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Abstract

X-ray micro computed tomography (µCT) is increasingly applied in plant bi-

ology as an imaging system that is valuable for the study of root development

in soil, since it allows the three-dimensional and non-destructive visualisa-

tion of plant root systems. Variations in the X-ray attenuation values of

root material and the overlap in measured intensity values between roots

and soil caused by water and organic matter represent major challenges to

the extraction of root system architecture. We propose a novel technique to

recover root system information from X-ray CT data, using a strategy based

on a visual tracking framework embedding a modi�ed level set method that

is evolved using the Jensen-Shannon divergence. The model-guided search

arising from the visual tracking approach makes the method less sensitive

to the natural ambiguity of X-ray attenuation values in the image data and

thus allows a better extraction of the root system. The method is extended

by mechanisms that account for plagiatropic response in roots as well as col-

lision between root objects originating from di�erent plants that are grown

and interact within the same soil environment. Experimental results on

monocot and dicot plants, grown in di�erent soil textural types, show the

ability of successfully extracting root system information. Various global

root system traits are measured from the extracted data and compared to

results obtained with alternative methods.
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Chapter 1

Introduction

The United Nations have ranked poverty and hunger as number one of the

Millennium Development Goals (MDG), with the target to halve, between

1990 and 2015, the proportion of people who su�er from hunger [UN, 2013].

The target is within reach, but most of the progress in this direction was

made before 2007-08 and has since then slowed down [FAO, WFP, and IFAD,

2012]. In `The State of Food Insecurity in the World - 2012', the Food and

Agriculture Organization of the United Nations (FAO) reported that about

870 million people, 12.5 percent of the population or one in eight people,

are undernourished. Due to the growth in population and associated rising

demand for food, it is estimated that by 2050 agricultural productivity has to

increase by 60 percent [OECD and FOA, 2013]. The FAO recognises research

and development as one of the key drivers for agricultural productivity [FAO,

2013a].

In the 1960s, breeding e�orts in cereals, initially for rice and wheat and

later for other crops, led to high-yielding dwarf varieties that were more re-

sponsive to nutrient availability in soil and less susceptible to lodging (plants

falling over) [Borlaug, 1970]. As a result of the `Green Revolution', cereal

yields have rapidly increased. Evenson and Rosegrant [2003] estimated that

without the achievements of the `Green Revolution', today's global crop

yields would be 8-12 percent lower while prices would be 35-66 percent higher

and agricultural lands expanded by 2.8-4.6 percent, with attendant environ-

mental consequences. Increased yields were reached through the combined

use of these new varieties with mechanisation, crop protection chemicals and

chemical fertilisers. Whilst developed countries had access to these resources
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[Hazell and Ramasamy, 1991] farmers in developing countries still have lim-

ited access due to high costs, thereby limiting their agricultural output.

Jonathan Lynch [2007] foresees a `Second Green Revolution' through

redesigning plant root architecture to enhance nutrient acquisition, making

plants tolerant to infertile soils while at the same time boosting yield. Root

systems that are adapted to the low nutrient availability in soil are more

e�cient in taking up the sparse resources from the ground. This would make

agriculture less dependent on chemical fertilisers and thus help prevent the

rapid degradation of soil, while becoming more resilient to the uncertain

e�ects of global climate change.

Figure 1.1: Map of hunger - image taken from [FAO, 2013b]

Understanding the development of plant roots and their interaction with

the soil environment is vital to e�orts toward food security. Roots provide

anchorage and facilitate acquisition of water and nutrients from soil. Grow-

ing roots explore their local environment to exploit those resources and as

such they depend on a wide range of soil properties [Lynch, 1995]. How-

ever, the complex relationship between roots and soil is not one sided. Plant

roots have a large impact on the surrounding soil's physical and biochemical

properties. They stimulate the growth and activity of microorganisms and

hence a�ect the regulation of soil organic matter decomposition [Gregory,

2006a]. Furthermore, roots help develop the stability of soil aggregates and

thus prevent soil erosion.
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Figure 1.2: Fertiliser consumption - image taken from [FAO, 2013b]

1.1 Motivation

Roots represent the `hidden half' of plant biology [Waisel et al., 2002] since

soil makes them di�cult to image non-invasively. Many di�erent methodolo-

gies have been used to study the development of roots (see chapter 2, section

2.1). Popular techniques include the use of arti�cial growth media such as

semi-transparent nutrient agar [Clark et al., 1999; French et al., 2009] or

gellan gum [Clark et al., 2011]. While this overcomes the major problem

of root visibility, it is not representative of a plant's natural environment.

The most common method used to study the root system of plants grown

in soil is root washing [Smit et al., 2000; Gregory, 2006b]. However, this

often leads to the underestimation of �ne roots through breakage, while in-

formation about the spatial distribution of roots is lost. Rhizotrons and

mini-rhizotrons [Vamerali et al., 1999; Johnson et al., 2001], which are �at

containers or tubes with a transparent wall, have also been used extensively.

They allow roots to be grown in soil, but arti�cially restrict the direction of

root growth to two dimensions. In addition, observations are limited to the

boundary surface, showing only a small fraction of the entire root system.

An alternative approach is the use of X-ray micro computed tomography

(µCT), a non-destructive imaging technique that can visualise the internal

structure of opaque objects. An X-ray µCT scanner acquires a series of

projections from di�erent angles, measuring the attenuation of ionising ra-
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diation passing through the examined object. These projections are used for

the reconstruction of the CT data in three-dimensional space. Data values

are expressed in Houns�eld units and are usually mapped to greyscale in-

tensity values for visualisation purposes (see chapter 2, section 2.2). X-ray

µCT allows observation not only of plant roots, but also of the surrounding

soil structure and associated pore volume.

Many researchers have argued that X-ray µCT is an e�ective tool with

which to visualise plant roots growing in soil [Moran et al., 2000; Gregory

et al., 2003; Jenneson et al., 2003; Tracy et al., 2010], yet there is still a lack of

suitable methods to analyse the resulting data. The limiting factor has been

the overlap in X-ray attenuation values of plant roots and the organic matter

in soil, along with the variations in attenuation of the X-rays caused by water

retained in roots and stored in the soil pores. Together these have made

the automatic extraction of roots very di�cult (see chapter 3). Previous

attempts, reported in the literature, were all based on strategies that operate

on a data-driven or bottom-up information processing system, starting with

the raw data and moving toward root descriptions through a sequence of

operations, each applied to the entire sample (see chapter 2, section 2.3).

Local image-based criteria are used to de�ne and successively re�ne groups of

pixels that are likely to belong to the same class. This is often implemented

as a �xed pipeline comprising multiple processing steps. This, however,

su�ers from several drawbacks. For example, errors tend to accumulate as

each process introduces some inaccuracy. These are typically addressed by

introducing interactive error correction tools. Manual correction, however,

is often time consuming, as incorrectly classi�ed objects are frequently small

and usually distributed across the data set. Image analysis methods capable

of providing high quality root descriptions, either fully automatically or with

minimal human input, are badly needed.

1.2 Contribution

We present a novel segmentation technique that follows a model-driven or

top-down strategy, in which a representation of an object is built from previ-

ously collected information and is used to control detection of further objects

of the same class. This is achieved by adapting a visual tracking based frame-

work, in which root objects are followed through a stack of cross-sectional
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images derived from the volumetric CT data. Through continuous updates,

the tracker adapts to changes in the appearance of the root objects, leading to

a more dynamic extraction of the plant root system. In an additional step,

the method is extended by a mechanism that goes beyond the separation

of roots from the surrounding environment, and allows recovery of root sys-

tems of multiple interacting plants, associating each root with its originating

plant. Extracted root systems are visualised and their traits characterised

to promote better understanding of their complex architecture.

1.3 Overview

The rest of the thesis is organised as follows. In chapter 2, an overview is

given of the various methodologies used in plant root studies (section 2.1),

the principles of X-ray CT (section 2.2), related image analysis methods

applied in the �eld of medical imaging (section 2.3.1 and 2.3.2) as well as

di�erent techniques developed for the purpose of root system extraction from

two- and three-dimensional image data (section 2.3.3 and 2.3.4). In chapter

3, a novel extraction technique is presented, with the aim of recovering plant

root systems form X-ray µCT image data of plants grown in soil. This

technique is extended by mechanisms for the extraction of plagiotropic root

systems (chapter 4). In chapter 5 information is provided on the visualisation

of extracted data and the measurement of commonly desired root system

characteristics. The presented method is evaluated in chapter 6 on arti�cially

generated data (section 6.1), CT image data of real plant roots (section 6.2

and 6.3) and compared to extraction methods previously presented in the

literature (section 6.4). The presented method is further extended to allow

the extraction of multiple interacting root systems (chapter 7). The thesis

is concluded with general discussions and outline of possible future work in

chapter 8.
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Chapter 2

Methods and techniques used

in plant root studies

Agronomists have known for centuries that roots have a signi�cant impact

on the growth and productivity of crops. Early in the 19th century, Thomas

Knight [1806; 1809; 1811] was keen to learn how roots develop and adapt to

their environment. He was convinced that roots have the ability to locate

and grow towards areas that best nourish the plant, but was not able to

provide supportive evidence [Knight, 1806]. In a later letter [Knight, 1811]

he in fact rejected his hypothesis, noting that plants have no such thing as

an intellect, but are heavily in�uenced by their close surroundings. He was

also among those who showed that gravitation has an impact on the direc-

tion of root growth. Knight [1806] demonstrated that the radical emerging

from the seed responds to gravitation, always growing towards the centre of

gravity. In order to show this, he bound a number of garden bean (Phase-

olus vulgaris L.) seeds to a wheel that was rotated with the aid of water to

generate a centrifugal force simulating gravity. Everything was enclosed in a

box to prevent interference from the outside. Understanding the mechanism

of gravitropism has found wide appeal. Wilhelm Pfe�er [1894], for instance,

was interested in �nding the stimulus for root gravitropism and showed that

in uninjured roots, the root tip is solely responsible for sensitivity to gravi-

tation. To demonstrate this, Lupin plants (Lupinus L.) were placed so that

their roots would grow into glass tubes mounted on a clinostat, which is

a rotating platform to simulate microgravity. Several decades later it was
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discovered that auxin, a plant hormone responsible for growth and cell elon-

gation regulates, among other things, gravitropism [Bennett et al., 1996] and

that in fact the lateral root cap is required to transport the hormone into

elongating epidermis cells, making it possible for roots to bend in response to

gravitropic stimulus [Swarup et al., 2005]. This has been demonstrated by an

experiment in which di�erent mutants of Arabidopsis (L.) were grown in MS

(Murashige and Skoog) medium plates. The root tissue was examined using

confocal microscopy and a marker was used to show the expression of the

AUX1 protein, which is known to be an auxin uptake carrier [Bennett et al.,

1996]. It has been comprehensively shown that gravity is one external stim-

ulus that can a�ect roots, but there are many other environmental factors

that can change root growth. That water is an important resource for plants

is generally known. It therefore seems reasonable that roots would show a

di�erent response to the absence or presence of nearby water, as this would

improve their chances of survival. To what extent roots respond to water

stress was one of the questions that Newman [1966] tried to answer. He used

transparent tubes �lled with soil in which �ax (Linumusitatissimum L.) was

grown, allowing the observation of roots through the tube wall. The tube

was covered with plastic sheets that were only removed when taking mea-

surements. This prevented roots from being exposed to too much daylight.

By closely monitoring root growth and the moisture content of the soil, he

observed that root growth decreases as the soil gets drier, but also discovered

that roots located in dry soil layers are not in�uenced by the moisture con-

tent elsewhere around the root system. He therefore stated that roots di�er

locally in their responses to water content [Newman, 1966]. As part of the

e�ort to advance understanding of the impact low water potential has on the

growth of roots, Sharp and collaborating researchers have conducted numer-

ous experiments [Sharp et al., 1988; Sharp and LeNoble, 2002; Sharp et al.,

2004; Yamaguchi and Sharp, 2010], and discovered, among other things, that

the elongation rate in the apical meristem (region of undi�erentiated and ac-

tively dividing cells at the root tip), of a primary maize root is independent

of soil water potential, which can be as low as -1.5MPa to -1.6MPa (per-

manent wilting point). There is, however, a notable di�erence in elongation

rate in the region after the apical section. The further cells are from the

apex, the lower the elongation rate as the soil gets drier, until there is no

elongation observed in either of the two conditions, wet or dry soil. For this
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phenomenon to be observed, Sharp et al. [1988] cultivated maize (Zea mays

L.) in a Plexiglas box �lled with vermiculite, to minimise the mechanical

in�uence during drying. The elongation rate was determined by marking

points 1mm apart with a very �ne ballpoint pen on roots that were imaged

every 15 minutes for a period of 1 hour. He also suggested that abscisic acid

(ABA), another plant hormone often associated with inhibition of growth,

may play an important role in maintaining root and shoot growth in water

stressed plants rather than completely inhibiting their development under

low water potential, as commonly assumed [Sharp and LeNoble, 2002].

Gravity and water are not the only factors that have an e�ect on the

growth and development of plant roots. Intrinsic factors also play important

roles, such as genetic di�erences or the large variety of plant species with their

di�erent root system topologies. An idea of how complex a root system can

become is given in the comprehensive review written by Jonathan Lynch

[1995] and will not be further discussed here. The few examples of classical

studies on plant roots mentioned above shed some light on the di�erent ways

in which researchers have set up their experiments in order to observe the

particular root behaviour that they were interested in. Several other methods

have been reported. Some have found wide acceptance and have been used

in numerous studies while others are still considered relatively novel, but

have shown high potential to yield new discoveries. In section 2.1 we will

brie�y discuss some of these methods. Since we are primarily interested in

the use of X-ray micro computed tomography (µCT) for the examination of

root systems, we devote a separate section of this chapter to the principles

of X-ray CT (section 2.2). The method chosen for a particular experiment

dictates, to a certain degree, the environment plants are grown in. This, in

turn, often determines the way in which image data is collected and used

for further analysis. Depending on the available image data, di�erent tools

and algorithms have been reported that allow the semi- or fully-automated

extraction of useful information and the measurement of root system traits.

An overview of some of these image analysis techniques is given in section

2.3.
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2.1 Plant growth systems facilitating root observa-

tion

In this section we give a brief overview of the plant growth systems that are

frequently used in studies of root growth and development. By giving the

reader an idea of the di�erent and numerous experimental set-ups and their

limitations, we hope to explain why, for certain experiments, X-ray µCT

seems to be the best alternative currently available.

