
Hu, Liyang and Hutton, Graham (2010) Compiling
concurrency correctly: cutting out the middle man. In:
Symposium on Trends in Functional Programming
(10th), 2-4 June 2009, Komárno, Slovakia.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28187/1/concurrent.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Chapter 1

Compiling Concurrency

Correctly: Cutting Out the

Middle Man
Liyang HU1, Graham Hutton1

Category: Research

Abstract The standard approach [23] to proving compiler correctness for con-

current languages requires the use of multiple translations into an intermediate

process calculus. We present a simpler approach that avoids the need for such an

intermediate language, using a new method that allows us to directly establish a

bisimulation between the source and target languages. We illustrate the technique

on two small languages, using the Agda system to present and formally verify our

compiler correctness proofs.

1.1 INTRODUCTION

The standard approach [23] to proving compiler correctness for concurrent lan-

guages requires the use of multiple translations into an intermediate process cal-

culus. This methodology is captured by the following diagram:

Source
compile //

s[[]] &&LLLLLLLLLLLL
TargetAFBECD

LLLLLLLLLLLL bb

LLLLLLLLLLLL

t[[]]yyrrrrrrrrrrr

Process Calculus / ≈
@GABCD

rrrrrrrrrrr

\\

rrrrrrrrrrr

1Functional Programming Laboratory, School of Computer Science,

University of Nottingham, NG8 1BB, United Kingdom; {lyh,gmh}@cs.nott.ac.uk

I–1

I–2 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

That is, for some given compiler from a source language to a target language,

we define separate denotational semantics s[[]] and t[[]] for both languages in

terms of an underlying process calculus with a suitable notion of bisimulation—

or observational equivalence. The compiler is said to be correct if s[[p]] and

t[[compile p]] are bisimilar for all programs p. The advantage of using a tradi-

tional process calculus is that we may reuse existing theories and techniques, and

perform our reasoning in a single, homogeneous framework.

However, there are two drawbacks to this method: firstly, the source language

is defined by a map s[[]] into an underlying process calculus, which adds an extra

level of indirection when reasoning about the operational behaviour of source

programs. Secondly, the target language and process calculus are given separate

operational semantics—represented by the two endomorphic arrows in the above

diagram—with a semantic function t[[]] mapping the former to the latter. Thus

we additionally need to show that the operational semantics of the target language

is adequate with respect to that of the process calculus via the translation t[[]].
In this paper, we present a simpler approach that avoids the need for an inter-

mediate process calculus. Our contributions include:

• A combined semantics which allows us to establish a direct bisimulation be-

tween the source and target languages.

• Illustration of our method on two small example languages, along with their

respective virtual machines and compilers.

• A compiler correctness proof for both example languages, using the Agda

system for our formal reasoning.

After a brief overview of related work (§1.2), we begin by describing a small non-

deterministic language with its associated virtual machine and compiler (§1.3),

before introducing and justifying our ‘combined semantics’ (§1.4). We then state

our compiler correctness theorem and outline its proof (§1.5). Sections 1.6 and

1.7 scale the technique to a more general language with concurrency. Finally we

conclude with some reflections on Agda and outline directions for future work.

This paper is aimed at the reader with functional programming background

and an interest in the semantics or implementation of concurrency. We make use

of Agda [17, 20]—a dependently typed programming language and interactive

proof assistant—as a vehicle for expressing many of the ideas in this paper, as

well as a formal means of checking our proofs. Knowledge of Agda is not a

requirement and we will introduce any concepts when necessary. We originally

used standard Agda colouring conventions throughout to aid readability; while

not reproduced here in print, a colour version of our paper is downloadable from

http://liyang.hu/#pub-cccctc. The full Agda proofs may be found at

the same location.

1.2 RELATED WORK

The formal notion of ‘compiler correctness’ dates back to 1967, when McCarthy

and Painter [13] proved the correctness of a compiler from arithmetic expressions

1.3. A NON-DETERMINISTIC LANGUAGE I–3

to a register machine. Their stated goal was ‘to make it possible to use a computer

to check proofs that compilers are correct’; we aim to do precisely this for a

concurrent language.

In the four decades since, a large body of pen-and-paper correctness proofs

have been produced for various experimental languages. (See Dave [3] for a de-

tailed bibliography.) However it is only recently, by making essential use of a

formal theorem prover, that it has become possible to verify a realistic compiler

in full. In particular, Leroy [12] has produced a certified compiler for a C-like core

language in the Coq [21] framework, relating a series of intermediate languages,

eventually targeting PowerPC assembly code.

