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Abstract

We consider Bayesian model choice for the setting where the observed

data are partially observed realisations of a stochastic population process.

A new method for computing Bayes factors is described which avoids the

need to use reversible jump approaches. The key idea is to perform infer-

ence for a hypermodel in which the competing models are components of

a mixture distribution. The method itself has fairly general applicability.

The methods are illustrated using simple population process models and

stochastic epidemics.

Keywords: Bayes factors; Epidemic models; Markov chain Monte Carlo meth-
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1 Introduction

Consider an observed sequence of event times, each event being of the same type,

and suppose we wish to assess whether a homogeneous Poisson process or an al-

ternative non-homogeneous Poisson process best fits the observations. Alterna-

tively, suppose we have case-detection times in an outbreak of infectious disease,
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and wish to know which of two possible SIR (susceptible-infective-removed) dis-

ease transmission models is most plausible as a model for how the data were

generated, assuming that removals correspond to case-detections. Both of these

examples are special cases of a generic situation in which we wish to assess which

of a number of proposed point-process models best fits the data to hand. In

the first example there is one type of event, and all events are observed. In the

second example there are two event types (infections and removals) but only the

latter are observed. In both examples two models are compared, but in general

we may have more models of interest.

In a Bayesian framework, questions of model choice can be addressed using

Bayes factors, which quantify the relative likelihood of any two models given

the data and within-model prior distributions. Bayes factors can suffer from

two practical drawbacks, namely (i) they can be difficult to compute, and (ii)

they can be highly sensitive to the choice of within-model prior distributions,

and in particular apparently natural choices can give misleading results. Here

our focus is towards addressing the first difficulty, but in respect of the second

we briefly remark that alternative methods of Bayesian model assessment have

their own difficulties in the setting we consider. For example, neither the De-

viance Information Criteron (DIC) nor Bayesian Information Criterion (BIC)

appear entirely natural for settings where the data are typically far from be-

ing independent observations, as is the case when the data are realisations of a

stochastic process. For problems involving missing data, such as the epidemic

example above, it is not even clear how suitable information criteria should best

be defined (Celeux et al. (2006) give nine candidates, for instance). Finally,

methods involving a comparison between the observed data and what the fitted

model would predict typically involve a subjective judgement as to precisely

what should be compared, and how.

In all but the simplest cases, Bayes factors must be evaluated numerically.

For many problems, this can be achieved via reversible jump Markov chain

Monte Carlo (RJMCMC) methods (Green, 1995). To be precise, consider two

models M1 and M2 with parameters θ1 and θ2, respectively, where θj ∈ Θj .
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Define k ∈ {1, 2} to be a model indicator which specifies the model under

consideration. RJMCMC methods proceed by defining a Markov chain with

state space {1} × Θ1 ∪ {2} × Θ2 such that the proportion of time for which

k = j converges to the posterior model probability P (Mj |x), where x denotes

the observed data. Given model prior probabilities P (Mj), the Bayes factor in

favour of model 1 is given by the expression P (M2)P (M1|x)/P (M1)P (M2|x),

which can be estimated from the RJMCMC output.

The main practical challenge in implementing RJMCMC algorithms is con-

structing efficient between-model proposal distributions, i.e. defining how the

Markov chain jumps between the different components of the union of model

parameter spaces. Although there have been theoretical advances which address

this issue (Brooks et al., 2003), for many problems it remains a case of trial and

error. In this paper we propose a method which goes some way to removing

this complication. The key idea is to consider a hypermodel which is itself a

mixture model whose components are the two or more competing models of

interest. An MCMC algorithm can then be defined on the product space of all

model parameters and mixture probabilities. Bayes factors for the models can

be expressed in terms of the posterior means of the mixture probabilities, and

thus estimated from the MCMC output.

Before proceeding to the details, we consider the general context. First,

defining a Markov chain on a product (rather than union) of model-parameter

spaces is the approach pioneered by Carlin and Chib (1995), and further devel-

oped to more general settings (Green and O’Hagan (1998), Dellaportas et al.

(2002), Godsill (2001)). This approach, as for RJMCMC, involves defining a

probability distribution over the set of possible models, and introduces a param-

eter which indicates which model is chosen. In our setting there is no chosen

model as such, but instead a mixture of all possible models. The product-space

approach also relies on defining so-called pseudo-priors for the within-model

parameters, upon which algorithm efficiency is crucially dependent, and this

can be difficult in practice. Our methods do not involve the need to introduce

such pseudo-priors, although for some missing data problems we need to specify
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similar prior distributions for the missing data.

Second, computational methods for the Bayesian analysis of mixture models

are well-established, both when the number of components in the mixture is

known (Diebolt and Robert, 1994) and when it is not (Richardson and Green,

1997). The typical situation under consideration is one in which the data are

assumed to comprise independent and identically distributed observations from

the proposed mixture distribution(s). In contrast, we consider the case where

there is only one datum, but it consists of the realisation of a stochastic process,

either fully or partially observed.

The paper is structured as follows. Section 2 contains general theory which

describes the inference framework in detail, and computational matters are de-

scribed in Section 3. Section 4 contains examples and we conclude with discus-

sion in Section 5.

2 General Theory

In this section we introduce the underlying framework of interest. For ease of

exposition we adopt the usual abuse of notation and terminology in which ‘a

density π(θ)’ can refer to both the density function π of a random variable θ,

or the same function evaluated at a typical point θ.

2.1 Mixture model with no missing data

Suppose we observe data x, and wish to consider n competing modelsM1, . . . ,Mn.

For i = 1, . . . , n denote the probability density of x under model i by πi(x|θi),

where θi denotes the vector of within-model parameters, and set θ = (θ1, . . . , θn).