In order to gain a better understanding of the complexity of plant roots,

it is indispensable for researchers to be able to observe their growth and

development. This might seem trivial at �rst glance, but since roots grow

naturally in soil, which is opaque, the problem of making them observable

becomes a major issue. One way of overcoming this hurdle is to grow plants

outside of their natural soil environment. This approach is fairly common in

root related studies, because it overcomes the obstacle completely. To sus-

tain and keep them healthy, one must, however, ensure that enough water

and nutrients, such as nitrogen (N ), phosphate (P) or potassium (K ), are

provided. There are many di�erent ways in which plants can be grown with-

out having to rely on soil, one of which is by using aeroponic systems. With

this technique, plant roots are suspended in air and sprayed with a �ne mist

of nutrient solution [Zobel et al., 1976; Robertson et al., 1985, 1990; Var-

ney and Canny, 1993; Biddinger et al., 1998]. Another technique, similar in

many aspects to aeroponics, is the hydroponic system. Instead of growing

plants entirely in air, they are grown in containers �lled with water and a

mix of essential plant nutrients [Price et al., 1997; Förster et al., 1998; Price

et al., 2002a; Tuberosa et al., 2002]. Both of these methods allow easy access

to the root systems for observation and examination purposes. Also, with

both techniques, it is possible to dynamically control the amount, as well as

changing the combination of nutrients provided to the plant. Root systems,

however, may respond di�erently depending on the method chosen. For in-

stance, roots maintained in aeroponic cultures show an increased number

of root hairs compared to roots grown in hydroponic cultures [Zobel et al.,

1976]. While roots that develop naturally have to penetrate through the

growing medium, none of the methods above apply any physical resistance

on roots as they grow. In addition, there is no solid medium that physically

supports the root system at any stage of development. Its three-dimensional
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shape may therefore be signi�cantly di�erent from that of a naturally occur-

ring root system.

This is not the case for plants grown in semi-transparent growth media,

such as agar or gellan gum, which is used in plant tissue culture [Fujita

and Sy	ono, 1997; Van der Weele et al., 2000; Lucas et al., 2011]. Both agar

and gellan gum serve only as a support medium for the root system and

need to be supplemented with nutrients to promote plant growth. Growing

roots in a supportive medium makes it much easier to study development

over time and to determine the growth rate at certain stages for particular

roots, since time and position can be exactly recorded. On agar or gel

plates, plants grow in a sterile and well-controlled environment, reducing

inter-experimental variability. This makes semi-transparent media a popular

choice. Despite the bene�ts, however, the reader will realise that the methods

described so far constitute a rather arti�cial environment, which could make

the applicability of certain results to �eld conditions questionable. It is

very well known that the soil biological, chemical and physical properties

and conditions have a strong in�uence on the development and growth of

plant root systems [Gregory and Hinsinger, 1999; Gregory, 2006a; Hinsinger

et al., 2005], which might be di�cult to accurately imitate in an arti�cial

environment due to their complexity. Nonetheless there have been a few

attempts to close the gap between commonly used arti�cial growth media

and the natural soil environment. One such example is the use of glass beads

[Antonsen et al., 1999; Futsaether and Oxaal, 2002], which have been used,

for instance, to simulate porosity between soil particles.

An obvious alternative to trying to create an environment that closely

resembles soil, with all its manifold properties, is to actually use soil as a

growth medium. Probably the oldest and simplest way to study how plant

roots grow and adapt to soil conditions usually found in the �eld, is by grow-

ing plants in the �eld (as pioneered by Weaver in the 1920's [Weaver, 1926]).

The roots, in order to be examined, are then excavated and/or washed free of

the soil, making it possible to record and analyse their characteristics. This

latter method of studying roots, even though it seems rather old-fashioned,

is still a widely accepted and common approach [Trachsel et al., 2011]. There

are, however, a number of major drawbacks. Roots, especially �ne roots, can

easily break o� while being removed from the soil, if this is not done with

utmost care. Even then it cannot be guaranteed that all the root system
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will stay intact. Once the root system has been freed from the soil, the plant

cannot be placed back into the soil environment, making it impossible to ob-

serve the development of the root system over time. But by far the biggest

disadvantage of excavating roots is that the three-dimensional structure of

the root system is not preserved. A great deal of information is lost during

the process.

In cases where the complex interaction between soil and roots, and the

e�ects they have on the rhizosphere (narrow region of soil adjacent to plant

roots), is the subject of study, it becomes indispensable to grow the roots in

soil and to preserve the area in which they interact with each other. A well-

proven method in soil-root studies is the use of (mini-)rhizotrons [Gregory,

1979; Hodge et al., 1999; Johnson et al., 2001]. Rhizotrons are found in many

di�erent variations, the basic principles, however, remain the same. Plant

roots are grown in soil against a transparent wall (usually glass or acrylic

plastic), through which roots can be observed and measured. The most

intricate forms of rhizotrons are underground observation chambers, which

are stationary and usually quite expensive, but provide also the widest view

of underground soil-root interaction compared to other rhizotron variations

[Hilton et al., 1969]. Other commonly found forms of rhizotrons are trans-

parent boxes or sheets that are �lled with soil in which plants are grown

[Chaudhuri et al., 1986; Price et al., 2002b; Kuchenbuch and Ingram, 2002],

or rhizotron tubes [Gregory, 1979; Andrèn et al., 1991], usually referred as

mini-rhizotrons. Compared to larger devices, mini-rhizotrons are relatively

cost-e�ective and easy to install. The installation of mini-rhizotrons, how-

ever, requires holes to be drilled into which the tubes are inserted. This pro-

cess usually disrupts the soil environment and can break existing roots. Great

care is needed to minimise any external in�uence to the soil-environment as

well as to the root system under observation. If properly installed, mini-

rhizotrons provide a minimally disruptive technique for monitoring roots

and their interaction with the surrounding soil over a given period of time.

A key limitation of this method, however, is the bound and partial view.

Only roots that grow along the transparent wall of the rhizotron can be

monitored; these might not be the area of interest. It should also be noted

that data is always collected from a small sample of the whole root system

and therefore care must be taken in drawing any conclusions related to the

rest of the root system.
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The major drawbacks of the last two methods described, namely the

di�culty of preserving the root system and its structure, which is needed for

the collection of time series, and the visualisation of the entire root system,

can be overcome with current and emerging technology such as neutron

radiography [Willatt et al., 1978; Menon et al., 2007; Moradi et al., 2009;

Carminati et al., 2010], X-ray radiography [Moran et al., 2000; Pierret et al.,

2003] and CT [Gregory et al., 2003; Kaestner et al., 2006; Hargreaves et al.,

2009], nuclear magnetic resonance (NMR) [Bottomley et al., 1986; Antonsen

et al., 1999] or magnetic resonance imaging (MRI) [MacFall et al., 1991;

Jahnke et al., 2009; Nagel et al., 2009]. X-ray µCT and MRI in particular

have attracted considerable attention from plant and soil scientists in recent

years. Advances in the technology allow imaging of very �ne details due to

an increase in resolution. High resolution X-ray µCT scanners, for instance,

are capable of generating three-dimensional data with a theoretical voxel

size of 0.5µm [Mooney et al., 2012]. Most studies, however, have reported

a practical voxel size in the range of 10 to 100µm, which is still slightly

higher compared to MRI systems that operate with a theoretical voxel size

up to 30µm, but have been used at a voxel size of 400µm [Jahnke et al.,

2009]. Compared to X-ray CT, MRI su�ers in the presence of magnetic

compounds such as Cu2+, Fe2+, Fe3+ and Mn2+, which are common in

natural soil [Mooney et al., 2012], but can be particularly e�ective in studies

related to water content and �ow in plants [MacFall et al., 1991; Windt et al.,

2006]. Due to the high contrast related to local water content, MRI seems

to provide better detectability while X-ray µCT favours descriptiveness and

accuracy. That X-ray CT is a potential and suitable instrument for soil-root

studies has already been shown by Tollner [1991], who demonstrated that

both biotic and abiotic components are identi�able in soil. Scanned cores

showed that the seed of a Lima bean (Phaseoluslunatis L.) is clearly visible,

but also that it is possible to observe the wetting front in dry soil, from

which he concluded that X-ray CT can be used to monitor the moisture

content change in soil cores. Since then other studies have been reported in

which X-ray CT has been used to visualise roots within the soil environment

[Heeraman et al., 1997; Gregory et al., 2003; Flavel et al., 2012]. Schmidt et

al. [2012] not only showed that X-ray µCT is useful in visualising plant root

systems grown in soil, but went a step further and demonstrated the ability

of X-ray µCT to look at the level of interaction between roots and the soil
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environment. They estimated the soil-root contact area using growth media

with di�erent particle sizes. A current limitation of methods such as X-ray

CT and MRI is the restricted sample size. Studies with X-ray CT have been

made with columns of a maximum reported diameter size of 250mm [Pierret

et al., 2003; Mooney et al., 2012]. In order to obtain maximum contrast

between plant roots and the surrounding soil environment, the most common

choice of growth medium is a sand dominant soil type. Only a few studies

have been conducted using soil that is more representative of �eld conditions

[Mooney et al., 2012]. Early systems were slow in operation, but in newer

and more technologically advanced systems, scanning time has been reduced

considerably compared to systems used almost a decade ago, speeding up

the process of imaging from 8 hours [Kaestner et al., 2006] to 20 minutes

[Tracy et al., 2012] per sample. Despite the decrease in scan time, root data

collection using techniques such as X-ray CT or MRI, is still considered low-

throughput compared to semi-transparent screening methods. All this shows

that there is no single best method suitable for all plant root studies; they are

complementary. For the genetic analysis of plant roots, a high-throughput

screening method is crucial, but at the same time it must be considered

that plants often behave di�erently when grown in arti�cial environments

[Hargreaves et al., 2009] and that it is essential to learn how plant roots

grow, develop and compete for resources in soil. Here techniques such as

X-ray µCT or MRI, o�er great potential to increase our understanding and

to open new doors that otherwise would remain locked. At the current stage

of technology and within the same category of devices, serving the similar

purpose of three-dimensional and non-destructive analysis, X-ray µCT seems

to be favourable and more bene�cial [Zhu et al., 2011], which supports our

choice of technical imaging system for the scope of this work.

2.2 Principles of computed tomography

A key element in this study, which deserves its own section, is the imaging

system itself - X-ray micro computed tomography (µCT). Having a sound

knowledge of the concepts and principles behind the technology allows a

better understanding of the capabilities and limitations of the system, and

aids comprehension of CT image data. This plays an important role when

designing a method aimed at extracting speci�c information while avoiding
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potential pitfalls. To provide an idea of the datasets we work with and their

characteristics, we will brie�y review some background information on X-ray

CT. In the following sections we discuss the fundamental principles of the

system, how the volume data is generated and how the quality and noise

level of these images can be determined.

2.2.1 X-ray (micro) computed tomography

Sir Godfrey Houns�eld, known as the father of X-ray CT, introduced the

�rst scanner in 1971 [Houns�eld, 1973; Ambrose, 1973; Perry and Bridges,

1973; Kalender, 2006], revolutionising radiographic imaging. The real history

of X-ray CT, however, dates back to 1895 when William Conrad Röntgen

�rst presented a new kind of radiation, which he called X-rays (`X' symbol-

ising the unknown), also sometimes referred to as Röntgen rays [Röntgen,

1898, 1896]. Röntgen quickly discovered that X-rays can pass through solid

objects and be recorded on photographic �lm, producing two-dimensional

shadow images revealing objects' internal structure. In radiographic imag-

ing systems, X-rays are generated by an X-ray tube. Electrons are emitted

by electrically heating a �lament (cathode) and accelerated toward a posi-

tive target (anode), for which a high atomic weight material such as tungsten

(W ) or molybdenum (Mo) is usually chosen. When accelerated electrons are

suddenly slowed down or stopped, a large portion of their energy is released

in two forms; heat and X-rays. This phenomenon is called Bremsstrahlung

[Hendee and Ritenour, 2002]. The intensity of radiation is measured by X-

ray detectors. The most common detectors found in X-ray CT systems today

are gas-�lled ionisation chambers and scintillator-photodiode solid state de-

tectors [Hendee and Ritenour, 2002].

With Houns�eld's invention of CT, it became possible to generate cross-

sectional and three-dimensional visualisations of an object's internal struc-

ture. Unlike conventional X-ray radiography, CT acquires a series of pro-

jections from di�erent angles, measuring the attenuation of ionising radia-

tion passing through the examined object. These projections are used for

the reconstruction of the CT data [Herman, 2009]. From a mathematical

standpoint, the principles of CT and how to reconstruct a function from

its projected data, had already been presented in 1917 by Johann Radon

[Radon, 1917, 1986; Hendee and Ritenour, 2002]. A contribution to mathe-

matical reconstruction algorithms was also made by Allan Cormack [1963],

who shared the Nobel Prize for the invention of CT with Houns�eld in 1979.
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However, when Houns�eld built his �rst CT scanner, he was unaware of the

earlier work carried out by Radon and Cormack.

In recent years CT has undergone signi�cant technical improvements,

leading to di�erent types of CT systems. First generation CT scanners have

a single X-ray source and detector (both collimated) that are translated

along and rotated around the specimen, resulting in projections with pencil-

or parallel-beam geometry. The second generation CT scanners use the same

procedure, but instead of a pencil beam and a single detector, they have a

narrow fan beam and a linear detector array. Third generation CT scanners

have a single non-collimated X-ray source, wide enough to capture the entire

specimen and thus making translation of both X-ray source and detector

unnecessary. The resulting data are projections with fan-beam geometry.

Another generation of CT scanners are multi-detector CTs, which also have

a single non-collimated X-ray source but a two-dimensional detector panel

where projections are obtained from a cone-beam. Most common types of

µCT scanners found today are either fan- or cone-beam systems [Stock,

2008]. A sketch of a cone-beam system is shown in �gure 2.1. The di�erent

beam geometries play an important role in the reconstruction process, since

the geometric magni�cation factor needs to be taken into account, which

is determined by the distance of the sample to the X-ray source and the

detector. Also to be considered for fan- and cone-beam geometries are the

two di�erent types of projections, whether they are sampled at equiangular

or equispaced intervals [Kak and Slaney, 1988]. For the former, all X-rays

are spaced with the same angle between neighbouring rays and if projected

on a straight detector plane will result in unequal distances between incident

rays, with increased space the further away they are from the centre location.

This can be rearranged so that the space between the rays at the detector

panel is equidistant, but this requires the angular intervals between rays to be

unequal. The data needs to be weighted di�erently during the reconstruction

process, depending on which projection type is used, and thus complicates

the overall reconstruction algorithm compared to data acquired with parallel-

geometry systems.

When a sample is scanned, photons emitted by the X-ray source can

be absorbed or scattered as they pass through the object. This leads to a
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Figure 2.1: Sketch of an X-ray CT scanner with a multi-detector panel,
showing a cone-beam directed at the sample and its magni�ed projection

reduction of intensity which is understood as attenuation and follows the

Beer-Lambert law

I(t, θ) = I0e
−

∫

µ(x,y)ds (2.1)

I0 is the emitted intensity of the X-ray beam passing through the sample

where the intensity is reduced based on the attenuation coe�cient function

µ(x, y). I(t, θ) is the received intensity transmitted through the sample on

the projection line s with distance t from the origin at an angle θ. From this

the projection P (t, θ) can be derived as follows

P (t, θ) = − ln
I(t, θ)

I0
=

∫

µ(x, y)ds (2.2)

Other photons that are neither absorbed nor scattered and thus exit the

object are referred to as transmitted [Cullity, 1978; Herman, 2009]. Whether

a photon is likely to be transmitted or attenuated depends on the density

of the imaged object, but also on the energy of the photon itself. In order

to penetrate high density material a high energy is needed. Low energy

photons would almost be completely absorbed and thus are only capable of

penetrating low density material. For convenience, we consider the target

object to be composed of many small cubes or volume elements (voxels).

