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SHORT TITLE: Sensitivity analysis for comparison, validation and physical-legitimacy 
�

 ���

ABSTRACT ���

This paper addresses the difficult question of how to perform meaningful comparisons ���

between neural network-based hydrological models and alternative modelling approaches.  ���

Standard, goodness-of-fit metric approaches are limited since they only assess numerical ���

performance and not physical legitimacy of the means by which output is achieved.  ���

Consequently, the potential for general application or catchment transfer of such models is ���

seldom understood.  This paper presents a partial derivative, relative sensitivity analysis ���

method as a consistent means by which the physical legitimacy of models can be evaluated. �	�

It is used to compare the behaviour and physical rationality of a generalised linear model �
�

and two neural network models for predicting median flood magnitude in rural catchments.  ���

The different models perform similarly in terms of goodness-of-fit statistics, but behave ���

quite distinctly when the relative sensitivities of their parameters are evaluated.  The neural ���

solutions are seen to offer an encouraging degree of physical legitimacy in their behaviour, ���

over that of their generalised linear modelling counterpart, particularly when overfitting is ���

constrained.  This indicates that neural solutions are preferable models for transferring into ���

ungauged catchments. Thus, the importance of understanding both model performance and ���

physical legitimacy when comparing neural models with alternative modelling approaches is ���

demonstrated. �	�

 �
�
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INTRODUCTION ���

This paper presents an approach for delivering greater meaning from the comparison of ���

artificial neural network (ANN) models with alternative modelling approaches in ���

hydrological studies.  ANN-based hydrological models are most commonly applied as black-���

box tools and the internal mechanisms by which the model output is generated are not ���

normally explored in hydrological terms.  Used in this way, an ANN’s primary purpose is the �	�

optimisation of complex, non-linear relations between a specific set of hydrological input �
�

and output data, and standard goodness-of-fit procedures may, therefore, be considered an ���

adequate basis by which to compare its performance to that of other models (Klemes, 1986; ���

Refsgaard and Knusden, 1996).  Indeed, assessments of goodness-of-fit have been widely ���

used in comparative hydrological modelling studies to argue that ANN models can perform ���

as well as, or better than alternative modelling approaches (e.g. Shrestha and Nestmann, ���

2009; Mount and Abrahart, 2011).  However, such arguments are informed solely by the ���

degree of optimisation that is achieved by each model.  They say nothing about the means ���

by which different models achieve their performance and the relative merits of these ���

alternative means.  Indeed, when ANN models are applied solely as black-boxes, their �	�

potential relative to other modelling approaches can never be properly understood in a �
�

generalised or transferrable manner because the extent to which their modelling ���

mechanisms conform to physically-based, hydrological domain knowledge remains untested ���

(Howes and Anderson, 1988; Sargent, 2011).  Consequently, critical questions about ���

whether ANN modelling mechanisms are more or less reflective of real-world hydrological ���

processes than alternative models are seldom addressed directly (Minns and Hall, 1996; ���

Abrahart et al., 2011), and the relative extent to which they are able to deliver hydrological ���



process insights (i.e. Caswell’s (1976) model duality) is not normally evaluated.  The purpose ���

of this paper is to present a method by which these questions may be addressed.   ���

More informative approaches to model comparison are required that explicitly �	�

consider the internal behaviours of the different models and assess them according to their �
�

conformance with the logical, rational and physical expectations of the modeller (c.f. ���

Robinson, 1997). This process is termed model legitimisation and is discussed in a ���

philosophical context by Oreskes et al. (1994) and an applied, hydrological modelling ���

context by Mount et al. (in press).  Sensitivity analysis (Hamby, 1994) is an important and ���

effective means by which the legitimacy of a hydrological model may be explored.  It has ���

been widely applied in conceptual and physically-based modelling over several decades (e.g. ���

McCuen, 1973; Beven and Binley, 1992; Schulz and Huwe, 1999; Radwan et al., 2004; ���

Pappenberger et al., 2008; Mishra, 2009; Zhang et al., 2012). A variety of approaches have ���

been used including local (e.g. Turanayi and Rabitz, 2000; Spruill et al., 2000; Holvoet et al., �	�

2005; Hill and Tiedeman, 2007), regional (e.g. Spear and Hornberger, 1980) and global-scale �
�

methods (Muleta and Nicklow, 2005; Salteli et al., 2008).  By contrast, sensitivity analysis ���

has not been widely adopted in ANN modelling studies beyond a few, isolated examples ���

(Sudheer, 2005; Nourani and Fard, 2012).  This is presumably because the equations that ���

relate inputs and outputs in an ANN are considered complex, inaccessible and difficult to ���

interpret (Aytek et al., 2008; Abrahart et al., 2009), making exploration of model sensitivity ���

via direct analysis of the governing equations difficult.  Nonetheless, recent progress has ���

been made (Yeung et al., 2010) and relative sensitivity analysis techniques for ANNs have ���

made it possible to assess the internal, mechanistic legitimacy of such models (Abrahart et ���

al., 2012b; Mount et al., in press).  However, the focus of these studies has so far been �	�

restricted to mechanical considerations.  The application of sensitivity analysis to evaluate �
�



the physical legitimacy of ANN-based hydrological models, and thus the degree to which 	��

they can be generalised and transferred, remains an outstanding task. 	��

In this paper, we apply a sensitivity analysis method that can be used to compare the 	��

physical legitimacy of ANN-based hydrological models and alternative model counterparts in 	��

a direct manner.  We exemplify the method by comparing the performance and physical 	��

legitimacy of a pair of ANN-based models and an established generalised linear model 	��

(GLM) for median flood magnitude prediction in ungauged catchments in the UK.  First 	��

order, partial derivatives of each model’s response function are computed, interpreted and 	��

used as a consistent means by which the physical legitimacy of each model can be evaluated 		�

and compared.  This focus on response function behaviour is distinctly different to past 	
�

efforts to assess the physical legitimacy of ANN models, which have traditionally explored 
��

internal structural components, such as weights (Abrahart et al., 1999; Olden and Jackson, 
��

2002; Anctil et al., 2004; Kingston et al., 2003,2005,2006,2008) and units (Wilby et al., 2003; 
��

Jain et al., 2004; Sudheer and Jain, 2004; See et al., 2008; Fernando and Shamseldin, 2009; 
��

Jain and Kumar, 2009).  However, the uniqueness of ANN structures means that the 
��

information derived from them cannot easily be compared directly with that derived from 
��

alternative models with different internal structures - thus limiting the comparative value of 
��

the information.  To overcome this problem, we here assess the physical legitimacy of an 
��

ANN’s overall response function using a standard relative sensitivity-based method that can 
	�

be consistently and directly replicated across a range of alternative model types and that is 

�

widely understood and accepted by hydrologists.  Consequently, an evaluation of the ����

physical legitimacy of the means by which each model’s performance is obtained ����

accompanies the usual assessments of output validity; enabling the extent to which each ����

model delivers a transferable, general solution to be considered. ����



 ����

COMPARING GLM AND ANN-BASED MODELS FOR UNGAUGED CATCHMENT PREDICTION ����

IN THE UK ����

The modelling of hydrological responses in ungauged catchments remains an important ����

focus of research for hydrologists, especially as the majority of the world’s river catchments ��	�

remain ungauged or poorly gauged. In such catchments, the application of distributed ��
�

physically-based models and statistical approaches is hampered by a lack of input parameter ����

knowledge and datasets. Consequently, lumped models which relate broad physiographic, ����

hydrogeologic and climatologic catchment descriptors to flood frequency curves, have long ����

been recognised as offering potential (Rodriguez-Iturbe and Valdes, 1979; Grover et al., ����

2002).   ����

The standard UK method (Natural Environment Research Council, 1975; Vogel and ����

Kroll, 1992; Schrieber and Demuth, 1997) models the relationship between the median of ����

the annual flood series (QMED) and a set of regionalised catchment descriptors for rivers in ����

the national, gauged network.  The modelled relationship is then applied to ungauged ��	�

catchments and used to estimate QMED, which is subsequently multiplied by a standard, ��
�

dimensionless growth curve to estimate flood frequency (Institute of Hydrology, 1999).   ����

Four catchment descriptors are used in the standard UK methodology: 1) AREA ����

(catchment area in km
2
); 2) SAAR (standard-period average annual rainfall in mm); 3) FARL ����

(flood attenuation due to reservoirs and lakes); 4) BFIHOST (baseflow index derived from ����

HOST data; Boorman et al., 1995).  ����

These catchment descriptors can be thought of as physical controls of QMED potential. ����

SAAR controls the hydrological inputs to the catchment, AREA controls the scaling of the ����



catchment response, whilst BFIHOST and FARL control the degree of buffering of the input-����

output signal. ��	�

Of central importance to the above method is the model that is used to relate QMED ��
�

and the catchment descriptors.  These relationships are non-linear and not well represented ����

by standard multiple linear regression.  Therefore, the most recent UK method described ����

applies a range of non-linear transformations within a generalised linear modelling (GLM) ����

framework (Kjeldsen et al., 2008; Kjeldsen and Jones, 2009; Kjeldsen and Jones, 2010).  The ����

end product is a non-linear regression equation (see Equation 1) from which QMED can be ����

estimated directly from the four catchments descriptors.  ����

ANN models are also very effective at optimising complex, non-linear relations in ����

hydrological data (American Society of Civil Engineers 2000a,b; Maier and Dandy, 2000; ����

Dawson and Wilby, 2001; Maier et al., 2010; Abrahart et al., 2010; 2012b) and a number of ��	�

studies have highlighted their potential in ungauged catchment prediction (Liong et al., ��
�

1994; Muttiah et al., 1997; Hall and Minns, 1998; Hall et al., 2000; Dastorani and Wright, ����

2001; Dawson et al., 2006; Dastorani et al., 2010). Indeed, the UK relationship between ����

QMED and catchment descriptors has also been modelled using ANNs and been shown to ����

deliver comparable levels of fit when compared to GLMs (Dawson et al., 2006).  However, it ����

remains unclear whether the two modelling approaches are similarly comparable with ����

respect to their physical legitimacy.  Models with greater physical legitimacy should be more ����

generally transferrable to new catchment settings.  Therefore, determining the physical ����

legitimacy of each model is an important element in delivering a physically informed ����

evaluation of how robustly it can be expected to transfer from the gauged catchments upon ��	�

which it is developed, to the ungauged catchments in which it is intended to be applied. ��
�



In the following sections, the importance of evaluating both model performance and ����

physical legitimacy in ANN model comparisons is exemplified by contrasting the ����

performance and legitimacy of the standard GLM method for QMED prediction with two ����

different ANN-based model counterparts.  Its use as an example is particularly appropriate ����

because the model inputs and outputs are all physical-based measurements, meaning that ����

patterns observed in inputs and output relations can be interpreted directly in physical ����

terms, also the number of model inputs is relatively small, the first order partial derivatives ����

can be computed for the GLM and directly compared with those of the ANN-based models, ����

and the results of the analysis have real-world relevance and application. ��	�

 ��
�

Data ����

A GLM model and two counterpart ANN models for QMED estimation are developed for ����

comparison, with the model inputs conforming to the four used in the standard UK ����

methodology.  These inputs were extracted from a pre-filtered set of HiFlows-UK rural ����

catchment data, available at (http://www.environment-agency.gov.uk/hiflows/97503.aspx).  ����

AREA values are derived from the Centre for Ecology and Hydrology’s Integrated ����

Hydrological Digital Terrain Model (based on a 50m grid) and represent surface catchment ����

area projected onto a horizontal plane, draining to the gauging station (Marsh and ����

Hannaford, 2008: 5).  SAAR values are derived from UK precipitation records over the ��	�

standard period 1961-1990.  FARL provides a guide to the degree of flood attenuation ��
�

attributable to reservoirs and lakes above the gauging station.  The index ranges from zero ����

(complete attenuation) to one (no attenuation) with values < 0.8 representing a substantial ����

influence on flood response. BFIHOST is derived from the HOST (Hydrology of Soil Types) soil ����

data classification and ranges from zero (impermeable) to one (completely permeable). In ����



undisturbed catchments, a strong association exists between Baseflow Index (derived from ����

archived gauged daily mean flows) and BFIHOST. The relationships between QMED and ����

AREA, SAAR and FARL are positive, whilst that between QMED and BFIHOST is negative. ����

The data from which our models are derived are almost identical to those from ����

which the GLM that is published in the revitalised UK Flood Estimation Handbook (Kjeldsen ��	�

et al., 2008) has been developed, and full particulars of the Hi-Flows UK data set can be ��
�

found in this handbook.  A statistical summary of our dataset is provided in Table 1.   Some �	��

minor discrepancies exist between the data used in this study and that used by Kjeldsen et �	��

al. (2008) due to our use of the public release version of HiFlows-UK 3.02 rather than the �	��

pre-release version originally used.  Specifically, our dataset comprises 597 rural catchment �	��

records rather than the 602 used previously, and we use an unadjusted flood attenuation �	��

variable.  �	��

 �	��

Model development procedures �	��

Three models were developed for comparison. �		�

1. QMEDGLM – a GLM developed on all 597 catchment records, using the methodology �	
�

outlined in Kjeldsen et al. (2008). �
��

2. ANNA – an optimised ANN, selected from 180 candidate solutions of varying �
��

complexity and training iterations according to both its goodness-of-fit performance �
��

and avoidance of evident overfitting.   �
��

3. ANNB – a purposely over-trained version of ANNA in which the number of training �
��

iterations was artificially extended to deliver an overfitted solution.  It is included as �
��

a means of exemplifying the impact of ANN overfitting on the physical legitimacy of a �
��

network response function. �
��



QMEDGLM was developed in accordance with the method of Kjeldsen et al. (2008). �
	�

Despite the minor differences in the dataset noted above, the resultant regression equation �

�

(Equation 1) remains almost identical to Kjeldsen’s original: ����

 ����

������� � 8.6704�����.����0.1550
�
����

����
�
���� . ��!0.0380#$%&'()  (1) ����

 ����

ANNA and ANNB comprise a Multi-Layer Perceptron (MLP), with one hidden layer, ����

trained using error back propagation (Rumelhart et al., 1986).  The basic structure of these ����

networks is shown schematically in Figure 1. The ANN consists of a number of units or ����

neurons arranged in three layers (although additional hidden layers can be incorporated). ����

The units in the input layer distribute the inputs to the units in the hidden layer, which in ��	�

turn pass their outputs to the output layer (usually consisting of a single output neuron).  ��
�

Each neuron consists of a weighted set of inputs and an activation function – typically the ����

logistic sigmoid function (Equation 2).  The output from a single unit is calculated by ����

applying this sigmoid function to the weighted sum of its inputs. ����

 ����

*�+� �
,

,-./0
 (2) ����

 ����

Training such networks using back propagation involves presenting the ANN with ����

training data, calculating the error of the network’s output with respect to the observed ����

values, propagating this error backwards through the network and adjusting the input ��	�

weights to the neurons accordingly (to reduce this error). This process must be repeated ��
�

many times, making minor adjustments to the weights of each cycle (or epoch), until the ����



ANN begins to map input values to the correct output response.  The amount by which the ����

weights are adjusted each time can be manipulated by using a learning rate multiplier.  ����

Readers that are unfamiliar with ANN concepts, structures and training methods are ����

referred to Kattan et al. (2011) or Nelson (2011).   ����

The simplicity of this ANN has enabled the development of computational methods ����

for delivering first-order partial derivatives of its response function (Hashem, 1992), which ����

we subsequently use as the basis for our comparative assessment of model legitimacy (see ����

Section 3).  This standard ANN has been successfully used in many hydrological studies in ��	�

the past (Abrahart et al., 2012a) and provides an established non-linear modelling ��
�

benchmark for ANN studies and a starting point against which more novel approaches can ����

subsequently be compared (Mount et al., 2012).  Whilst it is recognised that more advanced ����

ANN structures might arguably deliver some additional optimisation advantages, the ����

computational methods required to quantify their response function partial derivatives, and ����

hence deliver directly comparable assessments of their physical legitimacy, are not readily ����

available. Their use is thus avoided in this study. ����

ANNA was developed using the approach described in Dawson et al. (2006) in which ����

a large number of candidate ANNs are trained on a random subset of the data, partitioned ����

according to a 60% calibration to 40% cross-validation ratio.  Although there is no agreed ��	�

standard for splitting the data, this ratio is widely accepted in hydrological modelling ��
�

(Mount and Abrahart, 2011; See and Openshaw, 2000). 180 candidate models containing 2, ����

3, 4, 5, 6, 7, 8, 9, 10 hidden units were developed with each candidate being trained for up ����

to 20,000 epochs in steps of 1,000, using a learning rate of 0.1 and a momentum value of ����

0.9. Each candidate model was cross-validated using the remaining 40% as a means of ����

preventing overfitting (Giustolisi and Laucelli, 2005; Piotrowski and Napiorkowski, 2013). ����



Overfitting of each candidate solution was evaluated according to its cross-validation scores, ����

and the candidate solution displaying the best optimisation performance, whilst avoiding ����

apparent overfitting, was selected as the final model.   ����

ANNA has nine hidden units, and is trained for 4000 epochs. ANNB, which we adopt ��	�

as an example of an overfitted ANN, is structurally identical to ANNA. However its training ��
�

epochs have been artificially extended to ten times that of ANNA (i.e. 40,000 epochs) to ����

promote overfitting.  The network unit weights and biases are provided in Table 2 and are ����

used as the inputs to Equation 8, from which relative sensitivity can be computed.  ����

It should be noted that the GLM and ANN models utilise the available data records ����

differently during model development.  Whilst the GLM uses all 597 records to define the ����

model, each candidate ANN uses only the first 400 records to refine the model, and the ����

remaining 197 records to constrain it via cross-validation.  Indeed, the apparent ����

inconsistency with which the GLM and ANN models use the available data could be cited as ����

an argument to negate the fairness of a direct comparison between them.  However, this ��	�

stance fails to credit that both models do use all of the data in the model development ��
�

process; they just use it in a characteristically different manner that reflects the ����

fundamental differences between each method.  In this sense, the models are comparable; ����

not because they use the same data in the same way, but rather because each one’s use of ����

the data is equally appropriate and justifiable in the context of its own model development ����

method. ����

 ����

MODEL PERFORMANCE AND PHYSICAL LEGITIMACY ASSESSMENT ����

Model performance evaluation ����



Each model’s performance was evaluated using standard goodness-of-fit metrics to deliver ��	�

output validation. To ensure a consistent approach the metrics were generated using ��
�

HydroTest (http://www.hydrotest.org.uk), a standardised, open access web site that ����

performs the required numerical calculations (Dawson et al. 2007,2010). Each model’s ����

performance is evaluated using RMSE (root mean squared error) and R
2
 (R-squared – the ����

coefficient of determination) providing an overall measure of model performance; MSRE ����

(mean squared relative error) and MSLE (mean squared logarithmic error) providing two ����

additional measures of performance which place greater emphasis on errors occurring in ����

lower magnitude predictions. These comparative performance statistics are defined as ����
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where Qi is observed index flood value i (of n values), �1 i is the modelled value i, �2  is the �	��

mean of the observed data, and �3  is the mean of the modelled data. �	��

 �	��



Physical legitimacy �	��

Following the recent studies of Abrahart et al. (2012b) and Mount et al. (in press), the �	��

physical legitimacy of each model was assessed by means of relative, first-order partial �	��

derivative sensitivity analysis (see Hamby, 1994 for an overview of sensitivity analysis �	��

approaches).  Partial derivative sensitivity analysis elucidates the patterns of influence that �		�

each model input has on the output (and vice versa) across the output range, thus revealing �	
�

the internal behaviour of the model response function.  First order derivatives reveal the �
��

separate behaviours associated with each model input.  When using partial derivatives in �
��

model comparison studies, it is necessary to standardise derivative values to rates to avoid �
��

the difficulties associated with comparing absolute values derived from different inputs with �
��

different ranges (Nourani and Fard, 2012).  Patterns of relative sensitivity can then be used �
��

to directly compare the internal response function behaviour of different models, and �
��

legitimacy of these behaviours can then be evaluated according to how well the relative �
��

sensitivity patterns conform to the logical, rational and physical expectations of the �
��

modeller.  The relative sensitivity (RSi) of the output from a model (O) with respect to input �
	�

(Ii) can be calculated as: �

�

 ����

O
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 ����

Partial derivatives can be computed for ANNs via the application of a backward ����

chaining partial differentiation rule as outlined in Hashem (1992). Adapted from Hashem’s ����

more general rule, for an ANN with sigmoid activation functions (i.e. of standard type, as ����

used in our case study), one hidden layer, i input units, j hidden units and one output unit ����



(O), the partial derivative of a network’s output can be calculated with respect to each of its ����

inputs as: ��	�

 ��
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 ����

where, wij is the weight from input unit i to hidden unit j, wjO is the weight from hidden unit ����

j to the output unit O, hj is the output of hidden unit j, and O is the output from the ����

network. ����

One important difference between calculating partial derivatives for multiple input, ����

single output GLMs and ANN models should, however, be noted. When computing partial ����

derivatives of a GLM, there is no need to vary the values of the other inputs to investigate ����

the range of sensitivity responses under different input conditions. This is because GLMs ��	�

deliver a simple additive response function, such that the relative sensitivity for any one ��
�

variable will involve only that variable, given that all other parts of the expression will cancel ����

out, during the process of scaling the other variables.  Hence, relative sensitivity values for ����

each input to the QMEDGLM model (Equation 1) can be computed according to Equations ����

(9)–(12).  The final relative sensitivities of the QMEDGLM model are provided in Equations ����

(13)–(16). ����

 ����

AREA

QMED

AREA

QMED 8568.0
=

∂

∂
 (9) ����

2

05.1864

SAAR

QMED

SAAR

QMED
=

∂

∂
 (10) ����



FARL

QMED

FARL

QMED 3662.3
=

∂

∂
 (11) ��	�

BFIHOSTQMED
BFIHOST

QMED
.5385.6−=

∂

∂
 (12) ��
�

RSAREA = 0.8568 (13) ����

RSSAAR = 1864.05 / SAAR (14) ����

RSFARL = 3.3662 (15) ����

RSBFIHOST = -6.5385 BFIHOST
2 

(16)
 

����

 ����

The same is not true for ANNs, which are not constrained to produce simple, ����

additive response functions. When computing partial derivatives for an ANN it is therefore ����

necessary to isolate the pattern of relative sensitivity of each input variable in turn by ����

holding the other inputs at fixed values so that the patterns of sensitivity associated with ��	�

each variable can be interpreted within the context of the other variable states. To this end ��
�

we adopt a simple three-step methodology. ����

 ����

Step 1: Compute 25
th

 percentile, median and 75
th

 percentile values for each input variable in ����

the data set. ����

Step 2: Holding all other variables at either 25
th

 percentile, median or 75
th

 percentile, vary ����

each input variable in turn from across the range of observed values. ����

Step 3: Plot results and interpret the resultant graphs. ����

 ����

Thus, physically speaking, if variable states in our study are held at the 25
th

 ��	�

percentile (or the 75
th

 percentile in the case of the inverse BFIHOST measure), the resultant ��
�

scenario under test is representative of relatively small, dry catchments with high ����



permeability and high flood attenuation: i.e. low catchment QMED potential. Conversely, ����

when variables states are held at the 75
th

 percentile (with BFIHOST at the 25
th

 percentile), ����

the resultant scenario under test will be representative of relatively large, wet catchments ����

with low permeability and low attenuation: i.e. high catchment QMED potential. ����

 ����

RESULTS ����

Independence ����

Figure 2 and Table 3 present an overview of the data showing the relationships that exist ��	�

between each of the five variables. AREA is not correlated with any of the other three ��
�

parameters (correlation coefficient ranging from -0.07 to -0.02). There is a negative ����

correlation between SAAR and BFIHOST (correlation coefficient of -0.42) and a similar ����

strength negative relationship between SAAR and FARL (correlation coefficient of -0.39). The ����

only positive correlation is that between BFIHOST and FARL (correlation coefficient of 0.11). ����

These weak relationships indicate a reasonable degree of linear independence between the ����

four variables. The strength of the linear relationship between each of the parameters and ����

QMED ranges from a correlation coefficient score of 0.76 for AREA to -0.07 for FARL. The ����

strong linear relationship between QMED and AREA, contrasts with the relative sensitivity ����

scores presented later in this paper for the multiple linear regression model, and in so doing ��	�

emphasises the additional insights provided by sensitivity analysis over basic statistical ��
�

measures. ����

 ����

 ����

Model skill ����



Figures 3– 5 present scatter diagrams of observed versus modelled index flood values for ����

the GLM, ANNA and ANNB models. The full dataset is depicted in each scatter plot. Figures 3 ����

and 4 reveal comparable amounts of predictive skill for the GLM and ANNA model. Both ����

plots, indeed, appear to show a reasonable degree of model performance at lower levels, ����

but typically under-estimate the higher magnitude flood events. In contrast the ANNB model ��	�

appears to perform well across the range of flood event magnitudes and seems very close to ��
�

correctly modelling the two largest flood events. �	��

Although Figures 3, 4, and 5 provide an interpretive view of the accuracy of the three �	��

models, Table 4 provides a more objective, numerical contrast by providing comparative �	��

performance statistics for each of the models. It shows that while the ANNB model is �	��

undoubtedly the most accurate overall according to the RMSE and R
2
 measures, the GLM is �	��

more accurate at modelling low flood indices. Although there appears to be a significant �	��

difference between the MSRE statistics of the GLM and the ANNA model (0.19 and 16.12, �	��

respectively) these results need to be treated with caution. A very basic model, that simply �	��

predicts the index flood for every catchment as 1 m
3
 s

-1
, results in a MSRE statistic of 0.93 – �		�

better than both the ANN models and not too dissimilar from the GLM. One would not �	
�

seriously contemplate using such a simple model as a prediction of the index flood in an �
��

ungauged catchment so it brings into question the suitability of the MSRE as an appropriate �
��

measure of performance. It indicates that a model needs to make only a handful of errors at �
��

lower levels (which may not be too far from the observed values) to result in a poor MSRE �
��

result.  This emphasises the importance of using multiple evaluation criteria and �
��

understanding the limitations of individual error measures. �
��

Although the scatter diagrams show reasonably similar performance at lower levels, �
��

one or two over/under predictions have skewed the results. A more appropriate measure of �
��



performance at lower levels is perhaps the MSLE used by Pokhrel et al. (2012), the results of �
	�

which are also presented in Table 4. In this case, although the GLM outperforms the ANNA �

�

and ANNB models, the results are not too dissimilar. For the simple model (producing 1 m
3
s

-1
 ����

for each case) the MSLE is calculated as 15.36 – significantly higher than the more complex ����

models. Given that the ANNB performs reasonably well for low QMED values and better ����

than the GLM at large QMED values where prediction is normally more problematic, the ����

goodness-of-fit statistics suggest that ANNB could be considered a reasonable alternative to ����

GLM. ����

 ����

SENSITIVITY ANALYSIS AND PHYSICAL INTERPRETATION OF MODELS ����

GLM ��	�

Relative sensitivity plots for the GLM are provided in Figure 6 are calculated using Equations ��
�

(13)–(16). AREA and FARL are both used as simple scaling variables in the model such that ����

the index flood magnitude increases proportionally for larger catchments with lower flood ����

attenuation. The model behaves in a manner that larger catchments produce consistently ����

larger floods, but the overall significance of this behaviour is relatively small. In a simplistic, ����

conceptual sense, this is physically legitimate behaviour and one would expect the ����

catchment area to act as a proportionally consistent driver of flood magnitude with a ratio ����

close to unity, as a larger catchment will have proportionally greater hydrological inputs. ����

Importantly, FARL as a driver, is shown to be around four times more important than AREA; ����

a pattern that perhaps highlights the overriding importance of in-channel buffering of flood ��	�

peaks by lakes and reservoirs in the model.  ��
�

SAAR and BFIHOST function as more complex drivers of QMED and their relative ����

sensitivities vary considerably. Indeed, in certain data ranges each has the potential to ����



become the most influential driver of index flood magnitude. However, their specific ����

patterns of relative sensitivity prove difficult to legitimise in simplified, physical terms. The ����

proportionally greater sensitivity of index flood magnitude to increases in wetness in low ����

rainfall catchments, as opposed to ones possessing high rainfall, does not correspond well ����

with broad hydrological notions. The expectation would be to find low antecedent moisture ����

in low rainfall catchments to result in enhanced infiltration, reduced propensity for ����

Hortonian overland flow and correspondingly lower index flood sensitivity compared to ��	�

higher rainfall catchments. This suggests that there is a substantive runoff buffering ��
�

mechanism in wet catchments that is not present in dry ones. Whilst one may postulate that ����

factors such as different vegetation types in dry and wet catchments may buffer flood ����

responses differently, it is difficult to envisage their impact being sufficient to produce the ����

magnitude of difference observed in the relative sensitivity plot. Moreover, the pattern ����

appears counter to notions of antecedent moisture which would be expected to be lower in ����

dry catchments and, therefore, would act to proportionally reduce catchment runoff and ����

index flood magnitude. ����

Similarly, the sensitivity of the index flood to catchment permeability is counter to ����

basic physical principles with index floods seen to be an order of magnitude more sensitive ��	�

to a unit change in permeability in a highly permeable catchment when compared with the ��
�

same proportional change in an impermeable one. Whilst the overall negative relative ����

sensitivity of QMED to BFIHOST is conceptually legitimate, the specific pattern is difficult to ����

legitimise physically as is the magnitude of the relative sensitivity observed relative to that ����

of the other variables. ����



The sensitivity analysis thus indicates only partial physical legitimacy of the GLM, ����

with the pattern of sensitivity of QMED to SAAR and BFIHOST being particularly difficult to ����

rationalise. ����

 ����

 ��	�

ANNA ��
�

Relative sensitivity plots for the ANNA model are provided in Figure 7. Importantly, none of ����

the plots exhibit the extreme, localised sensitivity variability that one would expect from an ����

over-fitted model (see ANNB below), which in the context of the model skill statistics ����

reported above, suggests ANNA offers a reasonable solution. ANNA is characterised by ����

generally lower relative sensitivity values in comparison to those observed for the GLM, ����

coupled with enhanced complexity in the sensitivity responses across each variable’s data ����

range, the form of which is strongly influenced by the values of the other variables.  ����

The relatively high sensitivity of QMED to AREA highlights the central importance of ����

catchment size as a determinant of index flood magnitude in this model. This pattern of ��	�

behaviour is an approximate counterpart of the GLM plot. Relative sensitivity remains ��
�

roughly consistent at a value close to 1 and AREA is seen to act as a scaling variable in a ����

physically-legitimate manner. However, the same degree of legitimacy is not observed in ����

either the low or high QMED potential plots. Here opposing trends in the relative sensitivity ����

are observed. When all other inputs are set to high QMED potential, proportional changes in ����

catchment area of small catchments is seen to have almost 10 times the impact on QMED ����

than the same proportional change in large catchments. The pattern reverses when inputs ����

are set to low QMED potential. This model behaviour is very difficult to legitimise in physical ����

terms.  ����



 Low values associated with BFIHOST highlight the general insensitivity of QMED ��	�

to catchment permeability in this model. As expected, BFIHOST has a generally negative ��
�

influence on QMED such that as permeability increases, QMED reduces. A general increase ����

in QMED’s sensitivity to BFIHOST is observed as the other inputs are set to increasing levels ����

of QMED potential. This indicates an increased importance of permeability as a constraint ����

on index flood magnitude in catchments with high potential for generating large index ����

floods. However, the very low magnitude of the sensitivities observed makes it difficult to ����

draw any clear conclusions about the physical legitimacy of the patterns observed beyond ����

the fact that BFIHOST is clearly not a particularly important driver of QMED. ����

 In contrast to the GLM, FARL acts as a relatively modest driver of QMED, ����

indicating that the ANNA model is less heavily influenced by in-channel controls of peak ��	�

discharge magnitude than the GLM. In simplistic physical terms, one would expect a ��
�

reduction in flood attenuation to drive a proportional increase in QMED, and the positive �	��

relative sensitivity plots confirm this basic assumption. However, the precise form of the �	��

sensitivity relationship between QMED and FARL is more difficult to legitimise. The GLM �	��

represents the relationship as one of simple scaling and this same basic pattern exists for �	��

low and median QMED potential plots across medium to high FARL data ranges (i.e. medium �	��

to low levels of attenuation) where relative sensitivity is consistently about 0.5. However, at �	��

lower FARL data ranges the proportional response of QMED to change in FARL reduces �	��

substantially to 0.1. When other inputs are set to high QMED potential, the decreasing trend �	��

is consistent across all FARL ranges. This is less easily rationalised and is most likely �		�

attributable to the scarcity of catchments with low FARL values in the data resulting in a lack �	
�

of data constraint on the form of the ANN model covering this data range, irrespective of �
��

the values of the other inputs.  �
��



 The pattern of sensitivities observed for SAAR can only be partially legitimised in �
��

generalised physical terms. At a very simplistic level, the scaling behaviour of SAAR observed �
��

in the low QMED potential plot is perhaps reasonable given that proportionally wetter �
��

catchments should indeed result in proportionally greater floods. However, the patterns �
��

observed in the median and high QMED potential plots possess elements that are both �
��

physically rational and irrational. The increasing sensitivity to SAAR at low and mid data �
��

ranges could feasibly be explained in terms of antecedent moisture. Indeed, the on-average �
	�

lower antecedent moisture in dry catchments could be expected to result in a smaller �

�

proportion of the rainfall contributing to runoff; leading to reduced hydrograph flashiness ����

and proportionally lower QMED sensitivity to SAAR in dryer catchments. Similarly, the ����

decline in sensitivity in the upper data ranges could be argued to be due to the fact that the ����

catchment is already so wet that any additional rainfall makes relatively little difference to ����

the index flood. However, this explanation ignores the role of overland, Hortonian flow in ����

saturated, wet catchments which one would expect to drive an increase in the relative ����

sensitivity in the upper data ranges. Finally, the negative relative sensitivity observed in the ����

extreme upper ranges of the high QMED potential plot is physically-irrational as it suggests ����

that proportionally increasing the catchment wetness will reduce the proportional response ��	�

in QMED; in extreme cases even resulting in a reduction in QMED.  ��
�

For each of the model inputs the behaviour of the ANNA model is seen to be ����

particularly influenced by the states of the input variables. When these are set to their ����

median values (i.e. indicative of median QMED potential), the majority of the relative ����

sensitivity plots indicate that the response function produces a model behaviour that can be ����

physically-legitimised. However, this legitimacy is less certain when other variables are set ����

at their 25
th

 percentile values (i.e. indicative of low QMED potential) and completely breaks ����



down when set at their 75
th

 percentile value (i.e. indicative of high QMED potential). Indeed, ����

under the latter condition, AREA, FARL and SAAR drive QMED in a manner that is particularly ����

difficult to explain in hydrological terms. Crucially then, a link can be made between the lack ��	�

of physical legitimacy in the model’s behaviour in the upper and lower quartiles of the ��
�

solution space and a lack of coincident data points which exist there to constrain the form of ����

the ANN model.  ����

 ����

 ����

ANNB ����

Relative sensitivity plots for the ANNB model are provided in Figure 8. This ANN model is ����

intentionally over-fitted and the impact of this over-fitting is clearly seen in the relative ����

sensitivity plots. The degree of local variability in relative sensitivity is highly exaggerated ����

when compared to ANNA with variables switching between both negative and positive ��	�

responses in QMED at different data ranges. QMED responds to AREA and SAAR (the most ��
�

influential drivers in the model) in an irrational manner with high magnitude, localised ����

variation in relative sensitivity being particularly characteristic of the patterns observed. The ����

relative sensitivity plots of QMED to AREA and SAAR are characterised by complex ����

polynomial forms with no consistent trends in the relationship. The patterns observed are ����

indicative of data over-fitting and lack any physical legitimacy. ����

 Relative sensitivity of QMED to FARL behaves in a more constrained manner ����

than AREA or SAAR, ranging from +0.8 to -0.3 indicating the relative lack of sensitivity to this ����

variable in ANNB. However, the sensitivity plots for low and median QMED potential show ����

both positive and negative responses at different data ranges. Indeed, these plots suggest ��	�

that in certain data ranges, a proportional decrease in flood attenuation will see a ��
�



proportional reduction in flood magnitude: a result that lacks physical legitimacy. The high ����

QMED potential plot is very similar to that of ANNA ����

 Relative sensitivity of BFIHOST to QMED is very muted with this variable being an ����

almost irrelevant driver of index flood magnitude when other variables are set to low and ����

median QMED potential. Localised complexity in the relative sensitivity is observed, ����

particularly across low BFIHOST values where low and median QMED potential plots switch ����

between positive and negative relative sensitivity values in a physically-irrational manner. ����

The high QMED potential plot is perhaps more rational as it displays a flatter, negative ����

response which indicates a negative scaling behaviour. ��	�

In contrast with ANNA, local variation in relative sensitivity for AREA and SAAR ��
�

becomes highly exaggerated when other variables are held at their low QMED potential ����

values. This again highlights difficulties of fitting a ‘bottom heavy’ physically-legitimate ANN ����

model, through upper regions of a solution space that lack sufficient coincident higher ����

magnitude data points to constrain the form of the model.  ����

 ����

Physical legitimacy ����

The broad physical legitimacy of the different model sensitivity plots are compared in Table ����

5. It is clear that none of the models behave in a manner that can be physically rationalised ����

for all input variables. The GLM displays a basic level of physical legitimacy in the behaviour ��	�

of AREA and FARL but this is lacking for SAAR and BFIHOST drivers. ANNA displays varying ��
�

degrees of physical legitimacy in the sensitivity between QMED and each of the input ����

variables, with the least rational responses occurring when other variables are set to the ����

high QMED potential values. However, in all cases, when other variables are set to their ����

median values, the relative sensitivities of the ANN are physically legitimate at least in part. ����



Indeed, in this sense ANNA arguably performs better than its GLM counterpart albeit ����

delivering slightly less favourable goodness-of-fit.  ANNB is over-fitted and the patterns ����

observed in its relative sensitivity plots cannot be legitimised in a physical sense.  However, ����

this lack of model legitimacy is in contrast to the goodness-of-fit statistics which indicate ����

ANNB to be the best model. Thus, developing techniques that can deliver a clear physical or ��	�

mechanistic interpretation of input relative sensitivity analysis patterns in ANN modelling ��
�

scenarios represents an important consideration for future research. Indeed, the presented ����

results serve as a clear demonstration of the dangers associated with evaluating models on ����

the basis of statistical performance validation approaches alone. ����

 ����

SUMMARY AND CONCLUSIONS ����

This paper has addressed the difficult question of how to make meaningful comparisons ����

between artificial neural network-based hydrological models and alternative modelling ����

approaches.  Comparisons which are based solely on goodness-of-fit metrics (i.e. the ����

standard black-box approach presented in much of the literature) are very limited because ��	�

they only consider model performance and not the means by which the performance is ��
�

obtained.  The commonly encountered limitation of metric equifinality, in which metric �	��

scores for the models being compared are insufficiently different to enable conclusive �	��

differentiation of the best or preferred model, is evident in our results.  Our example of �	��

median flood modelling provides a clear demonstration of this with the fit scores obtained �	��

by the ANN and GLM models delivering inconclusive evidence about relative overall model �	��

performance.  �	��

However, the limitations of goodness-of-fit metrics are arguably more fundamental �	��

if there is a requirement to compare the transferability of each model from one hydrological �	��



context to another.  In such cases, the physical legitimacy of each model must also be �		�

evaluated and compared in a direct manner.  Models used in ungauged catchment �	
�

prediction are a good example of those that must ultimately be transferred, and that �
��

therefore require evaluation of their physical legitimacy.   This study has presented a �
��

consistent means by which the physical legitimacy of ANN models can be evaluated and �
��

compared with alternative modelling approaches.  The application of relative sensitivity �
��

analysis in our median flood modelling example has enabled the physical legitimacy of two �
��

ANN-based models to be compared directly with the GLM counterpart used as standard in �
��

the UK.  Tables 4 and 5 provide clear evidence that a general ANN modelling approach can �
��

deliver models as good as the GLM approach currently used in the UK Flood Estimation �
��

Handbook, both in terms of their performance and their legitimacy.  Whilst the paper does �
	�

not purport to be a competition between ANNs and GLMs, in this isolated case the evidence �

�

does lend some support to the view that ANN-based models may have some advantages ����

over their GLM counterparts. However, one can only build good physically-legitimate ANN ����

models if ample data of sufficient quality exist, and if the model development process is ����

sound.  It is also evident from this evaluation that ANN solutions can only deliver physical ����

legitimacy if issues such as overfitting are avoided.   ����

To conclude it is clear that comparing ANN models to alternative approaches on the ����

basis of goodness-of-fit is insufficient, and that sensitivity analysis offers an important ����

means by which the physical legitimacy of ANN models can be compared with that of ����

counterpart models.  Indeed, hydrological modellers using ANNs can and should be striving ��	�

to evaluate the physical legitimacy of their models as well as their performance.  By applying ��
�

sensitivity analysis to ANN models a sense of trust is introduced that goes part of the way to ����

addressing one of the key issues in the international ANN river forecasting research agenda ����



of Abrahart et al. (2012a), specifically the need for advanced diagnostic techniques that can ����

help counter criticisms of the black-box nature of such models (e.g. Babovic, 2005). It is, ����

therefore, surprising that it remains almost entirely absent from ANN studies and highlights ����

the importance of a broader research agenda to develop robust, computational sensitivity ����

analysis methods across the range of data-driven techniques currently being used in ����

hydrological modelling. Such an agenda should include additional investigations that more ����

fully explore the impact of different architectural structures in ANN models especially the ��	�

potential bearing that internal complexity might have on the relative sensitivity of solutions ��
�

to particular types of hydrological modelling problem. ����

 ����
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Table 1. Statistical summary of catchment descriptors 	�
�

 	���

 Median Minimum Maximum 25
th

 Percentile 75
th

 Percentile 

AREA (km
2
) 148.70 1.63 4586.97 68.00 327.81 

BFIHOST 0.47 0.20 0.97 0.40 0.57 

FARL 0.99 0.65 1.00 0.96 1.00 

SAAR (mm) 1096 558 2848 830 1375 

QMED 43.54 0.14 992.85 12.92 117.71 

 	���

  	���



 	���

Table 2. Network weights and biases. Input neurons I1 - I4 (AREA, BFIHOST, FARL, SAAR, 	���

respectively); Hidden neurons H1 – H9; Output neuron O (QMED) 	���

ANNa 	���

 

 
Weight   Weight   Weight   Weight 

  
Weight 

I1 H1 2.112 I2 H1 1.287 I3 H1 -1.858 I4 H1 -4.078 H1 O -2.004 

I1 H2 -0.211 I2 H2 -0.392 I3 H2 -1.591 I4 H2 -0.154 H2 O -0.797 

I1 H3 2.907 I2 H3 -6.502 I3 H3 2.196 I4 H3 4.048 H3 O 4.901 

I1 H4 -1.170 I2 H4 2.792 I3 H4 -0.347 I4 H4 -3.403 H4 O -1.904 

I1 H5 0.245 I2 H5 -0.337 I3 H5 -2.473 I4 H5 0.521 H5 O -1.001 

I1 H6 0.009 I2 H6 -1.236 I3 H6 -1.627 I4 H6 0.087 H6 O -0.533 

I1 H7 -13.412 I2 H7 -4.484 I3 H7 1.478 I4 H7 2.806 H7 O -7.586 

I1 H8 -1.236 I2 H8 0.008 I3 H8 -0.782 I4 H8 -0.284 H8 O -0.921 

I1 H9 -6.588 I2 H9 -2.458 I3 H9 0.998 I4 H9 1.157 H9 O -3.972 

 	���

ANNb 	�	�

 

 
Weight   Weight   Weight   Weight 

  
Weight 

I1 H1 -1.877 I2 H1 20.295 I3 H1 0.185 I4 H1 -14.475 H1 O -2.575 

I1 H2 -16.987 I2 H2 -3.354 I3 H2 1.693 I4 H2 2.498 H2 O -13.556 

I1 H3 -3.798 I2 H3 -0.008 I3 H3 -2.085 I4 H3 -7.115 H3 O 4.112 

I1 H4 5.559 I2 H4 -0.845 I3 H4 1.849 I4 H4 -18.273 H4 O -4.311 

I1 H5 -2.996 I2 H5 4.687 I3 H5 -6.742 I4 H5 6.914 H5 O -1.337 

I1 H6 8.318 I2 H6 -8.377 I3 H6 2.917 I4 H6 8.574 H6 O 4.750 

I1 H7 8.324 I2 H7 -3.983 I3 H7 -3.674 I4 H7 10.392 H7 O 3.969 

I1 H8 11.702 I2 H8 -19.838 I3 H8 -2.518 I4 H8 16.069 H8 O -2.763 

I1 H9 1.210 I2 H9 -3.488 I3 H9 -3.777 I4 H9 6.853 H9 O -3.085 

 	�
�

Biases 	���

Neuron Bias ANNa Bias ANNb 

H1 -0.596 -0.708 

H2 -0.175 -1.927 

H3 -3.240 0.049 

H4 -0.315 -1.594 

H5 0.413 2.982 

H6 -0.098 -7.794 

H7 -1.459 -0.996 

H8 -0.508 0.627 

H9 -0.720 0.278 

O 0.282 1.707 

 	���
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 	���

Table 3. Correlation matrix for model variables 	���

 	���

 AREA BFIHOST FARL SAAR QMED 

AREA 1.00 -0.02 -0.07 -0.05 0.76 

BFIHOST  1.00 0.11 -0.42 -0.27 

FARL   1.00 -0.39 -0.07 

SAAR    1.00 0.24 

  	���



 	�	�

Table 4. Numerical accuracy of different models under test 	�
�

 		��

 		��

  GLM ANNA ANNB 

RMSE (m
3
 s

-1
) 43.09 47.49 33.18 

R
2
 0.89 0.88 0.94 

MSRE 0.19 16.12 1.91 

MSLE 0.13 0.51 0.33 
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  		��

Table 5. Physical legitimacy of GLM and ANN models 		��

 		��

Input 

Variable 

QMED potential 

of other 

catchment 

variables 

Does the pattern of sensitivity response conform to 

conceptual notions of physically-rationality? 

GLM ANNA ANNB 

 

AREA 

Low  

    

    

Yes 

No No 

Median Yes No 

High No No 

 

SAAR 

Low  

No 

Yes No 

Median In Part No 

High No No 

 

FARL 

Low  

 Yes 

In Part No 

Median In Part No 

High No No 

 

BFIHOST 

Low  

 No 

No No 

Median In Part No 

High In Part In Part 
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Figure 1. Typical feed forward ANN structure 
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Figure 2. Scatter plot matrix of model variable with linear regression lines fitted 
���
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Figure 3. GLM versus QMED 
���
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Figure 4. ANNA model versus QMED 
���
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Figure 5. ANNB model versus QMED 
�	�
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Figure 6. Relative sensitivity of QMED to model inputs: GLM 
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Figure 7. Relative sensitivity of QMED to model inputs: ANNA 
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Figure 8. Relative sensitivity of QMED to model inputs: ANNB 
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