We assume that all the πi(x|θi) are densities with respect to the same common

reference measure. Define a mixture model by

π(x|α, θ) =
n∑

i=1

αiπi(x|θi), (1)

where α = (α1, . . . , αn) satisfies
∑n

i=1 αi = 1 and αi ≥ 0 for i = 1, . . . , n.
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2.2 Mixture model with missing data

In our setting, the data x may be a partial observation of a stochastic process.

In consequence, πi(x|θi) in (1) may be intractable, meaning that it cannot be

analytically or numerically evaluated in an efficient manner. We adopt data

augmentation to overcome this problem, as follows. Let y = (y1, . . . , yN ) be

a vector comprising different kinds of ‘missing data’, and for i = 1, . . . , n let

I(i) ⊆ {1, . . . , N} and define yI(i) as the vector with components yj , j ∈ I(i).

Thus yI(i) denotes the missing data for model i, and in practice it is chosen to

make the augmented probability density πi(x, yI(i)|θi) tractable. If model i does

not require missing data, then yI(i) is null. Note that this formulation allows

different models to share common elements of missing data. Conversely, if each

model has its own missing data then we simply set I(i) = i for i = 1, . . . , n.

In order to define a mixture model using missing data, it is necessary to

introduce additional terms so that each component of the mixture is a probabil-

ity density function on the possible values of x and y. To this end, we assume

that there exist tractable probability densities πi(y−I(i)|x, yI(i), θ), where y−I(i)

denotes the vector with components yj , j /∈ I(i). If the latter set is empty then

we set πi(y−I(i)|x, yI(i), θ) = 1. We refer to the πi(y−I(i)|x, yI(i), θ) terms as

missing data prior densities. In practice, they need not explicitly depend on

any of x, yI(i) or θ, depending on the application at hand.

Define an augmented mixture model by

π(x, y|α, θ) =
n∑

i=1

αiπi(x, yI(i)|θi)πi(y−I(i)|x, yI(i), θ). (2)

Here we assume that each πi(x, yI(i)|θi)πi(y−I(i)|x, yI(i), θ) term in the sum in

(2) is a probability density with respect to a common reference measure, from

which it follows that π(x, y|α, θ) is also a probability density.

2.3 Bayes Factors

We now show how Bayes factors can be computed directly from certain sum-

maries of the posterior distribution of α given the data x. For simplicity we
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assume that α, θ1, . . . , θn are mutually independent a priori. By Bayes’ Theo-

rem,

π(α|x) = π(x|α)π(α)
π(x)

=
π(α)

∑n
i=1 αimi(x)

π(x)
,

where π(α) denotes the prior density of α and, for i = 1, . . . , n,

mi(x) =

∫
πi(x, yI(i)|θi)πi(θi) dθidyI(i),

where πi(θi) is the within-model prior density of θi. Note also that

1 =

∫
π(α|x) dα = π(x)−1

n∑
i=1

E[αi]mi(x),

whence

π(x) =

n∑
i=1

E[αi]mi(x). (3)

Now for i ̸= j, the Bayes factor in favour of Mi relative to Mj is defined to

be Bij = Bij(x) = mi(x)/mj(x). However,

E[αi|x] =

∫
αiπ(α|x) dα

= π(x)−1

∫
αi

 n∑
j=1

αjmj(x)

π(α) dα

= π(x)−1
n∑

j=1

E[αiαj ]mj(x),

which combined with (3) yields that

E[αi|x] =
∑n

j=1E[αiαj ]mj(x)∑n
j=1E[αj ]mj(x)

, i = 1, . . . , n. (4)

Next, fix k ∈ {1, . . . , n}. Dividing the numerator and denominator of the frac-

tion in (4) by mk(x) and rearranging we obtain

n∑
j=1

(E[αj ]E[αi|x]− E[αiαj ])Bjk(x) = 0, i = 1, . . . , n. (5)

It remains to solve equations (5) to find Bjk(x), j = 1, . . . , n. Define A as

the n× n matrix with elements

Aij = E[αi|x]E[αj ]− E[αiαj ], 1 ≤ i, j ≤ n.
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Note that A depends on x, although we suppress this dependence in our nota-

tion. Define Ã−k as the (n−1)×(n−1) matrix formed by removing the kth row

and kth column of A. Similarly for j ̸= k define Ã−jk as the (n− 1)× (n− 1)

matrix formed from Ã−k by replacing the elements Aij with −Aik, i = 1, . . . , n,

i ̸= k.

Lemma 1. (a) If det Ã−k ̸= 0 then

Bjk(x) =
det Ã−jk

det Ã−k

. (6)

(b) Suppose that 0 < mi(x) < ∞ for i = 1, . . . , n. Then if either (i) n = 2 and

0 < E[α1] < 1, or (ii) α has a Dirichlet prior distribution, D(p1, . . . , pn), then

Bjk(x) =
Ajk

Akj
.

The proof of Lemma 1 is in the Appendix. The result shows that the required

Bayes factors can be expressed in terms of the prior distribution summaries E[αi]

and E[αiαj ] and the posterior means E[αi|x], i, j = 1, . . . , n.

The condition on the determinant of Ã−k in Lemma 1(a) is not vacuous in

general, as illustrated by the somewhat pathological case where αi has a point

mass prior for all i = 1, . . . , n. Then for all 1 ≤ i, j ≤ n, E[αi|x] = E[αi] and

E[αiαj ] = E[αi]E[αj ], whence Aij = 0 and (5) cannot be solved to find the

Bayes factors.

At first sight the need for a Dirichlet prior on α to yield simple evaluation of

the Bayes factors via Lemma 1 may appear restrictive. We make three remarks.