When the object is imaged, each voxel will be traversed by numerous X-ray

photons, some of which will be absorbed. From the intensity readings, it is

possible to assign a value to each voxel that is proportional to its average
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linear attenuation. The linear attenuation coe�cients are then calibrated to

a standard scale using the attenuation values of water (0HU) as a reference

point

CTnumber = K · uvoxel − uwater

uwater
(2.3)

with K usually chosen to be 1,000. These calibrated values are known as CT

numbers and are expressed in Houns�eld units (HU), which, for visualisation

purposes, are often mapped to greyscale intensity values [Kak and Slaney,

1988]. It should be noted that CT numbers can vary not only between

scanners, but also between scans taken with the same imaging device [Levi

et al., 1982].

The photons generated by an X-ray tube usually consist of di�erent wave-

lengths (are polychromatic), since not every electron is decelerated in the

same way. This results in a continuous energy spectrum, which is di�erent

depending on the target material used [Herman, 2009]. This spectrum is

composed of low as well as high energy photons. Low energy photons, espe-

cially for thick or high dense materials, are usually completely absorbed by

the sample, yet would saturate the detector if they go around the scanned

object, reducing the contrast in the volume data. Filters of di�erent thick-

ness and material, whose purpose is to absorb the low energy radiation, are

therefore often placed between the target and the sample to harden the beam

[Cullity, 1978] and eliminate undesirable energy levels.

Image contrast is an important factor when di�erentiating and identi-

fying particular components in CT data and is in�uenced by, among other

factors, the number of scattering events which occur when an X-ray photon

is de�ected from its original path. Scattering events are more likely found at

higher energies [Ketcham and Carlson, 2001], which makes the application of

lower energies more favourable. Low energy X-rays are also much more sen-

sitive to small di�erences in material densities [Ketcham and Carlson, 2001],

but their energy needs to be high enough to allow transmission through the

scanned specimen.

Data acquired with X-ray CT is susceptible to numerous imaging arte-

facts. A common artefact is caused by beam hardening [Herman, 2009]. As

mentioned above, the energy distribution spectrum is polychromatic. As the

beam passes through the scanned object, lower energy photons are attenu-

ated at a much higher rate than higher energy photons, causing the spectrum



2.2. Principles of computed tomography 19

to change and its mean energy to increase - the beam is hardened. For a

cylindrical object, it also means that the beam passing through the centre is

hardened more than the beam passing through the edges, and therefore the

average linear attenuation in the centre is lower compared to that measured

at the edges (�gure 2.2a). This phenomenon is referred as cupping [Buzug,

2008]. Another implication of beam hardening is that the energy spectrum

at a certain point in the object varies with the direction in which the beam

passes through the sample and therefore it becomes di�cult to assign a sin-

gle value, sometimes resulting into bright and dark bands or streaks (�gure

2.2b). This e�ect is known as a streak artefact [Buzug, 2008]. Streaks can

also have other origins, including photon scattering [Stock, 2008]. Ring arte-

facts are also common, which usually arise from defective or insu�ciently

calibrated detectors, giving constant erroneous readings at the same posi-

tion as the sample rotates, resulting in circular artefacts [Barrett and Keat,

2004]. An example of a ring artefact is shown in �gure 2.2c. Image recon-

struction becomes problematic when the sample moves slightly during the

imaging process, which leads to variations and inconsistencies in the projec-

tion data [Buzug, 2008]. This in turn results in blurred images, which makes

the analysis of the CT data di�cult and inaccurate. The e�ect is known

as motion artefact (�gure 2.2d). When scanning a sample, it is necessary

to ensure that enough angular projections are taken. Given too few pro-

jections, there is not enough information for the reconstruction of the data

and the quality of images degrades, introducing �ne stripes. This is referred

to as undersampling [Barrett and Keat, 2004]. There are many more X-ray

CT scanning artefacts that can arise, of which some are system or applica-

tion speci�c, and will not be further discussed in this chapter. More details,

however, can be found in [Buzug, 2008; Stock, 2008; Herman, 2009].

2.2.2 CT image reconstruction techniques

In CT, one- (for parallel- or fan-beam geometries) or two-dimensional (for

cone-beam geometries) X-ray projections are taken at di�erent angles to

the sample, revealing in shadow images the interior of the scanned object.

The aim of the reconstruction process is to �nd a suitable approximation

of what object would give the data that is measured at the detector panel.

This process is an inverse mathematical problem for which di�erent solutions

have been developed over many years. In this section we will discuss some
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(a) (b)

(c) (d)

Figure 2.2: Various artefacts found in X-ray CT image data (a) cupping, (b)
streak artefact, (c) ring artefact and (d) motion artefact

of the principles of CT image reconstruction and give an idea of how cross-

sectional and volumetric image data can be obtained from these projections.

For simplicity, we consider as an example a two-dimensional phantom (Shepp

and Logan [1974], �gure 2.3) and assume that X-rays pass through the sample

parallel to each other. If the traversal of the X-rays were non-parallel (which

is the case for fan- and cone-beam geometries), then the magni�cation factor

must be taken into account in the reconstruction process.

Before we begin with the di�erent reconstruction methods, we will �rst

de�ne the projections mathematically. An X-ray passing through an object

follows a straight line whose attenuation is represented by a line integral.
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Figure 2.3: Shepp-Logan phantom as de�ned in [Shepp and Logan, 1974]

The projection line through the phantom f(x, y) at orientation angle θ (as

shown in �gure 2.4) is expressed as

x cos θ + y sin θ = t (2.4)

The line integral P (t, θ) is de�ned as

P (t, θ) =

∫ ∞

−∞
f(t cos θ − s sin θ, t sin θ + s cos θ)ds (2.5)

where t is the distance from the origin to the projection line s as shown in

�gure 2.4. This can be rewritten as

P (t, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − t)dx dy (2.6)

which is known as the Radon transform [Kak and Slaney, 1988]

P (t, θ) = Rf(x, y) = f̌(t, θ) (2.7)

By applying the Radon transform at di�erent angles to the phantom

f(x, y), we obtain a series of line projections, known as a sinogram (�gure

2.5a).

The aim of the reconstruction process is to recover the phantom from

its projections. Houns�eld used an iterative algorithm in his �rst CT sys-

tem. This was improved soon after and is today known as the algebraic
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Figure 2.4: Sample function f(x, y) and its projection P (t, θ)

reconstruction technique (ART) [Goldman, 2007]. The method is computa-

tionally intensive and often considered not to be accurate enough for medical

applications. This has limited its use in practice. Unlike other techniques

however, this method works comparatively well given low numbers of projec-

tions and does not require them to be equally spaced over 180 or 360 degrees

[Kak and Slaney, 1988]. The reconstruction problem can be rewritten in a

matrix-vector formulation

Pθ(t) = Rf(x, y)

↓ ↓ ↓
b = A x

(2.8)

where b is the sinogram represented in a single vector and x the image to
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(a) (b)

Figure 2.5: Sinogram from projections over 180 degrees of the Shepp-Logan
phantom; original (left) and after �ltering (right)

be reconstructed. A is the system matrix, representing the relation between

sinogram and the pixels in the reconstructed image and can be estimated

using the nearest neighbourhood approximation, setting the element aij to

1 if the line (t, θ) crosses a pixel in the image plane and 0 otherwise. Other

methods exist that provide a better estimation of the system matrix A and

hence give better results. For more detailed information refer to [Toft, 1996].

The solution vector x can then be obtained through an iterative process

x(k+1) = x(k) +
bi − aTi x

(k)

aTi ai
ai (2.9)

where i is a row of the system matrix A and best randomly chosen from a

uniform distribution.

An alternative technique is built on the Fourier Slice Theorem, also

known as the Central Slice Theorem, which states that the Fourier transform

of a parallel projection f̌(t, θ) equals to the line at the same angle through

the two-dimensional Fourier transform of the image f(x, y) [Kak and Slaney,

1988].

F (v cos θ, v sin θ) =

∫ ∞

−∞
f̌(t, θ)e−2πitvdt (2.10)

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (kx, ky)e

2πi(kxx+kyy)dkx dky (2.11)

Reconstruction is therefore based on the relationship found in the frequency

domain between the projections and the image rather than in the spatial

domain.
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Probably the most straightforward reconstruction method is the back-

projection technique. The concept behind it is to take each projection and

`smear' it back over the reconstruction plane at the same angle the projec-

tion was taken from the image. The �nal pixel value is then obtained by

superimposing all back-projected views [Kak and Slaney, 1988; Toft, 1996].

This can be mathematically formulated as

f(x, y) =

∫ π

0
f̌(x cos θ + y sin θ, θ)dθ (2.12)

The back-projection method does not correctly solve the inverse problem,

as the reconstructed image is severely blurred (�gure 2.6c). The problem,

however, can be overcome by convolving the sinogram with a �lter (�gure

2.5b). Many di�erent �lters have been presented in the literature. The

simplest and probably most used �lter is the Ram-Lak �lter, also known as

a ramp �lter.

f̌filtered(t, θ) = F−1(|v|F(f̌(t, θ))) (2.13)

f(x, y) =

∫ π

0
f̌filtered(x cos θ + y sin θ, θ)dθ (2.14)

where F and F−1 denotes the Fourier transform and inverse Fourier transform

respectively and |v| the ramp �lter. This extension to the method is known

as �ltered back-projection reconstruction and is probably one of the most

common techniques found in X-ray CT systems today.

2.2.3 Noise characteristics and quality of CT image data

All imaging devices are inevitably prone to sources of noise, which can de-

grade the quality of the image data and make it harder to identify objects of

interest. Understanding the speci�c nature of noise in image data can have

several advantages. It allows targeted �ltering of the data to enhance the

quality while preserving essential information, can be useful in seeking for

an optimal scanning con�guration in order to minimise the amount of unde-

sired noise, and/or allow reproduction of the noise in arti�cially generated

data that can be used in various testing scenarios. This section outlines the

statistical characteristics of the noise that arises from the scanning process

and shows a possible way of evaluating the quality of CT image data.

CT noise originates from the physical nature of the process - the gen-

eration of X-ray photons, the interaction of photons with matter and the

detection of photons - and can be described by a Poisson distribution (for



2
.2
.

P
rin

cip
les

o
f
co
m
p
u
ted

to
m
ogra

p
h
y

25

(a) (b)

(c) (d)

Figure 2.6: Reconstructed images and their di�erence to the original phantom using di�erent techniques; (a) algebraic re-
construction technique (ART), (b) Fourier Slice Theorem, (c) back-projection reconstruction and (d) �ltered back-projection
reconstruction - (algorithms have been re-implemented following the steps and de�nitions presented in [Kak and Slaney, 1988;
Toft, 1996])
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more details see [Herman, 2009]). In a single projection the random noise at

one point in the image is usually independent of the random noise at another

point and is therefore uncorrelated, which is shown from its noise power spec-

trum (described in later paragraphs) that has a white noise characteristic,

meaning that the noise is roughly constant over a range of frequencies [Han-

son, 1981]. Through the reconstruction process, however, noise can generate

peculiar characteristics, which usually di�er from the white noise spectrum

found in the projection data.

To evaluate the quality of CT image data, the spatial resolution and level

of noise is often determined. Statistical properties, such as mean or variance

are relatively easy to calculate, but are often not su�cient for a complete

analysis [Kijewski and Judy, 1987]. Frequency domain analysis is often more

suitable for the evaluation of quality, and has been extensively used in re-

lation to medical imaging systems [Faulkner and Moores, 1984; Abdou and

Dusaussoy, 1986; Cunningham and Shaw, 1999]. Metrics such as the mod-

ulation transfer function (MTF) or the noise power spectrum (NPS), also

called Wiener spectrum, are often employed for the performance evaluation

of X-ray detectors and medical imaging devices [Ya�e and Rowlands, 1997;

Siewerdsen and Ja�ray, 2000; Goertzen et al., 2004], to determine an opti-

mum trade-o� between radiation dose and image quality [Haus and Ya�e,

2000; Seibert, 2004], and for the comparison of di�erent CT data reconstruc-

tion techniques [De Man and Basu, 2004; Thibault et al., 2007; Marin et al.,

2010].

Relevant in this context is the point spread function (PSF), which is a

signi�cant characteristic in optical systems. The PSF describes the impulse

response of an imaging system to a single point source. A measured point

typically does not re�ect exactly the original source, but introduces some

degree of scatter or spread, which if it is too large will result in images that

appear to be out of focus. Since imaging single point sources is di�cult

with most systems, alternatively a single line source can be used to measure

the line spread function (LSF), which corresponds to the PSF de�ned in

one dimension. This, however, only holds if the PSF is isotropic, meaning

the spread is equal in all directions. Unfortunately, imaging a single line is

often as complicated as imaging a single point. Therefore, the most common

approach is to image a sharp edge and measure the edge spread function

(ESF), which by di�erentiation gives the LSF. The MTF is then obtained by



2.3. Image analysis as a tool to aid in the extraction of plant roots 27

the magnitude of the Fourier transform of the PSF, providing information

about the reduction in contrast with increased spatial frequency [Smith,

2003].

