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Abstract

The decision sequence which guides the selection of a preferred data-drivelingnadédition is
usually based solely on statistical assessment of fit to a test datased¢clenthe incorporation of
essential contextual knowledge and understanding included in the evaluation of conventional
empirical models. This paper demonstrates how hydrological insight and knowledge of dita qua
issues can be better incorporated into the sediment-discharge data-driven model assessment
procedure: by the plotting of datasets and modelled relationships; and from anantilegsand
appreciation b the hydrological context of the catchment being modelled. DAMP: a four-point
protocol for evaluating the hydrological soundness of data-driven single-inglg-sutput sediment

rating curve solutions is presented. The approach is adopted and exemplified in aroevalsaven
explicit sediment-discharge models that are used to predict daily suspended sedinmamtratmrc
values for a small tropical catchment on the island of Puerto Rico. Four neurocwrgmutnterparts

are compared and contrasted against a set of traditional log-log linear sedimgrduate solutions

and a simple linear regression model. The statistical assessment procedues mogithdication of

the best model, whilst graphical and hydrological interpretation of the depicted sla@adanodels
challenge this overly-simplistic interpretation. Traditional log-log sedimedirtg curves, in terms of
soundness and robustness, are found to deliver a superior overall produetspective of their
poorer global goodness-éif-statistics.

Key words: data-driven appraisal modelling protocdgta-driven modelneuro-fuzzy model; neural
network model;sediment rating curve; suspended sediment concentration; hydrological ;insight
tropical catchment

1. INTRODUCTION

Accurate and reliable suspended sediment estimates are required in a varietyrioiestpleand
operational hydrological situations, for scientific and/or river managemepbses. Sediment ratings
may, for example, be used to estimate long-term rates of landscape denudatieftect river
morphological changes; to gauge sensitivity of catchments to varying land ciseegrar for project
specific applications, such as the estimation of reservoir lifetimes) mentification of tolerable
effluent discharge, and/or water quality inputs, around hydroelectric turbinesaggaurd reliability

of such approaches are fundamentally limited: (i) by the quality and quantibsefvations (both of
which, in turn, reflect sampling design and instrumentation);(anty our ability (or otherwise) to
generalise site-specific fluxes to: larger catchment areas; contrilawgag of catchments (which are
known to be highly variable); and/or event-specific and longer-term flow contributions (véreresv
hysteresis effects are frequently presenthis may result in the use of multiple rating curves to
model different components of seasonal and hysteresis patterns, or in cases of highly complex
responses, it may necessitate the use of process-based models to adequately madabthe r
relationship.



Conventionally, rating curves are generated from best fit regressions of suspehicethise either

load (SSL) or concentration (SSC)- against river discharge (Qr stage (H). Time-varying
behaviour may be captured by fitting two curves (where, for example, thestiigtdseasonality in
sediment supply frora catchment), but where multi-scale temporal and spatial dependency is present
or required in the estimation, and/or when physical realism in the link betweertipredand
predictor is required, then sediment concentration may be modelled as an output fronnmre

inputs, distributed in time, space, or both. The data-driven model (DDM) offers @ortamt
modelling paradigm in such respects, due to its central focus on identifying the atomalt
combination of multiple inputs according to the numerical structures found withamang dataset,

and the subsequent re-application of these captured structures to allow for @reafiéticomplete

data series. Indeed, numerous examples of DDMs in hydrology that focus on suspended sediment
prediction have been reported over the last decade. These include individual or fesliaward

neural network prediction (Cigizoglu, 2004; Jain, 2001; 2008); generalizedsagreeural network
prediction (Kisi, 2004a; Cigizoglu and Alp, 2006); radial basis function newtbork prediction

(Kisi, 2004a; Alp and Cigizoglu, 2007); fuzzy-differential-evolution prediciiisi, 2004b: 2009);
neuro-fuzzy and fuzzy logic prediction (Kisi, 2005; Kisi et al., 2006); support weoazhine
prediction (Cimen, 2008); genetic programming prediction (Aytek and Kisi, 2008); and neuro-wavelet
and neuro-fuzzy-wavelet conjunction model prediction (Partal and Cigizoglu, 20{i&:eRat al.,
2010).

The number of published papers on suspended sediment prediction in rivers using DDMs is
increasing. However, long-standing criticisms that centre on the difficulties associdtegmétating

a physical interpretation of solutions that are commonly presented as agitiblpck-box model
remain pertinent e.g. Minns and Hall (1996, p.400); Babovic (2005, p.1515); Abrahart2€ ). (
Indeed, the ability of DDMSto find connections between the system state variables (input, internal

and outpt variables) without explicit knowledge of the physical behaviour of the system”
(Solomatine et al., 2008; p.17) can lead to erroneous model conceptualisation and strbcatnart(A

et al. 2008) and issues of model equifinality (Beven, 2006; Todini, 2007). Moreover, chods is
commonly justified on the basis of little more than qualitative appraisal of deries graphs, or
scatterplots of observed versus predicted records, plus a handful of gpolaless-of-fit statistics.

This results in models that have little heuristic value beyond that of optimisee fitting (Mount

and Abrahart, in press). Perhaps more dangerously, it may also result in the rejection of more complex
and/or more realistic solutions, in favour of simpler, unrealistic counterpanéysim the basis of
improved fit statistics (c.f. Oreskes, 2003). Two fundamental concerns therefore emerge:

1. There is an inherent risk in failing to properly understand or appeetia complexities of a
particular dataset. Knowledge of the data quality, the likelihood of signifieamots at
particular discharge ranges and the extent to which a solution may be influenced by outliers in
the dataset is vital.

2. There is a need for meaningful graphical inspections to be performed thas #Hsses
appropriateness of each proposed and/or developed solution at differerindas and with
respect to its hydrologic context.

Given these concerns, it is illuminating to contrast the decision making sequenmonly adopted

by sediment-discharge data-driven modellers with those engaged in more conventional, lempirica
modelling approaches and, for whom, the need to provide both hydrological and physiographical
context for their results has long been recognised e.g. following the wéllissta protocol of
Glysson (1987). Figure 1 shows the two sequences. The DDM decision sequenay sirigistic

and reliant on statistical fit information to guide the selection of tleéeped model. Indeed, it
clearly exemplifies the key assumption underpinning data-driven approacheshethatodelling
mechanism will learn the required knowledge directly from the data ansh idoing, deliver a
preferred model without the need for a priori understanding of either data or hydrologieat.c@ht
contrast, conventional empirical model decision sequences use contextual understanding to guide the
constraints that should be incorporated iatmodel (i.e. linear, power function) and evaluate model
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outputs in terms of both form and fit to the data. In so doingp meaningful feedback loop is
incorporated, through which valuable diagnostic information about the model form @&ddéd as
an additional piece of evidence to: (i) deliver an enhanced understanding ofetitdisahallenge
involved and; (ii) asst thereafter in helping hydrological modeller’s to refine their products.

One approach to addressing the above concerns is through improvement of the DDivi desksing
sequence so that contextual hydrological and data-quality-related understandimgyeisfully
incorporated, with the result that the DDM and conventional empirical deGsourences are more
closely mapped. However, this raises the crucial question of how to inghdleise contextual
informationto improve model evaluation, whilst adhering to the notion that the data-driven modelling
mechanism should be allowed to generate models directly from the dataabstree of additional
knowledge inputs (i.e. external contextual material should not be allowed & aata priori guide

that is acquired from the modeller). A simple solution is presented in Figlrar&lel knowledge
about model form and fit, and an understanding of the modelling problem and the hydrological
dataset are conflated and used to guide the preferred model selection. @ruciaitextual
understanding of the data is included in the post-modelling phase of the decisienceeqereby
enabling it to be used in the model selection process whilst ensuring ttlaestnot form a
preconceived initial inpunto the data-driven modelling mechanism.