First, the mixture construction is itself introduced solely as a tool for evaluation

of Bayes factors, and so there is no particular need to assign an arbitrary prior

distribution to α. Second, in practice a Dirichlet prior is both straightforward to

use and flexible enough for computational purposes as described below. Third,

it may well be that (6) holds for arbitrary prior distributions on α, subject

to mild constraints which imply that detÃ−k ̸= 0, but this does not appear

straightforward to prove.
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Finally, the simple form for the Bayes factor in Lemma 1 (b) does not appear

to be true in general; an example for n = 3 can be found in the Appendix.

2.4 Two competing models

We give special attention to the case n = 2 since this is of practical importance.

Here we have α = (α1, 1− α1) and Lemma 1 yields that

B12 =
E[α1]− E[α2

1]− E[α1|x](1− E[α1])

E[α1]E[α1|x]− E[α2
1]

.

It follows that
E[α1]− E[α2

1]

1− E[α1]
≤ E[α1|x] ≤

E[α2
1]

E[α1]
,

with the upper and lower bounds corresponding to Bayes factors entirely in

favour of models 1 and 2, respectively. A practical consequence is that any

numerical estimate of E[α1|x] lying outside these bounds must be incorrect.

Under the further assumption that π(α) is a uniform density, so that α1 ∼

U(0, 1), we obtain

B12 =
3E[α1|x]− 1

2− 3E[α1|x]
,

π(α1|x) ∝ α1m1(x) + (1− α1)m2(x),

E[α1|x] = (2m1(x) +m2(x))/(3(m1(x) +m2(x)) and 1/3 ≤ E[α1|x] ≤ 2/3.

Finally, if α is assigned a Dirichlet prior distribution, bounds for E[αi|x] for

any value of n can be obtained. Full details can be found in the proof of Lemma

1 in the Appendix.

3 Computation

We now describe how to use the mixture framework in practice, specifically via

MCMC methods. Our objective is to sample from the target density

π(α, θ, y|x) ∝ π(x, y|α, θ)π(α)π(θ), (7)

and the first issue is that of assigning any missing data prior density terms in

π(x, y|α, θ).

8



3.1 Missing data prior densities

Although the desired Bayes factors are invariant to the choice of any missing

data prior densities, this choice is important in practice for computations. This

is largely a problem-specific issue, but we make two general remarks. First, if

all models share the same missing data (y1, say) then no missing data prior

densities are required, and (7) becomes

π(α, θ, y|x) ∝
n∑

i=1

αiπi(x, y1|θi)π(α)π(θ).

Second, it can be beneficial to assign missing data priors which mimic the

marginal density of the y−I(i) components in other models. As discussed below,

the mixing properties of suitable MCMC algorithms are improved if the chains

can easily move between different models, and such movement is hindered if the

density of the missing data in one model is very different to the missing prior

density assigned in another.

3.2 MCMC methods

Sampling from the target density defined at (7) will typically be possible via

a range of standard MCMC methods, but here we offer some observations on

practical aspects. The fact that the target density is a sum will usually make

direct Gibbs sampling infeasible, but the approach of Diebolt and Robert (1994),

which relies on the introduction of allocation variables which indicate the ‘true’

model as described in Dempster et al. (1977), can be adapted as follows.

Introduce z = (z1, . . . , zn) such that zi ∈ {0, 1} and
∑n

i=1 zi = 1. Thus z

can take n possible values, each of which is a vector of zeroes other than a 1 at

one position. Define the augmented likelihood

π(z, x, y|α, θ) =
n∏

i=1

(αiπi(x, yI(i)|θi)πi(y−I(i)|x, yI(i), θ))zi ,

so that the augmented likelihood at (2) is recovered by summing over z. If

the prior distribution on α is Dirichlet, D(p1, . . . , pn), it follows that α has full
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conditional distribution

α| · · · ∼ D(p1 + z1, . . . , pn + zn).

The full conditional distribution of z is multinomial M(1; q1, . . . , qn), where the

probabilities are given by

qi ∝ αiπi(x, yI(i)|θi)πi(y−I(i)|x, yI(i), θ), i = 1, . . . , n.

For i = 1, . . . , n, θi has full conditional distribution given by

π(θi| · · · ) ∝

 πi(θi) zi = 0,

πi(x, yI(i)|θi)πi(θi) zi = 1.

Finally, any missing data component yj , j = 1, . . . , N , has full conditional

distribution given by

π(yj | · · · ) ∝

 πi(x, yI(i)|θi) j ∈ I(i),

πi(y−I(i)|x, yI(i), θi) j /∈ I(i),

where i denotes the current model, i.e. zi = 1.

The prior distribution for α can often be chosen to improve the mixing of the

MCMC algorithm above. In particular this can be achieved by trying to make

the multinomial distribution of z as close to uniform as possible. To illustrate

this, consider the trivial example with two models in which π1(x)/π2(x) =

m1(x)/m2(x) = B12 = 50. The full conditional distributions for z1 and α1 are,

respectively, Bern(50α1/(50α1+(1−α1))) and Beta(z1+p1, 1−z1+p2), where

Bern and Beta respectively denote Bernoulli and Beta distributions. Setting

p1 = p2 = 1 produced wildly different estimates for B12 (87.8, 40.9, 547.1) for

three MCMC runs of 106 iterations, while repeating the exercise with p1 = 1

and p2 = 50 yielded estimates 50.3, 50.3 and 50.7.

It is of course not necessary to use allocation variables, and one can equally

use any suitable MCMC scheme for the target density. However, the above

illustrates the fact that the full conditional distributions of θi and any missing

data will be of mixture form, which has implications for the design of efficient

algorithms. Note that this also illustrates that the marginal densities π(θi|x)
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are mixtures, and in particular are not the same as those obtained from a single-

model analysis, which are proportional to πi(x|θi)πi(θi). The marginal densities

can be either be explored via a standard single-model MCMC algorithm, or by

using the allocation variables approach and conditioning the output on zi = 1

to obtain within-model posterior density samples for θi.

