
Soria, Daniele and Garibaldi, Jonathan M. (2010) A 
novel framework to elucidate core classes in a dataset. 
In: IEEE Congress on Evolutionary Computation (CEC) 
2010, 18-23 July 2010, Barcelona, Spain. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/28139/1/Soria2010.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


A Novel Framework to Elucidate Core Classes in a Dataset

Daniele Soria, Member, IEEE and Jonathan M. Garibaldi, Member, IEEE

Abstract— In this paper we present an original framework to
extract representative groups from a dataset, and we validate it
over a novel case study. The framework specifies the application
of different clustering algorithms, then several statistical and
visualisation techniques are used to characterise the results, and
core classes are defined by consensus clustering. Classes may be
verified using supervised classification algorithms to obtain a set
of rules which may be useful for new data points in the future.
This framework is validated over a novel set of histone markers
for breast cancer patients. From a technical perspective, the
resultant classes are well separated and characterised by low,
medium and high levels of biological markers. Clinically, the
groups appear to distinguish patients with poor overall survival
from those with low grading score and better survival. Overall,
this framework offers a promising methodology for elucidating
core consensus groups from data.

I. INTRODUCTION

Clustering has become a widely used approach to extrapo-

late important information from data and to separate different

groups that share similar characteristics within them. Cluster

analysis may be thought of as the discovery of distinct and

non-overlapping sub-partitions within a larger population [1].

Many different clustering techniques are known today, but

often only a few selected methods are used in any given

domain. For example, in breast cancer studies, researchers

tend to focus on a single algorithm, usually hierarchical

clustering [2], [3], [4]. Choosing which method to use is

not an easy task, as different clustering techniques return

different groupings. Consequently, it has been demonstrated

[5], [6] that the use of several methods is preferable in order

to extract as much information as possible from the data.

When using more than one algorithm, it is then common

to define a consensus across the results [7] in order to

integrate diverse sources of similarly clustered data [8] and to

deal with the stability of the results obtained from different

techniques. Several approaches have been proposed for this

task. Kellam and colleagues [7] identified robust clusters by

the implementation of a new algorithm called ‘Clusterfusion’.

It takes the results of different clustering algorithms and

generates a set of robust clusters based upon the consensus

of the different results of each algorithm.

Another approach, suggested by Monti and colleagues [1],

deals with class discovery and clustering validation tailored

to the task of analysing gene expression data. The method-

ology, termed ‘consensus clustering’, provides a method,

in conjunction with resampling techniques, to represent the
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consensus across multiple runs of a clustering algorithm and

to assess the stability of the discovered clusters.

Filkov and Skiena suggested to exploit the popularity of

cluster analysis of biological data by integrating clusterings

from existing data sets into a single representative clustering

based on pairwise similarities of the clusterings. The goal

of their consensus clustering was to eliminate the likely

noise and incongruencies from the original classifications.

Their proposed representative clustering was the one that

minimised the distance to all the other partitions [8].

In another approach, Swift and colleagues used consensus

clustering to improve confidence in gene-expression analysis,

on the assumption that microarray analysis using clustering

algorithms can suffer from lack of inter-method consistency

in assigning related gene-expression profiles to clusters [9].

To assess gene-expression cluster consistency, the use of the

weighted-kappa metric was analysed. This metric is generally

used as a comparison between two data partitions as it rates

the agreement between the classification decisions made by

two or more observers. In this approach, the two observers

are the clustering methods.

In addition to clustering methods, supervised classification

techniques are widely used to learn classification rules from a

set of labelled cases (training set) to label new cases in a test

set. Many different supervised classification methods have

been developed in recent years, such as Neural Networks,

Classification Trees, Bayesian Classifiers and many more.

In this paper, an original algorithmic framework to elu-

cidate a set of core groups in a dataset is proposed and

validated over a novel set of breast cancer histone markers.

At the beginning of this framework, different clustering

algorithms are applied, and through a consensus clustering

a set of common classes is defined in order to determine

the fundamental characteristics of data expressed by different

groups. Then these core groups may be assessed using

supervised classification methods and characterised by the

application of a set of visualisation techniques.

The paper is organised as follows: in Section 2, the

proposed framework is presented and explained in detail.

Section 3 is reserved for the experiment settings and the

validation of the framework over a novel set of breast cancer

histone markers provided by the Division of Molecular and

Cellular Sciences, Centre for Biomolecular Sciences, School

of Pharmacy at the University of Nottingham. In Section 4 a

discussion of the results is reported together with directions

for future research.

