steber, 2007; de Lucas et aI., 2008; Feng et at, 2008; Ubeda-Tomas et aI., 2008). 

Cytokinins (CK) regulate, in concert with auxin, cell division and differentiation at the 

root and shoot apex (DelIo loio et at, 2008; To and Kieber, 2008). Ethylene regulates 

flower development, fruit ripening and senescence (Yang et aI., 2008; Yang et aI., 

2010). Brassinosteroids (BR) regulate shoot elongation, male fertility and stress 

responses (Choe et at, 2002; Clouse et at, 1996; Li et aI., 2001). Abscissic acid (ABA) 

and its derivatives regulate resistance to drought and germination (Leon-Kloosterziel et 

aI., 1996; Ma et aI., 2009; Park et at, 2009). Jasmonic Acid (JA) regulates defence 

against insects and pathogens, wound healing, and pollen fertility (Liechti et aI., 2006; 

Xie et aI., 1998). 

These different classes of phytohormones transduce their signal using two different 

mechanisms: either protein degradation via the ubiquitination pathway (auxins, 

gibberellins, jasmonic acid and ethylene) or via kinases/phosphatases (cytokinins, 

brassinosteroids and abscissic acid). Using transcriptomic datasets, the effects of several 

hormones on gene expression revealed that their signalling pathways act on separate sets 

of genes with few common targets (Sanchez-Rodriguez et aI., 2010). Interestingly, many 

3 



honnonal biosynthetic and degradation genes are found amongst differentially expressed 

genes (Figure 1-2). A general consensus is that auxin centralises other hormonal signals 

and convert it into morphological changes (Jaillais and Chory, 20 I 0; Nemhauser et aI., 

2006). 

H H 

/ 
c= c 

/ 
H H 

dt-h OH 

ｈ H Ｇ Ｇ Ｈ Ａ ｘ ｾ ~

Figure 1-2 Interactions between signalling molecules in Arabidopsis. Lines with arrow head 
indicate a positive effect on hormone metabolism (up and/or down regulation of genes involved 
in biosynthesis or degradation respectively). Lines with blocked arrow head indicate a negative 
effect on hormone metabolism (up and/or down regulation of genes involved in degradation or 
biosynthesis respectively). Lines with diamond ends indicate an ambiguous effect on hormone 
metabolism. Reproduced from (Jaillais and Chory, 20 I 0). 
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1.3. Auxin 

The first description of auxin effects on plant growth was made by Charles Darwin in 

1880 when studying phototropism (Darwin, 1880). Although unaware that auxin was 

responsible for his observations, Darwin reported that phototropism requires the 

coordinated action of two separate zones: one at the shoot apex which perceives light, 

and another one, located below the apex, where differential cell growth takes place. This 

observation suggested that a signal was moving from the apex to the cells below. In 

1910, the term hormone was used for the first time by Hans Fitting to describe such a 

signal (Fitting, 1910). In 1928, Fritz Went was able to isolate the signal originally 

identified by Darwin, calling it auxin (from the Greek "auxein" which means "to grow") 

(Went, 1928). The chemical structure of Auxin was identified to be indole-3-acetic acid 

(IAA, Figure 1-2) by Kenneth Thimann's group in 1933 (Kogl et ai., 1933). Several 

chemical variants, which are structurally related to auxin, were shown to have similar 

effects on plant growth: for example, 2,4 D (2,4-Dichlorophenoxyacetic acid) and NAA 

(a-Naphthalene acetic acid) are two well-known synthetic auxins. 

In plants, auxin is primarily synthesised at the shoot apex and in young leaves but local 

synthesis occurs at the root apex and during specific developmental programs such as 

embryogenesis or lateral root formation (Woodward and Bartel, 2005). The hormone is 

then transported throughout the plant from synthesis sites to target sites (Vanneste and 

Friml, 2009). The transport of auxin leads to the formation of concentration gradients 

which are key in organogenesis programs (Benkova et ai., 2003). Intracellular auxin 

homeostasis is regulated by several pathways that conjugate, oxidised or convert IAA 

(Normanly, 2010). 

5 



1.4. Auxin synthesis and metabolism 

Five biosynthetic pathways leading to the formation of IAA have been identified in 

bacteria and plants (Normanly, 2010; Woodward and Bartel, 2005). The indole-3-

pyruvic acid (IPA) and the indole-3-acetamide (lAM)) pathways have been initially 

characterised in bacteria but several lines of evidence suggest they function in plants as 

well. The triptamine (TRM) and the indole-3-acetaldoxime (IAOx) pathways have only 

been identified in plants. These four pathways all derive from tryptophan (TRP-

dependant) but recent findings showed that there is an alternative route (TRP-

independent) that uses indolic tryptophan precursors (see Figure 1-3 for details). As 

these 5 biosynthetic pathways are used at different levels by diverging plants it appears 

that there is not a single main pathway but several. 

6 
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Figure 1-3 Auxin biosynthetic pathways in plants. The tryptophan dependant [IPA (green 
arrows), lAM (orange arrows), TAM (grey arrows) and IAOx (brown arrows)] and tryptophan 
independent (red arrows) pathways are shown. The glucosinolate pathway is highlighted in 
green. After the lAO x and TAM pathways converge, the common steps are shown with black 
arrows. Dashed arrows indicate that neither a gene nor an enzyme activity has been identified in 
Arabidopsis. Gene names are indicated in upper case italics and mutant genes are indicated in 
lower case italics. In the case of the Aldehyde oxidase, an enzyme activity has been proposed for 
the corresponding conversion, but a definitive gene assignment has not been made. (ANA) 
anthranilate, (PANA) 5-phosphoribosylanthranilate, (CADP) 1-( o-carboxyphenylamino )-1-
deoxyribulose-5-phosphate, (IGP) indole-3-glycerol phosphate, (TRP) tryptophan, (lAM) 
indole-3-acetamide, (IPA) indole-3-pyruvic acid, (IAAld) indole-3-acetaldehyde, (IAOx) indole-
3-acetaldoxime, (S-IAH-L-cys) S-(indolylacetohydroximoyl)-L-cysteine, (indole-3-T -OH) 
indole-3-thiohydroximate, (lG) indole-3-methylglucosinolate, (TRM) tryptamine, (IAN) indole-
3-acetonitrile, (DHCA) dihydrocamalexic acid. Adapted from (Woodward and Bartel, 2005) and 
(Normanly, 20 I 0). 
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A general feature of hormonal signalling pathways is a negative feedback on genes 

involved in biosynthesis and a positive feedback on genes involved in hormone 

degradation (Figure 1-2, (Jaillais and Chory; Nemhauser et aI., 2006)). In Arabidopsis, 

auxin treatment represses strongly genes involved in the glucosinolate pathway (the 

pathway is highlighted in green on Figure 1-3). Therefore, it is tempting to speculate 

that these genes are involved in auxin biosynthesis. Nevertheless, in the loss of function 

mutants surl and sur2 ((Boerjan et aI., 1995; Delarue et aI., 1998)) seedlings accumulate 

more auxin. Possibly, the enzyme that converts IAOx to IAAld (CYP71A13, (Nafisi et 

aI., 2007)) compensates surl or sur2 loss of function and results in an auxin 

overproduction phenotype. 

On the other hand, auxin treatment strongly induces genes encoding enzyme (GH3s) 

that catalyse auxin conjugation with several amino acids (Figure 1-4, Asp, Glu, Phe, 

Val, Leu, Trp, Ala) (Normanly, 2010; Woodward and Bartel, 2005)Figure 1-4. These 

modifications have diverse effects: Asp and Glu conjugates appear to be markers for 

IAA degradation, whereas Phe, Leu and Ala conjugates appear to be used for storage 

purposes (Bartel and Fink, 1995; Campanella et aI., 1996; Davies et aI., 1999; LeClere 

et aI., 2002; Ostin et aI., 1998). IAA-Trp conjugates are auxin antagonists, rendering 

seedlings insensitive to IAA and 2,4D when applied exogenously (Staswick, 2009). 

Auxin is not only conjugated to amino acids: Walz et aI. reported that an unidentified 

enzyme conjugates IAA with a protein in soybean (Walz et aI., 2002). 

The bio-active auxin (IAA) can also be converted to indole-3-butyric acid (lBA), and 

vice versa (Bartel et aI., 2001; Zolman et aI., 2008; Zolman et aI., 2007). The role of 

IBA in Arabidopsis is unclear but exogenous application of IBA triggers auxm 
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responses (Chhun et aI., 2003; Poupart et aI., 2005; Rashotte et aI., 2003). If it appears 

that these are partially due to the conversion of IBA to IAA, mutant analyses revealed 

that IBA regulates several processes, including lateral root formation, independently of 

IAA. Interestingly, GH3s can use IBA as a substrate as well, some of them having 

actually a higher affinity for IBA than IAA (Staswick et aI., 2005). 

IAA and IBA can both be conjugated with glucose which appears to be involved in 

inactivation (Jackson et aI., 2001; Szerszen et aI., 1994). In Arabidopsis, IAA is 

permanently inactivated by ring oxidation (oxIAA). IAA can also be oxidised when 

conjugated with amino acids or glucose which reinforces its inactivation (Barratt et aI., 

1999; Ostin et aI., 1998). Other modifications include hydroxylation of IAA conjugated 

with Phe or Val, conjugation of IAA with myo-inositol and IAA methylation. The role 

of these modifications is mainly for storage purposes whereas methylation has an 

unknown effect. 
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Figure 1-4 Metabolism of lAA. lAA can be converted to IBA and further conjugated via an 
amide linkage with several amino acids (green boxes). IAA can directly be conjugated with 
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Adapted from (Woodward and Bartel, 2005) and (Normanly, 2010). 
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1.5. Auxin transport 

Two types of auxin transport have been identified in Arabidopsis (Figure 1-5). The first 

one is mainly gravity mediated and regulates long distance movement of auxin via the 

phloem vessels from source (young leaves) to sink (root apex) tissues. The second one 

regulates local auxin redistribution mainly via active influx and efflux carriers and to a 

less extent via passive diffusion (Robert and Friml, 2009). 

Passive diffusion of auxin through the plasma membrane is due to its weak acidity 

(IAA's pKa is ±4.8) which allows protonated IAA to diffuse freely from the apoplasm 

(PH 5.5) into the cytoplasm (PH 7). Kramer and Bennett (2006). reported that passive 

diffusion oflAAH into the cell accounts only for a minor proportion (± 10%) of total 

auxin influx. 

Active uptake is mediated by specific proteins that belong to the super family of 

Auxin/Amino Acid Permeases (AAAP) symporters (Kerr and Bennett, 2007). There are 

4 auxin influx carriers encoded by the Arabidopsis genome termed AUXI and LAXI to 

3 (Swarup et aI., 2008). Mutations in AUXI results in agravitropic roots with reduced 

lateral root density (Bennett et aI., 1996). Quadruple loss of function mutants are not 

lethal but are severely affected in many developmental programs such as gravitropism, 

phototropism, lateral root initiation and emergence, root hair development and 

phyllotactic patterning (Bainbridge et aI., 2008; Bennett et aI., 1996; Jones et aI., 2008; 

Stone et aI., 2008; Swarup et aI., 2008). Hence, active auxin influx is not necessary for 

plant growth but is required for rapid responses to environmental cues. 
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Efflux of auxin is regulated by two distinct families of transporters: the ABCB/PGPs 

and the PINs (Friml, 2010). There are 22 PGPs encoded by the Arabidopsis genome, 3 

of which have been shown to be localised at the plasma membrane and to transport 

auxin: PGP1, PGP4 and PGP19 (Cho et aI., 2007; Geisler et aI., 2005; Petrasek et aI., 

2006). On the other hand, there are 8 PIN proteins (PINI to 8) encoded by the 

Arabidopsis genome,S of which (PINl-4 and PIN7) have been shown to be localised at 

the plasma membrane and to actively transport auxin out of the cell (Petrasek et aI., 

2006; Yang and Murphy, 2009). PINs are preferentially localised on one side of the cell 

(polar localisation) whereas PGPs are ubiquitously localised on the plasma membrane 

(apolar localisation). Therefore polar auxin transport (PAT) is predominantly directed 

by PIN localisation. The mechanisms underlying PIN localisation, recycling and activity 

have been extensively studied and are summarised in several recent reviews (Friml, 

2010; Grunewald and Friml, 2010; Petrasek et aI., 2006; Robert and Friml, 2009). 

Critically, PAT leads to the formation of auxin gradient that are important to regulate, 

amongst many processes, lateral root formation and leaf development. 
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Figure 1-5 Auxin transport in Arabidopsis. (a) Long distance transport of auxin starts from 
the young and developing leaves down to the apex of the root. (b) Cell to cell transport of auxin 
involves different classes of influx and efflux transporters as well as passive influx. (c) lAAH 
can freely diffuse through the plasma membrane but not IAA-. Adapted from (Robert and Friml , 
2009). 

1.6. Auxin response 

During the last decade, significant advances have been made to elucidate the molecular 

basis of auxin responses. It has been shown that the promoter of several classes of auxin 

inducible genes, such as SAURs (Small Auxin Up RNAs), GH3s and AuxJIAAs, 

contain repeats of a 6 nucleotide motif: GAGACA. The overall consensus sequence is 

GACA since there is more variability in the first and second nucleotide. Eight repeats of 

the 6 nucleotide motif confer auxin inducibility to a downstream reporter gene (DR5 

synthetic promoter) (Abel et aI., 1995; Abel et aI., 1994; Abel and Theologis, 1996). The 

sequence GAGACA is called an ARE for Auxin Response Element (Abel et aI., 1996; 

Ulmasov et aI., 1995). The DNA binding domain of a transcription factor, ARF I (Auxin 

Response Factor 1), was found to directly interact with the ARE (Ulmasov et aI., 
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I997a). Subsequently, 22 genes encoding ARFs were identified in the Arabidopsis 

genome (ARFI to 22). Apart from few exceptions (ARF3, 13 and 17), all the ARFs 

share 4 conserved domains: a VPlIABI3 like DNA binding domain at the N terminus, a 

middle region (MR) and two domains, called domain III and IV, at the C terminus 

(Hagen and Guilfoyle, 2002; Okushima et at., 2005; Tiwari et at., 2003; Ulmasov et at., 

1999a) (Figure 1-6). The MR domain determines whether the ARF activates (Q-rich, 

ARF5-8, ARFI9) or represses (S-rich, ARFI-4, ARF9-18, ARF20-22) transcription. 

This classification is subject to controversy since some genes are repressed or induced in 

arj7 and arf19 mutants for example, which are supposed to be two activating ARFs. 

Critically, ARF proteins do not regulate genes on their own but interact with themselves 

and with AuxIIAA proteins, a family of transcriptional repressors. These interactions are 

taking place through domains III and IV. Importantly, it is believed that the interaction 

between ARFs (whether both are activating, repressing or both) allow to fine tune gene 

expression depending on the genomic context of a gene which may explain some of the 

observations made in ARF loss of function mutants (Kim et at., 1997; Ouellet et at., 

2001; Ulmasov et at., 1997b). 

There are 29 AuxlIAAs encoded by the Arabidopsis genome (IAA 1 to 20 and IAA26 to 

34). AuxlIAAs are short living nuclear proteins that share two conserved domains 

(domains III and IV) with ARF (Ulmasov et at., 1999b). Besides, two additional domain 

are located at the N terminus of AuxlIAA proteins and are called domain I and II which 

repress transcription and regulate protein stability respectively (Ouellet et at., 2001; 

Tiwari et at., 2004; Worley et at., 2000) (Figure 1-6). 
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Figure 1-6 Structure of ARFs and AuxJIAA proteins. AuxilAAs are small proteins with an 
average molecular weight of 24kDa (minimum: lAA31 , 18kDa; maximum: lAA9 , 36kDa). 
ARFs are much bigger proteins with an averaged molecular weight of 77kDa (minimum: 
ARF13, 57kDa; maximum: ARF7, 128kDa). The schematics are not at the correct scale. 

Several mutants with severe auxin phenotypes were shown to bear mutations within the 

domain II of several AuxilAAs: axr5li aal (Yang et aI., 2004), shy2liaa3 (Tian and 

Reed, 1999), shy l li aa6 (Kim et aI., 1996), axr2-I1iaa7-1 (Nagpal et aI., 2000), 

bdlliaa12-1 (Hamann et aI., 2002), slr-lliaaI4-1 (Fukaki et aI., 2002), axr3-lliaaI 7-1 

(Rouse et aI., 1998), iaal8-1 (Uehara et aI., 2008), msg2-lliaaI9-1 (Tatematsu et aI., 

2004) and iaa28-1 (Rogg et aI., 2001). Time course experiments revealed that these 

mutations extend AuxlIAAs half-lives (Gray et aI., 2001; Worley et aI., 2000; Zenser et 

aI., 2001). Hence, this domain is usually referred to as a "degron" . Several studies 

suggest that auxin regulates stability of Aux/IAA protein. Auxin treatment promotes 

rapid degradation of luciferase and GUS reporters fused to an AuxlIAA domain II 

whereas stabilising mutations reduce or block auxin effects (Dreher et aI., 2006; Gray et 

aI., 1999; Gray and Estelle, 2000; Gray et aI., 2001). MG 132 (a proteasome inhibitor) 

treatments result in an increased stability of Auxi lAA protein and a decrease in auxi n 

15 



responsiveness suggesting that auxin mediates AuxlIAA degradation via the 

ubiquitinationlproteasome pathway (Ramos et ai., 2001). 

Interestingly, some AuxlIAAs have a modified (IAA31) or even no domain II at all 

(IAA20, IAA30, IAA32 and IAA34). It has been shown that IAA31 remains slightly 

sensitive to auxin levels whereas IAA20, IAA30, IAA32 and IAA34 are insensitive 

(Dreher et ai., 2006). Despite this intriguing property, no functions have been assigned 

to these particular AuxlIAAs. 

1. 7. Ubiquitination in plants: Importance of SCF complex and F -box 

E3s 

The ubiquitinationlproteasome pathway has been studied and described in great details 

since the identification of ubiquitin as a marker for protein degradation (Ciechanover et 

ai., 1982; Ciechanover et ai., 1984; Hershko and Ciechanover, 1986). The ubiquitin is a 

small peptide of 76 amino acids which is conserved in all eukaryotes and is expressed 

ubiquitously (Schlesinger and Goldstein, 1975; Schlesinger et ai., 1975). Addition of 

ubiquitin to a substrate requires the concerted activity of three enzymes (Ciechanover et 

ai., 2000; Hartmann-Petersen et ai., 2003; Wilkinson, 2000). The first enzyme is an 

ubiquitin activating enzyme, or El, that activates ubiquitin moieties using ATP and 

covalently binds it on a conserved cysteine residue (Schulman and Harper, 2009). The 

activated ubiquitin is then transferred to an ubiquitin conjugating enzyme, or E2, again 

on a conserved cysteine residue via a trans(thio )esterification reaction (Fang and 

Weissman, 2004). The last step consists of the transfer of the ubiquitin moiety to a target 

protein. The target specificity is given by an ubiquitin ligase enzyme or E3. Different 
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types of E3s have been identified: some of them covalently bind ubiquitin on a 

conserved cysteine before transferring it to the substrate (e.g. the HECT (Homologous to 

E6AP Carboxyl Terminus) domain like E3s) (Rotin and Kumar, 2009), whereas others 

bring the substrate and the E2 together but never bind the ubiquitin such as F-box and 

RING finger E3s) (Deshaies and Joazeiro, 2009; Stone et aI., 2005) (Figure 1-7). 
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Figure 1-7 The ubiquitination proteasome pathway. 3 enzymes (EI , E2 and E3) act in 
concert to catalyse the addition of single or multiple ubiquitin moieties onto targeted substrate. 
The E I and E2 activates and conjugates the ubiquitin whereas the E3 brings the substrate for 
ubiquitination. Poly ubiquitin chains are a signal for protein degradation whereas single 
ubiquitin is usually a signal for sub cellular localisation. DUB, Deubiquitinating enzyme, UBP, 
Ubiquitin Binding Protein. 