3.3 Connections with other approaches

The framework we adopt is related to that described in Carlin and Chib (1995)

and Godsill (2001), in which the target distribution of interest is defined over

a product space of models and their parameters. In order to clarify the differ-

ences in our approach, consider the simplest possible setting in which we have

two models defined by densities π1(x|θ1) and π2(x|θ2), and within-model prior

densities π1(θ1) and π2(θ2). The framework of Carlin and Chib (1995) and

Godsill (2001) introduces a model indicator k ∈ {1, 2} to denote the ‘current’

model. The target density of interest is specified by

π(k, θ1, θ2|x) ∝ πk(x|θk)πk(θk|k)π(θ3−k|θk, k)π(k),

where it is necessary to specify π(θ3−k|θk, k), i.e. the ‘prior’ for the non-current

model parameter. Assuming θ1 and θ2 to be independent of each other and k

gives that π(θ3−k|θk, k) = π3−k(θ3−k).

Conversely, our formulation has target density

π(α, θ1, θ2|x) ∝ π(α)π1(θ1)π2(θ2)[α1π1(x|θ1) + α2π2(x|θ2)].

If we adopt the allocation-variable approach, the target density becomes

π(z, α, θ1, θ2|x) ∝ π(α)π1(θ1)π2(θ2)[α1π1(x|θ1)]z1 [α2π2(x|θ1)]z2 ,

from which we see that it is the existence of the α parameter which distinguishes

our formulation from that of Carlin and Chib (1995) and Godsill (2001). Of

course, posterior estimation of α is what enables us to estimate Bayes factors,

so this difference is an important one.
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The general formulation in Godsill (2001) also allows each model to poten-

tially share parameters with other models. Specifically, the parameters of model

k will be some subset of a set of parameters {θ1, . . . , θN}. This is similar to the

way we have dealt with missing data, although the two set-ups are not tech-

nically equivalent, and in particular one cannot simply treat our missing data

as model parameters. The fundamental difference is that missing data may not

always require a prior, whereas model parameters always do. For instance, if a

density π(x|θ) is intractable, then our missing data approach uses Bayes’ Theo-

rem in the form π(θ, y|x) ∝ π(x, y|θ)π(θ) whereas augmenting with extra model

parameter ψ gives π(θ, ψ|x) ∝ π(x|θ, ψ)π(θ, ψ).

4 Examples

In this section we illustrate the theory with three examples featuring popu-

lation processes or epidemics. First, however, we consider a simpler classical

example which briefly compares our methods with alternatives. This example

illustrates that our methods have wider applicability than population processes,

and moreover appear to be competitive against alternative methods.

4.1 Pines data

We consider the well-known model choice problem of assigning non-nested linear

regression models to the pines data set in Williams (1959). These data have been

analyzed by several authors (see, for example, Han and Carlin, 2001; Carlin and

Chib, 1995; Friel and Pettitt, 2008) in order to compare methods for estimating

Bayes factors. The data describe the maximum compression strength parallel to

the grain yi, the density xi, and the resin-adjusted density zi for 42 specimens

of radiata pine. The two competing models we consider are

M1 : yi = α+ β(xi − x̄) + ϵi, ϵi ∼ N(0, σ2);

M2 : yi = γ + δ(zi − z̄) + ηi, ηi ∼ N(0, τ2).
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Table 1: Pines data set: Comparison of Bayes factors from different methods

Method Bias Standard Error

RJMCMC 67 2678

RJ corrected 9 124

Power posterior (serial MCMC) 10 132

Power posterior (population MCMC) 22 154

Mixture method 10 39

We assigned identical prior distributions for the parameters α, β, γ, δ, σ2 and τ2

as the papers cited above. We assigned a Beta(100, 1) prior distribution for

α1 and carried out 100 MCMC runs of our method, this being the same as

the number of MCMC runs used for the methods described in Friel and Pettitt

(2008).

Furthermore, Friel and Pettitt (2008) compared conventional RJMCMC

methods (with each model a priori equally likely), ‘corrected’ RJMCMC meth-

ods (model priors chosen to improve mixing) and two power posterior methods

(Serial and Population MCMC). Full details can be found in Friel and Pettitt

(2008), and for convenience we simply quote the results obtained in Table 1,

along with our result. The bias is calculated by comparison with the estimate

of 4862 obtained by numerical integration in Green and O’Hagan (1998). It can

be seen that our method is certainly competitive.

4.2 Poisson process vs. linear birth process

Our first population process example is analytically tractable and illustrates that

our methods produce results in agreement with the known true values. Consider

data given by the vector of event times x = (x1, . . . , xn) observed during a time

interval [0, T ], where 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ T . We will compare two models,

namely a homogeneous Poisson process of rate λ (M1) and a linear birth process

{X(t) : t ∈ [0, T ]} with per-capita birth rate µ and X(0) = 1 (M2). Suppose

further that λ and µ are assigned independent exponential prior distributions
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with mean θ−1. The model likelihoods, which we write as densities with respect

to the reference measure induced by a unit rate Poisson process on [0, T ], are

π1(x|λ) = λn exp {−(λ− 1)T} , π2(x|µ) = n!µn exp {−µ[(n+ 1)T − S(x)] + T} ,

where S(x) =
∑n

j=1 xj . In this setting no missing data are required so we use

the model defined at (1). The Bayes factor in favour of M1 relative to M2 is

B12 =

∫
π1(x|λ)π(λ) dλ∫
π2(x|µ)π(µ) dµ

=

∫∞
0
θλn exp {−λ(T + θ)} dλ∫∞

0
θn!µn exp {−µ[(n+ 1)T − S(x) + θ]} dµ

=
[(n+ 1)T − S(x) + θ]n+1

(T + θ)n+1n!
.

