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Abstract 

 

Although many studies have examined the principles governing first-order global 

motion perception, the mechanisms that mediate second-order global motion 

perception remain unresolved. This study investigated the existence, nature and 

extent of the binocular advantage for encoding second-order (contrast-defined) 

global motion. Motion coherence thresholds (79.4 % correct) were assessed for 

determining the direction of radial, rotational and translational second-order motion 

trajectories as a function of local element modulation depth (contrast) under 

monocular and binocular viewing conditions. We found a binocular advantage for 

second-order global motion processing for all motion types. This advantage was 

mainly one of enhanced modulation sensitivity, rather than of motion-integration. 

However, compared to findings for first-order motion where the binocular advantage 

was in the region of a factor of around 1.7 [Hess et al., 2007, Vision Research 47, 

1682-1692 & the present study], the binocular advantage for second-order global 
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motion was marginal, being in the region of around 1.2. This weak enhancement in 

sensitivity with binocular viewing is considerably less than would be predicted by 

conventional models of either probability summation or neural summation.  
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Introduction 

 

Global motion perception refers to an individual’s ability to combine the motion of 

individual local elements in a visual scene into a unified representation of overall 

image movement. Global motion signals are generated by the movement of objects 

in the world, by our own eye movements, and by our self-motion through space. Our 

capacity to encode global motion is fundamental to effectively navigating our way 

through the world in which we live. There is an abundance of evidence that the 

neural substrates underlying the extraction of global motion comprise a two-stage 

processing network involving striate (area V1) and extrastriate (areas MT & MST) 

cortices. Direction-selective neurons in V1 encode the direction of locally moving 

elements. This information is projected up-stream to motion-sensitive extrastriate 

visual areas such as areas MT and MST where receptive fields are much larger 

(Livingstone, Pack & Born, 2001) and integrate information from across the visual 

field (see Andersen, 1997 for a review). Firing rates of V1 neurons are strongly 

influenced by stimulus contrast, and typically exhibit a rapid initial rise followed by 

compression and saturation as the contrast level increases (e.g. Albrecht & 

Hamilton, 1982). However, neural responses in higher-order (extrastriate) visual 

areas typically saturate at much lower contrasts (e.g. Hall, Holliday, Hillebrand et al., 

2005). Up to 90 % of MT neurons in the macaque are direction-selective (Albright, 

1993), responding to motion that moves along translational axes (Movshon & 

Newsome, 1996). Lesions in MT lead to a range of selective deficits for the 

perception of motion such as significant reductions in the ability to discriminate 

global motion direction (Newsome & Paré, 1988), serious impairments of visual 

pursuit movement (Dürsteler & Wurtz, 1988) and deficits in motion and flicker 

perception (Schiller, 1993). In area MST, cells respond to even more complex 

features of a motion stimulus. Some neurons in area MST respond selectively to 

radial and circular motion (Duffy & Wurtz, 1991) such as expanding and contracting 

movements, rotations or even spiralling motions and are believed to be responsible 

for encoding the patterns of ‘optic flow’ generated by self-motion during visually-

guided navigation (Grossberg, Mingolla & Pack, 1999).  
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There is evidence that binocularity is important in global motion perception. The 

ability to discriminate the direction of global motion is enhanced by binocular 

disparity (e.g. Hibbard & Bradshaw, 1999; Snowden & Rossiter, 1999; Greenwood & 

Edwards, 2006). In addition, conditions marked by deficits in binocular function, such 

as amblyopia, show deficits in global motion perception in the amblyopic and fellow 

fixing eyes, suggesting a deficit at a binocular locus (e.g. Giaschi, Regan, Kraft & 

Hong, 1992; Simmers, Ledgeway, Hess & McGraw, 2003). We have previously 

assessed the nature and extent of the binocular advantage for first-order (luminance-

defined) global motion (Hess, Hutchinson, Ledgeway & Mansouri, 2007), using 

random dot kinematograms (RDKs) depicting either radial, rotational or translational 

flow fields. Motion coherence thresholds (% ‘signal’ dots required for reliable 

direction identification) were measured over a range of dot modulation depths 

(contrasts), under both monocular and binocular viewing. Thresholds initially 

decreased as the dot modulation depth increased, but performance became 

asymptotic at the highest contrasts tested for all types of motion. For binocular 

viewing the threshold versus dot modulation depth function was simply shifted 

laterally, along the x-axis towards lower contrasts, compared with the monocular 

function by about a factor of 1.7. So in this case the advantage of binocular viewing 

over monocular viewing was mediated by a process sensitive to image contrast, 

suggesting that the site of binocular combination for first-order motion perception 

occurs prior to the extrastriate cortex where global motion integration occurs. 

