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Grammatical Evolution Hyper-heuristic for Combinator
Optimization problems

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE andJrp8gnior Member,
IEEE

Abstract— Designing generic problem solvers that perform
well across a diverse set of problemsis a challenging task. In this
work, we propose a hyper-heuristic framework to automatically
generate an effective and generic solution method by utilizing
grammatical evolution. In the proposed framework, grammatical
evolution is used as an online solver builder, which takes several
heuristic components (e.g. different acceptance criteria and
different neighborhood structures) as inputs and evolves
templates of perturbation heuristics. The evolved templates are
improvement heuristics which represent a complete search
method to solve the problem at hand. To test the generality and
the performance of the proposed method, we consider two well-
known combinatorial optimization problems; exam timetabling
(Carter and ITC 2007 instances) and the capacitated vehicle
routing problem (Christofides and Golden instances). We
demonstrate that the proposed method is competitive, if not
superior, when compared to state of the art hyper-heuristics, as
well as bespoke methods for these different problem domains. In
order to further improve the performance of the proposed
framework we utilize an adaptive memory mechanism which
contains a collection of both high quality and diverse solutions
and is updated during the problem solving process. Experimental
results show that the grammatical evolution hyper-heuristic, with
an adaptive memory, performs better than the grammatical
evolution hyper-heuristic without a memory. The improved
framework also outperforms some bespoke methodologies which
have reported best known results for some instances in both
problem domains.

Index Terms—Grammatical Evolution, Hyper-heuristics,
Timetabling, Vehicle Routing

|I. INTRODUCTION

Combinatorial optimization can be defined as the proble
of finding the best solution(s) among all those availabl

and often heavily constrained, search spaces which make their
modeling (let alone solving) a very complex tgsk [2]. Usually,
heuristic methods are used to solve these problamexact
methods often fail to obtain an optimal solutiorréasonable
times. The main aim of heuristic methods, which provide n
guarantee of returning an optimal solution (or even near
optimal solution), is to fing reasonably good solution within
a realistic amount of tim¢ [B,] 4]. Meta-heuristic algorithms
provide some high level control strategy in order to provide
effective navigation of the search space. A vast number of
meta-heuristic algorithms, and their hybridizaiphave been
presented to solve optimization problems. Examples of meta-
heuristic algorithms include scatter search, tabu search,
genetic algorithms, genetic programming, memetic
algorithms, variable neighborhood search, guided local search,
GRASP, ant colony optimization, simulated annealing,
iterated local search, multi-start methods and parallel
strategied [BL.[K].

Given a problem, an interesting question that comes to mind
is:

Which algorithm is the most suitable for the problem at

hand and what are the optimal structures and

parameter values?

The most straightforward answer to the above question might
be to employ trial-and-error to find the most suitable meta-
heuristic from the large variety of those available, and then
employ trial-and-error to determine the appropriate structures
and parameter values. While these answers seem reasonable,
in terms of the computational time involved, it is impractical

in many real world applications. Many bespoke meta-heuristic
I%Igorithms that have been proposed over the years are
@anually designed and tuned, focusing on producing good
sults for specific problem instances. The manually designed

for a given proble . These problems are encounteré . ) X
in manygreal pworld”qelllgplications such as schedulin% gorithms (customized by the user and not changed during

production planning, routing, economic systems an roblem solving) that have been developed over the years are

managemenf J1]. Many real world optimization problems ar%roblem sp_emflc, i.e. they are able to obtain high qu_allty
e[esults for just a few problem instances, but usually fail on

dther instances even of the same problem and cannot be
directly applied to other optimization problems. Of course, the
No Free Lunch Theorenf |5] states that a general search
method does not exist, but it does not mean that we cannot
investigate more general search algorithms to explore the
limits of such an algorithrfi [6]8]

Numerous attempts have been made to develop automated
search methodologies that are able to produce good results

Nasser R. Sabar and Masri Ayob are with Data Minind @ptimisation
Research Group (DMO), Centre for Artificial Inteligt (CAIT), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Mdday
email:naserdolayme@yahoo.com, masri@ftsm.ukm.my

Graham Kendall and Rong Qu are with ASAP ResearadugrSchool of
Computer Science, The University of Nottingham, Nattiam NG8 1BB,
UK.emailgxk@cs.nott.ac.uk, rxg@cs.nott.ac.uk



Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, Octol#13 2

across several problem domains and/or instantlyper- - To design an automatic algorithm that works well
heuristics [[6], meta-learnind_J9], parameter tunifig0][ across different instances of the same problem and also
reactive searc , adaptive memetic algorithmf2] and across two different problem domains.

multi-method|L3], are just some exampleBhe performance - To merge the strengths of different search algorithms in
of any search metldbcritically depends on its structures and one framework.

parameter values [ [6] Furthermore, different search - To test the generality and consistency of the proposed

methodologies, coupled with different structures and method on two different problem domains.
parameter settings may be needed to cope with problem
instances or different problem domain$ [90]l A search may The performance and generality of the GE-HH is assessed
even benefit from adapting as it attempts to solve a giversing two well-knownNP-hard combinatorial optimization
instance. Therefore, the performance of any search metharblems examination timetabling (Cart¢i4] and ITC 2007
may be enhanced by automatically adjusting their structures[@B] instances) and the capacitated vehicle routing problem
parameter values during the problem solving process. Thi€hristofides[16 and Golden[I7] instances). Although both
the ultimate goal of automated heuristic design is to develalomains have been extensively studied by the research
search methodologies that are able to adjust their structurecommunity, the reasons of choosing them are twofold.I¥zjrst
parameter values during the problem solving process and wahley represent real world applications and the state of the art
well, not only across different instances of the same problengsults, we believe, can still be improved. Currently, a variety
but also acrosadiverse set of problem domaipd [@], [10].  of algorithms have achieved very good results for some
Motivated by these aspects, particularly the hyper-heuristiecstances. However, most methodologies fail on generality and
framework [[§], in this work, we propose a grammaticatonsistency. Secondly, these two domains have been widely
evolution hyper-heuristic framework (GE-HH) to generatstudied in the scientific literature and we would like to
local search templates during the problem instance solviegaluate our algorithm across two different domains that other
process, as depicted in Fig 1. researchers have studied. Although our intention is not to
present an algorithm that can beat the state of the art, but
rather can work well across different domains, our results
demonstrate thaGE-HH is able to update the best known

comparisons are presented in Section V and VI, respectively.
Finally discussions and concluding remarks are presented in
Sections VII and VIII.

RR:NT e N2N3

Exampleof generated results for some instances
Grammar LT The remainder of the paper is organized as follows: the
BNF : generic hyper-heuristic framework and its classification are
Ui Fitness presented in Section Il. The grammatical evolution algorithm
— GD:N7+No ==t IN Function is presented in Section lll, followed by our proposed KBHE-
AAN3NINSNGN2 framework in Section IV. The experimental results and result

Genetic - Search
Algorithm i Engine

Il. HYPER-HEURISTICS

Meta-heuristics are generic search methods that can be applied
\ to solve combinatorial optimization problemdowever, to
SEamg= = find high quality solutions, meta-heuristics often need to be
designed and tuned (as do many classes of algorithms,
including those in this paper) and they are also often limited to

The evolved templates represent a complete local sea®} Problem domain or even just a single problem instance.
method which contains the acceptance criteria of the loch’® objective for a solution methodology that is independent
search algorithm (to determine away of escaping from locgf the problem domain, serves as one of the main motivations
optima), the local search structures (neighborhoods), and tH& designing hyper-heuristic approacrEls[
combination. The GE-HH operates on the search space ofecently, significant research attention has been fooused
heuristic components, instead of the solution space. fyPer-heuristics. Burke et dL]iefined hyper-heuristics as

utilizing an adaptive memory mechanism which updates the neyristics to solve hard computational search problems.
solution quality and diversity as the search progresses. We

choose grammatical evolution to search the space of heuristi©ne possible hyper-heuristic framework is composed of two
components due to its abilityto represent heuristic levels, known as high and low level heuristics (see Fig.2
components and it being able to avoid the problem of codeThe high level heuristic is problem independent. It has no
bloat that is often encountered in traditional genetisnowledge of the domain, only the number of heuristics that
programmingOur objectives are: are available and (non-domain) statistical information that is
allowed to pass through the domain barrier. Only the lower
part of the framework has access to the objective function, the
problem representation and the low level heuristics that have

Fig.1.The GE-HH framework
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been provided for the problem. During the problem solvingeuristics to build a solution step by step. Perturbation based
process, the high level strategy desdvhich heuristic is hyper-heuristics start with an initial solution and, at each

called (without knowing what specific function it performs) atlecision point, select an appropriate improvement low level

each decision point in the search process. Unlike metaeuristic to perturb the solution. Based on the employed

heuristics hyper-heuristics operate over a search space lefirning methods, two subclasses are distinguished: on-line or
heuristics, rather than directly searching the solution space. off-line.

Feedback ! Nature of the heuristic search space
Hyper-heuristic |
j Tavitetat e snlnit! construction
High level heuristics I Heurixlic selection e
Heuristics to choose heuristics or heuristics to generate heuristics ! heuristics
Online :
x "llm Methadologies to select
o - - o - - learning perturbation
Domain-independent information acquisition and processing: change in a AL
candidate solution’s quality, number of low level heuristics, measuring the H)']'ll.‘l' heuristics
performance of the applied heuristics, statistics, etc. Oftline helristics
learning -onstructi
. . s Heuristic generation consiruenon
heuristics
Domain barrier | I l\'“_' Methodologies to generate
SUTHNE [ — B Bt
' ' carming ; perturbation
| heuristics
i
i

Low level heuristics
Heuristics Repositgry

Fig.3. A classifications of hyper-heuristic approaches;oeding to two

Apply heuristics

dimensions: (i) the nature of the heuristic searchespad (ii) the source of

H -Problem representation
- Evaluation function

feedback during learninjg]6].

- Initial solutions

- Others ..

