
Sabar, Nasar and Ayob, Masri and Kendall, Graham and
Qu, Rong (2013) Grammatical evolution hyper-heuristic
for combinatorial optimization problems. IEEE
Transactions on Evolutionary Computation, 17 (6). pp.
840-861. ISSN 1089-778X

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28282/1/TEC13.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 1

Abstract— Designing generic problem solvers that perform

well across a diverse set of problems is a challenging task. In this
work, we propose a hyper-heuristic framework to automatically
generate an effective and generic solution method by utilizing
grammatical evolution. In the proposed framework, grammatical
evolution is used as an online solver builder, which takes several
heuristic components (e.g. different acceptance criteria and
different neighborhood structures) as inputs and evolves
templates of perturbation heuristics. The evolved templates are
improvement heuristics which represent a complete search
method to solve the problem at hand. To test the generality and
the performance of the proposed method, we consider two well-
known combinatorial optimization problems; exam timetabling
(Carter and ITC 2007 instances) and the capacitated vehicle
routing problem (Christofides and Golden instances). We
demonstrate that the proposed method is competitive, if not
superior, when compared to state of the art hyper-heuristics, as
well as bespoke methods for these different problem domains. In
order to further improve the performance of the proposed
framework we utilize an adaptive memory mechanism which
contains a collection of both high quality and diverse solutions
and is updated during the problem solving process. Experimental
results show that the grammatical evolution hyper-heuristic, with
an adaptive memory, performs better than the grammatical
evolution hyper-heuristic without a memory. The improved
framework also outperforms some bespoke methodologies which
have reported best known results for some instances in both
problem domains.

Index Terms—Grammatical Evolution, Hyper-heuristics,
Timetabling, Vehicle Routing

I. INTRODUCTION

ombinatorial optimization can be defined as the problem
of finding the best solution(s) among all those available
for a given problem [1]. These problems are encountered

in many real world applications such as scheduling,
production planning, routing, economic systems and
management [1]. Many real world optimization problems are
complex and very difficult to solve. This is due to the large,

Nasser R. Sabar and Masri Ayob are with Data Mining and Optimisation
Research Group (DMO), Centre for Artificial Intelligent (CAIT), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
email:naserdolayme@yahoo.com, masri@ftsm.ukm.my
Graham Kendall and Rong Qu are with ASAP Research Group, School of
Computer Science, The University of Nottingham, Nottingham NG8 1BB,
UK.email:gxk@cs.nott.ac.uk, rxq@cs.nott.ac.uk

and often heavily constrained, search spaces which make their
modeling (let alone solving) a very complex task [2]. Usually,
heuristic methods are used to solve these problems, as exact
methods often fail to obtain an optimal solution in reasonable
times. The main aim of heuristic methods, which provide no
guarantee of returning an optimal solution (or even near
optimal solution), is to find a reasonably good solution within
a realistic amount of time [3, 4]. Meta-heuristic algorithms
provide some high level control strategy in order to provide
effective navigation of the search space. A vast number of
meta-heuristic algorithms, and their hybridizations, have been
presented to solve optimization problems. Examples of meta-
heuristic algorithms include scatter search, tabu search,
genetic algorithms, genetic programming, memetic
algorithms, variable neighborhood search, guided local search,
GRASP, ant colony optimization, simulated annealing,
iterated local search, multi-start methods and parallel
strategies [3],[4].

Given a problem, an interesting question that comes to mind
is:

Which algorithm is the most suitable for the problem at
hand and what are the optimal structures and
parameter values?

The most straightforward answer to the above question might
be to employ trial-and-error to find the most suitable meta-
heuristic from the large variety of those available, and then
employ trial-and-error to determine the appropriate structures
and parameter values. While these answers seem reasonable,
in terms of the computational time involved, it is impractical
in many real world applications. Many bespoke meta-heuristic
algorithms that have been proposed over the years are
manually designed and tuned, focusing on producing good
results for specific problem instances. The manually designed
algorithms (customized by the user and not changed during
problem solving) that have been developed over the years are
problem specific, i.e. they are able to obtain high quality
results for just a few problem instances, but usually fail on
other instances even of the same problem and cannot be
directly applied to other optimization problems. Of course, the
No Free Lunch Theorem [5] states that a general search
method does not exist, but it does not mean that we cannot
investigate more general search algorithms to explore the
limits of such an algorithm [6-8].

Numerous attempts have been made to develop automated
search methodologies that are able to produce good results

Grammatical Evolution Hyper-heuristic for Combinatorial
Optimization problems

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Senior Member,
IEEE

C

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 2

across several problem domains and/or instances. Hyper-
heuristics [6], meta-learning [9], parameter tuning [10],
reactive search [11], adaptive memetic algorithms [12] and
multi-method [13], are just some examples. The performance
of any search method critically depends on its structures and
parameter values [6]. Furthermore, different search
methodologies, coupled with different structures and
parameter settings may be needed to cope with problem
instances or different problem domains [9],[10]. A search may
even benefit from adapting as it attempts to solve a given
instance. Therefore, the performance of any search method
may be enhanced by automatically adjusting their structures or
parameter values during the problem solving process. Thus,
the ultimate goal of automated heuristic design is to develop
search methodologies that are able to adjust their structures or
parameter values during the problem solving process and work
well, not only across different instances of the same problem,
but also across a diverse set of problem domains [6], [9], [10].

Motivated by these aspects, particularly the hyper-heuristic
framework [6], in this work, we propose a grammatical
evolution hyper-heuristic framework (GE-HH) to generate
local search templates during the problem instance solving
process, as depicted in Fig 1.

Fig.1.The GE-HH framework

The evolved templates represent a complete local search
method which contains the acceptance criteria of the local
search algorithm (to determine away of escaping from local
optima), the local search structures (neighborhoods), and their
combination. The GE-HH operates on the search space of
heuristic components, instead of the solution space. In
addition, GE-HH also maintains a set of diverse solutions,
utilizing an adaptive memory mechanism which updates the
solution quality and diversity as the search progresses. We
choose grammatical evolution to search the space of heuristic
components due to its ability to represent heuristic
components and it being able to avoid the problem of code
bloat that is often encountered in traditional genetic
programming. Our objectives are:

- To design an automatic algorithm that works well
across different instances of the same problem and also
across two different problem domains.

- To merge the strengths of different search algorithms in
one framework.

- To test the generality and consistency of the proposed
method on two different problem domains.

The performance and generality of the GE-HH is assessed
using two well-known NP-hard combinatorial optimization
problems; examination timetabling (Carter [14] and ITC 2007
[15] instances) and the capacitated vehicle routing problem
(Christofides [16] and Golden [17] instances). Although both
domains have been extensively studied by the research
community, the reasons of choosing them are twofold. Firstly,
they represent real world applications and the state of the art
results, we believe, can still be improved. Currently, a variety
of algorithms have achieved very good results for some
instances. However, most methodologies fail on generality and
consistency. Secondly, these two domains have been widely
studied in the scientific literature and we would like to
evaluate our algorithm across two different domains that other
researchers have studied. Although our intention is not to
present an algorithm that can beat the state of the art, but
rather can work well across different domains, our results
demonstrate that GE-HH is able to update the best known
results for some instances.
 The remainder of the paper is organized as follows: the
generic hyper-heuristic framework and its classification are
presented in Section II. The grammatical evolution algorithm
is presented in Section III, followed by our proposed GE-HH
framework in Section IV. The experimental results and result
comparisons are presented in Section V and VI, respectively.
Finally discussions and concluding remarks are presented in
Sections VII and VIII.

II. HYPER-HEURISTICS

Meta-heuristics are generic search methods that can be applied
to solve combinatorial optimization problems. However, to
find high quality solutions, meta-heuristics often need to be
designed and tuned (as do many classes of algorithms,
including those in this paper) and they are also often limited to
one problem domain or even just a single problem instance.
The objective for a solution methodology that is independent
of the problem domain, serves as one of the main motivations
for designing hyper-heuristic approaches [6],[18].

Recently, significant research attention has been focused on
hyper-heuristics. Burke et al. [6] defined hyper-heuristics as

An automated methodology for selecting or generating
heuristics to solve hard computational search problems.

One possible hyper-heuristic framework is composed of two
levels, known as high and low level heuristics (see Fig.2).

The high level heuristic is problem independent. It has no
knowledge of the domain, only the number of heuristics that
are available and (non-domain) statistical information that is
allowed to pass through the domain barrier. Only the lower
part of the framework has access to the objective function, the
problem representation and the low level heuristics that have

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 3

been provided for the problem. During the problem solving
process, the high level strategy decides which heuristic is
called (without knowing what specific function it performs) at
each decision point in the search process. Unlike meta-
heuristics, hyper-heuristics operate over a search space of
heuristics, rather than directly searching the solution space.

Fig.2. A generic hyper-heuristic framework

The low level heuristics correspond to a pool of candidates

of problem dependent human-designed heuristics or
components of existing heuristics which operate directly on
the solution space for a given problem instance. Based on their
past performance, heuristics compete with each other through
learning, selection or generating mechanisms at a particular
point to construct or improve a solution for a given problem
instance.

The fact that the high level strategy is problem independent
means that it can be applied to different problem domains with
little development effort. Indeed, one of the goals of hyper-
heuristics is to raise the level of generality of search
methodologies and to build systems which are more generic
than other methods [6].

Burke et al. [6] classified hyper-heuristics into two
dimensions, based on the nature of the heuristic search space
and the source of feedback during learning (see Fig.3).The
nature of the heuristic search space can either be heuristics to
choose heuristics or heuristics to generate heuristics.
Heuristics can be called from a given pool of heuristics. For
example, Burke et al. [19] used tabu search with reinforcement
learning as a heuristic selection mechanism to solve nurse
rostering and timetabling problems. Heuristics can also be
generated by combining existing heuristic components. For
example, Burke et al. [20],[21] employed genetic
programming to evolve new low level heuristics to solve the
bin packing problem.

The nature of the heuristic search space can be further
classified depending on the type of low level heuristics as
either constructive or perturbative. Constructive based hyper-
heuristics start with an empty solution, and select low level

heuristics to build a solution step by step. Perturbation based
hyper-heuristics start with an initial solution and, at each
decision point, select an appropriate improvement low level
heuristic to perturb the solution. Based on the employed
learning methods, two subclasses are distinguished: on-line or
off-line.

Fig.3. A classifications of hyper-heuristic approaches, according to two
dimensions: (i) the nature of the heuristic search space and (ii) the source of
feedback during learning [6].

In on-line hyper-heuristics, the learning takes place during the
problem solving. Examples of online approaches include those
based on genetic algorithms [22], tabu search[19], and local
based search [23]. In off-line hyper-heuristics, learning occurs
during the training phase before solving other problem
instances, examples include those based on genetic
programming [20] and learning classifier systems [24].
Recently, GE was utilized in [21] as an off-line heuristic
builder to solve the bin packing problem. Our work differs
from [21], where we use GE as an online solver builder, and is
a much more general methodology that is able to address two
problem domains, and produce best known results. In addition,
the GE in [21] has been specifically designed and tested on the
bin packing problem only (i.e. the grammar has been
specifically designed for the bin packing problem only).

Our proposed GE-HH framework can be classified as an on-
line generational hyper-heuristic. In this respect, it is the same
as a genetic programming hyper-heuristic which generates
heuristics. Genetic programming hyper-heuristics have been
utilized to solve many combinatorial optimization problems
including SAT [25],[26], scheduling [27] and bin packing
[20],[28]. A recent, and comprehensive, review on hyper-
heuristics is available in [29].

Most of the proposed genetic programming based hyper-
heuristic approaches, however, are constructive heuristics.
Their general limitation is that they are tailored to solve
specific problems (e.g. SAT, bin packing, and TSP) using a
restricted constructive heuristic component. This limitation
restricts their applicability to cope with different problem
domains without any redevelopment (e.g. redefine the
terminals and functions). In addition, previous genetic
programming based hyper-heuristics were only applied to one
single domain, which raises the question to what extent they
will generalize to other domains.

Motivated by the above, this work proposes an
improvement based hyper-heuristic using grammatical

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 4

evolution. The proposed framework takes several heuristic
components (e.g. acceptance criteria and neighborhood
structures) as input and automatically generates a local search
template by selecting the appropriate combination of these
heuristic components. The differences between our approach
and the previous genetic programming based hyper-heuristics
in the literature are:

1. The proposed framework generates a perturbation local

search template rather than constructive heuristics.
2. The proposed framework is not tailored to a particular

problem domain e.g. it can be applied to several domains
(the user only needs to change the neighborhood
structures when applying it to another problem domain).

3. The proposed framework utilizes an adaptive memory
mechanism to maintain solution diversity.

III. GRAMMATICAL EVOLUTION

Grammatical evolution (GE) [30] is a variant of genetic
programming (GP) [31]. It is a grammar based GP that can
evolve a variable-length program in an arbitrary language.
Unlike GP, GE uses a linear genome representation rather than
a tree. The clear distinction between the genotype and
phenotype in GE allows the evolutionary process (e.g.
crossover) to be performed on the search space (variable
length linear genotypic) without needing to tailor the
diversity-generating operator to the nature of the
phenotype[30],[31]. The mapping process of genotype and
phenotype to generate a program is governed by a grammar
which contains domain knowledge [30]. The grammar is
represented by Backus Naur Form (BNF). The program is
generated by using a binary string (genome) to determine
which production rule in the BNF definition will be used. The
GE general framework is composed of three procedures:
grammar, search engine and a mapper procedure (see Fig.4).