 

The overwhelming majority of studies that have examined global motion perception 

have done so using first-order motion stimuli such as RDKs. However, like first-order 

RDKs, second-order (contrast-defined) RDKs can also provide a compelling 

impression of global motion. These patterns are defined by an ensemble of random 

dots, each of which modulates the contrast of a (first-order) carrier and movement is 

of the dots, not the carrier pattern (see figure 1 for an example of high contrast dots 

on a low contrast background). When dot modulation depth is high, second-order 

motion coherence thresholds can be a low as around 10 % of signal dots, similar to 

those observed for first-order global motion (Aaen-Stockdale, Ledgeway & Hess, 

2007). However there are fundamental differences in the manner in which first-order 

motion and second-order motion are analysed. From a computational perspective 



 5 

second-order motion patterns are likely to require more complex levels of analysis by 

the visual system than their first-order, luminance-defined, counterparts (e.g. Chubb 

& Sperling, 1988). Empirically there is a wealth of psychophysical evidence 

consistent with the notion that the two varieties of motion are encoded separately in 

the early stages of visual processing (for reviews see Baker, 1999; Lu & Sperling, 

2001). Furthermore neurological evidence suggests that second-order motion 

processing relies on a network of distinct, and perhaps ‘higher order’ extrastriate 

brain areas (e.g. Greenlee & Smith, 1997; Vaina & Soloviev, 2004) than first-order 

motion perception, though the evidence from brain-imaging (fMRI) is more equivocal 

(Dumoulin, Baker, Hess & Evans, 2003; Nishida, Sasaki, Murakami, Watanabe & 

Tootell, 2003; Seifert, Somers, Dale & Tootell, 2003; Ashida, Lingnau, Wall & Smith, 

2007). 

 

Although first-order and second-order motion may be detected initially by separate 

mechanisms, it is also likely that, at some stage, their outputs are combined to 

compute the net direction of image motion. Visual area V5/MT has been put forward 

as the most likely cortical site of combination for first-order and second-order motion 

patterns (Wilson, Ferrera & Yo, 1992), a notion strengthened by evidence for “form-

cue invariance” in primate area MT, where many neurons respond to both varieties 

of motion (Albright, 1987, 1992; Geesaman & Anderson, 1996; Churan & Ilg, 2001). 

However cue invariance has also been found in V1 (Chaudhuri & Albright, 1997), so 

the issue of exactly where this property originates in the visual system is complicated 

by the fact that there are many feedback connections from higher visual areas to 

those earlier in the visual pathways. Furthermore it has been claimed (e.g. Edwards 

& Badcock, 1995; Badcock & Khuu, 2001) that in human vision the pathways that 

process first-order motion and second-order motion remain separate up to, and 

including, the level at which global motion and optic flow analyses occur (i.e. V5/MT 

and MST), but some findings cast doubt on this assertion (e.g. Stoner & Albright, 

1992; Mather & Murdoch, 1998). Consequently many of the precise properties of the 

mechanisms that mediate second-order global motion perception are still unresolved 

and require further investigation.  
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Although binocularity has been shown to be important in first-order global motion, the 

role of binocularity in the context of second-order global motion processing remains 

unclear. This study investigated a number of key issues concerning the binocular 

properties of the mechanisms that encode second-order global motion: (1) the extent 

and nature of any binocular advantage; and (2) the effect of global motion type 

(radial, rotational or translational motion) on second-order binocularity.  

 

Methods 

 

Observers 

 

Six observers took part. Three were authors and three were naïve observers. All had 

normal or corrected-to-normal visual acuity and normal binocular vision.  

 

Apparatus and stimuli 

 

Stimuli were generated using a Macintosh G4 computer and presented on a Dell 

monitor with an update rate of 75 Hz. The monitor was gamma-corrected with the aid 

of internal look-up tables. This was confirmed psychophysically (Ledgeway & Smith, 

1994). The mean luminance of the display was 49 cd/m2. Stimuli were presented 

within a circular window at the centre of the display that subtended 12 ° at the 92 cm 

viewing distance. 