While compiler correctness for sequential languages has been well explored

by many researchers, the issue of concurrency has received relatively little atten-

tion, with most of the progress being made by Wand and his collaborators. In the

early 80s, Wand and Sullivan [24] initially suggested a methodology for sequen-

tial languages: by giving the denotational semantics of both source and target

languages in a common domain, the correctness proofs relating the operational

behaviour of the source and target languages may then be carried out within the

same domain. Wand and Sullivan then adapt this paradigm to the concurrent set-

ting [23], which is further elaborated by Gladstein [5, 4].

Our work in this paper follows on from Hutton and Wright [11], who recently

considered the issue of compiler correctness for a simple non-deterministic lan-

guage, by relating a denotational source semantics to an operational target se-

mantics, based on the extensional notion of comparing final results. As noted in

Hutton and Wright [11], the addition of effects and concurrency requires an inten-

sional notion of comparing intermediate actions via a suitable notion of bisimula-

tion. The purpose of this paper is to explore this idea, while retaining the approach

of directly relating the source and target without the need for an intermediate lan-

guage.

1.3 A NON-DETERMINISTIC LANGUAGE

In order to focus on the essence of this problem, we abstract from the details of

a real language and consider a simple expression language consisting of integers

and addition [9, 10, 11]. This minimal language suffices for explaining our basic

ideas. We give it its usual semantics using a labelled transition system, together

with an extra (ZAP) rule to introduce a form of non-determinism. A virtual ma-

chine and a compiler for the language complete the definition. We present and

justify a novel technique for proving compiler correctness in the presence of non-

determinism.

1.3.1 Expression Syntax and Semantics

Let us begin by defining the syntax of our expression language:

Expr ::= N | Expr ⊕ Expr

I–4 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

While seemingly simplistic, this language nevertheless contains the essential com-

putational aspects we desire. In particular, the notion of a monad [16, 22] has been

widely used within the literature as a basis for computation. In our language, the

monoid (N,0, ⊕) may be seen as a degenerate monad. This simplification allows

us to avoid orthogonal issues, namely binding and substitution. We maintain the

key aspect of sequencing by giving our language a left-to-right evaluation order.

We can express the above definition as an Agda datatype:

data Expr : Set where

val : N → Expr

⊕ : Expr → Expr → Expr

The syntax is reminiscent of ‘generalised algebraic datatypes’ (GADTs) in Haskell,

with the exception of Expr : Set above, where Set denotes the built-in ‘type of

types’. The underscores either side of ⊕ denote argument positions for operators.

We define the operational semantics of expressions in the usual fashion as a

transition system, extended with labels to indicate the nature of each transition:

Action ::= ⊞ | |� N

Label ::= τ | !Action

7→< > ⊆ Expr×Label×Expr

Each transition either emits (denoted by ‘!’) one of ⊞, or � (read as ‘add’,

‘zap’ and ‘result’ respectively), or has the silent label τ . We make a two-level dis-

tinction between labels and actions in this language so that silent transitions may

be identified by simple pattern-matching in our Agda proofs. The corresponding

translation of Action and Label is straightforward as usual:

data Action : Set where

⊞ : Action

 : Action

� : N → Action

data Label : Set where

τ : Label

! : Action → Label

The transition rules are presented in the usual natural deduction style. From here

on, we shall use m and n for natural numbers, a and b for expressions, α for

actions and Λ for labels. Let us first consider the two base rules:

m ⊕ n 7→< !⊞ > m + n
(ADD)

m ⊕ n 7→< ! > 0
(ZAP)

That is, when evaluating the expression m ⊕ n, one of two things can happen:

either the two numbers are summed as usual, or they are ‘zapped’ to zero; each

1.3. A NON-DETERMINISTIC LANGUAGE I–5

transition is labelled accordingly. The addition of the (ZAP) rule introduces a sim-

ple form of non-determinism, as a first step towards moving from a sequential, de-

terministic language, to a concurrent, non-deterministic language. The remaining

pair of rules ensure a left-biased reduction order, as discussed previously:

b 7→< Λ > b′

m ⊕ b 7→< Λ > m ⊕ b′
(ADDR)

a 7→< Λ > a′

a ⊕ b 7→< Λ > a′ ⊕ b
(ADDL)

In Agda, we can encode the 7→< > relation directly as a datatype, where

each transition rule gives rise to a constructor. As Agda is a dependently typed

language, we may parametrise datatype definitions by values as well as types. In

this instance, 7→< > is indexed by a pair of expressions, along with a label:

data 7→< > : Expr → Label → Expr → Set where

7→-⊞ : val m ⊕ val n 7→< !⊞ > val (m + n)
7→- : val m ⊕ val n 7→< ! > val 0

7→-R : b 7→< Λ > b′ → val m ⊕ b 7→< Λ > val m ⊕ b′

7→-L : a 7→< Λ > a′ → a ⊕ b 7→< Λ > a′ ⊕ b

Under the above encoding, an expression of type a 7→< Λ > b may be viewed as

a witness for a single-step transition from a to b, labelled with Λ . Because Agda

is a total language, there is no ⊥ or ‘bottom’ value, so any type-correct expression

really is a witness (or proof) of the corresponding type (or proposition).

