-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Nottingham ePrints

r The Uniyersitg of
M | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Hutton, Graham and Wright, Joel (2006) Calculating an
exceptional machine. In: Trends in functional
programming. Volume 5. Intellect, Bristol. ISBN
9781841501444

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28195/1/machine.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

Copyright and all moral rights to the version of the paper presented here belong to
the individual author(s) and/or other copyright owners.

To the extent reasonable and practicable the material made available in Nottingham
ePrints has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-
for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

https://core.ac.uk/display/33573311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Chapter 1

Calculating an Exceptional
Machine

Graham Hutton and Joel Wright

Abstract: In previous work we showed how to verify a compiler for a small
language with exceptions. In this article we show howatculate as opposed to
verify, an abstract machine for this language. The key step is the use of Reynold’s
defunctionalizationan old program transformation technique that has recently
been rejuvenated by the work of Danvy et al.

1.1 INTRODUCTION

Exceptions are an important feature of modern programming languages, but their
compilation has traditionally been viewad an advanced topic. In previous work

we showed how the basic method of compiling exceptions usiagk unwind-

ing can be explained and verified using elementary functional programming tech-
nigues [HWO04]. In particular, we developed a compiler for a small language with
exceptions, together with a proof of its correctness.

In the formal reasoning community, however, one pretersstructiongo ver-
ifications [Bac03]. That is, rather than first writing the compiler and then sep-
arately proving its correctness with respect to a semantics for the language, it
would be preferable to try and calculate the compiler [Mei92] directly from the
semantics, with the aim of giving a systematiscoveryof the idea of compiling
exceptions using stack unwinding, as opposed to a post-hoc verification.

In this article we take a step towards this goal, by showing how to calculate an
abstract machine for evaluating expressions in our language with exceptions. The
key step in the calculation is the usedeffunctionalizatiopa program transforma-
tion technique that eliminates the use of higher-order functions, first introduced
by Reynolds in his seminal work on fil@tional interpreters [Rey72].

1School of Computer Science and IT, University of Nottingham, Jubilee Campus,
Wollaton Road, Nottingham NG8 1BB, UK. Emaflgmh,jjw} @s.nott.ac.uk.

Despite being simple and powerful, defunctionalization seems to be somewhat
neglected in recent years. For example, it features in few modern courses, text-
books, and research articles on program transformation, and does not seem to be
as widely known and used as it should be. Recently, however, defunctionaliza-
tion has been rejuvenated by the work of Danvy et al, who show how it can be
applied in a variety of different areas, including the systematic design of abstract
machines for functional languages [DNO1, ABDMO03b, ADM04].

In this article, we show how Danvy’s approach can be used to calculate an
abstract machine for our language with exceptions. Moreover, the calculation
is rabbit freg in the sense that there are no Eureka steps in which one needs to
metaphorically pull a rabbit out of a hat — all the required concepts arise naturally
from the calculation process itself. The approach is based upon the work of Danvy
et al, but the emphasis on calculation and the style of exposition are our own.

The language that we use comprises jusdger values, an addition operator, a
single exceptional value called throw, and a catch operator for this value [HWO04].
This language does not provide features that are necessary for actual program-
ming, but itdoesprovide just what we need for expository purposes. In particular,
integers and addition cotittite a minimal language iwhich to consider compu-
tation using a stack, and throw and catch constitute a minimal extension in which
such computations can involve exceptions.

Our development proceeds in two stegt®rting with the egeption-free part
of the language to introduce the basic techniques, to which support for exceptions
is then added in the second step. All the programs are written in Haskell [Pey03],
and all the calculations are presented using equational reasoning. An extended
version of the article that includes the calculations omitted here for reasons of
space is available from www.cs.nott.ac~gkhh/machine-extended.pdf.

1.2 ABSTRACT MACHINES

An abstract machinean be defined as a term rewriting system for executing
programs in a particular language, and is given by a set of rewrite rules that make
explicit how each step of execution proceeBerhaps the best known example is
Landin’s SECD machine for the lambda calculus [Lan64], which comprises a set
of rewrite rules that operate on tuples with four components that give the machine
its name, called the stack, environment, control and dump.

