-

View metadata, citation and similar papers at core.ac.uk brought to you byji CORE

provided by Nottingham ePrints

r The Uniyersitg of
M | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Pinkney, Alexander J. and Bagley, Steven R. and
Brailsford, David F. (2011) Reflowable documents
composed from pre-rendered atomic components. In:
ACM Symposium on Document Engineering (DocEng
'11), 19-22 Sept 2011, Mountain View, California, USA.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28128/1/eprint-reflow2011.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

Copyright and all moral rights to the version of the paper presented here belong to
the individual author(s) and/or other copyright owners.

To the extent reasonable and practicable the material made available in Nottingham
ePrints has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-
for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk



https://core.ac.uk/display/33573282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Reflowable Documents Composed from
Pre-rendered Atomic Components

Alexander J. Pinkney
Document Engineering Lab.
School of Computer Science

University of Nottingham

Nottingham, NG8 1BB, UK

azp@cs.nott.ac.uk

ABSTRACT

Mobile eBook readers are now commonplace in today’s society, but
their document layout algorithms remain basic, largely due to con-
straints imposed by short battery life. At present, with any eBook
file format not based on PDF, the layout of the document, as it ap-
pears to the end user, is at the mercy of hidden reformatting and re-
flow algorithms interacting with the screen parameters of the device
on which the document is rendered. Very little control is provided
to the publisher or author, beyond some basic formatting options.

This paper describes a method of producing well-typeset, scal-
able, document layouts by embedding several pre-rendered ver-
sions of a document within one file, thus enabling many compu-
tationally expensive steps (e.g. hyphenation and line-breaking) to
be carried out at document compilation time, rather than at ‘view
time’. This system has the advantage that end users are not con-
strained to a single, arbitrarily chosen view of the document, nor
are they subjected to reading a poorly typeset version rendered on
the fly. Instead, the device can choose a layout appropriate to its
screen size and the end user’s choice of zoom level, and the author
and publisher can have fine-grained control over all layouts.

Categories and Subject Descriptors

1.7.2 [Document and Text Processing]: Document Preparation—
format and notation, markup languages; 1.7.4 [Document and Text
Processing]: Electronic Publishing

General Terms

Algorithms, Documentation, Experimentation

Keywords
PDF, COGs, eBooks, Document layout

1. INTRODUCTION

In recent years, the consumption of documents on mobile de-
vices, such as eBook readers, has increased dramatically. However,

FINAL DRAFT of Short Paper accepted for
ACM DocEng’11, September 19-22, 2011, Mountain View, California, USA.
Copyright 2011 Pinkney, Bagley and Brailsford.

Steven R. Bagley
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK
srb@cs.nott.ac.uk

David F. Brailsford
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK
dfb @cs.nott.ac.uk

the visual quality of a document on these devices is often lacking,
when compared to other digital document systems (see figure 1).
The result of an eBook reader’s layout engine is often visually un-
appealing, with uneven spacing in consecutive lines of text, poor
justification, and the lack of a sophisticated hyphenation system.

This is a far cry from the quality of typesetting available from
PDF or PostScript documents. These vector-based, device-inde-
pendent page description languages are able to create a digital ver-
sion of the document that is identical in print. These page de-
scription languages, coupled with high-quality typesetting systems
(such as TgX, troff or Adobe InDesign) have produced an expecta-
tion that digital documents will be of similar quality to that achiev-
able through hand composition. TEX and Adobe InDesign, in par-
ticular, have excellent support for many of the subtle nuances used
by hand compositors, which are often overlooked by more basic
typesetting packages (e.g. automated support for kerning and liga-
tures). This quality does not come without a price: the algorithms
used to calculate the layout are computationally expensive and so
are run only once, to produce a PDF with a fixed layout targeted at
a fixed page size.

EBook readers, it seems, have had to take a step backwards to
simpler (and, therefore, less computationally expensive) algorithms
to maximise the battery life of the device. The result is that the
high-end hyphenation, kerning, and ligature support has had to be
sacrificed and the on-screen result is reminiscent of the output of
an HTML rendering engine or a very basic word processor.