The decision sequence in Figure 2 can be recast to a four-point data-driven bBppodeléing
protocol(DAMP). This protocol mimics the classic empirical approach of Glyss@®7(land asserts
that the development of DDM solutions for modelling sediment-discharge reladgnges the
following actions:

1. At the outset, the data are assessed in terms of their physiographic and hydrolegicsoont
that clear hypotheses about the spatial and temporal processes that are expectedrtg be dri
suspended sediment over the period of the dataset are developed;

2. The data are examined and reported in depth. The purpose of this analysislysdisdigse
its quality and evidential errors;

3. A synthesis of the main hydrological processes driving the sediment / discbtatjonship
in the catchment is used to inform an explanation of the resultant structuresehaan
observe i standard log-log plot of the paired dataset

4. The data are next modelled and, if permitted, explicit formulae thereafter devetoped
represent each model. Each equation is subsequently used to develop and present a
regularised data series, from which the performance of each individual safudmamined
within its hydrological context and across its data ranges. Finally, the diteie each
model’s ability to predict suspended sediment in these ranges is identified, and the best
performing model is selected on the basis of both goodness-of-fit statistics antetiteaex
which the model fan reflectsthe catchment’s hydrological context and avoids being overly
influenced by data quality issues.

Points 1-3 should be easily achieved in all data-driven modelling scenarios. Point 4 raiseiargignif
challenge as many data-driven modelling mechanismgrasemed to be of an ‘implicit nature.
However, numerous DDM solutions can be made explicit, by adjusting software settingsneans

of some minor re-coding, such thatith@ternal structures and parameters can be extracted/exported
ard reported/shared. For example, Lee et al. (2006) provided a neural neltdrlequation for
estimating reservoir sedimentation due to typhoon events in Taiwan; Aytek 20@G8) (provided a

NN equation for estimating daily reference crop evapotranspiration in CadifddsA— albeit that

the correctness of the latter has been placed in doubt (Abrahart et al., 266%ltefhative but less
attractive option in such cases is to simply run a regular series througbrigaeal computer model

and publish that paired input-output sequence in a spreadsheet. For those DDMs ovbftdr d
explicit outputs, the opportunity to assess the appropriateness of the solutiercamtext of DAMP

is greatly enhanced. For example, in the case of neuro-fuzzy (NF) modellmg)atned that "the
additional benefit of being able to provide the set of rules on which the nsdubdeéd ... gives further
insight into the process being modeled" (Sayed et al., 2003; p.123: reproduced in the closing
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paragraphs of Kisi, 2005; Kisi et al., 2008, 20@3)nsequently, the appropriateness of a NF model’s
computational structures and rules, may be reasonably assessed by means of efetaiteihg and
comparison against two independent sources: (i) the structures that can beedisodhg data; and
(i) our domain knowledge of the physical or operational and mechanical procésseard
responsible for such structures.

For sediment-discharge rating curves, saved in proprietary model format, ertednnto explicit
equations it is possible to apply DAMP in full by throughputting an orderedlareggries of inputs,
spanning the range of the input predictor values required, and plotting model outputsgesnedr
sequence of points. Whilst undertaking analyses of this type is unusual, it is not newsauad
number of under-appreciated exemplars already exist e.g. the two fuzzy modelling-mnaivefgll
relationshipsplotted in Sen and Altunkaynak (2003; p.42). Indeed, for simple DDMs where the
number of predictor variables is low (most sediment-discharge models &is tyfoe), 2D modelled
relationships can be depicted using bi-variate plots and 3D modelled relationshigsroapded as
surfaces.

In this paper, just such an approach is adopted and we exemplify DAMP by meaesgikation

of seven explicit models used to predict SSC f@rfor a small tropical catchment in Puerto Rico.
The purpose here is not to offer direct insights into better model development strdiapits,
highlight the dangers associated with data-driven model selection made on thefbsismmary
goodness-of-fit statistics alone. Consequently, this paper provides an imjpoutzaation/ blueprint

for those wishing to present sediment-discharge DDM models in such a way thattareable to
respond to theéblack-box demonization’ that has plagued them, to date, and in so doing, integrate
contextual hydrological and data-relatedbrmation into model selection and evaluation. The clear
weaknesses that have surrounded the use of goodness-of-fit statistics to adsépeniormance are
mitigated and a case for the greater acceptability of DDMs in hydcalagodelling is presentedn
addition, calls for increased accessibility and portability of hydrolbgigplications (Buytaert et al.,
2008 Abrahart et al., 2009) are heeded and the explicit equation for each mate paper is
reproduced and encoded in a spreadsheet for third parties to use in experimental operations (Appendix
1: Supplementary Material).

2. STUDY SITE AND DATASETS: PHYSIOGRAPHIC, HYDROLOGIC AND
SEDIMENTOLOGIC CONTEXT

2.1. The study site

The modelling scenario is one of the two independent case studies thanvestgated in Kisi
(2005): estimation of United States Geological Survey (USGS) SSC recongspfar reaches of the
'Rio Valenciano near Juncos', situated on the island of Puerto Rico, in the CaribB&H Bthtion

No. 50056400: Figure 3). The sediment budget at this gauging station is of pattigralogical
modelling interest since ¢hCommonwealth of Puerto Rico, Agqueduct and Sewer Authority are
constructing a 30m high dam orighiver to meet increased water demand: situated about 2 km south
of the city of Juncos (http://www.csagroup.com/project.php?msid=1&pid=40).

The USGS monitoring site is located at an elevation of approximately 70 m, roughlgyhbBitween

the river’s source in the hills above Las Piedras, and the confluence of the Rio Valenciano and Rio
Grande de Loiza in the alluvial plains of the Cagus-Gurabo-Juncos region. dih@eatt area above

the gauge is 42.4 Knand rises to approximately 400 m at its highest point. The river flowaghr
mainly suburban land use fabout 7 km immediately upstream of the gauge (Pares-Ramos et al.,
2008) where a relatively low relief landscape is characterised by a mix sfagrdsind low density
urban development. This land use changes to a rural classification in the egtpgrbrcatchments.

In common with the majority of upland rivers on this island, the rupdind reaches of the Rio
Valenciano are highly incised and bedrock controlled. Floodplains are generally poorly developed and
the channel is commonly highly connected to the valley sides; resulting in few opjpesttoritout-
of-channel sediment storage. Forestry remains the primary land use type on the wilepesities

and in the highest elevation first order sub-catchments. Much of the uplahdheat has however
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been deforestedh process resulting in the replacement of natural forests by grassland,asttub |
arable agricultural land or plantations (Helmer et al., 2002; Pares-Ramos et al. 28@8pd ridges
in the upper reaches are characterised by low density urban development.

This catchment is one the many northward draining examples on the island ttizraerised by

high mean annual rainfall of between 2000 and 2500 mh(lyarsen and Torres-Sanchez, 1998),
moderate to high annual sediment yields and moderate to high annual runoff (Wdrn@Gasa.

Rainfall is temporally variable with low-intensity localised rainfaleets tending to be fairly evenly
distributed throughout the driest months of the year (January to Apriljtingsin a persistent low-

level base flow in the majority of northern catchment channels. By contrast, nafall cioubles

during the wetter months of May to October and, in some larger catchments, such rainfall can result in
sustained moderate discharges. The island also experiences occasional, extremeunaififailents
associated with hurricanes that recur over 10-20 year periods (Ho, 1975; NuemalB80alScatena

and Larsen, 1991). Indeed, although infrequent, hurricane-related events are impogengfating
sediment, with 285 shallow landslips reported by Scatena and Larsen (1991) in uplaratl forest
valleys during the passage of Hurricane Hugo (1989). The upper Rio Valemetohoment for
example was classified as having moderate landslide susceptibility by Larsen reegtSamchez
(1998). The remaining winter months are dominated by localised high intensfgllravents linked

to annually-recurring winter frontal storms. Major storms are intensérif and in response most
catchments on the island exhibit very flashy hydrological regimes in whichmmaxdischarges can

be up to four orders of magnitude above base flow, yet recede over hours, or at fewstlays
(Warne et al., 2005). In consequence, the occurrence of high sediment yields in northern catchments is
often episodic with the highest sediment concentrations related to shortiigddefzents associated

with storms and landslides.