 

Global motion stimuli were either radial, rotational or translational second-order 

RDKs. 50 non-overlapping, second-order (contrast-modulated) dots were presented 

within a 12 ° diameter display aperture. This aperture contained a carrier composed 

of spatially 2-d, static, random visual noise in which individual pixel elements were 

assigned to be either ‘black’ or ‘white’ with equal probability. The noise had a 

Michelson contrast of 0.1 (before modulation by the dots, see below). The remainder 

of the screen was set to mean luminance. 

 

Each RDK was generated anew immediately prior to its presentation and was 

composed of a sequence of 8 images, which when presented consecutively 
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produced continuous apparent motion. The duration of each image was 53.3 ms, 

resulting in a total stimulus duration of 426.7 ms. Dot density was 0.44 dots/deg2 and 

the diameter of each dot was 0.235 °. At the beginning of each motion sequence, the 

position of each dot was randomly assigned. On subsequent frames, each dot was 

shifted by 0.3 °, resulting in a drift speed, if sustained, of 5.9 °/s. When a dot 

exceeded the edge of the circular display window it was immediately re-plotted in a 

random spatial position within the confines of the display aperture.  

 

The modulation depth of the dots was manipulated by increasing the mean contrast 

of the noise carrier within the dots with respect to the mean contrast of the noise 

carrier in the background (c.f. Simmers et al., 2003). This was done using the 

following equation: 

 

Dot modulation depth = (DCmean - BCmean) / (DCmean + BCmean),   [1] 

 

where DCmean and BCmean are the mean contrasts of the carrier within the dots and 

background, respectively. Dot modulation varied in the range 0.35 to 0.8. A stimulus 

schematic is shown in Figure 1. 

 

<Insert Figure 1 about here> 

 

The global motion coherence level of the stimulus was manipulated by constraining a 

fixed proportion of ‘signal’ dots on each image update to move coherently along a 

trajectory (either radial, rotational or translational) and the remainder (‘noise’ dots) to 

move in random directions. For radial motion, on each trial signal dots were 

displaced along trajectories consistent with either expansion or contraction with 

equal probability. For rotational motion, signal dots rotated either clockwise or anti-

clockwise, again with equal probability. For translational motion, signal dot direction 

could be either upwards or downwards on each trial with equal probability. Following 

previous studies (Burr & Santoro, 2001), the magnitude of the dot displacement was 

always constant across space in that it did not vary with distance from the origin as it 

would for strictly rigid global radial or rotational motion. This ensured that all stimuli 

were identical in terms of the speeds of the local dots. As such, performance for 
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radial and rotational motion could be directly compared to performance for 

translational motion.  

 

Procedure 

 

All measurements were carried out under either monocular or binocular viewing 

conditions. In the monocular viewing condition, measurements were taken with the 

sighting dominant eye. The other eye was occluded using an eye patch. In the 

binocular viewing condition, observers viewed the same stimulus but with both eyes. 

Motion coherence thresholds were measured using a single-interval, forced-choice, 

direction-discrimination procedure. On each trial observers were presented with an 

RDK stimulus. Performance was measured separately for each of the motion types 

and the order of testing was randomised. For radial motion, the task was to identify 

whether the global motion was expansion or contraction and for rotational motion, 

the task was to identify whether the dots rotated clockwise or anti-clockwise. For 

translational motion, the observers’ task was to identify whether the global motion 

was upwards or downwards. Data-collection was carried out using a 3-down, 1-up 

adaptive staircase procedure (Edwards & Badcock, 1995) that varied the number of 

signal dots present on each trial, according to the observer’s recent response 

history, to track the 79.4 % correct response level. At the beginning of each staircase 

all of the dots were assigned to be signal dots and the initial step size was set to be 

8 signal dots. After each reversal the step size was halved, but the minimum step 

size was constrained to be 1 signal dot. The staircase terminated after eight 

reversals and the mean of the last six reversals was taken as the threshold estimate 

for that run of trials. Each observer completed 4 staircases for each condition and 

the mean threshold (expressed as the % of signal dots in the RDK) was calculated. 

 

Results 

 

Figure 2 shows motion coherence thresholds, averaged across all 6 observers, 

under monocular and binocular viewing conditions, plotted as a function of dot 

modulation depth separately for (a) radial, (b) rotational and (c) translational global 

motion, respectively. Results followed a broadly similar trend for all motion types 
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(radial, rotational & translational) in that motion coherence thresholds initially 

decreased as dot modulation depth increased, then changed relatively little with 

further increases in modulation depth. Thresholds were similar under monocular and 

binocular viewing conditions at all but the lowest modulation depths tested, where 

thresholds were somewhat higher when viewing was monocular. This suggests that 

the principle difference in performance between the two viewing conditions is 

characterised by a shift of the entire threshold versus modulation depth function 

primarily along the horizontal (modulation depth), rather than the vertical (motion 

sensitivity), axis. 