This paper investigates an alternative approach to generating the
display for an eBook reader. Here, the text is pre-rendered (using a
high-quality typesetting algorithm) in several column widths, prior
to display, when the document is created. At view time, the most
appropriate column width is selected for display, the system bal-
ancing between excessive white space and multiple columns. Sec-
tion 2 examines the problems posed by current eBook readers in
further detail, while section 3 presents our initial prototype solu-
tion to some of these problems.

2. PROBLEMS WITH CURRENT EBOOK
READERS

Three formats currently dominate the eBook market: EPUB and
Mobipocket, which allow the document to be formatted to fit the
device, and PDF, which does not. (PDF and EPUB are open stan-
dards; Mobipocket is the format upon which Amazon’s Kindle for-
mat is based.) Both the EPUB and Mobipocket formats are largely
based on XHTML. Whilst the use of an XML-derived format al-
lows the semantic structure of documents to be very well defined,
in general their presentation can only be specified in a very loose



campaign in which one candidate is a sure
winner and you would like to bask in reflected
glory or receive some future in-kind
consideration. The one candidate you won’t
contribute to is a sure loser. (Just ask any
presidential hopeful who bombs in Iowa and
New Hampshire.) So front-runners and
incumbents raise a lot more money than long
shots. And what about spending that money?
Incumbents and front-runners obviously have
more cash, but they only spend a lot of it when
they stand a legitimate chance of losing;
otherwise, why dip into a war chest that might

5%, Locations 343-49 6578

Figure 1: The Kindle 3 appears to primarily use justified text,
falling back to ragged-right when inter-word spacing would be-
come too large.

manner. The user is often presented with a choice of typefaces and
point sizes, allowing the reader software to render the document in
essentially any arbitrary way it chooses.

Conversely, PDF is entirely presentation-oriented, stemming from
its origins as essentially ‘compiled PostScript’. PDF, therefore, will
often include no information on the semantic structure of the docu-
ment, and will consist simply of drawing operators which describe
the document pages. There is no compulsion for these drawing op-
erators to render the page in an order that might be considered sen-
sible: for example, if a PDF generator program decided to render
every character on a page in alphabetical order, or radially outwards
from the centre, the resulting file would still be semantically valid,
and the result might well be unnoticeable to the end user. This lack
of imposed semantic structure can make it difficult to infer the best
way to ‘unpick’ PDF files to allow their content to be reflowed into
a new layout.

Since an XHTML-derived format has no fixed presentation as-
sociated with it, this must be calculated each time the document is
displayed, in a similar manner to the way an interpreted program-
ming language needs to be interpreted each time it runs. For an
eBook reader to maximise its battery life (the human reader will
be annoyed if the device dies just before the climax of a novel!),
the ‘interpretation’ needs to be as simple as possible —i.e. the al-
gorithm used must not be too complex, since the more CPU cycles
spent executing it, the less time the CPU can spend idle, and hence
the greater the drain on the battery. Furthermore, the longer that
is spent formatting the output, the longer the delay between page
turns on the device, and with the speed of CPUs used in these de-
vices (< 500 MHz) it does not take too large an increase in compu-
tation for the page turn to become noticeable.

2.1 Hyphenation and Line-Breaking

EBook readers typically use a ‘greedy’ algorithm to lay out their
text — that is, they place as many words as will fit onto the current
line without exceeding it, then start a new line and continue. Al-
though this algorithm is optimal in that it will always fit text onto
the fewest possible lines, it often causes consecutive lines to have
wildly varying lengths, accentuating either the ‘ragged-right’ effect
of the text, or, in the case of justified text, the inter-word spacing.
In general, eBook readers will only hyphenate in extreme cases —
indeed the Kindle 3 seems not to do so at all. Knuth and Plass[7]
developed a more advanced line-breaking algorithm (now used by
TgX) which attempts to minimise large discrepancies between con-
secutive lines by considering each paragraph as a whole. TgX also
uses the hyphenation algorithm designed by Liang[8], which has
been ported to many other applications.

To AV V. Wa fifl
To AV V. Wa fifl

Figure 2: Examples of various letter-pairs and their kerned
(left) or ligature (right) equivalents, as typeset by TgX.