In on-line hyper-heuristics, the learning takes place during the

Problem domain | —

problem solving. Examples of online approaches include those
based on genetic algorithnfg2, tabu searcH[9], and local
based searcf2]. In off-line hyper-heuristics, learning occurs
éié,ll’ing the training phase before solving other problem

of problem dependent human-designed heuristics tances,_ examples mcludg those_ _based on__genetic
components of existing heuristics which operate directly dpogramming 29 anq. Iearmng classifier ;ystem@._
the solution space for a given problem instance. Based on t ﬁcently, GE was ut|_l|zed ' as an off-line heurls_tlc
past performance, heuristics compete with each other thro lder to solve the bin packing prol_alem. Our w_ork d|ffers_
learning, selection or generating mechanisms at a particu gm [21), where we use GE as an onllne_ solver builder, and is
point to construct or improve a solution for a given problerﬁ much more general methodology that is able to address_ .tWO
instance. problem_ domains, and produ_c_e best kn_own results. In addition,
The fact that the high level strategy is problem independetlt[\e GE in[R1] has been specifically designed and tested on the

means that it can be applied to different problem domains wilaﬁn p_ackmg problem only _(|.e. the grammar has been
little development effort. Indeed, one of the goals of hyperec'f'C"""y designed for the bin packing problem. iny).
heuristics is to raise the level of generality of searc‘? Our propqsed GE-HH ffa”.‘e.WO”‘ can be cIaSS|f.|e.d as an on-
methodologies and to build systems which are more gene € generau_onal hyper-h_eurlstlc. In this re;pect,_lt is the same
than other methods 6] as a genetic programming h_yper—heurlstlc yvhlch generates
heuristics. Genetic programming hyper-heuristics have been

Burke et al. |[¢] classified hyper-heuristics into two lized € I binatorial ootimizat bl
dimensions, based on the nature of the heuristic search sp';ité?e 0 Solvé many combinatoria’ optimizalion probiems

and the source of feedback during learning (see Fihé Inc utggg iAT @,,dschedulir;]g@_ and l_)in packri]ng
nature of the heuristic search space can either be heuristic [28. recent, anc_comprehensive, review on hyper-

choose heuristics or heuristics to generate heuristi ltj/lnstlcsflsr?vallable '@' . ina based h
Heuristics can be calt from a given pool of heuristics. For ost of the proposed genetic programming based hyper-
example, Burke et a[1P] used tabu search with reinforcemen{éeurIStIC approaches, however, are constructive heuristics.
learning as a heuristic selection mechanism to solve nur gelr.f_general l'm'tatlonsiTths.t theyk_are taltljor_lt_agpto s.olve
rostering and timetabling problems. Heuristics can also gectlic problems ((_e.g. » 0In packing, and 1 ) using a
generated by combining existing heuristic components pfgstricted constructive heuristic component. This limitation
example, Burke et al employed geneti.c restricts their applicability to cope with different problem
programming to evolve new low level heuristics to solve thgomglns without any redevelopm_e_nt (eg. .redeflne the
bin packing problem. terminals and functions). In addition, previous genetic

The nature of the heuristic search space can be furtrpépgramming base_d hyp_er-heuristics were only applied to one
classified depending on the type of low level heuristiss single domain, which raises the question to what extent they

either constructie or perturbative. Constructive based hyper\-NIII ge_nerallzeto other domains. .
| Motivated by the above, this work proposes an

heuristics start with an empty solution, and select low leve o ) .
Improvement based hyper-heuristic using grammatical

Fig.2. A generic hyper-heuristic framework

The low level heuristics correspond to a pool of candidat
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evolution. The proposed framework takes several heurist; S, P> where T is the terminal set, N is the set of non
components (e.g. acceptance criteria and neighborhomiminals S is the start symbol (a member of N) and P is a set
structures) as input and automatically generatiesal search of production rules. If more than one production rule is used
template by selecting the appropriate combination of thegéthin a particular I\ the choice is delimited with the ‘|’
heuristic components. The differences between our approaymbol. Below is an example of BNF grammar (adopted from
and the previous genetic programming based hyper-heuristfg§]):
in the literature are:
T={Sin, Cos, Tan, Log, +, -, /, *, (,)} // set of terminal

1. The proposed framework generatperturbation local N= {expr, op, pre_op} /I set of non-terminal

search template rather than constructive heuristics. S= <expp// starting symbol
2. The proposed framework is not tailored dgparticular and P can be represented as  // production rules

problem domain e.g. it can be applied to several domains

(the user only needs to change the neighborhood (1) <expr>:=  <expr><op><expr> 0)
structures when applyingtio another problem domain). | (<expr><op><expr) )

3. The proposed framework utilizes an adaptive memory |<pre-op>(<exp¥) )
mechanism to maintain solution diversity. <var> ®)

[ll. GRAMMATICAL EVOLUTION (2) <op>::= + ©)
Grammatical evolution (GE is a variant of genetic - @

programming (GP. It is a grammar based GP that can Y @
evolve a variable-length program in an arbitrary language.

Unlike GP, GE usealinear genome representation rather than I @)
a tree. The clear distinction between the genotype and (3) <var> == X ©)
phenotype in GE allows the evolutionary process (e.g.
crossover) to be performed on the search space (variable
length linear genotypic) without needing to tailor the
diversity-generating operator to the nature of the
phenotyp¢Bd],[31]. The mapping process of genotype an@. The Search Engine

phenotype to generate a program is governed by a grammgd¥ | ses a standard : s -
: . . = i genetic algorithsits search engifap].
which contains domain knowledgf8d. The grammar is A candidate solution (genotye chromosome) is represented

represented by Backu_s Naur Form (BNF). The program b?/ a one dimensional variable length string array. The gene in
generated by usin@ binary string (genome) to determineqy , chromosome is calledcodon. Each codon is an 8-bit
which production rule in the BNF definition will be used. Thebinary number (see Fig.5

GE general framework is composed of three procedures:
grammar, search engine aamchapper procedure (see Fig.4

(4) <pre_op>::=Sin 0)

Procedure 2 Procedure 1

; P ———— S '\_‘ Fig.5. An example of genotype
I evolutionary :
i algorithm e ! The codon values are used in the mapper procedure to
L o1 : determine which rule to be selected for the non-terminal
: z i symbol when it is convertel8(] (see Section II€). The GA
i 0 & : starts with a population of chromosomes, which are randomly
: Procedure3 : generated. The fitness of each chromosome is calculated by
; e i executing its corresponding program. The fitness function
i Mapper : varies from one domain to another. GA operators (selection,
1 1 crossover, mutation and replacement) are then applied. At
| | = i each generation, the evolved solutions (children) from the
| : crossover and mutation operators are evaluated by converting
: i . them into its corresponding program via the mapper function
, \.____. . ] : If the fitness of the new solution is better than the worst
L S— PSERIETIn o solution in the population, it will replace it. The process is
B Rt Figd Grammatical evolation~ ~ ™ - repeateq until a stopping condition is satisfied (e.g. number of
generations

A The BNF Grammar C. The Mapper Procedure

GE utilizes BNF to generate the output progria@],[31]. The mapper function converts the genotype irdo

A suitable BNF grammar must be defined when solving ghenotype (i.ea program). The function takes two inputs, the

problem, and the definitions vary from one problem t@inary string (genotype) and the BNF gramnjaf][ The
amother The BNF grammar can be represshiby a tuple <T
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conversion from genotype to phenotype is carried out usi®g The Proposed Framework

the following rule: It is well established that the efficiency of any problem solver
] relies on its abilityto explore regions of the search space,
Rule= (codon integer value) MOD (number of rules fo{yhich is strongly influenced by its structures and parameter
the current nqn-termmal) ) ) values[[1],[10],[12]. Therefore, the performance of any search
The mapper function begins by mapping the starting symbglethodology can potentially be enhanced by automatically
into terminals. It converts each codon to its correspondingyjystingits structures and/or parameter values. In this work,
integer value. Assume we have the above BNF grammar (Sg€ propose a grammatical evolution hyper-heuristic (GE-HH)
Sectionlll -A) and genotype (see Fig.5). First of all, convert akkamework that generates a different local search template
codon values to integers (with reference to Fig 4, this will b@)roblem solver) to suit the given problem instance. The
220, 203, 17, 3, 109, 215, 104, 30). Then, starting fthen proposed framework takes several basic heuristic components
starting symbol, apply the mapping rule to convert thgs input and generates a local search template by combining
leftmost non-terminal inta terminal .unt|I all non-terminal  these pasic components. The process of combining heuristic
have been converted into terminals. The genotgpe- components will be carried out automatically. Thus, the
phenotype mapping process of the above BNF grammar agghefit of this framework is not onlo generate different

the solution (genotype) is illustrated in Table 1. local search templates by combining basic heuristic
TABLE 1AN EXAMPLE OF THE MAPPING PROCESS cc_)mponent_s, but also to_ discover new kinds of heuristics,
No. of without relying on human interference.

Lyt Choices s el As we mentioned earlier (Sectioltl), there are three

<expr> 4 220 MOD 4=0 | <expr><op><expr> essential procedures of grammatical evolution algorithm:

<expr><op><expr>| 4 203 MOD 4=3 | <var><op><expr>  grammar,a search engine analmapper functionOur search

X <op><expr> 4 17 MOD 4=1 X -<expr> . . | ith d th f .

X -<expr> 4 3 MOD 4= 3 X -<var> engine (genetic algorit m)_, and the mapper function are

X-X implemented as in the original algorithf80[. The BNF

grammar, which is problem dependent, must be defined in
The mapper begins (see Table 1) with the starting symbwider to suit the problem at hand. Generally, the design of the
<expr>, and then reads the first codon (220). The startifgNF grammar, which decides which production rule will be
symbol <expr> has four production rules to select from (seeeleced, has a significant impact on the output, i.e. the
Sectionlll -A). Following the mapping rules, the codon valugorograms. In ourGE-HH framework, the basic heuristic
and the number of production rules are used with the modukrmponents are represented by BNF. To desigomplete
function to decide which rule to select, i220 MOD 4= 0, BNF grammar one needs to carry out the following sfafis [
which means we select the first production rule
(<expr><op><expr>). Since this production rule is na@ e Determine the terminals, non-terminals and starting
complete expressiorit(has at least one non-terminal), rules symbol.
will be applied again. The process will continue from the Design the BNF syntax which may have problem specific
leftmost non-terminal in the current production rule. function(s)
Continuing with <expr><op><expr>, take the next codon
value 03, the next production rule will bQ3MOD 4= 3) In this work, three different heuristic components (acceptance
<var><op><exg>. Since <var> has only one choice, <varxriteria (Ac), neighborhood structure®§) and neighborhood
will be replaced by X and the production rules will becombinations Klc)) are used as basic elements of the BNF
X<op><expr>. Continuing with the same mapper rules untigrammar. We have selected these three components because
all non-terminals are converted to terminals, the complethey are recognized as crucial components in designing
expression will be X-X problem solves [3],[18]. These are explained as follows

During the conversion process, not all codons may be

used, or after using all codon values not all non-terminals ha¥e The acceptance criteridg) decides whether to accept or
been replaced by terminals. In the case where non-terminalsreject a solution. A number of acceptance criteria have
have been replaced with terminals but not all codon values been proposed in the literature and each one has its own
have been used, the mapper process will simply ignore the strengths and weakne&ssThe strength of one acceptance
rest. If all codon values have been used but the expression iscriterion can compensate for the weaknesamwther if
still invalid, a wrapper procedure is invoked. The wrapper they can be integrateidto one framework. In this work,
procedure reads the codon value from the left to right for a we have employed several acceptance criteria. The
predefined number of iterations. If the wrapper procedure is acceptance criteria that are used in @&HH framework
finished but the complete expression is still not available, the have been widely used in the literatrd [3]1[EHi[29),

genotype is given the lowest fithess value. and are presented below.
IV. THE GRAMMATICAL EVOLUTION HYPER-HEURISTIC Ac Description
FRAMEWORK Improving or equal only: The generated solution is acceptec