Assuming that α1 ∼ U(0, 1) a priori, a simple Gibbs sampler for the target

density consists of parameter updates as follows:

α1| · · · ∼ Beta(z1 + 1, 2− z1),

z1| · · · ∼ Bern

(
α1π1(x|λ)

α1π1(x|λ) + (1− α1)π2(x|µ)

)
,

λ| · · · ∼

 Γ(1, θ) z1 = 0,

Γ(n+ 1, T + θ) z1 = 1,

µ| · · · ∼

 Γ(n+ 1, (n+ 1)T − S(x) + θ) z1 = 0,

Γ(1, θ) z1 = 1,

where Γ(m, ξ) denotes a Gamma distribution with density f(x) ∝ xm−1 exp(−ξx).

Typical results from MCMC runs are given in Table 2, illustrating that the

Gibbs sampler recovers the true known values. We found that the algorithm

mixing was good in all cases.

Finally, we comment on the relationship between the above algorithm and

standard reversible jump methods. The RJMCMC requires a way of proposing

a value of µ given λ for jumps from M1 to M2, and vice versa. In practice

it is not immediately obvious how best to do this, but an approach suggested

in Green (2003) is to propose µ independently of λ, ideally according to the

within-model density π(µ|x). This is similar to what we obtain above.
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Table 2: Example 2: Bayes factors from MCMC output (B̂12) compared to true

values (B12).

n T S(x) θ B̂12 B12

5 10 36 1 1.15 1.148

5 10 36 0.01 1.58 1.587

5 10 25 1 10.25 10.239

10 20 150 1 0.18 0.181

4.3 SIR model with two different infection periods

Recall the standard SIR (Susceptible-Infective-Removed) epidemic model (see

e.g. Andersson and Britton (2000), Chapter 2), defined as follows. A closed

population contains N + a individuals of whom N are initially susceptible and

a initially infective. Each infective remains so for a period of time distributed

according to a specified random variable TI , known as the infectious period, after

which it becomes removed and plays no further part in the epidemic. During

its infectious period an infective makes contact with each other member of the

population at times given by a homogeneous Poisson process of rate β/N , and

any contact occurring with a susceptible individual results in that individual

immediately becoming infective. The infectious periods of different individuals

and the Poisson processes between different pairs of individuals are assumed to

be mutually independent. The epidemic ends when there are no infectives left

in the population.

A distinguishing characteristic of infectious disease data is that the infection

process itself is rarely observed, and so we suppose that the data r consist of

n observed removal times r1 ≤ . . . ≤ rn. We consider two competing models,

namely that TI ∼ Γ(1, γ) (M1) and TI ∼ Γ(m,λ) (M2), where the shape pa-

rameter m will be assumed known. Both model likelihoods π1(r|γ) and π2(r|λ)

are intractable in practice since their evaluation relies on integrating over all

possible realisations of the infection process, and so we introduce missing data

as follows.
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For j = 1, . . . , n define ij as the infection time of the individual removed at

time rj . We assume that there is a = 1 initial infective, denoted by p, so that

ip ≤ ij for all j ̸= p. For simplicity we assume a priori that p is equally likely to

be any of the n infected individuals and that ip has an improper uniform prior

density on (−∞, r1). Finally, define i = {ij : i ̸= p} to be the n − 1 non-initial

infection times. For k = 1, 2 the augmented model likelihoods, which we write

here with respect to Lebesgue measure on R2n−1, are

πk(i, r|p, ip, βk, ηk) = n∏
j=1;j ̸=p

(βk/N)I(ij−)

 exp

{
−(βk/N)

∫ rn

ip

S(t)I(t) dt

} n∏
j=1

fk(rj − ij |ηk)

 ,

where S(t) and I(t) denote respectively the numbers of susceptibles and infec-

tives at time t, I(t−) = lims↑t I(s), βk denotes the parameter β under Mk, fk

denotes the infectious period density under Mk, η1 = γ and η2 = λ (see e.g.

O’Neill and Roberts (1999), Streftaris and Gibson (2004), Höhle and O’Neill

(2005)). Note that in this formulation, the missing data i, p and ip are assumed

common to both models, although these quantities could also be model-specific.

The target density of interest is

π(α1, β1, β2, γ, λ|r) ∝ [α1π1(i, r|p, ip, β1, γ)+(1−α1)π2(i, r|p, ip, β2, λ)]π(β1)π(β2)π(γ)π(λ).

Note that here we need no missing data priors densities because the the missing

data appear in both model likelihoods. Prior distributions for β1, β2, γ and λ

were all set as Γ(1, 1), and α1 ∼ Beta(p1, p2).

Introducing the allocation variable z1 yields the full conditional distributions
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below, each of which yields a simple Gibbs update for the parameter in question.

α1| · · · ∼ Beta(z1 + p1, 1− z1 + p2),

z1| · · · ∼ Bern

(
α1π1(i, r|p, ip, β1, γ)

α1π1(i, r|p, ip, β1, γ) + (1− α1)π2(i, r|p, ip, β2, λ)

)
,

β1| · · · ∼

 Γ(n,N−1
∫ rn
ip
S(t)I(t) dt+ 1) z1 = 0,

Γ(1, 10−3) z1 = 1,

β2| · · · ∼

 Γ(1, 1) z1 = 0,

Γ(n,N−1
∫ rn
ip
S(t)I(t) dt+ 1) z1 = 1,

γ| · · · ∼

 Γ(n+ 1,
∑n

j=1(rj − ij) + 1) z1 = 0,

Γ(1, 1) z1 = 1,

λ| · · · ∼

 Γ(1, 1) z1 = 0,

Γ(nm+ 1,
∑n

j=1(rj − ij) + 1) z1 = 1,

Finally, the infection time parameters i, ip and p are updated using a Metropolis-

Hastings step as follows. One of the n infected individuals, j say, is chosen

uniformly at random. A proposed new infection time for j is defined as i∗j =

rj − x, where x is sampled from a Γ(1, δ) distribution. Note that this may

also result in proposed new values for p and ip; either way, proposed values are

denoted i∗, i∗p∗ and p∗ and accepted with probability

1 ∧
πk(i

∗, r|p∗, i∗p∗ , βk, ηk)

πk(i, r|p, ip, βk, ηk)
exp(δ(ij − i∗j )),

where k = 2− z1 denotes the ‘current’ model.

