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Abstract

The classification of breast cancer patients is of great

importance in cancer diagnosis. During the last few years,

many algorithms have been proposed for this task. In

this paper, we review different supervised machine learn-

ing techniques for classification of a novel dataset and per-

form a methodological comparison of these. We used the

C4.5 tree classifier, a Multilayer Perceptron and a naive

Bayes classifier over a large set of tumour markers. We

found good performance of the Multilayer Perceptron even

when we reduced the number of features to be classified.

We found naive Bayes achieved a competitive performance

even though the assumption of normality of the data is

strongly violated.

1 Introduction

Worldwide, breast cancer is the second most common

type of cancer and the fifth most common cause of can-

cer death. This disease poses a serious threat for women’s

health. Since the early years of cancer research, biologists

have used the traditional microscopic technique to assess

tumour behavior for breast cancer patients. Precise predic-

tion of tumours is critically important for the diagnosis and

treatment of cancer. Modern machine learning techniques

are progressively being used by biologists to obtain proper

tumour information from the databases. Among the exist-

ing techniques, supervised learning methods are the most

popular in cancer diagnosis [8].

According to John and Langley [6], methods for in-

ducing probabilistic descriptions from training data have

emerged as a major alternative to more established ap-

proaches to machine learning, such as decision-tree induc-

tion and neural networks. However, some of the most im-

pressive results to date have come from a much simpler –

and much older – approach to probabilistic induction known

as the naive Bayesian classifier. Despite the simplifying as-

sumptions that underlie the naive Bayesian classifier, ex-

periments on real-world data have repeatedly shown it to

be competitive with much more sophisticated induction al-

gorithms. Furthermore, naive Bayes can deal with a large

number of variables and large data sets, and it handles both

discrete and continuous attribute variables.

In this paper, we present a comparison of three different

classifiers that may be used in machine learning, namely

the naive Bayes algorithm, the C4.5 decision tree and the

Multilayer Perceptron function. The same machine learn-

ing techniques were already used in literature: in particular,

Bellaachia and Guven in [1], revising a study of Delen et al.

[3], used the above methods to find the most suitable one

for predicting survivability rate of breast cancer patients.

Our study was instead motivated by the necessity to find an

automated and robust method to validate our previous clas-

sification of breast cancer markers [4]. We had, in fact, ob-

tained six classes using agreement between different clus-
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Figure 1. Histogram of variable ER

tering algorithms. Starting from these groups, we wanted to

reproduce the classification keeping into account the high

non-normality of our data (see Figure 1 and 2). For this

reason we started using the C4.5 and the Multilayer Percep-

tron classifiers and then we compare results with the naive

Bayes one. Surprisingly, we found that when we reduce our

dataset to ten markers, the naive Bayes classifier performs

better than the C4.5, even though the normality assumption

is strongly violated by our features’ distribution.

A Bayesian classifier is a fast-supervised classification

technique which is suitable for large-scale prediction and

classification tasks on complex and incomplete datasets.

Naive Bayesian classification performs well if the values of

the attributes for the sessions are independent. The naive

Bayes classifier applies to learning tasks where each in-

stance x is described by a conjunction of attribute values

and where the target function f(x) can take on any value

from same finite set V [7].

C4.5 builds decision trees from a set of training data, us-

ing the concept of Information Entropy. Each attribute of

the data can be used to make a decision that splits the data

into smaller subsets. C4.5 examines the normalized infor-

mation gain (difference in entropy) that results from choos-

ing an attribute for splitting the data. The attribute with the

highest normalized information gain is the one used to make

the decision. The algorithm then recurs on the smaller sub-

lists.

A Multilayer Perceptron is a feed-forward network with

one or more layers of nodes between the input and out-

put layers of nodes. These additional layers contain hidden
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nodes that are not directly connected to both the input and

the output nodes. The capabilities of the Multilayer Percep-

trons come from the non-linearity used in these nodes. The

number of nodes in the hidden layer must be large enough

to form a decision region that is as complex as required by

a given problem.

The paper is organized as follows: in Section 2, a de-

scription of each technique is reported. Then in Section 3

we introduce the dataset worked on and explain in detail the

results obtained from the three classifiers using the WEKA

software [11]. Section 4 is reserved for discussion and fu-

ture work.

2 Methods

2.1 C4.5 Classifier

C4.5 is an algorithm used to generate a decision tree de-

veloped by Ross Quinlan. C4.5 is an extension of Quinlan’s

earlier ID3 algorithm. The decision trees generated by C4.5

can be used for classification, and for this reason, C4.5 is

often referred to as a statistical classifier.