Fig.4.Grammatical evolution

A. The BNF Grammar

GE utilizes BNF to generate the output program [30],[31].
A suitable BNF grammar must be defined when solving a
problem, and the definitions vary from one problem to
another. The BNF grammar can be represented by a tuple <T,

N, S, P> where T is the terminal set, N is the set of non
terminals, S is the start symbol (a member of N) and P is a set
of production rules. If more than one production rule is used
within a particular N, the choice is delimited with the ‘|’
symbol. Below is an example of BNF grammar (adopted from
[30]):

T= {Sin, Cos, Tan, Log, +, -, /, *, (,)} // set of terminal
N= {expr, op, pre_op} // set of non-terminal
S= <expr>// starting symbol
and P can be represented as // production rules

(1) <expr>::= <expr><op><expr> (0)

 | (<expr><op><expr>) (1)

 |<pre-op>(<expr>) (2)

 |<var> (3)

(2) <op>::= + (0)

 | - (1)

 | / (2)

 | * (3)

B. The Search Engine

GE uses a standard genetic algorithm as its search engine[30].
A candidate solution (genotype or chromosome) is represented
by a one dimensional variable length string array. The gene in
each chromosome is called a codon. Each codon is an 8-bit
binary number (see Fig.5).

Fig.5. An example of genotype

The codon values are used in the mapper procedure to
determine which rule to be selected for the non-terminal
symbol when it is converted [30] (see Section III-C). The GA
starts with a population of chromosomes, which are randomly
generated. The fitness of each chromosome is calculated by
executing its corresponding program. The fitness function
varies from one domain to another. GA operators (selection,
crossover, mutation and replacement) are then applied. At
each generation, the evolved solutions (children) from the
crossover and mutation operators are evaluated by converting
them into its corresponding program via the mapper function.
If the fitness of the new solution is better than the worst
solution in the population, it will replace it. The process is
repeated until a stopping condition is satisfied (e.g. number of
generations).

C. The Mapper Procedure

The mapper function converts the genotype into a
phenotype (i.e. a program). The function takes two inputs, the
binary string (genotype) and the BNF grammar [30]. The

 (3) <var> ::= X (0)

 (4) <pre_op> ::= Sin (0)

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 5

conversion from genotype to phenotype is carried out using
the following rule:

Rule= (codon integer value) MOD (number of rules for
the current non-terminal)

The mapper function begins by mapping the starting symbol
into terminals. It converts each codon to its corresponding
integer value. Assume we have the above BNF grammar (See
Section III -A) and genotype (see Fig.5). First of all, convert all
codon values to integers (with reference to Fig 4, this will be
220, 203, 17, 3, 109, 215, 104, 30). Then, starting from the
starting symbol, apply the mapping rule to convert the
leftmost non-terminal into a terminal until all non-terminals
have been converted into terminals. The genotype-to-
phenotype mapping process of the above BNF grammar and
the solution (genotype) is illustrated in Table 1.

TABLE 1AN EXAMPLE OF THE MAPPING PROCESS

Input
No. of

Choices
Rule Result

<expr> 4 220 MOD 4= 0 <expr><op><expr>
<expr><op><expr> 4 203 MOD 4= 3 <var><op><expr>

X <op><expr> 4 17 MOD 4= 1 X -<expr>
X -<expr> 4 3 MOD 4= 3 X -<var>

X-X

The mapper begins (see Table 1) with the starting symbol
<expr>, and then reads the first codon (220). The starting
symbol <expr> has four production rules to select from (see
Section III -A). Following the mapping rules, the codon value
and the number of production rules are used with the modular
function to decide which rule to select, i.e. 220 MOD 4= 0,
which means we select the first production rule
(<expr><op><expr>). Since this production rule is not a
complete expression (it has at least one non-terminal), rules
will be applied again. The process will continue from the
leftmost non-terminal in the current production rule.
Continuing with <expr><op><expr>, take the next codon
value (203), the next production rule will be (203 MOD 4= 3)
<var><op><expr>. Since <var> has only one choice, <var>
will be replaced by X and the production rules will be
X<op><expr>. Continuing with the same mapper rules until
all non-terminals are converted to terminals, the complete
expression will be X-X.

During the conversion process, not all codons may be
used, or after using all codon values not all non-terminals have
been replaced by terminals. In the case where non-terminals
have been replaced with terminals but not all codon values
have been used, the mapper process will simply ignore the
rest. If all codon values have been used but the expression is
still invalid, a wrapper procedure is invoked. The wrapper
procedure reads the codon value from the left to right for a
predefined number of iterations. If the wrapper procedure is
finished but the complete expression is still not available, the
genotype is given the lowest fitness value.

IV. THE GRAMMATICAL EVOLUTION HYPER-HEURISTIC

FRAMEWORK

In this section we present the grammatical evolution hyper-
heuristic (GE-HH) framework. Then, we introduce the
adaptive memory mechanism, hybridizing it with GE-HH.

A. The Proposed Framework

It is well established that the efficiency of any problem solver
relies on its ability to explore regions of the search space,
which is strongly influenced by its structures and parameter
values [7],[10],[12]. Therefore, the performance of any search
methodology can potentially be enhanced by automatically
adjusting its structures and/or parameter values. In this work,
we propose a grammatical evolution hyper-heuristic (GE-HH)
framework that generates a different local search template
(problem solver) to suit the given problem instance. The
proposed framework takes several basic heuristic components
as input and generates a local search template by combining
these basic components. The process of combining heuristic
components will be carried out automatically. Thus, the
benefit of this framework is not only to generate different
local search templates by combining basic heuristic
components, but also to discover new kinds of heuristics,
without relying on human interference.

As we mentioned earlier (Section III) , there are three
essential procedures of grammatical evolution algorithm: a
grammar, a search engine and a mapper function. Our search
engine (genetic algorithm), and the mapper function are
implemented as in the original algorithm [30]. The BNF
grammar, which is problem dependent, must be defined in
order to suit the problem at hand. Generally, the design of the
BNF grammar, which decides which production rule will be
selected, has a significant impact on the output, i.e. the
programs. In our GE-HH framework, the basic heuristic
components are represented by BNF. To design a complete
BNF grammar one needs to carry out the following steps [30]:

 Determine the terminals, non-terminals and starting

symbol.
 Design the BNF syntax which may have problem specific

function(s).

In this work, three different heuristic components (acceptance
criteria (Ac), neighborhood structures (Ns) and neighborhood
combinations (Nc)) are used as basic elements of the BNF
grammar. We have selected these three components because
they are recognized as crucial components in designing
problem solvers [3],[18]. These are explained as follows:

1. The acceptance criteria (Ac) decides whether to accept or

reject a solution. A number of acceptance criteria have
been proposed in the literature and each one has its own
strengths and weaknesses. The strength of one acceptance
criterion can compensate for the weakness of another if
they can be integrated into one framework. In this work,
we have employed several acceptance criteria. The
acceptance criteria that are used in our GE-HH framework
have been widely used in the literature [3],[6],[18],[29],
and are presented below.

Ac Description

IO

Improving or equal only: The generated solution is accepted if
the objective value is equal or better than the previous one. The
local search template that uses this acceptance criterion will be
executed for a pre-defined number of iterations. In this work, we
have experimentally set the pre-defined number of iterations

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 6

to100 non-improvement iterations [18].

AM

All Moves: All generated solutions are accepted without taking
into consideration their quality. This criterion can be seen as a
mutational operator which aims to diversify the search. The local
search template that uses this acceptance criterion will be run for
a pre-defined number of iterations. In this work, we have
experimentally set the pre-defined number of iterations to
50[18].

SA

Simulated Annealing: A move to a neighbor of the current
solution is always accepted if it improves (or is equal to) the
current objective value. However, non-improving moves are
accepted based on a probability acceptance function, R<exp (-
h/t), where R is a random number between [0, 1] and h is the
change in the objective value. The ratio of accepted moves to
worse solutions is controlled by a temperature t which gradually
decreases by く during the search process. In this work, く= 0.85
and the initial temperature t is 50% of the value of the initial
solution, as suggested in [32],[33]. The local search template that
uses the SA acceptance criteria is terminated when t= 0.

EMC

Exponential Monte Carlo: Improving solutions are always
accepted. Worse solutions are accepted with a probability of
R<exp (-h), where R is a random number between [0, 1] and h is
the change in the objective value. The probability of accepting
worse solutions will decrease as h increases [34]. The local
search template that uses this acceptance criterion will be run for
a pre-defined number of iterations. In this work, we have
experimentally set the pre-defined number of iterations to 100.

RR

Record-to-Record Travel: A move to a neighbor solution is
always accepted if it improves (or is equal to) the current
objective value. Worse solutions are accepted if the objective
value is less than R+D, where R is the value of the initial solution
and D is a deviation. In this work, we set D= 0.03 and R is
updated every iteration to equal the current solution. The local
search template that uses the RR acceptance criteria is repeated
until the stopping condition is met, set to 100 iterations [3].

GD

Great Deluge: Improving solutions are always accepted. A non-
improving solution is accepted if its objective value is less than
the level initially set to the value of the initial solution. The value
of level is gradually decreased by く. く is calculated by く =
(f(initial solutions) - estimated(lower bound) / number of
iterations). In this work, we set the number of iterations to 1000.
The local search template that uses the great deluge acceptance
criteria will terminate when the level is equal to, or less than, the
best known solution found so far [3],[33].

NV

Naive acceptance: accepts all improving moves. Non improving
moves are accepted with 50% probability. The local search
template that uses this acceptance criterion is executed for a pre-
defined number of iterations (100 iterations) [35].

AA

Adaptive Acceptance: accepts all improving moves. Non
improving moves are accepted according to an acceptance Rate,
which is updated during the search. Initially, acceptance Rate is
set to zero. However, if the solutions cannot be improved for a
certain number of non improvement iterations (i.e. 10
consecutive non improvement iterations), then acceptance Rate
is increased by 5%. Whenever a solution is accepted, acceptance
Rate is reduced by 5%. The local search template that uses this
acceptance criterion will be run for a pre-defined number of
iterations, experimentally set in this work as 100 iterations [35].

2. The second heuristic component that is used in our GE-HH

framework are the neighborhoods structures (Ns) or move
operators. The aim of any neighborhood structure is to
explore the neighbor of current solutions or to generate a
neighborhood solution. The neighborhood solution is
generated by performing a small perturbation or changing
some attribute(s) of the current solution. The neighborhood
structures are critical in the design of any local search
method [36]. Traditionally, each neighborhood structure
has its own characteristics (weaknesses and strengths),
thus, several types of neighborhood structures may be

needed to cope with changes in the problem landscape as
the search progresses. In this work, we have employed
several neighborhoods which are problem dependent. The
descriptions of the neighborhood structures that have been
used in our work, which are different from one domain to
another, are presented in problem description sections (see
Sections V-B4 and V-C4).

3. The third heuristic component employed in our framework
is the neighborhood combinations/operators (Nc). The aim
of the neighborhood combinations/operators is to combine
the strength of two or more neighborhood structures into
one structure. Such combination has been shown to be very
efficient in solving many optimization problems [37]. The
benefit of such an idea was first demonstrated using
strategic oscillation in tabu search [38]. Recently, Lu et al.
[37] conducted a comprehensive analysis to assess the
performance of neighborhood combinations within several
local search methods (tabu search, iterated local search and
steepest decent algorithm) in solving university course
timetabling problems. Their aim was to answer why some
neighborhood structures can produce better results than
others and what characteristics constitute a good
neighborhood structure. They concluded that the use of
neighborhood combinations can dramatically improve
local search performance. Other works which have also
studied the benefit of using neighborhood combinations
include [39],[40],[41]. In this work, three kinds of
neighborhood combinations/operators are used
[37],[40],[18], which are described below.

Nc Description

+ Neighborhood Union: involves the moves that can be generated by
using two or more different neighborhoods structures. For example,
consider two different neighborhoods N1 and N2, which can be

represented as N1N2 or N1+N2, then the union move includes the
solution that can be obtained by consecutively applying N1 followed
by N2 then calling the acceptance criterion to decide whether to
accept or reject the generated solution. Besides combining the
strength of different neighborhoods [37], when the search space is
highly disconnected, such a combination might help escape from
disconnected search spaces, that may not happen when using N1
alone. For example, in exam timetabling, the single move
neighborhood structure which moves one exam from one timeslot to
another one might lead the search to a disconnected search space
when all exams which clash with another exam in every other
timeslot often cannot be moved at all [42]. Thus, combining a single
move neighborhood with another neighborhood i.e. swap two
exams, can help to find a clash free timeslot for the selected exam to
be moved to. The same issue can also be observed in capacitated
vehicle routing problems when using a single move neighborhood
that moves a customer from one route to another.

 Random Gradient: A neighborhood structure is repeatedly applied
until no improvement is possible. This is followed by applying
other neighborhood structures. For example, consider two different
neighborhoods; N1 and N2 are random gradient operators which can
be represented as

21 N N . The local search template will keep

applying N1 as long as the generated solution is accepted by the
local search acceptance criteria. When no improvement is possible
the local search template stops applying N1 and restarts from the
local optimum obtained by N1, but with neighborhood N2 [6],[18].

T-R-S Token-Ring Search: The neighborhood structures of the generated
template are consecutively applied one after another until the end of
sequence. When the generated template moves to the next
neighborhood structure in the sequence, it restarts from the local

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 7

optimum obtained by the previous neighborhood structure. If the
generated template reaches the end of the sequence, it restarts the
search from the first neighborhood in the sequence using the local
optimum obtained by the last neighborhood structure in the
sequence [37],[40],[43]. In this work, the token-ring search is set as
a default in all generated local search template (there is no special
symbol for it in the BNF grammar). Note that if there is no operator
between neighborhood structures e.g. N1 N2, each neighborhood is
applied only one time. For example, if we have N1 N2 N3 the local
search template will apply N1 one time only, and then move to N2
which will also be applied once, and then move to N3. This is
because there is no combination operator between these sequences

of neighborhood structures.