2.2 Other Typographical Techniques

Other techniques employed during hand-typesetting and high-
quality electronic typesetting include the use of kerning and of lig-
atures. Kerning involves altering the spacing between certain glyph
pairs in order to produce more consistent letter spacing, whilst lig-
atures are single-glyph replacements for two or more single glyphs
which may otherwise have clashing components. Some examples
of these are shown in figure 2. Kerning requires a table of kern-
pairs, specific to each font; values from this table must then be
looked up for every pair of adjacent glyphs in the document. Lig-
atures may or may not need to be inserted: if the component char-
acters of the ligature lie over a potential hyphenation point, it can-
not be decided whether to replace them with the ligature until it is
known whether the hyphenation point needs to be used.

3. A GALLEY-BASED APPROACH

Our proposed solution, of precomputing several text variants, re-
visits an approach to typesetting from before the advent of desktop
publishing. In the days before DTP, newspaper articles were type-
set into long columns known as galleys. Since all columns in the
newspaper would be of uniform width, all articles could be typeset
into galleys of the same measure, and then broken as necessary be-
tween lines, in order to slot into the final layout of the newspaper.
Once the text has been set in this manner, with appropriate hyphen-
ation and justification, the individual lines can be treated as atomic
units and will never have to be re-typeset. In essence, each article is
‘compiled’ only once, but can be used anywhere in the final layout
without penalty.

It is this behaviour we wish to emulate. So long as the atomic
components of the document are tightly specified, and the reader
software can obey the associated drawing instructions (essentially
treating them as pre-typeset blocks), the resulting display of the
document will be of as high typographic quality as that of the orig-
inal galley, and the requirement for further computation will be
vastly reduced. In order to permit aesthetic layout for a wider range
of screen sizes, it seems sensible to create a document containing
multiple renderings of the same content, and simply choosing the
‘best fit’ rendering when the document is displayed.

3.1 A Sample Implementation

Our sample implementation is built around our existing work in
PDF and Component-Object Graphics (COGs)[1], but there is no
reason why it could not be implemented in any other format capable
of tightly specifying page imaging operations. It builds on existing
software, principally pdfdit, in conjunction with COG Manipulator,
as these tools are already capable of producing modular documents
with tightly specified rendering.

3.1.1 The COG Model

The Component Object Graphic (COG) model was developed to
enable the reuse of semantic components within PDF documents,
by breaking the traditional graphically-monolithic PDF page into
a series of distinct, encapsulated graphical blocks, termed COGs.
In its original incarnation, the COG model did not account for any



Root
Paragraph-level items
Galley renderings
COG pointers

Figure 3: A simple document structure tree. The first level
below the root represents all paragraph-level items: headings,
paragraphs, figures etc. These items have one child for each
galley rendering of the document. These in turn have one child
for each COG comprising their content —in the case of a para-
graph or heading: its lines; in the case of a figure: the figure
itself and any associated caption.

relationship between individual COGs — it was simply designed as
a method with which document components could be easily reused
or reordered. The COGs it generates are largely at the granularity of
a paragraph, and can still be imaged onto the page in any arbitrary
order, independent of reading order.

In order to implement our galley-based design, it is necessary to
decrease this granularity, such that each line of text is represented
by a separate COG. However, it is also important that the semantic
structure of the document is explicitly stored. This is principally so
that the reading order of the COGs is maintained, and also so that
the reader software can identify paragraphs, headings etc. to enable
them to be laid out correctly.

The COG model takes advantage of the fact that the PDF spec-
ification allows the content of a page to be described by an array
of streams of imaging operators, rather than the more commonly
encountered monolithic stream. Unfortunately, this array can only
be one-dimensional, meaning that while it can enforce the reading
order, it cannot be used to, say, group lines into paragraphs. Since
the PDF specification allows essentially arbitrary insertion of data
structures into a document (PDF readers which do not recognise
these will simply ignore them), this flexibility was used to embed
a simple tree structure representing the paragraphs, in parallel to
the COGs themselves (an example of which is shown in figure 3).
At the level of its leaves, this tree simply contains pointers to the
COGs which make up the content of the document. In the simplest
case, where the document contains only one rendering (and thus the
paragraph-level items have only one child) the COGs pointed at by
the leaves can simply be rendered in order, adding vertical space as
appropriate.

