
Pinkney, Alexander J. and Bagley, Steven R. and 
Brailsford, David F. (2011) Reflowable documents 
composed from pre-rendered atomic components. In: 
ACM Symposium on Document Engineering (DocEng 
'11), 19-22 Sept 2011, Mountain View, California, USA. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/28128/1/eprint-reflow2011.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


Reflowable Documents Composed from
Pre-rendered Atomic Components

Alexander J. Pinkney
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

azp@cs.nott.ac.uk

Steven R. Bagley
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

srb@cs.nott.ac.uk

David F. Brailsford
Document Engineering Lab.
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

dfb@cs.nott.ac.uk

ABSTRACT

Mobile eBook readers are now commonplace in today’s society, but

their document layout algorithms remain basic, largely due to con-

straints imposed by short battery life. At present, with any eBook

file format not based on PDF, the layout of the document, as it ap-

pears to the end user, is at the mercy of hidden reformatting and re-

flow algorithms interacting with the screen parameters of the device

on which the document is rendered. Very little control is provided

to the publisher or author, beyond some basic formatting options.

This paper describes a method of producing well-typeset, scal-

able, document layouts by embedding several pre-rendered ver-

sions of a document within one file, thus enabling many compu-

tationally expensive steps (e.g. hyphenation and line-breaking) to

be carried out at document compilation time, rather than at ‘view

time’. This system has the advantage that end users are not con-

strained to a single, arbitrarily chosen view of the document, nor

are they subjected to reading a poorly typeset version rendered on

the fly. Instead, the device can choose a layout appropriate to its

screen size and the end user’s choice of zoom level, and the author

and publisher can have fine-grained control over all layouts.

Categories and Subject Descriptors

I.7.2 [Document and Text Processing]: Document Preparation—

format and notation, markup languages; I.7.4 [Document and Text

Processing]: Electronic Publishing

General Terms

Algorithms, Documentation, Experimentation

Keywords

PDF, COGs, eBooks, Document layout

1. INTRODUCTION
In recent years, the consumption of documents on mobile de-

vices, such as eBook readers, has increased dramatically. However,

 

 

 

 

 

 

 

 

  
FINAL DRAFT of Short Paper accepted for 
ACM DocEng’11, September 19–22, 2011, Mountain View, California, USA.
Copyright 2011 Pinkney, Bagley and Brailsford.

the visual quality of a document on these devices is often lacking,

when compared to other digital document systems (see figure 1).

The result of an eBook reader’s layout engine is often visually un-

appealing, with uneven spacing in consecutive lines of text, poor

justification, and the lack of a sophisticated hyphenation system.

This is a far cry from the quality of typesetting available from

PDF or PostScript documents. These vector-based, device-inde-

pendent page description languages are able to create a digital ver-

sion of the document that is identical in print. These page de-

scription languages, coupled with high-quality typesetting systems

(such as TEX, troff or Adobe InDesign) have produced an expecta-

tion that digital documents will be of similar quality to that achiev-

able through hand composition. TEX and Adobe InDesign, in par-

ticular, have excellent support for many of the subtle nuances used

by hand compositors, which are often overlooked by more basic

typesetting packages (e.g. automated support for kerning and liga-

tures). This quality does not come without a price: the algorithms

used to calculate the layout are computationally expensive and so

are run only once, to produce a PDF with a fixed layout targeted at

a fixed page size.

EBook readers, it seems, have had to take a step backwards to

simpler (and, therefore, less computationally expensive) algorithms

to maximise the battery life of the device. The result is that the

high-end hyphenation, kerning, and ligature support has had to be

sacrificed and the on-screen result is reminiscent of the output of

an HTML rendering engine or a very basic word processor.

This paper investigates an alternative approach to generating the

display for an eBook reader. Here, the text is pre-rendered (using a

high-quality typesetting algorithm) in several column widths, prior

to display, when the document is created. At view time, the most

appropriate column width is selected for display, the system bal-

ancing between excessive white space and multiple columns. Sec-

tion 2 examines the problems posed by current eBook readers in

further detail, while section 3 presents our initial prototype solu-

tion to some of these problems.