In plants, the ubiquitination machinery is implicated in many if not all developmental 

processes including light sensing (Henriques et aI., 2009), auxin signalling (Vanneste 

and Friml , 2009), jasmonate signalling (Gfeller et aI., 2010), abiotic stress signalling 

(Lee and Kim , 2011), low temperature sensing (Zhou et aI., 2011), and many others. 

Genes encoding ubiquitination machinery proteins account for 5% of all Arabidopsis 

genes: 2 genes encode E Is, 37 encode E2s and more than 1000 encode E3s (Bachmair et 
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ai., 2001). The two E 1 s are redundant as single loss of function have none or very mild 

phenotypes and double mutants are embryo lethal (Goritschnig et ai., 2007). Based on 

their amino acid content the 37 E2s can be classified into three (and more) categories 

(Bachmair et ai., 2001; Kraft et ai., 2005). Despite showing important differences, 

especially at the Nand C terminus, few E2s have been assigned to a specific function. 

Only two of them, UBC 1 and UBC2, were shown to have a role during the switch from 

vegetative to flowering phase (Xu et ai., 2009). This observation suggests that E2s, like 

Els, share a high degree of redundancy. On the other hand, the E3 superfamily is the 

largest and most complex family of proteins in Arabidopsis. Of all the sub families of 

E3s identified, the F-box is by far the most represented with about 700 members (Gagne 

et aI., 2002; Lechner et aI., 2006; Somers and Fujiwara, 2009). 

From studies in fungi and mammals, F-box proteins act in a multimeric complex called 

the SCF complex, which comprises four core sub-units: a Skpl, a Cullin, a RING-like 

protein and an F box protein (Bai et aI., 1996; Deshaies, 1999; Ho et aI., 2006; Patton et 

aI., 1998; Tyers and Jorgensen, 2000; Willems et aI., 2004; Zhang et aI., 1995). Genes 

encoding the various subunits are also known in Arabidopsis (Gray et aI., 1999): there 

are 21 Skpl (named ASK for Arabidopsis Skpl), at least 5 cullins (but only two with 

demonstrated activity, CULl and CUL2a), two RING-like protein (RBXl and RBXlb) 

and almost 700 F-box proteins (del Pozo et aI., 2002a; del Pozo et aI., 2002b; Risseeuw 

et aI., 2003; Shen et aI., 2002; Wang et ai., 2003; Xu et aI., 2002). 
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1.8. SCFTIR1 regulates auxin response 

Mutations in components of the SCF complex, such as ASK1 (askI-1), CULl (culI-

I/axr6-I) and RBX1 (axrI-I2), affect auxin responses in a similar way as loss of 

function mutations in TIR1, an E3 F-BOX protein (tirl-I) (Hellmann et aI., 2003; 

Leyser et ai., 1993; Quint et ai., 2005; Ruegger et ai., 1998; Zhao et ai., 1999). 

Furthermore, these 4 proteins can be co-immuno-precipitated in a large complex 

reinforcing the idea that they form an active SCF complex, named the SCFTIR1 complex 

(Gray et aI., 2001). 

The active SCF complex is assembled around ASK1 which interacts with TIR1 at its C 

terminal and CULl at its N terminal (Gray et aI., 1999). The role of CULl has been 

difficult to identify as loss of function alleles lead to embryo arrest (del Pozo and 

Estelle, 1999). The identification of a weak CUL 1 allele (cull-6) and a conditional 

CULl mutant (axr6-2IetaI) showed that the protein plays a critical role to regulate SCF 

activity (Moon et ai., 2007; Quint et ai., 2005). CULl is modified by a peptide, Rub (for 

Related to Ubiquitin), via an enzymatic cascade similar to ubiquitin. An El, formed of 

two subunits (AXRl and ECR1), activates the small Rub peptide and transfer it to an 

E2, RCEI (Rub Conjugating Enzyme) (del Pozo et ai., 2002b; Dharmasiri et ai., 2003). 

The Rub moiety is then added to CULl via a Rub E3 ligase, RBXl (Gray et ai., 2002). 

Removal of the Rub moiety is catalysed by another complex, formed of several sub 

units and called the COP9 Signalosome (CSN). Mutations in any of these proteins lead 

to auxin resistant phenotypes, generally similar to tirl-I (Gray et ai., 2002). Thus it 

seems that the Rub modification of CUL 1 is important to regulate SCF activity. Indeed, 
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overexpression of RBX 1 lead to an increase in the rub modified CUL lIunmodified 

CULl ratio which in turns tend to increase auxin sensitivity. 

In 2005, the link between the SCFT1R1 complex and AuxilAA stability was made 

(Dharmasiri et aI., 2005; Kepinski and Leyser, 2005). Pull down experiments showed 

that TIRI interact with AuxilAA proteins via their domain II and, critically, that this 

interaction requires auxin. Gain of function mutations in domain II blocks this 

interaction which leads to AuxilAA stabilisation. More recently, the resolution of the 

crystal structure of a domain II peptide in a complex with TIRI and auxin showed that 

the hormone acts as molecular glue between TIRI and the AuxlIAAs (Tan et aI., 2007) 

and that it requires another cofactor, namely IP6 (inositol hexakisphosphate). Finally, it 

is only recently that poly-ubiquitinated AuxlIAAs were observed in protoplasts (dos 

Santos Maraschin et aI., 2009) confirming that these proteins are degraded via the 

ubiquitinationlproteasome pathway. 

A model that integrates these observations has been proposed to explain how auxin 

regulates gene expressions. At low auxin concentration AuxilAA proteins are stabilised 

and interact with ARF transcription factors with their domains III and IV and with 

another family of proteins termed TOPLESS via an EAR domain (Szemenyei et aI., 

2008). ARFs that bind the promoter of auxin regulated genes are thus kept in an inactive 

state. An increase in auxin cellular content is perceived by the auxin receptors 

TIRII AFB 1-3, which in tum interact with the domain II of AuxlIAAs proteins and flag 

them up for degradation by the 26S proteasome. The ARFs now become active and lead 

to changes in gene expression (Figure 1-8). 
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Figure 1-8 Model of the auxin response machinery. (A) Auxin acts as a molecular glue 
between AuxilAAs repressors and the SCFTlRI complex. The subsequent ubiquitination of 
AuxilAAs leads to their degradation by the proteasome. The activity of the SCF complex is 
regulated by cycles of Neddylation (NEDD8/RU8). The Neddylation pathway is very similar to 
the ubiquitination pathway shown on Figure 1-7. An E I (composed of two proteins, ECR I and 
AXR I) , an E2 (RCE I) and one E3 (REX I) catalyse the addition of NEDD8 moieties on the 
CUL subunit. Removal of NEDD8 is catalysed by the CSN complex. Cycles of addition and 
removal of NEDD8 either activates or repress the complex respectively. One protein, CANDI, 
was shown to interact with the CUL subunit preferentially when the latter is not neddylated. (B) 
If auxin concentration is low, AuxlIAAs are stabilised and together with TOPLESS take over 
ARF function in regulating gene expression. (C) If auxin concentration is high, AuxlIAAs 
turnover is increased and ARFs are free to regulate the expression of downstream genes. 
Adapted from (Weijers and Jurgens, 2004). 
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1.9. Lateral root development 

Auxin and its derivatives are involved in root growth and root branching, flower and 

fruit development, phototropism and gravitropism, as well as many other processes 

(Davies, 1995; Quint et aI., 2005; Tanaka et aI., 2006; Teale et aI., 2006; Woodward and 

Bartel, 2005). At the cellular level auxin regulates cell division, elongation and 

differentiation as well as cell polarity. In the framework of my thesis, I focussed my 

research on the role of auxin during the formation of lateral roots (LRs). 

Arabidopsis is very well suited for studies on root developments because: the 

Arabidopsis root has a simple organisation, made up of three layers of external tissues 

(epidermis, cortex and endodermis) and one layer of internal tissue (pericycle) 

surrounding the vascular bundle. Furthermore, the root is transparent making 

microscopic analysis convenient. 

LR formation is a continuous process which is divided into eight stages (Malamy and 

Benfey, 1997) . The first stage is the initiation of a new lateral root primordium (LRP). 

This event takes place in the peri cycle cells that are opposite to the xylem poles and is 

regulated by auxin (De Smet et aI., 2007; De Smet et aI., 2006). The hormone triggers 

an asymmetric cell division of two peri cycle cells which give rise to a primordium 

composed of a pair of small and a pair of large daughter cells (De Smet et aI., 2008) 

(Figure 1-9). The two smaller cells then form a two-layer primordium after a round of 

periclinal cell division (stage II). Subsequently, coordinated cell divisions lead to the 

formation of a dome-shaped primordium (stage VI) (Dubrovsky et aI., 2001). Genes 

encoding auxin efflux carriers, such as PINl, PIN2, PIN3, PIN4 and PIN7, regulate the 
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formation of an auxin gradient with its maximum at the apex of the primordium (Figure 

1-9) (Benkova et al., 2003; B lilou et al., 2005). This gradient is required for the correct 

patterning of the primordium as in some PIN multiple mutants combinations 

primordium morphology is severely affected (Benkova et al., 2003). 

II III IV V VI VII VIII 
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o Cortex 0 Stele 

o Endodermis • ｭ ｾ ｦ ｾ ｾ ｭ m

Figure 1-9 The 8 stages of LRP development. (A) Arabidopsis root structure with the 
pericycle (purple), layer where LRs initiates. (B) Primordium morphology at each stage and (C) 
location of auxin maximum (adapted from (Benkova et aI., 2003». (D) Picture of a LRP stained 
with Aniline blue (courtesy of I. Casimiro). Reproduced from (Peret et aI., 2009). 

In the coming chapter, the role of auxin during primordium emergence will be dissected 

using genetics and pharmacological approaches. Emergence is the process by which a 

developing LRP breaks through the three overlying layers of tissues, which are in 

Arabidopsis the endoderm is, the cortex and the epidermis. A key gene during this 

process is LAX3 (Swarup et al., 2008). 
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1.10. Aims and objectives 

My project has three main objectives: 

(1) The identification of key transcription factors involved in the LAX3 regulatory 

network. The aims are to: 

• Determine the precise dynamics of LAX3 auxin induction. 

• Determine which transcription factor(s) control LAX3 auxin inducibility. 

• Identify which cis active element present in the promoter of LAX3 are involved 

in its regulation. 

(2) The characterisation of inhibitors of LAX3 auxin induction identified using a 

chemical genetics approach. The aims are to 

• Characterised the effects of the positive hits identified on lateral root 

development. 

• Select and study further the effects of a promising family of inhibitors on plant 

development. 

• Study the relationship between structure and activity of the selected inhibitors. 

(3) The identification of the target(s) of the selected family of inhibitors. The aims are 

to: 

• Dissect the effects of this family of inhibitors on the response to auxin using 

transcript profiling. 

• Determine the effects of the inhibitors on components of the auxin response 

machinery 

• Generate a model of the inhibitor mode of action. 
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Chapter 2 : ARF7 and ARF19 regulate auxin inducible LAX3 

expression in an antagonistic manner 

2.1. Abstract 

LAX3 is an auxin inducible gene which plays a key role during lateral root emergence. 

Preliminary experiments reported that LAX3 is induced by auxin in an ARF7/ARF19 

dependent manner. The regulation of LAX3 was dissected using gene expression studies, 

mutant analysis, promoter mining tools and promoter mutations. ARF7 and ARF 19 

positively and negatively regulate LAX3 expression, respectively. The LAX3 promoter 

does not appear to be a direct target for ARF7 or ARF 19 as mutations in an Auxin 

Response Element (ARE) do not block LAX3 auxin inducibility. Instead, an intermediate 

transcription factor(s) may function to induce LAX3 expression and another one, 

potentially a repressing ARF, may function to repress LAX3 expression. These two 

antagonistic pathways define LAX3's spatial, temporal and strength of expression. 

Finally, several putative transcription factors were identified that could, based on their 

expression patterns, directly regulate LAX3. 

2.2. Introduction 

The hormone auxin regulates many different plant developmental processes (Delker et 

aI., 2008; Vanneste and Friml, 2009; Woodward and Bartel, 2005). Notably, the effects 

of auxin on root development have been described in great details using the model plant 

Arabidopsis thaliana (Overvoorde et aI., 2010). Functional studies in Arabidopsis have 
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revealed that the hormone is involved in gravitropism, root growth, the formation of root 

hairs and lateral roots (Blilou et aI., 2005; Casimiro et a!., 2001; Delio loio et a!., 2008; 

Hobbie and Estelle, 1995; Knox et a!., 2003; Tian and Reed, 1999). 

During lateral root formation, auxin acts at several developmental stages (Casimiro et 

a!., 2003; Casimiro et a!., 2001; Peret et a!., 2009a). The hormone regulates initiation 

and patterning processes via its accumulation in specific cells (Benkova et aI., 2003; 

Dubrovsky et aI., 2000; Vanneste et a!., 2005). 

Auxin is not only redistributed within the primordium but diffuses into cell within 

overlying tissues. This movement of auxin was recently demonstrated to be important 

for primordium emergence (Swarup et aI., 2008). (Swarup et aI., 2008), revealed that the 

hormone induces the expression of a large number of genes including the auxin influx 

carrier LAX3 in several cortical and epidermal cells overlying the primordium. In these 

cells, LAX3 activity leads to the accumulation of more auxin which is essential to 

activate the expression of genes involved in cell separation. A cocktail of cell wall 

remodelling enzymes are produced and secreted by the overlying cells which assist 

primordium to transit through parental root tissues. In summary, auxin is actively 

transported into the outer tissues where it triggers a cascade of responses which allows 

plants to tightly control emergence (Peret et aI., 2009b). 

Auxin regulates the expression of many genes depending on its concentration (Guilfoyle 

and Hagen, 2007; Lokerse and Weijers, 2009; Tromas and Perrot-Rechenmann, 2010). 

Auxin regulated genes usually possess one or several Auxin Response Elements (AREs) 
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within their promoter (Abel et aI., 1996; Ulmasov et aI., 1995). These motifs are bound 

by transcription factors termed Auxin Response Factors (ARFs) via a specific domain 

located at the N terminus (Ulmasov et aI., 1997). When bound to DNA, ARF proteins 

can homo or hetero-dimerise via two conserved domains located at the C terminus 

(Ulmasov et aI., 1999). The AuxlIAAs also possess these two domains which allow 

them to interact with the ARFs (Tiwari et aI., 2003). AuxlIAAs are repressors which 

prevent ARFs to regulate gene expression (Tiwari et aI., 2004; Tiwari et aI., 2001). 

AuxlIAAs do this by interacting with another family of proteins termed TOPLESS 

(TPL), which increase their repressor activity (Szemenyei et aI., 2008). Thus, AuxlIAAs 

are central in modulating ARF activity and, as a consequence, the expression of 

downstream genes. 

Auxin directly regulates levels of AuxlIAA proteins via its co-receptor TIRI/AFBI-5 

(Dharmasiri et aI., 2005; Kepinski and Leyser, 2005; Tan et aI., 2007). The TIRlIAFB 

genes encode F-BOX ubiquitin E3 ligases which are component of an SCFTIRIIAFB 

complex. Auxin acts as a molecular glue between TIRlIAFBs and the AuxlIAAs, 

greatly promoting the strength and stability of their interaction. As a result of 

TIRI/AFBs activity, AuxlIAAs are poly-ubiquitinated and subsequently degraded by the 

proteasome (dos Santos Maraschin et aI., 2009). An increase in auxin concentration will 

therefore reduce AuxlIAA levels and release the ARFs to activate target genes (Tiwari et 

aI.,2003). 
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23 ARFs are encoded by the Arabidopsis genome, which are roughly separated into two 

functional groups: the putative activating ARFs (ARF5-8 and ARFI9) and the putative 

repressing ARFs (all the others) (Okushima et aI., 2005; Tiwari et aI., 2003; Wilmoth et 

aI., 2005). Six of them have been shown to regulate primary root and lateral root 

development (ARF3, ARF7, ARFIO, ARF16, ARF17 and ARFI9) (Mallory et aI., 2005; 

Okushima et aI., 2005; Wang et aI., 2005; Yoon et aI., 2010). Two of them, ARF7 and 

ARF19, appear to be most important for root development as arj7arf19 double mutants 

exhibit agravitropic roots with no emerged lateral roots 14 days after germination 

(Fukaki et aI., 2006; Okushima et aI., 2005; Wilmoth et aI., 2005). These phenotypes 

have not been observed to that extent in any other single or combinations of ARF 

mutants. ARF7 and ARFl9 have been shown to have largely overlapping role, 

regulating most of the auxin responsive genes in the Arabidopsis root, (Okushima et aI., 

2005; Swamp et aI., 2008). 

29 AuxlIAAs are encoded by the Arabidopsis genome, of which seven have been shown 

to regulate primary root and lateral root development (IAAl, IAA3, IAA14, IAAI8, 

IAAl9 and IAA28) (Fukaki et aI., 2002; Overvoorde et aI., 2005; Rogg et aI., 2001; 

Tatematsu et aI., 2004; Tian and Reed, 1999; Uehara et aI., 2008; Yang et aI., 2004). The 

role of IAA 14 has been particularly well described during lateral root formation (Fukaki 

et aI., 2005; Fukaki et aI., 2006; Okushima et aI., 2005). The gain of function mutant 

iaa14ls1r-l has a severe root phenotype quite similar to arj7arf19 double mutants. This 

observation correlates with similar deleterious effects of the slr-l mutation on gene 

expression (Vanneste et aI., 2005). 
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Primary responsive genes are generally rapidly induced or repressed due to the very fast 

turnover of Aux/IAAs proteins in the presence of auxin (Dreher et aI., 2006; Ramos et 

aI., 2001; Tiwari et aI., 2001; Worley et aI., 2000; Zenser et aI., 2003). These genes do 

not require de novo protein synthesis as they are induced in the presence of auxin and 

cycloheximide (CHX), a potent translation inhibitor (Koshiba et aI., 1995). Despite these 

recent advances, regulation of secondary (or late) auxin responsive genes, which are not 

direct targets of an ARF-AuxlIAA pair and are not induced in presence of auxin and 

CHX, have proved more elusive (Baumann et aI., 1999; Inukai et aI., 2005; Lee and 

Kim, 2010; Lee et aI., 2009; Okushima et aI., 2007; Shin et aI., 2007; Xie et aI., 2000). 

Whilst several families of transcription factors have been identified as responsive to 

auxin (LBDs (Lateral organ Boundaries Domain), HB (Homeo Box), DOF (DOF 

domain)), very few downstream targets genes or developmental processes have been 

defmed to date. 

In this chapter, I dissect the transcriptional regulation of LAX3 by auxin. LAX3 is shown 

to be a late auxin responsive gene that requires the de novo synthesis of primary auxin 

responsive genes. Using promoter mining tools, a selection of cis acting regulatory 

elements were identified within the LAX3 promoter which were functionally 

characterised employing promoter deletions and point mutations experiments. These 

results suggest two ARF pathways, one positive and one negative, which regulates 

LAX3. Finally, transcriptomics datasets were used to identify putative transcription 

factors that function as signalling intermediates between ARF7 and LAX3. 
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2.3. Material and methods 

2.3.1. Materials 

2.3.1.1. Chemicals 

Indole-3-Acetic Acid (IAA) and a-Naphthalene acetic acid (NAA) were purchased from 

Sigma, Cycloheximide (CHX) from VWR International Ltd. IAA and CHX were 

dissolved in 100% EtOH, NAA was dissolved in DMSO. Plant seeds were sown on liz 

MS medium (Murashige and Skoog, 1962) (Sigma) (2.l7g salts/L), at pH5.7 solidified 

with 1 % bacto-agar (Appleton Woods). 