 

<Insert Figure 2 about here> 

 

To quantify the relationship between motion coherence thresholds and dot 

modulation depth the data were fit with the following equation, which we have used 

previously to characterise analogous functions obtained using first-order RDKs 

(Allen, Hutchinson, Ledgeway & Gayle, 2010): 

 

( )( ) ( )
b

ax
x

a
xa

y

c

!
!
!
!
!

"

#

$
$
$
$
$

%

&
+−+(

)

*
+
,

-
+−

=
2

1sgn1sgn

,     [2] 

 

where x is dot modulation depth and a, b and c are constants. Parameter a is the dot 

modulation depth above which performance on the task is no longer limited by the 

modulation depth and asymptotes at the motion coherence threshold b. Parameter c 

is the slope of the descending limb of the function (on log-log co-ordinates). Sgn(), or 

the signum function, is equal to either +1, 0 or -1 depending on whether the 

argument in parentheses is > 0, 0 or < 0, respectively.  

 

Figure 3 shows the best fitting parameters derived from Equation 2 corresponding to 

the (a) dot modulation depths (parameter a) and (b) motion coherence thresholds 
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(parameter b) at which performance asymptoted (i.e. at the ‘kneepoint’)1. Figure 3 (c) 

shows derived monocular/binocular performance ratios for the modulation depth and 

motion parameters. These ratios characterise the magnitude of the horizontal shift, 

along the x-axis, and the vertical shift, along the y-axis, that would be needed to 

bring the two curves for each type of motion into correspondence. Slopes (parameter 

c) and R2 values of the fit (Equation 2) are given in Table 1. It is evident that any 

binocular advantage for second-order global motion perception was driven primarily 

by enhanced sensitivity to modulations in stimulus contrast, rather than global motion 

processing per se (Figure 3c).  

 

<Insert Figure 3 and Table 1 about here> 

 

Figure 4 compares mean motion coherence thresholds for each motion type as a 

function of modulation depth under (a) monocular and (b) binocular viewing 

conditions. A 2 (viewing condition) by 3 (motion type) by 9 (modulation depth) within-

groups analysis of variance (ANOVA) was performed using data from individual 

observers. Thresholds improved with higher modulation depths [F(8,40)=62.970; 

p<0.001] and binocular thresholds were lower than monocular thresholds 

[F(1,5)=24.792; p<0.01]. There was a significant main effect of motion type 

[F(2,10)=5.035; p<0.05]. Overall, thresholds for radial motion were higher than those 

for translational or rotational motion. There was a significant interaction between 

viewing condition and modulation depth [F(8,40)=9.459; p<0.001] reflecting that 

there were only differences between viewing conditions at lower modulation depths. 

There were also significant 2-way interactions between viewing condition and motion 

type [F(2,10)=4.912; p<0.05], and motion type and modulation depth 

[F(16,80)=3.018; p<0.05]. Previous studies (e.g. Aaen-Stockdale et al., 2007) have 

suggested that, with monocular viewing, sensitivity to radial second-order motion 

may be poorer than to rotational or translational second-order motion under some 

conditions. 

                                                
1
 The standard error (SE) values shown in Figure 3 and Table 1 are those reported by the curve-fitting 

software Prism (GraphPad Software, Inc) used to estimate the best-fitting parameters of Equation 2. 
These are “asymptotic” or “approximate” standard errors of the parameters, as is also the case for 
virtually all other nonlinear regression programs (see Motulsky & Christopoulos, 2004). Further details 
can be found at http://www.graphpad.com/guides/prism/6/curve-
fitting/index.htm?reg_how_standard_errors_are_comput.htm 
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To examine the effects of motion type in more detail, we performed separate, 2 

(motion type) by 9 (modulation depth) ANOVAs to compare: (a) radial with rotational 

motion, (b) radial with translational motion and (c) rotational with translational motion 

under each of our two viewing conditions. The findings are shown in Table 2 where it 

is apparent that performance for discriminating the direction of radial motion was 

significantly worse than for rotational or translational motion, only under monocular 

viewing conditions. Performance for rotational and translational motion was 

equivalent (Figure 4; Table 2). These findings are in agreement with Aaen-Stockdale 

et al. (2007).  