After determining the basic elements of the BNF grammar, we
now need to specify the starting symbol (S), terminals (T),
non-terminals (N) and the production rules (P) that will
represent the heuristic components. These are as follows:

Objective Symbols Description

starting symbol (S) LST Local Search Template

non-terminal (N)

Ac Acceptance Criteria
Lc LST Configurations
Ns Neighborhood Structures
Nc Neighborhood Combinations

terminal (T)

IO Improving Only or equal
AM All Moves
SA Simulated Annealing

EMC Exponential Monte Carlo
RR Record-to-Record Travel
GD Great Deluge

NA Naive Acceptance
AA Adaptive Acceptance
+ Neighborhood Union
 Random Gradient

Nb1 First neighborhood e.g. 2-opt
Nb2 Second neighborhood e.g. Swap

.

.
.
.

Nbn Neighborhood n

production rules (P)

(1) <LST>::= AcLc (0) Starting symbol rule. Number of choices available for LST =0

(2) <Ac>::= IO (0)

 |AM (1)
 |SA (2)
 |EMC (3)
 | RR (4)
 | GD (5)
 | NA (6)
 | AA (7)

Acceptance Criteria production rules
Number of choices available for Ac =8

(3) <Lc>::= NsLc (0)

 | NsNcNs (1)
 | NsNsLc (2)
 | NcNsNs (3)
 | NsNsNcNs (4)
 | Lc (5)

LST Configurations production rules.
Number of choices available for Lc =6

(4) <Ns>::= Nb1 (0)

 | Nb2 (1)
 | . (2)
 | . (3)
 | . (4)
 | . (5)
 | . (6)
 | Nbn (n)

Neighborhood structures production rules.
Number of choices available for Nb =1 to n

Note that n represent the number of neighborhood structures that are
used for each problem domain (see SectionsV-B4 and V-C4).

(5) <Nc>::= + (0)

 | (1)

Neighborhoods combination production rules.
Number of choices available for Nc =2

The above BNF grammar is valid for every local search
template (LST) for both problem domains in the work. This
is because each local search template (LST) has different
rules and characteristics. Finding the best BNF grammar for
every local search template (LST) would be problem

dependent, if not problem instance dependent. Please note
that not all local search templates will improve the solution
because the employed acceptance criteria might accept
worse solutions with a certain probability. For example, the
local search that uses all moves acceptance criterion (AM)

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 8

will accept any solution that does not violate any hard
constraints regardless of its quality.

The programs in our GE-HH represent local search
templates or problem solvers. The local search template
starts with an initial solution and then iteratively improves
it. The initial solution can be randomly generated or by
using heuristic methods (see Sections V-B3 and V-C3).
Please note that the initial solution generation method is not
a part of the GE-HH. In this work, we use two fitness
functions. The first one, penalty cost, is problem dependent,
and is used by the inner loop of the generated local search
template in deciding whether to accept or reject the
perturbed solution (see Sections V-B and V-C for more
details about the penalty cost). The second fitness function
is problem independent and it measures the quality of the
generated program (local search template) after executing
it. At every iteration, if the generated programs are
syntactically correct (all non-terminals can be converted
into terminals), the programs are executed and their fitness
is computed from their output. In this work, the fitness
function of the generated programs is calculated as a
percentage of improvement (PI). Assume f1is the fitness of
the initial solution and f2 is the fitness of the solution after
executing the generated programs, then PI= | (f1-f2)/ f1| *
100, if f2<= f1. If f2 > f1 discard the generated program.

With all the GE-HH elements (grammar, search engine,
mapper procedure and fitness function) defined, the
proposed GE-HH framework is carried out as depicted in
Fig.6.

Fig.6.The proposed GE-HH framework

B. Hybrid Grammatical Evolution Hyper-heuristic and
Adaptive Memory Mechanism

Traditionally, previous hyper-heuristic frameworks that
have been proposed in the literature operate on a single
solution [6],[18],[29]. Single solution based perturbative

hyper-heuristics start with an initial solution and iteratively
move from the current solution to another one by applying
an operator such as 2-opt. Although single solution based
methods have been widely used to solve several kinds of
problems, it is accepted that pure single solution based
methods are not well suited to fine tuning for large search
spaces and heavily constrained problems [44],[45]. As a
result, single solution based methods have been hybridized
with other techniques to improve their efficiency [45].
Generally, it is widely believed that a good search
methodology must have the ability of exploiting and
exploring different regions of the solution search space
rather than focusing on a particular region. That is, we must
address the problem of exploitation vs. diversification,
which is a key feature in designing efficient search
methodologies [44].
 In order to enhance the efficiency of the GE-HH
framework and to diversify the search process, we
hybridize it with an adaptive memory mechanism. This
method has been widely used with several meta-heuristic
algorithms such as tabu search, ant colonies, genetic
algorithms and scatter search [46]. The main idea is to
enhance the diversification by maintaining a population of
solutions. For example, the reference set in scatter search
[46] which includes a collection of both high quality and
diverse solutions.

 In this work, the adaptive memory mechanism
(following the approach in [47],[48]) contains a collection
of both high quality and diverse solutions, which are
updated as the algorithm progresses. The size of the
memory is fixed (equal to the number of acceptance
criteria, which is 8). Our adaptive memory works as
follows:

 Generate a set of diverse solutions. The set of solutions

can be generated randomly or by using a heuristic
method. In this work, the solutions are generated using a
heuristic method (see SectionsV-B3 and V-C3).

 For each solution, associate a frequency matrix which
will be used to measure solution diversity. The
frequency matrix saves the frequency of assigning an
object (exam or customer) to the same location. For
example, in exam timetabling, the frequency matrix
stores how many times the exam has been assigned to
the same timeslot. Whilst, in the capacitated vehicle
routing problem, it stores how many times a customer
has been assigned to the same route. Fig.7 shows an
example of a solution and its corresponding frequency
matrix. The frequency matrix is initialized to zero. We
can see five objects (represented by rows) and there are
five available locations (represented by columns). The
solution on the left of Fig.7 can be read as follows:
object1 is assigned to location 1, object 2 is assigned to
location 3, etc. The frequency matrix on the right side of
the Fig.7 can be read as follows: object 1 has been
assigned to location 1 twice, to location 2 three times, to
location 3 once, to location 4 four times and to location
5 once; and so on for the other objects.

Location

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 9

O
b

je
ct

s
1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0

O
b

je
ct

s

1 2 3 1 4 1
2 0 0 1 0 0 2 1 1 1 2 2
3 0 0 0 0 1 3 2 2 2 2 1
4 0 0 0 1 0 4 2 1 3 1 1
5 0 1 0 0 0 5 2 1 2 1 3

 solution frequency matrix

Fig.7. Solution and it is corresponding frequency matrix.

 If any solution is improved by the GE-HH framework,
we update the frequency matrix.

 Calculate the quality and the diversity of the improved
solution. In this work, the quality represents the penalty
cost which calculates the number of soft constraint
violations (see Sections V-B and V-C). The diversity is
measured using entropy information theory (1), (2) as
follows [47],[48]:

e
m

e

m

ee

j

ijij

i log

log.
1

 …. (1)

e

e

i i 1

 ………. (2)

Where
- eij is the frequency of allocating object i to location j.
- m is the number of objects.
- ii is the entropy for object i.
- i is the entropy for one solution (0 ≤ ii≤ 1).

 Add the new solution to the adaptive memory by
considering the solution quality and diversity.

Fig.8 shows the hybrid GE-HH framework with an adaptive
memory mechanism. Algorithm 1 presents the pseudo-code
of GE-HH.

Fig.8.Hybrid grammatical hyper-heuristic framework and adaptive

memory mechanism

The algorithm starts by generating a set of initial solutions
for the adaptive memory mechanism (see SectionsV-B3 and
V-C3) and defining the BNF grammar (see Section IV-A).
It then initializes the genetic algorithm parameters and
creates a population of solutions by assigning a random
value between 0 and 255 for each chromosome gene
(codons) [30].

For each solution (chromosome) in the population, the
corresponding program is generated by invoking the
mapping function. In order to ensure that there is no
duplication in the generated program (i.e. the program does
not have two consecutive operators) the program is checked
by the edit function. For example, if the generated program
is SA: N1N2++N2+N4, with consecutive ++ operators, the
edit function will remove one of the + operators and the
program will be SA: N1N2+N2+N4. One solution from the
adaptive memory mechanism is then selected, to which the
generated programs are applied. The adaptive memory is
then updated.

Subsequently, the genetic algorithm is executed for a
pre-defined number of generations. At every generation,
offspring are generated by applying selection, crossover and
mutation. The generated offspring (programs) are then
executed. If the offspring is better than the worst
chromosome, it is added to the population and the adaptive
memory mechanism is updated.

 Algorithm 1: Pseudo-code of grammatical evolution hyper-heuristic
 framework

In
iti

a
liz

a
tio

n
st

ep

Generate a set of initial solutions and initialize the adaptive
memory, adaptivememory

Defined the BNFgrammar, BNFgrammar

Set number of generations, populationsize, chromosomnumbits, pcrossover,
pmuataion
populationq initializepopulation(populationsize, chromosomnumbits)
foreach soli population do
 soli-integer qconvert (chromosomnumbits)
 soli-program qmap (BNFgrammar, soli-integer)
 edit(soli-program)
 initialsol qselectsoltuion(adaptivememory)
 soli-cost qexecute (soli-program, initialsol)
 update adaptivememory
end

G
en

er
a

te
 in

iti
a

l p
op

ul
a

tio
n

while not stopping condition () do

 parentiq SelectParents(populationsize)
 parentjq SelectParents(populationsize)

se
le

ct
io

n

cr
os

so
ve

r

 child1qCrossover (parenti, parentj, pcrossover)
 child2qCrossover (parenti, parentj, pcrossover)

 child1mq εutation (child1, pmuataion)
 child2mqεutation (child2, pmuataion)

m
ut

a
tio

n

co

nv
er

tin
g

 child1m -integer qconvert (child1m)
 child2m -integer qconvert (child2m)

m
a

pp
in

g

 child1m –program q map (child1m -integer, BNFgrammar)
 edit(child 1m –program)
 child2m -program qmap (child2m -integer, BNFgrammar)
 edit(child 2m –program)

ex
ec

ut
in

g

 initialsol qselectsoltuion(adaptivememory)
 child1m -cost qexecute (child1m –program, initialsol)
 child2m -cost qexecute (child2m –program, initialsol)

up
da

tin
g

 population q populationUpdate(child1, child2)
 update adaptivememory

 end
return the best solution

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 10

V. EXPERIMENTAL RESULTS

In this section, we evaluate and compare the proposed GE-
HH with the state of the art of hyper-heuristics, and other
search methodologies.

A. GE-HH Parameters Setting

In order to find appropriate parameter values for GE-HH,
we utilize the Relevance Estimation and Value Calibration
method (REVAC) [49]. REVAC is a steady state genetic
algorithm that uses entropy theory to determine the
parameter values for algorithms. Our aim is not to find the
optimal parameter values for each domain, but to find
generic values that can be used for both domains. To use
the same parameter settings across instances of both
domains, we tuned GE-HH for each domain separately and
then used the average of them in value obtained by REVAC
for all tested instances. In order to have a reasonable trade-
off between solution quality and the computational time
needed to reach good quality solutions, the execution time
for each instance is fixed to 20 seconds. The number of
iterations performed by REVAC is fixed at 100 iterations
(see [49] for more details). For each domain, the average
values over all tested instances for each parameter are
recorded. Then, the average values over all parameters are
set as the generic values for GE-HH. The parameter settings
of GE-HH that have been used for both domains are listed
in Table 2.

TABLE 2 GE-HH PARAMETERS
Parameters Value
Population Size 100
Number of Generations 20
One point Crossover Probability 0.8
Point Mutation Probability 0.01
Chromosome Length 60
Probability of Swapping 0.01
Probability of Duplication 0.01
Maximum number of Wraps 5
Selection Mechanism Roulette Wheel
Generational Model Steady State

B. Problem Domain I: Exam Timetabling Problems

Exam timetabling is a well known NP-hard combinatorial
optimization problem [50] and is faced by all academic
institutions. The exam timetabling problem can be defined
as the process of allocating a set of exams into a limited
number of timeslots and rooms so as not to violate any hard
constraints and to minimize soft constraint violations as
much as possible[51]. In this work, we carried out
experiments on the most widely used un-capacitated Carter
benchmarks (Toronto b type I in [51]) and also on the
recently introduced exam timetable dataset from the 2007
International Timetabling Competition, ITC 2007 [15].

1) Test Set I: Carter Uncapacitated Datasets

The Carter datasets have been widely used in the scientific
literature[14],[51]. They are un-capacitated exam
timetabling problems where room capacities are ignored.
The constraints are shown in Table 3.

TABLE 3 CARTER HARD AND SOFT CONSTRAINTS
Symbols Description

Hard Constraints
H1Carter: No student can sit more than one exam at the same time.

Soft Constraints
S1Carter: Conflicting exams (with common enrolled students) should

be spread as far apart as possible to allow sufficient
revision time between exams for students.

The quality of a timetable is measured based on how well
the soft constraints have been satisfied. The proximity cost
is used to calculate the penalty cost (equation 3) [14].

}4,3,2,1,0{,/)(
1

1

1

iSswSoft kl

m

kl
i

m

k
carter

... (3)

Where:
 wi=2|4-i| is the cost of scheduling two conflicting exams el and ek (which

have common enrolled students) with i timeslots apart, if i=|tl-tk|<5, i.e.
w0=16, w1=8, w2=4, w3=2 and w4=1; tl and tk as the timeslot of exam el
and ek, respectively.

 skl is the number of students taking both exams ek and el, if i=|tl-tk| <5;
 m is the number of exams in the problem
 S is the number of students in the problems

Table 4 gives the characteristics of the un-capacitated exam
timetabling benchmark problem (Toronto b type I in [51])
which comprises 13 real-world derived instances.