MTF (u, v) = ‖F(PSF (x, y))‖ (2.15)

As previously mentioned, noise can be characterized by the NPS, which

gives a representation of the power of noise at various spatial frequencies

[Cunningham and Shaw, 1999]. NPS is usually measured over a homogeneous

area d(x, y) in the image by taking the Fourier transform of Kdd(x, y), the

auto-covariance of d(x, y)

NPS(u, v) = F(Kdd(x, y)) = F(Cov(d(x+ h, y + h), d(x, y))) (2.16)

or alternatively given as

NPS(u, v) =

lim
X,Y→∞

E

{

1

2X

1

2Y

∣

∣

∣

∣

∫ X

−X

∫ Y

−Y
∆d(x, y)e−2πi(ux+vy)dxdy

∣

∣

∣

∣

2
}

(2.17)

with∆d(x, y) = d(x, y)−E{d(x, y)} and E{} being the expectation operator.
Given the MTF, the NPS and the average output signal d it is possible to

determine the frequency dependent signal-to-noise ratio (SNR) [Cunningham

and Shaw, 1999], which is de�ned as

SNR(u, v)2 =
d
2
MTF 2(u, v)

NPS(u, v)
(2.18)

2.3 Image analysis as a tool to aid in the extraction

of plant roots

Image analysis has become fundamental to the study of plant roots. When

Newman [1966] conducted his study on how roots respond to water stress

almost half a century ago, he monitored and examined the growth rate of

each sample by hand. This was a tremendous amount of work, very time

consuming, and one of the reasons why his study was limited by a low num-

ber of replicates. He stated that by using cameras and taking images, he

would have been able to analyse the data at leisure and therefore use a

larger number of samples. Nowadays, collecting data by taking images has
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become part of most experimental methodologies. This, however, does not

mean that the workload has been reduced. When root characteristics are

measured manually, it is only postponed. In order to reduce workload, and

thus to save time, a number of di�erent image analysis tools have been de-

veloped. Reducing the time spent taking measurements allows researchers to

put their e�orts into core activities rather than routine tasks. Another great

bene�t of image analysis tools is that they decrease, to a degree, the subjec-

tivity involved in an experiment. With so many di�erent imaging techniques

used in plant root studies, serving a wide range of di�erent purposes, there

exist even more image analysis tools for the extraction and quanti�cation of

root characteristics. The acquired image data depends on the experimen-

tal set-up but also on the imaging device that is used. For instance, when

using rhizotrons, the data recorded is usually restricted to two dimensions

[Johnson et al., 2001]. Another example are studies for which agar plates

are used, where images are often taken either with normal digital cameras

[French et al., 2009], in particular when looking at the root system archi-

tecture, or microscopy [Schiefelbein and Somerville, 1990], when the focus

lies in observing very �ne or cellular details. This results in image data that

di�ers in its characteristics, but also in the information that needs to be

extracted. All these variations led to the development of a wide range of

tools, all optimised for a particular application. In this section we will limit

our discussion to image analysis methods for whole or partial root system

architectures, but divide it into two- and three-dimensional techniques. Due

to its high relevance for this project, we will start the discussion, however,

with some related image analysis methods that have been reported in the

�eld of medical imaging.

2.3.1 Extraction techniques for medical X-ray CT

Though it only became interesting as a technology for soil-root studies within

the last few years, X-ray CT has a long history. Its remarkable success was

mainly achieved due to its wide acceptance in medical circles. X-ray CT is

seen as the second major technological breakthrough in radiological diagnos-

tics, after the discovery of X-rays. It is therefore not surprising that most of

the image analysis and processing methods intended for CT data have been

developed with a focus on medical research. Due to continuing technological

advances, images can be produced with better quality and with higher res-
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olution, which makes the interpretation of data easier but at the same time

also susceptible to misinterpretation. Image analysis and processing algo-

rithms have been introduced and extensively used to aid in the examination

of the human body. Generally, the aim is the semi- or fully-automated sep-

aration of features, making the semantic analysis of data simpler and more

understandable to users. Due to the enormous e�ort made in this area, this

section is devoted, among others, to methods that have been developed for

the extraction of information from medical X-ray CT images.

Thresholding is a frequently used method for medical image segmenta-

tion. It has been used, for instance, as part of the extraction process for

bones and human organs [Ding et al., 1999; Hu et al., 2001; Leader et al.,

2003]. Thresholding enjoys widespread popularity, mainly because of its

simplicity, which is also the reason for its limited capability. Nonetheless, it

is a technique commonly applied in image segmentation. Threshold based

segmentation techniques require that features in images are very well distin-

guished from other objects and that all the greyscale or colour values of an

object can be grouped into a single set of intensities. The method is usu-

ally performed on a per-pixel basis and thus exploits little or no information

about the spatial distribution of grey levels. It is generally considered a crude

segmentation step, extended with further operations to re�ne the separation

towards a desired outcome. Segmentation methods that use clustering tech-

niques are a little more sophisticated and have been used, among others,

for the analysis of brain tissue [Loncaric et al., 1995; Masulli and Schenone,

1999]. Unlike thresholding, clustering techniques group similar data points

together to form separate classes. This is usually done through an iterative

process that seeks the optimum partition of the data. Clustering algorithms

aim to maximise homogeneity within and heterogeneity between clusters,

and thus are more robust against outliers. Another class of segmentation

techniques are region-based methods, which have been successfully applied

for the extraction of lung lobes and airways [Sonka et al., 1996; Kuhnigk

et al., 2003; Ukil and Reinhardt, 2009]. This class of methods operates on

regions rather than single pixels, which makes it hence more tolerant to

noise. A common problem with region-based methods, however, is over- or

under-segmentation, resulting in too many small and similar regions or too

few large regions respectively. A somewhat di�erent approach is taken by

edge-based segmentation techniques [Gao et al., 1996; Gudmundsson et al.,
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1998], which, instead of separating features by their area, operate on the

boundaries of objects, that are extracted as contours. These methods are

less a�ected by local variations within objects, and are particularly reliable

on clear and sharp edges. In images with blurry objects or low contrast back-

grounds, the extraction of boundaries becomes a challenging problem, which

in certain situations can result in gaps or disconnected contour fragments.

Among the wide variety of techniques and categories of image segmentation

methods that have been introduced and applied to medical imaging over the

years, it is worthwhile to mention the class of neural networks [Özkan et al.,

1993; Koss et al., 1999]. Neural networks are a powerful tool, inspired by

biological systems, with the ability to learn and discriminate between par-

ticular features. Learning, however, demands high levels of computational

resource. Some methods rely on prior, rather than learnt, knowledge to

guide the segmentation process. This approach has, for instance, been used

in the extraction of kidneys and vertebra [Weese et al., 2001; Joshi et al.,

2002]. Using prior knowledge can be bene�cial, particularly in the presence

of noise or imaging artefacts, but is not always available and varies with the

application area. Furthermore, care must be taken not to extract features

that are actually not present in the image (false positives).

2.3.2 Extraction of arterial structures

Most of the objects extracted by the methods discussed above have little to

nothing in common with the structure of plant root systems. There is, how-

ever, a network that might, in a way, resemble the structure and complexity

of root systems, namely blood vessels. Methods that have been developed

for their segmentation are of relevance, because arterial trees show a cer-

tain degree of structural similarity to plant roots and as such present similar

issues. Worth mentioning in this context is a medical imaging technique

known as angiography. Digital subtraction angiography (DSA) is a method

traditionally used for planar imaging by using two-dimensional X-ray pro-

jections, but is nowadays more frequently found in combination with either

computed tomography (CTA) or magnetic resonance (MRA). The technique

is designed in particular for vascular imaging, by using intravenous contrast

agents [Piotin et al., 2003; Bash et al., 2005]. Angiography as a method has

been known since 1927 when it was introduced by António Egas Moniz for

the diagnosis of cerebral tumours [Moniz, 1927; Antunes, 1974].
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A large number of segmentation techniques have been developed with

two-dimensional DSA images in mind [Stans�eld, 1986; Collorec and Coa-

trieux, 1988; Malladi et al., 1993; Figueiredo and Leitão, 1995]. One reason

for this might be that conventional DSA has been used as a routine diag-

nostic method for a long period of time and is still used in practice today,

while three-dimensional imaging techniques are still comparatively young.

Stans�eld [1986] segmented coronary vessels using a combination of image

analysis methods and knowledge-based approaches. For the extraction of

vessels, both an edge-detection operator and a region based thresholding

method were applied independently, to achieve a crude segmentation of the

vascular structure. The information obtained from the edge analysis was

then used to re�ne the results of the region analysis, which was further used

to look for elongated shapes. These shapes were �nally matched against a set

of rules comprising prior knowledge of the anatomical structure, eliminating

undesired components that have made it through the previous steps. The

approach presented by Collorec and Coatrieux [1988] is applicable, but not

limited, to coronary vessels. Their method di�ers from conventional tech-

niques that are often either based on morphological operators [Figueiredo

and Leitão, 1995; Eiho and Qian, 1997; Zana and Klein, 2001] or thresh-

old based segmentations [Kottke and Sun, 1990; Wilkinson et al., 2003], by

considering a strategy that traces the centreline stepwise from automatically

detected seed points towards the end of vessels, using a method based on vec-

tor averaging. With this approach it was possible to successfully identify the

centrelines, which, in a secondary processing step, are used to further extract

the boundaries of blood vessels. A problem when tracing vessels' centrelines

is the possibility of loops being formed due to crossings with other vessels

or irregularities in the image data. Trying to suppress these cyclic loops by

weighting each vector point has been found to be inadequate. Therefore to

reduce the e�ect of unexpected behaviours, a constraint was imposed based

on the general assumption that the outline of vessel sections are symmetric

and parallel to the centric base line. Malladi et al. [1993; 1995] presented

a method aimed at extracting the shapes of arbitrary objects, which was

tested on, among others, angiograms. Their method is based upon the level

set method [Sethian, 1999] and uses an expanding speed function that stops

at strong image gradients. The starting point of the level set method could be

placed anywhere inside the arterial tree structure, the level set then evolves

towards and converges on the vessel boundaries.



32 Chapter 2. Methods and techniques used in plant root studies

More challenging, compared to the two-dimensional problem, is the

extraction of blood vessels from data that has been acquired with three-

dimensional imaging systems, such as MRA or CTA [Wilson and Noble,

1999; Flasque et al., 2001]. Wilson and Noble [1999] used a statistically

based approach for the extraction and localisation of cerebral vessels and

aneurysms. Vessels and brain tissue within the image data di�er from each

other in their greyscale intensities. The expectation maximization (EM)

algorithm was used to maximise a likelihood function to �nd the best pa-

rameters to cluster these intensities. A basic EM algorithm, however, had

di�culties coping with the intensity variations found within the vascular net-

work. Therefore, an adaptive variant of the EM algorithm was presented that

recursively divides the volume into smaller sub-volumes on which a localised

segmentation was performed. Sub-volumes can arise which contain only one

tissue class. These were de�ned as special cases and were treated individu-

ally. Final steps included a smoothing process and a connectivity check to

remove undesired segmented fragments and artefacts that could arise during

the recombination of the data extracted from each sub-volume. Such sta-

tistical classi�cation and clustering approaches are frequently adopted when

segmenting three-dimensional data [Wilson and Noble, 1997; Chung and No-

ble, 1999; Yang et al., 2004]. This might be due to the simplicity of extend-

ing two-dimensional concepts to three-dimensional problems. Some other

approaches that work well in two dimensions, however, can easily become

quite complex when a third dimension is added to the dataset. A centre-

line based extraction method for cerebral vascular networks that works on

three-dimensional MRA image data, was developed by Flasque et al. [2001].

The centreline was traced stepwise, with successive points being estimated

by searching within an orientated parallelepiped around previously identi-

�ed points. Rules, like the de�nition of a maximum allowed curvature, were

imposed for each search area. Such a rule-based concept allowed the spec-

i�cation of a pro�le that is based on prior knowledge. A common problem

for centreline based approaches is the detection of junctions or branches.

Flasque et al. solved this problem by analysing the number of entry and exit

points along the surface of each parallelepiped. By the de�nition of a con-

tinuous vessel, a parallelepiped must have exactly one entry and exit point.

If more than one exit point is detected, then the presence of a junction is

assumed, for which a new starting point is created. With this solution it is
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further possible to restrict the maximum number of allowed junctions per

vessel fragment. In a �nal step, all traced centreline points are connected

using B-spline curves. To the reader's awareness it is worth mentioning that

besides the numerous segmentation techniques, various vessel-speci�c �lter-

ing approaches have been presented for the extraction in two-dimensional

DSA or three-dimensional MRA and CTA image data [Frangi et al., 1998;

Sato et al., 1998].

Intravascular ultrasound (IVUS) is often used, as an alternative to con-

trast enhanced angiography, for imaging coronary arteries [Potkin et al.,

1990]. An ultrasound transducer is placed at the end of a small catheter and

inserted into the blood vessel, examining the interior arterial wall. Sonka

et al. [1995] presented an automatic segmentation method for the study of

lumen and arterial wall morphology using IVUS. Their method is based on

an edge-detection operator in which each pixel of the detected edge is con-

sidered as a unique node in a graph and associated with a cost that is related

to the likelihood of it being part of the desired outline. A heuristic graph

search algorithm is then used to extract the boundaries. A priori information

about the anatomical structure of vessels is incorporated to determine the

plaque, internal and external lamina borders. Guerrero et al. [2007] used

ultrasound imaging for the diagnosis of deep venous thrombosis in carotid

arteries. Starting from a seed point within the artery, a probabilistic edge

detection function is used to �nd elliptic arterial boundaries. The seed point

is then tracked in successive image frames using a Kalman �lter, which esti-

mates the trajectory of points along the centreline of a vessel. Segmentation

methods that have been developed for vessel extraction in ultrasound images

usually do not deal with branching structures, as the main objective lies in

identifying vascular abnormalities and not the artery tree structure.

Other complex root-structure-like networks in medical imaging are found,

for instance, in neuronal arborescences [Meijering, 2010] and airway trees

[Sonka et al., 1996].

2.3.3 Root extraction methods in 2D

Most of the methods presented in the literature with the aim of aiding the

extraction of root systems from images have been developed for the analysis

of two-dimensional images. There are many reasons for this. One is that

the equipment needed to take two-dimensional images, such as a common
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digital camera, is much cheaper and more accessible than imaging devices

(such as X-ray CT or MRI) that allow direct acquisition of three-dimensional

datasets. Cameras allow a higher throughput and have been around much

longer and in many more forms than their counterparts. Sometimes, how-

ever, the experimental set-up also restricts the acquisition of data in two

dimensions; rhizotrons, for example, allow only roots to be viewed on their

observation plane. Since there are many di�erent ways to set-up an experi-

ment, the acquired two-dimensional images will di�er as well, and with them

also the complexity of extracting plant roots. It would therefore not be fair

to compare the quality of extraction between the various methods, but we

will discuss here the ideas behind them and the di�culties they face.

No matter in which medium plants are grown, the aim of extracting the

root system is always the same, namely to separate them from the back-

ground. A popular method often used for the extraction of root systems

from images, is simple global thresholding. Thresholding, converts a grey

level or colour image into a binary image, in which a pixel is either part or

not part of the extracted data, depending on whether its value lies in be-

tween or outside given limits. Thresholding only works well if the object of

interest is clearly distinguishable from anything else in the image and pixel

values do not overlap with pixels belonging to the background. This usually

requires a well, for imaging purposes, prepared set-up, such as in [Lebowitz,

1988], where roots have been placed into a Petri dish �lled with water and

illuminated from underneath, so that roots appear dark on a bright back-

ground.

Thresholding alone is rarely su�cient enough to reliably extract root

systems from images. Artefacts such as external light sources can induce

variations in brightness and disrupt data extraction. Heterogeneous back-

grounds, as found for example in rhizotron images, where soil is the growing

medium, can make identi�cation of suitable thresholds problematic. Image

�ltering techniques are often applied to reduce noise and increase contrast

before thresholding is applied [Kokko et al., 1993; Andrèn et al., 1996]. In

some cases, images are �rst decomposed into separate colour channels or

transformed into luminance space, with the object of obtaining better re-

sults from the image processing method [Vamerali et al., 1999; Zeng et al.,

2006]. While this might appear bene�cial, the shortcomings of global thresh-

olding remain. Slightly better results can be obtained via local thresholding
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[Iyer-Pascuzzi et al., 2010]. Local thresholding uses di�erent threshold values

for di�erent regions in the image. The image is usually split into multiple,

�xed sub-regions, to which thresholding is applied independently, making

it robust to gradual changes in brightness. To compensate for the limita-

tions of thresholding, it is quite common to apply additional post processing

methods to discriminate between root objects and other components that

have been extracted erroneously. For instance, in [Zeng et al., 2006], an

AdaBoost-based classi�er is used for that purpose. How the threshold val-

ues are selected di�ers between methods. In some cases the values are pre-set

[Andrèn et al., 1996; Vamerali et al., 1999], in others they can be manually

de�ned by the user [Armengaud et al., 2009] or automatically assigned [Iyer-

Pascuzzi et al., 2010].