2. PROBLEMS WITH CURRENT EBOOK

READERS
Three formats currently dominate the eBook market: EPUB and

Mobipocket, which allow the document to be formatted to fit the

device, and PDF, which does not. (PDF and EPUB are open stan-

dards; Mobipocket is the format upon which Amazon’s Kindle for-

mat is based.) Both the EPUB and Mobipocket formats are largely

based on XHTML. Whilst the use of an XML-derived format al-

lows the semantic structure of documents to be very well defined,

in general their presentation can only be specified in a very loose



Figure 1: The Kindle 3 appears to primarily use justified text,

falling back to ragged-right when inter-word spacing would be-

come too large.

manner. The user is often presented with a choice of typefaces and

point sizes, allowing the reader software to render the document in

essentially any arbitrary way it chooses.

Conversely, PDF is entirely presentation-oriented, stemming from

its origins as essentially ‘compiled PostScript’. PDF, therefore, will

often include no information on the semantic structure of the docu-

ment, and will consist simply of drawing operators which describe

the document pages. There is no compulsion for these drawing op-

erators to render the page in an order that might be considered sen-

sible: for example, if a PDF generator program decided to render

every character on a page in alphabetical order, or radially outwards

from the centre, the resulting file would still be semantically valid,

and the result might well be unnoticeable to the end user. This lack

of imposed semantic structure can make it difficult to infer the best

way to ‘unpick’ PDF files to allow their content to be reflowed into

a new layout.

Since an XHTML-derived format has no fixed presentation as-

sociated with it, this must be calculated each time the document is

displayed, in a similar manner to the way an interpreted program-

ming language needs to be interpreted each time it runs. For an

eBook reader to maximise its battery life (the human reader will

be annoyed if the device dies just before the climax of a novel!),

the ‘interpretation’ needs to be as simple as possible — i.e. the al-

gorithm used must not be too complex, since the more CPU cycles

spent executing it, the less time the CPU can spend idle, and hence

the greater the drain on the battery. Furthermore, the longer that

is spent formatting the output, the longer the delay between page

turns on the device, and with the speed of CPUs used in these de-

vices (< 500 MHz) it does not take too large an increase in compu-

tation for the page turn to become noticeable.

2.1 Hyphenation and Line-Breaking
EBook readers typically use a ‘greedy’ algorithm to lay out their

text — that is, they place as many words as will fit onto the current

line without exceeding it, then start a new line and continue. Al-

though this algorithm is optimal in that it will always fit text onto

the fewest possible lines, it often causes consecutive lines to have

wildly varying lengths, accentuating either the ‘ragged-right’ effect

of the text, or, in the case of justified text, the inter-word spacing.

In general, eBook readers will only hyphenate in extreme cases —

indeed the Kindle 3 seems not to do so at all. Knuth and Plass[7]

developed a more advanced line-breaking algorithm (now used by

TEX) which attempts to minimise large discrepancies between con-

secutive lines by considering each paragraph as a whole. TEX also

uses the hyphenation algorithm designed by Liang[8], which has

been ported to many other applications.

To AV V. Wa fi fl

To AV V. Wa fi fl
Figure 2: Examples of various letter-pairs and their kerned

(left) or ligature (right) equivalents, as typeset by TEX.

2.2 Other Typographical Techniques
Other techniques employed during hand-typesetting and high-

quality electronic typesetting include the use of kerning and of lig-

atures. Kerning involves altering the spacing between certain glyph

pairs in order to produce more consistent letter spacing, whilst lig-

atures are single-glyph replacements for two or more single glyphs

which may otherwise have clashing components. Some examples

of these are shown in figure 2. Kerning requires a table of kern-

pairs, specific to each font; values from this table must then be

looked up for every pair of adjacent glyphs in the document. Lig-

atures may or may not need to be inserted: if the component char-

acters of the ligature lie over a potential hyphenation point, it can-

not be decided whether to replace them with the ligature until it is

known whether the hyphenation point needs to be used.

