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Abstract—A traditional iterative selection hyper-heuristic
which manages a set of low level heuristics relies on two core
components, a method for selecting a heuristic to apply at a given
point, and a method to decide whether or not to accept the result
of the heuristic application. In this paper, we present an initial
study of a fuzzy system to control the list-size parameter of late-
acceptance move acceptance method as a selection hyper-heuristic
component. The performance of the fuzzy controlled selection
hyper-heuristic is compared to its fixed parameter version and
the best hyper-heuristic from a competition on the MAX-SAT
problem domain. The results illustrate that a fuzzy control system
can potentially be effective within a hyper-heuristic improving its
performance.

I. INTRODUCTION

Hyper-heuristics are emerging high level methodologies

that manage a set of low level heuristics during the search

process for solving hard computational problems [1]. Özcan

et al. [2] decomposed single-point search selection hyper-

heuristics into two key components; a selection mechanism

and a move acceptance criteria. Hyper-heuristics of this nature

will be denoted as selection method-acceptance criteria in

this paper herein. In such a framework, selection hyper-

heuristics have an iterative cycle between heuristic selection

and move acceptance. Operating on a single solution, a low-

level heuristic is selected and applied at each point before a

decision is made whether to accept or reject the candidate

solution created by the application of the low-level heuristic.

This process is repeated until some termination criteria is met.

The HyFlex [3] framework was initially developed in Java

for the first Cross-domain Heuristic Search Challenge (CHeSC

2011) [4] and is a software framework “designed to en-

able the development, testing and comparison of iterative

general-purpose heuristic search algorithms (such as hyper-

heuristics)”. This framework provides six pre-implemented

problem domains allowing researchers to concentrate on the

development and analysis of high-level search methodologies

for cross-domain search rather than on the implementation

details of various problem domains and low-level heuristics.

Hyper-heuristics often employ meta-heuristics as their move

acceptance criteria however one problem faced when using

meta-heuristics are their uncertain parameter settings. For

any given problem domain and problem instance, the best

settings of such parameters is unknown. Within evolutionary

algorithms, which are synonymous with meta-heuristics and

hyper-heuristics, it has been shown that the optimal settings

for their parameters change over time given the current stage

of the EA [5] and therefore parameter control of the meta-

heuristic’s parameters within the hyper-heuristic’s acceptance

criteria is needed to achieve better performance.

Fuzzy logic [6] has been widely used in control applications

and more recently to control parameters of meta-heuristics

used for solving a range of NP-Hard problems including

mathematical function optimisation [7], [8], [9], travelling

salesman problem [10], the assignment problem [11], and

the clustering problem [12]. All of these systems utilise

information from the current state of the search, along with

the current value of the parameter being controlled as inputs

to the fuzzy system to decide on the parameter setting for the

next iteration or stage of the search process. In other words,

all of the fuzzy systems perform adaptive parameter control

on the meta-heuristic parameters.

Late acceptance [13], [14] is a recently proposed meta-

heuristic method which is similar to hill-climbing local-search

in that the new (candidate) solution is compared with a

previous solution. Late acceptance differs in that rather than

comparing the candidate solution to the immediate previous

solution, late acceptance compares the new solution with the

solution visited L steps previously. Late acceptance has been

used with hyper-heuristics and shown improvement on other

meta-heuristic methods in [15], [16], [17], [18], [19] to solve

a variety of combinatorial optimisation problems, however, all

of these studies fixed the value of L for the execution of the

hyper-heuristic.

In this study, a fuzzy system is developed using the Juzzy

Framework [20] to control the list length parameter of late

acceptance [13], [17] as the move acceptance component of

a selection hyper-heuristic for improved performance. This

hyper-heuristic is then tested against a fixed parameter version

of the same hyper-heuristic at a value known to have good

performance by previous empirical analysis and was applied

to all instances of the MAX-SAT problem domain [21] from



CHeSC 2011.

The rest of this paper is organised as follows. In Sect. II,

a description of a late acceptance hyper-heuristic and its

variant embedding a fuzzy system are provided. The empirical

results discussing the performance of the fuzzy controlled late

acceptance hyper-heuristic is presented in Sect. III. Concluding

remarks are then given in Sect. IV.

