
Pinkney, Alexander J. and Bagley, Steven R. and 
Brailsford, David F. (2013) No need to justify your 
choice: pre-compiling line breaks to improve eBook 
readability. In: ACM Symposium on Document 
Engineering (DocEng '13), 10-13 Sept 2013, Florence, 
Italy. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/28167/1/eprintjustify2013.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


No Need to Justify Your Choice:
Pre-compiling Line Breaks to Improve eBook Readability

Alexander J. Pinkney
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

azp@cs.nott.ac.uk

Steven R. Bagley
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

srb@cs.nott.ac.uk

David F. Brailsford
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

dfb@cs.nott.ac.uk

ABSTRACT

Implementations of eBooks have existed in one form or another

for at least the past 20 years, but it is only in the past 5 years that

dedicated eBook hardware has become a mass-market item.

New screen technologies, such as e-paper, provide a reading ex-

perience similar to those of physical books, and even backlit LCD

and OLED displays are beginning to have high enough pixel den-

sities to render text crisply at small point sizes. Despite this, the

major element of the physical book that has not yet made the tran-

sition to the eBook is high-quality typesetting.

The great advantage of eBooks is that the presentation of the

page can adapt, at rendering time, to the physical screen size and to

the reading preferences of the user. Until now, simple first-fit line-

breaking algorithms have had to be used in order to give acceptable

rendering speed whilst conserving battery life.

This paper describes a system for producing well-typeset, scal-

able document layouts for eBook readers, without the computa-

tional overhead normally associated with better-quality typesetting.

We precompute many of the complex parts of the typesetting pro-

cess, and perform the majority of the ‘heavy lifting’ at document

compile-time, rather than at rendering time. Support is provided

for floats (such as figures in an academic paper, or illustrations in

a novel), for arbitrary screen sizes, and also for arbitrary point-size

changes within the text.

Categories and Subject Descriptors

I.7.2 [Document and Text Processing]: Document Preparation—

format and notation, markup languages; I.7.4 [Document and Text

Processing]: Electronic Publishing

General Terms

Algorithms, Documentation, Experimentation

Keywords

eBooks, Document layout, Typesetting

 

 

 

 

 
FINAL DRAFT of Short Paper accepted for 

DocEng’13, September 10–13, 2013, Florence, Italy.

Copyright is held by the owner/author(s). Published version is at:

http://dx.doi.org/10.1145/2494266.2494310.

1. INTRODUCTION
Many studies [9, 5, 17, 13] have shown that good typography is

the key to readability. In particular, Bill Hill in The Magic of Read-

ing [9] emphasises that both the regularity of whitespace between

words and the evenness of line lengths are of particular importance.

Traditionally, good typography can be ensured as the document is

being created — as is the case with documents stored as PDF —

since the size and shape of the output medium is fixed. However,

non-PDF eBook formats, such as EPUB and Amazon’s Kindle for-

mat, do not have a fixed presentation associated with their textual

content and therefore they rely on the eBook readers themselves to

perform the typesetting and layout.

It would be hoped that eBook readers, being dedicated read-

ing devices, would strive to typeset a book’s content in the most

readable form possible. Unfortunately, most eBook readers seem

to rely on a simple first-fit line-breaking algorithm, which means

that the whitespace between words can vary wildly between con-

secutive lines of text: extremely wide spacing onsome

lines,andextremelytightspacingonothers.Thiscanbeavoided by using

more complex line-breaking algorithms that can identify optimal

breakpoints in the text, such as that detailed by Knuth and Plass

in [12]. These algorithms are not currently used in eBook readers

because they are computationally complex: the Knuth-Plass algo-

rithm, for example, runs in O(n2) time, whereas first-fit runs in

O(n). (Both of these are per paragraph, where n is the number of

possible breakpoints in the paragraph.) With some pruning, the ef-

fective complexity of the Knuth-Plass algorithm can be reduced to

linear time [10, 7, 11], but large constant factors still make the al-

gorithm slow in practice. In any case, the Knuth-Plass algorithm

is certainly not the last word in line breaking algorithms. Mittel-

bach and Rowley [14] mention some limitations of the Knuth-Plass

algorithm: as an example, it has no mechanism to avoid (nor in-

deed any knowledge of) vertical rivers of whitespace. Inevitably,

adding support to avoid rivers, and for any of the other nuances

used by hand compositors, would add further complexity. Portable

eBook readers have both limited processing power and are pow-

ered by batteries; implementing a more computationally complex

algorithm would not only make page turns and point-size changes

noticeably slow, but it would also noticeably increase the drain on

the battery.