Choice of Action Set

An unanswered question so far is: ‘how was the set of actions chosen?’ As we

shall see later in §1.4, we wish to distinguish between different choices in the

reduction path a given expression can take. In this instance, we need to know

which of the (ADD) or (ZAP) rules were applied, hence the use of distinct actions

⊞ and respectively. Later in §1.4.1 we also wish to distinguish between different

final results for an expression, which are revealed using the � action.

1.3.2 Compiler, Virtual Machine and its Semantics

The virtual machine for our language has a simple stack-based design, with only

two instructions, defined as follows:

data Instruction : Set where

PUSH : N → Instruction

ADD : Instruction

A program comprises a list of such instructions. The compiler for our expression

language is as shown below. In order to make our proofs more straightforward,

I–6 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

we take a code continuation as an additional argument [8], which corresponds to

writing the compiler in a accumulator-passing style:

Program : Set

Program = List Instruction

compile : Expr → Program → Program

compile (val m) c = PUSH m :: c

compile (a ⊕ b) c = compile a (compile b (ADD :: c))

To execute c : Program, we pair it with a Stack, implemented here as List N. This

is precisely how we represent any given state t : Machine of the virtual machine:

Stack : Set

Stack = List N

data Machine : Set where

〈 , 〉 : Program → Stack → Machine

Finally, we can specify the operational semantics of the virtual machine through

the < > relation:

data < > : Machine → Label → Machine → Set where

-PUSH : 〈PUSH m :: c , σ 〉 < τ > 〈c , m :: σ 〉
-ADD : 〈ADD :: c , n :: m :: σ 〉 < !⊞ > 〈c , m + n :: σ 〉
-ZAP : 〈ADD :: c , n :: m :: σ 〉 < ! > 〈c , 0 :: σ 〉

That is, the PUSH instruction takes a numeric argument m and pushes it onto the

stack σ , with a silent label τ . In turn, the ADD instruction replaces the top two

numbers on the stack with either their sum, or zero—labelled respectively with ⊞

or —in correspondence with the 7→-⊞ and 7→- rules.

1.4 NON-DETERMINISTIC COMPILER CORRECTNESS

In general, a compiler correctness theorem asserts that for any source program, the

result of executing the corresponding compiled target code on its virtual machine

will coincide with that of evaluating the source using its high-level semantics:

Source
compile //

eval
$$IIIIIIIIII

Target

exec
zzuuuuuuuuuu

Result

With a deterministic language and virtual machine—such as our Zap language

without the two ‘zap’ rules—it is natural to use a high-level denotational or big-

step semantics for the expression language, which we can realise as an interpreter

eval : Expr → N. In turn, the low-level operational or small-step semantics for

the virtual machine can be realised as a function exec : Stack → Program →

1.4. NON-DETERMINISTIC COMPILER CORRECTNESS I–7

Stack, that takes an initial stack along with a list of instructions and returns the

final stack. Compiler correctness is the statement that:

∀c σ a. exec σ (compile a c) ≡ exec (eval a :: σ) c (DET)

or equivalently as the following commuting diagram:

∀c σ . Expr
compile c //

exec (eval :: σ) c $$JJJJJJJJJJ
Program

exec σ
xxrrrrrrrrrrr

Stack / ≡

That is to say, compiling an expression a and then executing the resulting code

together with a code continuation c gives the same result—up to definitional

equality—as executing c with the value of a atop the original stack σ .

The presence of non-determinism requires a more refined approach, due to

the possibility that different runs of the same program may give different results.

One approach is to realise the interpreter and virtual machine as set-valued func-

tions [11], restating the above equality on final values in terms of sets of final

values. A more natural approach however, is to define the high-level semantics as

a relation rather than a function, using a small-step operational semantics.

Moreover, the small-step approach also allows us to consider the intensional

(or local) notion of what choices are made in the reduction paths, in contrast to the

extensional (or global) notion of comparing final results. In our Zap language, the

available choices are reflected in our selection of transition labels, and we weaken

the above definitional equality to a suitable notion of branching equivalence on

intermediate states. This is just the familiar notion of bisimilarity [15], which we

shall make concrete in §1.4.2. As we shall see, the local reasoning afforded by

this approach also leads to simpler and more natural proofs.