There are no detailed geomorphological and physiographic studies of the catchniahteavathe
literature, although studies in the nearby Luquillo Mountains (USGS, 2000) provide the bes
contextual data available for its upland reaches. It is, therefore, not possilggdn suggest either:

() a definitive sediment budgetr (ii) specific elements of a sediment yield/delivery system (Dunne,
1979). Indeed, in a study of small basins in Puerto Rico, Larsen (1997) drew attention to ozalked |
variability in basin response, which reflected catchment physiography; undeggoiagy; history of
land use, and/or past and present land use clearance; and adjustments of the stre&mvitietwor
respect to local sediment storages in bar forms, and to channel-hillslopetimtstat follows from
this, that any dataset must be closely tied both to the particular basin unddeiaimi and to the
position of the measuring station in relation to the stream netweitkce the influence of very local
network sediment storages and supplies may be evident in any data records. Hmweweshensive
studies of other northern catchments on the island (e.g. Larsen, 1997; Larsen an&armhez;
1998; Warne et al., 2005; Diaz-Ramirez et al., 2008) do allow the general ctistiastef sediment
dynamics to be posited. These indicate that a high degree of seasonality in sedisien{ and
hence of sediment supply to the stream network, is to be expected in conjunctianraptt transit

of suspended sediment through the upland stream network. The effect may be cednfpicdtably
compounded) since the 'hurricane season' also corresponds with the wettest months i.esthe larg
most intense precipitation events, coincide with an already wet periaht-Epecific highs in
sediment yield associated with landslides and localised soil eresiénpresent— could thus be
superimposed on higher, seasonal values. The presence of ‘extreme’ values, is, therefore, to be
expected, and such occurrences may well have a disproportionately large influencenmamntsedi
transport and suspended sediment concentration in relation to their frequeragcusfence.
However, given the small size of most catchments on this island, it may also be ttfecasasonal
effects are further complicated by local variations in sediment availabflityot delivery: large
rainfall events early in the wetter season might, therefore, be expegbeaduce a higher sediment
yield than events occurring later in the season, when more of the available sediamentbeen
eroded. However, this will depend upon local land stability conditions and any changes tisdand
practice. Some upper-end tailing-off or dipping of rating curves might also, thantibipated. The
net effect of all of the above might most likely be encountered in the portrayal of a twoltiestage
log-log regression relationship, between sediment concentration and dischangedpiseasonal
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effect). That relationship might also be expected to exhibit differing desklscatter about the
individual stages: (i) as a result of event-specific factors; (ii) duextrapolation and infilling of
missing records: or (iii) associated with different types of hystereqigrevsimilar sediment
concentrations are recorded for very different discharges (Williams, 1989).

2.2. The datasets

Full particulars for the monitoring station at Rio Valenciano near Juncos arelguavi Table 1.
Following Kisi (2005), paired time series datasets comprising daily river digeli@rin ni s*) and

daily SSC(S in mg 1) records for 1 October 1993 - 30 September 1995 were downloaded from the
USGS open access website at: http://webserver.cr.usgs.gov/sediment (Figure 4).

Little additional metadata is available from the download site, so additional informaiated to
gauge instrumentation, and any data processing or infilling, was requested diyedtly authors
(Carlos Figueroa-Alamad/)SGS, PRpers. comm.). This request revealed that SSC records for low to
moderate discharges were collected using a manual depth-integrated sampler. Eischagiges an
automatic sediment sampler with liquid level actuator (non-depth integratedyseds Sampling
frequencies are not disclosed. Importantly, it is also revealed that fiedd-IS8C sampling was not
continuous and that data infilling was necessary for some SSC records; paytithdad at low
discharges. The methods by which this infilling was accomplished are not detailddrigifior the
highest discharges SSC is extrapolated via rating curves; but the form andtiebaliiese curves
remains unclear.

The raw dataset is presented as a log-log plot in Figur&éh® observed sediment-discharge
relationship, could obviously be reasonably-well captured by means of log-logssiegr, with
varying degrees of scatter due to seasonal and/or event-specific factors, dnitihgxhigenera
reduction in the gradient of the curve in the uppermost ranges of theetdditaited sediment
availability). However, a number of important additional structures carbalsbserved. The degree
of scatter associated with the four extreme discharge events (>15 cumecs)vislydtati and the
expected high degree of heteroscedasticity in theseataay be artificially constrained by the
application of upper-magnitude extrapolation procedures. The scatter of pointsth&loumecs is
characterised by numerous horizorttades of points (A); implying that SSC is constrained to only
one of seven or eight possible values. Each particular value also occurs aarags @f overlapping
discharges. Clearly, such records are not reali$tis regular pattern is most likely an artefact
arising from measurement and recordimprecision at very low levels of SSC i.e. discretisation/
round-off. It could even, perhaps, be an unintended by-product of missing réoditihg
operationd. This particular activity was mentioned in the personal communication and mighhhel
part to explain the extent of their horizontal spread. Contrasting Véiiies of points (B) also exist

in the data between 0.5 and 0.8 cumecs; suggesting that wide ranges of SSC values have been
recorded for identical discharges. Again, this is highly unlikely, and one may reaspreslyne that
these structures are due to a reduced precision in the discharge record teatiltes in SSC data
being assigned to one of a small number of data ‘bins’. Two significant outliers also exist (O1 and
02) whose validity it is difficult to imagine24 April 1994 (Flow= 0.0906 mi s*; Sediment = 1200
mg ) and 6 June 1994 (Flow = 0.227G st; Sediment = 312 mg"}. Indeed, the most likely
explanation for these peculiarities is data error in the source material.

This initial appraisal of the dataset, coupled with the physiographirplogic and sedimentologic
context, raises some important issues for those wishing to generate a DDM of suspedirdedt for

the Rio Valenciano. First, the data frequency (daily mean) does not corresporitievitkpected
hydrological event frequency (commonly less than 24 hours); potentially mgsintia significant
underestimation of the instantaneous 'peak valueS8€ in cases of a rapid and/or larger event
Second, using data extrapolation procedures for high discharges may be problematicresntie

in records that do not adequately capture the variability of the sediment supply and transpeses

that occur withina catchment under extreme conditions. Consequently, the occurrence of extreme
events in the dataset may be constrained. Given the fact that majority afdedgediment yield in
northern catchments is associated with flashy, high discharge events, this also ratsass ques
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the usefulness of such time series records for modé&I8Q Moreover, the relatively simple form of
most rating curves, can easily be replicated by most DDMs, such that theajasty of resultant
models will appear to possess high levels of skill if assessed in ¢drgmodness-of-fit statistics;
thereby giving a false indication of the validity of the model at high disebarghird, clear
shortcomings exist with regard to measurement and recording preciS$&CoThis has resulted in a
record that fails to properly represent a tight sediment-dischargemnslaipp at low discharges. The
combined depiction of inappropriate scatter and artificial structures mordelreersa substantial
amount of uncertainty as to what does or does not constitute a correct anskadrragion. The
extent to which such particular imperfections could have a detrimental impacpotential solution
is nevertheless open to question: it may have little operational relevance ffiesutiant model, since
the contribution to overall suspended sediment loads from low discharges is dikaty minimal.
However, given the higher frequency of low discharge records in each datasgge prbportion of
the data used to trammDDM may not be representative of real suspended sediment behaviour, such
that the ability of the model to produce realistic predictions at I®ghdrges may be impaired.
Finally, the existence of the two outliers in the data are likely to encourggeesal over-estimation
of SSC at discharges < 1 cumec.