To illustrate the algorithm, we considered the SIR model withN = 50, a = 1,

various β values and Γ(m̃, λ̃) infectious periods with three different choices for

(m̃, λ̃). For each scenario we simulated 100 data sets, and evaluated the Bayes

factor using the above MCMC algorithm for each data set. For two of the (m̃, λ̃)

pairs we set the shape parameter m in M2 equal to m̃, and for one we did not.

In practice, one is rarely interested in data from epidemics with few cases, so we

also evaluated the Bayes factors using a subset of each of the 100 simulations

in which the epidemic had clearly ‘taken off’, evaluated by eye, which we refer
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Table 3: Example 3: Bayes factors from MCMC output.

Scenario True model β M2 E[B12](st.dev.) E[B12](st.dev.)

(all simulations) (major epidemics)

A Γ(5, 5) 2 Γ(5, λ) 0.06 (0.06) 0.008 (0.006)

B Γ(1, 0.75) 1 Γ(1, λ) 1.03 (0.17) 1.05 (0.22)

C Γ(1, 1) 3 Γ(2, λ) 3022 (3969) 2291 (3428)

to as major epidemics. The numbers of major epidemics were 63, 56 and 65 for

scenarios A, B and C, respectively.

Table 3 contains a summary of the Bayes factors estimated from the sim-

ulated data sets. In scenarios A, B and C the true models are M2, both M1

and M2, and M1 respectively. The estimated Bayes factors behave as we might

expect, giving clear evidence in favour of modelsM2 andM1 for scenarios A and

C respectively, whilst for scenario B the mean of B12 is close to the true value

of 1. In scenario A there is a marked difference in the Bayes factors when using

all simulations compared to using only major epidemics. A possible explanation

is that major epidemics contain more data, and so any difference between the

models becomes easier to detect. There is a less pronounced difference in Bayes

factors in scenario C, although the large posterior standard deviations suggest

there is no compelling evidence for a clear difference in this case.

4.4 SIR epidemic model vs. Poisson process

Our final example is motivated by the situation in which we wish to decide

whether observed cases of disease are the result of an epidemic (with transmis-

sion between individuals) or simply sporadic events. Specifically, suppose we

observe n events at times 0 < r1 < . . . < rn < T , and let r = (r1, . . . , rn).

Under model M1, r is a vector of event times of a homogeneous Poisson process

of rate λ observed during the time interval [0, T ]. Under model M2, r is a vec-

tor of removal times in an SIR epidemic model with exponentially distributed

infectious periods, again observed during [0, T ].
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As for the previous example, we proceed by adding unobserved infection

times in order to obtain a tractable likelihood for M2. For simplicity we assume

that there is one initial infective at time zero, and furthermore that there is

a population of N individuals in total, where N ≥ n. Unlike the previous

example, in which we unobserved infection times with observed removal times,

we here define i = (i2, . . . , im) to be a vector of m ordered infection times, so

that 0 = i1 < i2 < . . . , < im, where n ≤ m ≤ N . The reason for this approach

is that it appears to be easier when it comes to assigning missing data prior

densities, as described below. Note also that under M2 we allow the possibility

that the epidemic is still in progress at time T .

The likelihood for M1 and augmented likelihood for M2 are respectively

given by

π1(r|λ) = λn exp {−λT} ,

π2(i, r|β, γ) =

 m∏
j=2

βS(ij−)I(ij−)

 n∏
j=1

γI(rj−)

 exp

{
−
∫ T

0

βS(t)I(t) + γI(t) dt

}
.

To proceed we require a missing data prior density π1(i|r, λ, β, γ). Now for a

given ordered vector of event times r, π2(i, r|β, γ) > 0 if and only if i ∈ F(r),

where

F(r) = {i : i1 < i2 < . . . < im < T ; ik < rk−1, k = 1, . . . , n+ 1; ik < T, k = n+ 2, . . . ,m} .

One way to define π1(i|r, λ, β, γ) is via the following construction, which sim-

ulates an element of F(r). First, select m according to some probability mass

function f on {n, n+ 1, . . . , N}. Next, sequentially set i2 ∼ TrExp(µ; i1, r1),

i3 ∼ TrExp(µ; i2, r2), . . ., in+1 ∼ TrExp(µ; in, rn), in+2 ∼ TrExp(µ; in+1, T ), . . .,

im ∼ TrExp(µ; im−1, T ), where TrExp(µ; a, b) denotes an exponential random

variable with rate µ, truncated to the interval (a, b). This in turn induces a

probability distribution with density

π1(i|r) = f(m)
m−1∏
j=1

µ exp(−µij)
exp(−µij−1)− exp(−µsj−1)

, i ∈ F(r),

where sj = rj for j = 1, . . . , n and sj = T for n < j ≤ m, and we set

π1(i|r, λ, β, γ) = π1(i|r).
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We remark that it is not necessary to define the missing data prior density in

this manner. For instance, one could proceed by choosing m as before and then

assigning a uniform density to the set {i : i2 < i3 < . . . < im}. The practical

drawback with this is that, if using allocation variables, the Markov chain can

never leave model M1 if i is such that π2(i, r|β, γ) = 0.

Prior distributions were assigned as β ∼ Γ(νβ , µβ), γ ∼ Γ(νγ , µγ), λ ∼

Γ(νλ, µλ) and α1 ∼ Beta(p1, p2).