) ) . ) the objective value is equal or better than theiptesvone. The
In this section we present the grammatical evolution hyper-l0 |local search template that uses this acceptance aniteill be

heuristic (GE-HH) framework. Then, we introduce the executed for a pre-defined number of iterationghia work, we
adaptive memory mechanishybridizing it with GE-HH. have experimentally set the pre-defined number efaitons
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0100 non-improvement iteratiofEd. _ needed to cope with changes in the problem landscape as
All Moves: All generated solutions are accepted without tak the search progresses. In this work, we have employed
into consideration their quality. This criterion cha seen as . .
mutational operator which aims to diversify the sear¢te Gcal severgl .ne|ghb0rh00d.5 which are problem dependent. The
AM | search template that uses this acceptance criteriobevilin for descriptions of the neighborhood structures that have been
a pre-defined number of iterations. In this work, Wawe used in our work, which are different from one domain to
experimentally set the pre-defined number of iterai to . _— .
5(1g] another, are presented in problem description sections (see
Simulated Annealing: A move to a neighbor of the curre Sections V-B4 and V-C4).
solution ISb_aIV\{ayS afllceptad if it improves (or is eqjlthe 3. The third heuristic component employed in our framework
current objective value. However, non-improving nmeware : . A :
accepted based amprobability acceptance function, R<exp is the nelghborhood Comblpatl_()ns/operatdtls)(The aim .
Jlt), where R is a random number between [0, 1] &risl the of the neighborhood combinations/operators is to combine
SA |change in the objective value. The ratio of acegmhoves to the strength of two or more neighborhood structunés
worse solutions is controlled taytemperature t which graduall one structure. Such combination has been shown to be very
decreases by during the search process. In this wgtk,0.85 g ) s L
and the initial temperature t is 50% of the valueths initial efficient in solving many optimization prOble@- The
solution, as suggested[B2] [33]. The local search template th benefit of such an idea was first demonstrated using
uses the SA acceptance criteria s terminated when = 0 strategic oscillation in tabu searf36]. Recently, Lu et al.
Exponential Monte Carlo: Improving solutions are alway 3 ducted h . lvsis t th
accepted. Worse solutions are accepted \aithrobability of conducteda c_ompre ensive ar_‘a y§IS 0 _as_sess €
R<exp (), where R isarandom number between [0, 1] afiis performance of neighborhood combinations within several
Evc | the Changlet,'” the FI’IbJ;C“Ve Va'lf;-_The Pfosg_%”ft??e?““? local search methods (tabu search, iterated local search and
worse solutions will decrease a@sincrease . The loca . - . . .
search template that uses this acceptance criteriobenillin for s_teepesft decent algorlthm) I_n solving university course
a pre-defined number of iterations. In this work, Wwave timetabling problems. Their aim was to answer why some
eXperlénenta"y Sst the pée-defmed number of ;:Erstmwlloo- neighborhood structures can produce better results than
Record-to-Record Travel: A move to a neighbor solution i f ot ;
always accepted if it improves (or is equa) the current others and what characteristics constitute a good
objective value. Worse solutions are accepted if thjeative neighborhood structure. They concluded that the use of
RR value is less than R+D, where R is the value of thirsiblution neighborhood combinations can dramatically improve
and D is a deviation. In this work, we set D= 0.03 &hds local search performance. Other works which have also
updated every iteration to equal the current salutithe local . . . . . .
search template that uses the RR acceptance critespdated _StUd|ed the benefit of using neighborhood co_mblnatlons
until the stopping condition is met, $et100 iteration§ [R] include @,,. In this work, three kinds of
Great Deluge: Improving solutions are always accepted. A ni neighborhood combinations/operators are used
improving solution is accepted if its objective valadess than S ; ;
the level initially set to the value of the initsblution. The value ”’ which are described below.
of level is gradually decreased Iy g is calculated bys =
GD | (f(initial solutions) - estimated(lower bound) / numbef Nc Description
iterations). In this work, we set the number ofatéwns to 1000. + Neighborhood Union: involves the moves that can be generatec
The local search template that uses the great detmpptance using two or more different neighborhoods structures ekample,
criteria will terminate when the level is equa] or less than, the consider two different neighborhoods, Bhd N, which can be
best known solution found so far] @3 re i i
presented asiON; or Ni+N,, then the union move includes tl
Naive acceptance: accepts all improving moves. Non improvil : : : ;
: I~ solution that can be obtained by consecutively apglyi followed
NV tn;?nvpizlt:;ﬁa?ﬁgzgt?rﬂsgggeggﬁcggﬁﬁgﬁgﬁyi.s LZZ&E;?L?? by N, then calling the acceptance criterion to decidestivr to
. . - ) = B accept or reject the generated solution. Besides cumgbithe
dzﬂneq number of |ter'at|ons (100 |t|e|3r§1t|o_[ strength of different neighborhoofi87], when the search space
Adaptive Acceptance: accepts all improving moves. Nc highly disconnected, such a combination might respape from
improving moves are accepted accordingri@aceptance Rae disconnected search spagcthat may not happen when using
which is upda&ddurlng‘}hﬁ searlch_. Initially, acgep_tancef R alone. For example, in exam timetabling, the single m
set to zero. However, if the solutions cannot be awed for a : . ; . ;
- ! ; ; . ; neighborhood structure which moves one exam from one tintes
AA | Certain number of non improvement iterations (i.e. another one might lead the searchatdisconnected search spa
consecutive non improvement iterations), then acceptdate when all exams which clash with another exam in eweher
E;?;ﬁzaé%%sg?byggne'}/ﬁea E;);Igf'gg;fcﬁctceerﬁﬁg{ea;;ﬁg timeslot often cannot be moved at[@@]. Thus, combinin@single
o 0 . move neighborhood with another neighborhood i.e. swap
_acceptance cn;erlon will be. run for a pre—def!naarnber of exams, can help to fingclash free timeslot for the selected exarr
iterations experimentally set in this work as 100 iteratif88] be movedko. The same issue can also be observed in capaci
vehicle routing problems when using a single move rEigiood
2. The second heuristic component that is used irGitHH that movesa customer from one route to another
framework are the neighborhoods structums @r move > Rarjdom Qrad|ent: A nglghborhood strgctgre is repeatedly _appl
Th . f ighborhood struct is t until no improvement is possible. This is followed byplgmg
operators. e aim or any neig O_r 00d structure Is 1o other neighborhood structures. For example, considedifferent
explore the neighbor of current solutions or to generate a neighborhoods; Nand N are random gradient operators which ¢
neighborhood solution. The neighborhood solution is be representedsn, — N, The local search template will ket
generated by performing a small perturbation or changing flppllying Nhas |0ngt as thE_tge_nehG\}ﬁd solution is a_czigteqblb)
. . . ocal search acceptance criteria. When no improveisgmbssible
S?mi attrlbute(s)f_tthel C_urrtehm S(;)IUt_;ﬁn' Thelnelglhborhor(])d the local search template stops applyingahd restig fr-om thi
structures are critical In the aesl any local searc local optimum obtained by Nbut with neighborhood N6],[18].
method @ Traditionally, each neighborhood structure T-R-S | Token-Ring Search: The neighborhood structures of the genere
has its own characteristics (Weakrtesand strengths), template are consecutively applied one after anathiérthe end of
. sequence. When the generated template moves to the
thus, several types of neighborhood structures may be neighborhood structure in the sequence, it restasts fhe local
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optimum obtained by the previous neighborhood stractli the | of neighborhood structures.
generated template reaches the end of the sequenestaitts the
search from the first neighborhood in the sequence ubmdpcal s :
optimum obtained by the last neighborhood structurethia After dEtermmmg the basic EIEments of the BNF grammar, we
sequencd7],[20],[@3]. In this work, the token-ring search is set NOW need to specify the starting symbol (S), terminals (T),
a defaultin all generated local search template (there is noalp non-terminals (N) and the production rules (P) that will
symbol for it in the BNF grammar). Note that if theseo operator  represent the heuristic components. These are as follows:
between neighborhood structures e.gNi each neighborhood i

applied only one time. For example, if we haveN¥ N; the local

search template will applyiMne time only, and then move tg |

which will also be applied once, and then move to This is

because there is no combination operator between segsences

Objective Symbols Description
starting symbol ( S) LST Local Search Template
Ac Acceptance Criteria
non-terminal (N) Lc LST Configurations
Ns Neighborhood Structures
Nc Neighborhood Combinations
10 Improving Only or equal
AM All Moves
SA Simulated Annealing
EMC Exponential Monte Carlo
RR Recordto-Record Travel
GD Great Deluge
: NA Naive Acceptance
|
terminal (T) AA Adaptive Acceptance
+ Neighborhood Union
-—) Random Gradient
Nb; First neighborhood e.g. @t
Nb; Second neighborhood e.g. Swap
Nby, Neighborhood n
(1) <LST>:= AclLc (0) Starting symbol rule. Number of choices availableL8F =0
(2 <Ac>:= 10 (0)
|AM 1) L .
[SA 2 Acceptance Criteria production rules
[EMC (3) Number of choices available for Ac =8
production rules (P) |RR (4)
| GD (®)
| NA (6)
| AA )
(3) <Lecsi= NsLc 0)
| NsNcNs (1) LST Configurations production rules.
| NsNsLc @ Number of choices available for Lc =6
| NcNsNs 3)
| NsNsNcNs ~ (4)
|Lc 5
(4) <Ns>:= Nbl (0)
| Nb2 (1) Neighborhood structures production rules.
l. %) Number of choices available for Nb =1 to n
l. (3) Note that n represent the number of neighborhoodtstres that are
l. @ used for each problem domain (see SectionsV-B4 and)V-C
[ (5)
l. (6)
| Nbn (n)
5) <Nc>:= + eighborhoods combination production rules.
(5) 0) Neighborhood binati ducti |
| w— 1) Number of choices available for Nc =2

The above BNF grammar is valid for every local search  dependent, if not problem instance dependBlgase note
template (LST) for both problem domains in the work. This  that not all local search templates will improve the solution
is because each local search templatT{ has different because the employed acceptance criteria might accept
rules and characteristics. Finding the best BNF grammar for  orse solutions with a certain probability. For example, the
every local search templatd T) would be problem local search that uses all moves acceptance criterion (AM)
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will accept any solution that does not violate any hard
constraints regardless of its quality.

The programs in oultGE-HH represent local search
templates or problem solvers. The local search template
starts with an initial solution and then iteratively impzev
it. The initial solution can be randomly generated or by
using heuristic methods (see Sections V-B3 and V-C3).
Please note that the initial solution generation method is not
a part of the GE-HH. In this work, we use two fitness
functions. The first ongenalty cost, is problem dependent,
and is used by the inner loop of the generated local search
template in deciding whether to accept or reject the
perturbed solution (see Sections V-B and V-C for more
details about the penalty cost). The second fitness function
is problem independent and it measures the quality of the
generated program (local search template) after executing
it. At every iteration, if the generated programs are
syntactically correct (all non-terminals can be converted
into terminals), the programs are executed and their fithess
is computed from their output. In this work, the fithess
function of the generated programs is calculatedaas
percentage of improvement (PI). Assunis the fithess of
the initial solution and,fis the fitness of the solution after
executing the generated programs, then Plz-fp)(ff,| *

100, if b<=f,. If f,> f,discard the generated program.

With all the GE-HH elements (grammar, search engine,
mapper procedure and fithess funcjiodefined, the
proposed GE-HH framework is carried out as depicted in
Fig.6.

- Define the BNF syntax
- Generate initial solution to be improved by the
generated programs

- Randomly generated a population of individuals
(genotypes) for the genetic algorithm (search
engine).

- Perform mapping process to translated individual
(genotype) into programs (phenotype) by using BNF
syntax and individual codon values.

- Estimate fitness of the individuals by executing its
corresponding programs (phenotvpe).

- Apply selection_crossover and mutation operators
to generate offspring.

- Performmapping process to translated generated
offspring (genotype) into programs (phenotype) by

Update the population
using BNF syntax and offspring cedon values.

- Estimate fitness of offspring executing its
correspending programs (phenotvpe).