II. STRATEGY

The proposed framework needs several input sets of meth-

ods and parameters, and it is formed by different logical



steps which will be described below. In its most general

parameterisation, the framework F may be written as

F (Ω, P, C, V, K, B, S, a),

where the input arguments are as follows:

• The dataset under investigation Ω.

• The set of preliminary data analysis techniques and pre-

processing algorithms P .

• The collection of several clustering techniques C which

may be applied.

• The collection V of several validity indices which may

be used to assess the grouping returned by cluster

analysis.

• The set K of concordance measures (like the kappa

coefficient of agreement, or Rand indexes).

• The collection B of visualisation techniques to charac-

terise the groupings.

• The set of several supervised learning techniques S.

• The statistical coefficient a to assess the association

between groups and variables of interest.

An organisation chart showing the overall approach and

the logical steps used in this proposed pipeline is reported in

Figure 1. Following this structure, each step of the framework

is now presented.
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Fig. 1. Organisation chart of the proposed framework

1) In the first step, data preprocessing is performed. Rows

which contain entries with missing values have to be

deleted in order to run the clustering algorithms, and

variables need to be ‘homogeneous’, which means that it

is not convenient to have both numerical and categorical

entries as part of the same variable distribution. If this

happens, then clustering techniques may not be able to

emphasise other possible structures within the dataset.

In this ‘data preprocessing’ step, several descriptive

statistics (minimum, maximum, mean, median, quar-

tiles, etc.) need to be checked as well, in order to have

a complete picture of the data under investigation and

to immediately spot any inconsistency within them.

2) The second step involves clustering the data using

a variety of algorithms over a range of numbers of

clusters. Various unsupervised classification algorithms

may be applied. In this framework, a subset of tech-

niques from the set of four – hierarchical (HCA), K-

means (KM), Fuzzy C-means (FCM) and Partitioning

Around Medoids (PAM) – is selected to categorise cases

into groups. Given that K-means and Fuzzy C-means

methods are sensitive to cluster initialisation and in

order to obtain reproducible results, these techniques

are initialised with the cluster assignments obtained by

hierarchical clustering. All of the above techniques have

been previously analysed and used (see, for example [6],

[5], [10]). This does not mean that these four are the best

techniques to use, but they are among the most widely

used clustering methods in machine learning and data

mining as they performed quite well on a considerable

amount of problems [5], [10], [11].

3) In this step, validity indices are applied to clustering

results. One of the main problems related to cluster

analysis is the choice of the number of clusters. To ad-

dress this issue some external validation criteria (validity

indices) may be used to compare one cluster solution to

other cluster solutions and to choose the one suggested

as optimal. Although there are many variations of va-

lidity indices, they are all either based on considering

the data dispersion in a cluster and between clusters, or

considering the scatter matrix of the data points and the

one of the clusters centres. Several validity indices have

been proposed in literature, but in this framework only

few have been considered. The indices of Calinski and

Harabasz [12], Hartigan [13], Scott and Symons [14],

Marriot [15] and the two proposed by Friedman and

Rubin [16] are used for partitional clustering (K-means

and PAM). Instead, for the FCM method, the indices of

Gath and Geva [17], Xie-Beni [18], and Bezdek [19]

have been used. According to specific rules (see [20]

and [21] for details), they all indicate the appropriate

number of groups to consider in the analysis. When

indices indicate different numbers, it is possible to use

them to rank in order the suggested groupings and then

take the minimum sum of ranks as a form of agreement

between indices.



4) When clusters are returned, a general characterisation of

them can be obtained through visualisation techniques.

Biplots, which are built considering the first two prin-

cipal components and represent clusters projected on

them, are a useful tool as they provide a picture where

the clusters have been ‘spread out’ as much as possible.

Another technique for visualisation is the boxplot. It

shows the distribution of each variable, computing its

median value, the lower and upper quartiles and any

outlier [22]. Through the computation of the boxplots of

all variables divided by clusters and using the biplots as

well, it is possible to obtain a first ‘informal’ description

of the groupings obtained by the clustering techniques.

In addition, the agreement between classifications re-

turned is, in this guideline, assessed either using the

Cohen’s kappa and weighted kappa indices [23], [24],

or the Rand and adjusted Rand indices [25], [26]. All

these indices also give an indication about how likely

will be to get a good consensus between classifications.

Cohen’s kappa index (κ) is a statistical measure of inter-

rater agreement for qualitative (categorical) items [23].