Nater et al. [1992] pointed out that thresholding is not a suitable tech-

nique for the extraction of plant roots in mini-rhizotron images, since greyscale

histograms are not bimodal. As an alternative solution, they presented an

approach based on arti�cial neural networks, which have the ability to learn

patterns form input signals and deliver an adequate output when the classes

to be recognised are linearly separable. In their method, the system is given

horizontal and vertical derivatives of the image and returns a single binary

output whose value depends on whether a certain pixel belongs to root or

background. The system is trained with a number of previously segmented

and hand-edited images showing parts of a root system. Another method

which operates without the use of threshoding was presented by Heeraman

et al. [1993]. Their method is based on an image overlay strategy. Images

are taken on di�erent dates after which the �rst image is superimposed with

di�erent combinations of the red, green, and blue channels of later images,

so that regions without any change would appear white. Regions that have

experienced changes, however, generate a distinctive colour. Accurate regis-

tration of the overlaid images is necessary if this technique is to work. Not

only does this method show the presence of roots, it also highlights roots

that were present at one moment but absent in a second due to roots dying

over time. Inspired by the problems and the inventive solutions applied in

medical imaging, in particular for the segmentation of retinal blood vessels,

Page et al. [2008] presented a method, similar to the approach originally

reported by Chaudhuri et al. [1989], which is based on a two-dimensional

matched �lter technique. Under the assumption that roots are linear and
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that their edges run in parallel, a Gaussian based �lter is used at di�erent

rotations and lengths, and passed over the image. The applied �lter will

peak as a match is found, with each considered as a root fragment if the

correlation value is above a threshold.

Some methods have been developed with the aim of using the computer

to aid in the process of root extraction from two-dimensional images, but

unlike the techniques mentioned above, the extraction is done manually, by

the user operating the tool. One example is DART (Data Analysis of Root

Tracings) [Le Bot et al., 2010], in which the user de�nes points along the

roots that are then linked together to form a network describing the root

system. The tool also allows a previously de�ned network to be overlaid on

another root image, for instance an image of a root system taken at a later

date, so that the user can extend the system by adding missing links. This

option allows the analysis of root growth, since nodes can be associated with

di�erent time points. DART is not the only tool pursuing a manually tracing

strategy for the extraction of roots. Another tool that uses the computer

merely as an instrument to assist rather than to contribute in the process

of extraction is RMS (Root Measurement System) [Ingram and Leers, 2001].

As in DART, users working with RMS follow and de�ne roots by setting

points along its path that are connected with lines, resulting in a complete

description of the root system.

Both tools mentioned above emphasise the analysis and measurement of

the root system, and leave the task of root extraction completely to the user.

A little bit more accommodating to users are tools that actively take part

in the extraction process but, since they are not infallible, allow users to

interact and correct incomplete or false detections. Such extraction methods

are considered semi-automated, since the task cannot be completed without

external input or would perform poorly without the user's supervision. An

example of a tool falling in this category is EZ-Rhizo [Armengaud et al.,

2009], which requires the user to slide the threshold to a value that visually

gives the best result, after which the image is cropped and noise or speckles

removed by selecting and applying a �lter from a list of available options.

Once the user is satis�ed with the selected settings, the data is forwarded to

the next step of quanti�cation and analysis. Another semi-automated tool

made available to the community is RootReader2D [Clark et al., 2013]. Af-

ter thresholding the image, the extracted object is skeletonised and further
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separated into individual root segments de�ned by two endpoints and several

connector points linking them together. These paths can then be manually

rearranged, to match the network to the underlying and true root system

in the image. Recently, Pound et al. [2013] have reported a semi-automatic

method for the extraction and quanti�cation of complex root system archi-

tectures in a range of di�erent plant species. In RootNav, a pre-processing

stage employing the expectation maximisation (EM) algorithm estimates the

probability of each pixel in a grey level image arising from root material or

background. The user indicates the start and tip of a root segment, aided

by an automatic tip detection process, and an optimal path between the

two points is computed using the A∗ algorithm. While not high-throughput,

RootNav allows users to produce high quality structural descriptions of root

architectures much faster and more easily than via completely manual mark-

up methods. An interesting approach is adopted by SmartRoot [Lobet et al.,

2011] and RootTrace [French et al., 2009]. Both tools are based on an idea

that is di�erent from usual segmentation strategies. Instead of seeing the

extraction task as a segmentation problem, where the image is divided into

roots and background regions, the root system is traced stepwise from the

top of the system towards the end of the root tips, and as such emulate

more closely the behaviour of a human solving the problem (for instance

by using the manual extraction tools mentioned above). In SmartRoot, the

user places a �rst node de�ning the starting point from where the search

for more roots begins. The tracing is done by exploring the area in front of

the current node (the opposite direction of previous nodes) at two times its

radius within a 90 degree arc. The best candidate is chosen to create and

place the next node, or in case if none is found, the radius is shortened and

the arc length increased to 120 degrees. If the second search does not return

any potential candidate for new nodes, it is assumed that the end of the root

tip has been reached. By continuing the search from one node to the next,

the primary root can be traced to its end. Lateral roots are automatically

added by scanning along the identi�ed primary root and then traced in a

similar way. The user can edit and reposition nodes to make corrections.

RootTrace also extracts roots from images by tracing them rather than seg-

menting them from the background. Tracing is accomplished with the use

of a particle �lter. At each step through an iterative process, particles are

assigned weights according to their likelihood of representing root material
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and then sampled from a set of particles to form a new population. Particles

with a higher weight are more likely to be selected and advanced according to

a simple motion model, which is downward directed predicting the location

at which the next root segment can be found. Through this it is possible

to trace the primary root down until the end of its tip is reached, where all

particles weight will fall below an automatically determined threshold value.

In this process, the user determines only the starting point from where the

tracing starts as well as a few points from the background, of which a dis-

tribution is built and used in the weighting step. The �nal root description

is obtained by identifying the optimal path, from start to tip, through the

particles generated during tracing. By minimising the control a user has

upon the extraction process, the result becomes more objective. Reducing

the interaction between user and application also saves precious time and

brings the analysis closer to fully automated.

2.3.4 Root extraction methods in 3D

The extraction of root systems from two-dimensional images has the advan-

tage that high throughput is easier to achieve. Not only does the analysis

require less time due to the reduced dimensionality of the data, but the ac-

quisition of the image data is usually also fast. On the other hand, since the

data is only given in two dimensions, three-dimensional measurements such

as root volume, root surface area and other traits have to be estimated from

two-dimensional parameters. Crossing or overlapping roots can cause major

issues in two-dimensional analyses and are often the reason why automated

procedures fail to accurately extract the data. This type of artefact can also

seriously a�ect any method which attempts to recover three-dimensional

from two-dimensional root descriptions. Thus, humans are often required

to intervene in the process. In three-dimensional datasets, roots are never

hidden behind other roots or occluding objects. Because it is possible to

acquire data in three dimensions, plants do not have to be forced to grow

along a two-dimensional plane, which is usually done to reduce occlusions

making it easier to capture as much of the root system as possible. Since

this limitation does not apply, plants can be grown in a more natural way.

Depending on the three-dimensional image data, which in turn depends on

the imaging device and the environment in which plants are grown, di�erent

methods for extracting useful information have been reported. In this sec-
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tion we will give a short overview of some of these methods, starting with

solutions proposed for X-ray CT images.

Using a high energy X-ray CT scanner, Heeraman et al. [1997] endeav-

oured to image and quantify the root system of bush bean (Phaseolus vulgaris

L.) that were grown in sand culture. The water content of the sand was kept

at approximately 50 percent �eld capacity. Their primary aim was to show

the suitability of X-ray CT as a novel technology in plant root studies, rather

than to develop a new method for the extraction of root systems from the

image data. Nonetheless, rather than doing the segmentation manually, they

tried to extract the roots based on statistical measures, making the analysis

more objective. With this attempt they were among the �rst who showed

that roots can be separated from non-root material on a computational ba-

sis and not just by human assumption of the presence of roots. The plants

used in their study were grown for 14 days in a controlled growth-room

and scanned with 420keV and 3mA at a resolution of 0.16×0.16×0.20mm

per voxel, for a total height of 8mm resulting in a volumetric dataset of

412×412×40 voxels. In order to separate roots from the surrounding mate-

rial, a subset of voxels from di�erent components were selected and de�ned

either as air, roots, sand or part of the column. Each component was then

tested for normality using the one sample Kolmogorov-Smirnov Goodness-

of-Fit test. From all the four components only the voxel distribution of

the column resulted in a non-normal distribution; for the others the mean,

variance and con�dence interval were calculated and used to classify the re-

maining voxels into one of the components. Figure 2.7 shows an image of the

rendered, extracted roots. This method relies solely on the greyscale values

of each voxel, which is then associated to the component that it best �ts

into. This, however, presumes that none of the initially de�ned components

have overlapping distributions, otherwise tail values might be assigned to an

incorrect category. Heeraman et al. concluded from this study that roots

as �ne as the spatial resolution used for the scan can be detected, but also

that the imaging and extraction technique for root studies using X-ray CT

required further development.

Seeking to advance imaging and analysis procedures, Lontoc-Roy et al.

[2005; 2006] presented methods and results obtained using X-ray CT for soil-

root studies. In their experiment they used homogeneous and loamy sand in
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Figure 2.7: Root system extracted using a statistically based approach -
image taken from [Heeraman et al., 1997]

which Maize (Zea mays L.) was grown for 5 and 3 days after germination.

Samples were scanned under dry and water saturated conditions with 130keV

and 100mA, generating data with a voxel size of 0.12×0.12×0.1mm. A total

of 500 cross-sections, each of size 512×512, were taken, covering the height

of 50mm. After acquisition of the CT data, roots were segmented from

the images by choosing visually a lower and upper threshold value. These

values were di�erent depending on the growth medium used. The resulting

segmentation included primarily larger roots. In a second step, an iterative

three-dimensional region growing method was used, appending voxels that

are connected to the initial extraction, but also fall within a second threshold

boundary, which was chosen to be wider than the boundary in the �rst step.

The result of their extraction of root material from homogenous sand is

shown in �gure 2.8a, while 2.8b shows roots recovered from loamy sand.

Thresholding, be it in two dimensions as discussed in the previous section

or in three dimensions, only gives satisfactory results if the greyscale values

of di�erent components do not overlap. Even though the three-dimensional

region growing process ensures that only voxels that are actually connected

to the root system are included in the segmentation, it is still prone to include
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non-root material that has the same greyscale intensity and is in contact with

previously extracted data. Components consisting of clearly distinguishable

greyscale values remain essential for a successful segmentation.

(a)

(b)

Figure 2.8: Root system extracted using a region growing based approach,
showing roots grown in homogeneous sand (top) and loamy sand (bottom), in
dry (left) and water-saturated (right) conditions - image taken from [Lontoc-
Roy et al., 2006]

Similar to the previously presented method, and su�ering from the same

limitations, is the approach reported by Perret et al. [2007]. To extract

the root system from the growth media, a prede�ned threshold boundary

was applied after which a 26-neighbour connectivity constraint was imposed.

This guarantees that only voxels that are in contact with the plant's root

system are extracted. The plant selected for the study and grown in sand

pots, was Chickpea (Cicerarietinum L.), which was scanned with 130keV and

160mA. The three-dimensional generated dataset consisted of 512×512×150

voxels, each of which had the size of 0.275×0.275×1.0mm. The rendered

result after segmentation is shown in �gure 2.9.
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Figure 2.9: Root system extracted using thresholding combined with a 26-
neighbour connectivity constraint - image taken from [Perret et al., 2007]

The methods presented by Pierret et al. [1999] and Kaestner et al. [2006]

are slightly more sophisticated. Even though both methods make use of

thresholding to perform an initial crude segmentation, additional rules are

applied to help decide whether an extracted object re�ects the characteris-

tics of a root segment. In the experiment of Pierret et al. [1999] the roots of

maples (Acer pseudoplatanus L.) and chestnut trees (Aesculushippocastanum

L.) were examined. These were grown in sandy clay and homogeneous sand

respectively. The samples were obtained from the �eld. A �eld impregnation

technique with resin allowed the recovery of soil cores, which were scanned

with 140keV and 140mA at a resolution of approximately 0.5×0.5×2.0mm

per voxel. Image slices were �rst segmented using a combination of threshold-

ing and a top-hat �lter [Meyer, 1996]. As in the previous methods, extracted

objects were tested for continuity. This was done by superimposing two con-

secutive images, in which objects in the earlier image had been labelled. This

was not done because it was assumed that all roots would belong to one root

system and therefore had to be connected, but to identify which extracted

area in each image slice forms a single object. In addition, traversing the
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image slice in search of connected objects allowed a rough de�nition of the

root's skeleton. Since elliptical objects were prone to artefacts, they were ig-

nored in the analysis, which had the disadvantage of missing out horizontally

growing roots. The authors were aware of this limitation, but considered it as

a reasonable compromise, leaving the methods useful for preliminary investi-

gations. Further quanti�cation was made based on the extracted skeletons,

of which an example is shown in �gure 2.10.

Figure 2.10: Root system extracted using thresholding followed by a selective
detection process - image taken from [Pierret et al., 1999]

Another attempt to extract roots from X-ray CT images has been pre-

sented by Kaestner et al. [2006]. Their specimens, alder plants (Alnusincana
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(L.) Moench), were grown in natural moraine soil for four months but, due to

the resulting high X-ray attenuation, replanted in columns �lled with quartz

sand. These were subsequently scanned at 50keV and 114µA. The volumetric

dataset had a size of 1,024×1,024×1,643 voxels, measuring a total dimension

of 36.9×36.9×59.15mm. The voxel data can be classi�ed into three compo-

nents; sand matrix, pore space and roots. Since the greyscale distributions

of these components are unimodal, thresholding on the raw data would yield

poor results. The authors were aware of that and proposed a pre-processing

step in which a non-linear di�usion �lter was applied multiple times with dif-

ferent parameters to smooth out the texture of the sand matrix, while at the

same time preserving the integrity of root objects. The resulting distribution

was still unimodal, but the distribution of root material was shifted towards

the tail of the main distribution, making Rosin's unimodal thresholding al-

gorithm applicable [Rosin, 2001]. Even though the volume was enhanced

to make it suitable for thresholding, the segmented data still included nu-

merous misclassi�ed voxels. This was dealt with by applying a dilation by

reconstruction operation [Vincent, 1993], which eliminates speckles but at

the same time preserves thin root segments and enforces connectivity of the

root system. The result obtained after applying it to the acquired X-ray CT

image data is shown in �gure 2.11.