I

Satisfied

No

u Yes

Terminate and return the best
solution

Fig.6.The proposeGE-HH framework

B. Hybrid Grammatical Evolution Hyper-heuristic and
Adaptive Memory Mechanism

Traditionally, previous hyper-heuristic frameworks that
have been proposed in the literature operate on a single
solution [[6][[L8],[29]. Single solution based perturbative

hyper-heuristics start with an initial solution and iteratively
move from the current solution to another one by applying
an operator such asdpt. Although single solution based
methods have been widely used to solve several kinds of
problems, it is accepted that pure single solution based
methods are not well suited to fine tuning for large search
spaces and heavily constrained probldad,[45. As a
result, single solution based methods have been hybridized
with other techniques to improve their efficien¢45]
Generally, it is widely believed that a good search
methodology must have the abilitgf exploiting and
exploring different regions of the solution search space
rather than focusingn a particular region. That is, we must
address the problem of exploitation vs. diversification,
which is a key feature in designing efficient search
methodologie$44].

In order to enhance the efficiency of thHeE-HH
framework and to diversify the search process, we
hybridize it with an adaptive memory mechanism. This
method has been widely used with several meta-heuristic
algorithms such as tabu search, ant colonies, genetic
algorithms and scatter sear¢#6] The main idea is to
enhance the diversification by maintaining a population of
solutions. For example, the reference set in scatter search
which includes a collection of both high quality and
diverse solutions.

In this work, the adaptive memory mechanism
(following the approach iff4[7],[48]) contains a collection
of both high quality and diverse solutions, which are
updated as the algorithm progresses. The size of the
memory is fixed (equal to the number of acceptance
criteria, which is 8). Our adaptive memory works as
follows:

e Generate a set of diverse solutions. The set of solutions
can be generated randomly or by using a heuristic
method. In this work, the solutions are generated wsing
heuristic method (see SectionsV-B3 and V-C3).

e For each solution, associate a frequency matrix which
will be used to measure solution diversity. The
frequency matrix saves the frequency of assigning an
object (exam or customer) to the same location. For
example, in exam timetabling, the frequency matrix
stores how many times the exam has been assigned to
the same timeslot. Whilst, in the capacitated vehicle
routing problem, it stores how many times a customer
has been assigned to the same route. Fig.7 shows an
example ofa solution and its corresponding frequency
matrix. The frequency matrix is initialized to zero. We
can see five objects (represented by rows) and there are
five available locations (represented by columns). The
solution on the left of Fig.7 can be read as follows:
objectl is assigned to location 1, object 2 is assigned to
location 3, etc. The frequency matdr the right side of
the Fig.7 can be read as follows: object 1 has been
assigned to location 1 twice, to location 2 three times, to
location 3 once, to location 4 four times and to location

5 once; and so on for the other objects.
Location
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1 2 3 4 5 1 2 3 4 5
1[1JoJoJo]o 1[2]J3]1]4]1
w 2l0Jof1]Jo]o & 2[1]1]1]2]2
s 3[oJofoJol1 & 3[2]2]2]2]1
o 4(o0]ofoJ1]o0o © 4af2f1]3]1]1
©s[of[1]0]0]o0 521213
solution frequency matrix

Fig.7. Solution and it is corresponding frequency matri

e If any solution is improved by th&E-HH framework,
we update the frequency matrix.

e Calculate the quality and the diversity of the improved
solution. In this work, the quality represents the penalty
cost which calculates the number of soft constraint
violations (see Sections V-B and V-C). The diversity is
measured using entropy information theory (1), (2) as

follows [47],[48]:

Z:‘ili.logi
& =—1_m m ... (1)
—loge
=
=<1l . )
e
Where

- g is the frequency of allocating object i to locatjon
- mis the number of objects.

- &is the entropy for objedt

- ¢ is the entropy for one solution (0 < &<1).

e Add the new solution to the adaptive memory by
considering the solution quality and diversity.

Fig.8 shows the hybriGE-HH framework withan adaptive
memory mechanism. Algorithm 1 presents the pseudo-code
of GEHH.

High qualityand Update
Grammar |— ™ diverse solutions so?utian
BNF
selectone i

solution Fitness

randomly and ’ Function
Search mi q apply LST on it :
Engine |

N

S — = =

J

Fig.8.Hybrid grammatical hyper-heuristic framework aadptive
memory mechanism

The algorithm starts by generating a set of initial solutions
for the adaptive memory mechanism (see SectionsV-B3 and
V-C3) and defining the BNF grammar (see SeclidrA).

It then initializes the genetic algorithm parameters and
creates a population of solutions by assigning a random
value between 0 and 255 for each chromosome gene

(codons)[80].

For each solution (chromosome) in the population, the
corresponding program is generated by invoking the
mapping function. In order to ensure that there is no
duplication in the generated program (i.e. the program does
not have two consecutive operators) the program is checked
by the edit function. For example, if the generated program
is SA° NIN2++ N2+ N4, with consecutivet operators, the
edit function will remove one of the + operators and the
program will be SA: N1N2+N2+N4One solution from the
adaptive memory mechanism is then selediedvhich the
generated programs are applied. The adaptive memory is
then updated

Subsequently, the genetic algorithm is executedafor
pre-defined number of generations. At every generation,
offspring are generatl by applying selection, crossover and
mutation. The generated offspring (programs) are then
executed If the offspring is better than the worst
chromosome, it is added to the population and the adaptive
memory mechanism is updated

Algorithm 1: Pseudo-code of grammatical evolution hyper-heuristic
framework

Generate a set of initial solutions and initialize adaptive
memory, adaptivemory
Defined the BNFgrammar, BNRmmar

Initialization step

Set number of generations, populatignchromosomymsits Perossover
pmuataion
population— initializepopulation(populationsie, ChHroOmMOSOMymbitd
foreach sole populationdo

SOlinteger «—convert (chromosomuumbit)

Sol-program «map (BNFgrammai Sol-imeger)

edit(solprogram)

initiako «—selectsoltuion(adaptivememory)

SOl.coste—execute (50l;programinitialso)

update adaptiviemory
end
while not stopping condition () do

Generate initial population

parent— SelectParents(populationz)
parent— SelectParents(populationiz)

selection

child«—Crossover (parent, parent Perossove)
child«—Crossover (parent, parent Perossove)

crossover

child«— Mutation (childy, Pruataio)
chilcbme—Mutation (childz, Pmuataion

mutation

chiltim -integer<—convert (childym)
childy, -integer €—convert (Chlldzm)

Childlm—program‘_ map (Childlm -integes BNFgramma)
edit(Chilchm_prograr)
chiltbm -program<—map (Ch”dZm-imegei BNFgramma)
edit(Chilhm prograr)

mapping ‘ converting

initiake «—selectsoltuion(adaptiveemory
child iy -cost—execute (Childim_program iNitialsq)
chilthm .cost—execute (Childam_program iNitialse)

population «— populationUpdate(child,, childy)
update adaptivemory

updatin# executing

end
return the best solution
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V. EXPERIMENTAL RESULTS

In this section, we evaluate and compare the propGged
HH with the state of the art of hyper-heuristiand other
search methodologies

A GE-HH Parameters Setting

In order to find appropriate parameter values for KBE-

we utilize the Relevance Estimation and Value Calibration
method (REVAC)[#9]. REVAC is a steady state genetic
algorithm that uses entropy theory to determine the
parameter values for algorithn@®ur aim is not to find the
optimal parameter values for each domain, but to find
generic values that can be used for both domains. To use
the same parameter settings across instances of both
domains, we tuned GE-HH for each domain separately and
then used the average of them in value obtained by REVAC
for all tested instances. In order to have a reasonable trade-
off between solution quality and the computational time
needed to reach good quality solutions, the execution time
for each instance is fixed to 20 seconds. The number of
iterations performed by REVAC is fixed at 100 iterations
(see[B9] for more details). For each domain, the average
values over all tested instances for each parameter are
recorded. Then, the average values over all parameters are
set as the generic values for GE-HH. The parameter settings
of GE-HH that have been used for both domains are listed

in Table 2.
TABLE 2 GE-HH PARAMETERS

Parameters Value
Population Size 100
Number of Generations 20
One point Crossover Probability 0.8
Point Mutation Probability 0.01
Chromosome Length 60
Probability of Swapping 0.01
Probability of Duplication 0.01

Maximum number of Wraps 5
Selection Mechanism Roulette Wheel
Generational Model Steady State

B. Problem Domain I: Exam Timetabling Problems

Exam timetabling isa well known NP-hard combinatorial
optimization problem[§0] and is faced by all academic
institutions. The exam timetabling problem can be defined
as the process of allocating a set of exams into a limited
number of timeslots and rooms so as not to violate any hard
constraints and to minimize soft constraint violations as
much as possiblel]. In this work, we carried out
experiments on the most widely used un-capacitated Carter
benchmarks (Toronto b type | if54]) and also on the
recently introduced exam timetable dataset from the 2007
International Timetabling Competition, ITC 200175].

1) Test Set I: Carter Uncapacitated Datasets

The Carter datasets have been widely used in the scientific
literaturdfi4],[51. They are un-capacitated exam
timetabling problems where room capacities are ignored.
The constrairgare shown in Table 3.
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TABLE 3 CARTER HARD AND SOFT CONSTRAINTS

Symbols Description
Hard Constraints

Hlcarer  NoO student can sit more than one exam at the same tim
Soft Congtraints

Slecarer Conflicting exams (with common enrolled students) #ho

be spread as far apart as possible to allow suffic
revision time between exams for students.

The quality of a timetable is measured based on how well
the soft constraints have been satisfied. The proximity cost
is used to calculate the penalty cost (equatiddd) [

m-1

Soft. =3 3 (wxs,)/s, ic{or23ar )

k=1 I=k+1
Where:

o w=2*1is the cost of scheduling two conflicting examared g(which
have common enrolled students) with i timeslots apairt[tifti<5, i.e.
Wo=16, w=8, w=4, ws=2 and w=1; t and { as the timeslot of exam e
and e, respectively.

e 5 is the number of students taking both exagend ¢ if i=[t-t <5;

e mis the number of exams in the problem

e Sis the number of students in the problems

Table 4 gives the characteristics of the un-capacitated exam
timetabling benchmark problem (Toronto b type I[5d]}
which comprises 13 real-world derived instances.

TABLE 4 CARTER’S UN-CAPACITATED BENCHMARK EXAM TIMETABLING

DATASET

No. of No. of No. of Conflict

DEEEER timeslots exams Students Density
Carf-92-| 32 543 18419 0.14
Cars91-1 35 682 16925 0.13
Ear-f-83- 24 190 1125 0.27
Hec-s92-| 18 81 2823 0.42
Kfu-s-93 20 461 5349 0.06
Lse-f91 18 381 2726 0.06
Pur-s93- 43 2419 30032 0.03
Rye-s93 23 486 11483 0.07
Sta-f83- 13 139 611 0.14
Tre-s92 23 261 4360 0.18
Uta-s92-| 35 622 21267 0.13
Ute-s92 10 184 2750 0.08
Yor-f-83-| 21 181 941 0.29

Note: conflict density = number of conflicts / (nuentof exams)

2) Test Set II: ITC 2007 Datasets

The second dataset was introducéd the second
International Timetabling Competition, ITC 2007, aiming
to facilitate a better understanding of real world timetabling
problems and to reduce the gap between research and
practice [L5]. It is a capacitated problem and has several
hard and soft constraints (see Tables 5&6, respectively).

The objective function frorfilf] is used (see equation 4).
The ITC 2007 problem has 8 instances. Table 7shows the
main characteristics of these instances.