3. METHODOLOGICAL APPROACH

The underlying methodology is that of Kisi (2005); extended as required to supportea mor
comprehensive analysis by means of DAMP:

Download dataset and divide it into two subsets: (Set A) and (Set B);

Developanumber of DDMs on Set A and test on Set B (Experiment 1);

Develop a number of DDMs on Set B and test on Set A (Experiment 2);

Extract each model’s rules, weights, parameters and governing equations (as required);

Use these rules to develop and preserggular data series such that the modelled relationship
between SSC and Q can be plotted as a continuous curve;

Compare goodness-of-fit statistical performances for all models using the twastiog
datasets;

7. Examine how well each regular curve performs with respect to its hydrologicaxtant
particular ranges of the original dataset; as outlined above.

arwnNpE

o

The downloaded material was first divided into two equal and consecutive subsets. Set A (Kisi’s
training dataset) contained 365 paired daily values for the 1994 water y@ataier 1993 - 30
September 1994); Set B (Kisi’s testing dataset) contained 365 paired daily values for the 1995 water

year (1 October 1994 - 30 September 1995). Earlier studies, however, had included a laggdéd inpu
1-day: meaning that no prediction could be delivered for 1 October. This namessemoval of the
observed record for 1 October 1993 from Set A and 1 October 1994 from Set Bg I8é«irecords

in each set. Table 2 provides a statistical description of each variablehirfie@csubset and a
number of single measurement inequalities can be identified. The highly skewed andeakeg
nature of discharge and sediment in both catchments should be emphasised. Table 2 also reveals
potentially problematic differences in the split of observed records that coulé ereatbstantial
impact on overall outcomes. The split-distribution is not well balancedcalileration and testing
datasets possess marked disparities in terms of mean, skewness and kurtosis. The \ektent
relational or covariant inequalities might be an issue is not revealed imdesictiptorsLast, but by

no means least, no error checking, outlier removal or data cleansing operations wéed feggbe
original paper and so the assumption must be that none of the originabddeahlrecords should be
deleted. Consequently, the two erroneous outliers remained.

To allow direct comparison with Kisi’s earlier paper the four models that he reported are replicated
here. These are a neurezy model possessing triangular membership functions (NFT); a neural
network model possessing a linear transfer function in its output unit (NdNkrgditional power
function sediment rating curve model (PFT) and a simple linear regression model incdudied f
purposes of ‘linear benchmarking' (SLR). In addition we also present résufisa neuro-fuzzy
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model possessing Gaussian membership functions (N&@gural network model possessing a
nonlinear transfer function in its output unit (NNN) and a bias-adjusted powetiofursediment
rating curve model (PFA). Therefore, a total of seven separate modelling approaches are presented.

In accordance with the approach adopted in Kisi (2005), each of the seven indepeodels was
calibrated on data Set A and tested on Set B, identified by means dixeafieehed to each model,
in this case 'MOD'-1 This scenario allowed direct comparison between the nlirasseasment
statistics presented in the earlier paper and the establishment of some measuespdrudence, or
fidelity, in terms of replication with regard to the recreation ofiearéported solutions. However, in
addition, we also adopted a 'role reversal test' by comparing and contrasting cadidéehted on Set
B and tested on Set A ('MOD'-2). The object of this particular exerciseontasttfor a consistent
response, since from earlier discussions, it was suspected that dispeldied to the original
selection of appropriate subsets for calibration and testing purposes could ketigfland had
perhaps led to a unique set of findings. Consequently, 28 sets of numerical predictions are reported for
subsequent out-of-sample assessment in terms of conventional statistical methods.

Three methods of reporting are adopted. Each model comprises an explicit set ofatiesiheutes
and/or equations that can be used to describe the form of the relationship and in sdlldpiogide

an exact method, for comparing and contrasting the different types of solutich 8 also
transparent. The equations are provided below and in the accompanying spreadsheet (Appendix 1:
Supplementary Material). Having both computational and mathematical models atposatimeans
that it is possible to obtain outputs for a regular series of pre-spedifieltarge inputs, in this case
ranging from some practical minimum [0] to some upper operational 160it that exceeds the
maximum observed record [35.1] for Q. The resultant outputs can thereafter lesl [@stta
continuous function for visualisation purposes in the same manner as a simplerdigression
equation overlaid on the original scatterplot of observed S vs. observed Q. Theexmibith each
model fits the dataset can thereafter be inspected for hydrological correctnésslaP@amphasis
should be placed upon: (i) the development of a flexible nonlinear response, accommodating local
deviations from the global trend; and (ii) the treatment of outligne use of an extended series that
is expanded well beyond the upper range of the observed dataset is particularly usefafimgekp
extrapolation capabilities of each model that was produced. Individual model outputals@re
compared and contrastedginst one another by means of seven popular metrics computed using
HydroTest (www.hydrotest.org.uk): an open access web site that performs tiredegumerical
calculations in a standardised manner (Dawson et al. 2007; 2010). The selectetk statigbrised
three absolute measures Mean Absolute Error (MAE), Mean Error (ME) and Root Mean Squared
Error (RMSE); three relative measures Mean Absolute Relative Error (MARE), Mean Relative
Error (MRE) and Mean Squared Relative Error (MSRE); and one dimensionless coefficint
Squared (RSqr). Full details with regard to the calculation and use of such descap provided in
the aforementioned papers. Table 3 contains formulae for and descriptidrnseotal metrics: noting
that signed statistics are reported as a residual, not an error, such thave mssitual equates to a
negative error. The total annual sediment flux for each model and period is ai¢ere$t and was
calculated separately in metric tons per water year. It is reported in pgredatmat as Total Error
(TE): a measure that is signed according to error, not residual. In practical T&mpsovidesa
simple, but nevertheless very useful, additional statistic: one thaepladded weight on higher
flows/concentrations. This particular weighting is especially importangngthat events of this
nature will makea significant contribution in terms of overall yield, and that issues surrogiie
latter are what many, if not most, practitioners are mainly concerned about.

4. MODELLING OPERATIONS



4.1 Neuro-Fuzzy Models

Neuro-fuzzy modelling was performed in MATLAB using the Adaptive Neuro-Fuzzy ender
System (ANFIS: Jang, 1993; Jang et al.,, 1997). Kisi (2005) employed triangular rekimber
functions in all reported applications. That original analysis is extendedipdhir to encompass an
assessment of two different internal membership functions: triangular and daussi models
containing either one or other type of internal membership function were devetopeeet the
demands of each individual experiment. Each NF model involved was designed to be conmigiistent
the best performing NF solution of Kisi (2005). No pre- or post-processiegtigns were applied.
Each model used one raw input, to deliver one raw output, and contained two internal membership
functions— as depicted in Figure 6. This is the simplest possible model that the sqfteiege will
support. It also means that only two rules and two pertinent, appropriately eeeigigar output
equations will be produced; delivering one internal rule for each of the rdiwidual input
membership functions involved. Kisi (2005) did not report the training periatiopping condition
that was used to develop his NF model; our assumption, under such circumstancesisisribaéells
were trained for 10 iterations- this number comprising default setting in the MATLAB Fuzzy
Logic Toolbox. Testing was nevertheless performed to ascertain the correctoessyafdel fitting
activities, since it is possible that the resultant solutions could be eitigierfitted or overfitted.
Figure 7 depicts regular series outputs for NF models developed using a limited dséerent
iteration settings: starting at 5 (half of default), and thereafter douldiig {default), 20 and 40.
NFT-1 and NFT-2 outputs revealed a progressive process of continued adjustronthatu
additional iterations delivered a series of substantial modifications causing edchmbtel to
provide very different high-end output trajectories at different stagdee dfaining process. The need
to perform some sort of 'early stopping' operation is thus indicated, perhaps famtted prudent
use of a cross-validation dataset. However, such considerations and procedures ateohdhgar
original published methodology, and so regardless of other factors the default rafniteeations
was applied in our final modelling exercises. NFG-1 and NFG-2 outputs in contrasteddimited
overall changes and a more 'stable solution': such that the use of default settihgmtasla result
be faulted.