2.3.1.2. Seeds 

The arj7arf19 double mutant (in col-O background) was kindly provided by Dr. Hidehiro 

Fukaki (University of Kobe, Japan). 

2.3.1.3. Primers used for LAX3 promoter deletions and point 

Primer name 
Lx3-R2 
(KPN I)-Lx3-22 

(KPN I)-Lx3-23 

(KPN I)-Lx3-24 

Lx3-25 

Lx3-26 

mutations. 

Sequence (5'->3') 
ttctaagtaattccctgc gacc 

(CCGGT ACC)tttctaagaaattagtgggtta 

(CCGG T ACC)aatatgttttattcattgtttc 

(CCGGT ACC)atataattaacaatctcaaacc 

tttctaagaaattagtgggttaaataaagc 

agtctcctttttagccccatgcttttacaatgg 
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Primer name 
qCTRLI-F 
qCTRLI-R 
qGH3.1-F 
qGH3.l-R 
qLAX3-F 
qLAX3-R 
qARFI9-F 
qARFI9-R 

2.3.1.4. Primers used for RT qPCR 

agtggagaggctgcagaaga 
ctcgggtagcacgagcttta 
aacttatgccgaccattaaagaa 
tctagacccggcacatacaa 
tcaccattgcttcactccttc 
aagcaccattgtggttggac 
caccgatcacgaaaacgata 
tgttctgcacgcagttcac 

2.3.2. Methods 

2.3.2.1. Seed sterilisation and seedling growth 

Seeds were surface sterilized for 5 minutes in 50% bleach, 0.1 % triton X-IOO then 

washed three times with sterile ddH20. Seeds were stratified at 4° for 2 days to 

synchronise germination. 5 days after germination, 100 seedlings were transferred onto 

solid agar plates containing the indicated chemicals (lAA, NAA or CHX) for the 

indicated length of time. 

2.3.2.2. Transformation vectors and construction of transgenic plants 

To create point mutations, the LAX3 promoter was cloned from pENTRII-LAX3-YFP 

(Swamp et aI., 2008) into pBluescript KM+ (Invitrogen) using unique KpnI and SpeI 

restriction sites. The plasmid was PCR amplified using primers Lx3-25 and Lx3-26, 

which were designed to modify a single nucleotide within the auxin response element 

(GAGACA to GAGACT). PCR amplification was carried out using Pfx proofreading 

DNA Polymerase. Purified PCR products were digested with dpnI, treated with T4 
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Polynucleotide Kinase (NEB) and ligated with T4 Ligase (NEB). Point mutated 

promoters were cloned back into pENTRII-LAX3-YFP and sequenced to check no 

other mutations were created during the PCR. 

For PCR generated promoter deletions, a combination of primers Lx3-R2 and (KpnI)-

Lx3-22 for ｾ Ｒ Ｌ , (KpnI)-Lx3-23 for ｾ Ｔ 4 or (KpnI)-Lx3-24 for ｾ Ｕ 5 were usd. PCR 

amplification was carried out using Pfx proofreading DNA Polymerase. Purified PCR 

products were digested with dpnI and cloned into pENTRII-LAX3-YFP using KpnI and 

SpeI restrictions sites. 

For deletions generated using restriction enzymes, KpnI and MunI for ｾ ｉ I or only 

BamHi for ｾ Ｓ 3 were used. The correct band was gel purified, if necessary 3' overhang 

were filled using T4 DNA Polymerase (NEB), and both fragments ligated using T4 

Ligase. 

Constructs were then cloned in the binary pGWB7 vector using the Gateway LR 

reaction (Invitrogen). This vector was transformed into Agrobacterium tumefaciens 

strain C58 and finally transformed into Arabidopsis thaliana awe1 lax3 double mutants. 

At the TI, at least 20 lines were selected for each construct. 3 lines segregating % for 

KanR at the T2 were kept to get homozygous T3s. All the lines used in this analysis have 

been selected following these criteria except for two lines, IVMI-I#2-I and #6-3 which 

were 100% homozygous at the T2 (more than one insert). All enzymes were purchased 

from NEB or Invitrogen and were used following manufacturer recommendations. 
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2.3.2.3. Histology and histochemistry 

GUS activity was revealed by incubating seedlings in a phosphate buffer (SOOmM, pH 

7) containing O.S mM potassium ferricyanide (K3[Fe(CN)6]), O.S mM potassium 

ferrocyanide Ｈ ｾ ｛ ｆ ･ Ｈ ｃ ｎ Ｉ Ｖ ｝ Ｉ Ｌ , 1 mM ethylenediaminotetraacetic acid (EDT A pH 8), O.S % 

(v/v) Triton X-I00 and 1 mM X-bromo-4-chloro-3-indolyl B-D-galactopyranoside 

(Sigma) (X-Glc) at 37° for 1 hour. X-Glc was initially dissolved in 100% 

dimethylformamide (DMF). After GUS staining, seedlings were cleared for at least 12 

hours in 260% chloral hydrate in 33 % glycerol (all chemicals were purchased from 

Fischer Scientific and Sigma). 

2.3.2.4. Confocal microscopy 

Confocal microscopy was perfonned using a Leica SP2 confocal laser scanning 

microscope (Leica Microsystems). Cell walls were stained using propidium iodide (10 

Ilg/ml) (Sigma). Scanning settings were optimised and kept unchanged throughout the 

experiment. Fluorescence was quantified using Leica SP2 Image Analysis software and 

figures created using Adobe Photoshop (version 7.01; Adobe Systems) and Microsoft 

PowerPoint 2007 (Microsoft Corporation, Redmond, USA). 

2.3.2.5. RNA extraction and RT qPCR 

RNA was extracted from plant tissues using Trizol Reagent (Invitrogen) and cleaned up 

using the RNeasy kit (Qiagen). Poly(dT) cDNA was prepared from O.S Ilg total RNA 

with Superscript II reverse transcriptase (Invitrogen) and analyzed on a LightCycler 480 

apparatus (Roche Diagnostics) with the Quantace SYBRGREEN mix (Quantace) 
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according to the manufacturer's instructions. Targets were quantified with specific 

primer pairs designed with the Universal Probe Library Assay Design Center (Roche 

Applied Science). All individual reactions were done in quadruplicate and data were 

analyzed with Microsoft Excel 2007 (Microsoft Corporation, Redmond, USA). 

Expression levels were normalized to AtlG04850 (CTRL1, thanks to Tara Holman for 

its sequence). 

2.3.2.6. Promoter mining tools 

Database name Website 
PlantCare 
(Rombauts et aI., 1999) htto:llbi 0 informatics. os b. u gent. be/webtoo I sip I antcare/htm II 
PLACE 
(Rigo et aI., 1998) htto:llwww .dna.affrc. go. io/PLA CEI signalscan.html 
AtCis (Athena) 
(Davuluri et aI., 2003) htto:llwww.bioinformatics2.wsu.edu/cgi-binl Athena/cgi/home,pl 

Table 2-1 Web-based cis-acting regulatory elements mining tools 

2.3.2.7. Picture analysis 

Root lengh was measured using ImageJ (ImageJ 1.40g). 

2.3.2.8. Phylogenetic trees and heat maps 

Gene families were obtained from the Plant Transcription Factor Database 

(http://plntfdb.bio.uni-potsdam.de/v3.0/, (Perez-Rodriguez et ai., 2009)). Protein sequences were 

retrieved from TAIR (http://www.arabidopsis.org/.(Swarbrecketai..2007)).aligned using 

clustal X2 (Larkin et ai., 2007) and the phylogenetic trees were drawn using Dendroscope 

(Huson et ai., 2007). Heat maps were generated using Microsoft Excel 2007 (Microsoft 

Corporation, Redmond, USA). The number shows the fold change of the indicated gene in 
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the cases where there is a significant change and the expression is above background. If 

the gene is absent from the microarray chip used (ATHl) the cell is filled in black. 

There are two distinct heat maps: one for the four Okushima datasets (WT, arj7, arf19 

and arf7arf19 treated with IAA) and one for the NAA treated WT roots. The heat maps 

consist of a gradient of red (highest value) to blue (lowest value) either for each gene 

separately (Okushima datasets) or either for all the genes (NAA dataset). For the 

Okushima heat map, when a gene changes its expression in only genotype it appears in 

red even if it is down-regulated. The heat map for the last dataset (NAA) is set on red for 

the gene with the highest induction fold and blue for the gene with the highest repression 

fold. If the gene is present on the lateral root emergence dataset (LRED), the last box 

appears in white. FC: Fold Change. 

2.3.2.9. Microarray experiment set up 

Col-O Arabidopsis seeds were sown on plates containing NPA (10 /lM). 5 days after 

germination, seedlings were transferred onto plates containing NAA at 10/lM for 6 

hours and RNA was extracted as described before. Hybridization of the RNAs on the 

Affymetrix ATHI chips was performed at NASC (Nottingham Arabidopsis Center). 

2.3.2.10. Microarrays data analysis 

Data were normalised from .cel files using the RMA protocol within RlBioconductor 

(Gentleman et aI., 2004; Team, 2007). Further analyses were performed using Excel 

2007 (Microsoft Corporation, Redmond, USA). Differentially regulated loci had a fold 

change greater than 1.5 and a Benjamini and Hochberg False Discovery Rate of 0.05 (or 
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5%) (Benjamini and Hochberg, 1995). Data is the average of 3 biological replicates per 

treatment (NAA on Col-a) or of 2 biological replicates per treatment (IAA with Col-

O/arj7/arJ19). 
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2.4. Results 

2.4.1. LAX3 is not a primary auxin responsive gene 

To determine the kinetics of LAX3 mRNA induction by auxin, WT seedlings were 

treated with exogenous auxin (1 flM IAA) then sampled at different time points. The 

expression levels of LAX3 and of two primary auxin responsive genes, GH3.1 and 

ARF19 were then quantified by RT qPCR. Figure 2-1 (A) reports that LAX3 starts to be 

induced after 180 minutes and its expression peaks after 720 minutes of treatment. In 

contrast, GH3.1 and ARF 19 are induced within 15 and 30 minutes of auxin treatment 

respectively (inset in Figure 2-1 A) whilst their expression peaks after 300 minutes. The 

two hours delay prior to LAX3 induction suggests that it is a late auxin responsive gene, 

which requires the de novo translation of a transcription factor in order to be activated. 

To test that, WT plants were treated with IAA (lflM) and with or without CHX (50 flM) 

for different lengths of time and the mRNA levels of the same genes were determined by 

RT qPCR. Figure 2-1 (B) shows that in presence ofIAA and CHX, LAX3 mRNA is not 

induced, even after 40 hours, whereas GH3.1 and ARF19 are still induced. Taken 

together, the results show that LAX3 is a secondary auxin responsive that requires de 

novo translation of a transcription factor(s) to be induced. In this chapter, this unknown 

transcription factor is referred to as "Transcription Factor X" or TFX. 
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Figure 2-1 LAX3 is not a primary auxin responsive gene. (A) Dynamics of LAX3, GH3.1 and 
ARF 19 induction by auxin (up to 18 hours). Inset shows early time points (0, 5, 15, 30 and 60 
minutes). (B) Dynamics of LAX3, GH3.1 and ARF19 induction by auxin with or without CHX. 
Error bars on all the charts show the SD of the mean offour technical replicates. 
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2.4.2. Bioinformatics analysis of the LAX3 promoter sequence 

To provide insights into which gene family TFX may belong to, promoter mining tools 

were used to look for auxin responsive motifs within the 2kb promoter of LAX3 (Table 

2-1). Using three different databases, 11 non-overlapping cis-acting elements, which 

correspond to 7 different motifs due to multiple occurrences of site 1 (3 times), site 2 (2 

times) and site 7 (2 times), were identified (Table 2-2). All of these motifs were 

previously shown to be important for the auxin responsiveness of a downstream gene. If 

available, the transcription factor associated with the binding site is indicated on Table 

2-2. Notably, there is an ARF binding site (ARE, motif 5) and two Oof domain 

transcription factor binding sites in tandem (motif 7). 

Motif # and Reference Name Sequence Distance TF associated 

1 AuxinRR GGTCMAT -1520, Unknown 
(Sakai et aI., 1996) -371 

2 CATATG CATATG -1475, Unknown 
(Xu et a!., 1997) -727 

3 ASFI TGACG -1349 NtTGAla, 
illenfey and Chua, 1990) bZIP TF 

4 TGA- AACGAC -1303 Unknown 
(Pastuglia et a!., 1997) element 

5 ARF TGTCTC -936 ARFTF 
Ulmasov et aI., 1997) binding site 

6 Auxin RR AAGGAC -581 Unkown 

(Bai et a!., 2005) 
7 NtBBFl ACTTTA -426, NtBBFl 

(Baumann et aI., 1999) -419 DOFTF 

Table 2-2 The LAX3 promoter contains 7 auxin responsive motifs. Details of the promoter 
mining tools used can be found on Table 2-1. Name: Name of motif. Distance: Distance to ATG. 
TF: Transcription Factor. Nt: Nicotiana tobacum. 
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2.4.3. Antagonistic regulation of LAX3 by ARF7 and ARF19 

ARF7 and ARF19 are the two main activating ARFs expressed in the root (Okushima et 

aI., 2005). They have been shown to regulate LAX3 but their individual roles have not 

been determined (Swarup et aI., 2008). ARF 19 could be TFX for the following reasons: 

First, ARF19 is a primary auxin responsive gene (Figure 2-1). Secondly, the gene is 

expressed in cells overlying a primordium just where LAX3 is expressed. Thirdly the 

LAX3 promoter contains an ARF binding site (Table 2-2). We therefore hypothesised 

that ARF19, which is induced by auxin in an ARF7 dependent manner, binds LAX3's 

ARE and activates its expression. If this is the case, then we expect LAX3 to be auxin 

insensitive in both arj7 and arf19 single mutants. 

To test this model, the double arj7arf19 mutant was crossed with two reporter lines, 

LAX3::GUS and LAX3:LAX3-YFP and the progenies of all the possible genotypes 

were selected. Figure 2-2 (A and B) shows the expression pattern of the GUS and YFP 

reporters. In both cases the induction of reporters is affected in arj7 and arj7 arf19 but 

not in arf19 mutants. Hence, ARF 19 cannot function as the transcription factor 

intermediate between ARF7 and LAX3. 

To quantify the effects of the mutations, WT, arj7, arf19 and arj7arf19 seedlings were 

treated with IAA (l JlM) for different time points and the induction of LAX3 mRNA 

monitored by RT qPCR. 

Figure 2-2 (C) shows that only ARF7 is required to induce LAX3, though the level of 

LAX3 mRNA did slightly increase after 24 hours of treatment, probably due to the 
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activity of other activating ARFs. Interestingly, the arf19 mutation had an opposite 

effect to arj7 as LAX3 was induced to higher levels by auxin. These results suggest that 

ARF7 but not ARF 19 is required for LAX3 auxin induction and that ARF7 and ARF 19 

act antagonistically to regulate LAX3 auxin induction. Taking into account the fact that 

ARF19 but not ARF7 are auxin inducible then none of them could be transcription 

factor X (TFX has to be auxin inducible and has to block LAX3 auxin induction). 
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Figure 2-2 ARF7 is required for induction of LAX3 by auxin. (A) Expression pattern of the 
LAX3 ::GUS reporter in WT, arj7, arf19 and arj7arf19 mutants in the presence or absence of 
auxin. (B) Expression pattern of the LAX3: :LAX3- YFP reporter in WT, arj7, arf19 and 
arj7arf19 mutants in presence or absence of auxin.(C) Dynamics of LAX3 induction by auxin 
visualised by RT qPCR in col-O, Ler, arj7, arf19, and arj7arf19 mutants. Errors bars show the 
SD of the mean of four technical replicates. 
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2.4.4. LAX3 is negatively regulated via its promoter's Auxin Response 

Element (ARE) 

To test whether the ARE identified in the promoter of LAX3 has any effects, a point 

mutation was introduced into its sequence which was changed from GAGACA to 

GAGACT (mARE). Such mutation has previously been shown to abolish the auxin 

sensitivity of a downstream reporter as well as ARF transcription factor binding 

(Ulmasov et aI., 1997). Sequencing revealed that two different mARE variants had been 

generated (Figure 2-3 A). Mutated promoters containing each mARE were cloned 

upstream of a LAX3- YFP transgene and the constructs transformed into a lax3auxl 

double mutant background. The double mutant was used rather than the single lax3 or 

auxl mutant since its phenotype is much more severe (no emerged lateral root two 

weeks after germination) compared to single lax3 or auxl mutants (Figure 2-3 Band 

(Swarup et aI., 2008)). The lateral root phenotype was used to assay whether the mutated 

promoter can drive the expression of the LAX3YFP transgene and rescue the lax3auxl 

lateral root phenotype. Lines segregating 311 for the two constructs were selected. 

Following these criteria we obtained two independent homozygous lines for IVMI and 

IVM2. An additional line for IVMI (line 3) was selected but did not segregate 311 at the 

T2 (probably because of multiple insertions). 

In a control experiment, lax3auxl double mutants were transformed with a construct 

containing an unmodified LAX3 promoter driving the LAX3-YFP trans gene (LAX3YFP 

on Figure 2-3 B). This construct completely rescued the lateral root defects of lax3auxl 

mutants demonstrating that the LAX3-YFP fusion protein used is functional and that the 
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2kb LAX3 upstream sequence is sufficient to drive LAX3 expression. The same double 

mutants transformed with either of the trans gene driven by the mutated promoters also 

complemented the lateral root phenotype (Figure 2-3 B). This result suggests that the 

ARE is not necessary for proper LAX3 expression. Interestingly, few lines had a higher 

density of lateral roots. 

The effects of the mutation on the induction by auxin of the LAX3- YFP reporter were 

then analysed using confocal microscopy. Figure 2-3 (C) shows that the mutated 

promoter is still sensitive to auxin. Interestingly, the fluorescence appeared stronger 

when the LAX3-YFP transgene is driven by the mutated promoter. When the intensity 

of the fluorescence was quantified in the two strips of cortical cells the YFP signal was 

consistently higher (up to two fold increase) in several seedlings of three independent 

lines as shown on Figure 2-3 (C) compared to a representative independent WT line. 

Taken together the results suggest that the ARE is not necessary for LAX3 expression or 

auxin induction but that it has a negative impact on LAX3 auxin induction. 
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Figure 2-3 LAX3's promoter ARE is not necessary for LAX3 auxin induction. (A) 
Schematic representation of LAX3 promoter, the different binding sites identified and the 
mutations generated in the ARE. Numbers correspond to the sites on Table 2-2. (B) Main root 
length and lateral root density of WT, auxi, lax3, lax3auxi and lax3auxi plants transformed 
with the WT (LAX3YFP) or the modified LAX3 promoter driving the LAX3YFP fusion protein. 
Error bars show the SE of the mean (n2:8). (C) Induction of the LAX3YFP fusion protein by 
auxin and quantification of the fluorescence in cortical cells. Error bars show the SO of the 
average of at least 4 strips of cortical cells. 

55 



2.4.5. LAX3 promoter deletions reveal several regulatory regions 

The ARE present in the LAX3 promoter does not appear to be essential for LAX3 auxin 

induction. To assess the role of the other motifs identified, a promoter deletion approach 

was employed. The LAX3 promoter was truncated at four different position (Figure 2-4 

A), fused to the LAX3YFP reporter and the constructs transformed into lax3 auxl 

double mutants for the same reason as explained before. At least three independent lines 

segregating 311 at the T2 generation were obtained for each construct. 

