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Multi�step ahead inflow forecasting has a critical role to play in reservoir operation 

and management in Taiwan during typhoons as statutory legislation requires a 

minimum of 3�hours warning to be issued before any reservoir releases are made. 

However, the complex spatial and temporal heterogeneity of typhoon rainfall, 

coupled with a remote and mountainous physiographic context makes the 

development of real�time rainfall�runoff models that can accurately predict 

reservoir inflow several hours ahead of time challenging. Consequently, there is an 

urgent, operational requirement for models that can enhance reservoir inflow 

prediction at forecast horizons of more than 3�hours. In this paper we develop a 

novel semi�distributed, data�driven, rainfall�runoff model for the Shihmen 

catchment, north Taiwan. A suite of Adaptive Network�based Fuzzy Inference 

System solutions is created using various combinations of auto�regressive, 

spatially�lumped radar and point�based rain gauge predictors. Different levels of 

spatially�aggregated radar�derived rainfall data are used to generate 4, 8 and 12 

sub�catchment input drivers. In general, the semi�distributed radar rainfall models 

outperform their less complex counterparts in predictions of reservoir inflow at 

lead�times greater than 3�hours. Performance is found to be optimal when spatial 

aggregation is restricted to 4 sub�catchments, with up to 30% improvements in the 

performance over lumped and point�based models being evident at 5�hour lead 

times. The potential benefits of applying semi�distributed, data�driven models in 

reservoir inflow modelling specifically, and hydrological modelling more generally, is 

thus demonstrated. 

Keywords: semi�distributed model, rainfall�runoff model, data�driven model, 

reservoir inflow, radar rainfall, ANFIS 
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Data�driven modelling (Solomatine, 2005; Solomatine and Ostfeld, 2008; 

Elshorbagy et al., 2010a,b) is a major component of hydroinformatics (Abbott, 1991; 

1999; See et al., 2007; Abrahart et al., 2008; Holz et al., 2011), in which emerging 

technological products, primarily related to developments in computational 

intelligence and machine learning algorithms, are applied to complex hydrological 

problems. In data�driven modelling, the responsibility for identifying model 

structure is largely passed to computer algorithms, that are not constrained by a 

need for their solutions to conform to fundamental concepts in hydrology (Mount 

and Abrahart, 2011a). However, stronger calls for greater incorporation of scientific 

knowledge and understanding in the development of data�driven hydrological 

models are now starting to be published (e.g. Abrahart et al., 2011) in which it is 

argued that better representation of catchment processes should result in improved 

data�driven modelling products that offer more than optimized curve fitting 

solutions (Mount and Abrahart, 2012).  

One of the most popular uses of data�driven models is the prediction of runoff from 

rainfall e.g. by means of developing a neural network (De Vos, 2012), fuzzy logic 

(Wang and Altunkaynak, 2012) or genetic programming (Rodríguez�Vázquez et al., 

2012) solution that will effectively convert observed input into required output. In 

this application domain, the importance of capturing the spatial variability of 

rainfall�runoff processes via distributed and semi�distributed hydrological modelling 

frameworks is well�known (Beven and O’Connell, 1982; Tetzlaff and Uhlenbrook, 

2005; Segond et al., 2007; Younger et al., 2009). The need to account for spatial 

distribution becomes particularly acute if convective rainfall, with a high degree of 

spatio�temporal heterogeneity and uncertainty, is the key driver of runoff (e.g. 

typhoon events). In this context, instrumentational deficiencies (e.g. Molini et al., 

2005) and the number, positioning and overall distribution of monitoring stations 

(e.g. Cheng et al., 2008) present significant challenges for modellers. Indeed, 

hydrologists have long claimed that the main factor limiting predictive performance 

of distributed rainfall�runoff models was interpolated input derived from 

point�based rain gauge data (Berne & Krajewski, 2012). Whilst traditional, 

Thiessien Polygon (Thiessen, 1911) approaches remain popular (e.g. Rajurkar, et al., 

2002; Wu and Chau, 2011), the errors that result are well known (American Society 

of Civil Engineers, 1996: 50). Thus, better approaches to interpolation of 

point�based, rain gauge data continue to receive a modest amount of interest from 

the scientific community e.g. Schiemann et al. (2010), Verworn and Haberlandt 

(2011), Ly et al. (2011), Wagner et al. (in press). In recent years the availability of 
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spatially�continuous radar rainfall data has led to its widespread utilisation by 

hydrologists and inclusion in particular sorts of model (e.g. Schell et al., 1992; 

James et al., 1993; Georgakakos et al., 1996; Bell and Moore, 1998; Vieux and 

Bedient, 1998; Winchell et al., 1998; Sempere�Torres et al., 1999; Borga et al., 

2000; Ogden et al., 2000). The use of radar is especially useful in catchments 

containing coarse rain gauge networks, producing process�realistic distributed 

runoff simulations (e.g. Michaud and Sorooshian, 1994; Lange et al., 1999; Woods 

et al., 2000). Radar rainfall estimation is, nevertheless, also subject to a range of 

errors caused by factors that include instrumentation issues (e.g. calibration, 

measurement noise) and complexity and variability in the relationship occurring 

between recorded measurements and precipitation parameters (Austin, 1987; Joss 

and Lee, 1995; Andrieu et al., 1997; Borga et al., 2002). These different sources of 

error act to compound the radar rainfall uncertainty and can have a significant 

impact on the accuracy of rainfall–runoff forecasting (Borga, 2002). 