TABLE 4 CARTER’S UN-CAPACITATED BENCHMARK EXAM TIMETABLING

DATASET

Datasets
No. of

timeslots
No. of
exams

No. of
Students

Conflict
Density

Car-f-92-I 32 543 18419 0.14
Car-s-91-I 35 682 16925 0.13
Ear-f-83-I 24 190 1125 0.27
Hec-s-92-I 18 81 2823 0.42
Kfu-s-93 20 461 5349 0.06
Lse-f-91 18 381 2726 0.06

Pur-s-93-I 43 2419 30032 0.03
Rye-s-93 23 486 11483 0.07
Sta-f-83-I 13 139 611 0.14
Tre-s-92 23 261 4360 0.18

Uta-s-92-I 35 622 21267 0.13
Ute-s-92 10 184 2750 0.08

Yor-f-83-I 21 181 941 0.29
Note: conflict density = number of conflicts / (number of exams)2

2) Test Set II: ITC 2007 Datasets

The second dataset was introduced in the second
International Timetabling Competition, ITC 2007, aiming
to facilitate a better understanding of real world timetabling
problems and to reduce the gap between research and
practice [15]. It is a capacitated problem and has several
hard and soft constraints (see Tables 5&6, respectively).

The objective function from [15] is used (see equation 4).
The ITC 2007 problem has 8 instances. Table 7shows the
main characteristics of these instances.

SwSwSw

SwSwSwSw
RRPpFLFL

NMDNMD

Ss

PS

S

PSD

S

DR

S

R

ITCSoft

22222

2007)(

… (4)

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 11

TABLE 5 ITC 2007 HARD CONSTRAINTS
Symbols Description
H1ITC2007: No student can sit more than one exam at the same time.
H2 ITC2007: There must be a sufficient number of seats to accommodate the exams being scheduled in a given room.
H3 ITC2007: The length of exams assigned to each timeslot should not violate the timeslot length.
H4 ITC2007: Some sequences of exams have to be satisfied. e.g. Exam_B must be scheduled after Exam_E.
H5 ITC2007: Room related hard constraints must be respected e.g. Exam_B must be scheduled in Room 3.

TABLE 6 ITC 2007 SOFT CONSTRAINTS

Symbols
Mathematical

Symbols Description

S1ITC2007: S
R

S

2
Two exams in a row: Minimize the number of students that have consecutive exams in a row.

S2ITC2007: S
D

S

2 Two exams in a day: Student should not be assigned to sit more than two exams in a day. Of course, this constraint
only becomes important when there are more than two exam periods in the same day.

S3ITC2007: S
PS

S

 Exams spread: Conflicting exams should be spread as far apart as possible to allow sufficient revision time between
exams for students.

S4ITC2007: S
NMD

S

2
Mixed durations: Minimize exams that have different durations but assigned into the same timeslot and room.

S5ITC2007: S
FL

Larger exams: Minimize the number of exams of large size that appear later in the exam timetable.

S6ITC2007: S
P

Period Penalty: Some periods have an associated penalty. Minimize the number of exams assigned into these periods.

S7ITC2007: S
R

Room Penalty: Some rooms have an associated penalty; Minimize the number of exams allocated in penalized rooms.

TABLE 7 THE ITC 2007 BENCHMARK EXAM TIMETABLING DATASETS

Datasets A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

Dataset 1 7891 607 54 7 5 7 5 10 100 30 5 7833 5.05
Dataset 2 12743 870 40 49 5 15 1 25 250 30 5 12484 1.17
Dataset 3 16439 934 36 48 10 15 4 20 200 20 10 16365 2.62
Dataset 4 5045 273 21 1 5 9 2 10 50 10 5 4421 15.0
Dataset 5 9253 1018 42 3 15 40 5 0 250 30 10 8719 0.87
Dataset 6 7909 242 16 8 5 20 20 25 25 30 15 7909 6.16
Dataset 7 14676 1096 80 15 5 25 10 15 250 30 10 13795 1.93
Dataset 8 7718 598 80 8 0 150 15 25 250 30 5 7718 4.55

Note:

A1: No. of students reported in [15]. A8: No mixed duration penalty, SNMD
A2: Number of exams. A9: Number of largest exams, SFL
A3: Number of timeslots. A10: Number of last timeslots to avoid, SP

A4: Number of rooms. A11: Front load penalty, SR, soft constraints weight[15]
A5: Two in a day penalty, S2D A12: Number of actual students in the datasets.
A6: Two in a row penalty, S2R A13: Conflict density
A7: Timeslots spread penalty, SPS

3) Problem Domain I: Initial Solutions

As mentioned in Section IV-A, GE-HH starts by
initializing the adaptive memory mechanism which contains
a population of solutions. In this work, we employ hybrid
graph coloring heuristics [52] to generate an initial
population of feasible solutions for both the Carter and the
ITC 2007 instances. The three graph coloring heuristics we
utilize are:

 Least Saturation Degree First (SD): exams are ordered

dynamically, in an ascending order, by the number of
remaining timeslots.

 Largest Degree First (LD): exams are ordered, in a
decreasing order, by the number of conflicts they have
with all other exams.

 Largest Enrolment First (LE): exams are ordered by the
number of students enrolled, in decreasing order.

The solution construction method starts with an empty
timetable and applies the hybridized heuristics to select and
assign the unscheduled exams one by one until all exams
have been scheduled. To select an exam, the hybridized
heuristic (SD+LD+LE) firstly sorts the unscheduled exams

in a non-decreasing order of the number of available
timeslots (SD). Those with equal SD evaluations are then
arranged in a non-increasing order of the number of
conflicts they have with other exams (LD) and those with
equal LD evaluations are then arranged in a non-increasing
order of the number of student enrolments (LE). The first
exam in the final order is assigned to the timetable. We
assign exams to a random timeslot when it has no conflict
with those that have already been scheduled (in case of ITC
2007, an exam is assigned to best fit a room), ensuring that
all hard constraints are satisfied. If some exams cannot be
assigned to any available timeslot, we stop the process and
start again. Although there is no guarantee that a feasible
solution can be generated, for all the instances used in this
work, we were always able to obtain a feasible solution.

4) Problem Domain I: Neighborhood Structures

The neighborhood structures that we employed in the GE-
HH framework for both Carter and ITC 2007, which are
commonly used in the literature [42], are as follows:

Nbe1: Select one exam at random and move it to any feasible

timeslot-room.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 12

Nbe2: Select two exams at random and swap their timeslots (if
feasible).

Nbe3: Select two timeslots at random and swap all their exams.
Nbe4: Select three exams at random and exchanges their timeslots at

random (if feasible).
Nbe5: Move the exam causing the highest soft constraint violation to

any feasible timeslot.
Nbe6: Select two exams at random and move them to another

random feasible timeslots.
Nbe7: Select one exam at random, select a timeslot at random

(distinct from the one that was assigned to the selected exam)
and then apply the Kempe chain neighborhood operator.

Nbe8: Select one exam at random, select a room at random (distinct
from the one that was assigned to the selected exam) and then
move the exam to the room (if feasible).

Nbe9: Select two exams at random and swap their rooms (if
feasible).

Note that neighborhoods Nbe8 and Nbe9 are applied to ITC
2007 datasets only because they consider rooms. The
neighborhood solution is accepted if it does not violate any
hard constraints. Thus, the search space of GE-HH is
limited to feasible solutions only.

C. Problem Domain II: Capacitated Vehicle Routing
Problems

The capacitated vehicle routing problem (CVRP) is a well-
known challenging combinatorial optimization problem
[53]. The CVRP can be defined as the process of designing
a least cost set of routes to serve a set of customers [53]. In
this work, we test GE-HH on two sets of benchmark
capacitated vehicle routing problem datasets. These are the
14 instances introduced by Christofides [16] and 20 large
scale instances introduced by Golden [17]. The CVRP can
be represented as an undirected graph G (V, E), where V=
{v0, v1…vn} is a set of vertices which represents a set of
fixed locations (customers) and E= {(vi, vj): vi, vjV, i<j}
represents the arc between locations (customers). E is
associated with non-negative costs or travel time defined by
matrix C= (cij), where cij represents the travel distance
between customers vi and vj. Vertex v0represents the depot
which is associated with m vehicles of capacity Q1…Qm to
start their routes R1…Rm. The remaining vertices v1 … vn

represent the set of customers and each customer
requestsq1…qn goods and serving time hi. The aim is to find
a set of tours that do not violate any hard constraints and
minimize the distance. The hard constraints that must be
respected are:

 Each vehicle starts and ends at the depot
 The total demand of each route does not exceed the

vehicle capacity
 Each customer is visited exactly once by exactly one

vehicle
 The duration of each route does not exceed a global

upper bound.

The cost of each route is calculated using (5) [53]:

n

j

n

j
jii cRC

0
i

1

)(……….. (5)

and the cost for one solution is calculated using (6):

m

i
iRCf

1

)(

…….. (6)

The two sets of benchmark problems that we have
considered in this work have similar constraints and
objective function. However, the complexity, instance sizes
and customer distributions are different from one set to
another.

1) Test Set I: Christofides Datasets

The first set comprises of 14 instances and was introduced
by Christofides [16]. The main characteristics of the
problem are summarized in Table 8. The instance size
varies from 51 to 200 customers, including the depot. Each
instance has a capacity constraint. Instances 6-10, 13 and 14
also have a maximum route length restriction and non-zero
service times. The problem instances can be divided into
two types: in instances 1-10, the customers are randomly
located, whilst, in instances 11-14 the customers are in
clusters.

TABLE 8 CHRISTOFIDES INSTANCES

Datasets Customers Capacity Max. tour
length

Service
time

No. of
vehicles

1 51 160 ∞ 0 5
2 76 140 ∞ 0 10
3 101 200 ∞ 0 8
4 151 200 ∞ 0 12
5 200 200 ∞ 0 17
6 51 160 200 10 6
7 76 140 160 10 11
8 101 200 230 10 9
9 151 200 200 10 14
10 200 200 200 10 18
11 121 200 ∞ 0 7
12 101 200 ∞ 0 10
13 121 200 720 50 11
14 101 200 1040 90 11

2) Test Set II: Golden Datasets

The second CVRP dataset involves 20 large scale instances
presented by Golden [17] (see Table 9). The instances have
between 200 and 483 customers, including the depot.
Instances 1-8 have route length restrictions.

TABLE 9 GOLDEN INSTANCES

Datasets Customers Capacity
Max. tour

length
Service

time
No. of

vehicles
1 240 550 650 0 10
2 320 700 900 0 10
3 400 900 1200 0 10
4 480 1000 1600 0 12
5 200 900 1800 0 5
6 280 900 1500 0 8
7 360 900 1300 0 9
8 440 900 1200 0 11
9 255 1000 ∞ 0 14
10 323 1000 ∞ 0 16
11 399 1000 ∞ 0 18
12 483 1000 ∞ 0 19
13 252 1000 ∞ 0 27
14 320 1000 ∞ 0 30
15 396 1000 ∞ 0 34
16 480 1000 ∞ 0 38
17 240 200 ∞ 0 22
18 300 200 ∞ 0 28
19 360 200 ∞ 0 33
20 420 200 ∞ 0 41

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 13

3) Problem Domain II: Initial Solutions

For both the Christofides and the Golden instances, the
initial population of feasible solutions is constructed
utilizing the savings algorithm [54].

4) Problem Domain II: Neighborhoods Structures

The neighborhood structures that we employ in GE-HH for
both the Christofides and the Golden instances are the most
common ones used to solve the capacitated vehicle routing
problems in the literature. They are as follows:

Nbv1: Select one customer at random and move it to any feasible route.
Nbv2: Select two customers at random and swap their routes.
Nbv3: Select one route at random and reverse a part of a tour between

two selected customers.
Nbv4: Select three customers at random and exchanges their routes at

random.
Nbv5: Select one route at random and perform the 2-opt procedure.
Nbv6: Perform the 2-opt procedure on all routes.
Nbv7: Select two distinct routes at random and swap a portion of the

first route with the first portion and second route.
Nbv8: Select two distinct routes at random and from each route select

one customer. Swap the adjacent customer of the selected one for
both routes.

Nbv9: Select two distinct routes at random and swap the first portion
with the last portion.

Nbv10 Select one customer at random and move it to another position in
the same route.

The neighborhood solution is accepted if it does not break
any hard constraints. Thus, the search space of GE-HH is
limited to feasible solutions only.

VI. COMPUTATIONAL RESULTS AND COMPARISON

To assess the benefit of incorporating an adaptive memory
mechanism in GE-HH, for each domain, we have carried
out two sets of experiments. The first one compares the
performance of the grammatical evolution hyper-heuristic
with an adaptive memory (GE-HH) and the grammatical
evolution hyper-heuristic without an adaptive memory (GE-
HH*) using the same parameter values and computational
resources. The second test compares and analyses the
performance of GE-HH against the state of the art of hyper-
heuristics and bespoke methods. For both experimental
tests, we report the best, average, standard deviation and
average time over 51 independent runs with different
random seeds. By executing 51 runs, instead of 50, we can
easily calculate the median value without the need for
interpolation. The aim of executing the proposed hyper-
heuristic framework 51 runs is to get more information and
to have a good indication regarding the algorithm
consistency and generality, as it’s highly recommended in
the literature to have more than 30 runs in statistical
analysis on algorithm performance [3]. The results
represent the cost of soft constraint violations. In addition,
we also report, for each instance, the percentage deviation
from the best known value found in the literature,
calculated as follows (7):

%
*

*
(%)

best

bestbest HHGE
 ………. (7)

Where bestGE-HH is the best result obtained over 51
independent runs by GE-HH and best* represents the best
known value found in the literature.

We evaluate the performance of GE-HH by considering
the following three criteria:

 Generality: We define generality as the ability of GE-

HH to work well, not only across different instances of
the same problem, but also across two different problem
domains.