II. A FUZZY CONTROLLED SELECTION HYPER-HEURISTIC

A. Previous Work

Jackson et al. [15] describe a selection hyper-heuristic

combining a learning heuristic selection method with late

acceptance. The heuristic selection method, referred to as

RUA1-F1FPS is based on objective value (fitness) proportion-

ate selection weighting heuristics obtained with values using a

scoring system. The basic idea of the F1FPS component is to

rank heuristics based on their acceptance within the move ac-

ceptance criteria. Once they have been ranked, their ranks are

mapped to scores from the Formula 1 racing competition used

between 2003 and 2009. That is, {1, 2, 3, 4, 5, 6, 7, 8, 9+} 7→
{10, 8, 6, 5, 4, 3, 2, 1, 0}. These scores are then used to weight

each heuristic in a roulette wheel selection scheme such

that favourable heuristics have a higher probability of being

selected. The RUA1 component is a variant of the basic F1FPS

in that the scores are reversed by ranking the heuristics with

the worst scores higher than heuristics with higher scores.

The assignment of scores follows an unfair allocation scheme

where each heuristic is assigned a score based on its sorted

position in an array rather than sharing scores over heuristics

which have equal scores. The heuristic selection method as-

signs scores based on the acceptance of the candidate solution

produced by the heuristic being applied, and heuristics ranked

≥ 9th gain scores of 1 to prevent starvation of heuristics.

The move acceptance method LA requires setting of a single

parameter. This parameter, L, controls how many iterations

previous the current solution quality is compared to when

deciding whether to accept or reject a solution. L in this LA

implementation is fixed throughout the execution of the hyper-

heuristic. This selection hyper-heuristic will be referred to as

LAHH from this point onward.

In [14], it is shown that a higher list length parameter

value causes the search to take longer to converge. It is

also shown that a better solution could be achieved and

the search takes longer to converge in some cases. Given a

time contract search procedure which has to terminate within

a given time limit, such as hyper-heuristics, the parameter

setting of the list length, L, for the late acceptance method

is crucial. This value needs to be set sufficiently high to

facilitate a sufficiently long convergence time to obtain a better

solution, but without exceeding the time limit. In this study,

we describe a fuzzy system to control the setting of the list

length of late acceptance under the same selection hyper-

heuristic framework using the same heuristic selection method

described above as in [15]. This variant of LAHH embedding

the fuzzy system described in Sect. II-B will be referred to as

F-LAHH.

B. Fuzzy Control of Late Acceptance List Length

There are two options when controlling the list length

parameter L in late acceptance; increasing or decreasing it.

Assuming that L = N , the list contains the objective function

values of the visited solutions in the last N iterations of the

hyper-heuristic. Decreasing the list length is handled trivially

by discarding the remaining entries beyond the new list length.

On the other hand, increasing the list length requires a strategy

for setting the values of the additional entries.

When increasing the length of the list, there are multiple

possibilities for extending the array. Given the current list

length N and the new list length M , the previous N solution

fitness values are preserved leaving the decision of how to fill

the remainder of the list, from N+1 to M . These possibilities

include randomly generating a new solution and copying its

fitness function value across the extended section of the list.

However this would simulate a partial random restart rather

than the intended effects of controlling late acceptance.

Two other possibilities considered include copying the fit-

ness value N times previously, or the worst fitness value

recorded in the previous N iterations over the remainder of

the list. There is one potential problem with using the fitness

value N times previously. If this value was to be low compared

to other fitnesses in the list, then extending the list would

result in the late acceptance only accepting solutions below

that threshold for M −N iterations and thus having the exact

opposite effect of what is intended by increasing its size. Initial

empirical analysis of both variations indicated that copying the

worst fitness value (objective value) performed slightly better

than copying the value N times previously and was therefore

used in the F-LAHH.

Previous studies which use fuzzy systems to control var-

ious parameters within meta-heuristics used Mamdani infer-

ence [22], Centroid defuzzification, and in the majority of

these studies used either Triangular or Gaussian membership

functions. In one such study [23], it was reported that empirical

analysis using both types of membership functions showed that

Triangular membership functions gave better performance over

Gaussian ones. Therefore, in this study the fuzzy system uses

Mamdani type inference with the minimum t-norm, maximum

t-conorm, and performs defuzzification using the Centroid

method. It is a two input, one output system composed of

three fuzzy sets where the two inputs were current array

length (CAL), and normalised fitness delta (NFD) and the

output was new array length (NAL) each with 3, 5 and

3 membership functions (referred to as MF’s from herein)

respectively. Initial experiments using 3 MF’s for NFD had

relatively poor performance hence 5 MF’s were used to define

NFD. The output of the fuzzy system has to be discretised to

an integer value which is used for the new list length holding

previous objective values in the late acceptance. Discretisation

was performed by rounding to the nearest whole number. The

input CAL has three triangular MF’s small, medium, and large

and covered the universe of discourse U = [10000, 30000]
and is illustrated in Fig. 1 along with the output NAL which



