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Abstract. Examination timetabling is one of the most important ad-
ministrative activities that takes place in all academic institutions. In this
paper we present a critical discussion of the research on exam timetabling
in the last decade or so. This last ten years has seen a significantly in-
creased level of research attention for this important area. There has
been a range of insightful contributions to the scientific literature both
in terms of theoretical issues and practical aspects. The main aim of this
survey is to highlight the new trends and key research achievements that
have been carried out in the last decade. We also aim to outline a range
of relevant important research issues and challenges that have been gen-
erated by this body of work.

We first define the problem and discuss previous survey papers. Within
our presentation of the state-of-the-art methodologies, we highlight hy-
bridisations and recent new trends concerning neighbourhood structures,
which are motivated by raising the generality at which search methodolo-
gies can operate. Summarising tables are presented to provide an overall
view of these techniques. We also present and discuss some important
issues which have come to light concerning the public benchmark exam
timetabling data. Different versions of problem datasets with the same
name have been circulating in the scientific community for the last ten
years and this has generated a significant amount of confusion. We clar-
ify the situation and present a re-naming of the widely studied datasets
to avoid future confusion. We also highlight which research papers have
dealt with which dataset. Finally, we draw upon our discussion of the lit-
erature to present a (non-exhaustive) range of potential future research
directions and open issues in exam timetabling research.
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1 Introduction

Timetabling problems arise in various forms including educational timetabling
(e.g. [34]), nurse scheduling (e.g. [22]), sports timetabling (e.g. [81]) and trans-
portation timetabling (e.g. [101]). They have represented a challenging and im-
portant problem area for researchers across both Operational Research and Ar-
tificial Intelligence since the 1960s. Recent years have seen an increased level
of research activity in this area. This is evidenced (among other things) by the
emergence of a series of international conferences on the Practice and Theory
on Automated Timetabling (PATAT) ([20, 21, 28, 46–48]), and the establishment
of a EURO (European Association of Operational Research Societies) working
group on automated timetabling (see http://www.asap.cs.nott.ac.uk/watt).

Burke, Kingston and de Werra [34] (2004) gave a definition of general
timetabling, which covers many cases:
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A timetabling problem is a problem with four parameters: T , a finite
set of times; R, a finite set of resources; M , a finite set of meetings; and
C, a finite set of constraints. The problem is to assign times and resources
to the meetings so as to satisfy the constraints as far as possible.

Among the wide variety of timetabling problems, educational timetabling is
one of the most widely studied, from a practical viewpoint. It is one of the most
important and time-consuming tasks which occur periodically (i.e. annually,
quarterly, etc) in all academic institutions. The quality of the timetabling has a
great impact on a broad range of different stakeholders including lecturers, stu-
dents and administrators (see [134, 140]). Variants of educational timetabling in-
clude school timetabling (class-teacher scheduling), university course timetabling,
exam timetabling, faculty timetabling and classroom assignment. It has been ob-
served that course and exam timetabling are relatively close problems [143] but
very significant differences do exist [108]. This survey will concentrate on exam-
ination timetabling.

An excellent survey of examination timetabling was published in 1986 [51]
and an insightful follow up paper appeared in 1996 [53]. However, a significant
number of research papers in the area have been published since 1996. This pa-
per will concentrate upon the research that has appeared since the publication
of [53]. The last decade has seen the establishment of a collection of benchmark
exam timetabling problems [55] which have been used by many of the exam-
ination timetabling research papers that have appeared since 1996. Moreover,
there has been some confusion in the literature caused by the existence of dif-
ferent benchmark problem datasets with the same names. This paper aims to
eradicate such confusion by presenting a definitive re-naming of the sets and by
clarifying the situation over which papers dealt with which problems.

1.1 Examination Timetabling Problems

Exam timetabling problems can be defined as assigning a set of exams E = e1,
e2, ..., ee into a limited number of ordered timeslots (time periods) T = t1, t2, ...,
tt and rooms of certain capacity in each timeslot C = C1, C2, ..., Ct, subject to a
set of constraints. The complexities and the challenge presented by timetabling
problems arise from the fact that a large variety of constraints, some of which
contradict each other, need to be satisfied in different institutions ([26, 54]). In
the timetabling literature, constraints are usually categorised into two types:
hard constraints and soft constraints, which are explained below:

– Hard Constraints cannot be violated under any circumstances (mainly due
to physical restrictions). For example, conflicting exams (i.e. those which
involve common resources such as students) cannot be scheduled simultane-
ously, i.e. if Dij is the number of students enrolled in both exams i and j;
and xi ∈ T is the timeslot to which exam i is assigned, then:

xi 6= xj ∀ i, j ∈ E, i 6= j and Dij > 0
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Another example is that the number of students taking an exam cannot
exceed the total seating capacity of the rooms, i.e. if in timetable t, si is the
number of students in exam i ∈ E, then:

∑

i∈E

si ≤ Ct, xi = t, t ∈ T

A timetable which satisfies all of the hard constraints is usually said to be
feasible.

– Soft Constraints are desirable but are not absolutely critical. In practice,
it is usually impossible to find feasible solutions that satisfy all of the soft
constraints. Soft constraints vary (and sometimes conflict with each other)
from one institution to another in terms of both the types and their im-
portance ([26]). The most common soft constraint in the exam timetabling
literature is to spread conflicting exams as much as possible throughout the
examination session so that students can have enough revision time between
exams. An example of another soft constraint which may conflict with this
is to schedule all the large exams as early as possible to allow enough time
for marking. The quality of timetables is usually measured by checking to
what extend the soft constraints are violated in the solutions generated.

Due to the large variety of problems presented and investigated, it would be
neither practical nor beneficial to present a comprehensive list of all the hard and
soft constraints that occur in timetabling research. We list some of the key hard
and soft constraints for exam timetabling in Table 1 and Table 2, respectively.
We believe that these cover most of the constraints that have appeared in the
literature. It can be observed that they can be roughly grouped as time related
(No. 1. in Table 1 and Nos 1.-7. in Table 2) or resource related (No. 2. in Table
1 and Nos. 8.-11. in Table 2). Most of the survey papers reviewed in Section 1.2
present lists of constraints in exam and general timetabling. The hard constraints
listed in Table 1 and the first soft constraint in Table 2 are those that have been
mostly covered by the research in the literature.

Table 1. Primary Hard Constraints in Examination Timetabling Problems.

Primary Hard Constraints

1. No exams with common resources (e.g. students) assigned simultaneously.
2. Resources of exams need to be sufficient (i.e. size of exams need to be below the

room capacity, enough rooms for all of the exams).

We will begin this critical review of the research area by overviewing a number
of surveys that have appeared in the literature since the 1960s. Many of these
papers cover educational timetabling in general and thus include discussions of
examination timetabling in addition to other discussions.
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Table 2. Primary Soft Constraints in Examination Timetabling Problems.

Primary Soft Constraints

1. Spread conflicting exams as even as possible, or not in x consecutive timeslots
or days.

2. Groups of exams required to take place at the same time, on the same day
or at one location.

3. Exams to be consecutive.
4. Schedule all exams, or largest exams, as early as possible.
5. Ordering (precedence) of exams need to be satisfied.
6. Limited number of students and/or exams in any timeslot.
7. Time requirements (e.g. exams (not) to be in certain timeslots).
8. Conflicting exams on the same day to be located nearby.
9. Exams may be split over similar locations.
10. Only exams of the same length can be combined into the same room.
11. Resource requirements (e.g. room facility).

1.2 Previous Surveys on Educational Timetabling

An early survey by Miles [113] in 1975 provided a useful bibliography of early
developments in computer aided timetabling. Another well-known early survey
by Schmidt and Strohlein [144] in 1979, including more than 200 references,
covered almost all the work on timetabling before 1979. de Werra, in 1985
[68], introduced various mathematical (graph theoretical) models and briefly
overviewed methods for class-teacher and course timetabling based on graph
colouring and network flow methods. The author noted that exam timetabling
and course scheduling were similar to each other although there were differences
between them. In 1997 [69] the same author introduced some requirements in
timetabling into restricted graph coloring models and reviewed some mathemat-
ical programming formulations.

Carter in 1986 [51] presented a review of the early research on practical ap-
plications of examination timetabling in several universities. He reviewed a va-
riety of graph heuristics and pointed out that none of the algorithms/packages
had been implemented in more than one institution. There was no standard
data on which comparisons could be carried out. Also, measures of a problem’s
difficulty did not exist. In 1996, Carter and Laporte [53] updated the above
survey to summarise the algorithmic approaches from 1986 to 1996. The cri-
teria for the discussion was that the method should be either tested on real
data or implemented in real world applications. They categorised the methods
into four types: cluster methods, sequential methods, generalised search (meta-
heuristics) and constraint based techniques. They observed that the approaches
implemented in practice were relatively simple variants of different methods and
only addressed a subset of the constraints in the problems. The authors con-
cluded by suggesting that timetabling researchers should report test results on
benchmark problems to gain a better understanding of various approaches taken
in exam timetabling. As we will see later in this paper, this is what has happened
since 1996.
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Burke et al constructed a questionnaire in 1996 on exam timetabling [26]
and sent it to 95 British universities, of which 56 replied. The issues concerned
included:

– The structure of the problems (i.e. size, complexity and constraints, etc),
– How the problems were solved, and
– The objective of the timetabling problem (i.e. what constitutes good solu-

tions).

The resultant data was analysed to provide information on the constraints
involved between exams, students, departments, timeslots and rooms. In addition
to the 13 constraints originally listed in the questionnaire, another 19 constraints
were provided by the universities, demonstrating that in reality there is a wide
variety of requirements among different institutions. It was found that just 21%
of the universities used some form of computational help. Where timetables
were constructed manually, half of the institutions did not base their solution
on the previous year’s timetable, requiring a workload of many months. The
paper suggested some appropriate properties of automated timetabling systems
that could be utilised in practice. This paper also provided some insight into
the pertinent issues that impacted upon real world exam timetabling issues at
the time. In 1997, Burke et al [30] presented a brief introduction to automated
university exam timetabling research. The paper concentrated on techniques on
university timetabling which were popular at the time.

Bardadym in 1996 [11] considered different issues in computer-aided man-
agement systems for timetabling. He discussed problems, requirements, data
representations and mathematical models. Solution methods from the 1960s to
the 1990s were also overviewed mainly covering heuristics, meta-heuristics and
algorithmic tools for integration in decision support systems. Meta-heuristics and
interactive timetabling were seen as the new wave of computer-aided timetabling
systems. Open issues for future timetabling research were also discussed.

Wren [161] in 1996 illustrated a useful and interesting link between schedul-
ing, timetabling and rostering by studying an example of the Travelling Sales-
man Problem. He concluded that the similarity between timetabling and staff
rostering may lead to successful cross-fertilisation on different types of prob-
lems. Indeed, recent research (as we shall see later) has provided some evidence
to support this.

Schaerf in his 1999 survey [143] looked at the formulations of school, course
and exam timetabling and declared that it is difficult to make a distinction
between the latter two. Based on the definitions of variants of these problems,
solution techniques particularly from artificial intelligence were classified and
reviewed. Possible future directions were presented including specific techniques,
standardization, approximability, the design of a powerful constraint language,
and the combination of, and comparisons against different techniques.

Burke and Petrovic in 2002 [44], and in a follow up paper in 2004 [123] pre-
sented overviews of recent research conducted on university (course and exam)
timetabling that had been carried out in their group including hybrid evolution-
ary algorithms, meta-heuristics, multi-criteria approaches, case-based reasoning
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techniques and adaptive approaches. An outline of research on sequential, clus-
tering, constraint based techniques and meta-heuristic methods was also pro-
vided. Future directions highlighted knowledge based systems and approaches
which aim to raise the generality of timetabling systems.

An article by Burke, Kingston and de Werra [34] (2004) discussed the
application of graph coloring methods to timetabling. The authors considered
class-teacher, course, exam and sports timetabling. This paper highlights the
role that graph coloring methods have played in the timetabling literature over
the last 40 years or so. Indeed, it points out that graph colouring ideas are
incorporated in several modern hybrid meta-heuristic techniques.

Reviews concerning specific techniques on timetabling have also appeared
which have reflected the speed at which timetabling research developments have
been made. Burke and Landa Silva [35] in 2004 reviewed memetic algorithm
methods that have been proposed to solve scheduling and timetabling problems.
A number of issues concerning the design of memetic algorithms have been dis-
cussed. These include the domain knowledge that has been incorporated to deal
with infeasibility, local search design concerning intensification mechanisms and
the balance between genetic search and local search. The paper also draws at-
tention to the design of self-adaptive memetic algorithms as an area of future
timetabling and scheduling research. Multi-objective meta-heuristic techniques
have also been reviewed by Landa Silva, Burke and Petrovic [102] (2004)
for problems including educational timetabling. The paper covers recent multi-
objective techniques including multi-phased approaches and multi-criteria evo-
lutionary techniques. Issues that are discussed include problem formulations,
problem domain knowledge and strategies used in local search.