 

Finally, to parametrically examine the modulation depths at which performance 

under monocular viewing conditions deteriorated relative to performance under 

binocular viewing conditions, we performed separate 2 (viewing condition) by 9 

(modulation depth) ANOVAs for each motion type. For radial motion, there were 

main effects of viewing condition [F(1,5)=23.602; p<0.01] and modulation depth 

[F(8,40)=4.912; p<0.001], and an interaction between the two factors [F(8,40)=6.125; 

p<0.001]. For rotational motion, there were main effects of viewing condition 

[F(1,5)=8.646; p<0.05] and modulation depth [F(8,40)=31.32; p<0.001], but no 

interaction between the two factors [F(8,40)=1.464; p = .201]. For translational 

motion, there were main effects of viewing condition [F(1,5)=23.602; p<0.01] and 

modulation depth [F(8,40)=35.568; p<0.001], and an interaction between the two 

factors [F(8,40)=4.554; p<0.001]. For each motion type, paired samples t-tests 

compared performance under monocular and binocular viewing conditions at each 

dot modulation depth. Results are given in Table 3 and were comparable across 

motion type. Sensitivity to translational global motion was most markedly affected by 

whether viewing was monocular or binocular in that motion coherence thresholds 

were significantly different at the greatest number of modulation depths. Rotational 

motion perception however was least affected by viewing condition, even at low dot 

modulation depths.  

 

<Insert Figure 4 and Tables 2 & 3 about here> 
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Carrier visibility: To ensure that our findings were not due simply to monocular and 

binocular differences in the overall visibility of the static noise carrier, in a control 

experiment we measured carrier detection thresholds under monocular and 

binocular viewing conditions. Three observers (CH, AA, ML) performed a temporal 

two-alternative-forced-choice (2AFC) detection task, whereby they had to judge 

which of two temporal intervals (order randomised on each trial) contained an 

unmodulated, 2-d, static noise field. As in the global motion experiments outlined 

previously, the noise field was presented centrally within a circular display region 

subtending 12 ° in diameter. Detection thresholds (79.4 % correct) were measured 

using a 3-down, 1-up adaptive staircase. At the beginning of each staircase, the 

contrast of the noise field was set to a suprathreshold level (typically 6 dB above 

threshold based on pilot studies). After each reversal the step size was halved and 

the staircase terminated after 12 reversals. The mean of the last 4 reversals was 

taken as the detection threshold. Each observer completed 4 runs of trials (i.e. 

staircases) and a mean was taken. Figure 5 shows contrast detection thresholds for 

each observer under monocular and binocular viewing conditions. Although 

detection thresholds were lower (performance was better by a factor of 1.8 on 

average) under binocular, compared to monocular viewing conditions, thresholds 

under both viewing conditions were markedly below the contrast of the noise carrier 

employed in the RDK stimuli. As such, this confirms that the noise carrier used in the 

motion experiment was always suprathreshold and that its overall visibility was not 

the limiting factor affecting performance under monocular viewing. Furthermore any 

binocular summation of the carrier contrast between the two eyes cannot explain the 

pattern of results found, as it would be expected to affect both the dots and 

background equally leaving the effective contrast difference defining the dots 

unchanged. 

 

<Insert Figure 5 about here> 

 

Dioptric blur: Viewing a stimulus monocularly rather than binocularly potentially 

reduces its visibility by limiting the information available to the visual system. 

Reduced visual sensitivity can be empirically simulated by optical defocus. Positive 

dioptric blur, for example, spatially filters out higher spatial frequency information, 
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thereby effectively reducing the absolute contrast of the dots that make up the RDK. 

This technique has been employed previously to assess the effects of reducing dot 

contrast (modulation depth) on performance for judging the direction of first-order 

global motion (Simmers et al., 2003). In this case, the addition of dioptric blur of + 3 

and 4 DS led to a lateral shift of the motion coherence threshold vs. modulation 

depth curve in that whilst performance at low first-order dot modulation depths was 

impaired under blurred viewing conditions, performance at higher dot modulation 

depths remained unaffected. To assess the effects of reducing the visible second-

order dot modulation, we compared 3 observer’s (AA, ML, CH) motion coherence 

thresholds for discriminating the direction of second-order radial, rotational and 

translational global motion under normal binocular viewing conditions and with the 

addition of dioptric blur at +3DS as a function of dot modulation depth. Figure 6 

shows the effects of blur on mean motion coherence thresholds for each second-

order motion type as a function of modulation depth. Performance is averaged 

across the 3 observers. For all second-order global motion types, the addition of 