1.4.1 Combined Machine and its Semantics

In this section, we introduce our key idea of a ‘combined machine’, which we

arrive at by considering the small-step analogue of the compiler correctness state-

ment for big-step deterministic languages. The advantage of the combined ma-

chine is that it lifts source expressions and target virtual machine states into the

same domain, which avoids a detour [23] via an intermediate process calculus

and allows us to directly establish a bisimulation between the source and target

languages. Our approach to non-deterministic compiler correctness—making use

of such a combined machine—is illustrated below:

Source@GAFBE
==

compile //

liftS &&MMMMMMMMMMMM
TargetAFBECD

MMMMMMMMMMMM cc

MMMMMMMMMMMM

liftTxxqqqqqqqqqqqq

Combined / ≈
@GABCD

qqqqqqqqqqqq

[[

qqqqqqqqqqqq

I–8 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

In the case of our Zap language, a combined machine x : Combined has three

distinct phases of execution,

data Combined : Set where

〈 , 〉 : Expr → Machine → Combined

〈 〉 : Machine → Combined

〈 〉 : Combined

whose semantics is defined by the following transition relation:

data ։< > : Combined → Label → Combined → Set where

։-7→ : a 7→< Λ > b → 〈a , t 〉 ։< Λ > 〈b , t 〉
։- : t < Λ > u → 〈 t 〉 ։< Λ > 〈 u〉
։-switch : 〈val m , 〈c , σ 〉 〉 ։< τ > 〈〈c , m :: σ 〉〉
։-done : 〈 〈[] , m :: []〉 〉 ։< !� m > 〈 〉

The first constructor 〈 , 〉 of Combined pairs an expression with a virtual ma-

chine continuation. In this initial phase, a combined machine 〈a , 〈c , σ 〉〉 can be

understood as the small-step analogue of the right side of the (DET) statement—

exec (eval a :: σ) c—which begins by effecting the reduction of a. The applicable

reductions are exactly those of the expression language, inherited via the ։- 7→
rule above.

When the expression a eventually reduces to a value m, the ։-switch rule

pushes m onto the stack σ , switching the combined machine to its second phase of

execution, corresponding to the 〈 〉 constructor. This is the small-step analogue

of pushing the result of eval a onto σ , again following the right side of (DET),

namely exec (eval a :: σ) c.

The second Combined constructor 〈 〉 lifts a virtual machine into a combined

machine, which then effects the reduction of the former via the ։- rule. This

corresponds to the small-step analogue of exec σ c, which matches the left side

of (DET), and also the right side after the evaluation of the embedded expression

has completed.

Lastly, the ։-done rule reveals the computed result using the � action, and

terminates with the empty 〈 〉 state. This construction allows us to distinguish

between final result values using only the basic notion of bisimulation.

1.4.2 Weak Bisimilarity

Now we can give a concrete definition to our notion of bisimilarity. More specifi-

cally, we shall be defining ‘weak bisimilarity’, as we are not concerned with silent

transitions. First of all, it is convenient to define a ‘visible transition’ Z⇒< >

in terms of our existing ։< > relation, where only Actions are exposed:

x ։<τ>⋆ x′ x′ ։< !α > y′ y′ ։<τ>⋆ y

x Z⇒< α > y

We define ։<τ>⋆ to be the reflexive, transitive closure of ։< τ > . The

above relation is implemented by the following datatype:

1.5. COMPILER CORRECTNESS FOR ZAP I–9

data Z⇒< > : Combined → Action → Combined → Set where

Z⇒ : x ։<τ>⋆ x′ → x′ ։< !α > y′ → y′ ։<τ>⋆ y → x Z⇒< α > y

The two states x and y are now defined to be ‘weakly bisimilar’ if and only if

whatever visible transition x can make, y is able to follow with the same action,

resulting in states x′ and y′ that are also bisimilar, and vice versa:

x ≈ y ⇐⇒ ∀ x′,α. x Z⇒< α > x′ =⇒ ∃ y′. y Z⇒< α > y′ ∧ x′ ≈ y′

∧ ∀ y′,α. y Z⇒< α > y′ =⇒ ∃ x′. x Z⇒< α > x′ ∧ y′ ≈ x′

This corresponds to the following Agda definition, in which we encode conjunc-

tions (∧) as products (×):

data ≈ : Combined → Combined → Set where

bisim : ∀{x y} →
(∀{x′ α} → x Z⇒< α > x′ → ∃ λ y′ → y Z⇒< α > y′× x′ ≈ y′) →
(∀{y′ α} → y Z⇒< α > y′ → ∃ λ x′ → x Z⇒< α > x′× y′ ≈ x′) →
x ≈ y