From the above brief discussion, we can see that there are a number of excel-
lent surveys in the literature concerning different issues that have impacted upon
exam timetabling research. We also provide in Appendix A a list of PhD the-
ses that have appeared during the years, where extensive reviews have been
carried out upon specific aspects of course and exam timetabling. However,
there is no comprehensive review which has dealt with the large body of exam
timetabling research that has appeared in the last decade. This body of work
includes a number of state-of-the-art approaches and has introduced a wide
variety of diverse and successful methodologies. This paper aims to build on
Carter and Laporte’s 1996 survey [53] to provide a modern discussion of the
methods and techniques that have been developed for this important problem.
With this in mind, we will not discuss in detail the work that appeared be-
fore 1996. We aim to keep our bibliography of examination timetabling papers
and our classification tables (see later on) up to date on the following web page
http://www.asap.cs.nott.ac.uk/resources/data.shtml. We would be very grateful
if authors could contact us as new papers appear in order to regularly update
this public resource. Although we have covered all the relevant papers of which
we are aware, we may have inadvertently omitted relevant papers that have al-
ready appeared. If so, we apologise and would welcome the opportunity to add
them to the information available at our web site.
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Although not specifically a survey paper, McCollum in 2007 [108] has dis-
cussed a number of papers in both course and exam timetabling with the aim
of setting a research agenda to bridge the gap between timetabling research and
practice. McCollum identified the development of timetables in institutions as
multiphase procedure, and presented different real world modelling processes for
exam and course timetabling. Of particular interest are the highlighted research
challenges for both exam and course timetabling in the research.

Schaerf and Di Gaspero in 2007 [142] raised some particularly interesting
and important issues in timetabling research. They discussed measurability and
reproducibility in university (course and exam) timetabling. In addition to high-
lighting the importance of these issues when conducting timetabling research, the
authors discussed practices that can contribute to the improvement of the two as-
pects. Indeed, the international competition in 2002 has set a standard on course
timetabling. Our observations on the benchmark exam timetabling below and
the construction of the benchmark dataset at http://www.asap.cs.nott.ac.uk
/resources/data.shtml would further strengthen the importance of setting up
standard scientific comparisons in timetabling research.

In addition to the surveys that have appeared over the years, an online bib-
liography was prepared by Kingston [98] in 1995 and includes more than 1000
references on automated timetabling.

The next sub-sections review the timetabling systems, languages and tools
that were developed in the last decade. Furthermore, issues on timetabling mod-
els and complexity are also discussed. Section 2 will then review the timetabling
research that has appeared. We have classified it according to the different tech-
niques which have been investigated. For each technique reviewed, a correspond-
ing summarising table is presented in Appendix B. In Section 3, we summarise
all the work on three sets of benchmark exam timetabling problems, and clarify
some issues on the consistency of the benchmark dataset introduced by [55]. Fi-
nally, we conclude the paper by summarising the research trends and presenting
some future directions.

1.3 Timetabling Systems

During the years, a number of timetabling systems for both course and exam
timetabling have appeared in the literature. However, many of them (especially
before 1996) were specially developed for, and implemented at, particular insti-
tutions [53].

Hansen and Vidal [91] (1995) presented a nationwide exam timetabling
system which was reported to have been in use since 1992 to solve the problems
of centralised planning of both oral and written examinations for 248 high schools
in Denmark. The complex problem with a variety of objectives was described and
solved by a four-phase process dealing with different objectives using different
techniques and heuristics. Some issues including the preparation of data and
the scheduling of exams were discussed. Experiences during the development of
the system and other practical issues including the maintenance of centralised
information and communications were also discussed [90].
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Lim et al [104] (2000) developed a timetabling system, which was a 3-tier
client/server application, for both the course and exam timetabling problems
at the National University of Singapore. The problems and the overall manual
process were described. In the exam portion of the system, exams were weighted
by three measures and assigned into the timeslots one by one using constraint
propagation by an arc consistency algorithm. The timetables were generated by
the system in a much shorter time and compared favourably with the manually
generated ones from the previously used procedure. Ho, Lim and Oon [94]
(2001) further developed the system by using a Tabu Search algorithm, which
employed four moving operators to improve the solutions obtained. The Push
Forward Insertion heuristic, which has been employed in vehicle routing prob-
lems, was used to help spread the exams across timetables. Real problems were
used to test the approach.

Dimopoulou and Miliotis [72] (2001) developed a timetabling system to
deal with both the course and exam timetabling problems at Athens University of
Economics and Business. Firstly, an Integer Programming method was developed
based on MPCODE and XPRESS-MP packages. This approach was employed to
assign groups of courses to groups of timeslots for the course timetabling prob-
lem. Based on the course timetables, the initial exam timetables were built and
were adjusted repeatedly by a heuristic approach which dealt with a number of
constraints. This provided good and feasible solutions with minimum effort.

1.4 Timetabling Languages and Tools

Over the years, timetabling researchers have employed some general packages
(such as ECLiPse for constraint logic programming [7]) to build timetabling sys-
tems. However, some packages and languages which are specialised on timetabling
have also appeared to support representations and comparisons in timetabling
research. This is a goal which (if it could be achieved) would undoubtedly ben-
efit timetabling research. However, it is relatively true to say that the various
attempts to suggest such standards have not yet been built upon and adopted
by the community.

Burke, Kingston and Pepper [33] (1998) presented general requirements
(generality, completeness and practicability) for building a standard data format
for general timetabling problems based on set theory and logic. Examples were
given to show how common constraints were modelled by using this data format.
The objective is to provide an open way of making comparisons on results and
exchanging data in timetabling research.

Tsang, Mills and Williams [153] (1999) developed a language to specify
constraint satisfaction problems so that constraint programming systems can be
easily implemented for exam timetabling problems. The aim was to build a high
level system which abstracted the details as much as possible so that end users,
without knowledge of both the constraint programming and host languages, can
focus on the problem specific information. A real exam timetabling problem was
used as the example to build the constraint satisfaction system.
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Reis and Oliveira [132] (2001) proposed a language, called UniLang, which
used a list of synonyms to naturally represent data, various constraints, quality
measures and solutions for general university timetabling problems. Eight classes
of sub-problems in timetabling were defined and lots of examples were presented
to interpret the language proposed. The language was converted into constraint
logic programming in ECLiPse [7] for different problems.

Di Gaspero and Schaerf [76] (2003) introduced a software tool called
EASYLOCAL++ for the implementation of a family of local search algorithms
(Hill Climbing, Simulated Annealing and Tabu Search) on general timetabling
problems. This represented an object-oriented framework which consisted of a
hierarchy of abstract classes to take care of different aspects of local search. The
main characteristics of the tool were reusability and generality, which were in-
terpreted using examples from school timetabling, course timetabling and exam
timetabling problems. It was employed to develop a family of Tabu Search meth-
ods in [75].

De Causmaecker et al [66] (2002) discussed how the Semantic Web can
be used in timetabling. They studied, layer by layer, how this technology can
be applied to interpret problem specific knowledge in timetabling using XML.
An upper level timetabling ontology was presented to demonstrate the ability to
support the fast development of applications on different timetabling problems,
whose constraints and resources can be easily identified.

Chand [57] (2005) proposed a constraint based general model where con-
straints are grouped as domain, spread and CountResource, based upon which
timetabling data and constraints can be transferred into a relational database.
Examples of exam timetabling data by Burke, Elliman and Weare [27] and course
timetabling data by Goltz and Matzke [77] were presented using the model pro-
posed. The author declared that the format can be extended to include other
constraints and can be applied to different languages. The author also provided
a brief review of the relevant work on modelling timetabling data.

Ranson and Ahmadi (2007) [128] briefly reviewed and analysed the lim-
itations of the existing timetabling languages/standards. Based on the STTL
language, which was developed for school timetabling [99] by Kingston, they
designed a flexible language-independent timetabling model incorporating the
features of object-oriented programming and the UML language.

1.5 Models and Complexity Issues

Over the last ten years, important issues concerning the models and the com-
plexity of timetabling problems have been discussed in the literature. However,
so far, there are still no universally accepted complete models. Not much de-
ployment work has been carried out on this topic. The main area of research on
complexity issues has been on school timetabling [143].

Cooper and Kingston [60] (1996) represented timetabling problems using
a timetabling specification language called TTL. They proved that timetabling
problems are NP-complete in five independent ways which actually occur in
practice. Prospects were discussed to overcome the special cases in real problems.
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de Werra, Asratian and Durand [70] (2002) studied the complexity of
some variants of class-teacher timetabling problems. A simple model of the prob-
lem was first given, followed by the extension where the classes were partitioned
into groups. The authors showed that when there was a teacher giving lectures
to three groups of classes, besides giving lectures to individual groups, the prob-
lem is NP-complete. A polynomial procedure to find a timetable (of a certain
number of timeslots) based on network flows was given for the problems where
there were at most two groups of classes.

2 Examination Timetabling Approaches/Techniques

There has been a significant amount of exam timetabling research in the last ten
years. We note that many of the successful methodologies that have appeared
in the literature represent hybridisations of a number of techniques. Thus the
classification, where possible, is by the main technique. However, several of the
methodologies could have appeared in two or more of the classifications.

2.1 Graph Based Sequential Techniques

The paper by Welsh and Powell [155] in 1967 represented a very important
contribution to the timetabling literature. It built the bridge between graph
coloring and timetabling, which led to a significant amount of later research on
graph heuristics in timetabling (e.g. [109, 110]). In exam timetabling problems,
the exams can be represented by vertices in a graph, and the hard constraint
between exams is represented by the edges between the vertices. The graph
coloring problem of assigning colors to vertices, so that no adjacent vertices
have the same color, then corresponds to the problem of assigning timeslots to
exams. Different soft constraints (such as those listed in Table 2) need to be
considered separately and evaluated to represent a measure of solution quality.

The basic graph coloring based timetabling heuristics are constructive meth-
ods that order the exams by how difficult they are to be scheduled. The exams are
then assigned, one by one, into the timeslots. A broad range of ordering strate-
gies and their modified variants appear in the timetabling literature [51]. We
list, in Table 3, some of the widely employed ordering strategies, most of which
are based upon graph coluring heuristics. A random ordering method has also
been employed in the literature to introduce randomness in hybrid approaches
and provide comparisons.

Graph based heuristics which underpinned simple constructive methods played
a very important role in the early days of timetabling research [51]. Although
originally presented as techniques (albeit simple ones) in their own right, they
are still being employed and adapted within hybridised methods in the current
research literature. Their great strength is that they can provide reasonably
good results within a small computational time and are very easy to implement.
They are often used to construct initial solutions, or to build good portions of
solutions before improvement techniques are applied (see more details in the
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Table 3. Widely Studied Ordering Strategies for Examination Timetabling Problems

Heuristics Ordering Strategy

Saturation increasingly by the number of timeslots available for the exam
Degree [15] in the timetable at the time

Largest decreasingly by the number of conflicts the exams have with
Degree [16] the other exams

Largest Weighted the same as Largest Degree but weighted by the number of
Degree [55] students involved

Largest decreasingly by the number of enrolments for the exam
Enrolment [160]

Random Ordering randomly order the exams

Color Degree [55] decreasingly by the number of conflicts the exam has with
those scheduled at the time

following sections). A recent article by Burke, Kingston and de Werra [34]
overviewed graph coloring techniques for general timetabling.

In a particularly influential paper, Carter, Laporte and Lee [55] in 1996
studied the first five ordering strategies in Table 3 on real and randomly gen-
erated exam timetabling problems. Largest cliques, which are the largest sub-
graphs where each of the vertices is adjacent to all of the others, were used to
build initial solutions, based on which graph colouring heuristics and backtrack-
ing techniques were employed to construct the solutions. The idea is that the
size of the largest clique determines the least number of timeslots required for
the problem. The results indicated that none of the heuristics outperformed any
of the others over all of the problems tested. Another important contribution
from this work is the introduction of a set of 13 exam timetabling problems,
which became standard benchmarks in the field. They have been widely studied
and used by different approaches during the years (see Table 6). We call this the
University of Toronto data and discuss it further in Section 3.1. In 2001, Carter
and Johnson [52] investigated sub-graphs which are sufficiently dense (almost

cliques) on 11 of these instances. They observed that in real exam timetabling
problems it was usually the case that there were many largest cliques, and that
the almost cliques mechanism can potentially extend and improve the above
approach.

Burke, Newall and Weare [43] in 1998 studied the effect of introducing
a random element into the employment of graph heuristics (Saturation Degree,
Color Degree and Largest Degree in Table 3) by developing two variants of
selection strategies: (1) tournament selection that randomly chooses one from a
subset of the first exams in the ordered list; and (2) bias selection that takes
the first exam from an ordered list of a subset of all of the exams. These simple
techniques, when tested on three of the Toronto datasets, improved the pure
graph heuristics with backtracking in terms of both the quality and diversity of
the solutions.