+3DS blur led to a very marked lateral shift in the descending limb of the threshold 

vs. modulation depth functions along the abscissae towards higher modulation 

depths. However as the blurred data exhibit little, if any, evidence of clear asymptotic 

performance (i.e. a convincing ‘knee-point’) even at the highest modulation depths 

tested it is impossible to determine if there is also any appreciable vertical shift of the 

functions upwards. Equation 2 is ill-conditioned under these circumstances and 

provides poor fits to the data so no attempt was made to quantify the magnitude of 

these shifts. These findings are likely to reflect poor overall sensitivity of the visual 

system to second-order information, where modulation sensitivity is markedly lower 

for, and restricted to a much narrower range of spatial and temporal frequencies, for 

second-order compared to first-order motion (Hutchinson & Ledgeway, 2006). 

Indeed, in visual disorders known to produce deficits in contrast sensitivity, such as 

amblyopia, spatiotemporal windows of visibility for second-order motion are more 

restricted than for first-order motion. Moreover, within the visible range, amblyopes 

exhibit a more marked decrease in contrast sensitivity for second-order compared to 

first-order patterns. Indeed, in severely amblyopic individuals, some second-order 

motion cues are invisible (Simmers, Ledgeway, Hutchinson & Knox, 2011). One 

point worth noting is that reducing the absolute contrast of the second-order dots 
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using blur under binocular viewing conditions exceeded the effects of reducing the 

effective contrast of the dots by viewing RDKs under monocular, compared to 

binocular viewing conditions. The magnitude of the blur used was relatively high and 

severely attenuated the high spatial frequency components present in the noise 

carrier, that are critical for extracting the second-order image structure conveyed at 

coarser spatial scales. These findings may be relevant to studies of second-order 

motion perception in aging where marked contrast sensitivity deficits have been 

found for stationary and moving patterns (Tang & Zhou, 2009). Further studies using 

different amounts of optical defocus may provide key insights into how second-order 

signals are combined and, perhaps, how and/or why sensitivity to second-order 

information is characteristically different from sensitivity to first-order signals.  

 

<Insert Figure 6 about here> 

 

Comparison with first-order global motion: As a control to confirm the generality of 

the findings of Hess et al. (2007), we measured motion coherence thresholds for 2 

observers (AA & ML) for determining the direction of radial, rotational and 

translational first-order global motion (luminance-defined dots) under monocular and 

binocular viewing. The principle difference between the first-order experimental 

conditions in this study and that of Hess et al. (2007) was the presence of a static 

noise carrier background in the present study. In Hess et al. (2007), dots were 

presented against a uniform ‘grey’ background.  

 

All stimulus parameters were identical to those employed for second-order dots 

except that the modulation depth of the first-order dots was manipulated by 

increasing the mean luminance of the noise carrier within the dots relative to that of 

the noise carrier in the background region (c.f. Simmers et al., 2003). This was done 

using the following equation: 

 

Dot modulation depth = (DLmean - BLmean) / (DLmean + BLmean),    [3] 
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where DLmean and BLmean are the mean luminances of the carrier within the dots and 

background, respectively. Dot modulation varied in the range 0.0039-0.3. An 

example of a first-order dot field is shown in Figure 7.  

 

<Insert Figure 7 about here> 

 

Figure 8 shows mean motion coherence thresholds for the 2 observers (AA & ML) 

for determining the direction of radial, rotational and translational first-order global 

motion, as a function of dot modulation depth, under monocular and binocular 

viewing conditions. At relatively high modulation depths, motion coherence 

thresholds were similar under monocular and binocular viewing. At the lowest dot 

modulation depths however, thresholds were lower under binocular compared to 

monocular viewing conditions and the function describing the monocular results was 

shifted horizontally along the modulation depth (contrast) axis. Equation 2 was fit to 

each observer’s data under each viewing condition, allowing the quantification of the 

relative effects of dot modulation depth (horizontal axis) and motion coherence 

threshold (vertical axis). The derived monocular/binocular performance ratios for the 

modulation depth and motion parameters are shown for each observer and each 

motion type in Figure 9. The magnitude of the modulation depth component shift 

required to align the binocular and monocular data was between ~ 1.5 and 2.3 

(average = 1.78). These findings were in agreement with those shown previously by 

Hess et al. (2007) who found an average (across observers & motion type) 

monocular/binocular shift along the modulation depth axis of a factor of ~ 1.7. 