It is straightforward to show that ≈ is an equivalence relation:

≈-reflexive : x ≈ x

≈-symmetric : x ≈ y → y ≈ x

≈-transitive : x ≈ y → y ≈ z → x ≈ z

1.5 COMPILER CORRECTNESS FOR ZAP

Now we have enough machinery to formulate the compiler correctness theorem,

which states that given a code continuation c and an initial stack σ , execution of

the compiled code for an expression a followed by c is weakly bisimilar to the

reduction of the expression a followed by the machine continuation 〈c , σ 〉,

correctness : 〈〈compile a c , σ 〉〉 ≈ 〈a , 〈c , σ 〉〉

or equivalently as the following commuting diagram:

∀c σ . Expr
compile c //

〈 , 〈c , σ 〉〉 &&MMMMMMMMMMM
Program

〈〈 , σ 〉〉wwpppppppppppp

Combined / ≈

In particular, instantiating c and σ to empty lists results in the corollary that, for

any arbitrary expression a, 〈〈compile a [] , []〉〉 ≈ 〈a , 〈[] , []〉〉 holds.

We can prove correctness by structural induction on the expression a; the

equational reasoning combinators defined in the Agda standard library [2] allow

us to present the proof in a simple calculational style. For example, the inductive

case is given below:

I–10 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

correctness {a ⊕ b} {c} {σ} =
begin

〈〈compile (a ⊕ b) c , σ 〉〉
≡{ byDefinition }

〈〈compile a (compile b (ADD :: c)) , σ 〉〉
≈{ correctness }

〈a , 〈compile b (ADD :: c) , σ 〉〉
≈{ eval-left }

〈a ⊕ b , 〈c , σ 〉〉
⊓⊔

This case makes use of an eval-left lemma, which in turn uses eval-right, which

finally depends on ADD≈m⊕n. These three lemmas are stated as follows:

eval-left : 〈 a , 〈compile b (ADD :: c) , σ 〉〉 ≈ 〈 a ⊕ b , 〈c , σ 〉〉

eval-right : 〈 b , 〈ADD :: c , m :: σ 〉〉 ≈ 〈val m ⊕ b , 〈c , σ 〉〉

ADD≈m⊕n : 〈val n , 〈ADD :: c , m :: σ 〉〉 ≈ 〈val m ⊕ val n , 〈c , σ 〉〉

The eval-left lemma asserts that evaluating the left argument of ⊕ , then execut-

ing the compiled code corresponding to the right argument followed by an ADD

instruction, is bisimilar to evaluating the original ⊕ expression. The eval-right

lemma is the analogue of eval-left for the right argument of ⊕ . The proofs for

these two lemmas proceed by induction on the size of an expression.

〈val m ⊕ val n , 〈c , σ 〉〉

≈
A

D
D
≈

m
⊕

n

!⊞
։

-7→
7→

-⊞

				

! ։
-7→

7→
-

�� ��

〈val n , 〈ADD :: c , m :: σ 〉〉

τ

։
-s

w
it
ch

����

≈
el

id
e-

τ

〈val (m + n) , 〈c , σ 〉〉

τ

։
-s

w
it
ch

����

≈
el

id
e-

τ

〈val 0 , 〈c , σ 〉〉

τ

։
-s

w
it
ch

����

≈
el

id
e-

τ〈〈ADD :: c , n :: m :: σ 〉〉

!⊞

։
-

-A

DD

xxxxpppppppppppppppp

! ։
-

-ZAP %% %%KKKKKKKKKKKKKKK

〈〈c , m + n :: σ 〉〉 〈〈c , 0 :: σ 〉〉

FIGURE 1.1. Proof sketch for the ADD≈m⊕n lemma.

The non-determinism in our language comes into play only when considering the

ADD≈m⊕n lemma. A sketch of its proof may be recovered by chasing the arrows

1.6. AN EXPLICITLY CONCURRENT LANGUAGE I–11

in Figure 1.1, in which nodes represent machine states, while arrows (decorated

with their respective labels and witnesses) correspond to transitions. Suppose we

take as a starting point either side of the ADD≈m⊕n bisimilarity, given by the

nodes 〈 val n , 〈ADD :: c , m :: σ 〉 〉 and 〈 val m ⊕ val n , 〈 c , σ 〉 〉 at the top of

the figure. Whether we take the left branch (corresponding to the two rules for

addition) or the right (corresponding to the two ‘zap’ rules), the other state can

always follow, emitting the same action. The resulting states are bisimilar by the

elide-τ lemma, defined below.