3.1.2 The Source Document

Since the majority of available tools for producing COGged PDFs
rely on the typesetting package ditroff, it was decided to use this as
the basis for the source document. Ditroft is particularly amenable
to many of the features required here —it is quite happy to have
its page length set to large numbers — one sample document used
a page length of 2000 inches (approximately 50 metres) with no
complaints from ditroff. The line length was set to a small value
(approximately two inches) in order to produce a narrow column
of text. Following this, the actual document content was inserted
several times, and the line length incremented, producing one doc-
ument effectively containing multiple galley renderings of the same
content.

3.1.3  pdfdit

Having generated the source document, it was processed with
ditroff to generate the intermediate code used to feed each type-
setter post-processor. This output is very expressive, and, unlike

Lorem ipsum dolor sit amet, conscetetur
adipiscing elit. Cras vel cnim vitac mauris vesti-
bulim egestas.  Suspendisse potenti. Pel-
lentesque leo nune, lobortis vitac gravida vel,
congue at nulla. Pracsent a placeral mauris,
Pracsent sed erat ac dui tincidunt conscetetur vel
nec leo. In velit odio, congue non eleifend at,
accumsan cu diam. Suspendisse dignissim,
cuismod laoreet, est leo_ cuismod
sequat leo nunc in ante. Duis risus
ipit ut fermentum ct, ornare non

lorem. Morbi nibh clit, dignissim ullamcorper
posucre at, lacinia condimentum odio. Fusce
vitae metus mi. Pellentesque scelerisque fermen-
na a dictum. Mauris ut ante mauris, ac
viverra [ulis. Pracsent ut elit ut purus malesuada
suscipit. Fusce mollis eros ac leetus suscipit gra-
vida. Pellentesque vel nisl nec eros convallis

stibulum lorem felis, conseetotur omare
a ac. cursus tincidunt nisl. Aliquam in

Lorem ipsum dolor sit amet. con-
seetetur adipiscing clit. Cras vel enim
vitie mauris  vestibulim  egestas.
Suspendisse potenti. Pellentesque leo
nune, lobortis vitac gravida vel, conguc
at nulla. Pracsent a placerat mauris.
Pracsent sed erat ac dui tincidunt con-
seeletur vel nee ko, In velit odio,
congue non eleifend at, accumsan eu
diam. Suspendissc dignissim, quam quis
euistod laoreet, est leo euismod lectus,

sed consequat leo nune in ante. Duis
risus tellus, suscipit ut fermentum e,
omare non lorem. Morbi nibh elit, dig-
nissim ullamcorper posuere at, lacinia
condimentum odio. Fusce vitac metus
mi. Pellentesque scelerisque fermentum
magna a dictum. Mauris ut ante mauris,
ac viverra [clis. Pracsent ut clit ul purus
‘malesuada suscipit. Fusce mollis eros ac
loctus suscipit gravida. Pellentosque vel
nisl nec eros convallis luetus nec eu

quam. Aliquam tincidunt ultrices blan-
it.

Vestibulum lorem felis. consec-
tetur omare vehicula ac, cursus tincidunt
nisl. Aliquam in cnim nisi, quis hon-
drerit est. Nullam pretium congue sapien

¢ tincidunt. Suspendisse suscipit felis
nibh luctus sit amet imperdict
ula venenatis. Vestibulum eu dui
nulla. Vivamus interdum  ullameorper
sapien eget dapibus. Proin sed dictum

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Cras vel enim vitae mauris vestibulum egestas. Suspendisse
potenti. Pellentesque leo nunc, labortis vitac gravida vel, c
at nulla, Pracsent a placerat mauris. Pra
cidunt conseetetur vel e leo. In velit odio. congue non el
at, accumsan eu diam. Suspendisse dignissim. quam quis
cuismod laoreet, est leo cuismod lectus, sed consequat ko nun

ac vivema felis. Prassent ut elit ut purus malesuada suscipit.
Fusee mollis eros ac leetus suscipit gravida. Pellentesque vel nisl
nec eros convallis luctus nec cu quam. Aliquam tincidunt ultrices
blandit.