Fig. 1. Fuzzy Sets for Current Array Length (CAL) and New Array Length
(NAL)

Fig. 2. Fuzzy Set for Normalised Fitness Delta (NFD)

was defined in the same way as CAL using three triangular

MF’s small, medium, and large spans the universe of discourse

U = [10000, 30000]. The input NFD has five MF’s, two

trapezoidal, and three triangular. These spanned the universe of

discourse U = [−1, 1] and were called very negative, negative,

neutral, positive, and very positive and were defined as follows

and illustrated in Fig. 2. Note that the MF very negative

extends to −1.0 and very positive extends to 1.0, however,

for clarity, the figure only shows the range of [−0.2, 0.4].
The execution of the hyper-heuristic was split into 50 equal

stages defined as the given execution time divided by 50.

In each stage, the initial, fi, and final, fo objective values

were recorded. These were used along with the current worst

solution accepted, which by the definition of late acceptance

is equal to the very initial solution, fworst. Normalised Fitness

Delta is then calculated using NFD = (fi − fo)/fworst such

that the lower and upper bounds of this measure are known

to be −1 and 1 respectively and is reflected in the universe of

discourse in the NFD fuzzy set. Current Array Length is the

length of the list used for late acceptance in the current stage.

New Array Length is the length of the list which should be

used for late acceptance in the next stage.

The fuzzy system is comprised of 15 rules (Table I). A rule

TABLE I
IF-THEN RULES USED IN THE FUZZY SYSTEM.

CAL

NFD small medium large

very negative small small medium

negative small medium medium

neutral large large large

positive small medium large

very positive large large large

is defined by three variables C,F,N which relate to the fuzzy

sets CAL, NFD, and NAL respectively. The rules are defined

as IF (CAL = C) AND (NFD = F ) THEN (NAL = N ).

When defining the rules of the system, the effects of different

list lengths for late acceptance were considered along with

what should happen if the search beings to stagnate. A higher

value of L causes the search to take longer to converge

while a smaller value of L will cause the search to stagnate

very quickly. It has previously been shown that a longer

convergence time will eventually lead to a better quality

solution. Setting this parameter to a high value then would

appear to be the best solution however there are other problems

concerning the execution time of the hyper-heuristic and the

total number of iterations. If the parameter is set too high,

then the search would degrade into a random walk with a

threshold value equal to the initial solution’s objective value.

At any given point of the search, the optimal value of this

parameter is then uncertain as to what we should assign it and

needs to be controlled.

The NFD indicates if for the current stage, the search was

able to intensify or diversify the search based on the stage’s

first and last solution objective function values and by what

ratio with respect to the current worst solution. It was decided

that in any given stage, a diversification of ≥ 10% with respect

to the current worst and current best solutions is considered

a high amount of diversification and an intensification of

30% is considered a high amount of diversification. For these

reasons, when the intensification is high, the length of the list

is increased to the largest possible size. If the diversification is

high, then the list length is decreased to the next smallest size.

The reason we used the next smallest size rather than small

for all CAL’s is because we want to prolong the convergence

but prevent further diversification.

The remaining three NFD MF’s negative, neutral, and pos-

itive have different thought processes associated with design

of their rules. negative and positive describe the case where

there was slight intensification or slight diversification. It is

unknown whether in the next stage, these slight intensifica-

tion or diversification’s will continue or the search stagnates.

However, we want to promote slight intensification and slight

diversification as this leads to a longer convergence and thus a

more optimal solution. Therefore if NFD is defined as negative

or positive, then NAL would equal CAL, with the exception

of a large CAL and negative NFD where it was decided that

the new array length should be medium to prevent too much

diversification, this was also reinforced by empirical analysis



of setting NAL to be medium or large in which the system

with the medium NAL outperformed that with the large NAL.