Promoter deletion lines were scored for complementation of the lax3auxl lateral root 

phenotype. Ten days after germination, the lateral root density was compared with an 

intact promoter. We observed that all ｾ ~1 and ｾ Ｒ 2 lines fully complemented the mutant 

phenotype (Figure 2-4 B). This result demonstrates that the 826 base pairs sequence 

upstream of the LAX3 gene is sufficient to drive expression and regulate lateral root 

emergence. On the other hand, it has been observed that all ｾ Ｓ 3 lines only partially 

complemented the root phenotype whereas no complementation was observed for every 

ｾ Ｔ 4 lines analysed (Figure 2-4 B). 

Quantitative analysis of the induction of the LAX3YFP reporter following auxin 

treatment (as describe in section 2.4.4) yielded similar results. No changes in LAX3YFP 

intensity were observed in either ｾ Ｑ 1 or ｾ Ｒ 2 lines whereas there was a reduction of 

fluorescence in ｾ Ｓ 3 lines and barely any detectable fluorescence in ｾ Ｔ 4 lines (the results 

using a representative line for each promoter deletion construct is shown on Figure 2-4 

C). 

56 



These results suggest that LAX3 is positively regulated by at least two different portions 

of its promoter: first, a domain between -826 and -570 regulates the intensity of LAX3 

induction, as the reporter can still be induced in the ｾ Ｓ 3 line but at reduced levels, and 

second a domain between -570 and -363 regulates LAX3 induction as the reporter is not 

induced in the ｾ Ｔ 4 line 24 hours after auxin treatment. 
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Figure 2-4 LAX3's promoter sequence contains several regions that regulate LAX3 
expression and induction. (A) Schematic representation of LAX3 promoter, the different 
binding sites identified and the position of the deletions. Numbers correspond to the sites on 
Table 2-2. (B) Main root length and lateral root density of WT, auxl, lax3, lax3auxl and 
lax3auxl plants transformed with the WT (LAX3YFP) or the truncated LAX3 promoter driving 
a functional LAX3YFP fusion protein. Error bars show the SE of the mean (n2:8). (C) Induction 
of the LAX3YFP fusion protein by auxin and quantification of the fluorescence in cortical cells. 
Error bars show the SD of the average fluorescence intensity of at least 4 strips of cortical cells 
(2 plants). 
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2.4.6. Transcript profiling to determine the LAX3 regulatory network 

Based on the data presented so far, the network analysis suggests that LAX3 auxin 

induction has two edges: an activating edge, which is mediated by ARF7 and a 

repressive edge that is mediated by ARF 19. On Figure 2-5 a regulatory network for 

LAX3 is presented. As ARF 19 is thought to be an activator (Okushima et aI., 2005), 

another transcription factor, termed TFY for Transcription Factor Y, has been added. It 

is supposed to be a repressor, that is ARF7 and ARF 19 dependent and which is a 

secondary auxin responsive gene. 

LAX3 regulatory network 

r-----f/!' IAA 

1 
lAA14 

1 
ARF7 

Ｏ ｾ ~
X ARF19 

LAX3 ｾ ~ y 

mRNA 

CHX insensitive 

CHX sensitive 

X is: 
• ARF7dependent 
• ARF 19 independent 
• A primary auxin 
responsive gene 

Y is: 
• ARF7 dependent 
• ARF 19 dependent 
• A secondary auxin 
responsive gene 

Figure 2-5 The LAX3 regulatory network. Expected properties of transcription factors X and 
Yare indicated on the right side of the figure. 
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To obtain a list of putative candidates for transcription factors X (TFX) and Y (TFY) 

several transcriptomics datasets were analysed. First, genes differentially expressed after 

2 hours of auxin treatments (lAA, I I-lM) in whole seedlings of Col-O, arj7, arf19 and 

arj7arf19 mutants were identified using published datasets (Okushima et aI., 2005). 

Secondly, genes differentially expressed after 6 hours of auxin treatment (NAA IOI-lM) 

in the mature part of Col-O roots were identified using a dataset generated in our 

laboratory (see chapter 4 for detail). The main use of the latter is to filter candidate genes 

from the former datasets to restrict it to root specific genes. 

Based on the model of the LAX3 regulatory network (Figure 2-5) the following filters 

were applied: (1) TFX is differentially expressed in col-O and arf19 mutants but not in 

arj7 or arj7arf19 mutants. (2) Y is differentially expressed in col-O but not in arf19, arj7 

or arj7arf19 mutants. (3) X and Yare differentially expressed in the root dataset. 

An initial list of 152 transcription factors differentially expressed in the Okushima 

datasets was reduced to 43 candidate genes for TFX and 25 for TFY. Because the root 

dataset contains differentially expressed genes after 6 hours of auxin treatment it won't 

include rapidly induced genes. If the third filter is not applied, there are 78 candidate 

genes for X and 51 for Y. The list of genes obtained when taking into account the root 

dataset is the "top priority" list and the one without is the "medium priority" list (Figure 

2-6 and Figure 2-7). 
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Figure 2-6 Putative candidates for TFX are differentially expressed after two hours of auxin 
treatment in col-O and arf19 but not in arj7 and arj7 arf19 mutants. Some genes are still induced 
in arj7 mutants but the induction fold is at least two times reduced compared to the WT control. 
Group 1 and 2 contain genes differentially expressed in the root after 6 hours of auxin treatment 
whereas genes in group 3 and 4 were not expressed or differentially expressed in the root 
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Figure 2-7 Putative candidates for TFY are differentially expressed after two hours of auxin 
treatment in col-O but not in arf19, arj7 and arj7 arf19 mutants. Some genes are still 
differentially expressed in arj7 or arf19 mutants but the fold change is at least two times reduced 
compared to the WT control. Group 1 and 2 contain genes differentially expressed in the root 
after 6 hours of auxin treatment whereas genes in group 3 and 4 were not expressed or 
differentially expressed in the root. Group 1 and 3 contain induced genes, group 2 and 4 
repressed genes. Values are fold changes compared to untreated controls. Values highlighted in 
red indicate the highest fold change and in green the lowest. Values in between are shown in a 
gradient between red and green. 
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2.5. Discussion 

LAX3 is a secondary auxin responsive gene, which is induced three hours after auxin 

treatment. The delay in induction is likely to be due to the requirement to transcribe and 

translate an intermediate transcription factor as treatments with auxin and CHX failed to 

induce LAX3. Mutant analysis revealed that ARF7 is the only ARF required for LAX3 

activation and more surprisingly that ARF 19 negatively regulates LAX3. It is 

hypothesised that ARF7 induces a transcription factor (TF X) that induces LAX3 and 

that ARF 19 induces a repressor (TF Y) that attenuates the induction of LAX3 by auxin. 

It has been shown in previous studies that a transcription factor, NAC 1, which positively 

regulate auxin signalling, is down regulated by two pathways (ubiquitinationiproteasome 

via SINAT5 (Xie et aI., 2002) and micro RNA with miRNAI64 (Guo et aI., 2005)) so to 

attenuate the auxin signal during lateral root formation. Unfortunately, in the microarray 

datasets and in the RT qPCR analysed in this chapter work, NACI is not induced by 

auxin and therefore was not retained as a putative candidate for TFX or TFY. 

Analysis of the LAX3 promoter revealed the presence of 11 auxin responsive motifs with 

notably one ARE. Mutations in the ARE revealed that it functions negatively to regulate 

LAX3. This suggests that a repressive ARF binds this site. On the other hand, a promoter 

deletion approach showed that several regions positively regulate LAX3. Notably, two 

Dof domain transcription factor binding sites are located in what appears to be a key 

region (Table 2-2 and Figure 2-4). In contrast to the increased induction of the 

LAX3YFP reporter when the ARE is mutated (Figure 2-3), L12 lines do not show the 

same observation despite the fact that they do not include the ARE which is counter 
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intuitive. The most likely explanation is that in the deletion constructs all the sequences 

upstream of the ARE are removed and therefore the genomic context of the ARE is lost 

including enhancer sequences. 

The results are summarised in a model of the LAX3 regulatory network in Figure 2-5. 

The analysis of several transcriptomics datasets yielded lists of transcription factors that 

could potentially regulate LAX3 (Figure 2-6 and Figure 2-7). This approach is 

comprehensive but has several issues: First, Gene Ontologies (GO) annotations are not 

always accurate (for example, LBD transcription factors are not annotated as 

transcription factors). Secondly, the biological function of the selected genes is not taken 

into consideration (functions in root formation and/or auxin response). Thirdly, 

homologous genes are not included (the proteins involved in the auxin response pathway 

usually belong to multi gene families). To overcome these issues, a thorough analysis of 

several transcription factor families was done based on published data showing their role 

in the auxin response pathway (Chapman and Estelle, 2009; Paponov et al., 2008). 

Hence, the analysis included the following gene families: DOF domain, LOB/LBD/ASL 

(Lateral Organ Boundaries-Domain/Asymmetric Leaves Like), HB (HOMEOBOX, 

including the related ZF-HD, Zinc Finger Homeodomain) and the ARFs. 

Several lines of evidence support a role for Dof transcription factors in the auxin 

response pathway. First, NtBBF1, a tobacco Dof domain protein, was shown to bind on 

the promoter of a late auxin responsive gene, rolB (Baumann et al., 1999). A single 

mutation in its binding site blocked the auxin induction of the gene suggesting that rolB 

is a direct target of NtBBFl. Nevertheless, the authors reported that NtBBF 1 levels are 
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not regulated by auxin; hence another primary auxin responsive gene must regulate rolB 

together with NtBBFl. In other cases, it has been shown that some Dof proteins are 

auxin inducible. For example, in Arabidopsis, the auxin response factor 

MONOPTEROS/ARF5 directly binds the promoter of AtDOF5.3 and induces its 

expression (Schlereth et aI., 2010). Transcriptomic datasets have revealed several other 

auxin inducible Dofproteins (this study). 

Several LOB proteins were identified as downstream targets of ARF7 and ARF19 in 

Arabidopsis (Lee and Kim, 2010; Okushima et aI., 2007). Overexpression ofLBDI6, 18 

or 29 partially rescued the lateral root defects of arj7 arf19 double mutants. Interestingly, 

an orthologous gene of LBD16 and 29 in rice, termed CRL1, encodes a transcription 

factor involved in the formation of crown and lateral roots (Inukai et aI., 2001; Inukai et 

aI., 2005). CRLl, like its Arabidopsis counterpart, is a primary auxin responsive gene 

which is directly regulated by OsARF 1. Other LBD genes from rice (ARL 1) and maize 

(RTCS) have been shown to be auxin inducible and to regulate root architecture (Liu et 

aI., 2005; Taramino et aI., 2007). Many LOB genes are regulated by auxin and ARFs in 

Arabidopsis roots as well (Okushima et aI., 2007). 

In the case of the HB family of transcription factors, one member has been shown to be 

rapidly induced by auxin (HAT2 within 15 minutes) (Sawa et aI., 2002). Overexpression 

of HA T2 leads to opposite phenotypes in the shoot and in the root. Whereas shoot 

phenotypes resemble auxin overproducing mutants (long hypocotyls, epinastic 

cotyledons, long petioles, and small leaves) the root phenotypes resemble auxin 

insensitive mutants (reduction in lateral root number, reduced sensitivity of root growth 
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to auxin). Hence, HA T2 may function as a repressor of the auxin response pathway in 

the Arabidopsis root. Many other members of the HB family were shown to be up or 

down-regulated by auxin (Baima et ai., 1995; Donner et ai., 2010; Plesch et ai., 1997; 

Son et ai., 2004) with diverse role during development (notably vascular differentiation). 

Finally, members of the ARF family of transcription factors are obvious candidates for 

TFY since mutation in the ARF binding site leads to an increased induction of LAX3. 

Interestingly, several negative ARFs fit with the properties of TFY and are shown on 

Figure 2-8. ARF19 is amongst those candidates except that it is not a negative ARF. 

Further studies will be required to assess the role of ARF 19 on LAX3 expression, using 

protoplasts systems for example. Nevertheless, as these experiments are done in 

different tissues using plant material that has been protoplasted, a complimentary 

approach will be to swap ARF7 and ARF19 domains I and II and analyse the effects on 

LAX3 expression. 

To summarize the analysis, Figure 2-8 shows members of these 5 genes families which 

could be, based on their expression values, TFX or TFY. To take into account 

redundancy, closely related genes are shown even if they don't change their expression 

in presence of auxin. In conclusion, a list of 45 top priority targets for TFX and 27 for 

TFY will be further analysed to identify TFX and TFY. 
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Figure 2-8 Phylogenetic trees of candidate genes for TFX and TFY. Differentiall y expressed 
genes of several families in the Okushima (col, arj7, arf19 and arj7 arf19) and the root (NAA) 
datasets along with their closely related homologs are displayed. (A) AUX/LAX, (B) ARF, (C) 
Dof domain, (D) LOB domain and (E) HB/HD zinc finger. Gene numbers and names 
highlighted in blue show candidate genes for TFX, in yell ow for TFY and in dark grey genes 
that are not represented on the A TH I chip. Values are fold changes compared to untreated 
controls. Values highlighted in red indicate the highest fo ld change and in green the lowest. 
Values in between are shown in a gradient between red and green .. Di fferentiall y expressed 
genes have an adjusted p-Value < 0.05 and a fluo rescence intensity above 50. 
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Chapter 3 Identification of novel classes of auxin response 

inhibitors employing a chemical genetics approach 

3.1. Abstract 

Auxin regulates lateral root emergence via the activation of the auxin influx carrier 

LAX3 in cortical and epidermal cells overlying lateral root primordia. The pathway that 

leads to LAX3 activation is complex and is likely to involve multiple transcription 

factors, of which several remain to be identified as it has been discussed in the previous 

chapter (Transcription Factor X and Transcription Factor Y). To overcome common 

issues associated with classical genetic approaches, such as redundancy or embryonic 

lethality, a chemical genetics screen was conducted to identify inhibitors of LAX3 auxin 

induction. Phenotypic analysis of the positive hits showed that all affect root 

development (root growth or lateral root formation or both). A family of structurally 

related sulfonamides represented the largest class and was shown to disrupt primordia 

emergence. The results presented in this chapter provide important background 

information prior to target identification of these inhibitors. 

3.2. Introduction 

With the advent of Arabidopsis as a model organism, plant geneticists had the 

opportunity to easily carry out large scale forward genetics screens in order to identify 

key genes required during plant development (Meyerowitz, 2001). Similarly, reverse 

genetics has been greatly simplified with the availability of large libraries of T-ONA 

insertion lines (Alonso et ai., 2003; Kuromori et ai., 2004; Parinov and Sevugan, 1999; 
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Rosso et aI., 2003; Sessions et aI., 2002) and alternative approaches, such as RNAi or 

overexpression lines (Holtorf et aI., 1995; Mello and Conte, 2004). Nevertheless, these 

approaches are often hampered by genetic redundancy and embryonic lethality 

(McCourt and Desveaux, 2010; Toth and van der Hoorn, 2010). 

In a chemical genetics approach, instead of modifying DNA sequences as in classical 

genetics, small organic molecules are used to directly affect protein activity (reviewed in 

(Stockwell, 2000; Stockwell, 2004). Chemical genetics screens use large libraries of 

compounds (> 1 0 000) to test their effect on a given pathway. These screens are usually 

carried out either on a cell line or in whole organism (for example Caenorhabditis 

elegans and Arabidopsis thaliana). Screens carried out in Arabidopsis led to the 

identification of several important biological targets and compounds. These include the 

ABA receptor (Park et aI., 2009), auxin response activators or inhibitors (reviewed in 

(De Rybel et aI., 2009a), auxin transport inhibitors (De Rybel et aI., 2009a), GSK3 

kinases inhibitors (De Rybel et aI., 2009b), cellulose synthase inhibitors (DeBolt et aI., 

2007), and others. In many of these discoveries, the chemical genetics approach helped 

overcoming either genetic redundancy or lethality: on one hand a compound can affect 

several proteins of the same family by targeting a conserved motif and on the other hand 

a compound can be applied at any time points to avoid interference with other cellular 

and/or developmental processes. 

The importance of knocking down several proteins in one go is highlighted by the fact 

that 65% of all Arabidopsis genes are in families containing at least 2 members (The 

Arabidopsis Genome Initiative, 2000). This issue can be exemplified with the auxin 

response machinery. Auxin binds one of its 6 nuclear receptors (TIR 11 AFB 1-5) which 

77 



triggers the degradation of most of the 29 Aux/IAAs repressors and releases one or 

several of the 23 ARFs transcription factors to change gene expression (Okushima et aI., 

2005; Overvoorde et aI., 2005; Parry et aI., 2009). Loss of function mutations in single 

receptors, AuxlIAA or ARF very often do not have a clear phenotype due to the high 

degree of redundancy amongst each gene family. Therefore, multiple loss of function 

mutants or gain of function mutants had to be obtained in order to shed a light on how 

auxin regulates gene expression. 

Auxin is a key signal during multiple developmental programs (Woodward and Bartel, 

2005). In the root, this hormone triggers the genetic reprogramming of xylem pole 

pericycle cells to generate new lateral roots (Overvoorde et aI., 2010). All the way from 

the priming of the pericycle cells to the emergence of the lateral root primordia, auxin 

regulates a large repertoire of genes that are involved in cell division, cell differentiation 

and cell elongation (Swarup et aI., 2008; Vanneste et aI., 2005). Components of the 

auxin response machinery involved in lateral root development include at least 6 ARFs 

and 6 AuxilAAs (Fukaki et aI., 2002; Mallory et aI., 2005; Okushima et aI., 2005; Rogg 

et aI., 2001; Tatematsu et aI., 2004; Tian and Reed, 1999; Uehara et aI., 2008; Wang et 

aI., 2005; Yang et aI., 2004; Yoon et aI., 2010). Two ARFs, ARF7 and 19, playa key 

role during lateral root formation at all stages (initiation, patterning and emergence 

respectively). Unfortunately, this complicates the analysis of their function during later 

stages since there are few (in single arj7 mutants) or no (in double arj7arf19 mutants) 

initiated primordia 10 days after germination (Okushima et aI., 2005; Shin et aI., 2007). 

Previous studies carried out in our laboratory focussed on characterising the regulation 

and function of an auxin influx carrier, LAX3, during lateral root emergence (Swarup et 
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aI., 2008). This gene is induced by auxin via ARF7 in several cells that directly overlay a 

lateral root primordium. The LAX3 protein is located at the plasma membrane where it 

increases the auxin influx in the overlying cells. A complex network of genes, which 

depends on the auxin content of the cell, triggers the activation of cell wall remodelling 

genes that facilitate emergence. In order to dissect the genetic program involved during 

lateral root emergence, a chemical genetic screen was conducted to identify chemicals 

that can inhibit the auxin induction of LAX3. Several positive hits were identified and 

their role during lateral root formation and root growth was analysed and a subset of 

promising compounds was further characterised. 
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3.3. Material and Methods 

3.3.1. Material 

3.3.1.1. Chemicals 

Indole-3-Acetic Acid (IAA), a-Naphthalene acetic acid (NAA) , N-1-

Naphthylphthalamic Acid (NPA), Sulfameter and Sulfadiazine were purchased from 

Sigma. IAA was dissolved in 100 % EtOH, NAA, NPA; Sulfameter and Sulfadiazine 

were dissolved in DMSO. Plant growth medium consist of Yz strength MS salts 

(Murashige and Skoog, 1962) (2.17 g MS saltslL (Sigma)) at pH 5.7 which was either 

liquid (for the chemical genetics screen) or solidified (for characterisation of the positive 

hits) with 1 % bacto-agar (Appleton Woods). 

3.3.1.2. LAX3 inhibitors 

All LAX3 inhibitors were purchased from ChemBridge (ChemBridge, UK) as well as 

LI5 derivatives VarA to E (Chembridge catalogue number for LI4 is 5343444, LI5 

5344621, LI7 5349647, LI8 5350185, LI9 5350587, VarA 5352384, VarB 5350341, 

VarC 5346720, YarD 5356458, YarE 5358024). LI5 and its derivatives AWl to AW12 

were produced in house at the University of Nottingham, School of Chemistry, by Neil J 

Oldham and Anna Westacott. 