Imaging the root system in three dimensions does not mean that X-ray

CT has to be used. An alternative technique to X-ray CT, and a method for

extracting the root system from the acquired image data, has recently been

presented by Clark et al. [2011]. Plants are grown in cylinders �lled with

semi-transparent gellan gum. Samples are placed on a turntable and imaged

with a digital camera from di�erent angles spread over 360 degrees. The

software tool that is described along with the imaging technique is named

RootReader3D and is responsible for the extraction and quanti�cation of

root systems. The projections are �rst thresholded and then reconstructed

into a volumetric dataset using a silhouette-based reconstruction technique,

which results in a stack of cross-sectional images that, although not revealing

the internal structure of roots, shows them as completely �lled objects. Each

cross-section is then segmented again to remove artefacts introduced during

the reconstruction process. In the reported study, only 40 projections are

taken. While an increase in projections would lead to a better volumetric

dataset, it would also increase the time of analysis per sample. Examples
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Figure 2.11: Root system extracted using a threshold based segmentation
together with various pre-�ltering and post-processing steps - image taken
from [Kaestner et al., 2006]

of root systems that have been imaged and extracted with their proposed

system are shown in �gure 2.12.

Though MRI is used for three-dimensional soil-root studies [Jahnke et al.,

2009], only a little work has been reported on root extraction methods from

its data [Schulz et al., 2012; Stingaciu et al., 2013]. The approach presented

by Schulz et al. [2012] uses a �ltering technique based on the method pre-

sented in [Frangi et al., 1998] that searches for tubular structures within the

data and assigns a likelihood value to each voxel using a given dissimilarity

measure. The following step involves �nding the top of the root system,

which is assumed to be at the position with highest water concentration and

largest diameter, and is marked as the root node of a tree-graph structure.

Every voxel is connected through a path to its root node, which is deter-

mined using Dijkstra's shortest path algorithm [Dijkstra, 1959]. In the �nal

step, all voxels with an intensity value below a given threshold are removed
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Figure 2.12: Root system extracted using the RootReader3D system and
software tool - image taken from [Clark et al., 2011]

from the graph and leaf node candidates identi�ed based on a ratio of neigh-

bourhood values [Schulz et al., 2012]. The outcome is a model of the root

system structure.

2.4 Summary

Plant root systems can be studied in many di�erent ways; using a range

of equipment and under di�erent environmental settings. These are often

determined by the nature of study, such as whether a controlled or natural

environment is necessary, whether plants must be preserved for time series

analysis or can be examined destructively, or whether three-dimensional in-

formation is required. Many of these factors must be carefully considered.

For three-dimensional and non-destructive analysis of plant root systems in

soil, X-ray µCT, shows several advantages compared to alternatives, such as

MRI. X-ray µCT provides a link between controlled but arti�cial laboratory

environments and the natural environment in the �eld.

Image analysis is a supportive analytical tool essential in many plant

root related studies. No matter for which purpose image analysis methods

are developed, it is important to understand the characteristics of the data

that is generated. This allows serious degradation of image quality arising

from incorrect use of the technology to be avoided, and highlights potential

di�culties. Noise and the several artefacts common in X-ray CT are well

de�ned by the physical properties of X-rays and their detection, as well as
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the reconstruction method used for obtaining the volumetric data. Available

techniques allow the speci�cation and quanti�cation of image noise, which

is useful for testing and evaluating the developed method, providing back-

ground for the generation of a better arti�cial test data set.

Various image analysis methods have been presented in the literature,

most of them developed to meet particular needs. These methods range

from global to local and more adaptive segmentation techniques, supported

by various pre- and post-processing operations, to tracing or tracking tech-

niques that have been successfully applied in tools for two-dimensional root

extraction as well as for the extraction of similar features in medical images.

As apparent from section 2.3.4, the work carried out so far in three-

dimensional and non-destructive plant root analysis, is largely centred around

X-ray µCT, yet there are still limitations that need to be overcome in meth-

ods developed for plant root extraction. These methods have often di�culties

distinguishing between root and non-root material, or achieve only a partial

extraction of the plant root system. Some methods were also designed for

the analysis of samples that were prepared in a particular way to facilitate

the extraction, but come with the cost of being less representative of �eld

conditions.

In the following chapter (chapter 3) we present a novel method that al-

lows the extraction of plant root systems grown in soil from X-ray µCT

images. The extraction methods is able to deal with the highly heteroge-

neous environment that the roots are embedded in and with the variations

of greyscale intensity values along individual root branches.
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Chapter 3

Extraction of plant roots grown

in soil

With X-ray CT providing an imaging system that allows the observation

of roots in their natural soil environment, researchers have a valuable tool

which permits the design of experiments crucial for gaining new insights into

plant root growth under natural conditions, as well as for understanding

the mutual in�uence that plants and soil have on each other. However,

researchers are still overwhelmed by the workload required to analyse and

evaluate the large sets of image data produced. Image analysis is a bottleneck

limiting the potential and bene�ts that can now be obtained from today's

advanced CT technology. Manual analysis of CT image data is laborious

and potentially subjective; automatic image analysis can make a signi�cant

impact and be used to complement experimental studies. Researchers can

be assisted in their routine data analysis by computational techniques which

minimise their input and hence save signi�cant amounts of time. In order

to accommodate researchers and to support them in their studies, we will

introduce in this chapter a novel way of extracting root system information

of plants cultivated in soil from X-ray µCT images.

In the following sections we �rst discuss the challenges of and outline our

approach to extracting root systems from X-ray µCT images (section 3.1),

introduce the basic concepts of the level set method (section 3.2), the Jensen-

Shannon divergence (section 3.3) and Fourier shape descriptors (section 3.4)

which are each a fundamental part of the extraction method that is presented

in detail in section 3.5. In section 3.6 the method is applied to image data

of plant roots in soil acquired with X-ray µCT.
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3.1 A visual tracking approach

The soil texture, in which plants naturally grow, can be highly heteroge-

neous, consisting of various sized mineral particles, organic matter and pore

spaces that are partially �lled with water. All these contribute to a wide

range of di�erent densities which causes some of the X-ray attenuation val-

ues to overlap with the attenuation coe�cients of plant roots, resulting in

very similar greyscale intensities in the image data. This makes the extrac-

tion of roots from X-ray µCT images a di�cult task. Figure 3.1 illustrates

the problem. Here, a cross-sectional image slice is taken and, although per-

forming poorly, thresholded to separate root material from the background,

in order to highlight that there are various other regions that fall within the

same range, yet do not belong to the plant.

(a) (b)

Figure 3.1: Cross-sectional image slice highlighting root material obtained
by (a) manual thresholding and (b) as part of the extraction process using
the proposed method

In addition to overlapping greyscale intensity values, another issue is

caused by the variation of greyscale distributions along roots, as shown in

�gure 3.2. This may result from the physical properties of the plant, but is

more likely due to the in�uence of the surrounding environment the roots are

embedded in. Artefacts and imaging characteristics of X-ray CT may also

contribute to the wide variation of intensity values. Whatever the cause, this

further complicates the process of root system extraction from X-ray µCT

images. Extraction criteria that are e�ective at one point on a given root

may fail at another point.
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Figure 3.2: Greyscale intensity distribution of a single root in di�erent image
slices from 8-bit data (Maize (Zea mays L)) - image taken from [Mairhofer
et al., 2012]

In this chapter we describe a novel approach to the segmentation of X-

ray µCT scans of plant roots growing in soil. The volumetric data is viewed

as a sequence of x-y cross-sectional images aligned along the z axis. As the

image stack is traversed, root cross sections appear to move around the im-

age, though in reality everything is �xed in place. The sense of movement

is created by the fact that roots cut across the soil sample, and are not lim-

ited to growing straight down. Hence, a root cross-section will be located

at slightly di�erent locations in neighbouring images and will have slightly

di�erent shapes, as the root orientation and thickness changes. This appear-

ance makes the problem of extraction eligible for a tracking based solution,

tracing roots through a sequence of images. That tracing is a suitable solu-

tion for the extraction of data with root-like structure, has previously been

shown by methods developed for the segmentation of plant roots in two-

dimensional images and presented in [French et al., 2009] and [Lobet et al.,

2011], and by the extraction methods designed for medical applications pre-

sented in [Collorec and Coatrieux, 1988] and [Flasque et al., 2001], in which

target objects are followed stepwise from one location to the next, instead of

applying global segmentation techniques. This has the advantage of a highly

�exible search that can adapt to various changing circumstances, making the



52 Chapter 3. Extraction of plant roots grown in soil

approach more robust to the highly heterogeneous environment and to the

variations occurring across the root system architecture. Therefore, by us-

ing a tracking based strategy, the problem of extracting an object of varying

greyscale intensity values from a heterogeneous and complex background, is

reduced to a local and minimum problem of extracting a root object from

a single cross-section. Local information obtained through this process can

be used to correct and adapt to intensity changes in the data, and thus are

more responsive than global three-dimensional segmentation methods. This

is a key characteristic in order to overcome the di�culties observed in the

image data.

Visual object tracking is a widely studied problem in the �eld of computer

vision. The general idea is to identify a target object, which is followed

through a sequence of images, so that at any point in time it is possible

to locate the target's position. Various techniques, developed for a range

of applications, have been presented in the literature [Pavlovic et al., 1997;

Coifman et al., 1998; Hu et al., 2004; Yang et al., 2011]. Target objects are

often represented either by discrete features such as points or lines, region

templates or shape descriptors [Cannons, 2008]. Tracking algorithms rely on

appearance and motion models. The motion model is used to estimate the

trajectory of the object and thus gives an indication of the target's location,

while the appearance model describes outstanding features that allow the

identi�cation and recognition of target objects in later images. Appearance

and motion models are combined in a tracking engine or framework. Most

take the form of a predictive �lter, in which target location and properties

at time t are used to predict target location and properties at time t + 1.

A localised search is then performed near the target's predicted location.

Kalman �lters [Kalman and Bucy, 1961], particle �lters [Isard and Blake,

1998] and mean shift algorithms [Comaniciu et al., 2000] are among the

most widely used predictive tracking frameworks. Active contours or snakes

[Kass et al., 1988] provide an alternative approach, mixing segmentation and

tracking by using an energy minimisation procedure to �t a model of the

target's boundary shape to the input image or image sequence. A broadly

similar approach is adopted by level set methods [Sethian, 1999].

The task of visual object tracking is often complicated by partial or full

occlusion of the target object [McKenna et al., 2000], variation in appearance

[Matthews et al., 2004] or an abrupt change in motion [Li et al., 2008]. Due
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to the high resolution achieved when using X-ray µCT scanners, typically

<50µm, we believe that there is no complex motion to be expected from

tracking root objects. Although roots can frequently change the direction

of growth, the movement that occurs between two consecutive images is

quite small, resulting in a partial overlap of the target object. A variation

in appearance, however, is frequently encountered, being present in both

the shape and greyscale intensities, as described in the previous paragraphs.

Because samples are imaged in three-dimensional space, there is no proper

occlusion between objects. However, as we show later in chapter 7, root

objects from di�erent plants can interact with each other and appear as a

single merged target, which constitutes a particular situation that requires

additional processing steps. For a comprehensive introduction and overview

of various visual tracking approaches, the interested reader is referred to

[Yilmaz et al., 2006; Cannons, 2008].

The key feature of the proposed method is the level set segmentation

technique [Sethian, 1999], which is adopted to locate the boundary of a

target root object. The interface is not de�ned by a number of control

points, but represented implicitly by a level set function, which gives the

method the ability to adapt to changing topologies (such as splitting or

merging interfaces) that is relevant in detecting emerging lateral roots, but

also provides high accuracy and robustness.

3.2 The level set method

The proposed root extraction method is based upon the level set method.

This method, which was originally presented as a class of algorithms named

PSC (Propagation of Surfaces under Curvature) schemes, was introduced

by Osher and Sethian [1988] in the late 1980s. The numerical method was

initially developed to describe the motion of a propagating front driven by

its curvature, for the purpose of studying the �ow and dynamics of physical

phenomena such as crystal growth, �ame front propagations or vortex sheet

roll-ups [Sethian, 1999]. The level set method has since been adopted and

further re�ned in diverse �elds, including image processing and computer

vision [Tsai and Osher, 2003], in which the front represents the boundary of

some object or region of interest and is propagated across the image until it

is a su�ciently good �t to the image data.
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Malladi et al. [1995; 1995], inspired by the work in [Sethian, 1985; Os-

her and Sethian, 1988] used the level set method to recover objects of any

complex shape from images. The level set method evolves with curvature

dependent speed around high gradients at which the front eventually comes

to a stop. A di�erent formulation of the level set method, popular in image

analysis, is the framework presented by Chan and Vese [2001a; 2001b], whose

method is based on the Mumford-Shah model [Mumford and Shah, 1989].

The level set framework aims to partition an image into two regions of ap-

proximately equal values, by minimising an energy function that guides the

front such that the inside area consists of one value and the outside area of

the other. Therefore, the evolving front is not dependent on edges but relies

solely on image values. This makes the method suitable for the detection of

objects whose boundaries are not de�ned by gradients. The level set method

has been adopted in many applications, such as for image recovery and noise

removal [Marquina and Osher, 2000; Whitaker and Xue, 2001; Combettes

and Luo, 2002], image registration [Vemuri et al., 2000, 2003; Droske and

Ring, 2006], texture [Paragios and Deriche, 2002; Sandberg et al., 2002;

Aujol et al., 2003] and prior knowledge based segmentation [Rousson and

Paragios, 2002; Cremers and Soatto, 2003; Chan and Zhu, 2005]. A general

overview of di�erent level set formulations and their application in image

analysis is given in [Tsai and Osher, 2003] and [Cremers et al., 2007].

Figure 3.3: Front of a level set function Φ(x, y), with negative values inside
and positive values outside the zero level interface

In this work we refer to the de�nition of the level set method given in

[Sethian, 1999]. The level set method represents the boundary of a given

shape as the intersection of some function Φ(x, y, t) with the plane t = 0.
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Points on the x-y plane for which the value is negative lie inside the shape,

while those with positive values are outside, as illustrated in �gure 3.3. The

motion of the front is controlled by a de�ned speed function F . Changes are

made to the boundary curve, not by direct manipulation of the points lying

on it, but by changing, or evolving, the level set function Φ(x, y, t), which is

found by solving a partial di�erential equation

∂Φ

∂t
+ F |∇Φ| = 0 (3.1)

The interface of the front C at time t is given by the zero level of the function

Φ, which de�nes the inside and outside areas as sets of negative and positive

values respectively.