The neutral MF defines a stagnated search, i.e. there is no

diversification or intensification during the current stage and

thus the new array length is chosen to be high, independent

on the current array length, to allow the search to have the

chance to diversify enough to continue the search, combined

with the method of increasing the list length, this increase is

favoured.

III. EXPERIMENTAL RESULTS

LAHH with list length Lmin = 13267 and Lmax = 26733,

i.e. the minimum and maximum values output by the fuzzy

system, were compared and the best setting selected for com-

parison with F-LAHH to ensure that if F-LAHH demonstrated

any improvement, then it is due to the parameter control.

F-LAHH was therefore compared to LAHH with fixed list

length, Lmax, on all twelve instances of the HyFlex MAX-

SAT problem domain. Only five of those twelve instances were

actually used in determining the winner of the CHeSC 2011

Competition. Each hyper-heuristic was ran 31 times on each

problem instance. A run terminates after 10 nominal minutes

with respect to the CHeSC 2011 competition machine which

translated to 438s on our machine which uses an Intel Core

i7-3820 CPU running at a default (turbo boost) clock speed of

3.70GHz with a total of 16GB of RAM. The initial list length

for F-LAHH was set to the best length of 10000 from the set of

tested lengths, {10000, Lmin, Lmax, and 30000}. The results

of each instance for LAHH and F-LAHH were compared

using the Wilcoxon signed-rank test as a statistical test to

determine if F-LAHH has any significant improvement over

the fixed, uncontrolled LAHH on average. F-LAHH was also

compared to the best performing hyper-heuristic for the MAX-

SAT domain from the CHeSC 2011 competition, AdapHH [24]

on the relevant competition instances. The objective function

value is the number of broken clauses in the solution and this,

therefore, is a minimisation problem and 0 indicates that the

solution satisfies all clauses.

The results summarised in Table II show that this initial

fuzzy system was able to significantly improve over the

best fixed length hyper-heuristic for two instances. Being an

initial, un-tuned fuzzy system to illustrate the potential of

parameter control using fuzzy systems in hyper-heuristic’s, the

fuzzy system also performed insignificantly better, insignif-

icantly worse, and significantly worse for three, four, and

three instances respectively. Overall, the fuzzy controlled late-

acceptance hyper-heuristic was able to perform better for five

of the twelve instances. As well as being able to make some

improvements over LAHH, the objective function values of

the best runs in Table III show that it is able to improve over

AdapHH, although median results show that while improving

for one instance of the competition, it performed worse for two

others, albeit for one of these, it managed to obtain a better

best solution than AdapHH. In the CHeSC competition, hyper-

heuristics were awarded scores based on their median perfor-

mances for each problem instance of each problem domain

TABLE II
PERFORMANCE COMPARISON OF F-LAHH AND LAHH WITH L = LMAX

USING OBJECTIVE FUNCTION VALUES OF THE BEST SOLUTION FOUND FOR

EACH RUN OVER 31 RUNS FOR EACH HYFLEX MAX-SAT INSTANCE. A
VS. B: A < B (A > B) INDICATES THAT A (B) IS BETTER THAN B (A)
AND THIS PERFORMANCE DIFFERENCE IS STATISTICALLY SIGNIFICANT

WITHIN A 95% CONFIDENCE INTERVAL BASED ON THE WILCOXON

SIGNED-RANK TEST. A ≤ B (A ≥ B) INDICATES THAT A (B) PERFORMS

SLIGHTLY BETTER THAN B (A) BUT IS NOT A SIGNIFICANT

IMPROVEMENT.

F-LAHH LAHH
Instance # Best Mean vs. Mean Best

0 2 7.48 ≥ 5.26 2

1 20 40.68 > 29.35 19

2 15 31.39 > 22.94 15

3 1 2.97 < 3.71 1

4 1 3.07 ≥ 2.94 1

5 2 11.23 ≥ 7.16 3

6 5 6 ≤ 6.16 5

7 5 6.45 ≥ 6.23 5

8 5 7.81 ≤ 8.29 5

9 209 211 ≤ 211.06 209

10 1 4.61 > 3.16 1

11 7 8.35 < 8.65 7

TABLE III
PERFORMANCE COMPARISON OF F-LAHH WITH ADAPHH, THE BEST

HYPER-HEURISTIC FOR SOLVING MAX-SAT PROBLEM INSTANCES IN THE

CHESC 2011 COMPETITION, USING OBJECTIVE FUNCTION VALUES OF

THE BEST SOLUTION FOUND FOR EACH RUN OVER 31 RUNS USING THE

PROBLEM INSTANCES USED IN THE FINAL ROUND OF THE CHESC 2011
COMPETITION

F-LAHH AdapHH
Instance # Best Median Best Median

3 1 2 1 3

4 1 2 1 2

5 2 7 3 5

10 1 4 1 3

11 7 8 7 8

relative to those of all other entrants and so due to F-LAHH’s

median performance, AdapHH would still be declared the

better hyper-heuristic using the competition scoring system.