SOﬁchzomz 2 (WZR : + W2D SiD + WPS SSPS) + WNMD SZNMD
=S

+WFL SFL+WpSP+WRSR - (4)



Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, Octol#13

TABLE 5 ITC 2007 HARD CONSTRAINTS
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Symbols Description
Hlrco07  No student can sit more than one exam at the saree tim
H21co00z  There must be a sufficient number of seats to accomradte exams being scheduled in a given roo
H3rc2007  The length of exams assigned to each timeslot shatildalate the timeslot length.
H4 o007 Some sequences of exams have to be satisfied. e.g. Bxamst be scheduled after Exam_E.
H5rc2002  ROOmM related hard constraints must be respecte@xagn B must be scheduled in Room 3.
TABLE 6 ITC 2007 SOFT CONSTRAINTS
Symbols Maé?;rggltlscal Description
Slitc007 s Two exams in a row: Minimize the number of studehét have consecutive exams in a row.
2 . 20 Two exams in a day: Student should not be assignsitinwre than two exams in a day. Of course, thistcaims
TC2007 S only becomes important when there are more thanxameeriods in the same day.
S3 . s Exams spread: Conflicting exams should be spread apdat as possible to allow sufficient revision time betve
Tc200m = exams for students.
S4rco007 (S Mixed durations: Minimize exams that have differentadions but assigned into the same timeslot and room.
SBrea007 s Larger exams: Minimize the number of exams of laige that appear later in the exam timetable.
S6irca007 s° Period Penalty: Some periods have an associatediypeviaimize the number of exams assigned into theseger
STrc2007 st Room Penalty: Some rooms have an associated penattynik the number of exams allocated in penalized soo
TABLE 7 THE ITC 2007 BENCHMARK EXAM TIMETABLING DATASETS
Datasets Al A2 A3 A4 A5 A6 A7 A8 A9 A10 A1l A12 A13
Dataset1 7891 607 54 7 5 7 5 10 100 30 5 7833 5.05
Dataset2 12743 870 40 49 5 15 1 25 250 30 5 12484 1.17
Dataset3 16439 934 36 48 10 15 4 20 200 20 10 16365 2.62
Dataset4 5045 273 21 1 5 9 2 10 50 10 5 4421 15.0
Dataset5 9253 1018 42 3 15 40 5 0 250 30 10 8719 0.87
Dataset6 7909 242 16 8 5 20 20 25 25 30 15 7909 6.16
Dataset7 14676 1096 80 15 5 25 10 15 250 30 10 13795 1.93
Dataset8 7718 598 80 8 0 150 15 25 250 30 5 7718 4.55
Note:
Al: No. of students reported [d%]. A8: No mixed duration penalty%
A2: Number of exams. A9: Number of largest exams’'S
A3: Number of timeslots. A10: Number of last timeslots to avoid, S
Ad: Number of rooms. All: Front load penalty,"Ssoft constraints weigfiE]
A5: Two in a day penalty,3 Al2: Number of actual students in the datasets.
A6: Two in a row penalty, 8 Al3: Conflict density
AT Timeslots spread penalty;s

3) Problem Domain I: Initial Solutions

As mentioned in SectionV-A, GE-HH starts by
initializing the adaptive memory mechanism which contains
a population of solutions. In this work, we employ hybrid
graph coloring heuristics to generate an initial
population of feasible solutions for both the Carter and the
ITC 2007 instances. The three graph coloring heuristics we
utilize are:

e Least Saturation Degree First (SD): exams are ordered
dynamically, in an ascending order, by the number of
remaining timeslots.

e Largest Degree First (LD): exams are ordered,ain
decreasing order, by the number of conflicts they have
with all other exams.

e Largest Enrolment First (LE): exams are ordered by the
number of students enrolled, in decreasing order.

The solution construction method starts with an empty
timetable and applies the hybridized heuristics to select and
assign the unscheduled exams one by one until all exams
have been scheduledo select an exam, the hybridized
heuristic (SD+LD+LE) firstly sorts the unscheduled exams

in a non-decreasing order of the number of available
timeslots (SD). Those with equal SD evaluations are then
arranged in a non-increasing order of the number of
conflicts they have with other exams (LD) and those with
equal LD evaluations are then arranged in a non-increasing
order of the number of student enrolments (LE). The first
exam in the final order is assigned to the timetable. We
assign exams to a random timeslot witehas no conflict
with those that have already been scheduled (in case of ITC
2007, an exam is assigned to besafiboom), ensuring that

all hard constraints are satisfied. If some exams cannot be
assigned to any available timeslofe stop the process and
start again. Although there is no guarantee that a feasible
solution can be generated, for all the instances used in this
work, we were always able to obtain a feasible solution.

4) Problem Domain I: Neighborhood Structures

The neighborhood structures that we employed inGRke
HH framework for both Carter and ITC 2007, which are
commonly used in the literatufdd), are as follows:

Nbe1l: Select one exam at random and move it to any fleas

timeslot-room.
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Nbe2: Select two exams at random and swap their timeslots
feasible).

Nbe3: Select two timeslots at random and swap all theimsxa

Nbe4: Select three exams at random and exchanges thesltirs at
random (if feasible).

Nbe5: Move the exam causing the highest soft constraaiation to
any feasible timeslot.

Nbe6: Select two exams at random and move them to anc
random feasible timeslots.

Nbe7: Select one exam at random, select a timeslot at man
(distinct from the one that was assigned to the selestem)
and then apply the Kempe chain neighborhood operato

Nbes8: Select one exam at random, select a room at randetimétl
from the one that was assigned to the selected exanthamc
move the exam to the room (if feasible).

Nbe9: Select two exams at random and swap their rooms

feasible).

Note that neighborhoods Nbe8 and Nbe9 are applied to ITC
2007 datasets only because they consider roorhe
neighborhood solution is accepted if it does not violate any
hard constraints. Thus, the search space of GE-HH is
limited to feasible solutions only.

C. Problem Domain II: Capacitated Vehicle Routing
Problems

The capacitated vehicle routing problem (CVRPa isell-
known challenging combinatorial optimization problem
. The CVRP can be defined as the process of designing
a least cost set of routes to serve a set of custdB@rdri

this work, we test GE-HH on two sets of benchmark
capacitated vehicle routing problem datasets. These are the
14 instances introduced by Christ[and 20 large
scale instances introduced by Goldé|[ The CVRP can

be represeed as an undirected graph G, (&), where ¥

{vo, V1...V;} is a set of vertices which represents a set of
fixed locations (customers) ancEE(v;, v): v, eV, i<j}
represents the arc between locations (customers). E is
associated with non-negative costs or travel time defined by
matrix C= (g), where ¢ represents the travel distance
between customers and y. Vertex yrepresents the depot
which is associated with m vehicles of capacity. @, to

start their routes R.R,. The remaining vertices, v.. v,
represent the set of customers and each customer
requestsq..q, goods and serving tim&. The aim is to find

a set of tours thado not violate any hard constraints and
minimize the distance. The hard constraints that must be
respected are:

e Each vehicle starts and ends at the depot

e The total demand of each route does not exceed the
vehicle capacity

e Each customer is visited exactly once by exactly one
vehicle

e The duration of each route does not exceed a global
upper bound.

The cost of each route is calculated using%3):[

C(RY=>c,+>5

and the cost for one solution is calculated using (6):
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£ :lec(R) ........
The two sets of benchmark problems that we have
considered in this work have similar constraints and
objective function. However, the complexity, instance sizes
and customer distributions are different from one set to
another.

1) Test Set I: Christofides Datasets

The first set comprises of 14 instances and was introduced
by Christofides [I6]. The main characteristics of the
problem are summarized in Table 8. The instance size
varies from 51 to 200 custonseincluding the depot. Each
instance haa capacity constraint. Instances 6-10, 13 and 14
also havea maximum route length restriction and non-zero
service times. The problem instances can be divided into
two types: in instances 10, the customers are randomly
located, whilst, in instances 11-14 the customers are in

clusters.
TABLE 8 CHRISTOFIDES INSTANCES

. Max. tour  Service No. of
Datasets Customers Capacity length time vehicles
1 51 160 0 0 5
2 76 140 0 0 10
3 101 200 0 0 8
4 151 200 0 0 12
5 200 200 0 0 17
6 51 160 200 10 6
7 76 140 160 10 11
8 101 200 230 10 9
9 151 200 200 10 14
10 200 200 200 10 18
11 121 200 0 0 7
12 101 200 0 0 10
13 121 200 720 50 11
14 101 200 1040 90 11

2) Test Set II: Golden Datasets

The second CVRP dataset involves 20 large scale instances
presented by Goldefi]] (see Table 9). The instances have
between 200 and 483 customers, including the depot.
Instances 1-8 have route length restrictions.

TABLE 9 GOLDEN INSTANCES

. Max. tour Service No. of
Datasets Customers Capacity length e vehicles

1 240 550 650 0 10
2 320 700 900 0 10
3 400 900 1200 0 10
4 480 1000 1600 0 12
5 200 900 1800 0 5

6 280 900 1500 0 8

7 360 900 1300 0 9

8 440 900 1200 0 11
9 255 1000 0 0 14
10 323 1000 0 0 16
11 399 1000 0 0 18
12 483 1000 0 0 19
13 252 1000 0 0 27
14 320 1000 0 0 30
15 396 1000 0 0 34
16 480 1000 0 0 38
17 240 200 0 0 22
18 300 200 0 0 28
19 360 200 0 0 33
20 420 200 0 0 41
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3) Problem Domain Il: Initial Solutions

For both the Christofides and the Golden instances, the
initial population of feasible solutiongs constructed
utilizing the savings algorithrfGH].

4) Problem Domain II: Neighborhoods Structures

The neighborhood structures that we employ in GE-HH for
both the Christofides and the Golden instances are the most
common ones used to solve the capacitated vehicle routing
problems in the literature. They are as follows:

Nbvl:  Select one customer at random and move it to argjtie route.

Nbv2:  Select two customers at random and swap their routes

Nbv3:  Select one route at random and reverse a part afrébiween
two selected customers.

Nbv4:  Select three customers at random and exchangesrthees at
random.

Nbv5:  Select one route at random and perform the 2-aptguiure.

Nbvé:  Perform the 2-opt procedure on all routes.

Nbv7:  Select two distinct routes at random and swap a @ouf the
first route with the first portion and second route.

Nbv8:  Select two distinct routes at random and from eacierselect
one customer. Swap the adjacent customer of the stlectefor
both routes.

Nbv9:  Select two distinct routes at random and swap tte fiortion
with the last portion.

Nbvl0  Select one customer at random and move it to angtbsition in

the same route.

The neighborhood solution is accepted if it does not break
any hard constraints. Thus, the search space of GE-HH is
limited to feasible solutions only.

VI.

To assess the benefit of incorporating an adaptive memory
mechanism in GE-HH, for each domain, we have carried
out two sets of experiments. The first one compares the
performance of the grammatical evolution hyper-heuristic
with an adaptive memory (GHH) and the grammatical
evolution hyper-heuristic without an adaptive memory (GE-
HH*) using the same parameter values and computational
resources. The second test compares and analyses the
performance of GE-HH against the state of the art of hyper-
heuristics and bespoke methods. For both experimental
tests, we report the bestverage, standard deviation and
average time over 51 independent runs with different
random seeds. By executing 51 runs, instead of 50, we can
easily calculate the median value without the need for
interpolation. The aim of executing the proposed hyper-
heuristic framework 51 runs is to get more information and
to have a good indication regarding the algorithm
consisteny and generality, as it’s highly recommended in

the literature to have more than 30 runs in statistical
analysis on algorithm performanc§ | [3]. The results
represent the cost of soft constraint violations. In addition,
we also report, for each instance, the percentage deviation

COMPUTATIONAL RESULTS ANDCOMPARISON

from the best known value found in the literature,
calculated as follow§r):
A(o/o): beSE;E—HH —best* Oy wevvrreenn (7)

best*
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Where besfenn is the best result obtained over 51
independent runs by GE-HH and best* represents the best
known value found in the literature.