It is generally thought to be a more robust measure

than the percentage or proportion of agreement, since κ
takes into account the agreement occurring by chance.

Cohen’s kappa is defined as

κ =
po − pc
1− pc

where po is the observed proportion of agreement, and

pc is the proportion of agreement expected by chance.

Kappa takes negative values when there is less observed

agreement than is expected by chance, zero when ob-

served agreement can be (exactly) accounted for by

chance, and one when there is complete agreement [23].

Cohen also introduced the weighted kappa index κw,

considering the proportion of weighted disagreement.

To find the latter, disagreement weight, vij , are defined

by means of any judgment procedure set up to yield a

ratio scale. It is convenient (even though not necessary)

to assign zero to the ‘perfect’ agreement and the length

of the vector of weights must equal the number of rating

categories. Weighted kappa is then given by

κw = 1−

∑

vijpoij
∑

vijpcij
.

where poij is the proportion of the joint judgments (N
in number) observed in the ij cell, and pcij is the

proportion in the cell expected by chance. Like the

‘unweighted’ kappa index, κw is fully chance corrected.

In this study, weights are set in decreasing order from

one (perfect agreement) to zero (complete disagreement)

and all levels disagreement between raters are weighted

according to their distance from perfect agreement [24].

Another widely used measure to assess the agreement

between classifications is the Rand index [25]. Given

a set of objects S, suppose U and V represent two

different partitions of the objects in S. Let a be the

number of pairs of objects that are placed in the same

element in partition U and in the same element in

partition V , and d be the number of pairs of objects

in different elements in partitions U and V [27]. The

Rand index [25] is defined simply as the fraction of

agreement, i.e.

R(U, V ) = (a+ d)/

(

n

2

)

.

The Rand index lies between 0 and 1, as, by definition,

it is normalised. When the two partitions are identical,

the Rand index is 1 [27].

However, the expected value of the Rand index of two

random partitions does not take a constant value. For

this reason, Hubert and Arabie [26] defined the adjusted

Rand index which corrects for this by assuming the

general form

index − expected index

maximum index − expected index
.

In this general form the index is bounded above by 1,

and takes the value 0 when the index equals its expected

value [28]. As for the Rand index, a higher adjusted

Rand index means a higher correspondence between the

two partitions.

5) As per Figure 1, the next step is related to classes

definition. This is done via a consensus clustering which

may be performed in several ways. In this proposed

framework, the classifications obtained by different

clustering algorithms are used and, looking at the bi-

plots, the cluster labels are aligned in order to have the

same patient assigned to the cluster named in the same

way by different algorithms. Looking then at the same

cluster number / label across all methods, core classes

are defined by taking into consideration those cases

assigned to the same group by different methods. Two

principles were used to guide the definition of consensus

classes: (i) to include as many instances as possible and

(ii) to take into account as many clustering algorithms

as possible among the ones applied. However, it may

happen [6] that these principles conflict, especially when

the agreement between clustering methods is not high,

and that the strict application of the second principle

leads to a decrease in the number of patients assigned

to classes. If this happens, it is then possible to employ

a heuristic trade-off between the two principles [6].

6) To assess and verify the classes defined by the consen-

sus clustering, supervised classification techniques may

be used. Among them, the C4.5 classifier (C4.5), the

MultiLayer Perceptron Artificial Neural Network (MLP-

ANN) and the naive Bayes classifier are considered in

this framework. When data do not follow a normal dis-

tribution, a ‘non-parametric’ Bayesian classifier (NPBC)

(recently developed and presented in [29]) may be used.

7) In the last step, the identified core classes are described

resorting again to biplots and boxplots. When com-

puting the biplots of classes, the ‘not classified’ cases



usually are concentrated in the middle of the region. In

addition, the correlation between classes and particular

features of interest is computed resorting to the Phi (φ)

statistics [30].

III. VALIDATION

A. Experiment settings

To validate the approach presented in the previous section,

the framework was applied in the following configuration:

(Ω1, P1, C1, V1, K1, B1, S1, φ) where each input set is

now described.

• Ω1 = A novel dataset provided by the School of

Pharmacy at the University of Nottingham.

• P1 = {Deletion of rows where missing values appear,

descriptive statistics computation}.

• C1 = {KM, PAM, FCM}.

• V1 = {The same validity indices reported in the previ-

ous Section and already used in [6] and [21]}.

• K1 = {κ, κw}.