C (t) =

{

(x, y)

∣

∣

∣

∣

Φ (x, y, t) = 0

}

(3.2)

The equation 3.1 can be approximated by using a �nite forward di�erence

scheme in time

Φ(x, y, t+ 1)− Φ(x, y, n)

∆t
+ F |∇x,yΦ(x, y, t)| = 0 (3.3)

which allows Φ(x, y, t+ 1) to be derived as follows

Φ(x, y, t+ 1) = Φ(x, y, t)−∆tF |∇x,yΦ(x, y, t)| (3.4)

To solve the spatial derivative |∇x,yΦ(x, y, t)| an appropriate �nite di�erence

scheme can be used. The simplest is the �rst order upwind scheme [Sethian,

1999], which uses values upwind of the direction of information propagation.

For this we de�ne the forward and backward di�erence operator as follows

D+xΦ =
Φ(x+∆x, y, t)− Φ(x, y, t)

∆x
(3.5)

D−xΦ =
Φ(x, y, t)− Φ(x−∆x, y, t)

∆x
(3.6)

In a similar way we de�ne D+y and D−y, which allows us to write

∇+ =
[

max(D−x, 0)2 +min(D+x, 0)2 +max(D−y, 0)2 +min(D+y, 0)2
]1/2

(3.7)



56 Chapter 3. Extraction of plant roots grown in soil

∇− =
[

max(D+x, 0)2 +min(D−x, 0)2 +max(D+y, 0)2 +min(D−y, 0)2
]1/2

(3.8)

Information propagation depends on the direction of movement and hence

the speed function F . Combining all the terms de�ned so far gives the �rst

order level set scheme

Φ(x, y, t+1) = Φ(x, y, t)−∆t
[

max(F (x, y, t), 0)∇t+ +min(F(x, y, t), 0)∇t−]

(3.9)

A more accurate approximation can be achieved with higher order schemes.

In this work however, we choose to use the �rst order scheme, since for our

purposes it works well and higher order methods incur signi�cantly higher

computational cost. Note that the formulation of the level set equation as

in equation 3.9 permits an arbitrary speed function F and hence allows the

front to revisit a point (x, y) several times.

The level set method is a computationally demanding technique, yet it

is a robust and attractive method because it has the advantage of easily

handling topological changes, such as splitting or merging interfaces. The

level set function is usually initialised as a signed distance function Φ = ±d

such that |∇Φ| = 1 and d is the distance from a point to the front. As the

interface evolves, the level set function is likely to drift away from its initial

state. This is the result of the discretisation of the level set function and

the use of non-uniform velocities during the calculation. It is not necessary

for Φ to be a signed distance function, but gradients that are too steep or

too �at can lead to numerical inaccuracy and instability near the interface.

By maintaining the signed distance function, the calculation of parameters,

such as the curvature of the front, becomes more accurate. To avoid the loss

of the signed distance property, the speed function can either be designed to

preserve it as the front evolves or the level set function can be re-initialised

from time to time, to ensure that Φ remains approximately a signed distance

function [Li et al., 2005; Min, 2010]. Another reason for re-initialising the

level set function is the use of a narrow band approach [Chopp, 1993], which

reduces the computation of the level set function to a band around the

interface and hence increases performance. An inner and outer boundary is

set at prede�ned distances from the zero level and only values that fall within

this band are updated. As the front evolves it will sooner or later hit one of
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the boundaries. The boundaries of the narrow band are then moved and the

new points residing within the band updated using one of the re-initialisation

methods [Sethian, 1999]. Thus, the narrow band evolves together with the

zero level of the function Φ(x, y).

Several solutions have been proposed for re-initialising the level set func-

tion to rebuild the signed distance property [Sethian, 1999]. Sussman et al.

[1994] re-initialised the level set function by solving Φ = sign(Φ)(1− |∇Φ|)
to steady state. An alternative approach is to use the fast marching method

[Sethian, 1996, 2001], which keeps the interface values intact and thus pre-

serves the front while rebuilding the level set function [Sethian, 1999]. The

fast marching method is a technique for solving boundary value problems,

and closely related to the level set method. However, unlike the level set

method, it requires F to be strictly positive F > 0 for all time and therefore

the front moves always in the same direction. This implies that a point (x, y)

cannot be revisited twice by the moving interface. For the moment we con-

sider a function T (x, y) in two-dimensional space, which has zero values at

an initial interface, similar to the de�nition of the level set function. Assum-

ing the boundary moves in normal direction with a prede�ned positive speed

F > 0, the function T (x, y) gives the time at which the interface reaches the

point de�ned by (x, y). The motion of the front can be characterised by

|∇T |F = 1 (3.10)

which is known as the Eikonal equation. An example of a circular front

expanding with constant speed F = 1 is shown in �gure 3.4.

The equation 3.10 can be solved using the fast marching method, which

is a robust and accurate method and would be our method of choice for

the re-initialisation of the level set function, since the interface is completely

preserved and thus guarantees stability. In fact, the method has been used

in a previous version of our work presented in [Mairhofer et al., 2012]. How-

ever, the fast marching method, as presented in [Sethian, 1999], is also highly

sequential. Starting from the grid points at the zero level interface, infor-

mation is propagated in a single direction away from the boundary in a

systematic manner, updating all other grid points one by one. The com-
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Figure 3.4: Arrival function T (x, y), starting with an initial location of a
circular front T = 0

putational complexity of the fast marching method is O(N logN). Another

approach for solving equation 3.10 is presented in [Tsai et al., 2003; Zhao,

2005] and referred as the fast sweeping method, which has a computational

complexity of O(N). Gremuad and Kuster [2006] have demonstrated that

in the absence of obstacles, which are locations in which the front is prop-

agated at in�nitely slow speed, the fast sweeping method is more e�cient

than the fast marching method, since only a single sweep in each direction

is required. For the purpose of re-initialisation the grid points are updated

at constant speed and therefore there are no obstacles to overcome. Since

the fast sweeping method is used in the current version of our application,

its basic principles are described in the following paragraph. For a detailed

description of the fast marching method, the interested reader is referred to

[Sethian, 1996] and [Sethian, 2001].

The fast sweeping method is based on the concept of sequentially scan-

ning and propagating information along a certain direction, which later be-

came known as `sweeping', and was �rst introduced by Danielsson [1980]

for the computation of the Euclidian distance map. The original method,

however, does not satisfy the Eikonal equation in 3.10. The fast sweeping

method presented by Tsai et al. [2003] and Zhao [2005] builds on this idea
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but at the same time is a valid solution for the Eikonal equation (3.10).

The upwind scheme presented in [Rouy and Tourin, 1992] is used for the

discretisation of the partial di�erential equation and is de�ned as follows

max(ux,y − ux∧, 0)
2 +max(ux,y − uy∧, 0)

2 = F (x, y)2 (3.11)

where ux,y is the value of the grid point (x, y) and ux∧ de�ned as

ux∧ = min(ux−1,y, ux+1,y) (3.12)

uy∧ is de�ned in a similar way to ux∧. The grid is initialised by �xing the

values of the interface and assigning large positive values to all other grid

points. The domain is then swept in alternating directions

x = 1 : X, y = 1 : Y

x = X : 1, y = 1 : Y

x = X : 1, y = Y : 1

x = 1 : X, y = Y : 1

where the value ū is computed for the grid point (x, y) using its neighbours

ux±1,y and ux,y±1 and updated only if the new value is smaller than its

current ux,y = min(ux,y, ū). ū is obtained from the equation 3.11 which can

be solved using

ū =







min(ux∧, uy∧) + F (x, y), if |ux∧ − uy∧| ≥ F (x, y)

ux∧+uy∧+
√

2F (x,y)2−(ux∧−uy∧)2

2 , if |ux∧ − uy∧| < F (x, y)
(3.13)

In equations 3.9 and 3.13, we now have a complete formulation for evolv-

ing and re-initialising the level set function. When using level sets for phys-

ical simulations it is common to observe the motion or interaction between

multiple interfaces for a �xed period of time. However, in image analysis

termination criteria are important to determine the completion of an oper-

ation. The evolution process is often halted when the front converges to a

stationary solution. Alternatively, the number of sign changes can be used

to terminate the computation when it has settled down to a stable con�g-

uration. This could be useful in situations where the front might start to

oscillate. In order to avoid endless computation of the level set function,
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the number of iterations is sometimes also limited to a �nite number. This

value, however, is usually fairly high and unlikely to ever be reached [Sethian,

1999].

3.3 Jensen-Shannon divergence

The evolution of the level set function used in the proposed root extraction

method is based on the distribution of greyscale values; to be precise, on

the similarity between two probability density functions derived from their

distributions. In order to determine how similar or dissimilar two probabil-

ity density functions are, we employ statistical measures. Many statistical

techniques have been developed for this purpose, among which is the Jensen-

Shannon divergence [Lin, 1991]. Alternative methods that are frequently

used, in particular in image analysis, are for instance, Kolmogorov-Smirnov

[Geman et al., 1990], Chi-square [Puzicha et al., 1997], histogram intersection

[Swain and Ballard, 1991], Bhattacharyya [Bhattacharyya, 1943], Sørensen

[Sørensen, 1948], Kullback-Leibler [Kullback and Leibler, 1951] and Earth

mover's distance [Rubner et al., 2000]. For a more detailed overview of dif-

ferent distance measures, the interested reader is referred to [Rubner et al.,

2001] and [Cha, 2007]. The Jensen-Shannon divergence provides a statistical

measure of distance between two or more probability density functions. Lin

[1991] proved that the Jensen-Shannon divergence is always non-negative,

symmetric and bounded, which are important properties for a dissimilarity

measure. Endres and Schindelin [2003] and Österreicher and Vajda [2003]

showed further that even though the Jensen-Shannon divergence does not

ful�l the triangle inequality, its square root does, and thus de�nes the square

of a true metric. The Jensen-Shannon divergence presented in [Lin, 1991],

is de�ned as follows

JS(p, q) = H(wpp+ wqq)− wpH(p)− wqH(q) (3.14)

where H is called the Shannon entropy function and calculated as shown

in equation 3.15, p and q are the two probability density functions that are

compared to each other and wp, wq ≥ 0 are two weighting parameters such

that wp + wq = 1, used to balance the contribution of the two statistical

probability density functions, which makes the Jensen-Shannon divergence
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suitable for conditional probability studies where the weighting parameters

represent prior probabilities.

H(p) = −
n
∑

i=0

pi logb (pi) (3.15)

The Jensen-Shannon divergence measure is bounded by [0, logb2], for which

using a logarithm of base 2 results in a distance that is measured within [0, 1],

where 0 is considered a complete match between two probability density

functions. The higher the value of the Jensen-Shannon divergence the lower

is the probability that the data come from the same distribution.

The Jensen-Shannon divergence is a popular method in probability and

information theory. In image processing and recognition, the Jensen-Shannon

divergence has been used, for instance, for edge detection in noisy images

[Gómez-Lopera et al., 2000], in the process of image retrieval [Hörster et al.,

2007] and for the representation and recognition of three-dimensional object

shapes [Hamza and Krim, 2003]. The Jensen-Shannon divergence was chosen

in this context due to its symmetric and bounded properties and because it

does not require the data to follow a certain distribution, which is impor-

tant, since the distribution of greyscale intensity values in the image data is

unknown and cannot be assumed to follow the same distribution in all the

samples. In �gure 3.5, we show an example in which the Jensen-Shannon

divergence has been used to measure the similarity between image patches.

(a) 0.0 (b) 0.125932 (c) 0.018897 (d) 0.325652 (e) 0.579562 (f) 0.062500

(g) 0.273964 (h) 0.169698 (i) 0.458841 (j) 0.129289 (k) 0.602166 (l) 0.019704

Figure 3.5: Jensen-Shannon divergence applied to a set of images where the
�rst image is used as reference and compared against all others. Note that
all samples with roots (a,c,f,l) have a distance < 0.1. Also to be considered
is that the reference image (a) has a small portion of soil particles and pore
spaces included, which are present in all samples and hence reduces the
distances for samples without root objects.
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3.4 Fourier shape descriptors

The ability to detect changes in shape is a key feature of the proposed

method. The way in which this is integrated into the extraction method

and the particular role it plays are described in detail in later sections. In

order to detect whether a shape has remained constant or not, it is neces-

sary to identify features that are suitable for comparison. Many studies have

been concerned with the analysis of shapes, proposing a variety of methods.

These can be classi�ed into two major categories, contour-based and region-

based techniques [Zhang and Lu, 2004]. The �rst derives features, as its

name suggests, only from the outline while the latter takes the entire object

region into consideration. This makes techniques that are part of the former

class favourable in our context, since they are not a�ected by a high vari-

ability within the shape, as it might be the case for root objects scanned at

a very high resolution where the internal structure of the root, such as the

aerenchyma, becomes visible and thus gaps are likely to appear within the

extracted data. Techniques using Fourier descriptors, for instance, are mem-

bers of the class of contour-based methods, of which one speci�c method is

discussed in detail in the following paragraphs. A comprehensive literature

review of the large variety of di�erent shape representation and description

techniques is given in [Mehtre et al., 1997; Loncaric, 1998; Rui et al., 1999;

Veltkamp, 2001; Zhang and Lu, 2004].

Fourier shape descriptors are techniques suitable for detecting changes in

shape. In comparison to some other methods they can be computed very ef-

�ciently, which makes them a popular tool in shape recognition applications

[Zahn and Roskies, 1972; Persoon and Fu, 1986; Cortese and Dyre, 1996].

Fourier shape descriptors have also the advantage that the level of detail

they capture is related to the frequencies in the spectrum. Low frequencies

capture the global and general characterisation of a shape, while high fre-

quencies can detect very �ne details but are also prone to noise [Zhang and

Lu, 2001]. By �ltering out a band of frequencies, it is possible to extract and

use only information that is relevant to a particular task. Among the shape

analysis methods using Fourier descriptors, di�erent variations and modi�-

cations have been reported [Zhang and Lu, 2001]. In this work we adopt the

method presented in [Granlund, 1972; Gonzalez and Woods, 2002], which is

known as complex Fourier descriptor.
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Starting from an object's boundary, points are distributed along the out-

line at equally spaced intervals (x(k), y(k) : k = 0, 1, ..., N − 1) and ordered

in either a clockwise or counterclockwise direction. The coordinates of each

point (x, y) can be treated as complex numbers

z(k) = x(k) + iy(k) (3.16)

This translates two-dimensional coordinates into a one-dimensional function,

which can be transformed from its spatial domain into the frequency domain

to obtain the coe�cients (c(u) : u = −N/2 + 1, ..., N/2), which are called

the Fourier descriptors

c(u) =

N−1
∑

k=0

z(k)e−2πiuk/N (3.17)

Using the inverse Fourier transform, z(k) can be restored

z(k) =
1

N

N−1
∑

u=0

c(u)e2πiku/N (3.18)

In the context of this work we are only interested in the general appearance

of the shape, and not in the details of the outline. Therefore, we restrict our

comparison to the lower frequencies of the spectrum, that is the coe�cients

located around zero within a band −P < 0 < P , while high frequencies are

ignored c(u) = 0 : |u| > |P |. A particular characteristic has the coe�cient

c(u) : u = 0, which presents the centre position of the shape. By setting

c(0) = 0 the shape description becomes translation invariant. The next

positive frequency component c(u) : u = 1 determines the size of the shape.