The argument that data�driven modellers should take greater account of 

hydrological processes representation, has resulted in a number of recent studies 

that have attempted to adapt standard data�driven modelling approaches, so that a 

degree of relevant knowledge about hydrological processes and data uncertainty is 

better represented in the model structure (e.g. Chen and Adams, 2006; Corzo and 

Solomatine, 2007; Corzo et al., 2009; Song et al., in press). Nonetheless, the 

majority of data�driven rainfall�runoff models continue to emphasise temporal 

variation in hydrological processes, and largely ignore the impact of spatial variation 

in the model inputs. The result is a dominance of spatially�lumped data�driven 

studies, and this is especially true in the case of rainfall�runoff models (e.g. Nayak 

et al., 2005; Chiang and Chang, 2009; Wu and Chau, 2011; De Vos, 2012). Despite 

its obvious potential as a means by which spatial variation can be captured and 

incorporated, few data�driven modelling studies have attempted to use 

raster�based radar rainfall (e.g. Teschl and Randeu, 2006; Teschl et al., 2009; 

Chaipimonplin et al., 2010) or satellite rainfall (e.g. Akhtar et al., 2009) inputs. One 

reason for this is that each grid cell ultimately represents a separate potential input 

for a data�driven model, such that utilising raster data in its raw form is impractical 

and inefficient. Instead, a trade�off is required in which an optimised 

spatio�temporal lumping strategy is applied to any continuous rainfall data; 

resulting in a semi�distributed data�driven modelling framework. 

 

The aim of this paper is to enhance our understanding of the extent to which greater 

incorporation of fundamental hydrological process knowledge, can deliver superior 

forecast performance for complex hydrological phenomenon. To this end, our core 
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objective is to exemplify how different levels of semi�distribution, applied to 

continuous radar rainfall data inputs, operating in a data�driven rainfall�runoff 

modelling framework, affect the performance of multi�step�ahead reservoir inflow 

forecasts in Taiwan. Taiwan represents an excellent study site because it 

experiences conditions of extreme spatial and temporal rainfall heterogeneity 

associated with typhoon events. In this paper the Adaptive Network�based Fuzzy 

Inference System (ANFIS: Jang, 1993; Jang et al., 1997) is used to forecast 

reservoir inflow for a range of different forecasting horizons. We develop a set of 

models based on different levels of radar rainfall spatial disaggregation, from which 

a model with the preferred level of input distribution is identified. Results are 

compared against counterpart solutions developed on point�based rainfall inputs 

from traditional rain gauges. Justification of the application of a complex, non�linear 

data�driven modelling algorithm is made by means of multiple linear regression 

benchmarks.  

 

!���"#"�$������%&�'�%��" �#���(�������'���

�

Taiwan is situated within the main track of western North Pacific typhoons. In an 

average year, Taiwan experiences between four and five typhoons that occur 

between June and November. There is little consistency in the direction of the 

typhoon paths (Figure 1: Taiwan Central Weather Bureau, pers. comm.), primarily 

due to Taiwan being located at a turning point on the track for most typhoons 

occurring in the Western North Pacific–East Asian region (Camargo et al., 2007; Chu 

et al., 2012); but also, potentially, on account of long term trends or low�frequency, 

large scale atmospheric shifts relating to climate change (Kao et al., 2012; Lee et al., 

in press). Significant variation exists in the individual strength of a particular 

typhoon and the speed and direction of motion of its track. These factors control the 

intensity, spatial distribution and total volume of rainfall it delivers (Lee at al., 2006; 

Pan et al., 2012). Thus typhoons are characterised by substantial spatio�temporal 

heterogeneity, which means that the spatial and temporal distribution of 

typhoon�associated heavy rainfall will be highly complex and differ from event to 

event. The impact of such rainfall, moreover, will in all likelihood be exacerbated as 

a result of climate change which is expected to deliver increased typhoon 

frequencies (Lee and You, 2011). 

 

Taiwan’s topography is characterized by a mountainous north�south trending central 

belt, with steep�slopes and short, fast flowing rivers. Several upland rivers have 

been dammed to form reservoirs, which can be inundated within a few hours as a 
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result of extreme runoff events linked to the passage of typhoons (Chang et al., 

2002). The inflow to these reservoirs is mainly the result of localised rainfall (Yu et 

al., 2006), with only limited contributions from groundwater; thus rainfall�runoff 

models represent an important means by which streamflow is predicted (e.g. Vieux 

et al., 2003; Yu et al., 2004; Wu et al., 2007).  

During a typhoon, important decisions about the timing and amount of any required 

reservoir releases must be made within a matter of hours by the controlling agency. 

Most reservoir operations are guided by simultaneously balancing flood control and 

water supply. In general, reservoir operations for flood control can be separated into 

three different stages (Hsu and Wei, 2007): (1) stage prior to flood arrival, in which 

water releases are designed to reserve sufficient reservoir capacity for the 

upcoming flood; (2) stage preceding peak inflow, in which floodwater releases are 

applied for disaster mitigation; and (3) stage after peak inflow, in which reservoir 

releases are used to regulate the storage at the end of each flood, for future water 

purposes. The correct operation of these stages involves the use of look�up tables, 

which provide rules for the standardised release of water during typhoon periods. 

These tables are graded by total forecasted rainfall, observed storage level, and 

reservoir inflow during flood periods.  

The implication of current practice in reservoir decision�making procedures is that 

for operational management purposes an advanced knowledge of flood peak 

magnitude and timing is required, empowering the controller to select an 

appropriate course of action. Moreover, armed with such information, it becomes 

possible for the controlling agency to deliver an appropriate set of statutory 

warnings to mass/local media, pertinent institutions and downstream residents 

several hours in advance of any proposed water releases. Thus, in balancing the 

reservoir, timing is a critical factor and a rainfall�runoff model that can deliver 

accurate, real�time predictions for forecasting horizons that exceed three or more 

hours ahead of present is called for. This requires the best possible short�term 

multi�step�ahead reservoir inflow forecasting model; one that will eventually form 

an integrated and trustworthy component of the reservoir management and 

operational decision�making process. 