Vestibulum lorem felis, consectetur omare vehicula ac,
cursus tincidunt nisl. Aliquam in enim nisi, quis hendrerit est.
Nullam pretium congue sapien ac tincidunt. Suspendisse susc

in ante. Duis risus tel scipit ut fermentum et, ornar
lorem. Morbi nibh ¢! sim ullameorper posuere a
condimentum ~ odio. vitae metus mi. Pl g
scelerisque fermentum magna a dictum. Mauris ut ante mauris,

felis cget nibh luct et imperdict ligula v
bulum u dui nulla. Vivamus intordum ullame
dapibus. Proin sed dictum arc. Curabitur velit justo. fringilla
non sodales laoreet, dignissim nec mulla. Prassent convallis

Figure 4: Sample renderings from the Acrobat plugin at page
widths of 42, 48, and 54 em.

TgX’s DVI, contains enough information that post-processors are
easily able to locate the start and end of lines and paragraphs within
the document. This meant that only minimal changes were needed
to be made to the pdfdit package described in [1] to implement our
design.

The first change necessary was to decrease the granularity of the
output COGs, producing them at the line level, rather than at the
paragraph level. Secondly, some method of generating the requi-
site tree representing the document structure was required. This
was solved by simply using the point at which the original version
of pdfdit would have started a new paragraph-level COG, and, in-
stead, starting a new paragraph-level block entry in the document
structure tree. Each subsequent line-level COG produced can then
be added as a child of this block.

Once the entire output file has been parsed, the tree representa-
tions of the various width galleys are amalgamated per-paragraph,
as indicated in figure 3, and finally the PDF file is serialised, replete
with COGs and content tree.

3.1.4 Acrobat Plugin

The decision to use Acrobat as an eBook ‘emulator’ stemmed
once again from the available existing COG-based tools, as well
as the extensive API and developer support available for Acrobat.
Moving a COG on a PDF page is as simple as deleting its associated
spacer object from the content array of the page, creating a new
spacer containing the COG’s desired new position, and then adding
that back to the content array.

Since, by this point, most of the computationally expensive type-
setting has already been carried out, the algorithm used to lay out
the lines of the galleys can be very simple. The plugin chooses
the most appropriate galley width to lay out, based on the current
page width, and according to some measure of aesthetic, and then
simply lays the document out line by line, with appropriate verti-
cal spacing, until no more lines will fit in the current column. Any
subsequent columns which will fit on the same page are then laid
out in the same manner.

3.1.5 Layout and Metrics

Since galleys of text lend themselves to being used in a columnar
format, a method of fitting columns appropriately to the available
page width must be devised. A sensible first approach is simply
to calculate how many columns of each galley rendering will fit,
by adding the galley width to a specified minimum inter-column



14 -

1col  1col  1col
12 ~ 15em 18em 2iem

Mimimum Penalty

2cols

2cals 3 cols]
21em 15em

2cols

o N B O

40 45 50 55 60 65 70

Page width (em)

Figure 5: Graph showing the minimum penalty value of all galleys in a reflowable document, over a range of page widths. The
particular document used contained four galleys; these were rendered at widths of 15, 18, 21 and 24 em, with a minimum gutter
width of 1 em. Each vertical band highlights a range of page widths within which only the horizontal spacing of the page is altered.
The boundaries between vertical bands represent a switch between galley renderings — the galley used and number of columns is as

annotated on the graph.

spacing, and dividing the page width by this. The remainder of
this division will then specify the total extra amount of horizontal
whitespace required, which can then divided up and inserted be-
tween the columns. A simple measure of aesthetic here is to apply
a linear penalty for any extra whitespace required, as we seek to
keep page margins and column gutters to a minimum.

As the page width increases, so must the widths of the inter-
column gutters. In accordance with the extra-whitespace penalty,
each galley rendering will produce penalties which vary in a saw-
tooth manner as the width of the page is increased. With a careful
choice of galley widths, when these sawtooth penalties are overlaid,
and the galley producing the minimum penalty chosen at each page
width, a flatter and finer-toothed penalty-graph emerges, as shown
in figure 5.