Burke and Newall in 2004 [40] investigated an adaptive ordering strategy
which dynamicly ordered the exams during the problem solving in an iterative
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process. It was observed that a fixed pre-defined heuristic (employed as a mea-
sure of difficulty) in a traditional sequential strategy (as shown in Table 3) does
not always perform well over the full range of problems. A heuristic modifier
was designed to update the ordering of the exams according to the experience
obtained with regard to the difficulty of assigning them in the previous itera-
tions. Extensive experiments were carried out on 11 of the Toronto datasets,
and another benchmark (which we call the Nottingham data, see Section 3.2).
This approach was shown to be simple and effective (comparable with and oc-
casionally better than, state-of-the-art approaches [55, 75]). The method is not
dependent on the initial ordering of exams.

Fuzzy logic was employed by Asmuni et al [8] in 2005 to order the exams
to be scheduled based on graph coloring heuristics on the Toronto datasets. The
idea is that when ordering the exams by how difficult they are, fuzzy functions
can be used to give an appropriate evaluation. It was seen that different fuzzy
functions need to be used on different problems to obtain the best results. In
[9], a fuzzy system was developed to build a new evaluation function based on
a series of rules to evaluate the quality of timetables where multiple criteria
were involved. The approach was further improved by tuning the fuzzy rules
and better results were obtained.

Corr et al [62] developed a neural network from which a measure of the
difficulty of assigning exams during the timetable construction can be obtained
by recursively inputting the updated solution construction states. The objective
is to adaptively assign the most difficult exams at an early stage of solution
construction. The neural network was trained by storing the states of timetable
construction (feature vectors) using three graph heuristics. The work has demon-
strated the feasibility of employing neural network based methods as an adaptive
and generally applicable technique on timetabling problems.

Due to the limitations of constructive methods, where early assignments may
lead to situations where no feasible timeslots are available for exams later on
in the construction process, backtracking was studied (e.g. [55]). This process
unassigns the early conflicting exams to allocate the current ones. A look ahead

technique was also studied in [38] to address this issue (for more details see the
discussion on memetic algorithms in Section 4.2).

As mentioned earlier, techniques which hybridise graph heuristics with other
methods are still appearing in the most modern exam timetabling research liter-
ature. The employment of graph heuristics within hyper-heuristics is discussed
in Section 2.6.

2.2 Constraint Based Techniques

Constraint logic programming [85, 92] and constraint satisfaction techniques [14]
have their origins in Artificial Intelligence research. Such methods have attracted
the attention of researchers in timetabling due to the ease and flexibility with
which they can be employed for timetabling problems. Exams are modelled as
variables with finite domains. Values within the domains (representing the times-
lots and rooms) for the variables are assigned sequentially to construct the solu-
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tions for the problems. Early research focused on finding feasible solutions (i.e.
satisfying all hard constraints). Brailsford, Potts and Smith [14] in 1999
introduced various searching methods on constraint satisfaction problems and
demonstrated that this technique could be applied to optimisation problems.

Constraint based techniques are usually computationally expensive due to
the fact that the number of possible assignments increases exponentially with
the number of variables. They, on their own, cannot usually provide high quality
solutions compared with the state-of-the-art approaches [14] on complex opti-
misation problems. Different heuristics and techniques are usually integrated to
reduce the time complexity for solving practical problems (see [53, 156]). For
example, the labelling strategy, where heuristics are usually employed, indicates
the order in which the variables are to be initiated.

David [65] (1998) applied constraint satisfaction techniques to model an
exam timetabling problem in a French school, the Ecole des Mines de Nantes.
Time complexity was crucial. Thus partial solutions were first obtained. Based
on these partial solutions, particular local repairing strategies were employed
successively to obtain complete solutions and make improvements. The approach
was run several times with different initial assignments to reduce the chance of
missing good solutions. It was employed successfully in the school and can usually
generate solutions within one second.

Reis and Oliveira [131] (1999) developed an examination timetabling sys-
tem based on ECLiPSe [7], which is a Prolog based platform for developing
various extensions in constraint logic programming. A set of hard and soft con-
straints in the problem were built into a constraint satisfaction model, where set
variables were employed and handled by the libraries in ECLiPSe. Its application
on random data and a large real exam timetabling problem in the University of
Fernando Pessoa in Porto demonstrated the efficiency of the model.

Merlot et al [111] (2003) employed constraint programming in a similar
way to that of [13] using OPL [93], an optimisation programming language, to
produce initial solutions. Then a Simulated Annealing and a hill climbing method
(see Section 2.3 below) were used to improve the solutions. Variables (exams)
were ordered by the sizes of their domains (available timeslots) and scheduled
into the earliest timeslots one by one. The pure constraint programming obtained
the best result for one of the Toronto datasets. The overall hybrid approach was
tested on problems at the University of Melbourne, two variants of Toronto
instances and the Nottingham data (see Section 3). This approach obtained the
best results reported in the literature on several instances of the Toronto and
Nottingham datasets at the time.

Duong and Lam [67] (2004) also employed constraint programming to
generate initial solutions for a Simulated Annealing methodology for the exam
timetabling problems at HoChiMinh City University of Technology. Backtrack-
ing and forward checking were employed to reduce the searching effort. The
labelling strategy dynamically ordered the variables (exams) by a number of
factors such as the size of the domain and the number of students.
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In summary, recent research on constraint based techniques represents hy-
bridisations with other techniques. The labelling strategy is usually integrated
with different problem specific heuristics for variable ordering and is crucial to
the success of the method. The development of some powerful constraint pro-
gramming systems/languages (e.g. ECLiPSE [7], CHIP [146], OPL [93]) signifi-
cantly supported the construction of the complete exam timetabling systems in
real world applications. However, only particular problems at different institu-
tions have been tackled with this approach in the literature. Also the comparisons
(with one exception - see below) have been against manually produced solutions.
No comparisons have been made between constraint based techniques and other
state-of-the-art approaches on the same problems, except for the paper by Mer-
lot et al [111] which presents a method that is evaluated on the Toronto and
Nottingham data. It is worth noting, though, that this method can produce the
best results in the literature on some of these benchmark problems.

2.3 Local Search Based Techniques

Local search based techniques [125] (e.g. Tabu Search, Simulated Annealing and
their variants) and Evolutionary Algorithms (see Section 2.4) are often classi-
fied to meta-heuristics [31, 88]. Local search methods are a family of general
techniques which solve problems by searching from an incumbent solution to its
neighbourhood. Different neighbourhood structures and moving operators within
the search space distinguish different local search techniques. The search is
guided by a defined objective function, which is used to evaluate the quality
of the generated timetables.

These techniques represent a large part of the work that has appeared in
the last decade [53]. They have been applied on a variety of timetabling prob-
lems, mainly because different constraints can be handled relatively easy. The
performance and efficiency of these techniques are highly dependent upon the
parameters and search space properties (e.g. connectivity, ruggness), thus a lot
of domain knowledge is usually built-in to deal with specific problems. A large
amount of variants and combinations have been investigated. We will first deal
with Tabu Search.

2.3.1 Tabu Search

Tabu Search [86, 87] explores the search space by not re-visiting a list of recent
moves (kept in a tabu list). They may, however, be selected if they generated
the best solution obtained so far by using an aspiration strategy. Otherwise,
the search moves to other solutions even if they are worse than the incumbent
solutions, with the aim of escaping from local optima. Parameters need to be
fine-tuned in designing the approach and this is very much dependant on the
problem in hand. Such parameters include the tabu list and the stopping criteria
among others.

Di Gaspero and Schaerf [75] (2001) carried out a valuable investigation
on a family of Tabu Search based techniques whose neighbourhoods concerned
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those which contributed to the violations of hard or soft constraints. Exhaus-
tive and biased selection strategies were also studied. The length of the tabu
list is dynamic and the cost function is adaptively set during the search. The
authors experimentally demonstrated that the adaptive cost function and the
effective selection of neighbourhoods concerning the violations were key features
of the approach. In 2002 Di Gaspero [74] improved the approach by employing
multiple neighbourhoods based on a token-ring search which circularly employs
recolor (change single exam) and shake (swap groups of exams), followed by kick-

ers (change sequence of single exams) to further improve the solutions obtained.
The technique extended the idea of diversifying the search from local optima.

White and Xie [157] (2001) developed a four-stage Tabu Search called OT-
TABU, where solutions were gradually improved by considering more constraints
at each stage, for the exam timetabling problem at the University of Ottawa.
In addition to the recency short term memory, a frequency long term memory
was also used to record the frequency of the most active moves in the search
history. The size of the long term memory was set by analysing the number
of less important exams in the problem. In [158] (2004) this approach was ex-
tended where both of the tabu lists could be dynamically relaxed (emptied) after
a certain length of search time with no improvement. This approach compared
favourably to those in [55] and [75] on the Toronto data. The authors exper-
imentally showed that employing long term memory can significantly improve
Tabu Search on real-world problems.

Paquete and Stutzle (2002) [121] developed a Tabu Search methodology
for exam timetabling where ordered priorities were given for the constraints. The
constraints were considered in two ways: (1) one constraint at a time from the
highest priority, where ties were broken by considering the lower priority con-
straints; (2) all the constraints at a time, starting from the highest priority. The
2nd strategy obtained better results, while the 1st strategy was more consistent.
The length of the tabu list was adaptively set by considering the number of vio-
lations in the solutions. It was observed that the length of the tabu list needed
to be increased with the size of the problems.

2.3.2 Simulated Annealing

Simulated Annealing [1] is motivated by the natural annealing process [2]. The
idea is to search a wider area of the search space at the beginning of the process
by accepting worse moves with a higher probability, which is gradually decreased
as the search continues. A temperature is used within a cooling schedule to control
the probability of the acceptance of worse moves in the search. Many parameters
need to be tuned in Simulated Annealing including the initial and final temper-
atures, and the cooling factor in the cooling schedule. These parameters affect
the performance and success of this approach.

Thompson and Dowsland [152] (1998) carried out valuable work to de-
velop a two-stage approach where feasible solutions from the 1st stage fed into
a Simulated Annealing process in the 2nd stage to improve soft constraints sat-
isfaction. As different objectives were dealt with in different stages in turn, the
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solutions from the early stage may be poor, and thus a backtracking technique
was proposed. Dowsland [78] also observed that the way in which the neigh-
bourhood was defined, the importance of objectives and the difficulty of objec-
tives significantly affected the process. Based on their work in [151], the authors
further investigated the Kempe chain neighbourhood, where chains of exams
rather than individual exams were moved. This gave more flexibility to enable
the movement of large difficult exams within the timetable. They concluded that
the most important factors in Simulated Annealing were the cooling schedule and
the way neighbourhoods were defined and sampled. The authors reported that
the developed exam timetabling system had been used in Swansea University
successfully since 1993.

Bullnheimer [17] (1998) discussed how a model for Quadratic Assignment
Problems was adapted to formulate a small scale practical exam timetabling
problem at the University of Magdeburg. The models enabled the university
administrators to control how much the conflicting exams need to be spaced out.
Simulated Annealing was employed where two sets of neighbourhood structures
(moving the timeslots of exams and moving single exams) were studied. However,
the details of the parameters in the algorithm were not given.

Merlot et al (2003) [111] employed a Simulated Annealing approach ini-
tialised by constraint programming techniques (see Section 2.2 on “Constraint
Based Techniques”) and followed by hill climbing to further improve the solu-
tion. A modified Kempe chain neighbourhood was employed. The best results
at the time for several of the benchmark instances were achieved by this hybrid
approach. Indeed, the method still has some of the best known results. The au-
thors suggested that methods combining solution construction with local search
will dominate the future of exam timetabling research.

Duong and Lam [67] (2004) employed Simulated Annealing on the initial
solutions generated by constraint programming for the exam timetabling prob-
lem at HMCM University of Technology. A Kempe Chain neighbourhood was
employed in the Simulated Annealing, whose cooling schedule was experimen-
tally set using mechanisms and algorithms. The authors noted that when limited
time is given, it is crucial to tune the components in Simulated Annealing to the
specific problems to be solved.

Burke et al [19] (2004) studied a variant of Simulated Annealing, called
the Great Deluge algorithm [80]. The search accepts worse moves as long as
the decrease in the quality is below a certain level, which is originally set as
the quality of the initial solution and gradually lowered by a decay factor. The
decay factor and an estimate of desired quality represent the parameters in this
approach. The authors noted that such parameters can be pre-defined by users,
who are usually not experts on meta-heuristics. The initial solutions, however,
need to be feasible to calculate the decay factor so a Saturation Degree was run
a number of times, from which the best solutions were employed as the start-
ing points. This Great Deluge approach was superior to a Simulated Annealing
developed by the authors. It was shown to be effective and generated some of
the best results on the Toronto and Nottingham datasets when compared with
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other approaches ([55, 75]). Comprehensive experiments were also carried out
to analyse the trade-off between the time and solution quality on problems of
different size. The approach was further studied in [39] where it was initialised
by the adaptive ordering method in [40].