!����#)������*������
����)������
��������������������
��	�

Generating short period ahead forecasts of reservoir inflow by means of standard, 

spatially�distributed physical models, applied in real time (e.g. Wu et al., 2007; Wu 

et al., 2008), is problematic because the generation of ahead�of�time forecasts 
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necessitates the use of uncertain, forecasted inputs in a modelling framework that is 

designed to be instantaneous and continuously�updating. Moreover, the complex 

data needs and parameterisation requirements of physically�based models make 

their application difficult in many of Taiwan’s reservoirs that are fed from remote, 

mountainous, catchments (Wu et al., 2008). An alternative approach is 

multi�step�ahead forecasting in which the general relationship between lagged and 

instantaneous inputs, and an inflow record shifted progressively forward in time, is 

quantified and reapplied (e.g. Chang et al., 2007; Toth and Brath, 2007; Yonaba et 

al., 2010). In this context, a forecast is generated for multiple periods (or steps) 

ahead using a mix of past records and real�time measurements. Data driven models 

are particularly good at multi�step�ahead forecasting due to their ability to 

determine the optimal relationships that relate inputs to outputs; albeit with a 

reduction in their predictive capabilities over longer forecast horizons (Campolo et 

al., 1999; Babovic and Keijzer, 2002; Nayak et al., 2005; Xu and Li, 2002; Dawson 

et al., 2006). They are also flexible enough to enable the development of models 

that accommodate spatial and temporal heterogeneity in the model inputs (Lorrai 

and Sechi, 1995; Rajurkar et al., 2002).  

 

From the range of different data�driven rainfall�runoff modelling and streamflow 

forecasting investigations that have been published, ANFIS has emerged as a 

particularly promising method of dealing with complex time series data sets, 

following its first reported application to hydrological modelling problems by 

Gautam and Holz (2001) e.g. Keskin et al. (2006); Bae et al. (2007); Firat and 

Güngor (2008); Pramanik and Panda (2009); Talei et al. (2010); Nguyen and Chau 

(2012); Ghalkhani et al. (in press). Of particular importance for this study is 

recently�reported success in its ability to discover the optimal relationship between 

current and antecedent rainfall and reservoir inflow inputs and multi�step�ahead 

reservoir inflow outputs (El�Shafie, 2007; Jothiprakash and Magar, 2012). However, 

any implementation of a distributed, ANFIS modelling framework is potentially 

problematic, because the use of large numbers of distributed inputs is likely to result 

in a grossly inefficient solution. In addition, local noise (both spatial and temporal) 

in the rainfall data which is used to drive such models risks masking the broader 

hydrological signal that one wishes to capture (Lin and Chen, 2005; Dark and Bram, 

2007). Therefore, in developing a semi�distributed multi�step�ahead ANFIS 

rainfall�runoff model, it is essential that some preferred level of input spatial 

aggregation is identified which both maximises the strength of the hydrological 

signal that can be modelled, and minimises noise due to input uncertainty and 

model inefficiency.  
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The Shihmen Reservoir (Figure 2) was built in 1964 and is one of the largest and 

most important reservoirs in Taiwan. It has been the focus of a number of previous 

studies that have modelled the catchment hydrology for the purpose of inflow 

prediction. Recent examples include the development and application a 

physically�based distributed parameter model (Wu et al., 2008) and two different 

sorts of neural network model (Chen and Chang, 2009; Lin et al., 2009a). Located 

on the upper reaches of the Tahan River, it has an upstream contributing area of 

763.4 km2, ranging in elevation from 157 m to 3514 m, with average slope angles of 

about 30 degrees. It has an effective capacity of 219 million cubic metres and is 

designed for multiple purposes including water supply for irrigation, industrial and 

domestic uses, flood control, and hydropower generation. The reservoir is currently 

managed by the Water Resources Agency which stipulates rules for operational flood 

control (Water Resources Agency, 1984).  

 

The rainfall and inflow datasets used in this study were provided by the Water 

Resources Agency and Central Weather Bureau of Taiwan and used as supplied. In 

common with standard practice in data�driven modelling studies, additional 

preprocessing was not performed (Abrahart et al., 2010). The use of third�party 

data inhibited meaningful adjustment or correction of observed records for original 

measurement error, and detailed information on data collection practices or data 

quality control procedures were not made available. Similarly, rain gauge 

point�based rainfall records and radar grid�based rainfall records were used as 

supplied, without adjustments for elevation. The reservoir inflow series comprised 

445 hourly observations for eight typhoon events, occurring between 2007 and 

2009, in which peak inflow per event across the series ranged from a maximum of 

5300 m3 s�1 for KROSA (Event 2: SSHS Category 4 Super Typhoon) to a minimum of 

203 m3 s�1 for KALMAEGI (Event 3: SSHS Category 2 Moderate Typhoon that 

delivered very little rainfall in our catchment) (Table 1). Figure 3 shows the reservoir 

inflow records depicted as a continuous series for the eight typhoons, highlighting 

substantial differences in the duration and magnitude of each individual storm event. 

Two different sorts of rainfall data were available for the eight typhoon events: 

hourly rainfall data for 12 gauges distributed across the catchment (Figure 2); and 

a corresponding radar rainfall data set produced from QPESUMS (Quantitative 

Precipitation Estimation and Segregation Using Multiple Sensors: 

http://www.nssl.noaa.gov/projects/qpesums/). Full particulars are provided in 
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Table 2. The radar rainfall data had a temporal resolution of 10 minutes and a spatial 

resolution of 1.25 km. This raster data set had already been calibrated, using 

ground observations, by the Central Weather Bureau, Taiwan. The 10�minute 

precipitation map was temporally accumulated into an hourly sequence, 

corresponding to our hourly rain gauge data and hourly reservoir inflow series. The 

study also utilised a 40 m resolution digital elevation model (DEM) provided by the 

National Land Surveying and Mapping Center, Taiwan for sub�catchment 

segmentation analysis. The DEM was constructed from stereo�pair imagery in 1995 

by the Aerial Survey Office, Taiwan and has a vertical accuracy of between 2.5 m 

and 5.0 m. 

�

-��."�/���&�(,�

�

Within the context of the existing rules that govern reservoir releases in Taiwan, we 

develop modelling procedures that are capable of generating reliable estimates of 

peak reservoir inflow magnitude and timing over intervals that exceed the statutory 

minimum requirement. It is important to note that we do not exemplify the 

application of the operational procedures or seek to improve or change them. 