 

<Insert Figures 8 & 9 about here> 

 

Discussion 

 

The findings of the present study have shown that discriminating the direction of 

second-order global motion under binocular viewing led to an improvement in 

performance by a factor of around 1.2 compared to monocular viewing. This 

binocular advantage was modulation depth dependent and did not represent a 

uniform improvement in global motion processing per se. This suggests that the site 
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of this binocular advantage is likely to be relatively early in the visual hierarchy, prior 

to the stage of global motion analysis, where the responses of neurons sensitive to 

second-order motion are known to exhibit a strong dependence on stimulus 

modulation depth (e.g. Ledgeway, Zhan, Johnson, Song & Baker, 2005). We arrived 

at a similar conclusion in a previous study using analogous first-order global motion 

stimuli, but in that case the magnitude of the binocular advantage (a factor of ~ 1.7) 

was much more pronounced (Hess et al., 2007). We have confirmed these findings 

for first-order global motion stimuli in the present study where we find that binocular 

advantage for luminance-modulated dots on a background of static noise to be in the 

region of 1.8 (Figures 8 & 9). Our current findings complement those in the spatial 

domain that have previously demonstrated that binocular summation is poorer for 

second-order, compared to first-order, stationary stimuli (e.g. Wong & Levi, 2005; 

Schofield & Georgeson, 2011). Taken together, these results suggest that weak 

binocular summation may be characteristic of mechanisms throughout the visual 

system that encode second-order stimulus attributes, i.e. in both the spatial and 

temporal domains. 

 

There are a number of possible explanations for our current findings. One possibility 

is that there are markedly fewer binocular neurons sensitive to second-order image 

characteristics than to first-order properties, early in visual cortex. In this context, 

little binocular summation would occur because there would be little opportunity for 

the outputs of the two eyes to be combined. It may be the case for example that 

neurons that respond to second-order motion are predominantly monocular up to, 

and including, extrastriate visual cortex. There is evidence for monocular processing 

of second-order information in areas 17 and 18 of feline visual cortex (e.g. Zhou & 

Baker, 1994; 1996). However, binocular neurons have also been found for contrast-

envelope stimuli in feline area 18 (Tanaka & Ohzawa, 2006). Furthermore, if second-

order global motion processing were monocular in the early stages of visual 

processing, the monocular inputs would necessarily be combined in area V5/MT, 

where neurons exhibit a high degree of binocularity (e.g. Maunsell & van Essen, 

1983). If this were the case, although we might expect little, or no more of a 

binocular advantage than (say) probability summation would predict along the 

modulation depth axis shown in Figure 2, our binocular versus monocular functions 
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would shift uniformly downwards on the y-axis signifying a binocular advantage in 

global motion processing (i.e. combination of monocular signals in V5/MT). This was 

not the case. 

 

An alternative possibility is that second-order neurons are predominantly binocular 

throughout the motion pathway (i.e. driven well by both eyes). Psychophysically, 

there is markedly greater interocular transfer of second-order information than first-

order information. This is the case for stationary (Whitaker, McGraw & Levi, 1997) 

and moving (Nishida, Ashida & Sato, 1994) patterns. From a neurophysiological 

perspective, first-order information requires relatively simple analysis based on linear 

processing of luminance variations across the receptive fields of V1 neurons. In the 

case of moving stimuli, outputs are combined in area V5/MT. Second-order 

information requires more complicated analysis and has typically been modeled as 

requiring a non-linear pre-processing stage consisting of a linear filter followed by a 

gross, pointwise nonlinearity such as rectification and a second stage of linear 

filtering, i.e. a filter-rectify-filter scheme. (Chubb & Sperling, 1988; Wilson et al., 

1992; Sutter, Sperling & Chubb, 1995). It has been proposed that initial filtering and 

rectification occurs in area V1, after which the rectified output is sent to area V2 for a 

second stage of filtering. The output of V2 is then sent to area V5/MT (e.g. Wilson et 

al., 1992). In the context of our present findings, the role of V2 in second-order 

motion processing is important because the majority of neurons in this area are 

binocularly driven (e.g. Zeki, 1978). 