The elide-τ Lemma

A key lemma used throughout our correctness proofs states that if there exists a

silent transition between two states x and y, then x and y are bisimilar:

elide-τ : x ։< τ > y → x ≈ y

In one direction of x ≈ y, the proof is trivial: whatever y does, x can always

match it by first making the given x ։< τ > y transition, after which it can follow

y exactly. In the other direction, the proof relies on the fact that wherever there is

a choice in the reduction of any given state, each possible transition is identified

with a distinct non-silent label. Hence a witness to x ։< τ > y implies that

this must be the unique transition that can be made from x. From this, it is then

immediate that y can match any visible transition made by x.

1.6 AN EXPLICITLY CONCURRENT LANGUAGE

In the previous section, we have described our methodology for tackling the ques-

tion of compiler correctness for a simple non-deterministic language. In this sec-

tion, we shall demonstrate that our technique scales to a more explicit form of

non-determinism, namely the dynamic creation of concurrently executing threads.

1.6.1 Expression and Virtual Machine Syntax

As with the Zap language, we base our language on that of natural numbers and

addition. We build on this by adding a fork primitive, which introduces a simple

and familiar approach to explicit concurrency:

data Expr : Set where

val : N → Expr

⊕ : Expr → Expr → Expr

fork : Expr → Expr

An expression fork a will begin evaluation of a in a new thread, immediately

returning val 0, in a manner reminiscent of Haskell’s forkIO [19] primitive. Sim-

ilarly, we extend the virtual machine with a FORK instruction, which spawns the

sequence of instructions in a new thread:

I–12 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

data Instruction : Set where

PUSH : N → Instruction

ADD : Instruction

FORK : Program → Instruction

The compiler remains unchanged, except an extra case for fork:

Program : Set

Program = List Instruction

Stack : Set

Stack = List N

compile : Expr → Program → Program

compile (val m) c = PUSH m :: c

compile (a ⊕ b) c = compile a (compile b (ADD :: c))
compile (fork a) c = FORK (compile a []) :: c

As before, we represent each virtual machine Machine thread by a pair Program×
Stack: a sequence of instructions, together with a stack of natural numbers.

1.6.2 Actions and Semantics

We extend the set of actions by + a, to indicate the spawning of a new thread a,

and the action . . . to indicate preemption of the foreground thread:

data Action (l : Set) : Set where

τ : Action l

⊞ : Action l
+ : l → Action l

� : N → Action l

. . . : Action l → Action l

Due to the addition of explicit concurrency in this Fork language, we no longer

require the ‘zap’ action or its associated semantics. The definition of Action is

parametrised by either expressions or virtual machines.

With the Zap language, a single τ label sufficed, because the semantics did not

diverge at the points where silent transitions occurred. With the Fork language,

we have a ‘soup’ of concurrent threads, of which more than one may be able to

make a silent transition at a given point. We had previously mandated that distinct

choices in the reduction path must be labelled with distinct actions: in this case,

we folded the τ symbol into the definition of Action, such that both τ and . . . τ

are considered to be silent, yet they remain distinct.

This choice does complicate matters somewhat: previously, we could syntac-

tically match a Label with τ to determine if a transition was silent; in the same

way, we know a priori that Action-labelled transitions cannot be silent. Here we

use a more elaborate scheme:

data Silent {l : Set} : Action l → Set where

is-τ : Silent τ

is- . . . : ∀{α} → Silent α → Silent (. . . α)

1.7. CONCURRENT COMPILER CORRECTNESS I–13

This definition of the Silent indexed datatype encodes a predicate on actions:

Silent α is inhabited precisely when α is silent.

It remains for us to define the semantics for expressions,

data 7→< > : Expr → Action Expr → Expr → Set where

7→-⊞ : val m ⊕ val n 7→< ⊞ > val (m + n)
7→-R : b 7→< Λ > b′ → val m ⊕ b 7→< Λ > val m ⊕ b′

7→-L : a 7→< Λ > a′ → a ⊕ b 7→< Λ > a′ ⊕ b

7→-+ : fork a 7→< + a > val 0

and virtual machines,

data < > : Machine → Action Machine → Machine → Set where

-PUSH : 〈PUSH m :: c , σ 〉 < τ > 〈c , m :: σ 〉
-ADD : 〈ADD :: c , n :: m :: σ 〉 < ⊞ > 〈c , m + n :: σ 〉
-FORK : 〈FORK c′ :: c , σ 〉 < + 〈c′ , []〉 > 〈c , 0 :: σ 〉

labelled with the above action set. In both cases, the + action carries the forked

child as a parameter.