Instead, we focus on the development of a model that can deliver improved forecast 

information, which can subsequently be used to support better application of the 

existing operational rule sets. The purpose of the modelling exercise is thus to 

generate the best performing real�time, instantaneous multi�hour step�ahead 

forecast of reservoir inflow for the reservoir in question. From this, the predicted 

water accumulation within the reservoir can be continuously updated, and decisions 

about the timing of any required reservoir release(s) can be made in advance of 

their occurrence. To this end, the model predictions are not constrained to peak 

inflows, but extend across the entire hydrologic response of the catchment.  

Three stages of model development (Stages 1�3), which are the main focus of this 

paper, are required before a real�time multi�step ahead model can be applied in an 

operational capacity (Stage 4): 

1.� The collation and pre�processing of available rainfall and discharge records 

for the catchment (see Section 3.1); 

2.� The construction of numerous multi�step�ahead data�driven models (listed 

below) using a range of different inputs and different levels of spatial 

aggregation (see Section 3.2); 

3.� The identification of a model structure that is best able to deliver step�ahead 

inflow forecasts over increasingly large time steps (according to both level of 
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spatial aggregation employed and other inputs) (see Section 3.3); 

4.� The re�application of our preferred model structure (identified at Stage 3). 

Inflow into the Shihmen reservoir was modelled for forecast horizons of 

Qt+1,Qt+2…Qt+5 hours ahead using six modelling approaches of increasing 

complexity (Table 3): 

Model A:� A simple two�input model based solely on the reservoir inflow record. 

Inputs comprised inflow at time t, and the change (difference) in 

inflow between Qt and Qt�1, hereafter termed QQ. This model 

represents the minimum complexity solution against which models 

using either rainfall or radar as additional inputs can be compared. 

Model B:� A rainfall�runoff model with inputs comprising 12 lagged, point�based 

rain gauge records, Qt and QQ. This model represents a standard 

configuration for including rain gauge inputs in data�driven 

rainfall�runoff models (e.g. Deo and Thirumalaiah, 2000). 

Model C:� A lumped rainfall�runoff model with inputs comprising lagged total 

rainfall, derived from radar data and spatially averaged across the 

entire catchment, Qt and QQ. This model represents the simplest 

application of spatial lumping, and provides a baseline against which 

the additional performance of semi�distributed modelling 

configurations can be assessed.  

Models D�F: A suite of semi�distributed rainfall�runoff models (ranging from 4 to 

12 sub catchments), with inputs comprising lagged total rainfall, 

derived from radar data and spatially averaged across each sub 

catchment, Qt and QQ. This sequential partitioning provides specific 

insight into the relationship between different levels of spatial 

aggregation and data�driven model prediction accuracy. 

In accordance with past recommendations (Abrahart and See, 2007; Mount and 

Abrahart, 2011b), each ANFIS instantiation of the four approaches was also 

benchmarked against a set of counterpart linear regression models. In this way the 

additional benefit of employing complex, ANFIS�based modelling could be 

determined. In contrast to several earlier ANFIS papers, we do not provide 

additional neural network model benchmarks; for example, by means of developing 

and reporting a standard counterpart backpropagation�of�error trained feedforward 
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neural network (FFNN: Abrahart and See, 2000). Following Chang and Chang 

(2006), who also only applied an ANFIS solution to their successful data�driven 

modelling of reservoir water level at this location, we direct our focus away from 

algorithm comparison for reservoir inflow forecasting as many other papers have 

already addressed such issues, (e.g. Chang et al., 2007; Lin et al., 2009b; 

Karimi�Googhari and Lee, 2011). Instead we focus on examining the benefits that 

result from undertaking data�driven rainfall�runoff modelling in a 

spatially�disaggregated manner. Two further justifications for our decision to omit 

the additional reporting of simpler�structured FFNNs should also be documented. 

First, where ANFIS and FFNN model counterparts have previously been compared in 

the context of step�ahead hydrological forecasting studies, the performance of 

ANFIS solutions is consistently equal to, or slightly in excess of its simpler FFNN 

model counterparts (e.g. Chau et al., 2005; Nayak et al., 2005; Chen et al., 2006; 

Mukerji et al., 2009; Lohani et al., 2012). There is no reason to presume that the 

findings of our current study would be significantly different from that of previous 

work. Second, delivering routine comparisons, in which alternative categories of 

neural algorithm are directly matched one against another, can at best deliver only 

‘incremental refinement’ of existing expertise and/or scientific knowledge (Abrahart 

et al., 2012); potentially offering only marginal improvement in accuracy, low 

intellectual reward and no step�change in hydrological modelling understanding or 

application development. 

-���������������������������
 

�����������	
�������

Numerous modelling studies have shown that, over short forecast horizons, simple 

one�step�ahead autoregressive models will provide good predictions of inflow over a 

broad range of different hydrological settings (Niedzielski, 2007). However, 

one�step�ahead models can suffer from local preferencing; where the predictive 

power of all lagged inputs is minimised in favour of the last observed record, if the 

latter is included as an input (Abrahart et al., 2007). The upshot of this for 

data�driven modelling is that one�step�ahead solutions can easily become trapped 

into producing a minimally�modified autoregressive single�input single�output 

model. To reduce the likelihood of this occurring, the lagged inflow input in each of 

our models is modified into a standardised rate of change: QQ. This increases the 

dimensionality of our drivers and, simultaneously, ensures that both positive and 

negative values are provided. This deviation from standard data�driven modelling 

practice is intended to reduce the marginalisation of lagged data during model 
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training and offer greater potential for non�current inputs to influence the model 

output. Moreover, if the dominant impact of inflow is countered, the significance of 

rainfall records should be accentuated and might logically be expected to deliver a 

reduction in timing error. 