We evaluate the performance of GE-HH by considering
the following three criteria:

Generality: We define generality as the ability of GE-
HH to work well, not only across different instances of
the same problem, but also across two different problem
domains.

e Consistency: This is the ability of GE-HH to produce
stable results when executed several times for every
instance. Typically, consistency is one of the most
important criteria in evaluating any algorithm. This is
because many search algorithms have a stochastic
component, which leads to different solutions over
multiple runs even if the initial solution is the same. We
measure the consistency of GE-HH based on the
average and the standard deviation over 51 independent
runs.

o Efficiency: This is the ability of GE-HH to produce

good results that are close or better than the best known

value in the literature. We measure the efficiency of GE-

HH by reporting, for each instance, the best and the

percentage deviation, seg%) in (7), from the best

known results in the literature.

For all tested instances, except the ITC 2007 problem
instances, we compare tB&E-HH results with the state of
the art in terms of solution quality rather than
computational time. This is because the different computer
resources researchers use which make the comparison
difficult, if not impossible[89],[55]. Therefore, we set the
number of generations as the termination criteria. As for the
ITC 2007 datasets, the organizer provided benchmark
software to determine the allowed execution t{hg.[We
have used this software to determine the execution time
using our computer resources (i.e. 10 minutes). We have
given extra time to GE-HH, due to the use of the adaptive
memory (i.e. 10.83 minutes). As a result, the execution time
of our method is within the range of those published in the
literature.

A Problems Domain I: Computational Results on Exam
Timetabling Problems

1) Test Set I: Carter Uncapacitated Datasets

Table 10 lists, for each instance, the best, average, standard
deviation and average time obtained by GE-HH and GE-
HH*.

From Table 10, onecan clearly see that GE-HH
outperforms GE-HH* across all instances. Furthermore,
both the best and average results obtained by GE-HH are
better than GE-HH* on all instances. We can also see that
in GE-HH, on twelve of the thirteen instances, the standard
deviation is lower than GE-HH*. However, the
computational time is different where GE-HH* is lower
than GE-HH. This is mainly due to the use of population of
solutions and diversity updating mechanism in &eHH
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framework. The results reveal that the use of the adaptive
memory mechanism has an effect on the ability of the GE-
HH in producing good quality and consistent results over
all instances.

We compare the performance of GE-HH against hyper-
heuristics and other bespoke methods (see Table 11).

Table 12 shows the comparison of the best and average
results of GE-HH and other hyper-heuristic methods. We
also report, for each instance, the percentage deviation (A
(%)) from the best result obtained by other hyper-heuristics
and instance ranking. As can be seen from Table 12, GE-
HH finds better solutions for 7 out of 13 instances
compared to other hyper-heuristic methods and obtained the
second best results for the other 5 instances (except Rye-s-
93 which obtained third best results).

Table 13 presents, for all instances, the best, average,
percentage deviation (A(%)) and instance ranking by GE-

HH along with a comparison with respect to the best known
results (shown in bold) in the literature obtained by bespoke
methods. It can be seen that, even though GE-HH does not
obtain the best solutions for all instances, over all, it obtains
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competitive results especially when considering the
percentage deviatiom(%)) from the best known value
found in the literature. If we consider an individual
comparison, GE-HH is able to obtain better solutions on
instances 8, 12, 11, 6, 7 and 2 compareiidg Mcg, Mc,,
Mcio, Mcy;, andMcy,, respectively. Furthermore, onc,g
reported results for Pur-s-93 and Rye-s-93 instarides,
andMc,jreported result for Rye-s-93 instance (we suspect,
due to the complexity and inconsistencies in these
instances).

Results in Tables 12 and 13 demonstrate that, across all
instances, GE-HH outperforms other hyper-heuristic
methodologies and obtained competitive results compared
to other bespoke methods. Except instance Ute-s-92e@ank
6), the instance ranking varies between 2 to 4. Also, the
percentage deviation indicates that GE-HH results are very
close to the best known results. This demonstrates that GE-
HH is able to generalize well over a set of problem
instances rather than only producing good results for one or
more of the problem instances.

TABLE 10RESULTS OF GE-HH COMPARED TO GE-HH*

GE-HH GE-HH*
I nstances Best Average  Std Time Best Average  Std Time
Carf-92-| 4.00 4.44 0.36 200.2 4.12 4.73 0.48 170.18
Cars-91- 4.62 4.87 017 441.32 4.62 5.15 0.25 410.23
Ear-f83- 34.71 36.50 0.71 52.03 35.92 36.64 0.81 38.56
Hec-s92-| 10.68 11.57 0.54 65.41 10.96 11.54 0.52 49.41
Kfu-s-93 13.00 13.58 036 92.22 13.06 13.58 0.36 76.17
Lse-f91 10.11 11.35 0.91 58.11 10.21 11.36 0.90 45.37
Pur-s93-1 4.80 6.29 110 610.07 6.31 7.41 1.68 580.16
Rye-s93 10.79 11.09 069 546.66 | 11.00 12.10 0.85 495.11
Sta-f83- 158.02 158.47 0.43 32.24 158.21 159.52 0.76 25.04
Tre-s92 7.90 8.46 041 93.17 7.96 8.49 0.83 81.28
Uta-s92- 312 3.70 032 189.24 | 3.8 3.72 041  168.19
Ute-s92 26.00 27.1 0.69 48.11 26.02 27.15 0.78 40.30
Yor-f-83-I 36.20 36.91 047 181.25| 36.20 36.93 0.56 95.08

Note: GE-HH: GE-HH employing adaptive memory medsam GE-HH*: without using adaptive
memory. The time represents average time in minutess.rBsults in the literature are highlighted in bo
The bold italic indicates that both methods prodheesame result.

TABLE 11 ACRONYMS OF COMPARED METHODS

# Symbol References
1 Mc, 5
2 Mc, E >
3 Mcs 23] e
4 M, 58] 2%
5 Mcs [42] "
6 Mce 59
7 Mc-, 60
8 Mcg E

3w
9 Mcs [62] 2%
10 Mcyo E g-g
11 Mc1, [64] Y
12 MC12 6

TABLE 12 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC APPROACHES

GE-HH Hyper-heuristic

I nstances Best Average A (%) A* (%) Rank Mcy Mc, Mcs Mc, Mcs Mcs
Carf-92-| 4.00 4.44 * 8.29 1 452 4.53 4.16 4.28 41 4.26
Cars91-| 4.62 4.87 * * 1 5.2 5.36 5.16 497 4.9 5.09
Ear-f83 34.71 36.50 4.54 9.93 2 37.02 37.92 35.86 36.86 332 35.48
Hec-s92-| 10.68 11.57 3.68 12.3 2 11.78 12.25 11.94 11.85 10.3 11.46
Kfu-s-93 13.00 13.58 * 2.87 1 15.81 15.2 14.79 14.62 13.2 14.68
Lse-f91 10.11 11.35 * 9.13 1 12.09 11.33 11.15 11.14 10.4 11.2
Pur-s93-1 4.80 6.29 9.83 43.9 2 - - - 4.37 - -
Rye-s93 10.79 11.09 11.81 14.9 3 10.35 - - 9.65 - -
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Sta-f83| 158.02  158.47 0.71 1.00 2 160.42 158.19 159.00 158.33 1569 158.28

Tre-s92 7.90 8.46 * 1.92 1 8.67 8.92 8.6 8.48 8.3 8.51

Uta-s92-| 312 3.70 * 12.12 1 357 3.88 3.59 3.4 33 3.15

Ute-s92 26.00 27.1 4.41 8.83 2 2778 2801 283 2888 249 279

Yorf-831 3620  36.91 * 1.68 1 40.66  41.37  41.81 4074  36.3  40.49

TP(13) 32395  334.33 - - - 337.57 - -

TP(12) 319.15  328.04 337.87 - - 333.2 - -

TP(11) 308.36 316.95 327.52 326.96 324.36 32355 3058 309.3

Note: TP(13): total penalty of 13 instances. TP (T®fal penalty of 12 datasets (excluding P183d). TP(11): Total penalty of 11
datasets (excluding Pur98-1 and Rye-893). “*” means GE-HH result is better than other methods. - “indicates no feasible

solution has been found. Best results are highligtémbidA*(%): the percentage deviation of the average valueneihard to the
best known results.

TABLE 13RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

| GE-HH Bespoke methods

Instances Best Average A (%)  A* (%) Rank Mc; Mcs Mco Mcio Mcyy Mci,
Carf-92-1 4.00 4.44 6.95 18.71 3 43 4.10 4.1 6.0 3.93 374
Cars91-| 4.62 4.87 452  10.18 3 5.1 4.65 4.8 6.6 4.50 4.42
Earf831  34.71 36.50 18.46  24.57 4 35.1 37.05 36.0 29.3 33.7 32.76
Hec-s92-1  10.68 1157 16.08 25.76 3 10.6 11.54 10.8 9.2 10.83  10.15
Kfu-s-93 13.00 13.58 0.30 4.78 2 13.5 13.90 15.2 13.8 13.82  12.96
Lse-f91 10.11 11.35 531  18.22 3 10.5 10.82 11.9 96 1035  9.83
Pur-s93- 4.80 6.29 29.72  70.00 2 - - - 37 - -
Rye-s93 10.79 11.09 5867 63.08 4 8.4 - - 6.8 8.53 -
Sta-f83-|  158.02 15847  0.63 0.91 3 157.3 168.73 1590 1582 1583 157.03
Tre-s92 7.90 8.46 1.93 9.16 2 8.4 8.35 8.5 9.4 7.92 7.75
Uta-s92| 3.12 3.70 1.96 2091 2 35 3.20 3.6 35 3.14 3.06
Ute-s92 26.00 27.1 6.55  11.06 6 25.1 25.83 26.0 24.4 25.39  24.82
Yor-f-831  36.20 36.91 3.90 5.94 2 37.4 37.28 36.2 36.2 36.35 3484
TP(13) 323.95 334.33 - - - 316.7 - -
TP(12) 319.15 328.04 319.2 - - 3130 316.76 -
TP(11) 308.36 316.95 310.8 32545 3161 306.2 308.23 301.36

Note: TP(13): total penalty of 13 instances. TP (T2l penalty of

12 instances( excluding Pu#23s). TP(11): Total penalty of

11 instances(excluding Pur98-1 and Rye-893). “- “means no feasible solution has been found. Best results in the literature are
highlighted in boldA*(%): the percentage deviation of the average valuenagard to the best known results.

2) Test Set Il: ITC 2007 Datasets

The first set of experiments presents a comparison between
GE-HH and GE-HH* as well as the results of GE-HH
without the extra computational time (GE-HH**), i.e. the
computational time is fixed the same as GE-HH*. The best,
average, standard deviation of the results and the average
time are reported in Table 14. It can be seen that, across all
instances, GE-HH outperforms GE-HH* and GE-HH** (in
most cases), not only on solution quality, but also on the
average and the standard deviation. Comparing the results
of GE-HH* with GE-HH**, the results demonstrate that
GE-HH** outperforms GE-HH* on five out of eight
instances. The average and standard deviation of GE-HH**
are better than GE-HH* for all tested instances. The results
demonstrate the importance of incorporating the adaptive
memory mechanism within GE-HH as well as implying that
GE-HH is more general and consistent.