• B1 = {Biplots, boxplots}.

• S1 = {C4.5}.

• φ as the index to assess the association between classes

and clinical variables available.

The choice of using the above configuration is motivated by

the robustness of the clustering algorithms and by the C4.5

producing a set of rules easily understandable by clinicians,

which are usually not familiar with computational analysis.

B. Case study

The dataset Ω1 used to validate the proposed approach

was a collection of 1254 consecutive breast tumours di-

agnosed from 1986 to 1998 included in the Nottingham

Tenovus Primary Breast Carcinoma Series. Full details of

the characterisation of the tissue microarray and the cohort

of the patients are described in [31], [32]. Survival data were

maintained on a prospective basis. Breast cancer specific

survival was taken as the time (in months) from the date

of the primary surgical treatment to the time of death from

breast cancer [32]. A grading score was also available in this

dataset. Grade is one of the components of the Nottingham

Prognostic Index [33] and is determined by the microscopic

evaluation of tumour cells by pathologists [34], [35].

Breast cancer tissue microarrays were prepared and im-

munohistochemically stained to detect four histone markers

as described in [36]. Each case was sampled twice from

both the centre and the periphery of the tumour. The histone

markers selected for this study were hMOF, ACH4K16,

H3K9Me3 and SUV. They all have different functions:

hMOF is a histone transferase enzyme which is responsible

for H4K16 acetylation. ACH4K16 is a marker of active gene,

while H3K9Me3 is a marker of silenced gene. Finally, SUV

is the main factor responsible for H3K9 tri-methylation [37].

C. Results

This collection of data presented many missing values; for

the analysis described below, the four histone markers were

only considered as well as those patients for which all the in-

formation was present, thus reducing the number of patients

to 347. The basic descriptive statistics like minimum, mean

and maximum values for each feature were computed and

together with the deletion of all rows where missing values

were found, they formed the pre-processing techniques of the

P1 input set.

To assess the grouping, the KM, PAM and FCM algo-

rithms (see [38], [39], [40]) were applied with the number

of clusters varying between two and twenty (the number of

clusters is an explicit input parameter for all algorithms).

For the partitional clustering (KM and PAM), the same

validity indices used in [6] were used for these experiments,

as well as the decision rules reported in Table 1 of the

same paper. The values of the indices for both K-means

and PAM, for 2 to 20 clusters are shown in Figure 2; (a)

shows the validity decision rule values obtained for K-means

and (b) shows those obtained for PAM. The best number of

clusters according to each validity index, for each clustering

algorithm, is shown in Table I. This corresponds to either the

maximum or the minimum decision rule value (depending on

the index), as indicated by the solid circle in Figure 2.

TABLE I

OPTIMUM NUMBER OF CLUSTERS ESTIMATED BY EACH INDEX FOR

K-MEANS AND PAM METHODS

Index K-means PAM
Calinski and Harabasz 14 3
Hartigan 3 3
Scott and Symons 3 3
Marriot 14 3
TraceW 3 3
TraceW−1B 3 3
Minimum sum of ranks 3 3

When FCM was applied, four validity indices were con-

sidered, and their values for 2 to 20 clusters are shown in

Figure 3. The best number of clusters according to each

validity index, for FCM clustering algorithm, is shown in

Table II. This corresponds to either the index maximum or

minimum, as indicated by the solid circle in Figure 3.

TABLE II

OPTIMUM NUMBER OF CLUSTERS ESTIMATED BY EACH INDEX FOR

FCM METHOD

Index Fuzzy C-means
Fuzzy Hypervolume 2
Partition Density 3
Xie-Beni 2
Partition Coefficient 2
Minimum sum of ranks 2

From Table I it can be seen that all indices applied to the

PAM results suggested three groups, while such an agreement

was not evident in the case of K-means algorithm. However,

resorting to the minimum sum of ranks for the indices, it

could be observed that both methods indicated three as the
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Fig. 2. Cluster validity indices obtained for K-means and PAM clustering,
for varying cluster numbers from 2 to 20

best number of clusters. For the Fuzzy C-means algorithm,

instead, the minimum sum of ranks for the indices indicated

two clusters. However, as three was the second best number

of clusters and in order to be consisted with KM and PAM

results, three groups were also considered for the Fuzzy C-

means algorithm. The cluster distribution (number of patients

in each cluster) obtained for the K-means, PAM and FCM

methods is reported in Table III.