For a simpler example, consider a language in which programs comprise a
sequence of push and add operations on a stack of integers. In Haskell, such
programs, operations and stacks can be represented by the following types:

typeProg = [Op]
dataOp = PUSH Int|ADD
typeStack = [Int]

An abstract machine for this language is given by defining two rewrite rules on
pairs of programs and stacks from the Bedg x Stack

(PUSHnN: ops,s) — (ops, n:s)
(ADD:ops, n:m:s) — (ops, n+m:s)

The first rule states that push places a new integer on top of the stack, while the
second states that add replaces the tapitegers on the stack by their sum. This
machine can be implemented in Hask®tlan execution function that repeatedly
applies the two rules until this is no longer possible:

exec :: (Prog,Stack — (Prog, Stack
exec(PUSH n:opss) = exec(opsn:s)
exec(ADD:opsn:m:s) = exec(opsn+m:s)

exec(p, S) = (p7 S)

For exampleexec([PUSH1,PUSH2, ADD],[]) gives the result[],[3]). In the
remainder of this article, we will use the term abstract machine for such a func-
tional implementation of an underlying set of rewrite rules.

1.3 ARITHMETIC EXPRESSIONS

As in our previous work [HWO04], let us begin our development by considering a
simple language of expressions commigintegers and addition, whose seman-
tics is given by a function that evaluates an expression to its integer value:

data Expr = Val Int| Add Expr Expr
eval o Expr—Int

eval(Val n) = n

eval(Addxy = evalxtevaly

We will now calculate an abstract machine for this language, by making a series
of three transformations to the semantics.

Step 1 - Add continuations

At present, the order in which addition evaluates its argument expressions is de-
termined by the language in which thensantics is written, in this case Haskell.
The first step in producing an abstract machine is to make the order of evaluation
explicit in the semantics itself. A standard technique for achieving this aim is to
rewrite the semantics icontinuation-passingtyle [Rey72].

A continuationis a function that will be applied to the result of an evaluation.
For example, in the equatiaval (Add x y) = eval x+ eval yfrom our semantics,
when the first recursive calkval x is being evaluated, the remainder of the right-
hand side;+ eval y, can be viewed as a continuation for this evaluation, in the
sense that it is the function that will be applied to the result.

More formally, in the context of our semantiesal:: Expr — Int, a continu-
ation is a function of typént — Int that will be applied to the result of tydat
to give a new result of typnt. (This type can be generalisedltd — a, but we

don’t need the extra generality for our purposes here.) We capture the notion of
such a continuation using the following type definition:

typeCont = Int—Int

Our aim now is to define a new semantiesal, that takes an expression and
returns an integer as previously, but also takes a continuation that will be applied
to the resulting integer. That is, we seek to define a function

eval : Expr— Cont— Int

such that:
evalec = c(evalg

At this point in most texts, a recursive definition feval would normally be
written and then either proved to satisfy the above equation, or this be justified
by appealing to the correctness of a general continuation-passing transformation.
However, we prefer tezalculatethe definition foreval directly from the above
equation, by the use of structural induction@Expr.

CaseValn

eval (Valn)c

{ specification oeval }
c (eval(Val n))

{ definition ofeval }
cn

Case:Add xy

eval (Add xy c
= { specification okval }
c (eval(Add xy)
= { definition ofeval }
c (eval x+evaly)
= { abstraction oveeval x}
(An—c(n+evaly)) (eval X
= { induction hypothesis fax }
eval x (An — ¢ (n+evaly))
= { abstraction oveeval y}
eval X (A\n— (Am— c (n+m)) (eval y))
= { induction hypothesis foy }
eval x (A\n— evaly (Am— c (n+m)))

In conclusion, we have calculated the following recursive definition:

eval . Expr— Cont— Int
eval (Valmjc = c¢n
eval (Addxyc = evalx(An—evaly(Am— c(n+m)))

4

That is, for an integer value we simply apply the continuation, while for an addi-
tion we evaluate the first argument and call the resuthen evaluate the second
argument and call the resuit, and finally apply the continuation to the sumrof
andm. In this manner, order of evaluation is now explicit in the semantics.