 Consistency: This is the ability of GE-HH to produce
stable results when executed several times for every
instance. Typically, consistency is one of the most
important criteria in evaluating any algorithm. This is
because many search algorithms have a stochastic
component, which leads to different solutions over
multiple runs even if the initial solution is the same. We
measure the consistency of GE-HH based on the
average and the standard deviation over 51 independent
runs.

 Efficiency: This is the ability of GE-HH to produce
good results that are close or better than the best known
value in the literature. We measure the efficiency of GE-
HH by reporting, for each instance, the best and the
percentage deviation, see ∆(%) in (7), from the best
known results in the literature.

For all tested instances, except the ITC 2007 problem
instances, we compare the GE-HH results with the state of
the art in terms of solution quality rather than
computational time. This is because the different computer
resources researchers use which make the comparison
difficult, if not impossible [39],[55]. Therefore, we set the
number of generations as the termination criteria. As for the
ITC 2007 datasets, the organizer provided benchmark
software to determine the allowed execution time [15]. We
have used this software to determine the execution time
using our computer resources (i.e. 10 minutes). We have
given extra time to GE-HH, due to the use of the adaptive
memory (i.e. 10.83 minutes). As a result, the execution time
of our method is within the range of those published in the
literature.

A. Problems Domain I: Computational Results on Exam
Timetabling Problems

1) Test Set I: Carter Uncapacitated Datasets

Table 10 lists, for each instance, the best, average, standard
deviation and average time obtained by GE-HH and GE-
HH*.

From Table 10, one can clearly see that GE-HH
outperforms GE-HH* across all instances. Furthermore,
both the best and average results obtained by GE-HH are
better than GE-HH* on all instances. We can also see that
in GE-HH, on twelve of the thirteen instances, the standard
deviation is lower than GE-HH*. However, the
computational time is different where GE-HH* is lower
than GE-HH. This is mainly due to the use of population of
solutions and diversity updating mechanism in the GE-HH

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 14

framework. The results reveal that the use of the adaptive
memory mechanism has an effect on the ability of the GE-
HH in producing good quality and consistent results over
all instances.

We compare the performance of GE-HH against hyper-
heuristics and other bespoke methods (see Table 11).
 Table 12 shows the comparison of the best and average
results of GE-HH and other hyper-heuristic methods. We
also report, for each instance, the percentage deviation (∆
(%)) from the best result obtained by other hyper-heuristics
and instance ranking. As can be seen from Table 12, GE-
HH finds better solutions for 7 out of 13 instances
compared to other hyper-heuristic methods and obtained the
second best results for the other 5 instances (except Rye-s-
93 which obtained third best results).

Table 13 presents, for all instances, the best, average,
percentage deviation (∆(%)) and instance ranking by GE-
HH along with a comparison with respect to the best known
results (shown in bold) in the literature obtained by bespoke
methods. It can be seen that, even though GE-HH does not
obtain the best solutions for all instances, over all, it obtains

competitive results especially when considering the
percentage deviation (∆(%)) from the best known value
found in the literature. If we consider an individual
comparison, GE-HH is able to obtain better solutions on
instances 8, 12, 11, 6, 7 and 2 compared to Mc7, Mc8, Mc9,
Mc10, Mc11, and Mc12, respectively. Furthermore, only Mc10

reported results for Pur-s-93 and Rye-s-93 instances, Mc7

andMc11reported result for Rye-s-93 instance (we suspect,
due to the complexity and inconsistencies in these
instances).

Results in Tables 12 and 13 demonstrate that, across all
instances, GE-HH outperforms other hyper-heuristic
methodologies and obtained competitive results compared
to other bespoke methods. Except instance Ute-s-92 (ranked
6), the instance ranking varies between 2 to 4. Also, the
percentage deviation indicates that GE-HH results are very
close to the best known results. This demonstrates that GE-
HH is able to generalize well over a set of problem
instances rather than only producing good results for one or
more of the problem instances.

TABLE 10 RESULTS OF GE-HH COMPARED TO GE-HH*
 GE-HH GE-HH*

Instances Best Average Std Time Best Average Std Time
Car-f-92-I 4.00 4.44 0.36 200.2 4.12 4.73 0.48 170.18
Car-s-91-I 4.62 4.87 0.17 441.32 4.62 5.15 0.25 410.23
Ear-f-83-I 34.71 36.50 0.71 52.03 35.92 36.64 0.81 38.56
Hec-s-92-I 10.68 11.57 0.54 65.41 10.96 11.54 0.52 49.41
Kfu-s-93 13.00 13.58 0.36 92.22 13.06 13.58 0.36 76.17
Lse-f-91 10.11 11.35 0.91 58.11 10.21 11.36 0.90 45.37

Pur-s-93-I 4.80 6.29 1.10 610.07 6.31 7.41 1.68 580.16
Rye-s-93 10.79 11.09 0.69 546.66 11.00 12.10 0.85 495.11
Sta-f-83-I 158.02 158.47 0.43 32.24 158.21 159.52 0.76 25.04
Tre-s-92 7.90 8.46 0.41 93.17 7.96 8.49 0.83 81.28

Uta-s-92-I 3.12 3.70 0.32 189.24 3.18 3.72 0.41 168.19
Ute-s-92 26.00 27.1 0.69 48.11 26.02 27.15 0.78 40.30

Yor-f-83-I 36.20 36.91 0.47 181.25 36.20 36.93 0.56 95.08
Note: GE-HH: GE-HH employing adaptive memory mechanism. GE-HH*: without using adaptive
memory. The time represents average time in minutes. Best results in the literature are highlighted in bold.
The bold italic indicates that both methods produce the same result.

TABLE 11 ACRONYMS OF COMPARED METHODS
Symbol References
1 Mc1 [56]

H
yp

e
r-

h
eu

ristics

2 Mc2 [57]
3 Mc3 [23]
4 Mc4 [58]
5 Mc5 [42]
6 Mc6 [59]
7 Mc7 [60]

B
e

spo
ke

m

e
thod

s

8 Mc8 [61]
9 Mc9 [62]
10 Mc10 [63]
11 Mc11 [64]
12 Mc12 [65]

TABLE 12 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC APPROACHES

GE-HH Hyper-heuristic
Instances Best Average ∆ (%) ∆*(%) Rank Mc1 Mc2 Mc3 Mc4 Mc5 Mc6
Car-f-92-I 4.00 4.44 * 8.29 1 4.52 4.53 4.16 4.28 4.1 4.26
Car-s-91-I 4.62 4.87 * * 1 5.2 5.36 5.16 4.97 4.9 5.09
Ear-f-83-I 34.71 36.50 4.54 9.93 2 37.02 37.92 35.86 36.86 33.2 35.48
Hec-s-92-I 10.68 11.57 3.68 12.3 2 11.78 12.25 11.94 11.85 10.3 11.46
Kfu-s-93 13.00 13.58 * 2.87 1 15.81 15.2 14.79 14.62 13.2 14.68
Lse-f-91 10.11 11.35 * 9.13 1 12.09 11.33 11.15 11.14 10.4 11. 2
Pur-s-93-I 4.80 6.29 9.83 43.9 2 - - - 4.37 - -
Rye-s-93 10.79 11.09 11.81 14.9 3 10.35 - - 9.65 - -

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 15

Sta-f-83-I 158.02 158.47 0.71 1.00 2 160.42 158.19 159.00 158.33 156.9 158.28
Tre-s-92 7.90 8.46 * 1.92 1 8.67 8.92 8.6 8.48 8.3 8.51
Uta-s-92-I 3.12 3.70 * 12.12 1 3.57 3.88 3.59 3.4 3.3 3.15
Ute-s-92 26.00 27.1 4.41 8.83 2 27.78 28.01 28.3 28.88 24.9 27.9
Yor-f-83-I 36.20 36.91 * 1.68 1 40.66 41.37 41.81 40.74 36.3 40.49
TP(13) 323.95 334.33
TP(12) 319.15 328.04
TP(11) 308.36 316.95

- - - 337.57 - -
337.87 - - 333.2 - -
327.52 326.96 324.36 323.55 305.8 309.3

Note: TP(13): total penalty of 13 instances. TP(12): Total penalty of 12 datasets (excluding Pur-s-93-I). TP(11): Total penalty of 11
datasets (excluding Pur-s-93-I and Rye-s-93). “*” means GE-HH result is better than other methods. “-“indicates no feasible
solution has been found. Best results are highlighted in bold.∆*(%): the percentage deviation of the average value with regard to the
best known results.

TABLE 13 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

 GE-HH Bespoke methods
Instances Best Average ∆ (%) ∆* (%) Rank Mc7 Mc8 Mc9 Mc10 Mc11 Mc12
Car-f-92-I 4.00 4.44 6.95 18.71 3 4.3 4.10 4.1 6.0 3.93 3.74
Car-s-91-I 4.62 4.87 4.52 10.18 3 5.1 4.65 4.8 6.6 4.50 4.42
Ear-f-83-I 34.71 36.50 18.46 24.57 4 35.1 37.05 36.0 29.3 33.7 32.76
Hec-s-92-I 10.68 11.57 16.08 25.76 3 10.6 11.54 10.8 9.2 10.83 10.15
Kfu-s-93 13.00 13.58 0.30 4.78 2 13.5 13.90 15.2 13.8 13.82 12.96
Lse-f-91 10.11 11.35 5.31 18.22 3 10.5 10.82 11.9 9.6 10.35 9.83
Pur-s-93-I 4.80 6.29 29.72 70.00 2 - - - 3.7 - -
Rye-s-93 10.79 11.09 58.67 63.08 4 8.4 - - 6.8 8.53 -
Sta-f-83-I 158.02 158.47 0.63 0.91 3 157.3 168.73 159.0 158.2 158.3 157.03
Tre-s-92 7.90 8.46 1.93 9.16 2 8.4 8.35 8.5 9.4 7.92 7.75
Uta-s-92-I 3.12 3.70 1.96 20.91 2 3.5 3.20 3.6 3.5 3.14 3.06
Ute-s-92 26.00 27.1 6.55 11.06 6 25.1 25.83 26.0 24.4 25.39 24.82
Yor-f-83-I 36.20 36.91 3.90 5.94 2 37.4 37.28 36.2 36.2 36.35 34.84
TP(13) 323.95 334.33
TP(12) 319.15 328.04
TP(11) 308.36 316.95

- - - 316.7 - -
319.2 - - 313.0 316.76 -
310.8 325.45 316.1 306.2 308.23 301.36

Note: TP(13): total penalty of 13 instances. TP(12): Total penalty of 12 instances(excluding Pur-s-93-I). TP(11): Total penalty of
11 instances(excluding Pur-s-93-I and Rye-s-93). “-“means no feasible solution has been found. Best results in the literature are
highlighted in bold. ∆*(%): the percentage deviation of the average value with regard to the best known results.

2) Test Set II: ITC 2007 Datasets

The first set of experiments presents a comparison between
GE-HH and GE-HH* as well as the results of GE-HH
without the extra computational time (GE-HH**), i.e. the
computational time is fixed the same as GE-HH*. The best,
average, standard deviation of the results and the average
time are reported in Table 14. It can be seen that, across all
instances, GE-HH outperforms GE-HH* and GE-HH** (in
most cases), not only on solution quality, but also on the
average and the standard deviation. Comparing the results
of GE-HH* with GE-HH**, the results demonstrate that
GE-HH** outperforms GE-HH* on five out of eight
instances. The average and standard deviation of GE-HH**
are better than GE-HH* for all tested instances. The results
demonstrate the importance of incorporating the adaptive
memory mechanism within GE-HH as well as implying that
GE-HH is more general and consistent.

We now compare the performance of GE-HH with the best
available results in the literature which are divided into two
groups (see Table 15): ITC 2007 winners (Table 16) and
Post-ITC 2007 (Table 17 hyper-heuristic and bespoke
methods). In addition, we also included the results of GE-
HH** in the comparison to assess its ability in producing
good quality solutions compared to ITC 2007 winners as
well as post ITC 2007 methods. It is clear from Tables 16
and 17 that GE-HH is the overall best. The presented results
demonstrate that GE-HH not only generalizes well over a
set of problem instances, but also produces much higher
quality solutions. One can also see that GE-HH**
outperformed the ITC 2007 winners on 7 instances and post
ITC 2007 methods on 4 out of 8 tested instances (see
Tables 16 and 17).

TABLE 14 RESULTS OF GE-HH COMPARED TO GE-HH* AND GE-HH**

 GE-HH GE-HH* GE-HH**
Instances Best Average Std Time Best Average Std Time Best Average Std Time
Dataset 1 4362 4394.10 29.18 10.83 4370 4439.31 71.71 10 4370 4401.12 44.24 10
Dataset 2 380 399.80 12.56 10.83 395 413.17 22.33 10 380 405.12 13.94 10
Dataset 3 8991 9072.35 112.06 10.83 8998 9140.67 206.48 10 8995 9120.67 180.15 10
Dataset 4 15094 15483.42 402.25 10.83 15394 16433.71 996.42 10 15184 15824.87 564.74 10
Dataset 5 2912 3010.15 28.298 10.83 2990 3042.06 57.53 10 2993 3018.27 43.62 10
Dataset 6 25735 25792.35 56.247 10.83 25818 25930.17 294.57 10 25786 25860.24 94.28 10
Dataset 7 4025 4062.85 45.74 10.83 4037 4083.92 54.68 10 4041 4068.15 44.93 10
Dataset 8 7452 7500.48 64.99 10.83 7465 7525.77 78.01 10 7472 7581.10 63.85 10

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. GE-HH**: with adaptive memory but the computational time fixed
same as GE-HH* (10 minutes). Times represent average time in minutes. Best results are highlighted in bold.