2.3.3 Other Local Search Based Techniques

Recently, along with the study of different ways of escaping from local optima
in local search based techniques, some researchers turned to investigating the
effect of designing different neighbourhoods and have obtained some success on
timetabling problems. This demonstrated that not only the method of search, but
also the structure of the neighbourhood had significant impact on the searching
algorithms. For example, Kempe chain neighbourhood structures as mentioned
above were investigated by a number of researchers in exam timetabling (see
[56, 64, 111]). The idea is that chains of conflicting exams are swapped between
timeslots. Reasons for why this neighbourhood structure worked well were anal-
ysed [152]. Other approaches concerned multiple neighbourhood structures [74].
Compared with standard moves on single exams, this brought more flexibility in
the navigation of search spaces for different problems.

Abdullah et al [3] in 2007 developed a large neighbourhood search based
on the methodology of improvement graph construction originally developed by
Ahuja and Orlin [6] for different optimization problems. Instead of just consider-
ing traditional pair-wise exchange based operators, a tree-based neighbourhood
structure was designed to carry out cyclic exchanges among all of the timeslots.
The approach has provided the best results on a number of Toronto dataset
problems at the time of publication. However, a large amount of computational
time was needed. It was further developed in [4] where the improvement moves
were kept in a tabu list for capacitated exam timetabling problems (Toronto c

in Section 3.2).

Another technique concerning different neighbourhoods is Variable Neigh-
bourhood Search (e.g. [89, 114]). This approach systematically varies a number
of neighbourhood structures. The aim is to escape from local optima by switch-
ing from the search space defined by one neighbourhood to another. However,
not much work has been done in exam timetabling using this approach. Burke
et al [25] (2006) investigated variants of Variable Neighbourhood Search and
obtained the best results in the literature across some of the problems in the
Toronto datasets. The results were further improved by using a standard Ge-
netic Algorithm to intelligently select a subset of neighbourhoods. The latter
approach has a strong link to the work in hyper-heuristics and indicated promis-
ing directions on developing general approaches on neighborhoods rather than
directly on solutions. In hyper-heuristics, Variable Neighbourhood Search was
also employed where graph heuristics rather than neighbourhoods were searched
[126]. We present more details in Section 2.6 on “Hyper-heuristics”.

In addition to designing different neighbourhood structures within local search
based techniques, some researchers have also looked into how iterative techniques
can help in solving complex problems. In Iterated Local Search [106], the search
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restarts after a certain criterion is met. The motivation is to explore more areas
of search space within a short time. It was first applied to the graph coloring
problem [122] in 2002.

Caramia, DellOlmo and Italiano [49] (2001) developed a fine-tuned local
search method where a greedy scheduler assigned exams into the least possible
number of timeslots and a penalty decreaser improved the timetable without
increasing the number of timeslots. When no improvement could be made, the
number of timeslots were increased gradually by a penalty trader. The process
was repeated employing a permutation technique to reassign the priorities of
exams. This approach still holds the best results reported in the literature on
several instances of the Toronto datasets.

Casey and Thompson [56] (2003) investigated a Greedy Randomised Adap-
tive Search Procedures (GRASP) approach [133], which is a relatively new tech-
nique in timetabling. In GRASP, a local search algorithm is started iteratively
after local optima are reached based on the initial solutions generated by a
greedy approach. In [56], the initial solution in each iteration was generated by
a modified Saturation Degree, where one exam from the first n (experimentally
set as 2-6) exams ordered was assigned to the timetable. Backtracking was em-
ployed in conjunction with a tabu list to forbid indefinite cycles. A limited form
of Simulated Annealing with high starting temperature and fast cooling was
used in the improvement phase. Kempe chain moves were employed on exams
that particularly contributed to the cost. The approaches applied to the Toronto
datasets reported competitive results on some of the instances at the time.

In summary, during the last decade, local search based techniques have been
very heavily studied and have obtained a marked level of success on timetabling.
All of the work discussed above was either tested on benchmark data or imple-
mented in real applications. Different ways of accepting the moves (i.e. moving
strategies, acceptance strategies and selection strategies) were studied to enable
escape from local optima. However, one significant drawback of these approaches
is the effort required to tune the parameters for specific problems to get high
quality solutions.

2.4 Population Based Algorithms

2.4.1 Evolutionary Algorithms
Genetic algorithms have been the most studied Evolutionary Algorithms in terms
of exam timetabling research. In particular, hybridisations of genetic algorithms
with local search methods (sometimes called memetic algorithms) have led to
some success in the field.

Genetic Algorithms represents an analogy with the evolutionary process in
nature by manipulating and evolving populations of solutions within the search
space (see [88, 129, 141]). Solutions are coded as chromosomes and are evolved
by a reproduction process using crossover and mutation operators, with the aim
of getting better and better solutions through a series of generations. Parame-
ters and operators in Genetic Algorithms need to be defined and set properly,
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making the approach (usually) more complicated than that of local search based
searching methods. The searching strategy in Genetic Algorithms is fundamen-
tally different from the local search based approaches discussed above in the
sense that several solutions (a population of solutions) are dealt with at once
rather than just one solution being improved through a series of iterations.

Corne, Ross and Fang [61] in 1994 provided a brief survey on using Ge-
netic Algorithms in general educational timetabling and addressed some issues
and future prospects. One contribution of the work showed that the use of di-
rect representation in Genetic Algorithms was incapable of dealing with certain
problem structures in some specially generated graph coloring problems. In 2003
Ross, Hart and Corne [138] updated the above work on evolutionary repre-
sentations and algorithms used on various kinds of timetabling problems.

Ross, Corne and Terashima-Marin [136] (1996) showed that transition
regions exist in solvable timetabling problems by experimenting upon specially
generated graph coloring problems of different connectivity and homogeneity.
The authors indicated that the study can assist the understanding of how differ-
ent algorithms perform on complex timetabling problems. In 1998 Ross, Hart
and Corne [137] provided further evidence for the weakness of the use of di-
rect coding in Genetic Algorithms. They observed the failure of a number of
(evolutionary and non-evolutionary) approaches to solve special classes of graph
coloring problems and suggested that Genetic Algorithms should search for al-
gorithms rather than actual solutions. Indeed hyper-heuristics (where a set of
low level heuristics is searched by a high level algorithm - see more details in
Section 2.6) do exactly this.

Terashima-Marin, Ross and Valenzuela-Rendon [148] in 1999 designed
a clique-based crossover operator on timetabling problems that was transferred
into graph coloring problems. Different recombination strategies were tested in
the reproduction processes to maintain the cliques in parents into their offspring.
They pointed out the same problem with direct representation in Genetic Al-
gorithms as discussed above in [137]. They suggested alternatives for future
work. In [149], they also studied the penalty function on both random and
real timetabling problems employing Hardness Theory, which predicts where
the hardest instances are within timetabling problems. However, they observed
that adding this measure is not helpful in guiding Genetic Algorithms toward
promising areas of the search space. Based on the above work, they investigated
the non-direct coding in Genetic Algorithms [150], where solution construction
strategies and heuristics rather than the actual solutions were coded (e.g. config-
urations of constraint satisfaction methods, ordering of nodes being assigned and
heuristics dealing with constraints). Promising results obtained by this approach
on the Toronto datasets indicated the potential of non-direct representations in
Genetic Algorithms.

Erben [83] (2001) developed a grouping Genetic Algorithm where appropri-
ate encoding, specially designed crossover and mutation operators, and fitness
functions were studied. Genes were grouped for each color in graph coloring prob-
lems (which model the exam timetabling problems with only hard constraints).
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Although the results were not competing with the best, the approach requires
less computational time than some of the methods in the literature. It also stud-
ied, from a different aspect, the important issue of representations in designing
Genetic Algorithms.

Sheibani [145], in 2002, built a special mathematical model and developed
a standard Genetic Algorithm for solving exam timetabling problems in train-
ing centers with the objective of maximising the intervals between the exams.
An activity-on-arrow network was employed to estimate the closeness between
exams, which was used in the fitness function in the Genetic Algorithm.

Wong, Cote and Gely [159] (2002) discussed some issues concerning their
implementation of a Genetic Algorithm for solving an exam timetabling problem
at Ecole de Technologie Superieure, which was modelled as a Constraint Satis-
faction problem. Tournament selection was used to select parents, and repairing
strategies were incorporated with mutation to produce better candidates. In
2005, Cote, Wong, and Sabourin [64] investigated a bi-objective evolution-
ary algorithm with the objectives of minimising timetable length and spacing
out conflicting exams. Two local search operators (a classic Tabu Search and a
simplified Variable Neighbourhood Descent), instead of recombination operators,
were employed to deal with hard and soft constraints. The approach obtained
competitive results on a number of benchmark problems against some of the
methods in the literature (e.g. [55, 41, 111]). The paper also provided a review
on all the state-of-the-art approaches on the Toronto datasets at the time.

Ulker, Ozcan and Korkmaz [154] (2007) developed a Genetic Algorithm
where Linear Linkage Encoding was used as the representation method. Different
crossover operators were investigated in conjunction with this representation on
benchmark graph coloring and exam timetabling problems with hard constraints
(Toronto variant a). Promising results indicated that this encoding with appro-
priate genetic operators was a viable search methodology.

2.4.2 Memetic Algorithms

Memetic algorithms [116] are an extension of Genetic Algorithms whose basic
idea is that individuals in a population can be improved during their lifetime
(i.e. within a generation). This is often implemented by employing local search
methods (in the form of hill climbing or repairing strategies, etc) on individual
members of a population between generations. Burke and Landa Silva [35]
discussed a number of issues concerning the design of memetic algorithms for
scheduling and timetabling problems. Recent research ideas and future directions
on this topic were presented.

The ability to explore the search space by employing a population based
method and exploit region of it by using for local search enables such methods
to deal effectively with large complex problems. However, there is usually a
price to pay in terms of the computational time required. Also the right balance
between exploration and exploitation needs to be established [35]. There exists
a number of in-depth studies on memetic algorithms concerning structures of
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the search space and different ways of hybridising over a range of combinatorial
optimisation problems (e.g. see [119, 120]).

Burke, Newall and Weare [41] (1996) developed a Memetic Algorithm
where light and heavy mutation operators were employed to reassign single ex-
ams and sets of exams, respectively. Neither of these mutations on their own
provided substantial improvement on the solution quality. Hill climbing was used
to improve the individuals and to improve the quality of timetables although a
larger amount of computational time was required. Another contribution of this
paper was the introduction of a new set of benchmark exam timetabling prob-
lems (named as the Nottingham data and described in Section 3.2). These have
been widely used by a number of researchers in later work (see Tables 8 and 13).
The same authors also investigated the effects of diversity in initial populations
in memetic algorithms [42] (1998). To generate a high level of diversity in the
initial population, randomness was introduced by using different selection strate-
gies on graph heuristics (see [43]). Three diversity measures were also developed
to study the trade-off between the quality and diversity. It was shown that the
study of diversity in initialisation offered great potential benefits for memetic
algorithms. Burke and Newall [38] (1999) presented a heuristic methodology for
decomposing an exam timetabling problem into a series of sub-problems. They
used the memetic algorithm of [41] to address the sub-problems. This approach
is discussed in more details in the section on decomposition (Section 2.7).

2.4.3 Ant Algorithms

Ant Algorithms [71, 112] belong to the family of population based techniques.
They simulate the way ants search for the shortest route to food by laying
pheromone on the way. The shortest trails generate stronger levels of pheromone
over a period of time. In the algorithm, each ant is used to construct a solution
and information gained during the search is maintained as pheromone, which is
used to help generating solutions in the next stage. In exam timetabling, Ant
Algorithms represent relatively recently explored techniques and have not been
particularly widely studied. Relevant work does, however, exist on graph coloring
problems [63], where the frequency of the colors assigned for the vertices in the
solution construction were employed as the pheromone.

Naji Azimi [117] in 2004, implemented an Ant Colony System and com-
pared it with Simulated Annealing, Tabu Search and a Genetic Algorithm under
a unified framework for solving systematically designed exam timetabling prob-
lems. Initial solutions for the Ant Colony System were generated heuristically
and improved by local search afterwards. The results analyzed over the running
time indicated that the Ant Colony approach performed the best (although not
on all of the problems) and Tabu Search had the highest level of improvement
upon the initial solution randomly generated. Three variants of hybridisation
on Tabu Search and the Ant Colony method were then studied in [118]. It was
observed that the hybrid approaches work better than each single algorithm,
and the sequential Ant Colony System followed by Tabu Search obtained the
best results. However, only randomly generated data was used to test these al-
gorithms.
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Dowsland and Thompson in 2005 [79] developed Ant Algorithms based
on the graph coloring model studied in [63] for solving the Toronto a version
of the exam timetabling problem without soft constraints (i.e to find the lowest
number of timeslots). Extensive experiments were carried out to measure the
performance of the algorithm with different configurations. These include the
initialisation methods (i.e. recursive Largest Degree and Saturation Degree), trail
calculations, three variants of fitness functions and different parameter settings.
The results obtained were competitive to the others on the same dataset. It was
also observed that the initialisation methods had significant influence on the
solution quality. Extensions of the algorithm to incorporate other constraints (i.e.
time windows, seating capacities and second-order conflicts) were also discussed.