������������������������

In contrast to the simple inflow model, the use of rain gauge inputs requires 

consideration of the spatial distribution of measurement records, and of variable 

travel times occurring between the rainfall recorded at the gauge and the inflow 

response at the point of reservoir inflow forecast. Therefore, the challenge is to 

identify the most representative travel time for each gauge. In this study, we 

examine all travel times from 0 to 10 hours by means of correlation analysis: 

standard practice in data�driven hydrological modelling (Maier and Dandy, 2000; 

Maier et al., 2010). However, variability in the typhoon tracks presents additional 

complexity which will result in inconsistent lag response times between each gauge 

and the reservoir inflow during different events. Thus, a three�stage combination 

and selection process was adopted: 

1.� For each of the 12 gauges, compute a correlation coefficient for each of 

8 individual typhoon events at each of the 11 reservoir inflow travel 

times (i.e. calculate 1056 individual correlation coefficients); 

2.� For each of the 11 travel times at each of the 12 gauges, compute a 

mean correlation coefficient that spans 8 typhoon events (i.e. convert 

1056 individual correlation coefficients into 132 mean correlation 

coefficients). 

3.� For each gauge, select the travel time to be used based on the 

maximum mean correlation coefficient. 

The results of Steps 2 and 3 are presented in Table 4.  

�������������������

The use of radar data allows us to replace spatially�discrete rain gauge modelling 

inputs with spatially�continuous representations. In total, 434 grid cells comprise 

the radar data set for this catchment. In order to prevent the development of an 

excessively complex solution, spatial lumping was performed by aggregating radar 

values to increasing numbers of hydrological sub�units. The original catchment was 

partitioned into sub�catchment polygons, based on different levels of stream 

segmentation, according to the DEM method of Jensen and Domingue (1988) � as 
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implemented in Arc Hydro (Maidment, 2002). Flow accumulation thresholds of 

T=100; T=30 and T=25 resulted in 4, 8 and 12 sub�catchment discretisations; with 

12 being equal to the number of rain gauges in Model B. Radar data values were 

subsequently assigned to the full catchment and each of its sub�catchment polygons 

according to whether or not the centroid of a particular radar cell fell inside its 

boundary. The total hourly rainfall for each polygon was thereafter calculated by 

means of summation, resulting in a set of instantaneous rainfall inputs at four 

different levels of spatial lumping [1 (Model C), 4 (Model D), 8 (Model E) and 12 

(Model F)]. Table 5 contains descriptive statistics of the aggregated radar rainfall 

data for each individual polygon. 

 

For hourly radar rainfall, correlation analysis was performed on the aggregated 

radar rainfall data for each polygon in a manner identical to that for gauged rainfall, 

by again examining travel times that ranged from 0 to 10 hours. Mean correlation 

coefficients were calculated across the 8 typhoon events, with the representative 

travel time for each polygon selected on the basis of the maximum mean coefficient. 

The travel times assigned to each polygon are presented in Figure 4. At 4 and 8 sub 

catchments, the spatial assignment of travel times appears rational, with travel time 

increasing with distance from the reservoir inflow. At 12 sub catchments, the spatial 

pattern is less rational, with instances of upstream sub catchments being assigned 

quicker travel times than some of their downstream neighbours. 

 

-�!�������������.�������	�

 

ANFIS models were developed in MATLAB for our five forecasting horizons 

(Qt+1,Qt+2...Qt+5) using each of the six approaches (A�F), resulting in 30 final models. 

The Fuzzy Logic Toolbox ��	���2 function was used to determine the structure of 

each fuzzy information system, by the application of fuzzy c�means. The number of 

clusters required by the c�means algorithm was provided by the user and, in turn, 

this parameter set the number of membership functions per input and number of 

output rules per model so that in each case they equalled the number of clusters 

used. For each of these 30 models, a multiple linear regression (MLR) counterpart 

was also developed. 

ANFIS is a five�layer feedforward network, applying a neural network learning 

algorithm and fuzzy reasoning to map input predictor variables onto an output 

predictand space. The basic architecture is described in detail in numerous other 

hydrological modelling papers and, as such, need not be repeated in our paper (e.g. 

Chang et al., 2005). The optimal structure for each ANFIS model used in our 
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experiments was determined by heuristic search; with the best�performing 

configuration selected according to its ability to minimise RMSE. In common with 

other default settings of the ��	���2 function, a Gaussian fuzzy membership input 

function was applied in all cases, necessitating subsequent optimisation of mean 

and standard deviation parameters. The output membership function was by default 

linear. The number of clusters (number of membership functions per input/ number 

of output rules per model) searched was varied from 2 (minimum) to 14 via 

manipulation of the #�)����3	 parameter in ��	���2. The modelling records were 

divided into three sub�sets: Events 1�5 formed the training dataset; Events 6 and 7 

formed the cross�validation dataset; Event 8 formed the testing dataset. The largest 

and smallest events were included in the training dataset, such that the need for 

extrapolation beyond the range of the training dataset was avoided. Early stopping 

(Coullibaly et al., 2000; Giustolisi and Laucelli, 2005) was applied to prevent 

over�fitting. The ANFIS default hybrid learning algorithm was employed to identify 

model parameters: delivering a powerful combination of least�squares fitting and 

backpropagation gradient descent methods. The optimal configuration and stopping 

point for each of our 30 preferred models is shown in Table 6. 

-�+��"��������������
�

The performance of each model was evaluated and compared using five different 

metrics: correlation coefficient (CC: Equation 1), root mean square error (RMSE: 

Equation 2), mean square error (MSE: Equation 3), coefficient of efficiency (CE: 

Equation 4) and skill score (SS: Equation 5). Further particulars on the first four 

metrics can be found in Dawson et al. (2007). SS is a measure of improvement in 

RMSE: using a reference model as benchmark, in which a positive score indicates 

superior performance of a model over that benchmark model. These indices served 

as criteria for model selection: to identify the preferred input combination and, 

consequently, an optimal level of spatio�temporal aggregation for the radar rainfall 

modelling scenarios under test. 
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Equation 5 

where � is the number of observations, �����	
  is the predicted inflow at time t, 

�������  is the observed inflow at time t, �	
�  and ����  are the mean value of 

predicted and observed inflow, respectively. �� is the RMSE of a reference model, 

in this study Model A. �� is the RMSE of the model compared.�

�

0���"#�&�#� �

�

Test data set results for all 30 ANFIS models are presented in Figures 5 and 6. For 

the one and two�hour ahead forecasting horizons (Qt+1,Qt+2), the metrics indicate 

similar, high levels of performance for all models. This clearly reflects the limited 

challenge involved in very short�term reservoir inflow forecasting for the Shihmen 

catchment. However, as the forecasting horizon is increased, clear differences in the 

performance of individual models become apparent.  