For each finished product, the software package provided modelling parameters fottddo fi
membership functions, enabling the relevant internal weights to be calculatsb firoduced a set
of rules and for each rule it supplied a linear output equation. Full particulars ederigtable 4. The
two rules are quite simple and are combined in the region of 'membershipriuactriap— as
depicted in Figure 8. Thus:

Rule 1: If Qis MR then Sis §
Rule 2: If Qis MEthen Sis &
Rule 3: If Q is MR and MR then Sis §+ S

It is also possible to demonstrate in an exact manner how our modelling outplis camputed
using the information that is provided in Table 4. The calculation of modeutogE) can be
simplified into a three-step procedure:

1) Calculation of weights. The membership score (weight) for each inpalbténed using the
parameters listed in Table 4. For NFT the triangular curve is a function of vecod@gepends on
three scalar parameters a (left foot), b (peak),canidht foot). From these parameters, the weight of
each rule (Wi) is calculated as:

IfQ<athen Wi=0 1)

IfaSstthenWi::; )

0

=



IbeQSCthenWi=% 3)

o—

IfQ>cthen Wi=0 (4)

whilst for NFG, the weight of each rule (Wi) is calculated as:

—[r—c)2 (5)
Wi=z=g =za2

The weight for each rule is thereafter normalised i.e. divided by the 'sum of weights'. For example, the
normalised weigh¥, for Rulei fromn number of rules is calculated as:

W, = il (6)
W Wi+ Wit + W

2) Calculation of sub-outputs. The linear function related to each particulas mgeti multiplied by
its corresponding normalised weight e.§ - 51, W;-55.... W, -5,. This step weights the

strength of each rule and provides sub-output to the final butpu

3) Calculation of final output. The sub-outputs are thereafter summed to provide the final output:

5=i s (7)

i=1

For example, S at Q = 0.425 in NFT-1 is calculated as follows:

S=W,-(—2264Q+4912)+ W, - (—270.7 ¢ + 10580) (8)
where
_ W _
Wl - 1 , WE - Wa ,
W +W5 Wy W
w, = —rat? .y, @7 dwrs

Cprr — Prepa Bripa — dpspa

and where a, b and c are values listed in Table 4.

4.2 Neural Network Models

Neural network modelling was performed using an in-house software prdpatnhas delivered
sound performance on several previous occasions e.g. Dawson et al. (2002Ki2D@®)P5)
employed a linear output transfer function in all reported applicatidms.is the default setting in
MATLAB. That original analysis is extended in this paper to encompass an assessmgot of t
different output transfer functions: linear and nonlinear. NN models containing eirtbeor other
type of output transfer function were thus developed to meet the demands of eawtuahdi
experiment. Each NN model involved was designed to be consistent with the beshipgrfNN
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solution of Kisi (2005). Each model used one raw input, to deliver one raw outpatrtaihed one
hidden unit— as depicted in Figure 9. Each NN model was trained using 'back propagation with
momentum' for 10,000 epochs: for a detailed account of relevant neurocomputirsg aedm
procedures see Priddy and Keller (2005). This is the simplest hidden-uni¢etale permitted. Kisi
(2005) did not report his training parameter settings or, indeed, if some metktahdérdisation
should be applied to either the input or output datasets. Thus we opted toriesk and tested
approach, that had been used successfully on a number of previous occasions, comprésimag

rate of 0.1, a momentum setting of 0.9, and datasets standardised to rang4 fito®.9. To support
operational considerations, each model run was performed in a blind manner, requiringibiotdy tr
and testing datasets to be standardised to the range of the training dataset.

The two NNL and two NNN models can be explained, using a sequence of equations. Figure 9 depicts
the NN architecture that was adopted, comprising one unit in the input laysre(ijinit containing a
'sigmoid activation function' in the hidden layer (j), and one unit that could contaér ai linear
activation function (as shown) or a sigmoid activation function (not showhgioutput layer (j). No
processing occurs in the input layer. Inputs are simply passed to the hidden layer in which the
processing operation delivers outputs,) (8sing a sigmoid transformation in accordance with
Equation 9.

1 9)

- 1+ e~ (@ " W1+E1)

Sk

where Qyqis obtained using Equation 10.

@ - Qm:n (10)
g = - 08+ 1
Q}Ld Qma): - Qm:.ﬂ

S, is thereafter passed to the output layer, and processed according to one or béhev@pbtential
transformations, linear or non-linear. Final output for NNL is calculatéayusquation 11; final
output for NNN is calculated using Equation 12.

S.q =5, W2 + B2 (11)

1 (12)

~ 11 e-(5n Wz2+B2)

Ssta'

where Gyqis then de-standardised back to the original scale by Equation 13 to get the final output S.

Smaj: - Em:n (13)

S = [Ssrd_ G'lj ' 0.8 + Siin

Trained parameter settings obtained for Equations 9 to 13 are provided in Table 5.

4.3 Sediment Rating Curves

Two established statistical solutions were developed in Microsoft Excel: aoinatisediment rating
curve (PFT) and a bias-adjusted sediment rating curve (PFA). The sediment rating chong imet
attributed to Campbell and Bauder (1940) who observed that the relationship betwegaiitie

of sediment concentration and the logarithm of discharge is approximately linearisP&
straightforward least squares linear regression model of log S on log Q. Eqlétepicts this
relationship in the form of a power function where a and b are constants acquired Haring t
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regression process. However, a sediment rating curve that is developesl mativier, should of
course be corrected for bias related to the log transformation process givemetd#terences in
means of logged and non-logged values would lead to underestimations. Ferguson (1986)ddghli
such issues and demonstrated the use of a bias correction factor (CF: Equation 15).

S =aQ" (14)
S=CF -a - Q" (15)

2,635

2
whereCF = & and s is the standard error of the regression equation
The rating curve is a simple method that is in widespread use, and is considered to be éolequat
most practical purposes. It nevertheless remains an empirical result without Iglrgsifi@ation. The
relevant PFT and PFA equations for both Experiment 1 and Experiment 2 are provided ionEquat
16 to 19.

Sppr_q = 62.42( %87 (16)
Sppa_qy = CF + 62.42 Q%% whereCF = 1.13556 17
Sppr_p = 61.79¢ 10482 (18)
Sppa—z = CF - 61.79Q10%2 CF = 116360 (19)

4.4 Linear Regression Benchmark

Simple linear regression is a popular method for modelling the form of ldt@mnship that exists
between two variables in numerous field of science and engineering. It wdiitinlgya straight line
to the set of points that minimises the sum of squared residuals. That line isculged to pass
through the centroid (intersection of means) and on this occasion is used totdelnegression of S
(predictand) on Q ( predictor), according to Equation 20, in which a and b arepbeasd intercept
of the linear model that is produced.

S=a+b@ (20)

Abrahart and See (2007) argued that for modelling purposes simple linear models shouldase used
standards against which more powerful solutions are tested so as to itltécdégyree to which the
observed relationship that needs to be modelled is linear and thereforesehaiapplication of a
linear modelling solution, as opposed to something more complex/ challenging. Treopradia
simple linear solution in such cases for 'benchmarking pusposist also be clarified: such solutions
are not expected to be winners. Their role is to provide a lowest possible standarthat the
degree to which superior solutions are superior can be judged against it. Thibendbmarking
purposes, two simple linear models (SLR-1 for Experiment 1 and SLR-2 for Experimente?) wer
developed and are presented in Equations 21 and 22.

Seip—1 = 18.929 + 37.482Q (21)

Seip_» = 14.237 + 54.665Q (22)
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5.RESULTS
5.1. Model comparison with original study

Three metrics reported in Kisi (2005) can be used to deliver an objective comparittwn farpose
of ascertaining the overall extent to which our one-input one-output NFT-1 andLNnhlhdels are
analogous to their published equivalents (Table 6). The original models were dssebdean Root
Squared Error (MRSE), RSgr and TE. MRSE is computed from RMSE according to Equation 23.

RMSE = MRSE - \n (23)
where n is the number of records, which is 364. TE was labelidive error” in the previous pag.

The statistical results are quite similar, as expected. The origlRal1l and NNL-1 models
nevertheless exhibit marginal albeit inconsistent overall superiority to thedst replicated
counterparts. It is impossible to establish to what extent the observed discrepandiesattributed
to random processing elements such as the use of different architecttiadisations or
computational precisions. The underlying similarities are nevertheless sufficieotroborate the
key findings of Kisi (2005). These are:

1. statistics for NFT-1 are slightly better than those for NNL-1,
2. PFT-1 and SLR-1 do not perform as well as the other two models.