An MCMC algorithm is easily developed in a similar manner to the previous

example. Specifically we have the following full conditional distributions:

α1| · · · ∼ Beta(z1 + p1, 1− z1 + p2),

z1| · · · ∼ Bern

(
α1π1(r|λ)π1(i|r)

α1π1(r|λ)π1(i|r) + (1− α1)π2(i, r|β, γ)

)
,

λ| · · · ∼

 Γ(νλ, µλ) z1 = 0,

Γ(n+ νλ, T + µλ) z1 = 1,

β| · · · ∼

 Γ(m− 1 + νβ ,
∫ T

0
S(t)I(t) dt+ µβ) z1 = 0,

Γ(νβ , µβ) z1 = 1,

γ| · · · ∼

 Γ(n+ νγ ,
∫ T

0
I(t) dt+ µγ) z1 = 0,

Γ(νγ , µγ) z1 = 1.

Updates for i are achieved as follows. If z1 = 1 then i has full conditional

density π1(i|r) which can be sampled as described above. If z1 = 0 then i can

be updated by moving, adding or deleting infection times as described in O’Neill

and Roberts (1999).

To illustrate this algorithm we considered a data set taken from an outbreak

of Gastroenteritis described in Britton and O’Neill (2002) which take the form

of 28 case detection times among a population of 89 individuals. The daily

numbers of cases on days 0 to 7 are given respectively by

1, 0, 4, 2, 3, 3, 10, 5.

Strictly speaking, such data should be analysed by allowing the unknown time

of the initial infection, i1, to be estimated (see e.g. O’Neill and Roberts (1999)).
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Since our main objective here is to illustrate our methodology, we instead make

the simplifying assumption that day 0 actually corresponded to the start of the

outbreak, and then consider the remaining 27 case detection times.

For the missing data prior density π1(i|r) we set

f(m) =
(1− θ)m−nθ

1− (1− θ)N−n+1
, m = n, . . . , N,

so that m has a truncated Geometric distribution with parameter θ, and set

µ = 4 in the truncated exponential distribution.

We ran the algorithm with two choices of T , the time of observation, with β,

γ and µ all given Exp(1) prior distributions. First, with T = 10 we estimated the

Bayes factor in favour of the Poisson model to be 0.003, here using p1 = 400, p2 =

1 to obtain reasonable mixing in the MCMC algorithm. So in this case there

appears to be overwhelming evidence to suggest that the case detection times are

better described by an epidemic model than a Poisson process. Second, we set

T = 3.5 and used only the case observation times up until day 3. We estimated

the Bayes factor in favour of the Poisson model to be 21.1. In comparison to

the T = 10 case we would certainly expect a value closer to 1, since there are

less data, and equally it is intuitively reasonable that there are insufficient data

to provide evidence in favour of an epidemic.

5 Discussion

We have presented a new method for evaluating Bayes factors. Although mo-

tivated by epidemic models and population processes, our approach is clearly

applicable in more general settings, as illustrated by the pines data set example

in Section 4.

The methods we propose are not without drawbacks. First, in common with

the product-space methods it seems likely that they are best suited to situa-

tions in which there are only a small number of competing models, although we

have not investigated this issue in this paper. Second, constructing missing data

prior densities, when required, seems likely to require problem-specific insights
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in order to obtain reasonably efficient algorithms. Intuitively we expect that it

is best to choose missing data prior distributions to mimic the true distribution

of missing data in competing models. These aspects, as well as the method in

general, appear worthy of more detailed exploration.
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6 Appendix

6.1 Proof of Lemma 1

(a) Define

b = [B1k(x) · · ·Bnk(x)]
T ,

so that (5) can be written as the matrix equation Ab = 0. Since Bkk(x) = 1,

we can rewrite (5) as∑
j ̸=k

AijBjk(x) = −Aik, i = 1, . . . , n. (8)

Now, for 1 ≤ l, j ≤ n,

Alj = E[αl|x]E[αj ]− E[αlαj ]

= E[αj ]

1−
∑
i ̸=l

E[αi|x]

− E

1−
∑
i̸=l

αi

αj


= −

∑
i ̸=l

(E[αj ]E[αi|x]− E[αiαj ])

= −
∑
i ̸=l

Aij . (9)

Summing (8) over i ̸= k and using (9) now yields∑
i̸=k

∑
j ̸=k

AijBjk(x) = −
∑
i ̸=k

Aik

so
∑
j ̸=k

∑
i ̸=k

Aij

Bjk(x) = −
∑
i ̸=k

Aik

so
∑
j ̸=k

AkjBjk(x) = −Akk,

which is the equation obtained from (8) when i = k. In other words, at least

the kth equation in (8) is redundant. It is therefore sufficient to consider the
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system of equations defined by

Ã−kb̃ = c̃, (10)

where b̃ is the (n− 1)× 1 column vector formed by removing Bkk(x) = 1 from

b, and c̃ is the (n−1)×1 column vector with components −Aik for i = 1, . . . , n,

i ̸= k. Application of Cramer’s rule to solve (10) now yields part (a).

(b) For the second part, we require some preliminary results. WriteE[αi|x] =

f(mi(x)), say. From (4) we have

f(mi(x)) =

∑n
j=1E[αiαj ]mj(x)∑n
j=1E[αj ]mj(x)

=

∑
j ̸=iE[αiαj ]mj(x) + E[α2

i ]mi(x)∑
j ̸=iE[αj ]mj(x) + E[αi]mi(x)

.

Differentiation yields that f ′(mi(x)) ≥ 0 if and only if C ≥ 0, where

C =
∑
j ̸=i

(E[α2
i ]E[αj ]− E[αi]E[αiαj ])mj(x).