For forecasting horizons Qt+3 to Qt+5, Models A and B deliver similarly poor 

performance. This implies that the addition of spatially�distributed, point�based 

data provides little advantage over a simple lagged inflow model. Presumably, this is 

because the degree of useful spatial information that is encoded within the model 

inputs is highly limited. Indeed, the inclusion of continuous spatial data, even as a 

wholly lumped input (Model C) is shown to result in improved performance at 

forecasting horizons greater than Qt+2. This suggests that, even without additional 

spatial discretisation, continuous rainfall data should be used in preference to 
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point�based, gauged inputs. 

Further improvements in model performance are observed when the catchment is 

discretised into four separate sub�catchments (Model D). Moreover, the 

performance advantage over all other models becomes consistently greater as the 

forecasting horizon is increased towards Qt+5. Of interest is the fact that this pattern 

of improvement is not carried through to models E and F. Indeed, the use of 8 and 

12 sub�catchments results in models that, in most cases, perform worse than their 

simple lumped catchment counterpart (Model C). It demonstrates that there are 

clear limits to the amount of discretisation that should be applied in this case. This 

arises from the need to generalise highly complex, spatio�temporal patterns of 

typhoon events and their relationship to inflow, something which would require the 

use of a well�parameterised, spatially and temporally�distributed, physically�based 

model to properly forecast. Instead, data�driven modellers must adopt a more 

pragmatic position in which the relationships between data sets must be simplified 

through both temporal and spatial lumping: both of which are applied in this study. 

Figure 7 compares observed and predicted inflow series for Model B and Model D, 

calculated on the testing data (typhoon Jangmi) across different lead times. The 

plots confirm that predicted values for Model D are much closer to the observed 

values. It is also worth noting that for Qt+5, the substantial timing�error 

displacement of predicted peak inflow decreased from 6 hours for Model B to 3 hours 

for Model D. This indicates that the spatio�temporal optimisation of radar rainfall is 

not only capable of increasing the overall performance of models across the five 

metrics that were applied but also reduces the frequently overlooked problem of a 

spurious lagged time shift component appearing in data�driven model outputs (De 

Vos and Rientjes, 2005; Abrahart et al., 2007).  

Figures 8 and 9 compare non�linear (ANFIS) and linear (MLR) rainfall�runoff 

reservoir inflow forecasting counterparts. RMSE (Figure 8) and CE (Figure 9) 

performance indices showed that ANFIS models were almost invariably superior to 

MLR models, and always so over longer forecast horizons. These results confirm the 

near�linear nature of one�step�ahead forecasting and that increased non�linearity 

occurs over longer forecasting horizons. It also confirms the need to develop 

non�linear modelling solutions for providing multi�step�ahead forecast reservoir 

inflow related to typhoon events in Taiwan. 

�

1����# �##��������'��"���.2&� �����#�
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The novel contribution of this paper is its exploration of how the inclusion of 

spatial�distribution in a data�driven rainfall�runoff model enhances its predictive 

performance by better capturing the spatial and temporal heterogeneity of typhoon 

rainfall events. Our results reveal clear improvements associated with the adoption 

of a semi�distributed data�driven modelling framework; offering potential benefits 

for similar studies conducted under differing conditions, since catchment 

sub�partitioning is easily reproduced. This finding conforms to the widely�held 

viewpoint that errors associated with the estimation of rainfall intensity from 

lumped models are very likely to limit a model’s ability to predict runoff accurately, 

and that this will be a particular problem where high�intensity, convective rainfall is 

known to be the key driver of runoff (Dawdy and Bergman, 1969; Wilson et al., 

1979). Such results also support the notion that there may be an optimal level of 

discretisation beyond which anticipated performance benefit decreases due to local 

noise and uncertainty in the rainfall data masking the broader hydrological signal for 

a catchment (Lin and Chen, 2005; Dark and Bram, 2007). Thus, it is important to 

caution against the assumption that data�driven rainfall�runoff model accuracy will 

necessarily be improved by simply increasing the degree of spatial distribution 

employed. It is interesting to note that recommendations of the Distributed Model 

Intercomparison Project also caution against such an assumption (Reed et al., 

2004). That project utilised gridded radar rainfall data provided as hourly 

accumulations, and showed that lumped models can still outperform distributed 

models. Further, it revealed that individual catchment characteristics are central to 

the performance advantages of lumped or distributed models. Indeed, in situations 

where improved results obtained from distributed models driven by radar rainfall 

input are reported, they are often associated with isolated case studies rather than 

routine operational predictions. Consequently, the general benefits of incorporating 

spatial distribution, and the importance of the different factors that affect it, remain 

a debated topic amongst physically�based modellers (Tetzlaff and Uhlenbrook, 

2005; Berne & Krajewski, 2012).  

Our paper also makes a significant contribution by providing some beneficial 

insights regarding the underutilised advantages of adopting radar data as an input 

into data�driven rainfall�runoff models, rather than the more established use of 

point�based rain gauge data. Whilst a large number of studies have compared the 

use of rain gauge and radar data (e.g. Briggs and Atkinson, 2011) and the impact of 

radar rainfall error and uncertainty on water resources modelling (e.g. Hossain et 

al., 2005;�Habib et al., 2008;�Gourley et al., 2011; He et al., 2011; Schrötera et al., 

2011), none have considered the issues from a specifically data�driven modelling 

perspective. The reported method represents a significant advance over the 
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previous use of lumped mean areal inputs (Lorrai and Sechi, 1995), or distributed 

point�based rainfall samples (Campolo et al., 1999; Dawson et al., 2006), given that 

such past approaches possess no explicit physical or operational underpinnings. It is 

also a physical and structural enrichment of previous data�driven radar rainfall 

modelling procedures applied by Teschl and Randeu (2006), and of the spatial 

clustering arguments of Rajurkar et al. (2002) and Lauzon et al. (2006), which are 

modified by the adoption of physically�meaningful sub�catchment boundaries, 

developed using drainage network analysis of a digital elevation model. To this 

extent, a basic level of meaningful, hydrological process knowledge is incorporated 

into the modelling framework.  