5.2. Statistical metrics

Table 7 contains a full set of output evaluation statistics for ExperiineNN and NF solutions
provided somewhat similar measures of global fit, to the extent that there beigiat significant or
meaningful statistical difference occurring, between each individual modetiagpe the training
situation. Numerical results, for fitting models to the training dataset mixed— with no clear
winner emerging. NN models are perhaps superior. NNL-1 had a slight advantagas of MAE.
NNN-1 had an even narrower advantage in terms of RMSE. RSqr was identical in ala$esr
NFT-1 and NFG-1 had zero ME meaning that such models were unbiased. Testing, as might be
expected, provided similar measures of statistical fit for NN and NR@mdubut with NFT-1 on this
occasion doig somewhat better than the others on MAE, ME, RMSE and RSqr. The assumption in
such cases, if one is possible, is that lower training performance of NFT-1 on i8suled in
superior generalisation performance on Set B; whilst the tighter fitNtRat1 and NNN-1 achieved

on training Set A, handicapped the transfer of such modelling solutions, in tetinesr dit to Set B.

This interpretation of matters, however, is to some extent contradicted Hacthéhat NNN-1
returnedthe top score for TE: conceivably makiiighe practitioner’s choice.

Table 8 contains a full set of output evaluation statistics for Experiment 2. Jtisticdl results
obtained using role reversal, are somewhat different, to that reported fenirfapt 1. Three out of
four NN and NF solutions provided similar measures of globaNftL-2, surprisingly, performed
great deal worse than the other models. Further investigation revealatishatinimalist model
lacked sufficient internal flexibility to accommodate the required soluéitbhough by paralleling the
principal trend, it nevertheless secured the highest score for RSldp-2 is, as a result of such
failings, not included in the following detailed comparison and analyrsigerms of training, NF
models were best. NFG-2 provided an overall champion in terms of MAE and RMSE. NFT##&was
second best model. NF models had an identical score for REgj¥l and NFG-1 also had zero ME
meaning that such models are, once again, unbiased. NNN&énhadjinally lower RSqr. Testing, as
might be expected, provided similar measures of statistical fit for NINN&nsolutions but on this
occasion, produced greater mixing of positions. NFT-2 was best at MAE, NNN-2 was best at
RMSE, whilst NFT-2 and NNN-2 had identical scores for RSIfifN-2 in a similar manner to NNN-
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1 returned the top score for Tthus reinforcing our earlier statement about practioner preference for
NNN.

Tables 7 and 8 also contain a set of output evaluation statistics for ourafditional approaches.
These particular mechanisms were included for benchmarking purposes and it mustdesl shat

such models are not intended to be candidate solutions: but to act as standards, that shouketibe bette
The neural models are clearly better in terms of absolute statisticplace stronger emphasis on
higher magnitude sediment events; although PFT is observed in both experimeifi¢s tbeobest
performing solution according to our relative metrics i.e. MARE, MRE and MSRE. Theagene
meaning in such cases is not that traditional approaches should be pursued hdt, timsteelative
metrics offer an alternative environmental perspective in regard to providimgper test for the
purposes of identifying good or bad modelsaospecific dataset, or perhapsarbroader sense, on

this particular hydrological modelling topic.

5.3. Regular data series plots

Figure 10 (Experiment 1/ Trained on Set A) and Figure 11 (Experiment 2/ Tan8dt B) show
that most models follow similar trajectories in the central region of pexthThe upper and lower
magnitudes are nevertheless modelled in a number of different manners. Theegppef each
plot is of particular interest. Figure 10 shows that NFT-1 and NFG-1 displaycestairp declines
beyond our maximum Q in the training dataset, with similar difficulties enemmtwith NFT2
(Figure 11). NFG-2, by contrast, displays a sharp increase outside of the datdndegd, it appears
that NF models are particularly prone to localised overfitting in sparse atagasr and offer poor
potential for extrapolatiorNNL-1, NNN-1 and NNN-2 are more robust but simply flatten out in the
upper region so as to target one or more final point(s). However, poor ext@pokgtabilities are to
be expected, since such models are given no help at all with regard to the existihgngnfiem.
Yet: (i) upper end data is suspedti) upper end events are responsible for a significantly
disproportionate amount of total sediment flux; andl @iiuseful model should be able predict beyond
the (limited) range of its training dataset in order to characterisesetle@itare more extreme than
ones previously encountered. Thus realistic extrapolation, particularly on the upper esgkritial.
NNL-2, moreover, performs very poorly overall: in clear contrast to other NN moldeis,
nevertheless, by far the best example of our argument that statistical evalaaédrob goodssof-

fit metrics, particularly in the absence of graphical illustration, can beivleg. It was quite
astonishing to discover that a parsimonious data-driven model could deibestdit curvé, that is

so clearly non-representative of its dataset, but still nonetheless managed t@ fgghnscore for
RSqr (0.86). The lower data ranges are also of interest, since the each neurocampagirgdopts a
very different curve in this region; highlighting a general lackobtistness which is almost certainly
associated with the unusual data distributions identified in Section 2.2. PFPFAndre, in contrast,
seen to be robust solutions throughout in the respect that they do not attempt to introduce complex and
unnecessary nonlinearities into the mbekd relationship betweersSC and Q. This situation is
consistent for Experiment 1 and 2. Each rating curve model also supports smaller igndude
predictions and larger higher magnitude predictions in a better mdnameany of their data-driven
counterparts. The power to predict a near zero input-output relationship and to perform beeadum
higher magnitude extrapolations, beyond the range of the training dataset, is noted.

6. DISCUSSION

The evaluation of a model is dependent on one’s subjective and / or objective hydrological insights
into the processes operating in a catchment (developed from background informatioa speific
catchment and a priori knowledge of the physical, hydrological processes) andythén which
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these processes are / are not represented in data sets of adequate guebitypdeteness for the
modelling task. Consequently, whether a model is accepted or rejected must anclkeieenent of
gualitative evaluation above and beyond the quantitative indicators provided by geofdfitess
statistics. In this context, therefore, the protocol outlined here relatdg tetdps necessary to
formulate and apply that hydrological insight. In the case of this study, the dyidedlinsight is

thus informed through a comprehensive appraisal of the physiographic, hydrological and
sedimentological context of the catchment being model, plus consideration of theidimsi
associated with the data at that site. This insight is then used as aonatigitece of informatio
against which a model is judged.

Hydrological modellersshould understand that each half aflimited two-water-year dataset,
comprising daily records of water and sediment, will not contain suffisdémtmation to support the
proper capture and testing of heteroscedasticity, skewed frequency distribatidnsomplex
relationships occurring during storm eveimtsn upland river on the island of Puerto Rico. Thus, the
result is a unique model of the data; not of the comprehensive hydrological praqesseing in the
catchment. The previously-published solutions should, therefore,be cavesgithsising the fact
that a single year's record is far too limited to make broad hydrologicalatisagons, and that the
study is concerned more with the testing of an algorithm than the generati@wdfiydrological
knowledge Kisi (2005) ranlked sediment-discharge models, according to their level of statistical fit on
the test period dataset. His preferred single-input single-output solutemesondered from best to
worst as follows: NFT-1, NNL-1, PFT-1 and SLR-1. The scientific position, hewés far more
complicated since different ordermgre identified in our dual reporting of statistical metrics for the
training period and testing period datasetssomething that was not apparent in the original paper
Mixed findings, moreover, suggest that instances of under- or over-fittingt et across the
different modelling solutions. This problems commensurate with the use of fixed stopping
conditions i.e. published models, might not be optimal calibrations of yartistructures. The
revised situation observed after the training and testing datasets hadwsggred around, also
confirms that the reported past and present numerical assessment of different nseiomgly
biased by: (i) the unique nature of higher magnitude challenges involved in modelithgrepical
island catchments; (ii) the small size and limited period dataset that wasdé&eehodel building
and testing purposes and (iii) the partitioning proctsst needed to provide equally balanced split-
sample representations. Indeed, numerical inconsistencies across the board, measelleatitmeof

a superior modelling method under such conditions is, at best, unreliable: meanitige tbaginal
straightforward statistical assessment procedures can no longer beesipport

The use of regular data series plots, as required by our protocol, offereraata¢ means of model
selection based on two fundamental strategic considerations: (i) the relativéaimpoof identified
structures; and (ii) the operational demands of a proposed model. Figures 10 and 11 depict a modelled
relationship that can be divided into upper, central and lower phases of fluviaksedihroughput.