In the absence of new battery technologies, one method to max-

imise battery life, and hence reading time, is to minimise the com-

plexity of any algorithms that run on portable devices, and so let-

ting their CPUs idle as much as possible. Given these constraints

and desires (to maximise battery life and increase readability), we

suggest a system whereby certain parts of the typesetting of the



document are performed at “compile time” of the document, so

that less processing power and battery power needs to be devoted

at “view time” on the device.

In a previous paper [15], we described a simple system that en-

ables documents to be partially pre-rendered, whilst retaining a

reasonable degree of flowability. The paper outlined the concept

of producing multiple partial renderings of a document, which ef-

fectively causes the system to ‘compile out’ the line-breaking al-

gorithm. In this paper, we have reimplemented and extended this

system, so that it can be tested on a wider range of devices, and

can produce document layouts on the fly that previously would not

have been possible. For convenience, in the remainder of this paper,

we shall refer to the partially pre-compiled documents as malleable

documents.

The rest of this paper details the implementation of our new

system. Section 2 recaps the implementation of our previous sys-

tem and also discusses related work in this area. Sections 3 and 4

describe how our malleable documents are generated and viewed

respectively. Section 5 evaluates the performance of our system,

while section 6 concludes by discussing future work.

2. RELATED WORK
Much work has been done in the field of automated document

layout, though most systems are geared towards producing docu-

ments with one fixed presentation. Although these documents may

have wonderful layout, they cannot easily be scaled to fit every

one of the plethora of devices upon which the documents may be

viewed.

A fairly comprehensive review of the literature around automatic

document formatting was published in [11]. Since most (if not all)

literature in this field is geared towards producing documents with

static layouts, the computational complexity of the algorithms used

has never been of huge concern. It seems that until now, not much

thought has been given to the development of document formatting

systems that run in real time, or on battery powered devices.

2.1 Our Previous Work
In our 2011 paper [15], we outlined the concept of pre-rendering

a document’s text multiple times, into multiple galleys of text. Each

galley is effectively one long column, and each galley is rendered

at a different width.

Once the text had been typeset into a galley, the resultant lines

of text could be treated as atomic units. These units could then be

placed onto the page individually; in particular, if the height of the

page was altered, lines could be added to or removed from the bot-

tom of the page, allowing the text to “flow” in a vertical direction.

The resultant document is composed of multiple galley render-

ings of the source document, each with a different width. At run-

time, the renderer chooses the most appropriate width of galley to

display, based upon the screen size of the device. If the screen size

permits, the rendering algorithm may choose to display multiple

columns, in order to best fill the available space. This system, very

much a proof-of-concept prototype, provided no support for floats,

and no support for any items (for example headers or footers) to

span multiple columns.

The system was initially implemented within Component-Object

Graphic (COG) PDF, a system developed at Nottingham that pro-

vides encapsulation for objects within PDF documents, and allows

for their dynamic modification [16, 4, 3, 1]. This medium was cho-

sen simply because the tools for creating these documents were

readily available to us, and because PDF provides a reasonable

guarantee that its contents will be rendered identically in any PDF

viewer.

Root

Paragraph-level items

Galley renderings

Sub-paragraph items

Figure 1: A simple document structure tree. The first level be-

low the root represents all paragraph-level items: headings,

paragraphs, figures etc. These items have one child for each

galley rendering of the document. These in turn have one child

for each sub-component of their content, for example the lines

of a paragraph.

3. DOCUMENT GENERATION
Since the previous paper, the system has been reimplemented

in HTML, JavaScript and CSS, as well as being extended to add

support for floating items, and for items to span across multiple

columns.

Previously, the generation of malleable documents involved a

manual process built around a pre-existing solution developed at

Nottingham. However, in order for the system to be usable, an auto-

mated process is required, through which a malleable document can

be generated. The underlying principles of the system remain the

same, for example the paragraph-tree structure described in [15], as

shown in figure 1, is retained.