The correspondence of patients assigned in the three
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Fig. 3. Cluster validity indices obtained for Fuzzy C-means clustering, for
varying cluster numbers from 2 to 20

TABLE III

NUMBER OF CASES IN EACH CLUSTER

Cluster K-means PAM FCM
1 144 161 136
2 105 96 109
3 98 90 102

TABLE IV

KAPPA AND weighted kappa INDEX FOR DIFFERENT CLASSIFICATIONS

K-means PAM
FCM 0.926 0.89

0.91 0.88

K-means — 0.911
— 0.906

clusters solution for each of the methods was then examined

resorting to both the unweighted and weighted kappa index κ.

For the weighted-kappa index, weights were set in decreas-

ing order from one (perfect agreement) to zero (complete

disagreement) with a 0.5 step between levels. Results are

reported in Table IV. From this table, an almost perfect

agreement between the three techniques is visible.

Focusing on the cluster correspondences, core classes

containing the biggest possible number of patients were

defined. Considering the agreement among the clustering

techniques and looking at those patients assigned to the same

group by the different methods, three common classes were

created containing the 91.1% of the overall population. In

practice, 31 patients were not assigned to any of these three

classes and were placed into a ‘not classified’ (NC) group.

The distribution of patients in the three ‘common’ classes is

reported in Table V, together with the rule applied to define

each class.



TABLE V

DISTRIBUTION OF PATIENTS IN THE ‘COMMON’ CLASSES

Class No. of cases
1 (KM1 ∧ PAM1 ∧ FCM1) 132
2 (KM2 ∧ PAM2 ∧ FCM2) 95
3 (KM3 ∧ PAM3 ∧ FCM3) 89
Total number of cases assigned to classes 1 – 3 316
Total number of cases not classified 31

Biplots of the three consensus classes were produced and

are reported in Figures 4 and 5, which provide a visualisation

of the classes projected on the first two principal components.

The arrows in the plots represent the variables (markers)

and their direction indicate in which group they are more

expressed.

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Comp.1

C
om

p.
2

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SUVSUV

hMOFhMOF

ACH4K16ACH4K16
H3K9Me3H3K9Me3

●

●

class n. 1
class n. 2
class n. 3
N. C.

Fig. 4. Biplots of classes projected on the first and second principal
component axes for all patients

Figure 4 shows the biplot obtained for all patients, in

which the cases not assigned to any class (NC) are repre-

sented by empty circles. It can be seen that these fall mainly

into the centre region of the biplot. Figure 5 shows the biplot

obtained for only those patients assigned to classes 1 – 3. The

first axis was mainly determined, on the left, by ACH4K16

and H3K9Me3 markers, while the second one is determined,

on the bottom, by hMOF over-expression.

Figure 6 shows boxplots of all four markers, (a) for those

cases assigned to classes 1 to 3, and (b-d) for each class

separately.

By visual inspection of both the biplots and the boxplots,

an ‘informal’ description of each class could be derived.

It seems quite evident that class 3 is mainly characterised

by low expression of all the four markers. Compared to

the overall distribution, class 2 appears to express higher

values while class 1 is quite similar, especially with respect

to hMOF and ACH4K16.

Starting from these consensus/common data, we investi-

gated whether it was possible to establish a set of rules
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Fig. 5. Biplots of classes projected on the first and second principal
component axes for patients in classes 1 – 3
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Fig. 6. Boxplot for all markers grouped by class

to determine in which group a patient is more likely to

be assigned starting from its variables values. To do so,

supervised machine learning algorithms were used (results

not shown).

As mentioned before, several items of clinical information

were also available for this study. In particular, the overall

survival of patients was considered, and using the Kaplan-

Meier estimator [41], [42] a curve of the predicted survival

against time for each class was produced. The Kaplan-Meier

curves obtained for this study are reported in Figure 7. It

is important to note that several rows, representing patients
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Fig. 7. Kaplan - Meier curves for months of survival divided by class

with missing information about survival time and recurrence,

were deleted for computation of the curves, leaving the total

number of patients equal to 291. The best overall survival is

visible for patients grouped in class 2, which is characterised

by high values of covariates. Classes 1 and 3 have the

worst, equally poor, survival. These results are in agreement

with those previously obtained in [32] and [43] where high

values of hMOF and ACH4K16 were associated with a better

survival.

As a last analysis, the association between tumour grade

[34], [35] and classes was assessed, resorting to the Phi (φ)

statistics [30]. This association is reported in Table VI where

the total number of patients is 313, as there were 3 missing

information for grade.