3. A GALLEY-BASED APPROACH
Our proposed solution, of precomputing several text variants, re-

visits an approach to typesetting from before the advent of desktop

publishing. In the days before DTP, newspaper articles were type-

set into long columns known as galleys. Since all columns in the

newspaper would be of uniform width, all articles could be typeset

into galleys of the same measure, and then broken as necessary be-

tween lines, in order to slot into the final layout of the newspaper.

Once the text has been set in this manner, with appropriate hyphen-

ation and justification, the individual lines can be treated as atomic

units and will never have to be re-typeset. In essence, each article is

‘compiled’ only once, but can be used anywhere in the final layout

without penalty.

It is this behaviour we wish to emulate. So long as the atomic

components of the document are tightly specified, and the reader

software can obey the associated drawing instructions (essentially

treating them as pre-typeset blocks), the resulting display of the

document will be of as high typographic quality as that of the orig-

inal galley, and the requirement for further computation will be

vastly reduced. In order to permit aesthetic layout for a wider range

of screen sizes, it seems sensible to create a document containing

multiple renderings of the same content, and simply choosing the

‘best fit’ rendering when the document is displayed.

3.1 A Sample Implementation
Our sample implementation is built around our existing work in

PDF and Component-Object Graphics (COGs)[1], but there is no

reason why it could not be implemented in any other format capable

of tightly specifying page imaging operations. It builds on existing

software, principally pdfdit, in conjunction with COG Manipulator,

as these tools are already capable of producing modular documents

with tightly specified rendering.

3.1.1 The COG Model

The Component Object Graphic (COG) model was developed to

enable the reuse of semantic components within PDF documents,

by breaking the traditional graphically-monolithic PDF page into

a series of distinct, encapsulated graphical blocks, termed COGs.

In its original incarnation, the COG model did not account for any



Root

Paragraph-level items

Galley renderings

COG pointers

Figure 3: A simple document structure tree. The first level

below the root represents all paragraph-level items: headings,

paragraphs, figures etc. These items have one child for each

galley rendering of the document. These in turn have one child

for each COG comprising their content — in the case of a para-

graph or heading: its lines; in the case of a figure: the figure

itself and any associated caption.

relationship between individual COGs — it was simply designed as

a method with which document components could be easily reused

or reordered. The COGs it generates are largely at the granularity of

a paragraph, and can still be imaged onto the page in any arbitrary

order, independent of reading order.

In order to implement our galley-based design, it is necessary to

decrease this granularity, such that each line of text is represented

by a separate COG. However, it is also important that the semantic

structure of the document is explicitly stored. This is principally so

that the reading order of the COGs is maintained, and also so that

the reader software can identify paragraphs, headings etc. to enable

them to be laid out correctly.

The COG model takes advantage of the fact that the PDF spec-

ification allows the content of a page to be described by an array

of streams of imaging operators, rather than the more commonly

encountered monolithic stream. Unfortunately, this array can only

be one-dimensional, meaning that while it can enforce the reading

order, it cannot be used to, say, group lines into paragraphs. Since

the PDF specification allows essentially arbitrary insertion of data

structures into a document (PDF readers which do not recognise

these will simply ignore them), this flexibility was used to embed

a simple tree structure representing the paragraphs, in parallel to

the COGs themselves (an example of which is shown in figure 3).

At the level of its leaves, this tree simply contains pointers to the

COGs which make up the content of the document. In the simplest

case, where the document contains only one rendering (and thus the

paragraph-level items have only one child) the COGs pointed at by

the leaves can simply be rendered in order, adding vertical space as

appropriate.