Each section of the plot corresponds to an integrated mix of identified hydrblpgicasses and
reported measurement uncertainties encapsulated in the downloaded dataset.

Modellers should understand that:

1. measurements obtained during major events, depicted in upper regions of the aaktdrpke
problematic. They will comprising a small number of extreme events, possessing strong
hysteresis loops, that are difficult to assess with certainty using standsttibd®: of
instrumentation and/or daily reporting. Hence the need for on-site extrapolati means of
rating curves and, unfortunately, the related potential for introduced €hos quality, paucity
and diversity of upper end recordings produces a region that is far less tiiwgtarat, all other
things being equal, cannot be relied upon élivdr a sound assessment. The upper section
moreover, is expected to contairbroad scatter of points since a degree of uniqueness is an
intrinsic component of extreme events ors tisland Moreover, daily measurement records for
upper magnitude events, are unlikely to provide a very accurate account of hydrological responses
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in the river. The result is that a small handful of isolated points, pasgdsgh uncertainties, can
easily impart an erroneous and disproportionate influence on either calibration testify
procedures, and goodness-of-fit statistics. Hence model differentiation on thefhigjh flav
events is not recommended.

2. Similarly, in the quiescent periods, depicted in lower regions of the scattarpi might also
expect a strong degree of scatter since: (i) minor levels of fine-gramsdload, that can in most
cases be attributed to an overland flow source, tend not to be strongly cométhtdischarge;
and (ii) accurate and representative recording of low-magnitude small-scedsges presents a
number of technical and/or mechanical issues, such that instrumentation diffiagdtes the
production of spurious scatter related to the aforementioned 'infilimd/or binning' operations.
Thus lower magnitude predictions are equally questionable. NF and NN data-dedétiqgns
are elevated by a handful of larger evesigh that the plot fails to intersect the origin. The
provision of a 'floor' could in some instances be considered realistic. However, sina# thest
lower values for this catchment are found below the line plotted for our meaheither outlier
related issue appears to have arisen. The two power function models in contrast provide stable and
consistent relationships for both experimental scenarios, across all regionssolutien space,
and attempt to intersect the origin. Neither solution appgedrs unduly influenced by upper and
lower end outliers. No ceilings or floors exist so, in contrast to thegi@-driven counterparts,
extrapolation can be performed in a sound and sensible manner.. Hence model diftereonti
the basis of low flow events is not recommended.

The central region of each plot is as expected more consistent; displayingparfect, but
nevertheless distinct, traditional log-log linear regression relationship. &joeityof solutions under
test adopted similar trajectories in this section and there is végyskgparation upon which to make a
logical decision about a preferred individual model. However, in the uppdowaad regions, model
trajectories are quite different with NF and NN data-driven models possegsiatgr local non-
linearity which results in a model form that is difficult to oat@lise. This leads to an important
guestion: are flexible non-linear models, that deviate locally upwards and dog¥vom strong
global trends in response to uncertain data records, operationally acceptable to rsigPolDigé
majority of NN solutions are more stable and consistent throughout and so peidiatps be
considered as providing a more hydrologically sound model, since their curves do fet tisp
higher-end susceptibilities of NF modelling. The observed upper end flattening ceiting effect
nevertheless implies that a seasonally-driven supply limited process is occsorimgthing that can
reasonably be postulated, but lacks clear supporting evidence in the ddiis€tis an exception: a
larger internal architecture is required, but, regrettably, such activities exceedeitiadbrief.

In accordance with our four-point data-driven appraisal modelling protiheogbove results must be
contextualised, if a preferred solution is to be properly seledteid. clear that, when hydrological

insight is applied, only the central region of each model represents a valid comparator. #ftether
difficult to select a preferred solution as most sensible solutions areingfar and cannot be easily
distinguished in this range.

7. CONCLUSIONS

This single-input single-outpute-analysis of Kisi’s (2005) study in the context of DAMP and the
decision sequences underpinning it, leads one to a very different conclusion frorgitie work.
Given a poor initial dataset, a poor split of that dataset into pauersets, plus numerous
measurement and recording uncertainties for the upper and lower magnitudes, |aiptegtsating
curve methods provide a robust method, that fits the hydrological context, irrespéctiverall
statistical fit.

The application of our protocol here has made explicit the nature of opaque NF amddéNing
applications. NN and NF solutions are both prone to overfitting, requiring appeomaédies, such

as those presented in Giustolisi and Laucelli (2005). The reversal of modelling datasets, in pursuit of a
consistent response, is one simple method that can be used to support or regjsstrtigion of
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equal representativeness amongst different sub-sets. The need to revisiusprpublished
explorations and past modelled datasets to see if similar issues occur isampbrivould, for
example, be interesting to compare and contrast suspended sediment concentrati®metatigpdito
the reported application in this catchment of Fuzzy Differential Evolutiosi,(KRi009), Neural
Differential Evolution (Kisi, 2010) and Linear Genetic Programming (Kisi and Guven, 2010).

It is clear from our analysis that hydrological context and knowledge of the aatthare an
essential component in an evaluation of the form of a hydrological model; anketlygneration and
use of regular series to elucidate model form should be standard practice in amnseliicharg
DDM. Fitting and evaluation of such models should, therefore, always involve more thapla si
matter of calculating global statistics. Such numbers will sometimesufage, or otherwise
overshadow, important issues and might suggest the inappropriate acceptance of a trfadslttha
adequately reflect hydrological context and data-quality issues or delivers paitjguhs that possess
little or no scientific rationality. The nature of the solution is natlévant and obtaining a realistic
model form is perhaps more important, in certain cases, than chasing supsyarsghtistics—
implying that more effort should be devoted to examining such issues in reported applications.

There is a quotation about the strong persuasive power of numbers, which wasigerpolaer 100
years ago by Mark Twain (1835-1910) but is still valid and pertinent todayre e three kinds of

lies: lies, damned lies, and statistics". It counsels that goodness-oftifiticgaassociated with
modelled hydrologidadata must not be evaluated or interpreted in isolation. From our simple single-
input single-output sediment-discharge case study it is evident that physical ajoprearad
geographical setting cannot be divorced from the application of data-driven modelling teghnolog
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Table 1: USGS site description for monitoring station no. 50056400

Administrative Unit: | Juncos Municipio, Puerto Rico
Hydrologic Unit: 21010005

Latitude: 18°12'58" (NAD27)

Longitude: 65°55'34" (NAD27)

Elevation: 97.5 m asl (NGVD29)
Drainage Area: 42.5 knf

Table 2: Statistical description of split sample datasets

Q (n? s%) S (mg 1
Set A Set B Set A Set B
Water Year: 1994 1995 1994 1995
Minimum: 0.04 0.05 2.00 4.00
Mean: 0.61 1.05 41.63 71.47
Maximum: 35.10 24.60 1200.00 1090.00
Range: 35.06 24.55 1198.00 1086.00
Std. Dev.: 2.06 2.47 105.94 147.40
Skewness: 13.59 5.73 7.48 4.32
Kurtosis: 218.72 39.80 66.68 21.51
Count: 364 364 364 364

Q =discharge; S = suspended sediment concentration
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Table 3: Formulae and descriptions of goodness-of-fit metrics

Metric

Formula (where Q is discharge)

Comment

MAE (Mean
absolute
error)

1 c =
MAE = ;Zimf -4

A non-negative metric that has no upper bound
and for a perfect model the result would be
zero. It provides no information about under-
estimation or over-estimation. It is not
weighted towards high(er) or low(er)
magnitude events, but instead evaluates all
deviations from the observed values, in both an
equal manner and regardless of sign. MAE is
comparable to the total sum of absolute
residuals.