Thus if C ≥ 0 we obtain the bounds∑
j ̸=iE[αiαj ]mj(x)∑
j ̸=iE[αj ]mj(x)

≤ E[αi|x] ≤
E[α2

i ]

E[αi]
, (11)

and moreover the lower and upper bounds are attained when mi(x) = 0 and

mi(x) → ∞, respectively. In particular, for C > 0 and 0 < mi(x) < ∞ then

both inequalities are strict. If C ≤ 0 then the inequalities in (11) are simply

reversed. From now on we assume that 0 < mi(x) <∞ for all i = 1, . . . , n.

Now if n = 2 then (11) yields that for i ̸= j,

E[α1α2]

E[αj ]
̸= E[αi|x],

from which it follows that Aij = E[αi|x]E[αj ] − E[α1α2] ̸= 0. The result for

n = 2 now follows directly from part (a).

For the final part, in which α has a Dirichlet prior distribution, we first show

that det Ã−k ̸= 0, so that (10) has a unique solution. Secondly we show that

this solution is given by Bjk(x) = Ajk/Akj .
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We start with conditions under which C > 0. Specifically, if Cov(αi, αj) < 0

for all i ̸= j and Var(αi) > 0 then

E[αi]E[αj ] > E[αiαj ]

so E[α2
i ]E[αi]E[αj ] > E[αi]

2E[αiαj ],

from which it follows that C > 0.

Next, suppose that α ∼ D(p1, . . . , pn) and set p0 =
∑n

i=1 pi. Thus for i ̸= j,

E[αiαj ] = pipj/(p0(p0 + 1)), E[αi] = pi/p0, E[α2
i ] = pi(pi + 1)/p0(p0 + 1),

Cov(αi, αj) < 0 and Var(αi) > 0. It follows that C > 0 and that (11) simplifies

to
pi

pi + 1
< E[αi|x] <

pi + 1

p0 + 1
. (12)

Next, note that for i ̸= j we have

Aij = E[αj ]E[αi|x]− E[αiαj ]

=
pj
p0

(
E[αi|x]−

pi
p0 + 1

)
= bjai(x),

say, where bj = pj/p0. It follows from (12) that Aij > 0. Similarly

Aii =
pi
p0

(
E[αi|x]−

pi + 1

p0 + 1

)
= biãi(x),

say. Recall that Ã−k is the matrix A with the kth row and column deleted. It

now follows that

det(Ã−k) =

∏
i ̸=k

bi

 det(D + E),

where D is an (n − 1) × (n − 1) diagonal matrix with entries ãi(x) − ai(x) =

−1/(p0 + 1), i ̸= k, and E is an (n − 1) × (n − 1) matrix consisting of (n − 1)

identical columns, each of which contains the (n−1) entries ai, i ̸= k. Moreover

we can write E as the product uvT , where u is an (n−1)×1 column vector with

entries ai, i ̸= k, and v is the (n − 1) × 1 column vector of 1’s. In particular,

det Ã−k ̸= 0 if and only if det(D + E) = det(D + uvT ) ̸= 0.
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Now from the matrix determinant lemma,

det(D + uvT ) = (1 + vTD−1u)det(D),

and since det(D) = (−1/(p0 + 1))n−1 ̸= 0, we focus on 1 + vTD−1u. Now

1 + vTD−1u = 1−
∑
i ̸=k

(p0 + 1)ai(x)

= 1−
∑
i ̸=k

[(p0 + 1)E[αi|x]− pi]

= 1− (p0 + 1)(1− E[αk|x]) + (p0 − pk)

= E[αk|x](p0 + 1)− pk > 0,

where the last inequality follows from (12). Hence det Ã−k ̸= 0 as required.

Finally, we show that for i ̸= k, (8) is satisfied by Bjk(x) = Ajk/Akj . First,

it is straightforward to show that for i ̸= k,

ãi(x) +
∑

j ̸=k;j ̸=i

aj(x) = −ak(x). (13)

Now, ∑
j ̸=k

Aij
Ajk

Akj
= biãi(x)

bkai(x)

biak(x)
+

∑
j ̸=k;j ̸=i

bjai(x)
bkaj(x)

bjak(x)

=
ai(x)bk
ak(x)

ãi(x) + ∑
j ̸=k;j ̸=i

aj(x)


=

ai(x)bk
ak(x)

(−ak(x))

= −Aik,

using (13). Hence for i ̸= k, (8) is satisfied by Bjk(x) = Ajk/Akj as required.

Example 1 To illustrate the calculations in part (a), consider the case n = 3,

k = 1. The equation Ab = 0 is
A11 A12 A13

A21 A22 A23

A31 A32 A33




1

B21

B31

 =


0

0

0

 ,
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and so

Ã−1 =

 A22 A23

A32 A33

 , b̃ =

 B21

B31

 , c =

 −A21

−A31

 .
Applying Lemma 1 yields

B21 =
det Ã−21

det Ã−1

=

det

 −A21 A23

−A31 A33


det Ã−1

, B31 =
det Ã−31

det Ã−1

=

det

 A22 −A21

A32 −A31


det Ã−1

.

Example 2 To show that Bjk(x) does not equal Ajk/Akj in general, suppose

that n = 3, that mi(x) = i for i = 1, 2, 3, and that α has a mixed Dirichlet prior

distribution given by

α ∼ (0.5)D(1, 1, 1) + (0.5)D(1, 2, 1).

Direct calculation then yields that E[α1] = E[α3] = 7/24, E[α2] = 10/24 and
E[α2

1] E[α1α2] E[α1α3]

E[α2α1] E[α2
2] E[α2α3]

E[α3α1] E[α3α2] E[α2
3]

 =
1

20


2 2 1

2 6 2

1 2 2

 ,
whence E[α1|x] = 31/120, E[α2|x] = 50/120 and E[α3|x] = 39/120. Thus

A21/A12 = 86/46 while B21 = m2(x)/m1(x) = 2.
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