In our implementation, the source document is described in terms

of separate logical blocks; a block is either designated as a ‘float’,

or as a ‘paragraph’. Floats are currently limited to referencing im-

ages only (with an optional size parameter). Paragraphs, on the

other hand, are described by their desired textual content. This is

deliberately simplistic, as an aid to testing. (We envisage that in

a real system, the source document would have a richer language,

perhaps marked up in a form similar to LATEX source, or in XML.)

Next, the source document is passed through a program to pro-

duce the output that becomes the malleable document itself. This

program passes the text of each paragraph through an implemen-

tation of a line-breaking algorithm (we use Knuth-Plass, but this

could be replaced by any other algorithm that performs line break-

ing and justification). Each paragraph is rendered multiple times,

once for each galley width, in order to produce the document’s mul-

tiple galley renderings. Each line of each rendering of every para-

graph is converted into a list of its composite words. All of these

words have an associated offset value, which is later used when

drawing the text to ensure that each word is positioned on the line

with the correct spacing.

The content of the floats is largely left unchanged. A reference

to the image, along with its required dimensions, is simply passed

through to the output. If dimensions were not explicitly specified in

the source document, the pixel size of the image itself is used.

Finally, once the whole of the source document has been pro-

cessed, the rendered content is output — in the form of the doc-

ument structure tree shown in figure 1 — encoded in JSON. This

becomes the data representing the source document, which, in con-

junction with the viewer defined in the next section, becomes a mal-

leable document.

4. THE VIEWER
In order to circumvent the browser’s default text layout algo-

rithm, and to ensure that our “high quality” pre-computed text lay-

out is used, the viewer must be able to specify the absolute posi-



tion of every word on each line, in a manner not dissimilar to the

internals of a PDF file. The document generator described in the

previous section ensures that all the information needed to lay out

the text is contained within the generated JSON object representing

the document structure tree.

When the viewer is launched, it decides which is the most appro-

priate galley rendering to display, based on some metric of which

rendering will be most aesthetically pleasing. Since we feel it works

well, we have not altered the metric defined in [15], which attempts

to balance a penalty for excessive inter-column whitespace against

a penalty for too many columns.

Although every galley is rendered in the same point size this can

be scaled up or down, at view time, based on the preference of the

user, to simulate point-size changes. The gaps between words are

scaled proportionally, to allow the text to remain correctly justified.

4.1 Floats with a Queue
Our initial attempt at supporting floats took inspiration from TEX,

which places floats into a queue until it finds somewhere it deems

appropriate to place the first float. In order to emulate this, we de-

fine two queues: the float queue, and the line queue. (‘Line queue’

is perhaps a slight misnomer, but it is somewhat snappier than ‘non-

floating items queue’.)

If both queues are empty, as they will be at the start of the lay-

out process, the document structure tree is traversed, and when the

first paragraph-level item (see figure 1) is encountered, its subcom-

ponents (of the chosen galley rendering) are added to the requisite

queue: lines to the line queue, and floats to the float queue.

When at least one of the queues is not empty, document layout

begins. If the float queue is nonempty, and the first float in the queue

will fit below the last typeset item, it is placed on the page. If not,

items from the line queue are placed one by one, until no more

will fit in the current column. When this happens, a new column is

started, and the first float in the float queue is output. Whenever the

line queue is depleted, and no floats in the float queue will fit at the

current point on the page, all subcomponents of the next paragraph-

level item from the document structure tree are queued.

Pagination is reasonably simple with this queueing system: as

soon as a page is full, the layout can be restarted at the origin of

the page using the current status of both queues and the document

structure tree. It is entirely possible that floats may appear on pages

subsequent to their callout point in the text, but this effect should

be no worse than in many current typesetting systems.

While this approach does produce reasonable layouts, and han-

dles floats well without the need for backtracking, it is not particu-

larly conducive to producing layouts with floats that span multiple

columns. The queue-based layout described above is rather sim-

plistic: it knows about the size of each component that it lays out

but it does not remember the history of the positions of any of the

components that are already laid out. This makes it difficult to have

items that span more than one column, because there is no mech-

anism to mark space on the page as being reserved. In order to do

this, we must take another approach.