Note that we have ensured that addition evaluates its arguments from left-to-
right by first abstracting ovesval xin the above calculation, and then abstracting
overevaly. It would be perfectly valid to preeed in the other direction, which
would result in right-to-left evaluation. Note also that our original semantics can
be recovered from our new semantics, by substituting the identity continuation
An — ninto the equation from whickval was constructed. That is, our original
semanticgvalcan now be redefined as follows:

eval 1 Expr—Int
evale = evale(An—n)

Step 2 - Defunctionalize

We have now taken a step towards an edxdtmachine by makg evaluation
order explicit, butin so doing have also taken a step away from such a machine by
making the semantics into a higher-order function. The next step is to regain the
first-order nature of the original semantics by eliminating the use of continuations,
but retaining the explicit order of evaluation that they introduced.

A standard technique for eliminating the use of functions as argumedt¢s is
functionalizationRey72]. This technique is based upon the observation that we
don’t usually need the entire function-space of possible argument functions, be-
cause only a few forms of such functions are actually used in practice. Hence,
we can represent the argument functions that we actually need using a datatype,
rather than using the actual functions themselves.

In our new semantics, there are only three forms of continuations that are actu-
ally used, namely one to invoke the semantics, and two in the case for evaluating
an addition. We begin by separating out these three forms, by giving them names
and abstracting over their free variables. That is, we define three combinators for
constructing the required forms of continuations:

cl . Cont

cl = An—n

c2 :» Expr— Cont— Cont
c2yc = An—evaly(c3ng
c3 > Int— Cont— Cont
c3nc = Am—c(n+m)

At present we have just used anonymous naoies? andc3 for the combina-
tors, but these will be replaced by more suggestive names later on. Using these

combinators, our semantics can now be rewritten as follows:

eval . Expr— Cont— Int
eval (Valn)c cn
eval (Addxyc = evalx(c2yg

eval i Expr— Int
evale = evalecl

The next stage in applying defunctionalization is to define a datatype whose
values represent the three combinators that we have isolated:

dataCONT = C1|C2Expr CONT| C3Int CONT

The constructors of this datatype have the same types as the corresponding com-
binators, except that the new ty@®NT plays the role oCont

Cl : CONT
C2 : Expr— CONT— CONT
C3 @ Int— CONT— CONT

The fact that values of typ€EONT represent continuations of tyfggont can be
formalised by defining a function that maps from one to the other:

apply ;> CONT— Cont
apply C1 = cl

apply(C2yg = c2y(applyg
apply(C3ng = c3n(applyg

The name of this function derives from the fact that when its type is expanded
to apply:: CONT — Int — Int, it can be viewed as applying a representation of a
continuation to an integer to give another integer.

Our aim now is to define a new semantiegal’, that behaves in the same way
as our previous semantiasyal, except that it uses values of ty@®ONT rather
than continuations of typ€ont That is, we seek to define a function

evall :: Expr— CONT— Int
such that:
evalec = evale(applyg

As previously, we calculate the definition for the functmral’ directly from this
equation by the use of structural inductionexpr.

CaseValn

eval’ (Valn)c
= { specification okval’ }
eval (Val n) (apply 9

{ definition ofeval }
applycn

Case:Add xy

eval’ (Add xy) c

= { specification okval’ }
eval (Add xy) (apply ©

= { definition ofeval }
eval x (c2 y(apply ©)

= { definition ofapply }
eval x (apply(C2y 0)

= { induction hypothesis fax }
eval’x (C2y¢

In conclusion, we have calculated the following recursive definition:

eval' . Expr— CONT— Int
eval’ (Valn)c = applycn
eval’ (Add xy) c eval' x (C2y ¢

However, the definition foapply still refers to the previous semantiesal, via
its use of the combinata2. We calculate a new definition fapplythat refers to
our new semantics instead by the use of case analy<OdiT.

CaseC1

applyCln
= { definition ofapply }
cln

{ definition ofc1 }

n
CaseC2yc

apply(C2ygn

= { definition ofapply }
c2y(applygn

= { definition ofc2 }
evaly (c3n(apply Q)

= { definition ofapply }
evaly (apply(C3nog)

= { specification okval’ }
eval'y (C3ng¢

CaseC3nc

apply(C3ngm
= { definition ofapply }
c3n(apply g m

{ definition ofc3 }
apply c(n+m)

In conclusion, we have calculated the following new definition:

apply ;> CONT— Int— Int
applyCln = n
apply(C2ygn = evaly(C3ng

apply(C3ngm

apply c(n+m)

We have now eliminated the use of functions as arguments, and hence made
the semantics first-order again. But what about the factdatal andapplyare
curried functions, and hence return functions as results? As is common practice,
we do not view the use of functions as results as being higher-order, as it is not
essential and can easily be eliminated if required by uncurrying.