ME
(Mean error)

An unbounded metric that, for a perfect model,
results in a zero value. However, a low score
does not necessarily indicate a good model in
terms of accurate forecasts, since positive and
negative errors will tend to cancel each other
out and, for this reason, MAE is often preferred
to ME.

RMSE A non-negative mean error metric that has no
(Root mean f = (0, QA_.)f upper bound and for a perfect model the result
square error)  RMSE= N — would be zero.
MARE Comprises the mean of the absolute error made
(Mean i relative to the observed record. It is a non-
absolute MARE — EZ o — @ negative metric that has no upper bound and

n4 @ for a perfect model the result would be zero.

relative error)

MRE
(Mean
relative error)

Comprises the mean of the error made relative
to the observed record. It is a signed metric that
has no upper bound and for a perfect model the
result would be zero. MRE is calculating, in
effect, residuals - so a consistent
underestimation by a model produces a positive
MRE, and vice versa.

MSRE

(Mean
squared
relative error)

Comprises the mean of the squared relative
error in which relative error is error made
relative to the observed record. It is a non-
negative metric that has no upper bound and
for a perfect model the result would be zero.

RSQ
(Pearson’s
correlation
coefficient)

Z"=1(Q - ‘?) (Qﬂ - Q)

RSQ =

N!'z-:-:j(e?f -@PIr,(0.-4)

Comprises the squared ratio of the combined
dispersion of two series to the total dispersion
of the observed and modelled series.
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Table 4: NF parameter settings and rule set for Equations 1-8

NFT-1
Number of MFs- 2
Type of MF- triangular
Triangular parameters:

NFT-2
Number of MFs- 2
Type of MF- triangular
Triangular parameters:

a b C a b c
MF, | -35.02 0.0714 35.03 MF; | -24.5 0.0135 24.64
MF, | 0.0070 35.13 70.16 MF, | 0.1177 24.56 49.15
Rules: Rules:

If Q is MF; then $is -226.4Q + 4.912
If Q is MF, then Sis -270.7Q + 10560

If Q is MF; then S is 29.79Q + 3.583
If Q is MF, then Sis -11.49Q + 1274

NFG-1
Number of MFs- 2
Type of MF- Gaussian
Gaussian parameters:

NFG-2
Number of MFs- 2
Type of MF- Gaussian
Gaussian parameters:

o C T C

MF; 14.93 0.0324 MF, 10.47 0.0280

MF, 14.95 35.05 MF, 10.48 24.54
Rules: Rules:

If Q is MF; then Sis 37.51Q- 169.9
If Qis MF,then $is -49.34Q + 2775

If Q is MF; then Sis 100.6Q + 43.56
If Qis MF,then Sis 73.11Q- 776.3
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Table5: NN parameter settings for Equations 9-13

W1 (weight of hidden layer)
W2 (weight of output layer)
B1 (bias factor of hidden layer)
B2 (bias factor of output layer)
Qmin (Minimum observed Q)
Qmax (maximum observed Q)
Sinin (Minimum observed S)
Shnax (maximum observed S)

NNL-1

11.4319
0.8359
-2.6970
-0.0410
0.0396
35.1000
2.0000
1200.0000

NNN-1
-6.1670
-10.5612
0.0985
1.3425
0.0396
35.1000
2.0000
1200.0000

NNL-2
7.8000
0.6846

-2.0471
-0.0721
0.0510
24.6000
4.0000
1090.0000

NNN-2
-5.0555
-23.1867
-1.3031
1.1041
0.0510
24.6000
4.0000
1090.0000
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Table 6: Numerical verification against earlier paper

RMSE RSqr TE (%)
Model Kisi (2005) Abrahartetal. Kisi (2005) Abrahartetal. Kisi (2005)* Abrahart et al.
NFT-1 51.89 51.96 0.88 0.88 -1.82 -1.54
NNL-1 54.57 57.10 0.87 0.85 -1.99 2.93
PFT-1 58.38 58.30 0.85 0.85 -7.36 -7.58
SLR-1 74.41 74.12 0.84 0.84 -29.24 -29.07

* recalculated, using reported ‘total estimated sediment’
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Table 7: Evaluation statistics for Experiment 1

Model Under Test

Traditional Benchmarking

SETA NFT-1 NFG-1 NNL-1 NNN-1 PFT-1 PFA-1 SLR-1
(Training)
MAE 13.04 12.86 11.14 12.26 13.08 14.27 21.23
ME 0.00 0.00 3.37 1.01 5.20 0.27 0.00
RMSE 65.36 65.07 65.16 64.96 74.83 80.16 72.29
MARE 0.52 0.74 0.59 0.79 0.28 0.38 1.44
MRE -0.41 -0.64 -0.46 -0.67 -0.09 -0.23 -1.34
MSRE 0.45 1.22 0.90 1.62 0.13 0.22 5.59
RSqr 0.62 0.62 0.62 0.62 0.55 0.55 0.53
TE (%) 0.00 0.00 -0.03 -0.76 26.38 43.51 0.00
SETB NFT-1 NFG-1 NNL-1 NNN-1 PFT-1 PFA-1 SLR-1
(Testing)
MAE: 21.79 26.07 25.09 24.91 25.44 23.45 35.38
ME 0.48 -1.69 4.57 3.17 10.65 2.43 13.26
RMSE 51.96 62.95 57.10 54.69 58.30 57.23 74.12
MARE 0.78 0.89 0.76 0.89 0.61 0.69 1.31
MRE -0.64 -0.73 -0.52 -0.70 -0.33 -0.51 -1.08
MSRE 1.83 1.96 1.37 1.86 1.06 1.49 3.63
RSqr 0.88 0.84 0.85 0.86 0.85 0.85 0.84
TE (%) -1.54 14.51 2.93 -0.84 -7.58 4.95 -29.07

NB: Top score per metric in bold
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Table 8: Evaluation statistics for Experiment 2

Model Under Test

Traditional Benchmarking

SETB NFT-2 NFG-2 NNL-2 NNN-2 PFT-2 PFA-2 SLR-2
(Training)
MAE 20.12 19.64 55.08 22.08 26.31 27.65 29.03
ME 0.00 0.00 51.93 0.30 3.09 -8.06 0.00
RMSE 51.22 50.32 81.47 52.72 73.31 92.16 59.42
MARE 0.63 0.63 2.14 0.78 0.54 0.61 1.24
MRE -0.47 -0.31 2.09 -0.62 -0.19 -0.38 -1.10
MSRE 1.55 1.60 7.35 1.71 0.91 1.33 3.39
RSqr 0.88 0.88 0.86 0.87 0.83 0.83 0.84
TE (%) 0.00 0.00 -32.80 -2.85 22.75 42.84 0.00
SETA NFT-2 NFG-2 NNL-2 NNN-2 PFT-2 PFA-2 SLR-2
(Testing)
MAE 12.84 15.59 43.96 13.20 13.32 17.10 19.84
ME 1.41 0.07 43.96 0.21 291 -3.41 -5.70
RMSE 66.25 76.98 81.14 65.95 103.21 121.53 80.66
MARE 0.35 0.47 2.87 0.58 0.19 0.27 1.24
MRE -0.20 0.17 2.87 -0.47 0.08 -0.07 -1.18
MSRE 0.20 0.41 15.47 0.69 0.09 0.13 3.70
RSqr 0.61 0.59 0.62 0.61 0.52 0.52 0.53
TE (%) -7.27 42.88 -37.24 -4.63 78.96 108.24 41.44

NB: Top score per metric in bold
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Figure 1: The decision sequences commonly used in the evaluation and selection of a data-driven (A)
and conventional, empirical (B) rating curve model.
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Figure 2: The decision sequence underpinning DAMP, in which model selection is made on the basis
of a parallel evaluation of both 1) the form of the model and its fit to the data and 2j§itbgigal
and physiographic context which underpins the understanding of the dataset to be modelled.
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Figure 9: NN architecture for a 1:1:1 model, containing non-linear intermediate hidden layer
and linear final output layer processing units
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