4.2 A Grid-Based Layout
A simple method for allowing parts of a page to be reserved is

to break it up into a grid. Grid-based layouts are useful in many

situations [6]; one place of particular note is that of modern-day

newspapers. We follow the example set by these newspapers, and

define our grid’s row height to be the same as the leading of the

document’s body text, and the grid’s column width to be the mea-

sure of one text column plus the required gutter space.

Figure 2: An excerpt from our 2011 paper, typeset and ren-

dered by our new system.

The viewer uses the dimensions of the float, as specified in the

document structure tree (see section 3), to determine how many

columns it should span. The float is scaled to span the integer mul-

tiple of column widths that most closely matches its ‘natural’ size,

though for reasons that should hopefully be obvious, this number

is limited to a minimum of 1, and a maximum of the number of

columns on the page. Additionally, checks are made to ensure that

the scaling will not cause the height of the figure to exceed that of

the page.

An advantage of this grid-based approach is that it no longer re-

quires the use of queues, either for lines, or for floats. The viewer

simply traverses the document structure tree, placing each item in

the first available place in the grid. In the case of floats, or other

items larger than multiples of the main leading, spaces in the grid

can be marked as reserved, to prevent other items from trampling

over their reserved space. If a float will not fit directly below the

previous item to be placed, the grid is walked over until a gap of

sufficient size can be found. Figure 2 shows an example of a docu-

ment laid out with this system.

Pagination becomes a little trickier when floats are allowed to

span multiple columns. For example, if a float, whose natural size

would lead it to span n columns, is encountered in the document

structure tree when there are (n − 1) or fewer columns remaining

to be typeset on the page, it must be decided how best to handle

the situation. Three obvious options present themselves: alter the

float to span fewer columns; delay the placement of the float until

the start of the next page; or backtrack and check whether there

is room to move the float back one or more columns, by shunting

non-floatable text lines forwards.

The first option is clearly not desirable behaviour, given that

shrinking a float may well reduce its legibility. Additionally, if this

becomes a common problem, it it likely to be noticeable that floats

spanning into the rightmost column of the page appear shrunken.

The second option (delaying placement until the following page) is

a reasonable compromise, though it will increase float-drift (whereby

floats become separated from their callout points in the text), which

is not ideal. The third option (backtracking and shunting) is likely

to produce the most desirable output, although some computational

overhead will be added. One approach is simply to check whether

there is enough space immediately to the left (specifically a gap be-

tween other, already placed, floats) into which the current float can

be placed, with the displaced lines being shunted forwards. This

method will not produce layouts as optimal as methods that use

full backtracking and check all possibilities, but it will run in much



quicker time. A combination of all three of the above options is

likely to work best in practice.

5. EVALUATION
Currently, our solution suffers from significantly bloated file-

sizes: each rendering requires one full copy of the document’s source

text, in addition to positioning data for each word. Even after com-

pression, this leads to filesizes that are an order of magnitude larger

than the source text. We have not yet given great consideration to

space efficiency: it is possible that by separating the text from the

positioning data with the use of pointers (similar to the approach

described in [2]) a more space-efficient encoding could be devised.

Another drawback of our system is that the choice of typeface

must be set at document compile-time. There is no reason, in prin-

ciple, why renderings in multiple typefaces could not be included

within the file, though clearly it would be impractical to render the

document in every typeface known to mankind. A carefully chosen

selection of serif and sans-serif typefaces should hopefully cover

most eventualities.

5.1 Computational Performance
The layout system described herein works in a similar manner

to a first-fit line-breaking algorithm, in that it places elements on

the page in order, in the first place they will fit. Items that are the

same size as a single grid cell, such as lines of text set in the main

point size, can simply be placed in the first empty slot in the current

column, or the first empty slot in the next column, should there be

no empty spaces. For the placement of items that are larger than

a single grid cell, there is some overhead required to step through

the grid until a suitable position can be found. Once a position has

been found, each grid cell that it overlaps must be marked as being

reserved.

Whilst this algorithm does have a greater-than-linear time com-

plexity, the problem size is actually reduced in comparison to a

first-fit text layout algorithm, since our system uses lines of text as

its atomic units, rather than individual words. For this reason, we

feel that our algorithm should still be efficient enough to merit use

on portable eBook readers.