TABLE VI

COMMON CLASSES DISTRIBUTION IN RELATION TO GRADING SCORE

Common classes

1 2 3 φ

Low Grade 30 31 11
Interm. Grade 33 42 30 0.293
High Grade 67 22 47

Although the Phi statistic is low, an interesting result may

still be inferred from Table VI. As a matter of fact, it can

be seen that the majority of high grade patients, which are

known to have a poor prognosis [34], are grouped in classes 1

and 3, which, according to the Kaplan-Meier curves reported

in Figure 7 are the groups with the worst overall survival.

This proves that the common classes, which are derived only

on the basis of the four markers and without using any

clinical data, are able to group together patients with similar

outcome.

IV. DISCUSSION

In this paper we have presented a novel framework to

allow the elucidation of core classes within a dataset. It fol-

lows a logical scheme in which at the beginning unsupervised

clustering techniques are used to group patients (or any kind

of data) in clusters which share similar characteristics. It

is important to use more than a single clustering method,

as it has been proved in literature [5], [6] that different

algorithms return different groups and it is not possible to

say which, if it really exists, is the best clustering technique

to use. By a visual inspection of the results and by using an

index to assess the degree of agreement between different

classifications, an ‘informal’ consensus clustering may be

derived, considering those patients assigned to the same

group by different algorithms as ‘in-class’ and labelling all

the others as ‘not classified’. The resulting classes may be

then analysed in different ways, either using biplots and

boxplots, or looking at their relations with other variables

(which, in this study, were several clinical information).

In any of those cases, automated supervised classification

techniques may be used to confirm and assess the identified

grouping.
We validated the proposed approach on a dataset of

breast cancer histone biomarkers which was provided by the

Division of Molecular and Cellular Sciences in the School

of Pharmacy at the University of Nottingham. The three

common classes identified by the consensus clustering have a

quite clear definition. In fact the three groups are somehow

characterised by low / intermediate / high markers levels.

Moreover, the agreement between classifications (kappa and

weighted kappa indexes) is very high. From a clinical point

of view, the second class presents a higher survival rate than

the other two, so leading to the conclusion that the higher the

values of biomarkers, the better the prognosis for the patient.

A similar result was reported in [32], where more histone

markers were considered and just two clustering algorithms

were applied.
Although the results obtained so far still need afinal

interpretation from clinicians and researchers at the Schools

of Pharmacy, this study served to present and validate our

proposed procedure, which, so far, has given very promising

and encouraging results.
As a future work different data sets will be used to validate

again the framework. In addition, model-based clustering

approaches and semi-supervised learning techniques will be

considered and their inclusion in the proposed framework

will be evaluated. Finally, this work will be extended to

include comparisons to other approaches recently developed

(e.g. [44]).

ACKNOWLEDGMENTS

The authors would like to thank Prof. David M. Heery and

his Ph.D. student Magdy Korashy Abdel Fatah for providing

the data used in this work. This study was, in part, supported

by the BIOPTRAIN FP6 Marie-Curie EST Fellowship (FP6-

007597).

REFERENCES

[1] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus clustering:
A resampling-based method for class discovery and visualization of
gene expression microarray data,” Machine Learning, vol. 52, pp. 91–
118, 2003.



[2] C. Perou, T. Sørlie, M. Eisen, M. Van De Rijn, S. Jeffrey, C. Rees,
J. Pollack, D. Ross, H. Johnsen, L. Akslen, Ø. Fluge, A. Pergamen-
schikov, C. Williams, S. Zhu, P. Lonning, A. Børresen-Dale, P. Brown,
and D. Botstein, “Molecular portraits of human breast tumours,”
Nature, vol. 406, pp. 747–752, 2000.

[3] T. Sørlie, C. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen,
T. Hastie, M. Eisen, M. Van De Rijn, S. Jeffrey, T. Thorsen, H. Quist,
J. Matese, P. Brown, D. Botstein, P. Eystein Lonning, and A. Børresen-
Dale, “Gene expression patterns of breast carcinomas distinguish
tumor subclasses with clinical implications,” Proc Natl Acad Sci U

S A, vol. 98, pp. 10 869–10 874, 2001.
[4] L. Van’t Veer, H. Dai, M. van de Vijver, Y. He, A. Hart, M. Mao,

H. Peterse, K. van der Kooy, M. Marton, A. Witteveen, G. Schreiber,
R. Kerkhoven, C. Roberts, P. Linsley, R. Bernards, and S. Friend,
“Gene expression profiling predicts clinical outcome of breast cancer,”
Nature, vol. 415, pp. 530–536, 2002.