1.7 CONCURRENT COMPILER CORRECTNESS

1.7.1 Combined Machines, Thread Soups and Semantics

Our definition of a combined machine remains unchanged from the Zap language,

with the constructors 〈 , 〉, 〈 〉 and 〈 〉 corresponding to the three phases of exe-

cution. We model a ‘thread soup’ [18] as a List of combined machines, and define

a transition relation ։< > on said thread soups:

Soup : Set

Soup = List Combined

data ։< > : Soup → Action ⊤ → Soup → Set where

։-7→ : a 7→< α > b → 〈a , t 〉 :: s ։< sipE α > 〈b , t 〉 :: soupConE α s

։- : t < α > u → 〈 t 〉 :: s ։< sipM α > 〈 u 〉 :: soupConM α s

։-preempt : r ։< α > s → x :: r ։< . . . α > x :: s

։-switch : 〈val m , 〈c , σ 〉〉 :: s ։< τ > 〈〈c , m :: σ 〉〉 :: s

։-done : 〈〈[] , m :: []〉〉 :: s ։< � m > 〈 〉 :: s

As in the Zap language, the ։-7→ and ։- rules inherit the transitions of ex-

pressions and virtual machines, along with ։-switch and ։-done for housekeep-

ing. The sipE function lifts an Action Expr to an Action Combined; the soupConE

helper prepends the forked expression to the soup in the case of a + action and

otherwise leaves the soup unchanged. Corresponding helpers sipM and soupConM

act on virtual machines instead. Finally, we allow thread interleaving via the

։-preempt rule.

1.7.2 Fork Compiler Correctness Proof

For our Fork language, we take the same definition of weak bisimilarity as that of

the Zap language, but parametrised on an updated visible transition relation:

I–14 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

data Z⇒< > : Combined → Action Combined → Combined → Set where

Z⇒ : x ։<τ>⋆ x′ → x′ ։< α > y′ → y′ ։<τ>⋆ y → ¬ Silent α →
x Z⇒< α > y

Previously we were able to enforce syntactically that α is a visible action; now,

we must include ¬ Silent α as an additional side-condition. Conversely, as there

are multiple actions which we consider to be silent, we must define the binary

silent transition relation ։<τ> as a dependent triple comprising an action α ,

a witness of Silent α , along with the α-transition itself:

։<τ> : Soup → Soup → Set

r ։<τ> s = ∃ λ α → Silent α × r ։< α > s

As before, we take ։<τ>⋆ to be the reflexive, transitive closure of ։<τ> .

The previous correctness theorem is then further generalised over s : Soup:

correctness : 〈a , 〈c , σ 〉〉 :: s ≈ 〈〈compile a c , σ 〉〉 :: s

We prove correctness by first showing that the ։< > transition relation is

well-founded and then proceeding by induction on said transition. Details of the

completed proof in Agda may be found on the authors’ websites2.

1.8 CONCLUSION AND FURTHER WORK

In this article we have presented a new approach to compiler correctness for con-

current languages which avoids the need for an intermediate process calculus as

used in previous work [23]. In particular, by generalising the usual determinis-

tic compiler correctness statement to a non-deterministic setting, we are able to

establish a direct bisimulation between the source and target languages. In retro-

spect, our generalisation is both natural and straightforward, but surprisingly this

approach appears not to have been considered in the literature.

The use of Agda has been a key aspect of our work. As one would expect,

the use of a formal tool ensures that our definitions and proofs are free from am-

biguities and omissions, and provides a mechanical guarantee of the correctness

of our results. In our experience, Agda has also proved invaluable in the devel-

opment of our definitions, theorems and proofs. While it is a matter of personal

preference, some find ‘proof scripts’ à la Coq [21] difficult to understand offline,

whereas the direct manipulation of proof terms in Agda seems both more natural

and less fragile with respect to changes. The direct application of the Curry–

Howard correspondence blurs the distinction between producing proofs and pro-

gramming, which allows us to take advantage of our intuitions from both activ-

ities. At present, Agda’s most prominent downside is its immaturity relative to

systems that come with well-developed libraries and tools such as Coq, although

the Agda standard library [2] is evolving at a rapid pace.

There are a number of possible directions for future work. First of all, it

is important to consider how our approach scales from the minimal languages

2http://liyang.hu/#pub-cccctc

1.8. CONCLUSION AND FURTHER WORK I–15

considered in this paper to more realistic notions of concurrency that include

synchronisation and communication, as well as other language features such as

name binding, mutable state, input and output, exceptions and interrupts [11].

Indeed, Danielsson has successfully implemented [1] the main result of Hutton

and Wright [11] in Agda, making use of a ‘combined machine’. The mechanised

proof—using the combined semantics—is significantly shorter than the original

pen-and-paper proof, which suggests our approach can scale to more elaborate

scenarios.