TABLE 15 ACRONYMS OF COMPARED METHODS

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 16

Symbol References
1 Mitc1 [66]

ITC

 200
7

w
in

ne
rs

2 Mitc2 [67]
3 Mitc3 [68]
4 Mitc4 [69]
5 Mitc5 [70]
6 Mitc6 [71] H

H

P
o

st-ITC

2
007

7 Mitc7 [72]

8 Mitc8 [73] N
O

N
-

H
H

 9 Mitc9 Post- Müller
10 Mitc10 [74]
Note: HH: hyper-heuristic. NON-HH: bespoke methods

TABLE 16 RESULTS OF GE-HH AND GE-HH** ON THE ITC 2007 EXAM TIMETABLING DATASETS

COMPARED TO ITC 2007 WINNERS
 GE-HH GE-HH** ITC 2007 Winners

Instances Best Average ∆ (%) ∆* (%) Rank Best Mitc1 Mitc2 Mitc3 Mitc4 Mitc5
Dataset 1 4362 4394.10 * 0.55 1 4370 4370 5905 8006 6670 12035
Dataset 2 380 399.80 * * 1 380 400 1008 3470 623 3074
Dataset 3 8991 9072.35 * * 1 8995 10049 13862 18622 - 15917
Dataset 4 15094 15483.42 * * 1 15184 18141 18674 22559 - 23582
Dataset 5 2912 3010.15 * 0.74 1 2993 2988 4139 4714 3847 6860
Dataset 6 25735 25792.35 * * 1 25786 26950 27640 29155 27815 32250
Dataset 7 4025 4062.85 * * 1 4041 4213 6683 10473 5420 17666
Dataset 8 7452 7500.48 * * 1 7472 7861 10521 14317 - 16184

“*” means GE-HH result is better than other methods. “-“ indicates no feasible solution has been found. Best results are highlighted in bold.
∆*(%): the percentage deviation of the average value with regard to the best known results.

TABLE 17 RESULTS OF GE-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS

 COMPARED TO POST-ITC 2007 APPROACHES

GE-HH GE-HH**
Post ITC 2007

Hyper-heuristic Bespoke methods
Instances Best Average ∆ (%) ∆* (%) Rank Bets Mitc6 Mitc7 Mitc8 Mitc9 Mitc10
Dataset 1 4362 4394.10 * * 1 4370 6235 8559 4775 4370 4633
Dataset 2 380 399.80 * 3.84 1 380 2974 830 385 385 405
Dataset 3 8991 9072.35 * 0.84 1 8995 15832 11576 8996 9378 9064
Dataset 4 15094 15483.42 * 0.75 1 15184 35106 21901 16204 15368 15663
Dataset 5 2912 3010.15 * 0.74 1 2993 4873 3969 2929 2988 3042
Dataset 6 25735 25792.35 * 0.20 1 25786 31756 28340 25740 26365 25880
Dataset 7 4025 4062.85 * * 1 4041 11562 8167 4087 4138 4037
Dataset 8 7452 7500.48 * * 1 7472 20994 12658 7777 7516 7461
“*” means GE-HH result is better than other methods. Best results are highlighted in bold. ∆*(%): the percentage deviation of the average
value with regard to the best known results.

B. Problems Domain II: Computational Results on
Capacitated Vehicle Routing Problems

1) Test Set I: Christofides Datasets
The experimental results of GE-HH and GE-HH* are
reported in Table 18, where for 4 out of 14 instances, GE-
HH achieved better results than GE-HH* (tie on7
instances). The average results obtained by GE-HH on all
instances are better than GE-HH* and the standard
deviation is relatively small (varies between 0.00 and 0.93).
Even though GE-HH did not outperform GE-HH* across all
instances, however, the standard deviation reveals that GE-
HH generalized well overall instances. Overall, the result
implies that hybridizing the adaptive memory mechanism
with GE-HH has made a significant improvement.

We compare the experimental results of GE-HH with the
best available results in the literature in Table 19. To the
best of our knowledge, only two hyper-heuristics have been
tested on Christofides instances (first and second methods
in Table 19) and both report the percentage deviation only.
Due to the large number of bespoke methods that are
available in the literature, we have only considered those

that have produced the best known results and some of
recent published methods. The considered methods are
classified into single based and population based solution
methods (see Table 19). Table 20 shows the comparison of
GE-HH against hyper-heuristic methods in term of
percentage deviation from the best known results. We can
see that, for 9 instances GE-HH matches the best known
results in the literature and for 4 instances, GE-HH
produced a better quality (ranked first) when compared to
other hyper-heuristics. The computational results of GE-HH
compared to other bespoke methods are presented in Table
21, where for 9 out of 12 instances GE-HH has obtained the
best known results. For the remaining instances, the quality
of the solutions with regard to percentage deviation is
between 1.9% and 0.11% and instance ranking varies
between 2 and 4. According to this result, GE-HH is
competitive with the presented bespoke methods.
Considering the generality, it is obvious that GE-HH is able
to produce good results across all instances and the
percentage deviation is relatively small.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 17

TABLE 18 RESULTS OF GE-HH COMPARED TO GE-HH*
 GE-HH GE-HH*

Instances Best Average Std Time Best Average Std Time
1 524.61 524.61 0.00 10.12 524.61 524.61 0.00 8.20
2 835.26 835.86 0.80 21.02 835.26 836.14 1.27 16.12
3 826.13 827.09 0.62 20.33 826.13 827.71 1.48 15.06
4 1029.65 1034.13 0.92 30.43 1032.51 1034.71 1.37 24.43
5 1308.54 1316.89 0.87 19.09 1310.62 1317.51 4.51 16.08
6 555.43 555.43 0.00 9.43 555.43 555.79 0.57 7.43
7 909.67 910.17 0.91 11.18 909.67 910.10 1.10 8.70
8 865.94 866.10 0.35 13.44 865.94 866.19 0.41 10.06
9 1164.98 1170.96 0.27 19.67 1164.35 1171.73 3.29 16.11
10 1403.38 1412.49 0.96 21.83 1405.94 1414.25 3.69 18.71
11 1042.12 1054.84 0.93 12.65 1042.11 1091.17 6.51 7.95
12 819.55 819.55 0.00 9.95 819.55 820.21 1.96 6.34
13 1543.05 1551.59 0.18 10.07 1543.83 1554.03 2.28 7.83
14 866.36 866.36 0.00 12.62 866.36 866.39 0.11 8.16

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. Time: represents
average time in minutes. Best results are highlighted in bold.

TABLE 19 ACRONYMS OF COMPARED METHODS

Symbol References
1 Cvrp11 [75] HH

2 Cvrp12 [76]

3 Cvrp13 [77] LS

P
O

P
 N
O

N
-H

H

4 Cvrp14 [78]
5 Cvrp15 [79]
6 Cvrp16 [80]
7 Cvrp17 [81]
8 Cvrp18 [82]
9 Cvrp19 [83]

Note: HH: hyper-heuristic methods. NON-HH: bespoke methods. LS: local
search methods. POP: population based methods

TABLE 20 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC METHODS

 GE-HH Hyper-heuristics
Instances Best Average ∆(%) ∆*(%) Rank Cvrp11 Cvrp12 BK

1 524.61 524.61 0.00 0 * 0.00 0.00 524.61
2 835.26 835.86 0.00 0.07 * 0.05 0.62 835.26
3 826.13 827.09 0.00 0.11 * 0.21 0.42 826.14
4 1029.65 1034.13 0.11 0.55 1 0.52 2.50 1028.42
5 1308.54 1316.89 1.33 1.98 1 2.05 5.07 1291.29
6 555.43 555.43 0.00 0 * 0.00 - 555.43
7 909.67 910.17 0.00 0.05 * 0.09 - 909.68
8 865.94 866.10 0.00 0.01 * 0.00 - 865.94
9 1164.98 1170.96 0.20 0.72 1 0.70 - 1162.55
10 1403.38 1412.49 0.53 1.19 1 1.24 - 1395.85
11 1042.11 1054.84 0.00 1.22 * 0.88 0.19 1042.11
12 819.55 819.55 0.00 0 * 0.00 0.00 819.56
13 1543.05 1551.59 1.90 2.47 2 1.00 - 1514.14
14 866.36 866.36 0.00 0 * 0.00 - 866.37

Note: ‘*’ indicates that the obtained result is the same as the best known result. BK: best known
results in the literature. “-“ indicates no feasible solution has been found. Best results are highlighted
in bold. ∆*(%): the percentage deviation of the average value with regard to the best known results.

TABLE 21 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

GE-HH
Bespoke methods

Single solutions based Population based
Instances Best Average ∆(%) Rank Cvrp13 Cvrp14 Cvrp15 Cvrp16 Cvrp17 Cvrp18 Cvrp19

1 524.61 524.61 0.00 * 524.61 524.61 524.61 524.61 524.61 524.61 524.71
2 835.26 835.86 0.00 * 835.26 835.77 835.26 838.60 840.47 835.26 849.77
3 826.13 827.09 0.00 * 826.14 829.45 826.14 828.56 826.14 826.14 844.72
4 1029.65 1034.13 0.11 2 1028.42 1036.16 1028.42 1033.21 1032.19 1028.42 1059.03
5 1308.54 1316.89 1.33 4 1298.79 1322.65 1291.45 1318.25 1309.72 1294.21 1302.33
6 555.43 555.43 0.00 * 555.43 555.43 555.43 555.43 - 555.43 555.43
7 909.67 910.17 0.00 * 909.68 913.23 909.68 920.72 - 909.68 909.68
8 865.94 866.10 0.00 * 865.94 865.94 865.94 869.48 - 865.94 866.32
9 1164.98 1170.96 0.20 3 1162.55 1177.76 1162.55 1173.12 - 1163.41 1181.60
10 1403.38 1412.49 0.53 4 1397.94 1418.51 1395.85 1435.74 - 1397.51 1417.88
11 1042.11 1054.84 0.00 * 1042.11 1073.47 1042.11 1042.87 1042.11 1042.11 1042.11
12 819.55 819.55 0.00 * 819.56 819.56 819.56 919.56 819.56 819.56 847.56
13 1543.05 1551.59 1.90 2 1541.14 1573.81 1541.14 1545.51 - 1544.57 1542.86

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 18

14 866.36 866.36 0.00 * 866.37 866.37 866.37 866.37 - 866.37 866.37
Note: ‘*’ indicates that the obtained result is the same as the best known result. “-“ indicates no feasible solution has been found. Best results
are highlighted in bold.

2) Test Set II: Golden Datasets

The computational results of GE-HH and GE-HH* are
tabulated in Table 22. The presented results clearly show
that GE-HH outperformed GE-HH* across all instances.
Furthermore, the average and standard deviation of GE-HH
is much better than GE-HH*, again indicating that the
adaptive memory mechanism has a big impact on the
performance and generality.

In order to assess the performance of GE-HH, the results
of GE-HH are compared with the best available results in
the literature. Again, due to the uncountable number of
methods that have been tested on Golden instances, only
those produced the best known results and few recent
methods are considered as shown in Table 23. To the best
of our knowledge, only one hyper-heuristic (first method in
Table 23) has been tested on Golden instances. Table 24

gives the comparison results. From Table 24, one can find
that, GE-HH reached the best known results for 4 out of 20
instances. For the other instances, the quality of solution
(percentage deviation) is between 0.17% and 0.68% and
instance ranking varies between 2 and 5. Compared to the
hyper-heuristic method (first method in Table 24), GE-HH
is able to obtain better solutions on 14 instances. When
comparing with bespoke methods, for 4 instances GE-HH
reached the best known results. GE-HH produces
competitive results for the remaining 16 instances
compared to other bespoke methods and very close to the
best known value (percentage deviation). It should be noted
that bespoke methods are specifically designed to produce
the best results for one or more instances, whilst, one can
see that GE-HH is able to obtain a much higher level of
generality across all instances.

TABLE 22 RESULTS OF GE-HH COMPARED TO GE-HH*

 GE-HH GE-HH*
Instances Best Average Std Time Best Average Std Time

1 5626.81 5631.56 0.92 15.04 5703.21 5697.56 1.81 10.27
2 8446.19 8457.16 1.24 22.13 8484.16 8457.16 1.67 18.09
3 11081.60 11120.40 1.07 32.06 11138.44 11120.40 1.18 27.31
4 13658.84 13673.64 1.30 37.31 13708.26 13673.64 1.46 32.19
5 6460.98 6494.86 0.84 17.24 6468.83 6494.86 1.53 14.27
6 8462.10 8488.93 1.03 19.11 8485.30 8488.93 1.16 16.42
7 10202.24 10280.32 1.10 31.08 10262.43 10280.32 1.20 28.40
8 11690.82 11795.80 1.03 41.64 11784.50 11795.80 1.11 36.08
9 583.39 596.19 0.75 18.52 589.92 596.19 1.26 13.92
10 740.91 769.98 1.02 22.18 758.22 789.98 1.13 18.13
11 919.80 986.60 0.90 29.37 949.38 986.60 1.31 25.08
12 1111.43 1126.64 1.02 40.19 1155.76 1186.64 1.10 36.10
13 857.19 868.73 0.86 30.08 876.64 898.73 1.21 26.06
14 1083.59 1108.12 0.96 24.40 1097.61 1108.12 1.42 19.20
15 1350.17 1390.16 0.84 35.08 1376.42 1390.16 1.38 29.06
16 1631.91 1682.98 0.93 42.15 1640.19 1682.98 1.29 37.12
17 707.76 718.56 0.60 18.07 714.52 720.56 1.01 14.10
18 1003.43 1017.13 1.08 19.11 1017.24 1057.13 1.15 16.02
19 1368.12 1390.62 1.30 26.30 1374.11 1390.62 1.46 21.14
20 1820.09 1855.16 0.77 32.08 1830.48 1855.16 1.09 28.06

Note: GE-HH: with the adaptive memory mechanism. GE-HH*: without adaptive memory. Time
represents average time in minutes. Best results are highlighted in bold.