[5] F. Ambrogi, E. Biganzoli, P. Querzoli, S. Ferretti, P. Boracchi, S. Al-
berti, E. Marubini, and I. Nenci, “Molecular subtyping of breast
cancer from traditional tumor marker profiles using parallel clustering
methods,” Clinical Cancer Research, vol. 12, no. 3, pp. 781–790, 2006.

[6] D. Soria, J. Garibaldi, F. Ambrogi, A. Green, D. Powe, E. Rakha,
R. Macmillan, R. Blamey, G. Ball, P. Lisboa, T. Etchells, P. Boracchi,
E. Biganzoli, and I. Ellis, “A methodology to identify consensus
classes from clustering algorithms applied to immunohistochemical
data from breast cancer patients,” Computers in Biology and Medicine,
vol. 40, no. 3, pp. 318–330, 2010.

[7] P. Kellam, X. Liu, N. Martin, C. Orengo, S. Swift, and A. Tucker,
“Comparing, contrasting and combining clusters in viral gene ex-
pression data,” in Proceedings of 6th Workshop on Intelligent Data

Analysis in Medicine, 2001.
[8] V. Filkov and S. Skiena, “Integrating microarray data by consensus

clustering,” in Proceedings of the 15th IEEE International Conference

on Tools with Artificial Intelligence, 2003, pp. 418– 426.
[9] S. Swift, A. Tucker, V. Vinciotti, N. Martin, C. Orengo, X. Liu, and

P. Kellam, “Consensus clustering and functional interpretation of gene-
expression data,” Genome Biology, vol. 5:R94, 2004.

[10] X. Wang and J. Garibaldi, “A comparison of fuzzy and non-fuzzy
clustering techniques in cancer diagnosis,” in Proceedings of second

international conference in Computational Intelligence in Medicine

and Healthcare, 2005, pp. 250–256.
[11] R. Diallo-Danebrock, E. Ting, O. Gluz, A. Herr, S. Mohrmann,

H. Geddert, A. Rody, K. Schaefer, S. Baldus, A. Hartmann, P. Wild,
M. Burson, H. Gabbert, U. Nitz, and C. Poremba, “Protein expression
profiling in high-risk breast cancer patients treated with high-dose or
conventional dose-dense chemotherapy,” Clin Cancer Res, vol. 13, pp.
488–497, 2007.

[12] R. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Communs statist, vol. 3, pp. 1–27, 1974.

[13] J. Hartigan, Clustering Algorithms. Wiley series in probability and
mathematical statistics. Applied Probability and Statistics. New York:
Wiley, 1975.

[14] A. Scott and M. Symons, “Clustering methods based on likelihood
ratio criteria,” Biometrics, vol. 27, no. 2, pp. 387–397, 1971.

[15] F. Marriot, “Practical problems in a method of cluster analysis,”
Biometrics, vol. 27, no. 3, pp. 501–514, 1971.

[16] H. Friedman and J. Rubin, “On some invariant criteria for grouping
data,” Journal of the American Statistical Association, vol. 62, no. 320,
pp. 1159–1178, 1967.

[17] I. Gath and A. Geva, “Unsupervised optimal fuzzy clustering,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 11,
no. 7, pp. 773–781, 1989.

[18] L. Xie and G. Beni, “Validity measure for fuzzy clustering,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
no. 8, pp. 841–847, 1991.

[19] J. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, vol. 10, pp. 191–
203, 1984.

[20] A. Weingessel, E. Dimitriadou, and S. Dolnicar, “An examination of
indexes for determining the number of clusters in binary data sets,”
Working Paper No.29, 1999.

[21] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering valida-
tion techniques,” Journal of Intelligent Information Systems, vol. 17,
pp. 107–145, 2001.

[22] P. Velleman and D. Hoaglin, Applications, Basics and Computing of

Exploratory Data Analysis. Boston, Mass.: Duxbury Press, 1981.

[23] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and Psychological Measurement, vol. 20, pp. 37–46, 1960.
[24] ——, “Weighted kappa: Nominal scale agreement with provision for

scaled disagreement or partial credit,” Psychological Bulletin, vol. 70,
pp. 213–220, 1968.

[25] W. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical Association, vol. 66, pp. 846–850,
1971.