Primer name 
qCTRL1-F 
qCTRL1-R 
qLAX3-F 
qLAX3-R 

3.3.1.3. RT qPCR primers 

Sequence (5'->3') 
agtggagaggctgcagaaga 
ctcgggtagcacgagcttta 
tcaccattgcttcactccttc 
aagcaccattgtggttggac 
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3.3.2. Methods 

3.3.2.1. Seed sterilisation 

Seeds were surface sterilized for 5 minutes in 50 % bleach, 0.1 % triton X-I00 then 

washed three times with sterile ddH20. Seeds were stratified at 4° for 2 days to 

synchronise germination. 

3.3.2.2. Chemical genetics screen 

A commercial library consisting of 10,000 compounds (DiverSet™, ChemBridge, UK) 

was screened to identify inhibitors of LAX3 auxin induction. 2 to 3 seeds of an 

Arabidopsis thaliana transgenic line expressing a pLAX3::GUS reporter were sown in 

the wells of a 96-well filter plates (Multi screen HTS MSBVSI210; Millipore) 

containing liquid Y2 MS medium with NP A at 10 11M. Plates were incubated under 

continuous light (110 llE.m-2.s-1), continuous shaking (50 rpm/min) and at constant 

temperature (22°C). 5 days after germination, the medium was replaced with fresh 

medium containing a compound from the library at a final concentration of 50 11M (final 

DMSO concentration is 0.25 %). 24 hours after medium replacement, NAA was added 

in each well to a final concentration of 10 11M. 24 hours after auxin induction, GUS 

staining was performed. 

3.3.2.3. Histology and histochemistry 

GUS activity was revealed by incubating seedlings in a phosphate buffer (500mM, pH 

7) containing 0.5 mM potassium ferricyanide (K3[Fe(CN)6]), 0.5 mM potassium 

ferrocyanide Ｈ ｾ ｛ ｆ ･ Ｈ ｃ ｎ Ｉ Ｖ ｝ Ｉ Ｌ , 1 mM ethylenediaminotetraacetic acid (EDT A pH 8), 0.5 % 

(v/v) Triton X-I00 and 1 mM X-bromo-4-chloro-3-indolyl B-D-galactopyranoside 
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(Sigma) (X-Glc) at 37° for 1 hour. X-Glc was initially dissolved in 100% 

dimethylformamide (DMF). After GUS staining, seedlings were cleared for at least 12 

hours in 260% chloral hydrate in 33 % glycerol (all chemicals were purchased from 

Fischer Scientific and Sigma). 

3.3.2.4. Picture analysis 

Roots and hypocotyles length were measured using ImageJ (ImageJ 1.40g). 

3.3.2.5. Statistical analysis 

Statistical analysis was performed using Minitab version 15 (Minitab Inc, UK). 

3.3.2.6. Cell wall remodelling enzymes assays 

Pectin methyl sterase activity was measured using the pH stat method. 1 g of citrus 

pectin was incubated in a 6mM NaCI solution at pH 8 with or without LAX3 inhibitors. 

After addition ofthe enzyme (Pectin methyl esterase, Sigma) the pH was maintained at 8 

by an automatic titrator using 5 mM NaOH. The volume added was monitored during 

time to determine enzymatic activity (Hagerman and Austin, 1986). 

Polygalacturonase activity was measured using the cyanoacetamide method. 

Polygalacturonase enzyme (Sigma) was added to the assay mix (50 mM sodium acetate, 

150 mM NaCI, 0.5 g polygalacturonic acid (Sigma) pH 4) with or without inhibitors and 

incubated at 37°C for 30 minutes. Enzymatic activity was revealed following addition of 

cyanoacetamide (1 % final) and sodium tetraborate (100 mM final) and incubation at 

100°C for 10 minutes. Absorbance at 276 nm was measured and used to determine 

enzymatic activity using a standard curve (Gross, 1982). 
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3.3.2.7. RNA extraction and RT qPCR 

RNA was extracted from plant tissues using Trizol Reagent (Invitrogen) and cleaned up 

using the RNeasy kit (Qiagen). Poly(dT) cDNA was prepared from 0.5 Ilg total RNA 

with Superscript II reverse transcriptase (Invitrogen) and analyzed on a LightCycler 480 

apparatus (Roche Diagnostics) with the Quantace SYBRGREEN mix (Quantace) 

according to the manufacturer's instructions. Targets were quantified with specific 

primer pairs designed with the Universal Probe Library Assay Design Center (Roche 

Applied Science). All individual reactions were done in quadruplicate and data were 

analyzed with Microsoft Excel 2007 (Microsoft Corporation, Redmond, USA). 

Expression levels were normalized to AtlG04850 (CTRLl, thanks to Tara Holman for 

primer sequence). 
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3.4. Results 

3.4.1. Chemical genetics screen to identify LAX3 auxin induction inhibitors 

A library of 10,000 molecules was screened to identify inhibitors of the induction by 

auxin of the lateral root emergence marker pLAX3::GUS. Given the large number of 

molecules tested, a robust, reproducible and high throughput assay using a pLAX3::GUS 

reporter was designed (Figure 3-1 A). The reporter is normally expressed in the vascular 

tissues and in cortical and epidermal cells overlying a lateral root primordium (Figure 

3-1 B, Untreated). Auxin treatment strongly induces its expression in all cortical and 

epidermal cells of the root (Figure 3-1 B, NAA). Chemicals that blocked auxin induction 

ofLAX3::GUS were selected for further analysis. 

Following these criteria, 13 compounds were identified and confirmed as inhibitors of 

LAX3 auxin induction. Based on the pattern of GUS expression the positive hits were 

classified into two categories. The first category consists of 12 molecules which blocked 

the induction of the reporter in the outer tissues but did not or only slightly affected the 

vascular expression. Compounds from this category were named LII to 12 (for LAX3 

Inhibitors). The second category consists of one molecule that blocked the expression of 

the reporter in all tissues. The compound from this category was named LTI (LAX3 

Iotal inhibitor) (Figure 3-1 (B)). 

To simplify the phenotypical analysis, the compounds were grouped together based on 

their structure: LI2 and 3, which share a common structure, are in the first group, LI4, 5, 

7 8 and 9 which also share a common structure, are in the second group and finally, as , , 

all the remaining compounds are structurally distinct, they compose a third group. 
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A 1110 Up to 3 seeds/well 

B 
Untreated 

D. Germinate in liquid MS + 1 OIlM NPA for 96h 

Seeds germinated 

11 Add compound X (50 11M) for 24h 
Add NAA (lOIlM) for 24h 

NAA 

After GUS 
staining 

LIl to LIl2 + 
NAA LTl+NAA 

Figure 3-1 Identification of inhibitors of LAX3 auxin induction. (A) Procedure used during 
the chemical genetics screen. The screen was carried out at the Compound Screening Platform at 
the VlB (University of Ghent) by Bert de Rybel, Long Nguyen and Dominique Audenaert). 
Original figure from Bert de Rybel. (B) Phenotype ofLAX3::GUS seedlings treated with a mock 
solution, auxin (NAA , IO!l M), with inhibitors L11 to 12 (50!lM) and auxin (NAA , IO!lM ) 
(representative image of an L15+NAA treated seedling, results are similar with other 
compounds) or with inhibitor LTI (50!lM) and auxin (NAA , IO!lM ). 
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3.4.2. Effects of LAX3 inhibitors on lateral root development and root 

growth (dose response curves) 

To assess the effects of LAX3 inhibitors on lateral root development and root growth, 5-

day-old Col-O seedlings were transferred onto plates containing increasing 

concentrations of the inhibitors for 7 days before the number of lateral roots and the 

main root length were measured. Figure 3-2 A shows that compounds of group 1 have 

effects at varying doses on root development. LI2 affects root growth at a concentration 

around 30 times lower than LI3 (0.1 11M and 3 11M respectively), but, on the other hand, 

LI3 affects lateral root density at a concentration ±3 times lower than LI2 (311M and 10 

11M respectively). Conversely, the compounds of group 2 affect root growth and lateral 

root formation at 5 11M, with LI5, 8 and 9 being the most active ones. Finally, 

compounds of group 3 have very different effects but since they all have different 

structures it is not suprising. LI1, 10, 11 and 12 have little effects on lateral root 

formation but affect root growth at concentrations of 10llM (LI1) and 30 11M (LI10, 11 

and 12). On the other hand, LI6 and LTI affect both processes at 0.3 11M and 10 11M 

respectively. 

To determine at which developmental stage the chemicals affect lateral root formation 

(initiation, emergence or both), 5 day-old Col-O seedlings were germinated on NP A (to 

prevent lateral root initiation) and then treated with the inhibitors for 7 days before the 

number of emerged and non emerged lateral root primordia were counted. Figure 3-2 

(B) shows that 7 out of the 13 inhibitors affect primordia emergence (LI4, 5, 7,8,9, 10 

and LT1), which include all compounds from group 2 and two from group 3. Notably, 

compounds of group 2 also affect initiation, as the density of emerged and non emerged 
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primordia is reduced compared to the untreated control. The other compounds from 

group 1 and 3 that did affect lateral root density in the previous bioassay had no effect 

on emergence, thus they mainly appear to affect initiation. 

As the number of roots analysed was initially limited (for practical reasons) the 

statistical comparison of the data did not yield any significant difference (Tukey 

multiple comparison test, p < 0.05). Thus, the experiment was repeated but this time 

characterising only three inhibitors in greater depth (LI4, 5 and LTl). Figure 3-3 shows 

that the three treatments affected lateral root emergence significantly (Tukey multiple 

comparison test, p < 0.01). 
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Figure 3-2 Effects of LAX3 inhibitors on lateral root formation and root growth. (A) Main 
root length and lateral root density of 5-day-old Col-O seedlings treated with the indicated 
inhibitors for 7 days. Error bars indicate the standard error (n2:8). The red star on each chart 
indicates the main root length or lateral root density of a mock treated control. The x-axis is in 
10gIO scale. (B) Ratio of emerged and non emerged lateral root primordia of col-O seedlings 
germinated on NPA and transferred on plates containing the inhibitors at the indicated 
concentration for 7 days. Below is shown the density of all primordia (emerged + non emerged). 
Error bars indicate the standard error (n=4). 
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Ratio of emerged and non-emerged LRs 

\\1-col L14 Ｈ ( ｾ ~ Ｉ ) LI S Ｈ ( ｾ ~ Ｉ ) L TI Ｈ ｉ ｏ ｾ ~ Ｉ )

• Non emerged • Emerged 

Figure 3-3 Effects of LI4, LIS and LTI on lateral root emergence. Ratio of emerged and non 
emerged lateral root primordia of Col-O seedlings germinated on plates containing the inhibitors 
at the indicated concentration for 10 days. Error bars indicate the standard error (n=5). A 
different letter indicates a statistically significant difference (Tukey multiple comparison test, p 
SO.OI ). 

3.4.3. Effects of NAA on seedlings treated with the inhibitors 

To determine whether NAA can rescue the lateral root phenotype caused by some 

inhibitors, 5-day-old Col-O seedlings were treated with the compounds and several 

concentrations of NAA for 5 days after which the number of lateral roots and the main 

root length were measured. Figure 3-4 shows that seedlings treated with inhibitors from 

group 1 can be rescued by NAA but not those of group 2. LI4 and 7 appear to respond at 

concentration of 0.1 and I/lM. Nevertheless, this is probably due to their reduced 

potency compared to other group 2 inhibitors. Finally, out of the six group 3 inhibitors, 

three are rescued by NAA (LI 1, LI 11 and to a less extent LI6). Interestingly, LI 1 0 and 

L Tl , which affect emergence, are not rescued, as well as LI 12. 
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Figure 3-4 Effects of NAA on seedlings treated with the inhibitors. Quantification of main 
root length and lateral root density of seedlings treated with the inhibitors. Error bars indicate the 
standard error (n::O:8). The x-axis is in laglo scale. 

3.4.4. Phenotype of plants treated with LIS 

Out of 13 inhibitors initially identified, 7 affect lateral root initiation, emergence and 

root growth and render plants insensitive to NAA as well. Out of these 7 compounds, 5 

share a common structure (group 2): Ll4, 5, 7, 8 and 9 are all benzene sulfonamides 

which differ only by the position of chlorine atoms on the two benzene rings, and, in one 

case, by the substitution of chlorine by fl uorine (Figure 3-5 A). For the following 

reasons we decided to focus our work on this family. First, they are active at a relatively 

low concentration (5/-lM) . Second, they affect lateral root emergence which is our 

developmental programme of interest. Third, these five compounds allow to have an 

idea of the structure/function relationship of this family of compounds. Finally benzene 

sulfonamides are relatively easy to synthesise in the laboratory. Therefore, we have 
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made a more detailed phenotypic analysis of a representative member of this family , 

LIS , which in several bio-assays was the most active compound (Figure 3-5 B and C). 
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Figure 3-5 Effects of LIS on lateral root formation. (A) Structures of the 5 sulfonamides 
identified during the chemical genetics screen. (B) Effects of different concentrations of LI5 in 
presence of 0.1 11M NAA on the lateral root density. Error bars indicate the standard error Ｈ ( ｾ Ｘ Ｉ Ｎ .
(C) When plants are treated with high amounts of auxin, many non emerged primordia can be 
observed along the main root (arrows) while in the mock treated control they all emerged from 
the main root within 2 days (picture taken after 5 days of treatments). 
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3.4.5. LIS and related sulfonamides do not affect cell wall remodelling 

enzymes 

During lateral root emergence, Swarup et al. (2008) showed that genes encoding 

different types of cell wall remodelling enzymes, such as polygalacturonases and pectin 

methyl esterase, are specifically induced in overlying tissues(Swarup et al., 2008). 

Because of the lateral root emergence phenotype observed in plants treated with 10flM 

NAA and LIS (Figure 3-S C), we hypothesised that this could be due to a defect in cell 

wall remodelling as the primordia remain within the primary root. To determine if these 

cell wall remodelling enzymes were affected by LIS and/or other inhibitors from group 

2, several in vitro enzymatic assays were used. Figure 3-6 shows that the activity of a 

pectin methyl esterase and a polygalacturonase is not affected by the inhibitors. 
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Figure 3-6 Group 2 inhibitors do not affect pectin methyl ･ ｳ ｾ ･ ｲ ｡ ｳ ｾ ~ or .polygalacturonase 
activity. (A) Relative activity of a pectin methyl esterase ､ ｵ ｮ n ｧ g time m presenc.e ｾ ｦ f the 
indicated inhibitors. (B) Relative activity of a polygalacturonase m presence of the mdlcated 
inhibitors. 

92 



3.4.6. Group 2 sulfonamides do not inhibit folate synthesis 

Historically, sulfonamides were identified as the first class of compounds to have 

antimicrobial properties (the "sulfa drugs") (Domagk, 1935). These compounds were 

shown to inhibit the activity of the enzyme dihydropteroate synthetase (DHPS), which is 

involved in folate biosynthesis, as they compete with one of its substrate (para-

aminobenzoic acid) (Wise and Abou-Donia, 1975). The folate biosynthesis pathway is 

largely conserved between plants and bacteria (Hanson and Gregory Iii, 2002). The 

Arabidopsis genome encodes two DHPS genes, which are as well sensitive to sulfa 

drugs. Arabidopsis plants treated with sulfa drugs, such as sulfameter or sulfadiazine 

(Figure 3-8 A), have severely impaired hypocotyl and root growth which can be 

conveniently quantified when seeds are germinated in the dark (Figure 3-8 B). 

Importantly, the phenotype can be chemically rescued by adding exogenous folic acid 

(FA). Despite being structurally different (Figure 3-8 A), treatments with the 

sulfonamide identified in this study also affect hypocotyl elongation (Figure 3-7). This is 

a property unique to group 2 inhibitors. To determine whether group 2 inhibitors affect 

plant growth by blocking folate synthesis, we have germinated Col-O seeds in the dark in 

presence of the inhibitors and with or without exogenous FA. Figure 3-8 B shows that 

F A does not rescue LIS treated plant whereas it rescues seedlings treated with sulfa 

drugs. This result suggests that group 2 inhibitors do not affect plant growth by 

inhibiting folate synthesis. 
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Figure 3-7 Group 2 inhibitors block bypocotyl elongation in dark grown seedlings. Error 
bars indicate the standard error (n2: 10). 
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Figure 3-8 Inhibition of hypocotyl elongation by LIS cannot be rescued with exogenous FA. 
(A) Structures of two sulfa drugs (Sulfameter and Sulfadiazine) and LI5. Below is a picture of 
seedlings which have been germinated in the dark on the indicated compounds (at 25 /lM) in 
presence or absence of FA (folic acid). (B) Quantification of hypocotyl length of seedlings 
germinated in the dark on the indicated compounds in presence or absence of FA. Error bars 
indicate the standard error (n2: 10). 

3.4.7. Analysis of biological activities of benzene sulfonamide structural 

variants 

In order to study the relationship between the structure and the biological activity of 

group 2 inhibitors, a suite of chemical variants was generated using LI5 as a template 

and their biological activity was determined using the following three bio assays: 
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1) Lateral root density: 5 day-old Col-O seedlings were transferred onto plates 

containing the variants at 0.5,5 or 50 11M ("AW" series) or at 0.1, 1 and 10 11M ("Var" 

series) for 7 days before measuring the emerged lateral root density 

2) Auxin (NAA) induced lateral root formation: 5 day-old Col-O seedlings were 

transferred onto plates containing the variants at 5 or 50 11M ("A W" series) or at 5 11M 

("Var" series) and NAA at 1 11M for five days before measuring the emerged lateral root 

density. 

3) Hypocotyl elongation of seeds germinated in the dark: Col-O seeds were 

germinated on plates containing the variants at 0.5, 5 or 50 11M ("A W" series) or at 0.1, 

1 and 10 11M ("Var" series) in the dark for 5 days before the hypocotyl length was 

measured. 

To simplify the interpretation, the compounds were grouped in 4 batches depending on 

the changes made to the structure. 

The first batch of compounds consists of LIS variants LI4, 7, 8, 9, A W5, 7 and VarA 

(Figure 3-9 A). All these compounds are very similar to LIS as only minor changes are 

made to the position and number of chlorine groups. Figure 3-9 B shows that all the 

variants are almost as active as LIS except for LI4 and A W7, which have a reduced 

activity in the three bioassays. Nevertheless, they are both active at higher 

concentrations. 
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Figure 3-9 LIS structural variants (A) Structures of LIS and its variants LI4 , LI7 , LI8 , LI9 , 
A W5, A W7 and Vark (B) Effects of the variants on lateral root density without auxin, The x 
axis is in loglo scale, (C) Effects of the variant on lateral root density with auxin. (D) Effects of 
the variants on hypocotyl elongation in the dark. The x axis is in logl o scale. In all experiments 
the error bars show the SE Ｈ ｮ ｾ Ｘ Ｉ Ｎ . Lateral root density in (B) and (C) is relative to Mock + NAA 
control (set at 1). 

The second batch of compounds consists of LIS variants A WI , 2, 3, 4 and 9 (Figure 3-

l OA). These compounds were designed to determine (1) the role of the chlorination on 

both benzene rings (A W 1-3), (2) the role of the sulfonamide functional group (A W4) 
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and (3) the feasibility of adding a linker to LI5 (A W9). Figure 3-10 B shows that only 

the chlorination on the aniline ring can be removed with a reduced loss of activity as 

AWl, but not A W2 or 3, is active. Nevertheless, removal of the aniline ring results in a 

complete loss of activity (A W9). Hence, it appears that the sulfonamide group plays a 

crucial role as A W4 (sulfoxylate) is completely inactive. 
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Figure 3-10 LIS structural variants (A) Structures of LIS and its variants AWl , A W2, .A Ｇ Ａ Ｇ ｉ I Ｌ ,
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The third batch of compounds consists of LI5 variants YarB, e, 0 and E (Figure 3-11 

A). These compounds were designed to determine to what extent the aniline could be 

modified by substituting chlorines with either iodine or methyl groups. Figure 3-11 e 

shows that iodine substitutions remain active but their activity strongly depends on its 

position (YarB and D). In contrast, exchanging chlorines with methyl groups leads to a 

strong reduction in activity (Yare and E). 