TABLE 23 ACRONYMS OF COMPAREDMETHODS

Symbol References
1 Cvrp21 [84]
2 Cvrp22 [85]
3 Cvrp23 [86]
4 Cvrp24 [17]
5 Cvrp25 [82]
6 Cvrp26 [81]
7 Cvrp27 [87]

TABLE 24 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

 GE-HH HH Bespoke methods
Instances Best Average ∆(%) ∆*(%) Rank Cvrp21 Cvrp21 Cvrp23 Cvrp24 Cvrp25 Cvrp26 Cvrp27

1 5626.81 5631.56 0.00 0.08 * 5650.91 5627.54 5626.81 5759.61 5670.38 5638.42 5643.27
2 8446.19 8457.16 0.17 0.30 2 8469.32 8447.92 8431.66 8501.67 8459.73 8457.04 8455.12
3 11081.60 11120.40 0.43 0.76 3 11047.01 11036.22 11036.22 11364.69 11101.12 11098.93 11083.49
4 13658.84 13673.64 048 0.59 4 13635.31 13624.52 13592.88 14136.32 13698.17 13816.35 13671.18
5 6460.98 6494.86 0.00 0.52 * 6466.68 6460.98 6460.98 6512.27 6460.98 6460.98 6460.98
6 8462.10 8488.93 0.68 1.00 5 8416.13 8412.88 8404.26 8553.19 8470.64 8430.66 8461.18
7 10202.24 10280.32 0.44 1.21 5 10181.75 10195.56 10156.58 10422.65 10215.14 10209.64 10198.25
8 11690.82 11795.80 0.23 1.13 2 11713.62 11663.55 11691.06 11986.73 11750.38 11785.11 11695.24

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 19

9 583.39 596.19 0.51 2.71 2 585.14 583.39 580.42 586.68 586.87 585.29 583.39
10 740.91 769.98 0.32 4.26 2 748.89 741.56 738.49 748.89 746.56 745.25 743.19
11 919.80 986.60 0.55 7.85 3 922.70 918.45 914.72 924.70 925.52 924.74 922.17
12 1111.43 1126.64 0.42 1.79 4 1119.06 1107.19 1106.76 1125.71 1114.31 1123.29 1111.28
13 857.19 868.73 0.00 1.34 * 864.68 859.11 857.19 867.29 865.19 861.94 860.17
14 1083.59 1108.12 0.28 2.55 3 1095.40 1081.31 1080.55 1098.86 1089.21 1097.49 1085.24
15 1350.17 1390.16 0.56 3.54 4 1359.94 1345.23 1342.53 1356.65 1355.28 1356.34 1346.18
16 1631.91 1682.98 0.68 3.83 4 1639.11 1622.69 1620.85 1642.90 1632.21 1643.74 1625.89
17 707.76 718.56 0.00 1.52 * 708.90 707.79 707.76 712.26 712.18 709.84 710.87
18 1003.43 1017.13 0.83 2.21 5 1002.42 998.73 995.13 1017.91 1006.31 1005.97 1001.17
19 1368.12 1390.62 0.15 1.80 4 1374.24 1366.86 1365.97 1384.93 1373.24 1387.93 1366.86
20 1820.09 1855.16 0.003 1.93 2 1830.80 1820.09 1820.02 1855.91 1831.17 1872.45 1824.14

‘*’ indicates that the obtained result is the same as the best known result. HH: hyper-heuristic method. Best results are highlighted in bold.

VII. DISCUSSION

As shown throughout this work, in both problem domains
(exam timetabling and capacitated vehicle routing
problems), GE-HH obtained competitive results, if not
better (on some instances), when compared against existing
best methods in the literature. GE-HH is able to update the
best known results for some instances (on both domains). In
both domains, our GE-HH outperformed previously
proposed hyper-heuristic methods. We note that, for both
domains, the standard deviation is relatively small. Also,
the percentage deviation demonstrates that, in both
domains, GE-HH results are very close to the best known.
This positive result reveals that our GE-HH is efficient,
consistent and generalizes well over both domains. In our
opinion, this is due to the following. (i) The capability of
GE-HH in dealing with different problem instances by
evolving different local search templates during the
problem solving process. By evolving different local search
templates, GE-HH can easily adapt to any changes that
might occur during problem solving. (ii) Since some
problem instances are very difficult to solve and have many
local optima, GE-HH struggles in obtaining good quality
solutions without getting stuck in local optima. Therefore,
by incorporating the adaptive memory mechanism, GE-HH
is more effective in diversifying the search of solutions by
exploring different regions. Overall, the benefit of the
proposed method is its ability to find the best solver from
the supplied pool of solvers (local search acceptance
criteria) as well as the best configuration for the selected
solver. This alleviates the question of which solver one
should use and what is the best configuration for it.
Furthermore, it does not rely on complicated search
approaches to find out how to generate a local search
template. Rather, it provides a general mechanism
regardless of the nature and complexity of the problems. It
is simple to implement, and can be easily applied to other
domains without significant effort (i.e. users only need to
change the set of neighborhood structures).

VIII. CONCLUSIONS

In this work, we have proposed a new improvement based
hyper-heuristic framework for combinatorial optimization
problems. The proposed framework employs a grammatical
evolution algorithm (GE-HH) to search the space of basic
heuristic components. These are: a set of acceptance
criteria, neighborhood structures and neighborhood
combinations and are represented by a grammar definition.

The proposed framework takes these heuristic components
as input and evolves several templates of perturbation
heuristics during problem solving. The performance of the
GE-HH is enhanced by hybridizing it with an adaptive
memory mechanism which contains a set of high quality
and diverse solutions. To demonstrate the generality,
consistency and efficiency of the proposed framework, we
have tested the proposed framework on two different and
challenging problem domains, exam timetabling and
capacitated vehicle routing benchmark problems, using the
same parameter settings. The results demonstrate that GE-
HH produces highly competitive solutions, if not better, and
generalizes well across both problem domains. The main
contributions of this work are:

- The development of a GE-HH framework that

automatically generates templates of perturbation
heuristics, demonstrating that strengths of different
search algorithms can be merged into one hyper-
heuristic framework.

- The integration of an adaptive memory mechanism,
which contains a collection of high quality and diverse
solutions, within a hyper-heuristic framework, and
which also obtained consistent results, generalized
across different problem domains and produced high
quality solutions which are either competitive or better
than (on some cases) other bespoke methods.

- The development of a hyper-heuristic framework which
can be easily applied to different problem domains
without much effort (i.e. the user only needs to change
the neighborhood structures).

Experimental results have demonstrated the effectiveness
and the generality of this method on very well established
benchmarks. In our future work, we intend to investigate
the effectiveness of integrating GE-HH in the HyFlex
framework (a benchmark framework for cross-domain
heuristic search) that has been recently introduced [88, 89].

ACKNOWLEDGMENT

The authors wish to thank Universiti Kebangsaan
Malaysia for supporting this work under the UKM Action
Research Grant Scheme (UKM-PTS-011-2009) and
Fundamental Research Grant Scheme (UKM-TT-02- FRGS
0121- 2009).

REFERENCES

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 20

[1] H. H. Hoos and T. Stützle, Stochastic local search:
Foundations and applications: Morgan Kaufmann, 2005.

[2] T. Weise, M. Zapf, R. Chiong, and A. Nebro, "Why is
optimization difficult?," Nature-Inspired Algorithms for
Optimisation, pp. 1-50, 2009.

[3] E. G. Talbi, Metaheuristics From design to implementation:
Wiley Online Library, 2009.

[4] M. Gendreau and J. Y. Potvin, Handbook of Metaheuristics:
Springer Verlag, 2010.

[5] D. H. Wolpert and W. G. Macready, "No free lunch theorems
for optimization," IEEE Transactions on Evolutionary
Computation, vol. 1, pp. 67-82, 1997.

[6] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.
R. Woodward, "A Classification of Hyper-heuristic
Approaches," in Handbook of Metaheuristics. vol. 146, M.
Gendreau and J. Potvin, Eds., 2nd ed: Springer, 2010, pp. 449-
468.

[7] Y. Hamadi, E. Monfroy, and F. Saubion, "What is Autonomous
Search?," Hybrid Optimization, pp. 357-391, 2011.

[8] R. Poli and M. Graff, "There is a free lunch for hyper-
heuristics, genetic programming and computer scientists," in
Genetic Programming, 2009, pp. 195-207.

[9] K. A. Smith-Miles, "Cross-disciplinary perspectives on meta-
learning for algorithm selection," ACM Computing Surveys
(CSUR), vol. 41, pp. 1-25, 2008.

[10] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter
control in evolutionary algorithms," Evolutionary Computation,
IEEE Transactions on, vol. 3, pp. 124-141, 1999.

[11] R. Battiti and M. Brunato, "Reactive search optimization:
learning while optimizing," Handbook of Metaheuristics, pp.
543-571, 2010.

[12] Y. S. Ong and A. J. Keane, "Meta-Lamarckian learning in
memetic algorithms," IEEE Transactions on Evolutionary
Computation,, vol. 8, pp. 99-110, 2004.

[13] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, "Self-adaptive
multimethod search for global optimization in real-parameter
spaces," IEEE Transactions on Evolutionary Computation,, vol.
13, pp. 243-259, 2009.

[14] M. W. Carter, G. Laporte, and S. Y. Lee, "Examination
timetabling: Algorithmic strategies and applications," The
Journal of the Operational Research Society, vol. 47, pp. 373-
383, 1996.

[15] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis,
A. J. Parkes, L. D. Gaspero, R. Qu, and E. K. Burke, "Setting
the research agenda in automated timetabling: The second
international timetabling competition," INFORMS Journal on
Computing, vol. 22, pp. 120-130, 2010.

[16] N. Christofides, A. Mingozzi, and P. Toth, "The vehicle routing
problem," Combinatorial optimization, vol. 11, p. 315338,
1979.

[17] F. Li, B. Golden, and E. Wasil, "Very large-scale vehicle
routing: new test problems, algorithms, and results," Computers
& Operations Research, vol. 32, pp. 1165-1179, 2005.

[18] K. Chakhlevitch and P. Cowling, "Hyperheuristics: recent
developments," Adaptive and Multilevel Metaheuristics, pp. 3-
29, 2008.

[19] E. K. Burke, G. Kendall, and E. Soubeiga, "A tabu-search
hyperheuristic for timetabling and rostering," Journal of
Heuristics, vol. 9, pp. 451-470, 2003.

[20] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, "A
genetic programming hyper-heuristic approach for evolving 2-
D strip packing heuristics," IEEE Transactions on Evolutionary
Computation, vol. 14, pp. 942-958, 2010.

[21] E. K. Burke, M. R. Hyde, and G. Kendall, "Grammatical
Evolution of Local Search Heuristics," IEEE Transactions on
Evolutionary Computation, 2011.

[22] P. Garrido and M. C. Riff, "DVRP: a hard dynamic
combinatorial optimisation problem tackled by an evolutionary
hyper-heuristic," Journal of Heuristics, pp. 1-40, 2010.

[23] R. Qu and E. K. Burke, "Hybridizations within a graph-based
hyper-heuristic framework for university timetabling
problems," Journal of the Operational Research Society, vol.
60, pp. 1273-1285, 2008.

[24] P. Ross, S. Schulenburg, J. G. Marín-Blázquez, and E. Hart,
"Hyper-heuristics: learning to combine simple heuristics in bin-

packing problems," in In Proceedings of GECCO'2002, 2002,
pp. 942–948.

[25] A. S. Fukunaga, "Automated discovery of local search
heuristics for satisfiability testing," Evolutionary Computation,
vol. 16, pp. 31-61, 2008.

[26] M. Bader-El-Den and R. Poli, "Generating SAT local-search
heuristics using a GP hyper-heuristic framework," 2008, pp.
37-49.

[27] J. C. Tay and N. B. Ho, "Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-
shop problems," Computers & Industrial Engineering, vol. 54,
pp. 453-473, 2008.

[28] R. Poli, J. Woodward, and E. K. Burke, "A histogram-matching
approach to the evolution of bin-packing strategies," in
Proceedings of the IEEE Congress of Evolutionary
Computation (CEC 2007), 2007, pp. 3500-3507.

[29] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R.
Qu, "Hyper-heuristics: A Survey of the State of the Art,"
Journal of the Operational Research Society, to appear, 2012.

[30] M. O'Neill and C. Ryan, "Grammatical evolution," IEEE
Transactions on Evolutionary Computation, vol. 5, pp. 349-
358, 2001.

[31] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M.
O’Neill, "Grammar-based Genetic Programming: a survey,"
Genetic Programming and Evolvable Machines, vol. 11, pp.
365-396, 2010.

[32] E. Soubeiga, "Development and application of hyperheuristics
to personnel scheduling," PhD thesis, School of Computer
Science and Information Technology, The University of
Nottingham, 2003.

[33] D. Ouelhadj and S. Petrovic, "A cooperative hyper-heuristic
search framework," Journal of Heuristics, vol. 16, pp. 835-857,
2010.

[34] M. Ayob and G. Kendall, "A monte carlo hyper-heuristic to
optimise component placement sequencing for multi head
placement machine," in Proceedings of the International
Conference on Intelligent Technologies, InTech'03, 2003, pp.
132-141.

[35] E. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S.
Petrovic, J. Vazquez-Rodriguez, and M. Gendreau, "Iterated
local search vs. hyper-heuristics: Towards general-purpose
search algorithms," in IEEE Congress on Evolutionary
Computation (CEC 2010), Barcelona, Spain, 2010, pp. 1-8.

[36] P. Hansen, N. Mladenović, and J. A. Moreno Pérez, "Variable
neighbourhood search: methods and applications," Annals of
Operations Research, vol. 175, pp. 367-407, 2010.