We now compare the performance of GE-HH with the best
available results in the literature which are divided into two
groups (see Table 15): ITC 2007 winners (Table dr®)
Post-ITC 2007 (Table 17 hyper-heuristic and bespoke
methods). In addition, we also included the results of GE-
HH** in the comparison to assess its ability in producing
good quality solutions compared to ITC 2007 winners as
well as post ITC 2007 methods. It is clear from Tables 16
and 17 thaGE-HH is the overall best. The presented results
demonstrate that GE-HH not only generalizes well over a
set of problem instances, but also produces much higher
quality solutions. One can also see that GE-HH**
outperformed the ITC 2007 winners on 7 instances and post
ITC 2007 methods on 4 out of 8 tested instances (see
Tables 16 and 17)

TABLE 14 RESULTS OF GE-HH COMPARED TO GE-HH* AND GE-HH**

GE-HH GE-HH* GE-HH**
Instances Best Average Std Time Best Average Std Time Best Average Std Time
Dataset 1 4362 4394.10 29.18 10.83 4370 4439.31 71.71 10 4370 4401.12 44.24 10
Dataset 2 380 399.80 12.56 10.83 395 413.17 22.33 10 380 405.12 13.94 10
Dataset 3 8991 9072.35 112.06 10.83 8998 9140.67 206.48 10 8995 9120.67 180.15 10
Dataset 4 15094 15483.42 402.25 10.83 | 15394 16433.71 996.42 10 15184 15824.87 564.74 10
Dataset 5 2912 3010.15 28.298 10.83 2990 3042.06 57.53 10 2993 3018.27 43.62 10
Dataset 6 25735 25792.35 56.247 10.83 | 25818 25930.17 294.57 10 25786 25860.24 94.28 10
Dataset 7 4025 4062.85 4574 10.83 4037 4083.92 54.68 10 4041  4068.15  44.93 10
Dataset 8 7452 7500.48 64.99 10.83 7465 7525.77 78.01 10 7472 7581.10 63.85 10

Note: GE-HH: with the adaptive memory mechanism. k= without adaptive memory. GE-HH**; with adapéwmemory but the computational time fixe
same as GE-HH* (10 minutes). Times represent averagéntimautes. Best results are highlighted in bold.

TABLE 15 ACRONYMS OF COMPARED METHODS
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# Symbol References

1 Mitc; 66 _

2 Mitc, 6 3

3 Mitcs 68| SN
4 Mitc. 69 38

5 Mitcs 70 ~

6 Mitce 71 <

7 Mitc, [72] L3
8 Mitcs - 84
9 Mitcs Post- Miller g ™ d
10 Mitc1o '

Note: HH: hyper-heuristic. NON-HH: bespoke methods

TABLE 16 RESULTS OF GH4H AND GE-HH** ON THE ITC 2007 EXAM TIMETABLING DATASETS
COMPARED TO ITC 2007 WINNERS

GE-HH GE-HH** I TC 2007 Winners
I nstances Best Average A (%) A* (%) Rank Best Mitcy Mitc, Mitcs Mitcy Mitcs
Dataset 1 4362 4394.10 * 0.55 1 4370 4370 5905 8006 6670 12035
Dataset 2 380 399.80 * * 1 380 400 1008 3470 623 3074
Dataset 3 8991 9072.35 * * 1 8995 10049 13862 18622 - 15917
Dataset 4 15094 15483.42 * * 1 15184 18141 18674 22559 - 23582
Dataset 5 2912 3010.15 * 0.74 1 2993 2988 4139 4714 3847 6860
Dataset 6 25735 25792.35 * * 1 25786 26950 27640 29155 27815 32250
Dataset 7 4025 4062.85 * * 1 4041 4213 6683 10473 5420 17666
Dataset 8 7452 7500.48 * * 1 7472 7861 10521 14317 = 16184

“*” means GE-HH result is better than other methods.

“-“indicates no feasible solution has been found. Best results are highlighted in bolc

A*(%): the percentage deviation of the average valuengijard to the best known results.

TABLE 17 RESULTS OF GE-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS
COMPARED TO POST-ITC 2007 APPROACHES

Post I TC 2007
E=A sl Hyper-heuristic Bespoke methods
I nstances Best Average A (%) A* (%) Rank Bets Mitcs Mitc; Mitcg Mitco Mitcio
Dataset 1| 4362 4394.10 * * 1 4370 6235 8559 4775 4370 4633
Dataset 2| 380 399.80 * 3.84 1 380 2974 830 385 385 405
Dataset 3| 8991 9072.35 * 0.84 1 8995 15832 11576 8996 9378 9064
Dataset 4| 15094 15483.42 * 0.75 1 15184 35106 21901 | 16204 15368 15663
Dataset 5| 2912 3010.15 * 0.74 1 2993 4873 3969 2929 2988 3042
Dataset 6| 25735 25792.35 * 0.20 1 25786 31756 28340 | 25740 26365 25880
Dataset 7| 4025 4062.85 * * 1 4041 11562 8167 4087 4138 4037
Dataset 8| 7452 7500.48 * * 1 7472 20994 12658 7777 7516 7461

“*” means GE-HH result is better than other methods. Best resulthightighted in boldA*(%): the percentage deviation of the averag

value with regard to the best known results.

B. Problems Domain Il: Computational Resuits
Capacitated Vehicle Routing Problems

1) Test Set I: Christofides Datasets
The experimental results of GE-HH and GE-HH* are
reported in Table 18, where for 4 out of 14 instances, GE-
HH achieved better results than GE-HH* (tien7
instances). The average results obtained by GE-HH on all
instances are better than GE-HH* and the standard
deviation is relatively small (varies between 0.00 and 0.93).
Even though GE-HH did not outperform GE-HH* across all
instances, however, the standard deviation revealGihat
HH generalized well overall instances. Overall, the result
implies that hybridizing the adaptive memory mechanism
with GE-HH has made a significant improvement.

We compare the experimental results of GE-HH with the
best available results in the literatire Table 19. D the
best of our knowledge, only two hyper-heuristics have been
tested on Christofides instances (first and second methods
in Table 19) and botheport the percentage deviation only
Due to the large number of bespoke methods that are
available in the literature, we have only considered those

that have produced the best known results and some of
recent published methods. The considered methods are
classified into single based and population based solution
methods (see Table 19). Table 20 shows the comparison of
GE-HH against hyper-heuristic methods in term of
percentage deviation from the best known results. We can
see that, for 9 instances GE-HH masihe best known
results in the literature and for 4 instances, GE-HH
produced a better quality (ranked first) when compared to
other hyper-heuristics. The computational results of GE-HH
compared to other bespoke methods are presented in Table
21, where for 9 out of 12 instances GE-HH has obtained the
best known results. For the remaining instances, the quality
of the solutions with regard to percentage deviation is
between 1.9% and 0.11% and instance ranking varies
between 2 and 4. According to this result, GE-HH is
competitive with the presented bespoke methods.
Considering the generality, it is obvious that GE-HH is able
to produce good results across all instances and the
percentage deviation is relatively small.
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TABLE 18 RESULTS OF GE-HH COMPARED TO GE-HH*

GE-HH GE-HH*

I nstances Best Average Std Time Best Average Std Time
1 524.61 524.61 0.00 10.12 524.61 524.61 0.00 8.20
2 835.26 835.86 0.80 21.02 835.26 836.14 127 16.12
3 826.13 827.09 0.62 20.33 826.13 827.71 148 15.06
4 1029.65 1034.13 0.92 30.43 1032.51 1034.71 137 2443
5 1308.54 1316.89 0.87 19.09 1310.62 131751 451 16.08
6 555.43 555.43 0.00 9.43 555.43 555.79 0.57 7.43
7 909.67 910.17 091 11.18 909.67 910.10 1.10 8.70
8 865.94 866.10 0.35 13.44 865.94 866.19 041 10.06
9 1164.98 1170.96 0.27 19.67 1164.35 1171.73 329 16.11
10 1403.38 1412.49 0.96 21.83 1405.94 1414.25 3.69 18.71
11 1042.12 1054.84 0.93 12.65 1042.11 1091.17 6.51 7.95
12 819.55 819.55 0.00 9.95 819.55 820.21 1.96 6.34
13 1543.05 1551.59 0.18 10.07 1543.83 1554.03 2.28 7.83
14 866.36 866.36 0.00 12.62 866.36 866.39 0.11 8.16

Note: GEHH: with the adaptive memory mechanism. GE-HH*: withadaptive memory. Time: represents
average time in minutes. Best results are highligimtéxbld.

TABLE 19 ACRONYMS OF COMPARED METHODS

# Symbol References

1 Cvrpil T

2 Cvrpi2

3 Cvrp3 or

4 Cvrpi4 ow

5 Cvrpi5 E zZ
6 Cwrpi6 S
7 Cvrp,7 81 g
8 Cvrp:8 8 =
9 Cvrp,9

Note: HH: hyper-heuristic methods. NON-HH: bespokehmés. LS: local
search methods. POP: population based methods

TABLE 20 RESULTS OF GE-HH COMPARED TO HYPER-HEURISTIC METHODS

GE-HH Hyper-heurigtics
I nstances Best Average  A(%) A* (%) Rank | Cwvrpil  Cwrps2 BK
1 524.61 524.61 0.00 0 * 0.00 0.00 524.61
2 835.26 835.86 0.00 0.07 * 0.05 0.62 835.26
3 826.13 827.09 0.00 0.11 * 0.21 0.42 826.14
4 1029.65 1034.13 0.11 0.55 1 0.52 2.50 1028.42
5 1308.54 1316.89 1.33 1.98 1 2.05 5.07 1291.29
6 555.43 555.43 0.00 0 * 0.00 - 555.43
7 909.67 910.17 0.00 0.05 * 0.09 - 909.68
8 865.94 866.10 0.00 0.01 * 0.00 - 865.94
9 1164.98 1170.96 0.20 0.72 1 0.70 - 1162.55
10 1403.38 141249 053 1.19 1 1.24 - 1395.85
11 1042.11 1054.84 0.00 1.22 * 0.88 0.19 1042.11
12 819.55 819.55 0.00 0 * 0.00 0.00 819.56
13 1543.05 155159 1.90 2.47 2 1.00 - 1514.14
14 866.36 866.36 0.00 0 * 0.00 - 866.37

Note: ‘*’ indicates that the obtained result is the same as the best known result. BK: best known
results in the literature:- “ indicates no feasible solution has been found. Best results are highlightec
in bold.A*(%): the percentage deviation of the average valueneiard to the best known results.