5.2 Aesthetic Performance
Aesthetically speaking, our system produces layouts that we feel

most people would consider to be ‘good’. The system can guaran-

tee use of a high-quality line breaking algorithm, since it has effec-

tively been compiled in, and so the only remaining concern is that

the columns of text and floats are laid out in a pleasing manner.

Harrington et al. [8] identified nine aesthetic measures for auto-

mated document layout. A number of these measures (alignment,

regularity, uniform separation, white-space free-flow, uniformity)

are particularly well satisfied by our system, due to its use of a grid

to provide regular layout.

We intend to run a user study to assess the more qualitative as-

pects of our system.

6. FUTURE WORK
The system as described in this paper has only very basic sup-

port for floats. A particular limitation is that unlike paragraphs,

each float has only one rendering, which must be scaled up or

down as required, to fit across multiples of columns. Whilst for

image-based figures or illustrations, this is probably already the

desired behaviour, other types of floats, such as tables or code list-

ings, would almost certainly benefit from the inclusion of multiple

width renderings, with the choice of which rendering to display to

be made at view-time.

Since the malleable document and viewer are composed entirely

from HTML, CSS, and JavaScript — the core technologies behind

EPUB — modifying our system to produce self-contained EPUB

files seems an obvious next step.

7. REFERENCES
[1] S. R. Bagley. COG extractor. In Proceedings of the 2006

ACM Symposium on Document Engineering, page 31. ACM

Press, 2006.

[2] S. R. Bagley. Lessons from the dragon: Compiling PDF to

machine code. In Proceedings of the 2010 ACM Symposium

on Document Engineering, 2010.

[3] S. R. Bagley and D. F. Brailsford. Demo abstract: The COG

scrapbook. In Proceedings of the 2005 ACM Symposium on

Document Engineering, pages 233–234. ACM Press, 2005.

[4] S. R. Bagley, D. F. Brailsford, and M. R. B. Hardy. Creating

reusable well-structured PDF as a sequence of component

object graphic (COG) elements. In Proceedings of the 2003

ACM Symposium on Document Engineering, pages 58–67.

ACM Press, 2003.

[5] R. Bringhurst. The Elements of Typographic Style (v 3.2).

Hartley & Marks, 2008.

[6] D. Collier. Collier’s Rules for Desktop Design and

Typography. Addison-Wesley, 1991.

[7] D. Eppstein and Z. Galil. Sparse dynamic programming II:

Convex and concave cost functions. J. ACM, 39(3):546–567,

1992.

[8] S. J. Harrington, J. F. Naveda, R. P. Jones, P. Roetling, and

N. Thakkar. Aesthetic measures for automated document

layout. In Proceedings of the 2004 ACM Symposium on

Document Engineering, pages 109–111. ACM Press, 2004.

[9] B. Hill. The magic of reading. Technical report, Microsoft,

1999.

[10] D. S. Hirschberg and L. L. Larmore. The least weight

subsequence problem. SIAM J. Comput., 16(4):628–638,

1987.

[11] N. Hurst, W. Li, and K. Marriott. Review of automatic

document formatting. In Proceedings of the 2009 ACM

Symposium on Document Engineering, 2009.

[12] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines.

Software — Practice and Experience, 11:1119–1184, 1981.

[13] G. E. Legge and C. A. Bigelow. Does print size matter for

reading? A review of findings from vision science and

typography. Journal of Vision, 11(5):8:1–22, 2011.

[14] F. Mittelbach and C. Rowley. The pursuit of quality — how

can automated typesetting achieve the highest standards of

craft typography? In EP92 (Proceedings of Electronic

Publishing), pages 261–273. Cambridge University Press,

1991.

[15] A. J. Pinkney, S. R. Bagley, and D. F. Brailsford. Reflowable

documents composed from pre-rendered atomic components.

In Proceedings of the 11th ACM Symposium on Document

Engineering, DocEng ’11, pages 163–166, New York, NY,

USA, 2011. ACM.

[16] P. N. Smith and D. F. Brailsford. Towards structured,

block-based PDF. Electronic Publishing — Origination,

Dissemination and Design, 8(2 and 3):153–165,

June/September 1995.

[17] G. Voorhees. Congeniality of reading on digital devices.

Master’s thesis, Rochester Institute of Technology, 2011.