Strong parallels exist between the ideas developed in this work and those 

associated with hybrid modelling solutions (Perez, 2009). Hybridisation in most 

cases involves the development of a mixed combination of two or more different 

types of model in which each individual model fulfils a particular role in some larger 

scheme. Data�driven solutions, for example, can be externally coupled to a 

conventional model (standalone solution) or embedded within it (modular 

component). In a similar manner it is possible to exploit the predictive capabilities of 

data�driven models within a semi�distributed model structure, drawing upon the 

physical rationality of such approaches, which better reflects the nature of the 

hydrological phenomena that is required to be modelled. Hybrid solutions are 

usually characterised by relatively complex, modular solutions in which different 

data�driven models are developed for one or more individual components of the 

catchment being modelled (e.g. a different model for each sub�catchment, or for 

each hydrological process operating within the catchment), and subsequently 

combined (e.g. Corzo et al., 2009; Huo et al., 2012). By contrast, our study adopts 

a simpler approach involving the use of semi�distributed model �	�)�� as opposed to 

enforcing spatial distribution in the model structure itself. In this way the predictive 

benefits that result from the use of different levels of semi�distribution in the model 

inputs are tested: an important requirement when one or more model inputs are 

derived from a spatially�continuous data set. The resultant model is, arguably, a 

simplified hybrid solution that achieves an optimal degree of generalisation of the 

spatio�temporal variability in typhoon rainfall�runoff processes, whilst avoiding an 

overly�complex, fully�distributed model structure that would require inputs and 

parameters that are difficult to obtain. 

 

As with many scientific disciplines, a range of methodological approaches and 

associated techniques for tackling hydrological problems have emerged, that are 

founded on different conceptual and philosophical schools of thought about how 
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hydrological processes should be represented and captured within a set of relevant 

models (Wainwright and Mulligan, 2004). Modelling ranges from highly inductive, 

physically�based, to highly deductive, empirical and data�driven, and clearly 

different sorts of model are needed to serve a number of different purposes. Many 

of the approaches associated with particular schools have been developed 

exclusively, with relatively limited transfer and incorporation of specific techniques 

and ideas occurring across the wider disciplinary and scientific community. This 

paper exemplifies how the incorporation of the most basic physical concepts in 

hydrology may be integrated into a data�driven methodology so that the physical 

rationality of the data�driven product is a core element of the resultant model. In so 

doing, it supports the notion that hydrologists, irrespective of their conceptual 

background or philosophical stance, should where possible, seek to incorporate the 

ideas and knowledge that is best suited to the nature of the problem that they are 

trying to solve.  These may derive from other parts of the discipline or beyond, and 

may result in models that are substantially different from those that are accepted 

practice within a particular school of thought. We accordingly encourage 

data�driven modellers to engage more fully with physical concepts in hydrology, 

and physical modellers to consider how data�driven techniques may be of benefit to 

them. 

 

3�� �� &�#���#�

 

Four key points emerge from this study: 

 

1.� Continuous rainfall data appears to offer performance advantages over 

discrete, point�based spatial data for reservoir inflow forecasting in 

Taiwan. 

2.� Further performance advantages can be achieved by using a 

semi�distributed modelling framework, but there are limits to the 

number of catchment sub�units that should be used. 

3.� The spatio�temporal complexity of typhoon rainfall requires a 

substantial amount of spatial and temporal generalisation in order to 

build an effective data�driven rainfall�runoff model. 

4.� The operational requirement for a minimum 3�hour warning of reservoir 

release requires the availability of a model that performs well over lead 

times in excess of three hours. This study indicates that data�driven 

models are of use in this regard, and that their value is maximised when 

appropriately�distributed, continuous radar rainfall data is used. 
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�

This study has highlighted the importance of the spatial dimension in data�driven, 

rainfall�runoff modelling. To date, this factor has received little attention by 

researchers in the field. There is, therefore, a clear need for additional research into 

the effects of spatio�temporal generalisation on data�driven models, applied in 

different hydrologic and physiographic contexts. This study has demonstrated the 

specific capability of ANFIS, selected as a typical data�driven modelling tool. Whilst 

further potential improvements in performance accuracy could probably be obtained 

from the application of other data�driven algorithms, it is unlikely that such gains 

would be anything other than marginal, given that previously�published 

hydrological comparisons of ANFIS and other data�driven algorithms demonstrate 

broadly similar outcomes (e.g. Chen et al., 2006).  
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Table 1 Typhoon dataset 

Event Name SSHS 

category# 

Period Peak inflow  

(m3 s�1) 

1 SEPAT 5 2007/08/16Д08/19 1844.40 

2 KROSA 4 2007/10/04Д10/07 5300.39 

3 KALMAEGI 2 2008/07/16Д07/18 203.13 

4 SINLAKU 4 2008/09/11Д09/16  3351.24 

5 MORAKOT 1 2009/08/05Д08/10 1837.54 

6 WIPHA 4 2007/09/17Д09/19 2788.15 

7 FUNG�WONG 2 2008/07/26Д07/29 2039.78 

8 JANGMI 5 2008/09/26Д09/29 3291.99 

#
Hurricanes are separated into five categories based on wind strength. The scale is roughly logarithmic: 1) Very dangerous winds will cause 

some damage; 2) Extremely dangerous winds will cause extensive damage; 3) Devastating damage will occur; 4) Catastrophic damage will 

occur; 5) Catastrophic damage will occur. 