Eley [82] (2007) compared two modified ant algorithms based on the Max-
Min ant system for course timetabling [147], and the ANTCOL algorithm for
graph coloring problems [63]. It was observed that the simple ant system ANTCOL
outperformed the Max-Min ant system when both algorithms were hybridised
with a hill climber. The author also concluded that adjusting parameters can
considerably improve the performance of ant systems.

2.4.4 Artificial Immune Algorithms
Malim, Khader and Mustafa [107] (2006) studied three variants of Arti-

ficial Immune systems (a Clonal Selection Algorithm, an Immune Network Algo-
rithms and a Negative Selection Algorithm) and showed that the algorithms can
be tailored for both course and exam timetabling problems. However, there was
a problem with the results presented in this paper. They were (after publication)
found to represent an error in the code and, as such, are invalid.

In summary, evolutionary methods (particularly evolutionary hybrids) have
been very effective in providing high quality solutions to exam timetabling prob-
lem. Recent research has discussed the issues of encoding to deal with the prob-
lem structures that direct coding is not capable of dealing with. This opened up
a new research direction in Evolutionary Algorithms and has led to some of the
initial work in Hyper-heuristics (see Section 2.6). Multi-criteria techniques also
form an important research direction in the area of Evolutionary Algorithms for
exam timetabling problems. More details are discussed in the next section.

Ant Algorithms (see [79, 117]) and Artificial Immune Algorithms [107] have
been applied in exam timetabling with some initial observations. As relatively
new techniques, they represent some potential and should attract more attention
in the exam timetabling domain.

2.5 Multi-Criteria Techniques

In the majority of algorithms/approaches on timetabling, weighted costs of vi-
olations of different constraints are summed and used to indicate the quality
of the solutions. However, in real world circumstances, the constraints are of-
ten considered from different points of view by the different parties involved in
the timetabling process [53]. The simple sum of costs on different constraints
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cannot always take care of the situation in such cases. Multi-criteria techniques
have been studied recently in timetabling with the aim of handling different con-
straints easily by considering a vector of constraints instead of a single weighted
sum. In multi-criteria techniques, each criterion can be considered to correspond
to a constraint, which has a certain level of importance and is dealt with indi-
vidually. In some approaches, multiple stages have been employed to deal with
different objectives. Landa, Burke and Petrovic [102] provide a review of a
large number of scheduling and timetabling applications which employ multi-
criteria techniques.

Colijn and Layfield (1995) [58] applied a multi-stage approach for the exam
timetabling problem in the University of Calgary. In the 1st stage, individual
exams and whole sets of exams in timeslots were moved to reduce the number
of students who were sitting two exams in a row. In the 2nd stage, students
taking three and four exams in a row were considered using a similar process.
The authors also considered the cases where timetables have to be modified in
unforeseen circumstances [59] in the 2nd stage of the approach, which was a
highly interactive process within a visual interface where exams can be moved,
added or removed from the timetables.

Burke, Bykov and Petrovic [18] (2001) developed a two-stage multi-
criteria approach dealing with nine criteria in exam timetabling problems (e.g.
room capacity, proximity of exams, time and order of exams, etc). In the 1st

stage, Saturation Degree was used to generate a set of feasible solutions, where
each criterion was dealt with individually. The 2nd stage then heuristically im-
proved these solutions simultaneously. A multi-criteria method called Compro-
mise Programming [163] was used where the quality of the solutions was eval-
uated by the distance between them to an ideal point representing optimal so-
lutions concerning all criteria. This technique was further studied in [124] by
Petrovic and Bykov based on the Great Deluge algorithm [19]. A reference point
provided by users was used to draw a trajectory in the criteria space. The cri-
teria weights can be dynamically changed to guide the search, starting from
random points, towards the reference point. It aims at the ideal point in the
criteria space. However, the initial weights needed to be set were dependant on
the problems. Also the search was not guaranteed to converge. Published results
from [41] were used as the reference points of the approach and the final results
were better on some of the benchmark problems tested. These approaches pro-
vided the flexibility for timetablers to obtain desired solutions by managing the
weights of different constraints.

2.6 Hyper-heuristics

The dependence upon parameter tuning or the way of embedding domain knowl-
edge (i.e. the hard coding of hard and soft constraints) impacts upon meta-
heuristic development for examination timetabling. Some of the most effective
techniques on the benchmark data in the literature are meta-heuristics. How-
ever, most of these methods represent a tailor made approach for one particular
problem (in this case, exam timetabling). Such methods usually work poorly or
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are not capable of dealing with other problems. Indeed, it can be the case that
such methods do not work consistently across other exam timetabling problem
instances. Often, parameter tuning can play a significant role. The effort of tun-
ing parameters to fit new problems can be thought of as being as difficult as
that of developing new approaches. This well-known issue has led a number of
researchers to develop new technologies aimed at operating at a higher level of
generality.

Hyper-heuristics are motivated by such observations and are attracting an
increased level of research attention. The term can be seen as representing heuris-

tics that choose heuristics, i.e. a search space of heuristics is the focus of attention
rather than a search space of solutions (as is the case with most implementa-
tions of meta-heuristics [29, 135]). The aim is to develop more general approaches
rather than to beat the fine-tuned and problem specific approaches which often
require much effort on the tuning of parameters and are usually only appropriate
for specific problems.

As mentioned above in Section 2.4.1, Ross, Hart and Corne [137] suggested
that a Genetic Algorithm might be successfully employed in searching for a
good algorithms rather than specific solutions. In [150], Terashima-Marin,
Ross and Valenzuela-Rendon investigated using Evolutionary Algorithms
to search for solution construction strategies.

Ahmadi et al [5] in 2003 developed a Variable Neighbourhood Search to find
good combinations of parameterised heuristics for different exam timetabling
problems. Permutations of the low level heuristics (i.e. seven exam selection,
two timeslot selection and three room selection heuristics) and their associated
parameters (weights) were employed to construct solutions.

Ross, Marin-Blazquez and Hart [139] in 2004, developed a general steady
state Genetic Algorithm to search within a simplified search space of problem-
state descriptions to construct solutions. The search of the Genetic Algorithm
was on heuristics rather than actual solutions. Three different fitness functions
were tested. The descriptions of the problem state (corresponding to heuristics)
were experimentally studied with respect to these fitness functions. Promising
results for both the benchmark course and exam timetabling problems demon-
strated valuable potential research directions of this approach for a range of
problems.

Kendall and Hussin [96, 97] in 2005 investigated a Tabu Search hyper-
heuristic based on the work in [32] where both moving strategies and constructive
graph heuristics were employed as low level heuristics. The algorithms were
tested on exam timetabling problems from the MARA University of Technology
[95] and it was shown that it produced better results compared with solutions
that were generated manually.

Burke et al [23, 45] investigated employing Case-Based Reasoning (see [103]),
a knowledge based technique, as a heuristic selector for solving both course and
exam timetabling problems. In [45] (2006), knowledge discovery techniques were
employed to discover the most relevant features used in evaluating the similarity
between problem solving situations. The objective was to choose the best heuris-
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tics from the most similar previous problem solving situation to construct good
solutions for the problem in hand. The issue of defining the similarity between
exam timetabling problems has also been studied in [24] in terms of choosing the
best problem solving method. In [23] (2005), different ways of hybridising the
low level graph heuristics (with and without CBR) were compared for solving
the Toronto datasets. It was shown that employing knowledge based techniques
rather than randomly/systematically hybridising heuristics in a hyper-heuristic
framework presented good results. Yang and Petrovic [162] (2005) employed
Case-Based Reasoning to choose graph heuristics to construct initial solutions
for the Great Deluge algorithm and obtained the best results reported in the
literature for several Toronto instances at the time. Attribute graphs studied in
[36] were employed to model the constraints in the problems so that previous
problems with similar constraints were retrieved to solve the problems in hand
by reusing the most appropriate graph heuristics.

Burke et al [37] (2007) investigated using Tabu Search to find sequences of
graph heuristics to construct solutions for timetabling problems. A different num-
ber of low level graph heuristics were studied in this graph based hyper-heuristic
to adaptively assign the most difficult exams at different stages of solution con-
struction. It was observed that the greater the number of intelligent low level
heuristics, the better the performance may be. However, the size of the search
space will grow significantly. Thus, the computational time may be an issue.
The results on both course and exam timetabling problems were competitive
with the best state-of-the-art approaches reported in the literature and demon-
strated the simplicity and efficiency of this general approach. Qu and Burke
[126] further investigated the effect of employing different high level search algo-
rithms (i.e. Steepest Descent, Tabu Search, Iterated Local Search and Variable
Neighbourhood Search) in the unified graph based hyper-heuristic framework for
exam timetabling. Experimental results demonstrated that the hyper-heuristic
method employed upon the search space of graph heuristics was not crucial.
The characteristics of the neighbourhood structures and search space were anal-
ysed. It was shown that the exploration over the large solution space enabled
the approach to obtain good results on both the exam and course timetabling
problems.

Bilgin, Ozcan and Korkmaz [12] (2007) analysed 7 heuristic selection
methods and 5 acceptance criteria within a hyper-heuristic by conducting an
empirical study on both benchmark functions and exam timetabling problems.
They concluded that different combinations of selection methods and acceptance
criteria worked well on different problems, although some combinations worked
slightly better than others on the instances tested.

Ersoy, Ozcan and Uyar [73] (2007) studied hyper-heuristic approaches
where three hill climbers were applied in different orderings within a memetic
algorithm. During the memetic algorithm, individuals were evaluated to keep
track of the violations of each constraint type in the benchmark Toronto dataset.
The approaches were compared with self-adaptive memetic algorithm hyper-
heuristics with different heuristic selection and acceptance criteria. It was shown



27

that the memetic algorithm hyper-heuristic with a single hill climber at a time
performed the best among all the approaches tested.

In summary, various strategies and methodologies have been employed as the
high level selection methods in a hyper-heuristic framework to choose appropri-
ate low level heuristics. These low level heuristics might be either construction
or improvement heuristics. Such methods are laying the foundations of method-
ologies to automatically design and adapt timetabling heuristics. This has led
to some work on analysing the search space of heuristics (rather than in solu-
tions) with the goal of fundamentally understanding the search processes which
underpin this new perspective on timetabling research [126].

2.7 Decomposition/Clustering Techniques

The idea of decomposition is that large problems are broken into small sub-
problems, for which optimal or high quality solutions can be obtained by rela-
tively simple techniques as the search spaces of the sub-problems are significantly
smaller than that of the original problem [50]. Although it has had some success
[38], decomposition in timetabling has not attracted as much attention as might
be expected because of two drawbacks. Firstly, early assignments may lead to
later infeasibility, which was also a problem encountered in constructive methods
in the early days of timetabling research. Secondly, globally high quality solu-
tions may be missed as certain soft constraints cannot be evaluated when the
problems are decomposed. The clustering methods studied in early timetabling
research [53] can be seen as decomposition approaches in the sense that the
exams are decomposed into conflict-free or low-conflict groups. Another way of
decomposing the problems is by finding the largest clique in the graphs. This
was studied by Carter, Laporte and Chinneck [54] (1994) and employed in
their later work [55] (1996). Carter and Johnson [52] (2001) improved the
approach by assigning the exams in all of the almost-cliques as they potentially
represent the most difficult exams.

Burke and Newall [38] in 1999 investigated a decomposition approach by
using sequential heuristics to assign the first set of n exams which were mea-
sured as the most difficult ones by graph colouring heuristics (i.e. Color Degree,
Largest Degree, Saturation Degree - see Table 3). Backtracking and look-ahead
techniques were employed to avoid making early assignments which lead to later
infeasibilities. The exams assigned in previous stages were fixed and the sub-
problem at each stage was solved by the Memetic Algoritm developed in [41].
The algorithm dramatically reduced the time required and also produced high
quality solutions on the Toronto and Nottingham data. At the time of publi-
cation, this paper had some of the best results on the capacitated benchmark
problems (Toronto c in Section 3.2). The decomposition technique was actually
independent of the memetic timetabling algorithm which was used on each of
the decomposed subsets.

Lin [105] (2002) developed a multi-agent algorithm where problems were di-
vided into sub-problems and solved by each agent locally. A broker was used
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to solve the remaining schedules including those that were de-allocated from
local schedules. The global solutions were obtained by aggregating all the sched-
ules generated by the agents and the broker. Both the Toronto data and ran-
domly generated exam timetabling problems were tested and compared with the
method of [137]. The approach worked well on sparsely scheduled problems but
less well on dense problems.