The fourth and last batch of compound consists of LI5 variants AW6, 10, 11 and 12 

(Figure 3-11 B). These compounds were designed to determine the effects of the 

position of the chlorine (ortho, AWl 0; meta, A W 11; para, A W 6) on the benzene 

sulfonic acid ring. Figure 3-11 0 shows that all substitutions lead to an active 

compound, though the para subsitution seems to be slightly more active. A W12 

biological activity is similar to A Wll despite an extra methyl group in the para position. 

This addition only reduces very slightly the activity of A W 11. 
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Figure 3-11 LIS structural variants (A) Structures of LI5 and its variants VarB, Yare, YarD 
and YarE. (B) Effects of the variants on lateral root density without auxin. The x axis is in log,o 
scale. (C) Effects of the variant on lateral root density wit h auxin. (D) Effects of the variants on 
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On Figure 3-12 the variants are classified in four categories depending on their 

biological activity. We analysed further several variants from each category by looking 

at their effects on the auxin induction of LAX3 mRNA. 5 day old Col-O seedlings were 

treated for 6 hour with or without auxin (1 jlM NAA) and with or without variants at 

5jlM before gene expression was analysed by RT qPCR. Figure 3-13 shows that the 

results are in agreement with the data from the bio assays: A W2 is completely inactive, 

AWl and AW12 have only minor effects, AW10, AWll and LI4 are more active and, 

finally, A W5, LI5 and LI8 almost completely abolish LAX3 induction. 
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Figure 3-13 Relative induction of LAX3 mRNA by auxin in the presence of the variants 
from the 4 categories defined in Figure 3-12. 

103 



3.5. Discussion 

Auxin redistribution between lateral root primordia and overlying tissues triggers the 

expression of the auxin influx carrier LAX3 (Swarup et al., 2008). However, LAX3 is a 

late auxin responsive gene (chapter 2) necessitating the involvement of an unknown 

transcription factor(s) intermediate. To aid our characterisation of LAX3 expression, a 

chemical genetics screen was conducted to identify inhibitors of its auxin induction. In 

this chapter, the effects of 13 LAX3 inhibitors on root growth and lateral root formation 

was analysed and a promising family of compounds was characterised. 

The primary focus of this chapter was to identify compounds affecting emergence. 5 of 

the 13 compounds identified to disrupt LAX3 auxin induction (termed LI4, 5, 7, 8,9, 10 

and LTI) also blocked emergence. Treatments with LIlO and LTl affect lateral root 

initiation very slightly (or not at all) but strongly blocked emergence. Also, these two 

compounds render the root insensitive to NAA. At concentrations over 101lM, main root 

growth is severely reduced but the formation and elongation of adventitious root -or of 

emerged lateral roots- is not affected. These two compounds may target similar 

processes in the primary root (rather than lateral root) and are therefore outside the scope 

of this study. 

The remaining 5 compounds have been extensively studied (group 2 inhibitors). They 

are likely to all target the same protein(s) as they share a common structure (a 

sulfonamide functional group that links two benzene rings) and induce similar effects on 

lateral root development. These effects correlate with an inhibition of the induction by 

auxin of LAX3 mRNA. Hence, the effects of the inhibitors on root architecture are most 

probably due to their effects on gene expression. 
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In previous studies, several inhibitors of auxin signalling have been identified (De Rybel 

et aI., 2009a). A common feature of active auxins (either natural forms or synthetic 

agonists) is to bind several related F-BOX E3 ligases (termed TIRI and AFBl-5) to 

promote their interaction with AuxlIAA repressors (Dharmasiri et aI., 2005; Kepinski 

and Leyser, 2005; Tan et aI., 2007). The TIR1-auxin-AuxlIAA complex leads to the 

ubiquitination and degradation of AuxlIAAs by the proteasome (dos Santos Maraschin 

et aI., 2009). Some structural variants of auxin still have the ability to bind TIRI and/or 

AFB 1-5 but will not promote the degradation of AuxlIAA proteins. Such compounds are 

known as "anti-auxins" (or auxin antagonists). The structural requirements for a 

compound to bind TIRI (and potentially AFBI-5) and to promote the degradation of 

AuxlIAAs have been dissected in a recent paper (Hayashi et aI., 2008). PCIB (or p-

Chlorophenoxyisobutyric Acid), a commonly used auxin inhibitor is believed to be an 

anti-auxin, though its interactions with TIRI has not been clearly demonstrated (Oono et 

aI., 2003). 

Apart from anti-auxins, other auxin response inhibitors have been described such as 

Yokonolide B (Hayashi et aI., 2003), Terfestatin A (Yamazoe et aI., 2005), 

Toyocamycin (Hayashi et aI., 2009) or Compound A, B, C or D (Armstrong et aI., 2004; 

Sungur et aI., 2007). Because these compounds are structurally very different from 

auxin, it is unlikely that they act as anti-auxin. All of these inhibitors, apart from 

compound D, have been shown to stabilise AuxlIAA proteins (it has also not been 

shown that Compound D does not stabilise AuxlIAA) but their target is currently 

unknown. 
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The compounds described in this chapter are also structurally very different to auxin and 

most likely do not compete with its binding to TIRl. To dissect how these compounds, 

and especially the one from group 2, affect the auxin induction of LAX3 several assays 

can be used to monitor where they act in the pathway. First, the assumption that these 

compounds are not anti auxin is simply based on their structure. What makes an anti-

auxin is the capacity of a compound to interact with TIRI and the related receptors in a 

competitive manner with auxin. To address this point, pull downs experiments that test 

the auxin dependant interaction ofTIRI and AuxilAAs can give a direct answer (Gray et 

ai., 2001). Secondly, do the compounds affect auxin responses in all the tissues? Do they 

affect only early responsive gene, only late responsive genes or both? Using RT qPCR 

and GUS reporter lines it will be possible to address this at a gene specific level. Using 

microarrays will give an overview at the genomic level. A key aspect of auxin responses 

is AuxIIAA stability: are these compounds stabilising AuxlIAA? To determine that, 

reporter genes fused to relevant AuxlIAA can be used. These experiments will help to 

determine where the compounds act in the auxin response pathway and more precisely 

in the LAX3 regulatory network as shown on Figure 3-14. 
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Figure 3-14 Model for group 2 inhibitors effects on LAX3 auxin induction . Group 2 
inhibitors affect lateral root emergence by blocking the induction by auxin of LAX3. Three mode 
of action are proposed: LIS stabilise the AuxilAA protein lAA 14, 
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Chapter 4 Identification of a novel class of auxin response 

inhibitors using a chemical biology approach 

4.1. Abstract 

In the previous chapter a novel class of chemicals identified in a screen for inhibitors of 

the induction of the reporter gene LAX3 has been studied and structurally characterised. 

Using different approaches, the mode of action of this family of inhibitors in plants is 

now being dissected. It is shown that these inhibitors block the induction of many auxin 

responsive genes most likely by stabilising the AuxlIAA family of repressors. 

Importantly they don't act as anti-auxins, which is consistent with their structure very 

different from IAA. Using various methods, it is also shown that the inhibitors block the 

response to hormonal pathways dependent on the SCF complex, such as gibberellins or 

jasmonic acid, but not kinase dependent pathways, such as brassinosteroids or abscissic 

acid. Finally, some data suggest that this SCF specific effects could be due to a 

reduction of CUL 1 neddylation. 

4.2. Introduction 

The plant hormone auxin (lAA) regulates a wide variety of developmental processes 

(Woodward and Bartel, 2005). These are mainly mediated via a nuclear localised 

machinery that triggers the transcriptional reprogramming of target cells (Vanneste and 

Friml, 2009). The transduction pathway leads to the rapid degradation of AuxlIAA 

repressor proteins via the ubiquitinlproteasome pathway (Chapman and Estelle, 2009). 

The accelerated AuxlIAA turnover relieves ARFs transcription factors to induce or 
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repress gene expression (Lokerse and Weijers, 2009; Tiwari et al., 2003; Tiwari et al., 

2001; Ulmasov et al., 1999; Ulmasov et al., 1997). 

IAA induces the degradation of AuxilAAs by promoting their interaction with the auxin 

receptor TIR1 (TRANSPORT INHIBITOR RESPONSE 1) (or the related AFBl-3) 

(Dharmasiri et al., 2005; Kepinski and Leyser, 2005). Crystallographic studies revealed 

that IAA sits in a pocket within TIR1, greatly increasing its affinity with a domain of 

Aux/IAA proteins called "Domain II" (Tan et al., 2007). TIRI is an F-BOX protein that 

is a sub-unit of an SCF complex (Gray et al., 2001; Kepinski and Leyser, 2004; Ruegger 

et aI., 1998). The other sub-units that form the active SCFTIR1 complex in Arabidopsis 

have been identified and are termed ASKI or ASK2 (ARABIDOPSIS SKPI-LIKE), 

CULl (CULLIN1) and RBXl (RING BOX1) (del Pozo and Estelle, 1999; Gray et al., 

1999; Gray et al., 2002; Hellmann et al., 2003; Moon et al., 2007; Quint et al., 2005; 

Shen et al., 2002; Zhao et al., 1999). 

Several signalling pathways in plants rely on the ubiquitination machinery. Notably, 

several members of the F-BOX protein family, which provide substrate specificity to the 

SCF E3 ubiquitin ligase complex, are involved in hormonal signal transduction 

pathways: 

Ethylene (EBFl and 2) (Guo and Ecker, 2003; Potuschak et al., 2003) 

Auxin (TIRI and AFBI-5) (Dharmasiri et al., 2005; Kepinski and Leyser, 2005) 

Gibberellins (SL Yl) (Dill et aI., 2004; McGinnis et al., 2003) 

Jasmonate (COIl) (Thines et al., 2007; Xie et al., 1998) 

114 



and potentially strigolactones (MAX2) (Gomez-Roldan et ai., 2008; Stimberg et 

ai., 2002; Umehara et ai., 2008), (Gagne et ai., 2002; Ho et ai., 2006; Willems et 

ai.,2004). 

In eukaryotes, the activity of the SCF complex is regulated by cycles of addition and 

removal ofNEDD8/RUB on the CULLIN subunit (NEDD8 stands for Neural-precursor-

cell-expressed Developmentally Down-regulated ｾ ~ and RUB for Related to Ubiquitin) 

(Kamitani et ai., 1997; Kirkin and Dikic, 2007; Rabut and Peter, 2008). NEDD8 is a 

polypeptide that is highly similar to ubiquitin. The enzymatic reaction that leads to the 

addition of a NEDD8 moiety (a process known as Neddylation) is reminiscent of the 

ubiquitination machinery but with notable structural differences (Huang et ai., 2009; 

Huang et ai., 2007; Huang et ai., 2004; Huang et ai., 2005; Walden et ai., 2003).In 

plants, a heterodimer functions as a NEDD8 E1 activating enzyme (the two proteins are 

termed AXR1 and ECR1 in Arabidopsis) (del Pozo et ai., 2002; del Pozo and Estelle, 

1999; del Pozo et ai., 1998; Leyser et ai., 1993). Subsequently, a NEDD8 E2 

conjugating enzyme, termed RCEl, together with a NEDD8 E3 ligase, termed RBXl, 

add a NEDD8 moiety to the CULl subunit (del Pozo et ai., 2002; Dharmasiri et ai., 

2003; Grayet ai., 2002; Willems et ai., 2004). When modified, the CULLIN protein is 

able to interact with the SCF complex (via SKPl, which is termed ASKII2 in 

Arabidopsis) (Chuang et ai., 2004; Feng et ai., 2004; Schwechheimer et ai., 2001; Zhang 

et ai., 2008). Removal of the NEDD8 subunit by the COP9 signalosome complex (also 

known as CSN complex) triggers the dissociation of CULl from the SCF complex and 

its subsequent interaction with CAND 1 (CULLIN ASSOCIATED and NEDD8-

DISSOCIATEDl) (Lyapina et ai., 2001; Schwechheimer et ai., 2001). 
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The importance of the Neddylation pathway in the response to auxin is highlighted by 

mutant phenotypes: loss of function of any sub-units of the CSN complex is embryo 

lethal and reduced expression of CSN5, the catalytic sub unit of the complex, leads to 

stabilisation of AuxlIAA proteins (Cope and Deshaies, 2003; Cope et ai., 2002; Lyapina 

et ai., 2001; Schwechheimer and Isono, 2010; Schwechheimer et ai., 2001). Also, loss of 

function in the NEDD8 E1, E2 or E3 (axrl, ecrl and rbxl) result in auxin resistant 

phenotypes (del Pozo et ai., 2002; del Pozo and Estelle, 1999; Dharmasiri et ai., 2003; 

Gray et ai., 2002). Taken together, it appears that cycles of addition and removal of 

NEDD8 on CULl are required to maintain the SCF complex active (Gray et ai., 2002; 

Schwechheimer et ai., 2001). 

In the previous chapter, five related sulfonamides that inhibit the induction by auxin of 

LAX3 have been identified using a high throughput chemical genetics screen. In this 

chapter, it is shown that this class of inhibitors affects many auxin regulated genes 

probably because they stabilise AuxlIAA proteins. It is further shown that they do not 

target TIRI but affect CULl Neddylation. As a consequence, several hormonal 

transduction pathways that require an active SCF complex are affected. On the other 

hand, SCF independent pathways, such as brassinosteroids or abscissic acid, are not or 

only slightly affected. 
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4.3. Material and Methods 

4.3.1. Materials 

4.3.1.1. Chemicals 

Cycloheximide (CHX) was purchased from VWR International Ltd and was dissolved 

in 100% EtOH. The LAX3 inhibitor LIS was synthesised in house at the University of 

Nottingham, School of Chemistry, by Neil J. Oldham and Anna Westacott. All LAX3 

inhibitors were dissolved in 100% DMSO to a stock concentration of 20 mM. 

4.3.1.2. Hormones 

Indole-3-acetic acid (IAA), a-naphthalene acetic acid (NAA), gibberellic acid (GA4), 

methyl jasmonate (MeJa), epibrasinolide (EpiBL), l-Aminocyclopropanecarboxylic acid 

(ACC, ethylene precursor) and (±)-Abscisic acid (ABA) were purchased from Sigma. 

lAA, GA4 and BL were dissolved in 100% EtOH, NAA and MeJa were dissolved in 

DMSO, ACC was dissolved in ddH20 and ABA in 100% methanol. All compounds 

were dissolved to a stock concentration of 50 or 100 mM. 

4.3.1.3. Arabidopsis Mutants 

Arabidopsis seeds for the lines p35S::JAZ-GUS (Thines et aI., 2007) and 

p35S::DII(IAA28)-VENUS (Vernoux et aI., 2011) were kindly provided by Pro John 

Browse (Washington State University) and Dr Teva Vernoux (ENS Lyon). The 

transgenic lines used were initially described in the following publications: 

pHS::AXR3NT-GUS and pHS::GUS (Gray et aI., 2001), pRGA::RGA-GFP (Silverstone 
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et aI., 2001), pDR5::GUS (Ulmasov et aI., 1997), plAA 19::GUS (Tatematsu et aI., 2004) 

and prt6-1 (Garzon et aI., 2007). 

Primer name 
qCTRLI -F 
qCTRLI -R 
qlAA3F 
qlAA3R 
qlAA14F 
qlAAl4R 
qPG-R 
qPG-F 
qCYCBII-F 
qCYCBII-R 
qLAX3-F 
qLAX3-R 
qARF19-F 
qARFI9-R 
qERFI-F 
qERFI-R 
qEDFI-F 
qEDFI-R 
qEDF2-F 
qEDF2-R 
qEDF3-F 
qEDF3-R 
qEDF4-F 
qEDF4-R 
qEBF2-F 
qEBF2-R 
qRD29B-F 
qRD29B-R 
qRAB18-F 
qRAB18-R 
qRD22-F 
qRD22-R 
qKIN2-F 
qKIN2-R 
qBR60X2-F 
qBR60X2-R 
qBR60XI-F 
qBR60XI-R 
qBASI -F 
qBASI-R 
qDWF4-F 
qDWF4-R 

4.3.1.4. Primers for qPCR 

Sequence (5'->3') 
agtggagaggctgcagaaga 
ctcgggtagcacgagcma 
caaagatggtgattggatgct 
tgatccttagtctcttgcacgta 
caaagatggtgactggatgc 
gcatgactcgacaaacatcg 
catcgatggacgaggatca 
cctcaaagctgttggtttgg 
ttccattgcagacgaaaaga 
tgatggactgaacattatcatcg 
tcaccattgcttcactccttc 
aagcaccattgtggttggac 
caccgatcacgaaaacgata 
tgttctgcacgcagttcac 
cttcccttcaacgagaacga 
gtttgttgcgtggactgct 
gtggcggttccgttacagt 
ccagcccttggtcaacac 
cacgaaagctaccatcttcaaa 
atctgagctccccatcttcc 
acggtaacggaaaagagacg 
ccgtmaaaccccgtca 
gcatcmcacgcctcgta 
gcaaataaagaaaacgaaaatgg 
ctggaatcttcagamagtggtg 
cttacgcgctgggtaatataca 
gaagagtctccacaatcacttgg 
caactcacttccaccggaat 
ggcttgggaggaatgctt 
ttgatcttttgtgttattcccttct 
agggctgtttccactgagg 
caccacagamatcgtcagaca 
ggcaaagctgaggagaagag 
actgccgcatccgatatact 
caatagtctcaatggacgcagagt 
aaccgcagctatgttgcatg 
tggccaatcmggcgaa 
tcccgtatcggagtcmggt 
ttggcttcataccgtttggc 
ttacagcgagtgtcaamggc 
gtgatctcagccgtacamgga 
cacgtcgaaaaactaccacttcct 
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4.3.2. Methods 

4.3.2.1. Seed sterilisation and seedling growth 

Seeds were surface sterilized for 5 minutes in 50% bleach, 0.1 % triton X-100 then 

washed three times with sterile ddH20. Seeds were stratified at 4° for 2 days to 

synchronise germination. Seeds were sown on Yz MS medium (Murashige and Skoog, 

1962) (Sigma) (2.17g salts/L), at pH5.7 solidified with 1% bacto-agar (Appleton 

Woods). 

4.3.2.2. Histology and histochemistry 

GUS activity is revealed by incubating seedlings in a phosphate buffer (500mM, pH 7) 

containing 0.5 mM potassium ferricyanide (K3[Fe(CN)6]), 0.5 mM potassium 

ferrocyanide Ｈ ｾ ｛ ｆ ･ Ｈ ｃ ｎ Ｉ Ｖ ｝ Ｉ Ｌ , 1 mM ethylenediaminotetraacetic acid (EDT A pH 8), 0.5% 

(v/v) Triton X-100 and 1 mM X-bromo-4-chloro-3-indolyl B-D-galactopyranoside 

(Sigma) (X-Glc) at 37° for 1 hour. X-Glc is initially dissolved in 100% 

dimethylformamide (DMF) to reach a final DMF concentration of 0.5%. After GUS 

staining, seedlings are cleared for at least 12 hours in 260% chloral hydrate in 33% 

glycerol (all chemicals purchased from Fischer Scientific and Sigma) before observation 

on microscope. 