Finally, our original semantics can be recovered from our new semantics by
redefiningeval e= eval’ e C1, as can be verified by a simple calculation:

evale
{ previous definition oéval }
eval e (An— n)
= { definition ofc1 }
evalecl
= { definition ofapply }
eval e (apply CJ)
= { specification okval’ }
eval' e C1

Step 3 - Refactor

At this point, after making two transformations to the original semantics, the
reader may be wondering what we have actually produced? In fact, we now have
an abstract machine for evaluating exggiens, but this only becomes clear after
we refactorthe definitions, in this simple case by just renaming the components.
In detail, we renam€ONT asCont, C1asSTOR C2asEVAL, C3asADD, eval’
aseval applyasexeg andevalasrun to give the following machine:

data Cont = STOP| EVAL Expr Cont ADD Int Cont
eval . Expr— Cont— Int

eval(Valn)c = execcn

eval(Addxyc = evalx(EVALyQ

exec . Cont— Int — Int

exec STOP n = n

exec(EVALygn = evaly(ADDn¢)

exec(ADDngm = execdn+m)

run © Expr—int

rune = evaleSTOP

We now explain the four parts of the abstract machine in turn:

e Contis the type ofcontrol stackgor the machine, containing instructions that
determine the behaviour of the machine after evaluating the current expres-
sion. The meaning of the three forms of instructicB$0OR EVALandADD
will be explained shortly. Note that the type of control stacks could itself be
refactored as an explicit list of instructions, as follows:

typeCont = [Inst]
datalnst = ADD Int| EVAL Expr

However, we prefer the original definition above because it only requires the
definition of a single type rather than a pair of types.

e evalevaluates an expression in the context of a control stack. If the expression
is an integer value, it is already fully evaluated, and we simply execute the
control stack using this integer as an argument. If the expression is an addition,
we evaluate the first argument, placing the instructiofEVAL yon top of
the current control stack to indicate that the second argumgeshould be
evaluated once that of the first argument is completed.

e execexecutes a control stack in the context of an integer argument. If the stack
is empty, represented by the instructi8mMOR we simply return the integer
argument as the result of the execution. If the top of the stack is an instruction
EVAL y; we evaluate the expressignplacing the instructioADD n on top of
the remaining stack to indicate that the current integer argumgstiould be
added together with the result of evaluatingnce this is completed. Finally,
if the top of the stack is an instructid&xDD m, evaluation of the two arguments
of an addition is now complete, and we execute the remaining control stack in
the context of the sum of the two resulting integers.

e run evaluates an expression to give an integer, by invo&iregwith the given
expression and the empty control stack as arguments.

The fact that our machine uses twauitually recursive functiongval andexec
reflects the fact that it has two states, depending upon whether it is being driven
by the structure of the expressioev@) or the control stackgxed. To illustrate

the machine, here is how it evaluat@st 3) + 4:

run (Add (Add(Val 2) (Val 3)) (Val4))
= eval(Add(Add(Val2) (Val3)) (Val4)) STOP
= eval(Add(Val2) (Val3)) (EVAL(Val4) STOB
= eval(Val2) (EVAL(Val 3) (EVAL(Val4) STOBR)
= exec(EVAL(Val3) (EVAL(Val4) STOR) 2
= eval(Val3) (ADD2 (EVAL(Val4) STOBR)
= exec(ADD 2 (EVAL(Val4) STOR) 3
= exec(EVAL(Val4) STOR 5
= eval(Val4) (ADD5STOBR
= exec(ADD5STOPR 4
= execSTOPR
= 9

Note how the functiorvalproceeds downwards to the leftmost integer in the ex-
pression, maintaining a trail of the pending right-hand expressions on the control
stack. In turn, the functioaxecthen proceeds upwards through the trail, transfer-
ring control back tevaland performing additions as appropriate.