Qu and Burke [127] in 2007 investigated an approach where exams were
adaptively decomposed into two sets (difficult and easy) by how difficult they
were to schedule in previous iterations of the solution construction. The complex-
ity of the problem is thus reduced as two smaller search spaces were concerned
while the overall quality of the timetables is also considered. The small portion
of difficult exams obtained by the approach were found to make a significant
contribution to the costs of the timetables generated. The approach obtained
the best result on one of the problem instances at the time of publication (see
Toronto c in Section 3.2).

3 Examination Timetabling Benchmark Data

The high level of research interest in examination timetabling has led to the
establishment of a variety of different benchmark problems which have been
widely studied. The established benchmarks, with variants of standard defined
measures, have provided a way for meaningful scientific comparisons and the
exchange of research achievements. However, there has been some confusion in
the literature due to the circulation of two different versions of eight of these
benchmark problems (from the University of Toronto datasets). One of the goals
of this paper is to eradicate this confusion by establishing new names for each of
the different versions. This, of course, means that we actually have 21 problems
that have been studied in the literature (rather than 13). Another aim of this
section of the paper is to summarise which of the methods that have appeared in
the literature are the best on these benchmarks. This is particularly important
given the confusion mentioned above.

3.1 University of Toronto Benchmark Data

Carter, Laporte and Lee [55] in 1996 introduced a set of 13 real-world exam
timetabling problems from three Canadian highs schools, five Canadian uni-
versities, one American university, one British university and one university in
Saudi Arabia. Over the years they were widely employed as testbeds in exam
timetabling research. As mentioned above, there has been an issue concerning
the circulation of different sets under the same name. This is discussed at length
below.

In the problem, to indicate the density of the conflicting exams in each of
the instances, a Conflict Matrix C was defined where each element cij = 1 if
exam i conflicts with exam j (have common students), or cij = 0 otherwise. The
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Conflict Density represents the ratio between the number of elements of value
“1” to the total number of elements in the conflict matrix.

Two variants of objectives were defined in the original dataset:

– to minimise the number of timeslots needed for the problem (graph coloring)
(named as Toronto a in Table 5); and

– to minimise the average cost per student (named as Toronto b in Table 5).

For the 1st objective, the aim is to find feasible timetables of the shortest
length. For the 2nd objective, an evaluation function was defined to calculate
the cost of the timetables generated. For students sitting two exams s timeslots
apart, the cost was assigned using proximity values ws, i.e. w1=16, w2=8, w3=4
w4=2, and w5=1. The aim is to space out the conflicting exams within a limited
number of timeslots. The authors also introduced seven real world applications
with side constraints (i.e. maximum room capacity per timeslot, pre-assigned
exams, maximum number of exams per timeslot, no x exams in y timeslots,
etc). This objective was modified later and tested by a number of approaches
(see below).

During the years, however, two versions of the data were circulated and were
tested by different approaches. To distinguish the data tested and to build a
standard benchmark for future use in timetabling, we have carefully examined
the data that has appeared in two different forms under the same name for eight
of these benchmark problems. We list the characteristics of these two versions of
data in Table 4. We have post-fixed “I” and “II”, respectively, to the circulated
datasets to distinguish between them. The post-fix “I” has been used for the
problem instance which we believe has appeared most often in the literature.
For the problem instances of post-fix “II”, some confusion occurred as three of
the instances (car91 I, car92 II and pur93 II) have conflicts on the number of
enrolments (i.e. a different number of enrolments defined in two data files for
each instance, see Table 4). Later on in this section we attempt to cast light
on the question of which technique has been applied, to which version of these
instances in the literature.

To avoid any further confusion, the definitive versions of these datasets are
available at http://www.asap.cs.nott.ac.uk/resources/data.shtml (together with
all the other datasets discussed in this paper).

Burke, Newall and Weare [41] in 1996 modified the objective of the six
real world problems introduced in [55] by considering the maximum room capac-
ity per timeslot, and adjacent exams on the same day. In 1998 [42], timeslots in
the problems were distinguished by setting three timeslots a day from Monday
to Friday and one timeslot on Saturday. The objective is to minimise the stu-
dents sitting two consecutive exams on the same day and overnight. These two
variants are named as a Toronto c and Toronto d in Table 5. Terashima-Marin
et al in 1999 [150] modified the dataset by assigning, to each problem instance,
an estimated number of timeslots and to each timeslot an estimated maximum
seats/capacity. This variant is named Toronto e in Table 5.

The approaches developed and tested on different variants of the Toronto
datasets during the years are listed in Table 6 (ordered by the year in which the
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Table 4. Characteristics of the two versions of the Toronto benchmark datasets.

Problem Exams Students Enrolments Conflict Timeslots
Instance Density

car91 I 682 16925 56877 0.13 35
car91 II 682 16925 56242/56877 0.13 35
car92 I 543 18419 55522 0.14 32
car92 II 543 18419 55189/55522 0.14 32
ear83 I 190 1125 8109 0.27 24
ear83 II 189 1108 8014 0.27 24
hec92 I 81 2823 10632 0.42 18
hec92 II 80 2823 10625 0.42 18
kfu93 461 5349 25113 0.06 20
lse91 381 2726 10918 0.06 18
pur93 I 2419 30029 120681 0.03 42
pur93 II 2419 30029 120686/120681 0.03 42
rye92 486 11483 45051 0.07 23
sta83 I 139 611 5751 0.14 13
sta83 II 138 549 5689 0.14 13
tre92 261 4360 14901 0.18 23
uta92 I 622 21266 58979 0.13 35
uta92 II 638 21329 59144 0.13 35
ute92 184 2749 11793 0.08 10
yor83 I 181 941 6034 0.29 21
yor83 II 180 919 6012 0.29 21

Table 5. Variants of the Toronto Benchmark Datasets.

Variants Objectives

Toronto a graph coloring to minimise the number of timeslots needed

Toronto b un-capacitated with cost to space out conflicting exams within limited
(fixed number of) timeslots

Toronto c capacitated with cost to minimise students sitting two exams in a
row on the same day

Toronto d capacitated with same as above, and to minimise students sitting
modified cost two exams overnight

Toronto e estimated capacity and to minimise students sitting two adjacent exams
timeslots on the same day
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work was published). The values in “()” following the variants of the data give
the number of problem instances tested by the corresponding approaches. Most
of the work did not specify the exact characteristics of the data tested, and in
many of the papers it is impossible to determine which version (I or II) of the
data was tested (for the eight problematical instances). We have attempted, in
Table 10 (by contacting the authors), to clarify which versions of the datasets
were used in each paper. If the entries are written in italics, we are not absolutely
sure that the information with respect to this issue is correct. Otherwise, we have
had the situation confirmed by the authors concerned.

3.2 University of Nottingham Benchmark Data.

Burke, Newall and Weare [41] in 1996 also introduced the 1994 exam timetab-
ling data at the University of Nottingham as a benchmark. It was used later
by a number of researchers to test different approaches. Table 7 presents the
characteristics of the dataset. We know that 23 is the least possible number
of timeslots due to the limitations on the room capacity. The objective is to
minimise the students sitting two consecutive exams on the same day. The data
can be downloaded from http://www.asap.cs.nott.ac.uk/resources/data.shtml.

In [42] (1998), the above problems were further constrained by modifying the
objective function to consider also consecutive exams overnight. In Table 7 we
highlight these variants as Nottingham a and b. Table 8 presents the approaches
applied to these datasets and the University of Melbourne datasets (see section
3.3 below) in the literature.

3.3 University of Melbourne Benchmark Data

Merlot et al [111] introduced exam timetabling datasets from the Univer-
sity of Melbourne at the PATAT conference in 2002. Two datasets were in-
troduced. For these datasets, there were two timeslots on each day for each of
the five workdays, and the capacity for each session varied. The availability of
sessions for some of the exams was restricted. In one problem instance, this
meant that no feasible solutions existed, so an alternative data set was created
which allowed feasible solutions. These datasets can also be downloaded from
http://www.asap.cs.nott.ac.uk/resources/data.shtml. The Melbourne datasets
are summarised in Table 9.

3.4 Results on the Benchmark Problems

As mentioned above, there has been a large number of papers published which
have worked with the datasets discussed above. In addition, the difficulties sur-
rounding the publication of the Toronto datasets have led to some confusion over
which methods were tackling which problems. Tables 10-12 attempt to clarify
this. They list all of the methods which have addressed the Toronto problems and
they attempt to illustrate which methods used which problems. This has been
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Table 6. Approaches to the Toronto Benchmark Datasets.

Reference Approach/Technique Problem

Carter et al Graph heuristics with clique initialisation and a(13), b(13)
[55] 1996 backtracking

Carter&Johnson Almost cliques with sufficient density as the a(13)
[52] 1996 initialisation for graph heuristics

Burke et al Memetic algorithm with hill climbing and light and c(5)
[41] 1996 heavy mutation

Burke et al Different initialisation strategies in Memetic d(3)
[42] 1998 Algorithms measured by diversity

Burke et al Non-determinisms introduced by selection strategies d(3)
[43] 1998 in graph heuristics

Burke&Newall Multi-stage Evolutionary Algorithm based on d(3)
[38] 1999 memetic algorithm

Terashima Genetic Algorithm with in-direct coding of e(12)
-Marin et al constructive strategies and heuristics
[150] 1999

Caramia et al Iterated algorithm with novel improving factors a(13), b(13),
[49] 2001 c(5)

Di Gaspero [75] Adaptive tabu list and cost function in Tabu Search b(11), c(5),
&Schaerf 2001 d(3)
Di Gaspero Multiple neighbourhood Tabu Search b(7),d(3)
[74] 2002

White&Xie [157] Tabu Search with long term memory b(2)
[158] 2001&2004 Relaxation on long and short term tabu lists b(7)

Paquete& [121] Tabu Search with Lex-tie and Lex-seq strategies in b(8)
Stutzle 2002 the objective function

Merlot et al Constraint programming as initialisation for a(12), b(12),
[111] 2003 Simulated Annealing and hill climbing c(5), d(2)

Casey& [56] GRASP with modified Saturation Degree b(10)
Thompson 2003 initialisation and Simulated Annealing improvement

Burke&Newall Great Deluge with adaptive ordering as the b(11)
[39] 2003 initialisation

Burke&Newall Graph heuristics with adaptive heuristic modifier to b(11), d(3)
[40] 2004 dynamically order the exams

Burke&Bykov Time-predefined Great Deluge and Simulated b(13), d(2)
et al [19] 2004 Annealing

Asmuni et al Fuzzy rules with Largest Degree, Saturation Degree b(12)
[8] 2005 and Largest Enrolment
[9, 10] 2007 Fuzzy evaluation function with multiple criteria b(12)

and tuning on fuzzy rules on improved model

Ross et al Genetic Algorithm evolving constructive strategies e(12)
[139] 2004 and heuristics

Burke et al Hybridising graph heuristics in hyper-heuristic by b(4)
[23] 2005 CBR and systematic strategies

Cote et al Bio-objective Evolutionary Algorithm with local b(12)
[64] 2005 search operators in the recombination process

Kendall&Hussin Tabu Search based hyper-heuristic b(8)
[96] 2005

Yang&Petrovic Similarity measure using fuzzy set on selecting b(12)
[162] 2005 hybridisations of Great Deluge and graph heuristics

Burke et al Genetic Algorithms on selecting subset of b(11)
[25] 2006 neighborhoods in Variable Neighborhood Search
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Table 6. (cont.) Approaches on the Toronto Benchmark Datasets.

Reference Approach/Technique Problem

Burke et al Case based heuristic selection for the solution b(11)
[45] 2006 construction

Malim et al Three variants of artificial immune algorithms a(5)
[107] 2006

Abdullah et al Large neighbourhood search with tree-based b(12), c(5)
[3] 2007 neighbourhood structure
[4] 2007 Tabu Search based large neighborhood search c(5)

Burke et al Graph based hyper-heuristic using Tabu Search b(11)
[37] 2007
Qu&Burke Graph based hyper-heuristic framework with different b(11)
[126] 2006 high level search algorithms

Qu&Burke Adaptive decomposition on the ordering of exams to b(11)
[127] 2007 two sets of different difficulty level

Eley [82] 2007 Ant algorithms with hill climbing operators b(13)

Ulker et al Genetic algorithms with linear linkage encoding and a(12)
[154] 2007 specialised crossover operators

Ersoy et al Memetic algorithm hyper-heuristics with three hill b(6)
[73] 2007 climbers chosen adaptively or deterministically

Table 7. Characteristics of the Nottingham Benchmark Datasets.

Nottingham a Nottingham b

Exams 800 800
Students 7896 7896
Timeslots 23, 26 23
Enrolments 34265 34265
Conflicts 10034 10034
Capacity 1550 1550
Density 0.03 0.03
Objective minimise adjacent exams on the minimise adjacent exams on the same

same day day and overnight
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Table 8. Approaches on the Nottingham and Melbourne Benchmark Datasets.