Tree induction methods are considered to be supervised

classification methods, which generate decision trees de-

rived from a particular data set. C4.5 uses the concept

of information gain to make a tree of classificatory deci-

sions with respect to a previously chosen target classifica-

tion [9]. The output of the system is available as a symbolic

rule base. The cases, described by any mixture of nomi-

nal and numeric properties, are scrutinized for patterns that



allow the classes to be reliably discriminated. These pat-

terns are then expressed as models, in the form of decision

trees or sets of if-then rules, which can be used to classify

new cases, with an emphasis on making the models under-

standable as well as accurate [9]. For real world databases

the decision trees become huge and are always difficult to

understand and interpret. In general, it is often possible to

prune a decision tree to obtain a simpler and more accurate

tree [9].

2.2 Multilayer Perceptron Classifier

A Multilayer Perceptron is a feedforward artificial neural

network model that maps sets of input data onto a set of ap-

propriate output. It is a modification of the standard linear

perceptron in that it uses three or more layers of neurons

(nodes) with nonlinear activation functions, and is more

powerful than the perceptron in that it can distinguish data

that is not linearly separable, or separable by a hyperplane

[5].

Multilayer feedforward networks are an important class

of neural networks. Typically, the network consists of a set

of sensory units that constitute the input layer, one or more

hidden layers of computation nodes, and an output layer of

computation nodes. Multilayer Perceptrons have been ap-

plied successfully to solve some difficult and diverse prob-

lems by training them in a supervised manner with a highly

popular algorithm known as the error back-propagation al-

gorithm. Basically, error back propagation learning consists

of two passes through the different layers of the network: a

forward pass and a backward pass. In the forward pass, an

activity pattern (input vector) is applied to the sensory nodes

of the network, and its effect propagates through the net-

work layer by layer. Finally, a set of outputs is produced as

the actual response of the network. During the forward pass

the synaptic weights of the network are all fixed. During

the backward pass, on the other hand, the synaptic weights

are all adjusted in accordance with an error-correction rule.

Specifically, the actual response of the network is subtracted

from a desired (target) response to produce an error sig-

nal. This error signal is the propagated backward through

the network, against the direction of synaptic connections

– hence the name “error back-propagation”. The synap-

tic weights are adjusted to make the actual response of the

network move closer to the desired response in a statistical

sense.

A Multilayer Perceptron has three distinctive character-

istics:

1. The model of each neuron in the network includes a

nonlinear activation function.

2. The network contains one or more layers of hidden

neurons that are not part of the input or output of the

network. These hidden neurons enable the network to

learn complex tasks by extracting progressively more

meaningful features from the input patterns (vectors).

3. The network exhibits a high degree of connectivity, de-

termined by the synapses of the network. A change in

the connectivity of the network requires a change in the

population of synaptic connections or their weights.

It is through the combination of these characteristics to-

gether with the ability to learn from experience through

training that the Multilayer Perceptron derives its comput-

ing power [5].

2.3 Naive Bayes Classifier

A naive Bayes classifier is a simple probabilistic clas-

sifier based on applying Bayes’ theorem with strong inde-

pendence assumptions. The performance goal is to predict

the class of test instances as accurately as possible. This

kind of classifier is termed naive because it is based on two

simplifying common assumptions: firstly, it assumes that

the predictive attributes are conditionally independent given

the class and secondly, the values of numeric attributes are

normally distributed within each class.

Naive Bayes treats discrete and continuous attributes

somewhat differently. For each discrete attribute, the proba-

bility that the attribute X will take on the particular x when

the class is c is modeled by a single real number between

0 and 1. In contrast, each continuos attribute is modeled

by some continuous probability distribution over a range of

that attribute’s values.

Let C be the random variable denoting the class of an

instance and X be a vector of random variables denoting

the observed attribute values. Let c be a particular class

label and x represent a particular observed attribute value.

If we have a test case x to classify, the probability of each

class given the vector of observed values for the predictive

attributes may be obtained using the Bayes’ theorem:

p(C = c|X = x) =
p(C = c)p(X = x|C = c)

p(X = x)

and then predicting the most probable class. Because the

event is a conjunction of attribute values assignments, and

because of the attributes conditional independence assump-

tion, the following equation may be written:

p(X = x|C = c) =
∏

i

p(Xi = xi|C = c).

which is quite simple to calculate for training and test data

[6].