 

 

 

Table 2 Summary statistics for reservoir inflow (m3 s�1) and gauged rainfall (mm hr�1) 
datasets 

 .��� #���� .�: .�� 
������ 1108.90� 1030.90� 5300.40� 10.84�

�

�����
(��	� 

.��� #���� .�: .���

(�� 6.4  8.3  53.0 0.0 

(!� 7.3 9.4 50.0 0.0 
(+� 7.4  9.6 56.0 0.0 

(-� 8.7 10.5  56.0 0.0 
(0� 7.5  8.9  52.5 0.0 
(1� 7.1  7.8 44.0 0.0 
(3� 7.8 10.0  55.0 0.0 
(7� 7.3  8.8  49.5 0.0 

(6� 7.3  8.1  62.0 0.0 
(�5� 9.1  10.1  56.0 0.0 

(��� 7.6  9.3 54.0 0.0 
(�!� 9.2 9.8  54.0 0.0 
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Table 3 Modelling configurations 

.����� �������

�����

�����������
 �����(��	������
 ����������
 

� Qt+1...Qt+5� Qt Qt – Qt�1 G1, G2...G12 Lags (Hours) (Sub)Catch

ment Units 

Lags (Hours) 

A � � � � � � � 

B � � � � ���$�� 6 ��
7 � � 

C � � � � � 1 6 

D � � � � � 4 ���$��
5,6 or 7 

E � � � � � 8 ���$��
5,6,7 ��
8


F � � � � � 12 ���$��
5,6,7 ��
8


 

Page 32 of 45

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49



For Peer Review

33 

 

Table 4 Mean correlation coefficient between gauged rainfall and reservoir inflow at various time lags. Highest coefficient for each gauge in 

bold.  

��� ����� � ��� �!� �+� �-� �0� �1� �3� �7� �6� ��5�

(�� Jhangsing 0.219 0.333 0.420 0.463 0.514 0.528 5�0+-� 0.525 0.524 0.506 0.461 
(!� Fousing 0.226 0.340 0.419 0.459 0.509 0.516 5�0�7� 0.512 0.506 0.486 0.431 
(+� Siayun 0.231 0.346 0.439 0.480 0.532 0.542 5�005� 0.536 0.515 0.496 0.440 
(-� Gaoyi 0.203 0.304 0.396 0.461 0.510 0.538 5�001� 0.553 0.541 0.528 0.480 
(0� Baling 0.186 0.285 0.381 0.458 0.520 0.564 0.588 5�066� 0.595 0.592 0.558 
(1� Saguang 0.227 0.328 0.420 0.497 0.553 0.591 5�066� 0.597 0.578 0.567 0.524 
(3� Galahe 0.211 0.292 0.375 0.449 0.500 0.540 5�00+� 0.550 0.543 0.528 0.485 
(7� Yufong 0.312 0.409 0.494 0.559 0.595 0.610 5�1�6� 0.585 0.560 0.527 0.475 
(6� Siouluan 0.303 0.405 0.489 0.559 0.617 0.649 0.655 5�106� 0.632 0.611 0.560 
(�5� Baishin 0.315 0.407 0.491 0.560 0.618 0.669 0.673 5�170� 0.662 0.622 0.579 
(��� Jhensibao 0.247 0.340 0.425 0.493 0.560 0.613 0.639 5�1-3� 0.639 0.617 0.580 
(�!� Siciouaihshan 0.223 0.303 0.386 0.456 0.514 0.564 0.565 5�03-� 0.569 0.547 0.523 
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Table 5 Summary statistics for total radar rainfall (mm hr�1) per sub�catchment. Note minimum value of zero for all sub�catchments.  
;#��< ��)����

���
�
�� -� 7� �!�

 .���� #����� .�:� .���� #����� .�:� .���� #����� .�:� .���� #���� .�:�

�� 7920 7533 40664 3132 3343 20571 716 901 7357 716 901 7357 

���    1318 1432 7232 2467 2651 13483 1269 1382 7151 
����    1191 1238 7909 469 493 2780 246 307 1932 

�$�    2156 1939 10790 665 707 4829 137 143 820 
$�       700 683 3737 330 356 1960 
$��       1399 1515 7542 951 1045 5162 
$���       1127 958 5126 316 328 2139 
$����       386 381 2100 349 394 2690 
�=�          700 683 3737 
=�          1399 1515 7542 

=��          1127 958 5126 
=���          386 381 2100 

   * Note total radar rainfall comprises radar grid values aggregated by sub�catchment. 
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Table 6 8ptimal configuration and stopping point for each preferred model. 

 T+1 t+2 t+3 T+4 t+5 

Model MF TI MF TI MF TI MF TI MF TI 

A 6 500 6 900 5 500 3 1000 5 1400 

B 4 1200 2 600 3 900 3 1500 5 600 

C 3 800 3 600 4 700 3 600 3 1000 

D 2 1000 3 1200 2 1000 2 1300 2 900 

E 2 800 2 1500 3 1500 3 600 3 900 

F 2 1400 2 1100 2 700 2 1500 2 900 

 

MF = number of membership functions. TI = number of training iterations. 

Page 35 of 45

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49



For Peer Review

36 

 

�

FIGURE CAPTIONS 
 
 
Fig. 1 Typology of paths for typhoons crossing or proximal to Taiwan, 1911�2010. 
 
Fig. 2 Shihmen Reservoir catchment and its 12 rain gauges (G1 � G12).  
�

Fig. 3 Reservoir inflow series for eight typhoon events.�

 

Fig. 4 Mean time lag maps (a) radar cell map; (b) 4 sub�catchments; (c) 8 

sub�catchments; (d) 12 sub�catchments.  

 

Fig. 5 Test data set statistics for 30 ANFIS models. 

�

Fig. 6 Model skill score on test data set using Model A as the benchmark model. 

�

Fig. 7 Comparison of observed and predicted values for Model B and Model D at lead 

times (a) t+1; (b) t+2; (c) t+3; (d) t+4; (e) t+5.  

�

Fig. 8 MLR and ANFIS, statistical comparison on RMSE. 

 

Fig. 9 MLR and ANFIS, statistical comparison on CE. 
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