Reference Approach/Technique Problem

Burke&Newall Adaptive ordering based on graph heuristics using Nottingham b

[40] 2004 heuristic modifier

Merlot et al Constraint logic programming as initialisation for Nottingham a,b
[111] 2003 Simulated Annealing and hill climbing Melbourne I II

Di Gaspero& Tabu Search using exhaust and biased selection Nottingham a,b
Schaerf [75] 2001 by the costs of exams

Burke et al Great Deluge with a number of runs of Saturation Nottingham b

[19] 2004 Degree

Caramia et al Iterative approach where the number of timeslots Nottingham a

[49] 2001 was gradually increased after greedy improvement

Ahmadi et al VNS to search permutations of heuristics and Nottingham a

[5] 2003 their weights

Cote et al Evolutionary algorithms with bio-objective Nottingham a

[64] 2005 constraint satisfaction Melbourne I

Burke et al Memetic algorithms with light & heavy mutations Nottingham a

[41] 1996 graph heuristic initialisation

Burke&Newall Multi-stage evolutionary algorithm initialised by Nottingham b

[38] 1999 graph heuristics with backtracking

Burke et al Multi-criteria approach dealing with 9 criteria Nottingham b

[18] 2001 based on initial solutions by Saturation Degree

Table 9. Characteristics of the Melbourne Benchmark Datasets.

Exams Timeslots Students Enrolls Objective

I 521 28 20656 62248 minimise adjacent exams on the same day
or overnight

II 562 31 19816 60637 same as above

a difficult task and the authors would welcome additional information which we
will use to keep an updated version of the table at
http://www.asap.cs.nott.ac.uk/resources/data.shtml. We would like to add more
methods as they appear.

Table 13 presents the results from different approaches applied to the Not-
tingham datasets a and b (see Table 7) and the Melbourne datasets I and II

(see Table 7) in the literature.

Tables 10-13 also illustrate which of the methods are most effective in terms of
solution quality. The very best results are presented in bold. We have not listed
computational times for the following reasons. Firstly, many of these papers
do not report the relevant times. Secondly, comparisons across very different
platforms over the years are impossible. Thirdly, examination timetabling is a
problem which is almost always tackled weeks or months before the timetable
will be used. As such, it is definitely not a time critical problem and there are
many real world scenarios where it would be perfectly reasonable to leave an
algorithm running overnight or even over a weekend.
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Table 10. Results in the literature on the two versions of the Toronto Dataset b (see
Table 5). Values in italics indicate that we are unsure about the accuracy in terms of
the versions of the datasets used. Values in bold represent the best results reported.
“-” indicates that the corresponding problem is not tested or a feasible solution cannot
be obtained.

data Carter Caramia Di Gaspero Di Paquete Burke & Casey & Merlot
set et al. et al. & Schaerf Gaspero & Stutzle Newall Thompson et al.
version (1996) (2001) (2001) (2002) (2002) (2003) (2003) (2003)
I/II [55] I [49] I [75] I [74] I [121] I [39] I [56] II [111] I

car91 7.1 6.6 6.2 5.7 - 4.65 5.4 5.1
car92 6.2 6.0 5.2 - - 4.1 4.4 4.3
ear83 36.4 29.3 45.7 39.4 38.9 37.05 34.8 35.1
hec92 10.8 9.2 12.4 10.9 11.2 11.54 10.8 10.6
kfu93 14.0 13.8 18.0 - 16.5 13.9 14.1 13.5
lse91 10.5 9.6 15.5 12.6 13.2 10.82 14.7 10.5
rye92 7.3 6.8 - - - - - -
sta83 161.5 158.2 160.8 157.4 168.3 168.73 134.9 157.3
tre92 9.6 9.4 10.0 - 9.3 8.35 8.7 8.4
uta92 3.5 3.5 4.2 4.1 - 3.2 - 3.5
ute92 25.8 24.4 27.8 - 29.0 25.83 25.4 25.1
yor83 41.7 36.2 41.0 39.7 38.9 37.28 37.5 37.4

Table 10. (cont.) Results in the literature on the variants of the Toronto Dataset b.
The value marked with * here is different from that in [162], as a different objective
function was used in [162].

data Burke & Burke Asmuni Cote Kendall Yang & Abdullah Burke Burke Eley
set Newall et al. el al et al & Hussan Petrovic et al et al et al
version (2004) (2004) (2005) (2005) (2005) (2005) (2007) (2007) (2006) (2007)
I/II [40] I [19] I [8] I [64] I [96] I [162] I [3] I [37] I [25] I [82] I

car91 5.0 4.8 5.19 5.4 5.37 4.5 5.2 5.36 4.6 5.2
car92 4.3 4.2 4.51 4.2 4.67 3.93 4.4 4.53 4.0 4.3
ear83 36.2 35.4 36.64 34.2 40.18 33.7 34.9 37.92 32.8 36.8
hec92 11.6 10.8 11.6 10.4 11.86 10.83 10.3 12.25 10.0 11.1
kfu93 15.0 13.7 15.34 14.3 15.84 13.82 13.5 15.2 13.0 14.5
lse91 11.0 10.4 11.35 11.3 - 10.35 10.2 11.33 10.0 11.3
rye92 - 8.9 10.05 8.8 - 8.53 8.7 - - 9.8
sta83 161.9 159.1 160.79 157.0 157.38 158.35* 159.2 158.19 159.9 157.3
tre92 8.4 8.3 8.47 8.6 8.39 7.92 8.4 8.92 7.9 8.6
uta92 3.4 3.4 3.52 3.5 - 3.14 3.6 3.88 3.2 3.5
ute92 27.4 25.7 27.55 25.3 27.6 25.39 26.0 28.01 24.8 26.4
yor83 40.8 36.7 39.79 36.4 - 36.35 36.2 41.37 37.28 39.4
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Table 11. Results in the literature on the Toronto Dataset I, variants a (left column)
and e (right column).

data Carter Caramia Merlot Ulker Terashima-Marin Ross
set et al. et al. et al. et al et al et al

[55] (1996) [49] (2001) [111] (2003) [154] (2007) [150] (1999) [139] (2004)

car91 28 28 30 36 130 283
car92 28 28 31 36 285 542
ear83 22 22 24 23 723 958
hec92 17 17 18 17 154 224
kfu93 19 19 21 20 223 226
lse91 17 17 18 17 221 263
rye92 21 21 22 23 671 832
pur93 35 36 - - - -
sta83 13 13 13 13 821 1058
tre92 20 20 21 21 586 604
uta92 32 30 32 38 594 855
ute92 10 10 11 10 902 967
yor83 19 19 23 20 708 758

Table 12. Results in the literature on the Toronto Dataset I, variants c (upper part)
and d (lower part). Values marked with † are for car91 with 51 timeslots; values marked
with ‡ and + are for car92 with 40 timeslots and 31 timeslots, respectively.

dataset car91 car92 kfu93 tre92 uta92 pur93

Burke et al (1996) [41] 81† 331‡ 974 3 772 -
Caramia et al (2001) [49] 74† 268‡ 912 2 680 -

Di Gaspero&Schaerf (2001) [75] 88† 424+ 512 4 554 -
Merlot et al (2003) [111] 31† 158+ 247 0 334 -
Abdullah et al (2007) [3] 37† 278+ 548 0 300 -
Abdullah et al (2007) [4] 47† 525+ 206 4 310 -

Burke et al (1998) [43] - 2218 3256 - 2440 -
Burke&Newall (1999) [38] - 1665 1388 - - 63824

Di Gaspero&Schaerf (2001) [75] - 3048 1733 - - 123935
Merlot et al (2003) [111] - 1744 1082 - - -

Burke&Newall (2004) [40] - 1775 1422 - - 97237
Burke et al (2004) [19] - 1506 1321 - - -
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Table 13. Results on the Nottingham Datasets a and b and the Melbourne Datasets
I and II. Values in bold represent the best results reported. “-” indicates that the
corresponding problem is not tested or a feasible solution cannot be obtained.

Burke et al Di Gaspero&Schaerf Caramia et al Merlot et al Abdullah et al
Nottingham [41] (1996) [75] (2001) [49] (2001) [111] (2003) [4] (2007)

a 53 11 44 2 18
(26 slots)

a 269 123 - 88 -
(23 slots)

Burke& Di Gaspero Merlot et al Burke& Burke et al
Newall &Schaerf [111] (2003) Newall [19] (2004)

[38] (1999) [75] (2001) [40] (2004)

b 519 751 401 545 384

Merlot et al
Melbounre [111] (2003)

I 1072
II 1115

4 Conclusions

4.1 Overview of Recent Research

Timetabling research started with simple sequential techniques in the 1960s.
Constraint based techniques appeared later and still play a significant role in
timetabling today. Recent research in exam timetabling is dominated by meta-
heuristics and their integrations/hybridisations with a variety of techniques, in-
cluding many of the early techniques. Local search based techniques, multi-
criteria techniques and approaches which aim to be more general than the state
of the art have also represented important research outcomes.

Recent innovations have utilised different mechanisms in exam timetabling
and they cover a variety of new techniques including Variable Neighbourhood
Search, Iterated Local Search, GRASP, and hyper-heuristics with the aim of
developing more powerful, efficient, effective and more general approaches.

In the following section we will draw upon the above discussion to highlight
a number of conclusions and to present some ideas for future research which
are generated by these conclusions. It is worth noting that McCollum [108] and
Burke et al [22] outline some future research directions in University timetabling
and nurse rostering, respectively. There is, of course, some synergy with issues
discussed in both these papers and these are alluded to here.

4.2 Future Research Directions

We will now outline some overall messages from our analysis of the literature
and how these may influence future research directions. The following discussion
presents a (non-exhaustive) list of future research directions.
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4.2.1 (1) Meta-heuristic Development:

Meta-heuristics have attracted the most research attention in exam timetabling
research. They will continue to attract attention in the near future across a
number of different perspectives. In particular, it is important to explore these
research directions within the context of real world problem solving environ-
ments.

In addition to a comprehensive treatment of Tabu Search, Simulated An-
nealing, Genetic Algorithms and various hybrids, some new exam timetabling
techniques have recently been presented. For example, GRASP and Iterated
Local Search build on the similar idea of exploring wider areas of the search
space by using a multi-start greedy search technique to reduce the risk of being
stuck in local optima. Variable Neighbourhood Search escapes from local op-
tima by switching between the search spaces defined by different neighbourhood
structures. Large neighbourhood search fulfils this by extending the flexibility
of moves within the search space. In summary, these techniques extend the idea
of helping the search to escape from local optima in a variety of ways and have
obtained promising progress on a wide range of exam timetabling problems.

The development of these new techniques has opened up a wide variety of
new research directions such as exploring alternative neighborhood structures,
new multi-start techniques, hybridisation issues, alternative operators and many
others. One of the key research goals is to provide an appropriate balance between
exploration and exploitation in search algorithms.

Extensive study is also required to understand how to determine appropriate
parameter settings for meta-heuristic methods. The determination of suitable
initialisation methods and in-depth analysis of the effects of initialisation on a
range of meta-heuristics is another important exam timetabling research topic.
Theoretical issues (such as phase transition) and multi-criteria techniques rep-
resent other important directions in meta-heuristic exam timetabling research.
Evolutionary methods and other population based techniques represent a signif-
icant proportion of the meta-heuristic literature on exam timetabling. There are
many research directions generated by considering the hybridisation of meta-
heuristic methods particularly between population based methods and other
approaches. A study of coding issues represents a new and promising direction
in both evolutionary algorithms and hyper-heuristic research.

4.2.2 (2) Raising the Level of Generality of Search Methodologies:

More general and adaptive techniques have been explored and present promising
future directions in establishing more generic search systems (which range across
timetabling and other search problems).

Hyper-heuristics are concerned with searching for appropriate heuristics rather
than concentrating on the problem specific details of actual solutions, which have
been the focus of traditional search algorithms. This opens up a new direction of
research and represents much potential in both practical applications and theo-
retical study. Adaptive techniques have also recently emerged where information
collected during the problem solving is used to guide the search. Some work has
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been carried out on knowledge based techniques where the experience from previ-
ous problem solving drives the search. Further investigation of knowledge based
techniques has the promise to underpin the development of fundamentally more
general approaches. The goal is to deal automatically with different problems in a
dynamic way so that extra human effort is not needed to fine-tune the approach.

4.2.3 (3) Understanding Search Spaces:

We do not understand why and how search methods work on complex prob-
lems. An analysis of heuristics/techniques concerning the nature of search spaces
could be beneficial. It is generally accepted that little is known about the na-
ture of search spaces, especially for complex real-world problems such as exam
timetabling. A deeper understanding of search spaces and fitness landscape anal-
ysis is [130] which offers the possibility of understanding why certain algorithms
work well on certain problems (or even instances) and yet work poorly on others.
This is not restricted to exam timetabling but covers a much broader remit of
problems.

4.2.4 (4) Inter-disciplinary:

Hybridisations of different techniques have been very widely investigated in re-
cent exam timetabling research.