3.1.2 The Source Document

Since the majority of available tools for producing COGged PDFs

rely on the typesetting package ditroff, it was decided to use this as

the basis for the source document. Ditroff is particularly amenable

to many of the features required here — it is quite happy to have

its page length set to large numbers — one sample document used

a page length of 2000 inches (approximately 50 metres) with no

complaints from ditroff. The line length was set to a small value

(approximately two inches) in order to produce a narrow column

of text. Following this, the actual document content was inserted

several times, and the line length incremented, producing one doc-

ument effectively containing multiple galley renderings of the same

content.

3.1.3 pdfdit

Having generated the source document, it was processed with

ditroff to generate the intermediate code used to feed each type-

setter post-processor. This output is very expressive, and, unlike

Figure 4: Sample renderings from the Acrobat plugin at page

widths of 42, 48, and 54 em.

TEX’s DVI, contains enough information that post-processors are

easily able to locate the start and end of lines and paragraphs within

the document. This meant that only minimal changes were needed

to be made to the pdfdit package described in [1] to implement our

design.

The first change necessary was to decrease the granularity of the

output COGs, producing them at the line level, rather than at the

paragraph level. Secondly, some method of generating the requi-

site tree representing the document structure was required. This

was solved by simply using the point at which the original version

of pdfdit would have started a new paragraph-level COG, and, in-

stead, starting a new paragraph-level block entry in the document

structure tree. Each subsequent line-level COG produced can then

be added as a child of this block.

Once the entire output file has been parsed, the tree representa-

tions of the various width galleys are amalgamated per-paragraph,

as indicated in figure 3, and finally the PDF file is serialised, replete

with COGs and content tree.

3.1.4 Acrobat Plugin

The decision to use Acrobat as an eBook ‘emulator’ stemmed

once again from the available existing COG-based tools, as well

as the extensive API and developer support available for Acrobat.

Moving a COG on a PDF page is as simple as deleting its associated

spacer object from the content array of the page, creating a new

spacer containing the COG’s desired new position, and then adding

that back to the content array.

Since, by this point, most of the computationally expensive type-

setting has already been carried out, the algorithm used to lay out

the lines of the galleys can be very simple. The plugin chooses

the most appropriate galley width to lay out, based on the current

page width, and according to some measure of aesthetic, and then

simply lays the document out line by line, with appropriate verti-

cal spacing, until no more lines will fit in the current column. Any

subsequent columns which will fit on the same page are then laid

out in the same manner.

3.1.5 Layout and Metrics

Since galleys of text lend themselves to being used in a columnar

format, a method of fitting columns appropriately to the available

page width must be devised. A sensible first approach is simply

to calculate how many columns of each galley rendering will fit,

by adding the galley width to a specified minimum inter-column



Figure 5: Graph showing the minimum penalty value of all galleys in a reflowable document, over a range of page widths. The

particular document used contained four galleys; these were rendered at widths of 15, 18, 21 and 24 em, with a minimum gutter

width of 1 em. Each vertical band highlights a range of page widths within which only the horizontal spacing of the page is altered.

The boundaries between vertical bands represent a switch between galley renderings — the galley used and number of columns is as

annotated on the graph.

spacing, and dividing the page width by this. The remainder of

this division will then specify the total extra amount of horizontal

whitespace required, which can then divided up and inserted be-

tween the columns. A simple measure of aesthetic here is to apply

a linear penalty for any extra whitespace required, as we seek to

keep page margins and column gutters to a minimum.

As the page width increases, so must the widths of the inter-

column gutters. In accordance with the extra-whitespace penalty,

each galley rendering will produce penalties which vary in a saw-

tooth manner as the width of the page is increased. With a careful

choice of galley widths, when these sawtooth penalties are overlaid,

and the galley producing the minimum penalty chosen at each page

width, a flatter and finer-toothed penalty-graph emerges, as shown

in figure 5.