4.3.2.3. Confocal microscopy 

Confocal microscopy was performed using a Leica SP5 confocal laser scanning 

microscope (Leica Microsystems) and a Nikkon EZ-C 1 confocal laser scanning 

microscope. Scanning settings used for one experiment were optimised and kept 

unchanged throughout the experiment. 
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4.3.2.4. Image analysis 

Root length was measured using ImageJ (ImageJ 1.40g) and confocal scanning 

microscope as well as light microscope images were processed using Fiji (Fiji Is Just 

ImageJ, ImageJ 1.44b) and figures assembled using Adobe Photoshop (version 7.01; 

Adobe Systems) and Microsoft PowerPoint 2010 (Microsoft Corporation, Redmond, 

USA). 

4.3.2.5. RNA extraction and RT qPCR 

RNA was extracted from plant tissues using Trizol Reagent (Invitrogen) and cleaned up 

using the RNeasy kit (Qiagen). Poly(dT) cDNA was prepared from 0.5 Ilg total RNA 

with Superscript II Reverse transcriptase (Invitrogen) and analyzed on a LightCycler 

480 apparatus (Roche Diagnostics) with the Quantace SYBRGREEN mix (Quantace) 

according to the manufacturer's instructions. Targets were quantified with specific 

primer pairs designed using the Universal Probe Library Assay Design Center (Roche 

Applied Science). All individual reactions were done in quadruplicate and data were 

analyzed with Microsoft Excel 2010 (Microsoft Corporation, Redmond, USA). 

Expression levels were normalized to At1G04850 (CTRL1, thanks to Tara Holman for 

primer sequences). 

4.3.2.6. TIRI pull downs 

Immunoprecipitations were performed as previously described (Gray et aI., 1999). For 

GST-AXR3 pull-down assays, 4 mg of purified fusion protein was added to 2.5 mg of 

crude Arabidopsis protein extract prepared from 7-day-old seedlings. Extracts were 

prepared by homogenizing seedlings in Buffer C (Gray et aI., 1999) supplemented with 
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ImM dithiothreitol, 10 mM MG132, 10mM b-glycerolphosphate, ImM NaF and ImM 

orthovanadate. The resulting homogenate was cleared by microcentrifugation for ISmin. 

Following addition of the glutathione±agarose-bound GST fusion protein, extracts were 

incubated at 4 8C with gentle agitation for 3 h. Glutathione beads were collected by 

brief centrifugation, washed three times in the above buffer, resuspended in SDS-PAGE 

sample buffer and subjected to SDS-PAGE electrophoresis and immunoblotting. 

4.3.2.7. CULl Neddylation 

Total proteins were extracted (as described in (Criqui et aI., 2000) from 2-week-old 

Arabidopsis seedling of wild-type Col-O genotype treated for 24 hours with or without 

NAA and with or without LIS. CULl was detected with a specific CULl antibody using 

western blot. 

4.3.2.8. Hormone responses 

To probe the response to various hormones, the following procedures were followed. 

Seeds of the GUS reporters (IAAI9p::GUS, DRSp::GUS, 3SS::JAZI-GUS and 

HS::AXR3 NT-GUS) were germinated on Yz MS agar plates and transferred to liquid Yz 

MS media for treatments. Various times of incubation (IAAI9p::GUS, 2 hours, 

DRSp::GUS: 20 minutes, 3SS::JAZI-GUS, overnight and HS::AXR3 NT-GUS, 2 hours) 

were used to obtain optimum GUS staining. For live imaging of fluorescent reporters 

(RGAp::RGA-GFP and 3SS::DII(28)-VENUS) seedlings were transferred on glass 

bottom Petri dishes and a block of agar containing the chemicals for treatments was 

gently and carefully laid down on the seedlings. Images were collected on a Leica SPS 

confocal scanning microscope as described in 4.3.2. 
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4.3.2.9. Microarray experiment set up 

Col-O Arabidopsis seeds were sown on plates containing NPA (lO/JM). 5 days after 

germination, seedlings were transferred on plates containing DMSO (mock treatment), 

LI5 at 5/JM, NAA at 10/JM or LI5 and NAA at 5 and 10/JM respectively, for 6 hours. 

RNA was extracted as described in the RNA extraction and RT qPCR section. 

Hybridization of the RNAs on the Affymetrix ATHI chips was performed at the 

microarray facility at NASC (Nottingham Arabidopsis Stock Center). 

4.3.2.10. Microarray quality controls 

M vs A plots, chip images, distribution of probe intensities before and after 

normalisation, Normalised Un scaled Standard Error (NUSE), Relative Log Expression 

(RLE) , PCA analysis, array to array correlation, RNA degradation curves as well as 

Affymetrics recommended quality controls were performed within RlBioconductor 

(Gentleman et ai., 2004; Team, 2007). 

4.3.2.11. Microarrays data analysis 

Data were normalised from .cel files using the RMA protocol (background correction: 

rma, normalisation: quantiles, PM correction: pmonly, expression: median polish) 

within RlBioconductor (Gentleman et ai., 2004; Team, 2007) and a recent CDF file 

(http://brainarray.mbni.med.umich.edu/, version 12). Lists of differentially expressed 

gene were obtained by fitting a linear model using the limma package in 

RlBioconductor. Further analyses were performed using Excel 2010 (Microsoft 

Corporation, Redmond, USA). Differentially regulated loci had a fold change greater 

than 2, a Benjamini and Hochberg False Discovery Rate of 0.05 (or 5%) and an 
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expreSSIOn value above 6.64 (log2) (Benjamini and Hochberg, 1995). Data is the 

average of 3 biological replicates per treatment. Enrichment in GO terms was 

determined using T AIR and BAR websites. Heat maps were generated using Me V 

(Multi Experiment Viewer, part ofTM4 Software Suite). To determine the extent ofLI5 

effects on NAA regulated genes, the following parameters were used: 

If a gene is up regulated by NAA and in presence of LI5 and NAA its up-

regulation is more than 2 fold increased, the induction of the gene is considered 

to be additive 

If a gene is up-regulated by NAA and in presence of LI5 and NAA its up-

regulation is less than 2 fold different compared to NAA on its own, the 

induction of the gene is considered to be unaffected or slightly affected. 

If a gene is up-regulated by NAA and in presence of LI5 and NAA its up-

regulation is more than 2 fold decreased compared to NAA on its own, the 

induction of the gene is considered to be affected. 

If a gene is up regulated by NAA and in presence of LI5 and NAA the gene is 

not differentially regulated the induction of the gene is considered to be 

completely affected. 

If a gene is up regulated by NAA and in presence of LI5 and NAA the gene is 

down-regulated the induction of the gene is considered to be opposite. 

These rules are similarly applied to down-regulated genes. 
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4.4. Results 

4.4.1. LI5 affects early auxin response in all root tissues 

To determine whether LI5 affects only secondary auxin responsive genes (such as 

LAX3) or primary responsive genes as well (such as IAA19 (Tatematsu et aI., 2004) or 

the synthetic reporter DR5 (Ulmasov et aI., 1997)), 5-day-old seedlings expressing 

IAAI9::GUS or DR5::GUS reporters were treated with IAA at 111M and with various 

concentrations of LI5 then sampled at different time point and stained. 

Figure 4-1 shows that LI5 affects the induction of both IAA 19 and DR5 GUS reporters 

in presence of IAA. This result suggests that LI5 blocks not only a secondary auxin 

responsive gene (LAX3) but also primary auxin responsive genes (at least IAA19 and 

the synthetic DR5 reporter). Interestingly, DR5::GUS staining is still visible in the 

columella cells at the root tip of seedlings treated with IAA and LI5 at 5 or IOIlM for 24 

hours. To rule out the possibility that LI5 affects auxin uptake from the medium, a 

protein synthesis inhibitor (cycloheximide, CHX) was used to determine how long the 

GUS enzyme is stable at the root tip. Figure 4-1 shows that it is stable for at least 24 

hours but not 72 hours. This result suggest that LI5 blocks auxin responses most likely 

by acting at the transcriptional level. 
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+ IAA IIlM 

DMSO DMSO CHX 

24 

Figure 4-1 Effects of LIS concentration on the induction of two auxin responsive markers. 
Cycloheximide (CHX) is used as a control to show that LIS does not block the flux of lAA from the 
medium into the root. 

To confirm these observations, 5-day-old col-O seedlings were treated with NAA 

(10j..lM) and with or without LIS at various concentrations then sampled at different time 

points to analyse gene expression by RT qPCR. First, the dynamics of auxin induction 

of LAX3 were analysed. Figure 4-2 (A) shows that LAX3 is not induced by NAA in 

presence of LI5at 5 or 10 uM (but it does at 1 uM) even after 10 hours of treatments. 

Therefore, LIS does not delay the response to auxin but completely blocks it. Secondly, 

the induction fold of auxin responsive genes specific for different root tissues, such as 

crCBl;l (peri cycle), IAA3 (endodermis), IAAl4 (peri cycle, cortex and epidermis), PG 
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(cortex and epidermis), LAX3 (vasculature, cortex and epidermis) and ARF19 (all root 

tissues) were measured. Figure 4-2 (B) shows that LIS blocks the induction by auxin of 

all the gene analysed in all tissues of the mature part of the root. 
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Figure 4-2 LIS does not delay auxin response and affect all tissues. (A) Induction of LAX3 is affected 
by LIS at S!lM and is not delayed. (8) Several auxin responsive genes expressed in specific ti ssues are not 
induced in presence of NAA and LIS . Error bars on all the charts show the SD of the mean of four 

technical replicates. 
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4.4.2. Transcriptomics analysis 

4.4.2.1. Experimental set-up and quality controls. 

To have an overview of the genomic effects of LI5 on the response to auxin, we 

performed a transcriptomic analysis on the mature part of the root of wild type (col-O) 

seedlings treated for 6 hours with or without auxin (NAA at IOIlM) and with or without 

LI5 at 51lM. We generated 3 biological replicates for each treatment, resulting in 12 

samples in total. Several quality control checks were done (details are in material and 

methods) and based on these it is concluded that the quality of the dataset is very high. 

Figure 4-3 and Figure 4-4 show the results of some ofthese QC. 

The procedures used for probe sets corrections and normalisation, identification of 

differentially expressed genes and microarray data mining are in the material and 

methods. Analysis of differentially expressed genes was done by looking at significantly 

enriched Gene Ontologies (GO) in sets of genes induced or repressed in the different 

treatments using TAIR (The Arabidopsis Information Resource) and BAR (The Bio-

Array Resource for Plant Biology) websites. Details of the method use for the analysis 

are described in Material and Methods 
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Figure 4-3 Quality controls (1) of the arrays analysed. (A) and (B) Boxplots of the probe intensities 
(lOg2) on the arrays before (A) and after (B) normalisation and background corrections. (C) and (D) 
Distribution of the probe intensities (lOg2) before (C) and after (D) normalisation and background 
corrections. In (D) the two peaks represent the distribution of the non-expressed probe sets (below 
background, first peak) and the distribution of the expressed probe sets (above background, second peak). 
(E) NUSE (Normalised Unscaled Standard Errors) and (F) RLE (Relative Log Expression) charts of the 
arrays analysed. In (E), it is expected that the normalised standard errors of the arrays centre around I and 
have an equivalent spread. It appears that the third green array (LIS replicate 3) is different from the 
others. Low quality arrays typically centre above 1.1 and, therefore, despite this array showing signs of 
low quality, it remains acceptable. On each chart, the 3 replicates of each treatment are shown in red 
(mock), green (LIS), dark blue (LIS and NAA) and light blue (NAA) . 
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Figure 4-4 Quality controls (2) of the arrays analysed. (A) The RNA degradation curves show no 
obvious signs of RNA degradation in the samples. (B) Principal component analysis (PCA) of the two 
components that explain most of the variance (as shown on the scree plot). The PCA analysis shows that 
component 1 explains most of the variation due to NAA whereas component 2 explains most of the 
variation due to LIS. (C) Array to array correlation analysis shows that arrays obtained from similar 
treatments (1 -3, mock; 4-6, LIS ; 7-9, LIS and NAA; 10-12, NAA) have a high correlation coefficient. On 
the other hand, arrays obtained from two very different treatment (LIS (4-6) and NAA (9-12) have a low 
correlation coefficient. 
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4.4.2.2. Effects of LIS 

At the phenotypic level, treatment with LI5 at 51lM severely affects plant growth and 

lateral root formation (see Chapter 3). Seedlings grown on LI5 have shorter roots with 

no lateral roots and the cotyledons show signs of anthocyanin accumulation (red colour). 

At the genomic level, treatment with LI5 at 51lM induces 716 genes and represses 734 

genes in the root. GOs of induced genes fall into four main categories: responses to heat, 

to organic substances, to abiotic stimulus and to ABA. The top 10 induced genes include 

two multi drug efflux transporter and two heat shock proteins. GOs of repressed genes 

fall into three main categories: hydrogen peroxide metabolism, glucosinolate 

biosynthesis and cell wall formation. The top 10 repressed genes include three disease 

resistance proteins, two peroxidases and one sulfotransferase. Figure 4-5 shows GOs 

overrepresented in genes induced and repressed by LI5. 

4.4.2.3. Effects of NAA 

Treatment with NAA at 1 o 11M triggers many developmental and morphological changes 

in the Arabidopsis root: formation of root hairs, initiation and emergence of lateral roots, 

arrest of root growth and many others. 

At the genomic level, treatment with NAA at IOIlM induces 1475 genes and represses 

1174 genes in the root. Most of these genes have been reported before as auxin 

responsive. Notably, the GOs of induced genes fall into three main categories: lateral 

root formation, ribosome biogenesis and cell cycle. The top 10 induced genes include 

three LOB domain proteins, one AuxlIAA and one GH3. GOs of repressed genes fall 

into three main categories: glucosinolate biosynthesis, photosynthesis and response to 
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reactive oxygen species. The top 20 repressed genes include one peroxidase, one 

glucosinolate biosynthesis gene, one aquaporin and two proteases. Figure shows GOs 

overrepresented in genes induced and repressed by NAA. Figure 4-5 shows GOs 

overrepresented in genes induced and repressed by NAA. Figure 4-6 and Figure 4-7 

compares the effects ofLI5 on genes up and down regulated by NAA respectively. 

4.4.2.4. Effects of LIS and NAA 

Treatment with LI5 at 51lM and NAA at IOIlM blocks all the developmental and 

morphological changes induced by NAA, apart from root growth which is already 

severely reduced by LI5 on its own (Chapter 3). Seedlings are very similar to the one 

treated with LI5 only. 

At the genomic level, treatment with LI5 at 51lM and NAA at IOIlM induces 1146 genes 

and represses 1059 genes. GOs of induced genes fall into the same main categories as 

LI5 and also to a less extent NAA: responses to heat, organic substances, abiotic 

stimulus, ABA, auxin and lateral root formation. The top 10 induced genes include one 

LOB domain protein, one GH3, two multi drug efflux transporters and two proteins 

involved in the degradation ofROS (Reactive Oxygen Species). GOS of repressed genes 

fall into the same main categories as LI5 and, to a less extent, NAA as well: 

glucosinolate biosynthesis, hydrogen peroxide metabolism, response to reactive oxygen 

species and photosynthesis. The top 10 repressed genes include two peroxidases. Figure 

4-5 shows GOs overrepresented in genes induced and repressed by LI5 and NAA 
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Figure 4-5 LI5 and NAA affects separate sets of genes. (A and B) Over and under representation of 
gene ontologies (GO) of genes up (A) and down (B) regulated in the different treatments. GO terms are 
ordered with the most overrepresented in the NAA treatment on the left and the most underrepresented in 
the NAA treatment on the right. The mean and standard deviation for 100 bootstraps of the datasets were 
used to estimate the relevance of the over and under representation of the GO terms. (C and D) Venn 
diagram of genes up (C) and down (D) regulated in the different treatments. 
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4.4.2.S. To what extent LIS affects auxin responsive genes? 

A detailed comparison of the effects of LI5 on auxin regulated genes has been carried 

out. Figure 4-6 and Figure 4-7 show that LI5 affects 75% of auxin induced genes and 

52% of auxin repressed genes. Interestingly, amongst the auxin regulated genes which 

are not affected by LI5 some are actually more induced or more repressed (genes 

classified as "additive" on Figure 4-6 and Figure 4-7). Interestingly, 67% of these genes 

have at least one Auxin Response Element (ARE) in their promoter (this proportion is of 

44% on the ATHI chip). Importantly, these genes are up or down regulated by LI5 on 

its own as well which explains the increased expression in presence of both LI5 and 

NAA. The microarray data show that LI5 blocks the response to auxin almost 

completely and induces stress responsive genes, which are also induced by NAA on its 

own. Therefore, it appears that the inhibitor targets a general and conserved mechanism 

of the auxin response machinery. 
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Genes up regulated by NAA 

- Additive 
68% with at least one ARE 

- Not/Slightly Affected 
47.6% with at least one ARE 

- Affected 
51.4% with at least one ARE 

- Completely affected 
49.2% with at least one ARE 

- Opposite 
50% with at least one ARE 

Figure 4-6 LI5 affects 75% of genes up regulated by NAA. The heat map shows the 1475 genes up 
regulated in presence ofNAA . The genes are clustered depending on how Ll5 affects their induction. The 
coloured strips on the left of the heat map indicate the clusters which are detailed on the pie chart. Details 
on how genes were categorised are in the materials and methods. ARE: Auxin Response Elements. On 
average, 44% of all the genes on the ATH1 chip have at least one ARE. 
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Genes down regulated by NAA 

3.1% 

5.7% 

- Additive 
65.4% with at least one ARE 

- Not/Slightly Affected 
53.5% with at least one ARE 

- Affected 
56.7% with at least one ARE 

- Completely affected 
51.3% with at least one ARE 

- Opposite 
48.6% with at least one ARE 

Figure 4-7 LIS affects 50% of genes down regulated by NAA. The heat map shows the 1174 genes 
down regulated in presence of NAA. The genes are clustered depending on how LIS affects their 
induction. The coloured strips on the left of the heat map indicate the clusters which are detailed on the 
pie chart. Details on how genes were categorised are in the materials and methods. ARE: Auxin Response 
Elements. On average, 44% of all the genes on the ATHI chip have at least one ARE. 
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4.4.3. LI5 stabilises AuxllAA proteins 

Most of the auxin response inhibitors identified previously stabilise AuxlIAA proteins 

(Armstrong et aI., 2004; Hayashi et aI., 2003; Hayashi et aI., 2009; Oono et aI., 2003; 

Yamazoe et aI., 2005). To test if LI5 inhibits the response to auxin because it stabilises 

AuxlIAA proteins, two different reporters have been used. The first one uses a fusion 

between the domain II ofAXR3 (IAA 17) (Gray et aI., 2001) and the GUS enzyme and 

the second one uses a fusion between the domain II of IAA28 and Venus, a yellow 

fluorescent protein (Vemoux et aI., Submitted). 

The AXR3NT -GUS trans gene is under the regulation of a temperature inducible 

promoter which is inactive at the restrictive temperature of 21 ° and active at the 

permissive temperature of 37°. AuxlIAA stability is measured by performing a GUS 

staining of the seedlings 30 minutes after induction of the reporter and subsequent 

treatment with or without auxin and with or without LI5. Figure 4-8 A shows that LI5 

reduces the NAA or IAA induced degradation of the GUS reporter. 

The AuxlIAA28- Venus fusion is constitutively expressed (35S promoter) and targeted 

to the nucleus. AuxlIAA stability is measured by following the total fluorescence of 

seedlings in presence of auxin and/or LI5. Figure 4-8 B shows the quantification of 

fluorescence. It seems that there is a delay before LI5 stabilises the AuxlIAA reporter, 

which could be explained by a slower uptake of the drug compared to NAA or to the 

higher potency ofNAA compared to LI5 towards its target protein. 
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Figure 4-8 LIS stabilises AuxlIAA proteins. (A) Representative pictures of GUS stained AXR3NT-GUS 
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or without Ll5. 
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4.4.4. LI5 affects Cullin Neddylation 

Based on the current model of the auxin response pathway, there are several ways to 

explain AuxlIAA stabilisation. LI5 could act as an anti auxin and block the interaction 

of TIRI with the domain II of AuxlIAA proteins, LI5 could also block the ubiquitination 

of AuxlIAA proteins by disturbing the activity of the SCFTIR1 complex or LI5 could 

affect the activity of the proteasome. 