3 Experiments and Results

3.1 Patients

A series of 1076 patients from the Nottingham Tenovus

Primary Breast Carcinoma Series were used in a previous

study [4] where we had applied different clustering tech-

niques to classify data in robust and clinically significant

groups. For clustering analyses, we had used a panel of

25 tumour markers, which are listed in Table 1. Consen-

sus between four different clustering techniques was used

to determine six core classes. 62% (663 cases) of the popu-

lation was classified into one of these six groups, while the

remaining 38% presented indeterminate or mixed charac-

teristics. In this study we only focused on the subset of the

‘in-class’ cases to run the classifiers on in order to find an

automated way to justify and reproduce the classification

obtained before [4]. This subset represents a novel clini-

cal categorisation of breast cancer which is interesting in

its own right and presents a challenging classification task.

Further understanding of undetermined cases is left open

for future investigation.

Still based on previous research [4], we selected 14 ‘im-

portant’ markers candidates that were discriminant in the

categorisation process and whose distribution was very dif-

ferent among the six classes. These 14 markers were se-

lected on the basis of clinical importance as indicated by

pathologists involved in previous studies. We then per-

formed an exhaustive search of the best combination of 10

markers out of these 14 based on the naive Bayes classifica-

tion results. This was done as reducing the number of mark-

ers used for classification is a clinical aim, as this would

both simplify and reduce the costs of a clinical test based

on these markers. We used this ‘new’ smaller dataset to re-

peat our experiments applying the above classifiers on this.

3.2 Results

After loading our data in the WEKA software [11], we

chose the C4.5 algorithm classifier. As it can handle con-

tinuous attributes, there was no need to discretize any of

the attributes and in our experiments we accepted the de-

fault values for the parameters. The default version does

perform some pruning (using the subtree raising approach),

but does not perform error pruning. We chose to run the

classifier 10 times using the 10-fold cross validation option

and evaluate the accuracy of the obtained classification sim-

ply by looking at the percentage of the corrected classify

instances. We will use the same ‘initial conditions’ and we

will repeat the experiments for the same number of times

also when running the other classifiers. We will then com-

pute the mean of the returning results. The results we ob-

tained were quite good, precisely we got 582 cases correctly

Antibody, clone Short Name

Luminal phenotype

CK 7/8 [clone CAM 5.2] CK7/8

CK 18 [clone DC10] CK18

CK 19 [clone BCK 108] CK19

Basal Phenotype

CK 5/6 [cloneD5/16134] CK5/6

CK 14 [clone LL002] CK14

SMA [clone 1A4] Actin

p63 ab-1 [clone 4A4] p63

Hormone receptors

ER [clone 1D5] ER

PgR [clone PgR 636] PgR

AR [clone F39.4.1] AR

EGFR family members

EGFR [clone EGFR.113] EGFR

HER2/c-erbB-2 HER2

HER3/c-erbB-3 [clone RTJ1] HER3

HER4/c-erbB-4 [clone HFR1] HER4

Tumour suppressor genes

p53 [clone DO7] p53

nBRCA1 Ab-1 [clone MS110] nBRCA1

Anti-FHIT [clone ZR44] FHIT

Cell adhesion molecules

Anti E-cad [clone HECD-1] E-cad

Anti P-cad [clone 56] P-cad

Mucins

NCL-Muc-1 [clone Ma695] MUC1

NCL-Muc-1 core [clone Ma552] MUC1co

NCL muc2 [clone Ccp58] MUC2

Apocrine differentiation

Anti-GCDFP-15 GCDFP

Neuroendocrine differentiation

Chromogranin A [clone DAK-A3] Chromo

Synaptophysin [clone SY38] Synapto

Table 1. Antibodies used and their dilutions

classified (87.8%) and just 81 (12.2%) incorrectly classi-

fied. Our main concern in using this classifier came from

the set of rules that were produced: they appear to be quite

numerous and not straightforward, especially if they should

be used by scientists not familiar with computational anal-

ysis.

We then considered the Multilayer Perceptron classifier:

again we used the default parameters, leaving the number of

neurons in the hidden layer as 15, which is the sum of the

number of attributes and classes divided by two. The default

backpropagation learning algorithm was used. Compari-



son of alternative learning algorithms is outside the scope

of this study. This method performed better than the C4.5

succeeding in correctly classifying 647 instances (97.6%)

out of 663; just 16 cases (2.4%) were misclassified.

We finally applied the naive Bayes classifier, which is

based on the assumption that numeric attributes are condi-

tionally independent. This method performed worse than

the previous ones, classifying properly a smaller amount of

cases (576, corresponding to 86.9%). A summary of the

above results can be found in Table 2.

Whole data

Method Classified Misclassified

C4.5 582 (87.8%) 81 (12.2%)

MLP 647 (97.6%) 16 (2.4%)

NB 576 (86.9%) 87 (13.1%)

Table 2. Comparison of results on three clas

sifiers using 25 markers.