TABLE 21 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS

GE-HH Bespoke methods
Single solutions based Population based
Instances Best Average  A(%)  Rank Cvrp:3 Cvrp4 Cvrp:5 Cvrp:6 Cvrp,7 Cvrp:8 Cvrp,9

1 524.61 524.61 0.00 * 524.61 524.61 524.61 524.61 524.61 524.61 524.71
2 835.26 835.86  0.00 * 835.26 835.77 835.26 838.60 840.47 835.26 849.77
3 826.13 827.09 0.00 * 826.14 829.45 826.14 828.56 826.14 826.14 844.72
4 1029.65 1034.13 0.11 2 1028.42 1036.16  1028.42 1033.21 1032.19 | 1028.42 1059.03
5 1308.54 1316.89 1.33 4 1298.79 1322.65 129145 1318.25 1309.72 | 1294.21 1302.33
6 555.43 555.43 0.00 * 555.43 555.43 555.43 555.43 - 555.43 555.43
7 909.67 910.17  0.00 * 909.68 913.23 909.68 920.72 - 909.68 909.68
8 865.94 866.10  0.00 * 865.94 865.94 865.94 869.48 - 865.94 866.32
9 1164.98 1170.96 0.20 3 116255 1177.76 116255  1173.12 - 1163.41 1181.60
10 1403.38 141249 0.53 4 1397.94 141851 1395.85 1435.74 - 1397.51 1417.88
11 104211  1054.84 0.00 * 104211  1073.47 104211 1042.87 1042.11 | 104211 104211
12 819.55 819.55 0.00 * 819.56 819.56 819.56 919.56 819.56 819.56 847.56
13 1543.05 1551.59 1.90 2 1541.14 1573.81 1541.14 1545.51 - 154457 1542.86

17
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14 | 866.36 866.36 0.00 * | 866.37 866.37 866.37 866.37 - | 866.37 866.37
Note: “*’ indicates that the obtained result is the same as the beshkmesult. “- “ indicates no feasible solution has been found. Best resu
are highlighted in bold.

; gives the comparison results. From Table 24, one can find
2) TestSetl F—:-olden Datasets that, GE-HH reached the best known results for 4 out of 20
The computational results of GE-HH and GE-HH* are  jnstances. For the other instances, the quality of solution
tabulated in Table 22. The presented results clearly show (percentage deviation) is between 0.17% and 0.68% and
that GE-HH OutperformEd GE-HH* across all instances. instance ranking varies between 2 and 5. Coa'[pm’ the
Furthermore, the average and standard deviation of GE-HH  hyper-heuristic method (first method in Table 24), GE-HH
is much better than GE-HH*, again indicating that the s able to obtain better solutions on 14 instans&aen
adaptive memory mechanism has a big impact on the comparing with bespoke methods, for 4 instances GE-HH
performance and generality. reached the best known results. &B- produces

In Order to assess the performance of GE'HH, the I’esults Competitive resuits for the remaining 16 instances
of GE-HH are compared with the best available results in  compared to other bespoke methods and very close to the
the literature. Again, du¢o the uncountable number of best known value (percentage deviation). It should be noted
methods that have been tested on Golden instances, only that bespoke methods are specifically designed to produce

those produced the best known results and few recent the pest results for one or more instances, whilst, one can
methods are considered as shown in Table 23. To the best see that GE-HH is able to obtain a much higher level of

Of our kn0W|edge, Only one hypel’-heuristic (f|rSt method in generaiity across all instances.
Table 23) has been tested on Golden instances. Table 24

TABLE 22 RESULTS OF GE-HH COMPARED TGE-HH*

GE-HH GE-HH*
I nstances Best Average Std Time Best Average Std Time
1 5626.81 5631.56 092 15.04 5703.21 5697.56 1.81 10.27

8446.19 8457.16 124 2213 | 8484.16 8457.16 1.67 18.09
3 11081.60 1112040 1.07 32.06 | 11138.44 11120.40 1.18 2731
4 13658.84 1367364 130 37.31 | 13708.26 13673.64 1.46 32.19
5 6460.98 6494.86 084 17.24 | 6468.83 649486 153 14.27
6 8462.10 8488.93 1.03 19.11 | 8485.30 8488.93 1.16 16.42
7 10202.24 10280.32 110 31.08 | 10262.43 10280.32 1.20 28.40
8 11690.82 1179580 1.03 41.64 | 1178450 1179580 1.11 36.08
9

583.39 596.19 075 1852 589.92 596.19 126 13.92
10 740.91 769.98 102 22.18 758.22 789.98 113 18.13
11 919.80 986.60 090 29.37 949.38 986.60 131 25.08
12 1111.43 1126.64 1.02 40.19 1155.76 1186.64 1.10 36.10
13 857.19 868.73 0.86 30.08 876.64 898.73 121 26.06
14 1083.59 1108.12 096 24.40 | 1097.61 1108.12 142 19.20
15 1350.17 1390.16 0.84 35.08 1376.42 1390.16 1.38 29.06
16 1631.91 1682.98 093 42.15 1640.19 1682.98 1.29 37.12
17 707.76 718.56 0.60 18.07 714.52 720.56 1.01 14.10
18 1003.43 1017.13 108 19.11 1017.24 1057.13 115 16.02
19 1368.12 1390.62 130 26.30 | 137411 1390.62 146 21.14
20 1820.09 1855.16 0.77  32.08 1830.48 1855.16 1.09  28.06

Note: GE-HH: with the adaptive memory mechani&®-HH*: without adaptive memory. Time
represents average time in minutes. Best results areghiggdd in bold.

TABLE 23 ACRONYMS OF COMPAREDMETHODS

# Symbol References

1 Cvrp1 8

2 Cvrp2 8

3 Cvrp:3 8

4 Cvrp4 1

5 Cvrp5 8

6 Cvrp:6 81]

7 Cvrp7 8

TABLE 24 RESULTS OF GE-HH COMPARED TO BESPOKE METHODS
GE-HH HH Bespoke methods
| nstances Best Average A(%)  A*(%) Rank Cvrpyl Cvrpyl Cvrp;3 Cvrp4 Cvrp,5 Cvrp,6 Cvrpy7

5626.81 5631.56  0.00 0.08 * 5650.91 5627.54 5626.81 5759.61 5670.38  5638.42 5643.27
8446.19 8457.16  0.17 0.30 2 8469.32 8447.92 8431.66 8501.67 8459.73  8457.04 8455.12

11081.60 11120.40 0.43 0.76
13658.84 13673.64 048 0.59
6460.98 6494.86 0.00 0.52
8462.10 8488.93 0.68 1.00
10202.24 10280.32 0.44 121
11690.82 11795.80 0.23 1.13

11047.01 | 11036.22 11036.22  11364.69 11101.12 11098.93 11083.49
13635.31 | 13624.52 13592.88  14136.32 13698.17 13816.35 13671.18
6466.68 6460.98 6460.98 6512.27 6460.98 6460.98 6460.98

8416.13 8412.88 8404.26 8553.19 8470.64 8430.66 8461.18
10181.75| 10195.56 10156.58  10422.65 10215.14 10209.64 10198.25
11713.62 | 11663.55 11691.06 11986.73 11750.38 11785.11 11695.24
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9 583.39 596.19 0.51 271 2 585.14
10 740.91 769.98 0.32 4.26 2 748.89
11 919.80 986.60 0.55 7.85 3 922.70
12 1111.43 1126.64 0.42 1.79 4 1119.06
13 857.19 868.73 0.00 1.34 * 864.68
14 1083.59 1108.12 0.28 2.55 3 1095.40
15 1350.17 1390.16 0.56 3.54 4 1359.94
16 1631.91 1682.98 0.68 3.83 4 1639.11
17 707.76 718.56 0.00 1.52 * 708.90
18 1003.43 1017.13 0.83 221 5 1002.42
19 1368.12 1390.62 0.15 1.80 4 1374.24
20 1820.09 1855.16  0.003 1.93 2 1830.80

19
583.39 580.42 586.68 586.87 585.29 583.39
741.56 738.49 748.89 746.56 745.25 743.19
918.45 914.72 924.70 925.52 924.74 922.17
1107.19 1106.76 1125.71 1114.31 1123.29 1111.28
859.11 857.19 867.29 865.19 861.94 860.17
1081.31 1080.55 1098.86 1089.21 1097.49 1085.24
1345.23 1342.53 1356.65 1355.28 1356.34 1346.18
1622.69 1620.85 1642.90 1632.21 1643.74 1625.89
707.79 707.76 712.26 712.18 709.84 710.87
998.73 995.13 1017.91 1006.31 1005.97 1001.17
1366.86 1365.97 1384.93 1373.24 1387.93 1366.86
1820.09 1820.02 1855.91 1831.17 1872.45 1824.14

%

" indicates that the obtained result is the same as the best known result. HH: hyper-heuristic method. Best results are highlighted il bo

VII.

As shown throughout this work, in both problem domains
(exam timetabling and capacitated vehicle routing
problems), GE-HH obtained competitive results, if not
better (on some instances), when compared against existing
best methods in the literature. GE-HH is able to update the
best known results for some instances (on both domains). In
both domains, our GE-HH outperformed previously
proposed hyper-heuristic methods. We note that, for both
domains, the standard deviation is relatively small. Also,
the percentage deviation demonstrates that, in both
domains, GE-HH results are very close to the best known.
This positive result reveals that our GE-HH is efficient,
consistent and generalizes well over both domains. In our
opinion, this is due to the following. (i) The capability of
GE-HH in dealing with different problem instances by
evolving different local search templates during the
problem solving process. By evolving different local search
templates, GE-HH can easily adapt to any changes that
might occur during problem solving. (i) Since some
problem instances are very difficult to solve and have many
local optima, GE-HH struggles in obtaining good quality
solutions without getting stuck in local optima. Therefore,
by incorporating the adaptive memory mechani&i;HH

is more effective in diversifying the search of solutions by
exploring different regionsOverall, the benefit of the
proposed method is ability to find the best solver from
the supplied pool of solvers (local search acceptance
criteria) as well as the best configuration for the selected
solver. This alleviates the question of which solver one
should use and what is the best configuration for it.
Furthermore, it does not rely on complicated search
approaches to find out how to generadocal search
template. Rather, it provides a general mechanism
regardless of the nature and complexity of the problems. It
is simple to implement, and can be easily applied to other
domains without significant effort (i.e. useonly need to
change the set of neighborhood structures).

DISCUSSION

VIIl. CONCLUSIONS

In this work, we have proposed a new improvement based
hyper-heuristic framework for combinatorial optimization
problems. The proposed framework employs a grammatical
evolution algorithm (GE-HH) to search the space of basic
heuristic components. These are: a set of acceptance
criteria, neighborhood structures and neighborhood
combinations and are representedalyrammar definition.

The proposed framework takes these heuristic components
as input and evolves several templates of perturbation
heuristics during problem solving. The performance of the
GE-HH is enhanced by hybridizing it with an adaptive
memory mechanism which contaiasset of high quality

and diverse solutions. To demonstrate the generality,
consistency and efficiency of the proposed framework, we
have tested the proposed framework on two different and
challenging problem domains, exam timetabling and
capacitated vehicle routing benchmark problems, using the
same parameter settings. The results demonstrate that GE-
HH produces highly competitive solutions, if not better, and
generalizes well across both problem domains. The main
contributions of this work are:

The development ofa GE-HH framework that
automatically generates templates of perturbation
heuristics, demonstrating that strengths of different
search algorithms can be mergedoirone hyper-
heuristic framework.

The integration of an adaptive memory mechanism,
which contains a collection of high quality and diverse
solutions, within a hyper-heuristic framework, and
which also obtained consistent results, generalized
across different problem domains and produced high
quality solutions which are either competitive or better
than (on some cases) other bespoke methods.

The development of hyper-heuristic framework which
can be easily applied to different problem domains
without much effort (i.e. the user only needs to change
the neighborhood structures).

Experimental results have demonstrated the effectiveness
and the generality of this method on very well established
benchmarks. In our future work, we intend to investigate
the effectiveness of integrating GE-HH in the HyFlex
framework (a benchmark framework for cross-domain

heuristic search) that has been recently introd
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