Readers familiar with Huet'gipperdata structure for navigating around ex-
pressions [Hue97] may find it useful to note that our tgpmtis a zipper data
structure folExpr, specialised to the purpose of evaluating expressions. Moreover,
this specialised zipper arose naturally here by a process of systematic calculation,
and did not require any prior knowledge of this structure.

1.4 ADDING EXCEPTIONS

Now let us extend our language of arithmetic expressions with simple primitives
for throwing and catching an exception:

dataExpr = ...|Throw| Catch Expr Expr

Informally, Throw abandons the current computation and throws an exception,
while Catch x ybehaves as the expressiounless it throws an exception, in which
case the catch behaves as hlamdlerexpressiory. To formalise the meaning of
these new primitives, we first recall tivaybetype:

dataMaybea = Nothing|Justa

That s, a value of typ®laybe ais eitherNothing which we think of as an excep-
tional value, or has the forrdust xfor somex of type a, which we think of as a
normal value [Spi90]. Using this type, our original semantics for expressions can
be rewritten to take account of exceptions as follows:

eval . Expr— Maybe Int
eval(Val n) = Justn
eval(Addxy = caseevalxof

Nothing— Nothing
Just n— caseeval yof
Nothing— Nothing
Just m— Just(n+m)
eval(Throw) = Nothing
eval(Catch x y case eval xof
Nothing— evaly
Just n— Justn

We will now calculate an abstract machifrom this extended semantics, by fol-
lowing the same three-step process as previously. That is, we first add continua-
tions, then defunctionalize, and finally refactor the definitions.

10

Step 1 - Add continuations

Because our semantics now returns a result of pgbe Int the type of contin-
uations that we use must be modified accordingly:

typeCont = Maybe Int— Maybe Int
Our aim now is to define a new semantics
eval : Expr— Cont— Maybe Int

such that:

evalec = c(evalg

That is, the new semantics behaves in the same wayasexcept that it applies
a continuation to the result. As previously, we can calculate a recursive definition
for eval directly from this equation by structural induction BRpr.

eval :: Expr— Cont— Maybe Int
eval (Valn)c = c(Justn

eval (Throw) c = ¢ Nothing

eval (Addxyc = evalx(AX — casex of

Nothing— ¢ Nothing
Justn— eval y (\Y — casey of
Nothing— ¢ Nothing
Just m— c (Just(n+m))))
eval (Catchxyc = evalx(AX — caseX of
Nothing— eval y ¢
Just n— ¢ (Justn)

(The above and subsequent omitted calculations are included in the extended ver-
sion of the article.) In turn, our original semantics can be recovered by invoking
our new semantics with the identity continuation. That is, we have

eval I Expr— Maybe Int
evale = evale(Ax—X)

Step 2 - Defunctionalize

Our new semantics uses four forms of continuations, namely one to invoke the
semantics, two in the case for addition, and one in the case for catch. We define

11

four combinators for constructing these continuations:

cl . Cont

cl = AX—X

c2 :» Expr— Cont— Cont
c2yc = M —casex of

Nothing— ¢ Nothing
Justn—evaly(c3ng

c3 > Int— Cont— Cont
c3nc = Ay — casey of
Nothing— ¢ Nothing
Just m— c (Just(n+m))
c4 :» Expr— Cont— Cont
cdyc = MX — casex of
Nothing— eval y ¢
Just n— ¢ (Justn

Using these combinators, our semantics can now be rewritten as follows:

eval :: Expr— Cont— Maybe Int
eval (Valn)c = c(Justn

(
eval (Throw) c = ¢ Nothing
eval (Addxyc = evalx(c2yg
eval (Catchxyc = evalx(c4yo
eval ;. Expr— Maybe Int
evale = evalecl

We now define a datatype to represent the four combinators, together with an
application function that formalises the representation:

dataCONT = C1|C2Expr CONT| C3 Int Cont| C4 Expr CONT
apply :: CONT— Cont

apply C1 = cl

apply(C2yg = c2y(applyg

apply(C3ng = c3n(applyg

apply(C4yg = c4y(applyg
Our aim now is to define a new semantics
evall 1 Expr— CONT— Maybe Int

such that:
evallec = evale(applyg

That is, the new semantics behaves in the same wayals except that it uses
representations of continuations rather than actual continuations. We can calculate