In addition to penalising extra whitespace, wider columns should,
in general, be favoured over narrower ones, i.e. for a given page
width, fewer, wider columns are generally considered preferable
to a greater number of narrower columns. By multiplying the ex-
isting penalty by a smaller-than-linear function of the number of
columns (experiments have been carried out with both logarithms
and roots) the penalty may be subtly increased for greater num-
bers of columns. The formula for the penalty used in figure 5 is
P = (C + Weyx) - /Neois, where P is the penalty, W,y is the extra
whitespace required to be inserted, N, is the number of columns
which are required to fill the width of the page, and C is a positive
constant. The purpose of the constant is to prevent the penalty from
ever evaluating to zero, which would have the effect of disregarding
the weighting of the number of columns. Figure 5 uses C = 1.

4. CONCLUSIONS AND FUTURE WORK

This paper outlines our initial exploration of the idea of using
pre-rendered galleys for eBooks. So far, our initial implementation
has generated multicolumn layouts that look acceptable, and we
believe there is mileage in continuing to investigate this method.
However, there is still a lot of work to be done. Firstly, a very
simple formula is used to determine which column width variant to
select, and we are investigating the suitability of other methods of
determining aesthetically pleasing layouts (such as those outlined
in [2, 3, 4, 5, 6, 9]). Also, our system does not currently allow
the font size to be changed (since it is fixed when the galleys are
created). One approach to allow the font size to be changed would
be to scale smaller column width variants up to larger columns. For
example, if the 15 em wide variant is scaled up to 18 em, then text
would be scaled up by 20% — the equivalent of converting 10 pt
text to 12 pt.

It should also be noted that optimal placement of floating blocks
cannot be ‘compiled out’ in the same manner that hyphenation and
line breaking can; these will still need to be positioned into the
relevant places as the document is displayed. If the simple approach
is taken that floats should be placed at the top of a column or after
another float, a document layout somewhat reminiscent of this one
will emerge, although the floats will inevitably tend to drift towards
the end of the document, away from their desired position.

Finally, to confirm that this method has validity it needs to be
implemented in an actual eBook system, rather than simulated in
Acrobat. There, it will be possible to compare the performance of
our system with both a normal eBook renderer, and one that has
been enhanced to use a sophisticated hyphenation and justification
algorithm.

S. REFERENCES

[1] S.R. Bagley, D. F. Brailsford, and M. R. B. Hardy. Creating
reusable well-structured PDF as a sequence of component
object graphic (COG) elements. In Proceedings of the 2003
ACM Symposium on Document Engineering, pages 58—67.
ACM Press, 2003.

H. Y. Balinsky, J. R. Howes, and A. J. Wiley.
Aesthetically-driven layout engine. In Proceedings of the
2009 ACM Symposium on Document Engineering, pages
119-122, 2009.

R. Bringhurst. The Elements of Typographic Style (v 3.2).
Hartley & Marks, 2008.

E. Goldenberg. Automatic layout of variable-content print
data. Master’s thesis, University of Sussex, 2002.

S. J. Harrington, J. F. Naveda, R. P. Jones, P. Roetling, and
N. Thakkar. Aesthetic measures for automated document
layout. In Proceedings of the 2004 ACM Symposium on
Document Engineering, pages 109—111. ACM Press, 2004.
R. Johari, J. Marks, A. Partovi, and S. Shieber. Automatic
yellow-pages pagination and layout. Technical report,
Mitsubish Electric Research Laboratories, 1996.

D. E. Knuth and M. F. Plass. Breaking paragraphs into lines.
Software — Practice and Experience, 11:1119-1184, 1981.
F. M. Liang. Word Hy-phen-a-tion by a Com-put-er. PhD
thesis, Stanford University, 1983.

L. Purvis, S. Harrington, B. O’Sullivan, and E. C. Freuder.
Creating personalized documents: an optimization approach.
In Proceedings of the 2003 ACM Symposium on Document
Engineering, pages 68—77. ACM Press, 2003.

(2]

(3]
(4]
(5]

(6]

(71
(8]

(9]