As we previously reported we considered a smaller

dataset containing just 10 ‘important’ markers. We repeated

our experiments applying the above classifiers on this ‘new’

smaller dataset. For the C4.5 decision tree we could not see

a particular difference, having 581 cases (87.6%) correctly

classified. Also for the Multilayer Perceptron (MLP) we

have an increased number of misclassified instances, this

time being 34 (5.1%). The naive Bayes (NB), instead, per-

formed very well compared to the previous run. Now we

found that 617 cases (93.1%) were classified properly and

just 46 (6.9%) were misclassified.

A summary of the latter results is reported in Table 3.

Ten Markers

Method Classified Misclassified

C4.5 581 (87.6%) 82 (12.4%)

MLP 629 (94.9%) 34 (5.1%)

NB 617 (93.1%) 46 (6.9%)

Table 3. Comparison of results on three clas

sifiers using only 10 markers.

As Bouckaert did in [2], the 10 accuracies of each al-

gorithm were compared using t-tests, after checking for

normality using the Shapiro test [10]. We found that, for

both the whole data and the 10-markers datasets, the Mul-

tilayer Perceptron classifier performed significantly better

than the other two (p << 0.01). The C4.5 decision tree

algorithm was significantly more accurate than the naive

Bayes (p < 0.01) when we consider the whole data, but

was not when we reduced the number of features. Table 4

summarizes our findings.

Average accuracies

C4.5 MLP NB

Whole data 87.8 (6.3) 97.6 (1.8) 86.9 (2.5)

10 Markers 87.6 (6.6) 94.9 (2.6) 93.1 (2.5)

Table 4. Average accuracies on 10×10 cross
validation experiments for the three classi

fiers (standard deviation in brackets).

4 Discussion

In this paper we reviewed three different classifiers and

used them over a novel dataset of tumour markers for breast

cancer. From our experiments we got different results for

each of them.

Using the whole dataset (25 markers × 663 instances)

we obtained the best performance from the Multilayer Per-

ceptron classifier: in fact just 16 cases were incorrectly clas-

sified. The naive Bayes and C4.5 decision tree returned sim-

ilar results (but worse than the MLP), with the latter being

a bit more accurate than the naive Bayes.

When we moved to consider just the 10 ‘most important’

markers, we found a substantial improvement in the naive

Bayes performance: even though it did not return the high-

est number of correctly classified instances, it performed

much better than with all the markers, decreasing the num-

ber of misclassified instances from 87 to 46. Again, the

best results were obtained using the Multilayer Perceptron,

but this time the network did not perform as well as before:

there were 18 more cases of misclassification. Finally, the

C4.5 decision tree was the worst classifier among the three

used, performing almost identically as with all markers.

From the results, all classifiers achieved a reasonable

performance. They all are suitable for large-scale predic-

tion and classification tasks on complex datasets. However,

each of them has weak points.

The C4.5 classifier may be considered what is called ‘a

white box model’: the reason for arriving at the classifica-

tion can be explicitly determined by examining the model.

It also achieves good classification accuracy with large data

in a short time.

On the other hand, for real world datasets, the decision

tree may become huge. In particular, for scientists not fa-



miliar with computational analysis, the set of rules coming

from a decision tree may not be straightforward.

Multilayer Perceptrons, using a backpropagation algo-

rithm, are a standard algorithm for any supervised-learning

pattern recognition process. However, like the majority

of neural networks, it is a good example of a ‘black box

model’, since explanation of the results is not available in

an easily comprehended form. If one tries to write down

the network model and the function representing the entire

process, this might take a long time and in some cases it

might be extremely complicated.

Naive Bayes is a fast-supervised classification technique

and, in general, it is a good approach for a classification

problem. It is easy to understand and reproduce manually,

being basically based on a product of conditional probabil-

ities.

However, one must be aware that naive Bayes relies on

two fundamental assumptions: the first one is the complete

independence of features (which is largely satisfied in our

data), and the second is that the attributes should follow a

normal distribution, which is not always true. Considering

the latter assumption, it is immediately apparent that our

data does not have a normal distribution. However, despite

the violation in its assumptions, the naive Bayesian classi-

fier is remarkably effective on our dataset in practice, show-

ing a good performance.

Given the violation of the naive Bayes hypothesis of nor-

mality, we have begun exploring other methods to repre-

sent features’ distributions and to classify our data. We are

now trying to implement a ‘non-parametric’ version of the

naive Bayes classifier, which should be able to categorize

instances independently from their distribution. In conclu-

sion, we have found a standard MLP to be a highly effective

classifier, but with poor interpretability. We have also found

that naive Bayes achieves almost as good performance, with

good interpretability, despite the strong violation of one of

its assumptions.
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