12

the definition foreval’ by structural induction oExpr:

eval' :: Expr— CONT— Maybe Int
eval’ (Valn) = applyc(Justn

eval' (Throvv) c = apply c Nothing

evall (Addxyc = eval'x(C2yg

eval' (Catchxyc = eval'x(Cdyg

In turn, we can calculate a new definition fypplyby case analysis:

apply :: CONT— Maybe Int— Maybe Int
apply C1 x = X

apply(C2y ¢ Nothing = apply c Nothing

apply(C2y) (Justn = eval'y(C3ng

(
apply(C3 n g Nothing = apply c Nothing
apply(C3ng (Justnmjy = apply c(Just(n+m))
apply(C4yc Nothing = eval'yc
apply(C4yg (Justn = applyc(Justn
Our original semantics can be recovered by invoking our new semantics with the
representation of the identity continuation:

eval : Expr— Maybe Int
eval = evaleCl

Step 3 - Refactor

We now rename the components in the same way as previously, and rename the
new combinatoC4 asHAND. This time around, however, refactoring amounts
to more than just renaming. In particular, we split the application function

apply :: Cont— Maybe Int— Maybe Int

into two separate application functions

exec :» Cont— Int — Maybe Int
unwind :: Cont— Maybe Int
such that:
applyc(Justn = execcn

apply ¢ Nothing = unwind c

That is, execdeals with normal arguments, andwind with exceptional argu-
ments. We can calculate the definitions éxecandunwindby structural induc-

13

tion onCont, as a result of which we obtain the following machine:

data Cont = STOP| EVAL Expr Cont
ADD Int Cont| HAND Expr Cont

eval o Expr— Cont— Maybe Int

eval(Valn)c = execcn

eval(Throw) ¢ = unwindc

eval(Add xy ¢ = evalx(EVALYQ

eval(Catchxy c = evalx(HANDyQ

exec ;o Cont— Int — Maybe Int

exec STOPn = Justn

exec(EVALygn = evaly(ADDno

execADDngm = execgn+m)

exec(HAND_c)n = execcn

unwind :» Cont— Maybe Int

unwind STOP = Nothing

unwind(EVAL_c) = unwindc

unwind(ADD_c) = unwindc

unwind(HANDyg = evalyc

run ;i Expr— Maybe Int

rune = evale STOP

We now explain the three main functions of the abstract machine:

e evalevaluates an expression in the context of a control stack. The cases for
integer values and addition are as previously. If the expression is a throw, we
unwind the stackeeking a handler expression. If the expression is a catch, we
evaluate its first argument, andmark the stackvith the instructiorHAND y
to indicate that its second argument, the hanglshould be used if evaluation
of its first produces an exceptional value.

e execexecutes a control stack in the context of an integer argument. The first
three cases are as previously, except that if the stack is empty the resulting
integer is tagged as a normal result value. If the top of the stack is a handler
instruction, there is no need for thesmciated handler expression because a
normal integer result has already been produced, anadhneark the stacky
popping the handler and then continue executing.

e unwindexecutes the control stack in the context of an exception. If the stack is
empty, the exception is uncaught and we simply return the exceptional result
value. If the top of the stack is an evaluation or an addition instruction, there
is no need for their arguments because a handler is being sought, and we pop
them from the stack and then continue unwinding. If the top of the stack
is a handler instruction, we catch the exception by evaluating the associated
handler expression in the context of the remaining stack.

14

Note that the idea of marking, unmarking, and unwinding the stack arose di-
rectly from the calculations, and did not require any prior knowledge of these
concepts. It is also interesting to eahat the above machine produced by cal-
culation is both simpler and more efficient that those we had previously designed
by hand. In particular, our previous machines did not make a clean separation be-
tween the three concepts of evaluating an expressieal) (executing the control
stack exe@ and unwinding the control stackifwing.