Although different authors have favored different approaches, it has been
observed that hybrid approaches are usually superior to pure algorithms. For
example, all of the recent work on constraint based techniques represent hybridi-
sation with other techniques (see Section 2.2). However, in most of the cases,
methodologies are hybridised in a sequential way rather than being efficiently
integrated. More work needs to be done to not just simply combine but rather
more meaningfully integrate different methodologies efficiently. Such research
should draw upon research theme 4.2.3. For example, in memetic algorithms,
local search is used co-operatively after each generation. In a hyper-heuristic,
one approach taken is that low level heuristics are searched and combined adap-
tively during the problem solving. Further in-depth analysis and investigation
can underpin the design and development of more powerful techniques.

4.2.5 (5) Closing the Gap between Theory and Practice:

New benchmark examination timetabling problems have been formed and thor-
oughly tested. Reformulations of problems will better reflect more constraints in
real world environments.

Recent state-of-the-art approaches in exam timetabling research have car-
ried out comparisons on the benchmark problems (see Section 3) that have
appeared over the last ten years. This has led to fundamental developments
in exam timetabling research. However, these problems still represent simpli-
fied versions of the problem. In the wider context of scheduling research, there
has been much recent debate about the “gap between theory and practice”.
The same is true for exam timetabling research. A major research direction is
represented by exploring the wide range of research issues that are opened up
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by considering the high levels of complexity that are generated by real world
problems [108]. In addition, there still is no widely accepted universal data for-
mat and standard timetabling languages. The establishment of quality mea-
sures by standard techniques on both solution quality (objective functions) and
computational time for exam timetabling problems also requires much work
and is crucial in conjunction with the formation of benchmarks. The require-
ments for the development of automatic tools to support timetabling staff to
save significant development time still exists. To encourage such development,
we are building up an archive where benchmark exam timetabling problems are
collected, together with a categorised updated timetabling bibliography (after
1995). We welcome contributions to this exam timetabling archive. It is held at
http://www.asap.cs.nott.ac.uk/resources/ETTPbibliography.shtml.

4.3 Summary

In summary, it is possible to draw a number of conclusions from an in-depth sur-
vey of the examination timetabling literature in the last ten years. Firstly, there
has been a significant number of research successes in that time. Secondly, the
current state of the art provides a strong platform from a range of important
research directions. Thirdly, future research requires a particular emphasis on
the complexity of real world issues and this requires the establishment of more
benchmarks that are drawn from real world problems. Fourthly, raising the level
of generality of decision support systems (including for exam timetabling) rep-
resents an emerging theme. Finally, it is worth noting that successful papers
in exam timetabling have been authored by researchers from which to explore
a range of disciplinary backgrounds and particularly at the interface of Opera-
tional Research and Artificial Intelligence. Such interdisciplinary collaboration
is crucial to scientific progress in the area. It is clear from this analysis of the
literature that the future of exam timetabling research is inter-disciplinary.
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Appendix B. Summarising Tables Categorised by
Techniques in Examination Timetabling

In this appendix, the research methods in the exam timetabling literature are
categorised in a series of tables by the approaches and techniques they employed.
Work by the same authors was grouped in the tables to represent the continuous
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development of a line of investigation. The content of the tables is ordered by the
year of publication to represent the development of related techniques over the
years. In the tables, the term “practical” indicates that the corresponding work
was tested/implemented on real world problems. “-” indicates that the corre-
sponding properties were not presented in the paper. “Toronto”, “Nottingham”
and “Melbourne” refer to the benchmark problems described in Section 3.

Table 14. Graph Colouring Heuristics for Examination Timetabling.

Reference Techniques Problems

Carter et al Largest cliques as the initialisation for graph heuristics Toronto,
[55] 1996 with backtracking random

Burke et al Biased and tournament selection that introduce non- Toronto
[43] 1998 determinism to graph heuristics

Carter& [52] Almost cliques that are sufficiently dense as the Toronto
Johnson 2001 initialisation for graph heuristics

Burke& Adaptive heuristic modifier based on Largest Degree, Toronto,
Newall [40] Colour Degree and Saturation Degree that dynamically Nottingham
2004 order the exams

Table 15. Constraint Based Techniques.

Reference Techniques Problem Notes

David Iterative approach, repairing strategies on Practical
[65] 1998 partial solutions generated by constraint

satisfaction model

Reis&Oliveira Constraint satisfaction model, set variables Random, ECLiPSe
[131] 1999 practical package

Merlot et al Constraint logic programming as initialisation Toronto, OPL
[111] 2003 for Simulated Annealing and hill climbing, Nottingham language

labeling: by the size of domain Melbourne

Duong& Constraint programming with Simulated Practical
Lam [67] Annealing, backtracking & forward checking
2004 Labeling: by the size of domain, number of

students, etc
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Table 16. Tabu Search.

Reference Moving Strategies Tabu Problem Notes
List

Di Gaspero Exhaustive and biased Adaptive Toronto, Greedy initialisation
&Schaerf selection on exams causing Nottingham Dynamic cost function,
[75] 2001 costs employing the
[74] 2002 Token ring search with 3 Adaptive Toronto EASYLOCAL++

neighbourhood structures tool

White&Xie Moves on single exams Long and practical, 4-stage Tabu Search
[157, 158] short term Toronto Largest enrollment
2001&2004 memory initialisation

Paquete& Moves on single exams Adaptive Toronto Ordered priorities for
Stutzle causing costs constraints
[121] 2002

Table 17. Simulated Annealing.

Reference Moving Initialisation Problem Notes
Strategies

Thompson& Kempe Random Practical and derived Two-phase
Dowsland chain problems approach
[152] 1998

Bullnheimer Slot&exam - Practical Aadapted model
[17] 1998 moves of QAP

Merlot et al Kempe Constraint Toronto, Melbourne, Geometric cooling
[111] 2003 chain programming Nottingham schedule

Duong&Lam Kempe Constraint Practical Components set
[67] 2004 chain programming experimentally

Burke et al Moves on A number of runs Toronto, Nottingham Time-predefined
[19] 2004 single of Saturation Great Deluge

exams Degree

Table 18. Local Search Based Techniques (other than Tabu Search and Simulated
Annealing).

Reference Techniques Problem

Caramia et al Iterative process, the number of timeslots was Toronto,
[49] 2001 gradually increased after greedy improvement Nottingham

Ahmadi et al Search on permutations of heuristics and their weights Extended
[5] 2003 by Variable Neighbourhood Search Nottingham

Casey& GRASP: Saturation Degree as initialisation, Toronto
Thompson backtracking, improvement by modified Simulated
[56] 2003 Annealing with Kempe chain neighbourhood

Abdullah et al Large neighbourhood search with cyclic exchanges Toronto
[3] 2007 of exams among timeslots

Qu&Burke Variable Neighbourhood Search as the high level Toronto
[126] 2005 search upon graph heuristics
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Table 19. Evolutionary Algorithms.

Reference Operators Problem Notes

Ross et al Standard Special graph Phase transition, compared
[136] 1996 coloring problems with stochastic hill climbing
[137] 1998 As above Special graph Issues of direct coding in

Genetic Algorithms

Terashima- Clique-based Special classes of Issues of direct coding in
Marin et al crossover graph coloring Genetic Algorithms
[148] 1999 problems
[149] 1999 Standard two- As above Hardness theory
[150] 1999 point crossover Toronto Indirect coding of heuristics

rather than actual solutions

Erben [83] Specialised Special graph Specialised fitness function
2001 operators coloring problems

Sheibani Standard Derived problems Special mathematical model to
[145] 2002 estimate costs

Wong et al Mutation with Practical Modelled as constraint
[159] 2002 heuristic repairing satisfaction problem

strategies
Cote et al Local search Toronto, Melbourne, Bio-objective constraint
[64] 2005 operators Nottingham satisfaction problems

Burke et al Light and heavy Toronto, Memetic algorithm with hill
[41] 1996 mutations Nottingham climbing, graph heuristics as

the initialisation
[42] 1998 As above Toronto Initial populations with different

diversities in memetic algorithm
Burke& As above Toronto, Multi-stage Evolutionary
Newall [38] Nottingham Algorithm initialised by graph
1999 heuristics with backtracking

Ulker et al Specialised Toronto Linear linkage encoding in
[154] 2007 crossover graph coloring multi-objective GA framework

Table 20. Ant Algorithms and Artificial Immune Algorithms.

Reference Initialisation Problems Notes

Naji Azimi Heuristic method Derived Local improvement, compared with
[117] 2004 Toronto Simulated Annealing, Tabu Search and

Genetic Algorithms
[118] 2005 Heuristic method As above Hybridisations with Tabu Search

Dowsland& Recursive Largest Toronto Modified fitness function based on [63],
Thompson Degree and trail calculation, parameter settings
[79] 2005 Saturation Degree

Eley [82] Inverse of Toronto Hybridisations with hill climbing to
(2007) Saturation Degree further improve the solutions

Malim et al Random Toronto & Clonal selection, immune network
[107] (2006) construction course and negative selection algorithms on

timetabling both course and exam timetabling
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Table 21. Multi-Criteria Techniques.

Reference Techniques Problems Notes

Colijn& Multi-stage process for Practical Matrices used to record
Layfield [58] different objectives the violations
[59] 1995 Interactive interface for Practical

unforseen circumstances

Burke et al Hill climbing and heavy mutation on Nottingham Deal with 9 criteria
[18] 2001 initial solutions by Saturation Degree

Petrovic Search by Great Deluge towards Nottingham Random initial
&Bykov ideal point guided by predefined Toronto solutions, dynamic
[124] 2003 trajectory in the criteria space weights

Table 22. Hyper-heuristics.

High level Low level Problem Notes
heuristic heuristic

Terashima Evolutionary Solution Toronto Study of in-direct codings
-Marin Algorithms construction
[150] 1999 strategies

Ahmadi Variable Constructive Extended Perturbations of low level
et al [5] Neighbourhood heuristics Nottingham heuristics and their
2003 Search &weights weights in heuristic space

Petrovic Case based Graph Toronto Reuse graph heuristics as
&Yang [162] reasoning heuristics initialisation methods
2005

Asmuni et al Fuzzy techniques 3 graph Toronto Different fuzzy membership
[8] 2004 heuristics functions

Kendall& Tabu Search Constructive, Practical Hybridise Tabu Search
Hussin moving with hill climbing and
[96] 2005 strategies Great Deluge

Ross et al Steady state Exams and Toronto, Simplified problem-state
[150] 2004 Genetic timeslots course descriptions mapped to

Algorithm picking timetabling constructive heuristics,
heuristics problems fitness functions

Burke et al Case based Graph Toronto, Heuristics mapped and
[45] 2005 reasoning heuristics course reused to problem solving

timetabling situations
[23] 2005 Case based As above Toronto Hybridise graph heuristics

reasoning by different methodologies

Burke et al Tabu Search Graph Toronto Different number of low
[37] 2007 heuristics level graph heuristics,

multi-stage approach
Qu&Burke Iterated Local As above Toronto Different neighbourhood
[126] 2005 Search, Variable and high level heuristics

Neighbourhood in the graph based hyper-
Search, etc heuristic

Bilgin et al Different (meta-) Variants of Modified Pairs of heuristic selection
[12] 2007 heuristics & hill climbers Toronto, and acceptance criteria

acceptance criteria functions for different problems
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Table 23. Decomposition Approaches.

Reference Techniques Problem Notes

Burke& Sequential methods Toronto Sub-problems solved by Memetic
Newall 1999 to partition the Nottingham Algorithms
[38] problems

Lin [105] Multi-agent Toronto Aggregate schedules from agents and
2002 algorithm random a broker

Qu&Burke Adaptive ordering Toronto Exams iteratively partitioned to two
[127] 2007 and decomposition sets of different difficulty

Table 24. Timetabling Systems.

Reference Techniques Problem Notes

Hansen& 4-phase process with different Danish high Centralised planning on
Vidal [90] objectives schools oral and written exams,
[91] 1995 GIA-system

Lim et al Constructive heuristic with National Exam and course
[104] 2000 3 measures, arc consistency Uni of timetabling, 3-tier

algorithm Singapore client/server application,
UTTS system

Ho et al Tabu Search with Push As above Maximise exam paper
[94] 2002 Forward Insertion heuristic spreading

Dimopoulou Integer Programming, Athens Uni Initial exam timetables
&Miliotis grouped courses assigned of Economic based on course timetables
[72] 2001 to grouped timeslots & Business and improved by heuristics

Table 25. Timetabling Languages and Tools.

Reference Languages/Tools Notes

Burke et al Similar to the Z Standard data format for easy exchange of
[33] 1998 specification results and comparisons in timetabling

language research

Tsang et al EaCL Easy specification of constraint satisfaction
[153] 1999 problems to support building Constraint

Satisfaction systems

Reis&Oliveira UniLang using a Timetabling problem specification in the
[132] 2001 list of synonyms ECLiPse package

Di Gaspero& EASYLOCAL++ Object-oriented software tool to support the
Schaerf [75] development of local search algorithms
2001

De Causmaecker Semantic Web, Machine accessible way of easy identification
et al [66] 2002 XML for timetabling problems