In a similar vein, we are particularly keen to develop a formally verified im-

plementation of a compiler for software transactional memory [7, 6]. Finally, it

would also be interesting to attempt to encode the correctness of a compiler for

a concurrent language directly in its type, following the lead of McKinna and

Wright [14], rather than as a separate theorem.

ACKNOWLEDGEMENTS

We would like to thank the four anonymous referees for their constructive com-

ments and suggestions, which have significantly improved this paper. We are also

grateful to the members of the Functional Programming Laboratory in Notting-

ham for useful discussions and feedback.

REFERENCES

[1] N. A. Danielsson. Personal communication. Available from http://cs.nott.

ac.uk/˜nad/listings/Interrupts/, January 2009.

[2] N. A. Danielsson. The Agda Standard Library. Available from http://cs.nott.

ac.uk/˜nad/listings/lib/, May 2009.

[3] M. A. Dave. Compiler Verification: A Bibliography. ACM SIGSOFT Software Engi-

neering Notes, 28(6):2–2, November 2003.

[4] D. S. Gladstein. Compiler Correctness for Concurrent Languages. PhD Thesis,

Northeastern University, Massachusetts, December 1994.

[5] D. S. Gladstein and M. Wand. Compiler Correctness for Concurrent Languages. In

Proceedings of Coordination, volume 1061 of Lecture Notes in Computer Science.

Springer, April 1996.

[6] T. Harris, S. Marlow, S. Peyton Jones, and M. P. Herlihy. Composable Memory

Transactions. In Proceedings of Principles and Practice of Parallel Programming,

June 2005.

[7] L. HU and G. Hutton. Towards a Verified Implementation of Software Transactional

Memory. In Proceedings of Trends in Functional Programming, May 2008.

[8] G. Hutton. Programming in Haskell. Cambridge University Press, January 2007.

[9] G. Hutton and J. Wright. Compiling Exceptions Correctly. In Proceedings of In-

ternational Conference on Mathematics of Program Construction, number 3125 in

Lecture Notes in Computer Science. Springer, July 2004.

I–16 CHAPTER 1. COMPILING CONCURRENCY CORRECTLY

[10] G. Hutton and J. Wright. Calculating an Exceptional Machine. In Proceedings of

Trends in Functional Programming, volume 5, February 2006.

[11] G. Hutton and J. Wright. What is the Meaning of These Constant Interruptions?

Journal of Functional Programming, 17(6):777–792, November 2007.

[12] X. Leroy. Formal Certification of a Compiler Back-End, or: Programming a Compiler

with a Proof Assistant. In Proceedings of Principles of Programming Languages,

volume 33, pages 42–54, 2006.

[13] J. McCarthy and J. Painter. Correctness of a Compiler for Arithmetic Expressions. In

Proceedings of Symposia in Applied Mathematics, volume 19. AMS, 1967.

[14] J. McKinna and J. Wright. A Type-Correct, Stack-Safe, Provably Correct Expression

Compiler in EPIGRAM. To appear in the Journal of Functional Programming, 2009.

[15] R. Milner. Communication and Concurrency. International Series in Computer Sci-

ence. Prentice Hall, 1989.

[16] E. Moggi. Computational Lambda-Calculus and Monads. In Proceedings of Logic in

Computer Science, pages 14–23. IEEE Computer Society Press, June 1989.

[17] U. Norell. Towards a Practical Programming Language Based on Dependent Type

Theory. PhD thesis, Chalmers University of Technology, September 2007.

[18] S. Peyton Jones. Tackling the Awkward Squad: Monadic Input/Output, Concurrency,

Exceptions, and Foreign-Language calls in Haskell. In Engineering Theories of Soft-

ware Construction, pages 47–96. IOS Press, 2001.

[19] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proceedings of

Principles of Programming Languages, pages 295–308, 1996.

[20] The Agda Team. The Agda Wiki. Available from http://wiki.portal.

chalmers.se/agda/, May 2009.

[21] The Coq Development Team. The Coq Proof Assistant. Available from http:

//coq.inria.fr/, June 2008.

[22] P. Wadler. Comprehending Monads. Mathematical Structures in Computer Science,

2:461–493, 1992.

[23] M. Wand. Compiler Correctness for Parallel Languages. In Proceedings of Func-

tional Programming Languages and Computer Architecture, pages 120–134, June

1995.

[24] M. Wand and G. T. Sullivan. A Little Goes a Long Way: A Simple Tool to Sup-

port Denotational Compiler-Correctness Proofs. Technical Report NU-CCS-95-19,

Northeastern University College of Computer Science, October 1995.