To determine if LI5 acts as an anti-auxin, pull down experiments were carried using 

GST tagged AXR3 N terminal peptides (that include its domain II) which were 

immobilised on sepharose beads and incubated with a protein extract from transgenic 

Arabidopsis seedlings expressing TIRI-myc (Gray et al., 2001). Figure 4-9 shows that 

LI5 does not disrupt their auxin dependant interaction (experiment performed by Dr 

Stefan Kepinsky). Therefore, it appears that LI5 does not act as an anti-auxin. 

To determine if LI5 affects CULl neddylation wild type seedlings treated with auxin 

and with or without LI5 for 24 hours and protein extracts were analysed by western blot 

(del Pozo and Estelle, 1999). Cullin neddylation is required to promote the assembly of 

the SCF complex and, in vivo, both forms (modified and unmodified) can be observed in 

untreated WT seedlings (Figure 4-9). Auxin treatments did not change the ratio of 

modified to unmodified CUL 1 but treatments with auxin and LI5 seemed to reduce the 

amount of modified CUL 1 (Figure 4-9) (experiment performed by Pr Pascal Genschik 

and Dr. Esther Lechner). Hence it appears that the inhibitor may affect the neddylation 

of the cullin subunit of the SCF complex. 
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Figure 4-9 LIS affects CULLIN I neddylation in vivo but not Aux/lAA TIRI auxin dependant 
interaction in vitro. (A) LI5 does not affect the auxin dependant interaction between TlRI and the N 
terminus ofAXR3 (AuxlIAA I7) in vitro. LI5 concentration is 251lM and NAA concentration is IOIlM 
(courtesy of Dr. Stefan Kepinsky). (8 and C) LI5 reduces the proportion ofneddylated CUL compared to 
unmodified CUll in vivo (courtesy ofPr. Pascal Genschik and Esther Lechner). 
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4.4.S. LIS affects hormonal pathways that require a functional SCF complex 

The results obtained suggest that LI5 affects cullin neddylation. Most likely, this is 

going to have an impact on the response to other hormones that are dependent on the 

SCF complex. To test if that is the case, the response to several hormones that are 

dependent on the SCF complex (gibberellins (GA), jasmonates (JA) and ethylene 

(Figure 4-10)) have been analysed using different approaches: 

GA functions by promoting the degradation of DELLA repressor proteins (Dill et aI., 

2004; McGinnis et aI., 2003) (Figure 4-10). In vivo, GA responses can be monitored 

using a fusion between a DELLA (RGA) and a green fluorescent protein (GFP) 

(Silverstone et aI., 2001). Live imaging using a confocal microscope shows that the 

RGA-GFP fusion protein is destabilised after addition of exogenous GA. Treatment with 

LI5 and GA results in the stabilisation of the reporter suggesting that LI5 blocks the 

response to GA (Figure 4-11, A). 

JA functions by promoting the degradation of JAZ Gasmonate ZIM domain proteins) 

repressor proteins (Thines et aI., 2007) (Figure 4-10). In vivo, JA responses can be 

monitored using a fusion between a JAZ (JAZl) and the GUS reporter gene. This 

transgene is expressed in transgenic plants via a 35S promoter and treatment with MeJa 

promotes the rapid degradation of the fusion protein. Treatment with LI5 and MeJa 

results in the stabilisation of the JAZ I-GUS fusion protein which suggests that LI5 

blocks JA responses (Figure 4-11, B). 

In the absence of ethylene, the transcription factors EIN3 and EIN3-LIKE (ElLs) are 

constitutively degraded by the SCFEBF1I2 complex (Figure 4-10) (Guo and Ecker, 2003; 
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Potuschak et aI., 2003). Ethylene functions by inactivating the EBF1I2 proteins. As LI5 

inactivates the SCF complex it is expected that LI5 mimics ethylene treatments. To test 

that, 5 day old col-O seedlings were treated with or without ACC (1-

Aminocyclopropane-l-carboxylic acid, ethylene precursor) and LI5 then sampled at 

different time points and gene expression analysed by R T qPCR. The expression levels 

of several ethylene responsive genes (ERF1, EDFI-4 ((Stepanova and Alonso, 2009))) 

were then quantified by R T qPCR. The result suggests a mild but reproducible effect of 

LI5 on ethylene responsive genes (Figure 4-11, C). 
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Figure 4-10 Hormone signal transduction pathways dependant on the SCF complex. (A) The auxin 
signal transduction pathway (as described in Chapter I). The small stars represent IAA. (8) Thejasmonic 
acid signal transduction pathway. An increase in JA concentration is perceived by the JA receptor COil, 
which triggers the degradation of JAZ repressors and releases MYC2 to regulate downstream genes. The 
stars represent JA. (C) The gibberellin signal transduction pathway. An increase in GA concentration is 
perceived by the GA receptors GID I a-c, which triggers the degradation of DELLA repressors and 
releases PlFs transcription factors to regulate downstream genes. The circles represent GA. (D) The 
ethylene signal transduction pathway. An increase in ethylene concentration is perceived by the ethylene 
receptor CTRI which triggers the stabili sation of the transcriptional activator EIN3 via EIN2. Adapted 

from (Santner and Estelle, 2009). 
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Figure 4-11 LIS affects SCF dependant hormonal pathways. (A) GA responses are monitored at the 
protein level using the fluorescent reporter RGA::RGA-GFP. The chart shows the quantification of total 
GFP fluorescence over two hours following the indicated treatments. Data acquisition and analysis was 
performed as described in Material and Methods. (8) JA responses are monitored at the protein level 
using a 35S::JAZ-GUS reporter. Data acquisition and analysis was performed as described in Material and 
Methods. (C) Ethylene responses are monitored after treating seedlings with ACC, LIS or ACC and LIS 
for I hour, 3 hours and 24 hours. The amount of mRNA of typical ethylene responsive genes is 
determined using RT qPCR. Error bars on the RT qPCR charts show the SD of the mean of four technical 
replicates. GA3 concentration is I OflM , LIS is 5 flM , JA is 10 flM and ACC is 10 flM. 
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4.4.6. Effects of LI5 on hormonal pathways that do not require a functional 

SCF complex 

4.4.6.1. Abscissic Acid 

LI5 consistently affects pathways that utilises the SCF complex in their signalling 

cascade. The abscissic acid signal transduction pathway utilises protein kinases and 

phosphatases to modify target proteins activity (mainly ABI3 and ABI5). There is no 

report of a role of a cullin-associated complex, though several RING E3s have been 

shown to modulate ABA responses by regulating ABI3 and ABI5 protein levels (Bu et 

aI., 2009; Raghavendra et aI., 2010; Santner and Estelle, 2010; Stone et aI., 2006; Zhang 

et aI., 2005; Zhang et aI., 2007). 

To test whether LI5 has an effect on ABA signalling, 5 day old Col-O seedlings were 

treated with or without ABA and with or without LI5 then sampled at different time 

points and gene expression analysed by RT qPCR. Figure 4-13 shows that LI5 on its 

own triggers an ABA response (Figure 4-13). This is consistent with the microarray 

results which showed that "ABA responsive gene" is one of the top statistically over 

represented term in the set of genes differentially regulated by LI5 on its own (Figure 

4-5). Treatments with LI5 and ABA had a mild effect on genes induced by ABA 

(around 10 fold reduction). Hence, it appears that LI5 blocks partially ABA response 

possibly because it affects the degradation of ABI3 and 5 (Bu et aI., 2009; Raghavendra 

et aI., 2010; Santner and Estelle, 2010; Stone et aI., 2006; Zhang et aI., 2005; Zhang et 

aI.,2007). 
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Figure 4-12 ABA signal transduction pathways. (A) ABA signals via a protein kinase cascade that lead 
to ABI3 and 5 activation. Ca2

+ also activates these two transcription factors but via different protein 
kinases. (B) ABA triggers the degradation of ABI5 via the AIP2 RING E3 ligase and ABA stabilises 
ABI3 by inhibiting its degradation by KEG (Keep On Going) E3 ligase. (C) ABI3 and ABI5 interact and 
regulate genes by binding directly their promoter on Abscissic acid Response Qlement (ABRE). Adapted 
from (Raghavendra et aI., 2010; Santner and Estelle, 2009). 
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Figure 4-13 LIS affects slightly ABA responsive genes. ABA responses are monitored after treating 
seedlings with ABA , LI5 or ABA and LI5 for 1 hour and 3 hours. The amount of mRNA of typical ABA 
responsive genes is determined using RT qPCR. Error bars on all the charts show the SD of the mean of 
four technical replicates. Concentration of LIS is SJlM and ABA is 10JlM. 

4.4.6.2. Brassinosteroids 

Brassinosteroids function by activating a cell-surface receptor kinase (BRll) which 

triggers a phosphorylation and dephosphorylation cascade that leads to transcriptional 

reprogramming (He et al., 2000). A negative regulator of BR signalling BIN2 

(BRASSINOSTEROID INSENSITIVE 2)) was shown to be degraded by epi-

brassinolide treatments in a proteasome dependant manner but the E3 ligase involved 

has not been identified. (He et al., 2002; Peng et al., 2008). 

To test whether LI5 has an effect on brassinosteroid signalling, 5 day old Col-O 

seedlings were treated with or without epibrassinolide (EpiBL, 111M) and with or 

without LI5 and then sampled at different time points. Figure 4-15 shows that L15 does 

not affect brassinosteroid responsive genes. 
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Figure 4-14 The brassinosteroid signal transduction pathway, The signallin g components in 
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of BZRI and BZR2/BESl. In the presence ofBR (lower panel), BR binds to BRII , which 
induces association with BAKI and disassociation of BKI!. Sequential transphosphorylati on 
activates BSKs and BSUI . Activated BSUI inhibits BIN2 through dephosphorylation of the 
phospho-tyrosine residue of B IN2 , which allows accumulation of unphosphorylated BZR I and 
BZR2/BES I in the nucleus. Active BZR I and BZR2/BES 1 bind the promoter of BR-target 
genes. Reproduced and adapted from (Kim and Wang, 20 I 0). 
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Figure 4-15 BL responsive genes are not affected by LIS, Brassinosteroids responses are monitored 
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4.5. Discussion 

In this chapter, the mode of action of a class of sulfonamides that were identified in a 

screen for inhibitors of the induction by auxin of the gene LAX3 (Chapter 3) has been 

dissected. It has been shown that LIS, the most active member of this class of 

compounds, stabilises a family of repressor proteins of the auxin signalling pathway, the 

AuxlIAAs (Figure 4-8). Using in vivo assays it has been shown that this stabilisation 

could be a consequence of a reduction in CUL 1 neddylation (Figure 4-9). The addition 

of a NEDD8IRUB moiety (neddylation) on cullins has been described in animals and 

plants (Kamitani et aI., 1997; Kirkin and Dikic, 2007; Rabut and Peter, 2008) .. The 

pathway is very similar to ubiquitination as it requires the concerted action of three 

enzymes: an El (or activating enzyme), which in Arabidopsis is a heterodimer (AXRl 

and ECRl), an E2 (or conjugating enzyme) (RCEl) and an E3 (or ligase enzyme) 

(RBXl) (Huang et aI., 2009; Huang et aI., 2007; Huang et aI., 2004; Huang et aI., 200S; 

Walden et aI., 2003) .. Any of these three enzymes could be targeted by LIS as mutations 

in any of them result in reduced auxin responsiveness (del Pozo et aI., 2002; del Pozo 

and Estelle, 1999; Dharmasiri et aI., 2003; Gray et aI., 2002). Preliminary result suggests 

that ubiquitin E 1 enzyme is not affected by the compound but there are no evidences 

that it does not affect the NEDD8 E1. 

By affecting CULl neddylation, LIS could trigger the dissociation of the SCF complex. 

Un-neddylated CULl interacts with CANDI whereas neddylated CULl interact with 

ASKI and other sub-units of the SCF complex (Chuang et aI., 2004; Feng et aI., 2004; 

Schwechheimer et aI., 2001; Zhang et aI., 2008). Removal of NEDD8 on cullins is 

necessary since loss of function mutations in the catalytic sub-unit which catalyses 
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NEDD8 removal leads to embryo lethal phenotype (Lyapina et aI., 2001; 

Schwechheimer et aI., 2001). Consistent with this idea, many SCF dependant pathways 

have been shown to be affected (Figure 4-10 and Figure 4-11). In the case of GA and 

JA, there is a clear stabilisation of the repressor proteins (DELLA for GA, JAZI for JA) 

in presence of LI5 (Dill et aI., 2004; McGinnis et aI., 2003; Thines et aI., 2007; Xie et 

aI., 1998). In the case of ethylene, responses are more complex to analyse. The 

transduction pathway relies primarily on the stabilisation of an activator (EIN3) rather 

than the degradation of a repressor(Guo and Ecker, 2003; Potuschak et aI., 2003). 

Nevertheless, another protein, EIN2, has to be degraded by the proteasome to allow 

EIN3 stabilisation. As one would expect, LI5 does not block ethylene responses but 

enhances it. Treatments with LI5 on its own only slightly induce ethylene responses 

which could be due to the negative effects of EIN2 stabilisation. 

AuxIIAA stabilisation correlates well with the marked effects of LI5 on the auxin 

response transcriptome (Figure 4-5, Figure 4-6 and Figure 4-7). Importantly, it appears 

that LI5 does not affect the entire auxin responsive gene transcriptome to the same 

extent. Overall, 75% of the auxin induced and 50% of the auxin repressed genes are 

affected. In most cases, the genes that are not affected are also differentially expressed 

in presence ofLI5 on its own. In particular, the gene IAA30 is induced by auxin (15 fold 

after 6 hours) and by LI5 (2 fold after 6 hours). In presence of both compounds the gene 

is induce more than 40 fold after 6 hours. IAA30 is not the only gene where treatments 

with LI5 and NAA have synergic effects: MYB39 (transcription factor), GA20X6 (GA 

catabolism) or CYP707 A 1 (ABA catabolism) are other examples of LI5 and auxin 

common targets. 
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Interestingly, hormonal pathways such as abscisic acid and brassinosteroids are not 

significantly affected by LIS (Figure 4-13 and Figure 4-15). This is consistent with these 

pathways shown to be kinase (rather than SCF) dependent (He et aI., 2000; Peng et aI., 

2008; Raghavendra et aI., 2010). In the case of ABA, the 4 genes tested all responded to 

ABA and LIS which is consistent with LIS triggering ABA responses. Nevertheless, 

treatments with both compound lead to a small reduction compared to ABA. 

In plants and animals, the cullin family of proteins is associated with several RING E3 

ligases (called CRLs for cullin-RING ubiquitin Ii gases) complexes such as the SCF but 

also the cyclosome (APC/C or Anaphase Promoting Complex) the CUL3-BTB, the 

CUL4-DDB 1 and probably many more (Thomann et aI., 2005) (Barford, 2011; 

Biedermann and Hellmann, 2010; Hua and Vierstra, 2011; Jia and Sun, 2011; 

Zimmerman et aI., 2010). In each case, the CULLIN subunit is consistently modified by 

a NEDD8 moiety. It will be of interest to determine if these complexes are also affected 

by looking at other CULLINS modifications. 

The results presented in this chapter are summarised in the model on Figure 4-16. The 

family of benzene sulfonamides identified have been shown to affect the responses to 

several hormones regulated by an SCF complex. Further biochemical characterisation of 

SCF complex activity in presence of LIS may help determining if the complex is still 

active and will allow to narrow down potential targets. 
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Figure 4-16 Model of LIS action on the auxin response pathway. (A) In presence of auxin, SCF
T1Rl 

interacts with AuxlIAA repressors and promote their degradation. Cycles of addition and removal of 
RUBIN EDD8 maintain the SCF complex active. RUBINEDD8 is added to the CULl sub unit of the SCF 
complex by an EI (heterodimer AXRIIECRI) , an E2 (RCEI) and an E3 (RBX I) and is removed by the 
CSN complex. Unmodified CULl interacts with CAND I which promotes SCF dissociation. Addit ion of 
ubiquitin to the AuxlIAA is catalysed by an ubiquitin E I , an ubiquitin E2 and by the FBOX E3 TIR I . (B) 
In presence of LIS, the CUL I sub-unit seems to not be modified by RUBINEDD8 which triggers SCF 
dissociation. Consequently, Auxl IAAs are stabilised. (C) As a result of AuxlIAA stabilisation, auxin 

responsive genes are not induced or repressed. 
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Chapter 5 Summary and concluding remarks 

In this thesis, pharmacological and genetic approaches have been employed to give new 

insight into mechanisms of auxin regulated genes. 

5.1. Summary 

(1) A new regulatory network for LAX3: 

• LAX3 is a secondary auxin responsive gene that appears to be positively 

regulated by an ARF7 dependent transcription factor (TF X) and negatively 

regulated by an ARF 19 dependent transcription factor (TF Y). 

• The promoter of LAX3 has an ARE that negatively regulate its auxin induction 

and a 200 base pairs domain that positively regulate its expression and auxin 

induction 

• Using transcript profiling of arj7 and arf19 mutants, 78 and 51 putative 

candidates have been identified for TF X and TF Y respectively. 

(2) The characterisation of new inhibitors of LAX3 auxin induction: 

• 13 new inhibitors have been identified that affect LAX3 auxin induction. 

• 5 of the ·13 inhibitors, which belong to the sulfonamide class of compounds, 

share a common structure and affect lateral root emergence. 

• Studies on the structure/function relationship of the sulfonamides showed that 

minor changes to the structure dramatically affect the activity of the compound. 

(3) Identification of the mode of action of the sulfonamides: 

• 
• 

• 

The inhibitors affect very broadly auxin responses and trigger stress responses. 

The inhibitors stabilise AuxlIAA repressors, maybe by affecting CUL 1 

neddylation. 

The inhibitors affect hormonal response pathways depending on the SCF 

complex 

159 



5.2. Concluding remarks 

The wide range of developmental processes regulated by auxin is fascinating when 

considering the simplicity of its chemical structure. A partial explanation to this 

extraordinary potential resides in the large number of combinations possible between the 

components of the auxin response pathway, which is shown on Figure 1-8. The results 

presented in this thesis challenges some of these concepts and should be further 

investigated: 

Positive ARFs (such as ARFI9) can have negative effect on gene expression. 

The current model, which suggests that a combination of positive and negative 

ARFs fine tune the level of gene expression, is not sufficient to explain this 

observation. Further studies on the downstream targets of ARF 19 will have to be 

investigated in order to determine how they regulate the expression of LAX3 and 

potentially many other genes. 

The regulation of secondary auxin responsive genes is lacking clear genetic and 

physiological evidences. Several member of various families of transcription 

factors, which are primary auxin responsive genes, have been identified and 

further studies on loss function mutants will shed a light on their function 

New groups of auxin response inhibitors have been identified and characterised. 

Further studies of their effects on auxin signalling, for example by looking at 

their effects on AuxlIAA reporters will uncover if they affect early or late 

responses. 
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The large number of processes regulated by the SCF complex in plants is 

illustrated by the large numbers ofF-BOX proteins (over 700 in Arabidopsis). 

The sulfonamides studied in Chapter 3 and 4 seem to affect SCF activity by 

affecting the modification of a sub-unit of the complex (CULl). Further 

characterisation of the mode of action of the compound and the identification of 

its target(s) may provide new insights into processes regulated by an SCF 

complex. 
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