[37] Z. Lü, J. K. Hao, and F. Glover, "Neighborhood analysis: a case
study on curriculum-based course timetabling," Journal of
Heuristics, pp. 1-22, 2011.

[38] F. Glover, "Tabu search and adaptive memory programming-
advances, applications and challenges," Interfaces in computer
science and operations research, vol. 1, 1996.

[39] D. S. Johnson, "A theoretician’s guide to the experimental
analysis of algorithms," American Mathematical Society, vol.
220, pp. 215-250, 2002.

[40] L. Di Gaspero and A. Schaerf, "Neighborhood portfolio
approach for local search applied to timetabling problems,"
Journal of Mathematical Modelling and Algorithms, vol. 5, pp.
65-89, 2006.

[41] A. Goëffon, J. M. Richer, and J. K. Hao, "Progressive tree
neighborhood applied to the maximum parsimony problem,"
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, pp. 136-145, 2008.

[42] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic, and R.
Qu, "Hybrid variable neighbourhood approaches to university
exam timetabling," European Journal of Operational Research,
vol. 206, pp. 46-53, 2010.

[43] R. Bellio, L. Di Gaspero, and A. Schaerf, "Design and
statistical analysis of a hybrid local search algorithm for course
timetabling," Journal of Scheduling, pp. 1-13, 2011.

[44] C. Blum, J. Puchinger, G. Raidl, and A. Roli, "Hybrid
metaheuristics," Hybrid Optimization, pp. 305-335, 2011.

[45] E. G. Talbi, "A taxonomy of hybrid metaheuristics," Journal of
Heuristics, vol. 8, pp. 541-564, 2002.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 21

[46] E. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Y.
Potvin, "Adaptive memory programming: A unified view of
metaheuristics," European Journal of Operational Research,
vol. 135, pp. 1-16, 2001.

[47] E. G. Talbi and V. Bachelet, "Cosearch: A parallel cooperative
metaheuristic," Journal of Mathematical Modelling and
Algorithms, vol. 5, pp. 5-22, 2006.

[48] C. Fleurent and J. Ferland, "Genetic hybrids for the quadratic
assignment problem," American Mathematical Society, vol. 16,
pp. 173-187, 1993.

[49] V. Nannen and A. Eiben, "Efficient relevance estimation and
value calibration of evolutionary algorithm parameters," in
Proceedings of the IEEE Congress of Evolutionary
Computation (CEC 2007), 2007, pp. 103-110.

[50] A. Schaerf, "A survey of automated timetabling," Artificial
Intelligence Review, vol. 13, pp. 87-127, 1999.

[51] R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, and S. Y.
Lee, "A survey of search methodologies and automated system
development for examination timetabling," Journal of
Scheduling, vol. 12, pp. 55-89, 2009.

[52] M. Ayob, A. Malik, S. Abdullah, A. Hamdan, G. Kendall, and
R. Qu, "Solving a practical examination timetabling problem: a
case study," Computational Science and Its Applications–
ICCSA 2007, pp. 611-624, 2007.

[53] P. Toth and D. Vigo, The vehicle routing problem vol. 9:
Society for Industrial Mathematics, 2002.

[54] G. Clarke and J. Wright, "Scheduling of vehicles from a central
depot to a number of delivery points," Operations research,
vol. 12, pp. 568-581, 1964.

[55] J. Silberholz and B. Golden, "Comparison of metaheuristics,"
Handbook of Metaheuristics, pp. 625-640, 2010.

[56] H. Asmuni, E. Burke, J. Garibaldi, and B. McCollum, "Fuzzy
multiple heuristic orderings for examination timetabling,"
Practice and Theory of Automated Timetabling V, pp. 334-353,
2005.

[57] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu,
"A graph-based hyper-heuristic for educational timetabling
problems," European Journal of Operational Research, vol.
176, pp. 177-192, 2007.

[58] N. Pillay and W. Banzhaf, "A study of heuristic combinations
for hyper-heuristic systems for the uncapacitated examination
timetabling problem," European Journal of Operational
Research, vol. 197, pp. 482-491, 2009.

[59] R. Qu, E. K. Burke, and B. McCollum, "Adaptive automated
construction of hybrid heuristics for exam timetabling and
graph colouring problems," European Journal of Operational
Research, vol. 198, pp. 392-404, 2009.

[60] L. Merlot, N. Boland, B. Hughes, and P. Stuckey, "A hybrid
algorithm for the examination timetabling problem," Practice
and Theory of AutomatedTimetabling IV, pp. 207-231, 2003.

[61] E. Burke and J. Newall, "Enhancing timetable solutions with
local search methods," Practice and Theory of
AutomatedTimetabling IV, pp. 195-206, 2003.

[62] S. Abdullah and E. Burke, "A Multi-start large neighbourhood
search approach with local search methods for examination
timetabling," 2006, pp. 6-10.

[63] M. Caramia, P. Dell'Olmo, and G. F. Italiano, "Novel local-
search-based approaches to university examination
timetabling," INFORMS Journal on Computing, vol. 20, p. 86,
2008.

[64] Y. Yang and S. Petrovic, "A novel similarity measure for
heuristic selection in examination timetabling," Practice and
Theory of Automated Timetabling V, pp. 247-269, 2005.

[65] E. K. Burke and Y. Bykov, "Solving exam timetabling
problems with the flex-deluge algorithm," in Proceedings of the
Sixth International Conference on the Practice and Theory of
Automated Timetabling, 2006, pp. 370–372.

[66] T. Müller, "ITC2007 solver description: a hybrid approach,"
Annals of Operations Research, vol. 172, pp. 429-446, 2009.

[67] C. Gogos, P. Alefragis, and E. Housos, "A multi-staged
algorithmic process for the solution of the examination
timetabling problem," Practice and Theory of Automated
Timetabling (PATAT 2008), Montreal, pp. 19-22, 2008.

[68] M. Atsuta, K. Nonobe, and T. Ibaraki, "ITC2007 Track 2, an
approach using general csp solver," Practice and Theory of
Automated Timetabling (PATAT 2008), pp. 19–22, 2008.

[69] G. De Smet, "Itc2007-examination track," Practice and Theory
of Automated Timetabling (PATAT 2008), Montreal, pp. 19-22,
2008.

[70] A. Pillay, "Developmental Approach to the Examination
timetabling Problem," Practice and Theory of Automated
Timetabling (PATAT 2008), pp. 19–22, 2008.

[71] E. Burke, R. Qu, and A. Soghier, "Adaptive Selection of
Heuristics for Improving Constructed Exam Timetables," in
proceedings of PATAT10, 2010, pp. 136-151.

[72] N. Pillay, "Evolving Hyper-Heuristics for a Highly Constrained
Examination " in In proceedings of PATAT10, 2010, pp. 336-
346

[73] C. Gogos, P. Alefragis, and E. Housos, "An improved multi-
staged algorithmic process for the solution of the examination
timetabling problem," Annals of Operations Research, pp. 1-
19, 2010.

[74] B. McCollum, P. McMullan, A. Parkes, E. Burke, and S.
Abdullah, "An extended great deluge approach to the
examination timetabling problem," in Proceedings of the 4th
Multidisciplinary International Conference on Scheduling:
Theory and Applications, 2009, pp. 424–434.

[75] P. Garrido and C. Castro, "Stable solving of CVRPs using
hyperheuristics," in Proceeding GECCO '09, 2009, pp. 255-
262.

[76] D. Meignan, A. Koukam, and J. C. Créput, "Coalition-based
metaheuristic: a self-adaptive metaheuristic using
reinforcement learning and mimetism," Journal of Heuristics,
pp. 1-21, 2010.

[77] É. Taillard, "Parallel iterative search methods for vehicle
routing problems," Networks, vol. 23, pp. 661-673, 1993.

[78] M. Gendreau, A. Hertz, and G. Laporte, "A tabu search
heuristic for the vehicle routing problem," Management
Science, vol. 40, pp. 1276-1290, 1994.

[79] Y. Rochat and É. D. Taillard, "Probabilistic diversification and
intensification in local search for vehicle routing," Journal of
Heuristics, vol. 1, pp. 147-167, 1995.

[80] P. Toth and D. Vigo, "The granular tabu search and its
application to the vehicle-routing problem," INFORMS Journal
on Computing, vol. 15, p. 333, 2003.

[81] C. Alabas-Uslu and B. Dengiz, "A self-adaptive local search
algorithm for the classical vehicle routing problem," Expert
Systems With Applications, 2011.

[82] Y. Marinakis and M. Marinaki, "A hybrid genetic-Particle
Swarm Optimization Algorithm for the vehicle routing
problem," Expert Systems With Applications, vol. 37, pp. 1446-
1455, 2010.

[83] A. I. Yurtkuran and E. Emel, "A new Hybrid
Electromagnetism-like Algorithm for capacitated vehicle
routing problems," Expert Systems With Applications, vol. 37,
pp. 3427-3433, 2010.

[84] D. Pisinger and S. Ropke, "A general heuristic for vehicle
routing problems," Computers & Operations Research, vol. 34,
pp. 2403-2435, 2007.

[85] D. Mester and O. Braysy, "Active-guided evolution strategies
for large-scale capacitated vehicle routing problems,"
Computers & Operations Research, vol. 34, pp. 2964-2975,
2007.

[86] Y. Nagata, "Edge assembly crossover for the capacitated
vehicle routing problem," in Evolutionary Computation in
Combinatorial Optimization, 2007, pp. 142-153.

[87] Y. Marinakis and M. Marinaki, "Bumble Bees Mating
Optimization Algorithm for the Vehicle Routing Problem,"
Handbook of Swarm Intelligence, pp. 347-369, 2010.

[88] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J.
Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S.
Petrovic, and E. Burke, "HyFlex: A Benchmark Framework for
Cross-Domain Heuristic Search Evolutionary Computation in
Combinatorial Optimization," in EVOLUTIONARY
COMPUTATION IN COMBINATORIAL OPTIMIZATION,
2012, pp. 136-147.

[89] E. Burke, M. Gendreau, M. Hyde, G. Kendall, B. McCollum,
G. Ochoa, A. Parkes, and S. Petrovic, "The Cross-Domain

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, October 2013 22

Heuristic Search Challenge – An International Research
Competition " in Learning and Intelligent Optimization, 2011,
pp. 631-634.

Nasser R. Sabar received the B.Sc. degree in
Computer Science from University of Al-
Anbar, Iraq and M.Sc. degree in Computer
Science from National University of Malaysia
(UKM), in 2005 and 2010, respectively.
Currently, he is working toward the PhD degree
in Computer Science at Data Mining and
Optimization Research Group (DMO), Centre
for Artificial Intelligent (CAIT), National

University of Malaysia. He has published 3 papers at international journals
and 7 papers at peer-reviewed international conferences. His research
interests include the design and development of hyper-heuristic
framework, adaptive algorithm, evolutionary computation, meta-heuristics
with a specific interest in combinatorial optimization problems, dynamic
optimization and data mining problems.

Dr. Masri Ayob is a lecturer in the Faculty of
Information Science and Technology, the
National University of Malaysia (UKM). She
obtained her PhD in Computer Science at The
University of Nottingham in 2005. Her main
research areas include meta-heuristics, hyper-
heuristics, scheduling and timetabling,
especially educational timetabling, healthcare
personnel scheduling and routing problems. She

has published more than 10 papers at international journals and 40 papers
at peer-reviewed international conferences. She was a member of ASAP
research group at The University of Nottingham. Currently, she is a
principle researcher in Data Mining and Optimization Research Group
(DMO), Centre for Artificial Intelligent (CAIT), UKM.

Graham Kendall is a Professor of Computer
Science. He is currently based at the
University of Nottingham’s Malaysia campus,
where he is serving as Vive-Provost (Research
and Knowledge Transfer). He is a member of
the Automated Scheduling, Optimisation and
Planning Research Group, School of
Computer Science. Graham was awarded a
BSc (Hons) First Class in Computation from

the University of Manchester Institute of Science and Technology
(UMIST), UK in 1997 and received his PhD from The University of
Nottingham (School of Computer Science) in 2000. He is a Fellow of the
Operational Research Society. Before entering academia he spent almost 20
years in the IT industry, working for various UK companies (including the
Co-operative Wholesale Society and Provincial Insurance), undertaking a
variety of roles including Computer Operator, Technical Support Manager
and Service Manager. He has edited and authored 9 books and has
published almost 50 refereed journal papers (the vast majority in ISI ranked
journals) and over 90 papers in peer reviewed conferences. He is an
Associate Editor of 8 international journals (including two IEEE
Transactions). He chairs the Steering Committee of the Multidisciplinary
International Conference on Scheduling: Theory and Applications, in
addition to chairing several other international conferences in recent years.
He has been awarded externally funded grants worth over £5.5M from a
variety of sources including the Engineering and Physical Sciences
Research Council and commercial organizations. Professor Kendall’s
expertise lies in Operational Research, Meta- and Hyper-Heuristics,
Evolutionary Computation and Artificial Intelligence, with a specific
interest in scheduling, including timetabling, sports scheduling, cutting and
packing and rostering.

Dr. Rong Qu is an Associate Professor in the School of Computer Science at
the University of Nottingham. She obtained her PhD in Computer Science at
The University of Nottingham in 2002. Her main research areas include

meta-heuristics, constraint programming,
mathematical programming, case based
reasoning and knowledge discovery techniques
on scheduling, especially educational
timetabling, healthcare personnel scheduling and
network routing problems, and a range of
combination optimization problems including
portfolio optimization. She has published more
than 30 papers at international journals and 30

papers at peer-reviewed international conferences. Dr Qu is a guest editor of
the special issue on "Artificial Intelligence Planning and Scheduling" at the
Journal of Scheduling, and the special issue on "Evolutionary Computation
in Scheduling" at IEEE Transactions on Evolutionary Computation. She has
been the program chair of six workshops, special sessions or IEEE
symposiums.