 

Irrespective of the precise nature of the underlying summation mechanisms, a critical 

feature of the current results concerns the magnitude of the binocular advantage 

found for global second-order motion patterns at low modulation depths. The 

binocular improvement in modulation depth sensitivity (a factor of ~ 1.2) was 

considerably less than that found previously for analogous first-order RDKs and also 

for the simple carrier detection task (see Figure 5) of the present study. This 

relatively weak binocular enhancement for second-order stimuli is smaller than would 

be expected by either simple probability summation across monocular inputs or 

neural (linear) summation arising from the convergence of monocular information 

into binocular motion-sensitive pathways. In both cases conventional models would 
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predict that binocular viewing should enhance sensitivity to modulations in stimulus 

contrast by at least a factor of 1.4 (e.g. Pirenne, 1943; Campbell & Green, 1965; 

Legge, 1984). Of course this prediction is critically dependent on the underlying 

assumption that the internal noise associated with the two monocular inputs are 

entirely independent. Although this may not be an unreasonable assumption in the 

case of global first-order motion perception, the present results strongly suggest that 

it may be invalid for the pathways that encode global second-order motion. Previous 

research has highlighted that even a weak correlation in the noise inherent in 

different visual neurons can severely limit the statistical benefits of summating their 

outputs (Zohary, Shadlen & Newsome, 1994). Future electrophysiological 

investigations exploring the covariation in firing rate of pairs of monocular neurones 

sensitive to second-order motion, to repeated presentations of the same stimulus, 

are needed to address this interesting possibility.  
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Figures  

 

 

Figure 1. (a) Example of a second-order (contrast defined) dot field and depictions of 

(b) radial (contraction vs. expansion), (c) rotational (anti-clockwise vs. clockwise) and 

(d) translational (upwards vs. downwards) motion signal dot trajectories. 
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Figure 2. Mean global motion coherence thresholds for identifying the direction of (a) 

radial, (b) rotational and (c) translational second-order global motion as a function of 

dot modulation depth (contrast) under monocular (open circles) and binocular 

(closed circles) viewing conditions. Data have been fit with Equation 2. The point at 

which the two limbs of the function intersect represent parameters a (dot modulation 

depth – x axis) and b (motion coherence threshold – y axis) of Equation 2.  Error 

bars represent ± 1 S.E.M. 

 

 

Figure 3. (a) Dot modulation depths and (b) motion coherence thresholds at the 

‘knee-point' derived from fitting Equation 2 to the data for each motion type (radial, 

rotational & translational) under each viewing condition (monocular & binocular). (c) 

Derived monocular/ binocular performance ratios of the best fitting parameters 

describing the lateral (modulation depth: Figure 3a) and vertical (motion sensitivity: 

Figure 3b) shifts needed to bring the monocular and binocular motion coherence 

threshold versus modulation depth functions into correspondence.  
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Figure 4. Mean motion coherence thresholds for each motion type at each dot 

modulation depth under (a) monocular and (b) binocular viewing conditions. Error 

bars represent ± 1 S.E.M. 
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Figure 5. Contrast thresholds for 3 observers for detecting the presence of the 2-d 

noise carrier under monocular and binocular viewing conditions. Error bars are ± 1 

S.E.M. 
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Figure 6. Mean global motion coherence thresholds for identifying the direction of (a) 
radial, (b) rotational and (c) translational second-order global motion as a function of 
dot modulation depth under normal, in-focus, binocular viewing conditions and with 
+3 dioptre blur. The unblurred binocular data have been fit with Equation 2 and are 
represented by the solid line in each plot. The averaged data under blurred binocular 
viewing conditions exhibit considerable variability and little evidence of asymptotic 
performance (i.e. a convincing ‘knee-point’) even at the highest modulation depths 
tested and therefore were not fitted with Equation 2 (see text for further details). 
Error bars represent ± 1 S.E.M. 
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Figure 7. Example of a first-order (luminance defined) dot field (see Equation 3).  

 

 

 

Figure 8. Comparison of mean global motion coherence thresholds for 2 observers 

for identifying the direction of (a) radial, (b) rotational and (c) translational first-order 

global motion as a function of dot modulation depth (contrast) under monocular and 

binocular viewing conditions. Data have been fit with Equation 2. Error bars 

represent ± 1 S.E.M. 
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Figure 9. Derived monocular/binocular performance ratios of the best fitting 

parameters describing the lateral and vertical shifts needed to bring the monocular 

and binocular motion coherence threshold versus modulation depth functions into 

correspondence. 

 