To illustrate our machine, here is how it evaluates (tatch(2+ throw) 3):

run (Add(Val 1) (Catch(Add (Val 2) Throw) (Val 3)))
= eval(Add(Vall) (Catch(Add(Val 2) Throw) (Val 3))) STOP
eval(Val 1) (EVAL(Catch(Add(Val 2) Throw) (Val 3)) STOR
exec(EVAL (Catch(Add (Val 2) Throw) (Val 3)) STOB 1
eval(Catch(Add(Val 2) Throw) (Val 3)) (ADD 1 STOB
eval(Add(Val 2) Throw) (HAND (Val 3) (ADD 1 STOB)
= eval(Val2) (EVAL Throw(HAND (Val 3) (ADD 1 STOBR))
exec(EVAL Throw(HAND (Val 3) (ADD 1 STOBR)) 2
eval Throw(ADD 2 (HAND (Val 3) (ADD 1 STOR))
unwind(ADD 2 (HAND (Val 3) (ADD 1 STOR))
unwind(HAND (Val 3) (ADD 1 STOB)
= eval(Val3) (ADD1STOR
exec(ADD 1STOB 3
exec STOR
= 4

That is, the machine first proceeds norméljytransferring control back and for-
ward between the functioresalandexeg until the exception is encountered, at
which point the control stack is unwound to find the handler expression, and the
machine then proceeds normally once again.

1.5 FURTHER WORK

We have shown how an abstract machine for a small language with exceptions
can be calculated in a systematic way from a semantics for the language, using
a three-step process of adding continuations, defunctionalizing, and refactoring.
Moreover, the calculations themselves atraightforward, only requiring the ba-

sic concepts of structural induction and case analysis.

Possible directions for further work include exploring the impact of higher-
level algebraic methods (such as monads [Wad92] and folds [Hut99]) on the cal-
culations, mechanically gtking the calculations using a theorem proving system
(for example, see [Nip04]), factorising the abstract machine into the composition
of a compiler and a virtual machine [ABDMO03a], and generalising the underlying
language (we are particularly interested in the addition of interrupts.)

15

Acknowledgements

Thanks to the referees, Thorsten Altenkirch, Olivier Danvy, Conor McBride, and
the WG2.1 meeting in Nottingham for useful comments.

REFERENCES

[ABDMO03a] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
From Interpreter to Compiler and Virtual Machine: a Functional Deriva-
tion. Technical Report RS-03-14, BRICS, Aarhus, Denmark, March 2003.

[ABDMO3b] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A
functional correspondence between evaluators and abstract machines. In
Proceedings of the Fifth ACM-SIGPLANtérnational Corérence on Prin-
ciples and Practice of Declarative Programmindppsala, Sweden, 2003.

[ADMO04] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between monadic evaluators and abstract machines for languages
with computational effects. Research Series RS-04-28, BRICS, Department
of Computer Science, University of Aarhus, December 2004.

[Bac03] Roland BackhouseProgram Construction: Calculating Implementations
from SpecificationsJohn Wiley, 2003.
[DNO1] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at workPio-

ceedings of the Third ACM-SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programmirigirenze, September 2001.

[Hue97] Gerard Huet. The Zippedournal of Functional Programming/(5):549—
554, September 1997.

[Hut99] Graham Hutton. A Tutorial on the Universality and Expressiveness|df Fo
Journal of Functional Programming®(4):355-372, July 1999.

[HWO04] Graham Hutton and Joel Wright. Compiling Exceptions Correctly?rim

ceedings of the 7th International Conference on Mathematics of Program
Construction volume 3125 of_ecture Notes in Computer Scien&tirling,
Scotland, July 2004. Springer.

[Lan64] Peter Landin. The mechanical evaluation of expressidiee Computer
Journal 6(4):308-320, 1964.

[Mei92] Erik Meijer. Calculating CompilersPhD thesis, Nijmegen, 1992.

[Nip04] Tobias Nipkow. Comiting ExceptionsCorrectly. InArchive of Formal
Proofs 2004. Available fronhtt p: / / af p. sour cef orge. net/.

[Pey03] Simon Peyton JonedHaskell 98 Language and Libraries: The Revised
Report Cambridge University Press, 2003.

[Rey72] John C. Reynolds. Definitional Inpeeters for Highe©rder Programming

Languages. IiProceedings of the ACM annual conferenpages 717-740.
ACM Press, 1972.

[Spi90] Mike Spivey. A Functional Theory of Exception§cience of Computer
Programming 14(1):25-43, 1990.
[Wad92] Philip Wadler. The Esseaof Functional Programming. Proc. Principles

of Programming Language4992.

16