[26] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifi-

cation, vol. 2, pp. 193–218, 1985.
[27] K. Yeung and W. Ruzzo, “Principal component analysis for clustering

gene expression data,” Bioinformatics, vol. 17, no. 9, pp. 763–774,
2001.

[28] ——, “An empirical study on principal component analysis for clus-
tering gene expression data,” Department of Computer Science &
Engineering, University of Washington, Seattle, US, Tech. Rep., 2000.

[29] D. Soria, J. Garibaldi, F. Ambrogi, E. Biganzoli, and I. Ellis, “A ‘non-
parametric’ version of the naive bayes classifier,” Submitted to Data

& Knowledge Engineering, 2010.
[30] B. Everitt, The Cambridge Dictionary of Statistics. Cambridge

University Press, 2002.
[31] S. Elsheikh, A. Green, M. Lambros, N. Turner, M. Grainge, D. Powe,

I. Ellis, and J. Reis-Filho, “FGFR1 amplification in breast carcino-
mas: A chromogenic in situ hybridisation analysis,” Breast Cancer

Research, vol. 9:R23, 2007.
[32] S. Elsheikh, A. Green, E. Rakha, D. Powe, R. Ahmed, H. Collins,

D. Soria, J. Garibaldi, C. Paish, A. Ammar, M. Grainge, G. Ball,
M. Abdelghany, L. Martinez-Pomares, D. Heery, and I. Ellis, “Global
histone modifications in breast cancer correlate with tumor phenotypes,
prognostic factors, and patient outcome,” Cancer Research, vol. 69, pp.
3802–3809, 2009.

[33] M. Galea, R. Blamey, C. Elston, and I. Ellis, “The Nottingham
Prognostic Index in primary breast cancer,” Breast Cancer Res Treat,
vol. 22, pp. 207–219, 1992.

[34] I. Ellis, M. Galea, N. Broughton, A. Locker, R. Blamey, and C. Elston,
“Pathological prognostic factors in breast cancer. II. histological type.
Relationship with survival in a large study with long-term follow-up,”
Histopathology, vol. 20, pp. 479–489, 1992.

[35] E. Rakha, M. El-Sayed, A. Lee, C. Elston, M. Grainge, Z. Hodi,
R. Blamey, and I. Ellis, “Prognostic significance of nottingham his-
tologic grade in invasive breast carcinoma,” J Clin Oncol, vol. 26,
no. 19, pp. 3153–3158, 2008.

[36] D. Abd El-Rehim, S. Pinder, C. Paish, J. Bell, R. Blamey, J. Robertson,
R. Nicholson, and I. Ellis, “Expression of luminal and basal cytoker-
atins in human breast carcinoma,” Journal of Pathology, vol. 203, pp.
661–671, 2004.

[37] D. Maglott, J. Ostell, K. Pruitt, and T. Tatusova, “Entrez Gene: Gene-
centered information at NCBI,” Nucleic Acids Research, vol. Database
Issue, pp. D54–D58, 2005.

[38] J. MacQueen, “Some methods of classification and analysis of mul-
tivariate observations,” in Proceedings of Fifth Berkeley Symposium

on Mathematical Statistics and Probability, University of California,

Berkeley, 1967, pp. 281–297.
[39] L. Kaufman and P. Rousseeuw, Finding Groups in Data: an Introduc-

tion to Cluster Analysis. Wiley series in probability and mathematical
statistics. Applied Probability and Statistics. New York: Wiley, 1990.

[40] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-

rithms, plenum, New York ed., 1981.
[41] E. Kaplan and P. Meier, “Nonparametric estimation from incomplete

observations,” Journal of the American Statistical Association, vol. 53,
no. 282, pp. 457–481, 1958.

[42] J. Kalbfleisch and R. Prentice, The Statistical Analysis of Failure Time

Data, 2nd ed. Hoboken, N.J.: Wiley-Interscience, 2002.
[43] S. Pfister, S. Rea, M. Taipale, F. Mendrzyk, B. Straub, C. Ittrich,

O. Thuerigen, H. Sinn, A. Akhtar, and P. Lichter, “The histone
acetyltransferase hMOF is frequently downregulated in primary breast
carcinoma and medulloblastoma and constitutes a biomarker for clin-
ical outcome in medulloblastoma,” Int. J. Cancer, vol. 122, no. 6, pp.
1207–1213, 2008.

[44] A. Fred and A. Jain, “Combining multiple clusterings using evidence
accumulation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 27, no. 6, pp. 835–850, 2005.