In addition to penalising extra whitespace, wider columns should,

in general, be favoured over narrower ones, i.e. for a given page

width, fewer, wider columns are generally considered preferable

to a greater number of narrower columns. By multiplying the ex-

isting penalty by a smaller-than-linear function of the number of

columns (experiments have been carried out with both logarithms

and roots) the penalty may be subtly increased for greater num-

bers of columns. The formula for the penalty used in figure 5 is

P = (C + Wex ) ·
√

Ncols , where P is the penalty, Wex is the extra

whitespace required to be inserted, Ncols is the number of columns

which are required to fill the width of the page, and C is a positive

constant. The purpose of the constant is to prevent the penalty from

ever evaluating to zero, which would have the effect of disregarding

the weighting of the number of columns. Figure 5 uses C = 1.

4. CONCLUSIONS AND FUTURE WORK
This paper outlines our initial exploration of the idea of using

pre-rendered galleys for eBooks. So far, our initial implementation

has generated multicolumn layouts that look acceptable, and we

believe there is mileage in continuing to investigate this method.

However, there is still a lot of work to be done. Firstly, a very

simple formula is used to determine which column width variant to

select, and we are investigating the suitability of other methods of

determining aesthetically pleasing layouts (such as those outlined

in [2, 3, 4, 5, 6, 9]). Also, our system does not currently allow

the font size to be changed (since it is fixed when the galleys are

created). One approach to allow the font size to be changed would

be to scale smaller column width variants up to larger columns. For

example, if the 15 em wide variant is scaled up to 18 em, then text

would be scaled up by 20% — the equivalent of converting 10 pt

text to 12 pt.

It should also be noted that optimal placement of floating blocks

cannot be ‘compiled out’ in the same manner that hyphenation and

line breaking can; these will still need to be positioned into the

relevant places as the document is displayed. If the simple approach

is taken that floats should be placed at the top of a column or after

another float, a document layout somewhat reminiscent of this one

will emerge, although the floats will inevitably tend to drift towards

the end of the document, away from their desired position.

Finally, to confirm that this method has validity it needs to be

implemented in an actual eBook system, rather than simulated in

Acrobat. There, it will be possible to compare the performance of

our system with both a normal eBook renderer, and one that has

been enhanced to use a sophisticated hyphenation and justification

algorithm.

5. REFERENCES
[1] S. R. Bagley, D. F. Brailsford, and M. R. B. Hardy. Creating

reusable well-structured PDF as a sequence of component

object graphic (COG) elements. In Proceedings of the 2003

ACM Symposium on Document Engineering, pages 58–67.

ACM Press, 2003.

[2] H. Y. Balinsky, J. R. Howes, and A. J. Wiley.

Aesthetically-driven layout engine. In Proceedings of the

2009 ACM Symposium on Document Engineering, pages

119–122, 2009.

[3] R. Bringhurst. The Elements of Typographic Style (v 3.2).

Hartley & Marks, 2008.

[4] E. Goldenberg. Automatic layout of variable-content print

data. Master’s thesis, University of Sussex, 2002.

[5] S. J. Harrington, J. F. Naveda, R. P. Jones, P. Roetling, and

N. Thakkar. Aesthetic measures for automated document

layout. In Proceedings of the 2004 ACM Symposium on

Document Engineering, pages 109–111. ACM Press, 2004.

[6] R. Johari, J. Marks, A. Partovi, and S. Shieber. Automatic

yellow-pages pagination and layout. Technical report,

Mitsubish Electric Research Laboratories, 1996.

[7] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines.

Software — Practice and Experience, 11:1119–1184, 1981.

[8] F. M. Liang. Word Hy-phen-a-tion by a Com-put-er. PhD

thesis, Stanford University, 1983.

[9] L. Purvis, S. Harrington, B. O’Sullivan, and E. C. Freuder.

Creating personalized documents: an optimization approach.

In Proceedings of the 2003 ACM Symposium on Document

Engineering, pages 68–77. ACM Press, 2003.