The progress plot of the late acceptance list length, objective

function values of the best and current solution at each stage

entry is shown in Fig. 3 during the best run for the instance#2

(for which F-LAHH performs well). From this plot, we can see

that the fuzzy system controls the list length in each stage to

allow an adequate amount of diversification and intensification

improving the quality of the solution in hand. A general trend

was observed where the list length tended to increase over

time, from about 22000 in the initial stages to about 26000 in

the latter stages, and the amount by which the list length was

changed decreased until the search stagnated, at which point

changing the list length would have no effect and therefore the

fuzzy system makes no change to the list length. On the other

hand, it is observed that the worst run on this instance did

not allow enough diversification and therefore converged too

quickly resulting in solutions whose quality was worse than if

more diversification was allowed.

Traces for runs of instances where F-LAHH did not perform

well suggested various areas of improvement. The best runs



Fig. 3. Trace of list length, objective function value of the best and current solutions at the entry of each stage of the best run for the instance#2.

of which did not allow too much diversification, resulting in

acceptable solutions, which is in contrast to the best instance,

on par with LAHH however some runs allowed too much

diversification throughout the whole execution of the hyper-

heuristic resulting in more of a random walk nature and the

search is never made to intensify enough to converge on good

solutions. This was attributed with frequent and erratic changes

in the list length between about 14000 and 26000 throughout

the whole run and does not share the same nature of tending

to increase over time as with the instances where F-LAHH

performed well. This phenomena is illustrated in Fig. 4 for

the instance#3. A feature of the worse runs of the instance

which F-LAHH did not perform well was that the amount of

improvement during the initial stage was small compared to

good runs which caused the value of NFD to be associated

with the MF positive rather than a larger improvement which

is associated, with membership 1.0, to the MF very positive

in the NFD fuzzy set. This meant that the fuzzy system set

the list length for the second stage smaller than that given by

a higher NFD value and resulted in bad solutions.

IV. CONCLUSIONS AND FUTURE WORK

The initial fuzzy system to adaptively control the single

parameter of late acceptance in the F-LAHH hyper-heuristic

was able to improve the results of five of the twelve instance,

significantly so for two of these. This indicates that by using

fuzzy logic to control the parameter of late acceptance, we are

able to improve the resulting hyper-heuristic.

This is an initial design with many other parameters which

currently use a fixed setting such as the number of stages, the

length of each stage, and the initial list length. In future work,

such parameters should also be controlled as their settings

effect the effectiveness of the fuzzy system. The number of

stages that the execution of the hyper-heuristic is split into

influences the number of times the fuzzy system is invoked.

If this setting is too low, the system would not have chance

to change the size of the list length and the hyper-heuristic

may have already prematurely converged causing sub-optimal

solutions to be found whereas if this setting is too high, there

are two factors which effect the overall performance, one

being the execution time of the fuzzy system taking away too

much time from the application of the low-level heuristics,

and the other being that the number of heuristic applications

with respect to the list length is too small for the change to

have any effect. From initial analysis of the traces, we also

found that there are cases where the fuzzy system sets the

list length too high or too low which causes too much or

too little diversification and leads to bad quality solutions.

Particularly bad runs showed that too much diversification is

allowed throughout the whole run which could also be due to

the method of deciding which values to use when increasing

the list length and so, in future work, this value could be

decided by a fuzzy system.

The definitions of the fuzzy sets work for the MAX-SAT

problem domain and show promising room for improvement,

however, for a higher-level hyper-heuristic which works well

across multiple domains, F-LAHH may or may not perform

well. These definitions of these fuzzy sets are uncertain,

especially for a higher-level hyper-heuristic. Therefore, use of

type-2 fuzzy sets to overcome these problems are considered

for future work.



Fig. 4. Trace of list length, objective function values of the best and current solutions at the entry of each stage of the worst run for the instance#3.
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