This component can be used to normalise all other coe�cients so that the

method becomes also scale invariant. The rotation of the shape is only coded

into the phase of the Fourier coe�cients φc and thus can be disregarded to

obtain rotation invariance. Finally, to compare the shape of two objects,

only their �ltered and normalised power spectra of the Fourier coe�cients

|ĉ(u)| are used of which the sum of squared di�erence is calculated. An

example in which the complex Fourier descriptor method is used, is shown

in �gure 3.6.
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(a.1) (b.1) (c.1) (d.1) (e.1)

(a.2) 0.0 (b.2) 0.0 (c.2) 0.0 (d.2) 0.0 (e.2) 0.0

(a.3) 0.0 (b.3) 0.023911 (c.3) 0.234583 (d.3) 0.343315 (e.3) 0.553746

(a.4) 0.0 (b.4) 0.067423 (c.4) 0.444866 (d.4) 0.635524 (e.4) 0.827132

(a.5) 0.0 (b.5) 0.130886 (c.5) 0.541785 (d.5) 0.737425 (e.5) 0.920572

(a.6) 0.0 (b.6) 0.188821 (c.6) 0.594974 (d.6) 0.787199 (e.6) 0.975637

(a.7) 0.0 (b.7) 0.360362 (c.7) 0.658951 (d.7) 0.854504 (e.7) 1.037100

Figure 3.6: Shape comparison using complex Fourier descriptors (512
points), on images of the MPEG-7 dataset [Latecki]. The �rst shape is used
as reference and compared against all others, using the frequency bands:
(x.2) P=1, (x.3) P=5, (x.4) P=10, (x.5) P=20, (x.6) P=40, (x.7) P=256.
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While making the shape description translation and rotation invariant

seems reasonable, it might be arguable whether scale invariance is necessary

in the context of this work. Two cross-sections of roots that are located close

to each other are likely to be of similar size. Therefore, a change in size might

indicate a di�erence between the two objects. This might be generally true,

but an exception to this assumption arises, for instance, at the seed of the

plant, where the size of an object can change drastically. In addition, if the

power spectrum of the Fourier coe�cients is not normalised, then the e�ect it

would have on the dissimilarity measure is relatively large, becoming overly

sensitive to changes in size and therefore unreliable for assessing shapes.

3.5 A novel level set method for visual tracking

To provide objective, accurate and automatic extraction of plant roots from

µCT images, we propose a novel method based on object tracking. Due

to the nature of tracking, the connectivity of the reported root system is

guaranteed; target objects (root sections) are followed through the image

sequence until they disappear from the scene. Because tracking follows ob-

jects from one image to the next based on their state and information avail-

able in the current image frame, this approach allows a higher degree of

adaptability than previous methods and thus can adjust more easily to lo-

cal changes than other three-dimensional segmentation techniques. While

three-dimensional segmentation considers the task to be the extraction of a

single object, a tracking framework operates on a much smaller scale, aiming

only to �nding a given target in the next image frame. To locate a complete

three-dimensional object, it must repeat its task successfully throughout the

entire image stack. Since the overall task can be divided into many small

steps, each can be adjusted so that the likelihood of successfully locating

the target is increased. This is true, not only when tracking a single object,

but also when multiple objects are tracked. Each can be treated indepen-

dently, and each tracker tailored to the target it follows. These are important

characteristics required for successful extraction of root systems. How this

concept is applied to the proposed extraction technique is described in the

rest of this section.
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The proposed tacking method is based on the level set method and uses

the narrow band strategy for increased e�ciency and sweeping method for

re-initialisation. The level set function is solved using a �rst order upwind

scheme and is de�ned as follows

Φ(x, y, t+ 1) =Φ(x, y, t) + ∆t [ (1− α) (κ)

− (α)
(

max (FJSD, 0)∇+ +min (FJSD, 0)∇−)] (3.19)

where α ∈ [0, 1] is a weighting parameter between the speed coe�cient FJSD

and the curvature dependency κ = ∇· ∇Φ
|∇Φ| of the front. FJSD is based on the

Jensen-Shannon divergence, which computes the distance between two given

probability density functions. In this context, one probability density func-

tion, referred as root model, represents the distribution of greyscale values

of previously computed root sections and, as shown later in this section, is

updated continuously. The other probability density function, to which the

root model is matched, is built from the actual data in the current image,

around the interface of the evolving level set function. As already men-

tioned in section 3.2, other distance measures can be used as alternatives.

The Jensen-Shannon divergence was selected, because of its symmetric and

bounded properties [Lin, 1991]. The term FJSD is obtained as given below

FJSD =







1 if JS ≤ β

−1 if JS > β
(3.20)

β ∈ [0, 1] is used as a parameter to determine what distance between model

and data is considered acceptable.

In order to apply the Jensen-Shannon divergence we �rst need to trans-

form the di�erent greyscale intensity estimates into a statistical probability

density function. A straightforward way to achieve this is to generate and

normalise a histogram. However, the histogram is a rather crude statistical

density estimator, sensitive to the choice of origin and bin width, and is

usually not suitable for small data points. A better alternative is the use of

kernel density estimators, which are de�ned as follows

p̂(x) =
1

nh

n
∑

i=0

K

(

x− x (i)

h

)

(3.21)
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where n is the number of data points, h the bandwidth and K the smoothing

kernel. A commonly used kernel for K, is the Gaussian kernel K(x) =
1√
2π
e−

1

2
x2

.

The level set function is computed within a narrow band of distance

d = 6 in both directions. If d is inde�nitely large then the level set function

would be computed over its entire domain and thus no e�ciency saving

would be obtained. A value of d = 1 means that the narrow band has to be

repositioned almost every time and thus becomes counterproductive.

The evolution of the level set function is based on the Jensen-Shannon

divergence, using an estimate of the probability density function of the root

as reference. The easiest way of de�ning such a model is to select a represen-

tative set of voxels corresponding to root material before processing begins

and use their greyscale intensity values to create a model that is employed

throughout the segmentation. In that case we could easily distance ourselves

from the tracking framework and adapt instead a three-dimensional level set

method, since the level set approach can be extended to an N-dimensional

domain [Sethian, 1999]. In fact, we believe that a level set method based on

the Jensen-Shannon divergence in three-dimensional space, would be suitable

for extracting data that shares a common distribution of greyscale intensities.

Unfortunately, in the context of root system extraction from its soil environ-

ment, this approach is not viable as the intensity values can change across

the root system architecture (and along individual root branches) as the soil

and root moisture content and soil organic mineralogy matrix changes. Fig-

ure 3.2, in the introduction of this chapter, shows the intensity distribution

of a single root obtained at di�erent soil depths. This highlights why meth-

ods based on global information, such as thresholding or voxel classi�cation,

cannot extract roots accurately as it is necessary to update the root model

while tracking root branches through the X-ray µCT volume. In addition,

each object has also to be di�erentiated among others found within the same

image slice. These observations of di�erent and changing intensities within

target objects support our decision of using a tracking framework, since it

easily accommodates the above mentioned issues. This, however, is based

on the assumption that the intensity variations occur along the z-direction

of the image stack, which we believe is the orientation of the majority of

roots. While we observed horizontally oriented roots in many samples, they

are rarely at a straight 90 degrees angle , but show slight changes in orienta-
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tions, which divides them into smaller root segments spread across multiple

cross-sections. For the few cases in which large root objects are only present

in a single cross-section , it does not necessarily imply that there will be a

change in intensity values. If present, however, there is a chance of losing

the target.

The root model used to drive the evolution of the interface is obtained by

considering the greyscale intensity values identi�ed as root materials in the

previous image. It is assumed that those values do not change excessively

between two consecutive images, but vary smoothly throughout the image

stack (�gure 3.2).

We deal with multiple root objects on the same image plane by using

the classical two-pass connected component algorithm [Rosenfeld, 1970] to

assign a label to each object before proceeding with the next image. This

is possible, as at this stage in the process the level set method has already

identi�ed all the di�erent root objects in the current image slice. The di�er-

ent root objects and their interfaces are therefore distinguishable. Labels are

propagated when constructing the narrow band around an interface and thus

it is possible to evolve the level set function using di�erent models for each

root object. This means that we do not have a single model that represents

all the root objects at the same time, but several models that are generated,

each representing a single target.

Updating the root model is an inevitable step, yet it conceals potential

problems. Noise or small areas of background might be included in the rep-

resentation of its probability density function. These errors can accumulate

and result in a model that is no longer an appropriate representation of a

tracked root object. Therefore, an additional test is performed to continue

the approach described above. The assumption is made that in normal situ-

ations the shape of a root object changes only slightly, if at all, between two

consecutive images. At the high resolutions achieved when using µCT, we

believe this assumption holds as images are typically separated by < 50 µm.

Thus, a model is only updated if the object's shape is considered similar.

An exceptional case is, for instance, when a root starts bending from the

vertical direction to the horizontal or vice versa. Then, a change in object

shape does not necessarily mean that the previously detected object's model

is incorrect. Another common scenario is an emerging lateral root, which

will cause a change in the shape of the root's measured cross section. Even
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though an update of the root model is likely to be rejected, the model still

represents a valid root object that is reasonably accurate. However, when

a crack shaped pore in the soil is falsely interpreted as a branching root,

then updating the model would imply that both the pore space and the root

section should be included in the model representation. Should the pore

space dominate the overall distribution of the model, then the tracker would

lose its target and continue following the cracking pore instead. Therefore

in both instances not updating the model is the preferable choice.

Parameter Value Description

Seed point radius
(pixels)

5 De�nes the area around the seed
point from which an initial root
model distribution is built

JS weighting
parameters wp, wq

(Equation 3.14)

0.5 Balance between the two probabil-
ity density functions

Fourier shape
descriptor points
N (Equation
3.17-3.18)

512 N-periodic sequence

Fourier shape
descriptor window
P

20 De�nes the spectrum window for
low frequencies

α (Equation 3.19) variable De�nes the smoothness of the level
set front

β (Equation 3.20) variable De�nes the acceptance rate of the
similarity measure

Kernel density
estimator
bandwidth h
(Equation 3.21)

1 De�nes the smoothness of the dis-
tribution curve

Narrow band
width d

6 De�nes the width around the front
in which the level set function is
calculated

Table 3.1: Constant and variable parameters

Based on this, the complex Fourier descriptor technique, which was de-

scribed in detail in section 3.3, is adopted to determine the amount of change
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between two shapes. To transform the interface from the special domain into

the frequency domain, we use a Fast Fourier Transform (FFT) algorithm with

a length of 512 points. Only when shapes are considered similar, which is

the case when the sum of squared di�erences of their �ltered and normalised

power spectra is below a given threshold, is the root model updated, other-

wise the tracker continues with the current model. This aids in keeping the

root model robust against drift due to accumulating errors.

Table 3.1 summarises the constant and variable parameters de�ned for

the proposed root extraction method. All the parameters are determined

empirically and can in principle be changed. The ones marked constant

have been �xed throughout the thesis, the other two control the response to

more detailed properties of the input data and have been varied from sam-

ple to sample. Figure 3.7 shows how each described component is integrated

into the plant root extraction process; the connected component algorithm

[Rosenfeld, 1970] is used for labelling each root object, whose shape informa-

tion is retrieved using the Fourier shape descriptors [Granlund, 1972; Gon-

zalez and Woods, 2002], which is further used in the decision of updating the

root model required for evolving the level set function [Sethian, 1999] guided

by the Jensen-Shannon divergence [Lin, 1991].

3.6 Extraction of plant root systems from X-ray

µCT images

Maize Jubilee F1 (Zea mays L. convar. saccharata var. Rugosa), winter

wheat Cordiale (Triticumaestivum L.) and tomato (Solanumlycopersicum L.)

were grown in a Newport series loamy sand (brown soil) and a Worcester

series clay loam soil (argillicpelosol) from the University of Nottingham farm

at Bunny, Nottinghamshire, UK (52.52 ◦N, 1.07 ◦W). Both were air-dried

and sieved to <2mm. For each plant species, eight samples were prepared of

which half were grown in loamy sand and the other half in clay loam. From

the total of 24 samples, 12 were scanned and used to evaluate the extraction

method, two of each plant species in both soil textural types. Figure 3.8

shows cross-sections of samples prepared with loamy sand (left) and clay

loam (right). The seeds were germinated in Petri dishes on wet �lter papers,

covered with an aluminium foil to shield them from sunlight, and planted

after two days in plastic columns of 30mm diameter �lled with soil. The
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Figure 3.7: Flowchart of the tracking process for plant root extraction
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plants grew in environmental controlled growth rooms with 16/8 hours light

cycle at a temperature of 23/18 degree Celsius and were scanned ten days

after germination. The water status of the samples at the point of imaging

was approximately at �eld capacity. It should be noted that the root systems

analysed in this work are from both monocot (maize and wheat) and dicot

(tomato) plants.

The imaging device used in this experiment was a Nanotom (Phoenix

X-ray / GE Measurement & Control Systems) X-ray µCT scanner. The

extraction was initialised by setting suitable parameters for the tracking

process as well as one or multiple seed points on the stem of the plant

or at the top of the root system to de�ne plant root material as the target

object, which we aimed to recover. Table 3.2 lists the size of the data volume

acquired from the scans and the parameters used in the process of recovering

plant root systems from the soil. All other parameters are kept constant as

listed in table 3.1. The values for α and β have been chosen empirically.

It should be noted, that in the context of this work, the extraction method

has been applied on 8-bit greyscale image data. Figure 3.9-3.11 show the

rendered root systems extracted with the proposed tracking method. The

rendering has been done using the methods described in chapter 5.

3.7 Summary

In this chapter we presented a method capable of segmenting X-ray µCT

images to recover 3D descriptions of plant roots grown in soil. The task is

complicated by the high heterogeneity found within the image data, usually

arising through the combination of air- and water-�lled pore spaces, organic

matter in soil and the characteristics of the soil texture, and also by the

variability introduced through the imaging process, such as the noise and

artefacts as introduced in chapter 2. Such circumstances require a highly

adaptive technique to successfully extract sought information, as highlighted

in this chapter. A solution able to deal with the high variability in the

data is found in adapting a visual tracking framework. This allows the
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(a) Maize 1 (loamy sand) (b) Maize 3 (clay loam)

(c) Wheat 1 (loamy sand) (d) Wheat 3 (clay loam)

(e) Tomato 1 (loamy sand) (f) Tomato 3 (clay loam)

Figure 3.8: X-ray µCT cross-sectional image slices of (a-b) maize, (c-d)
wheat and (e-f) tomato (highlighted) in both loamy sand (left) and clay
loam (right)
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Figure 3.9: Extracted root systems of maize 1-4 using the here presented tracking method
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(a) (b) (c) (d)

Figure 3.10: Extracted root systems of wheat 1-4 using the here presented tracking method
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Figure 3.11: Extracted root systems of tomato 1-4 using the here presented tracking method
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Sample Soil texture
Volume

(voxel)

Voxel

(µm)

Curv

(α)

J-S

(β)

Maize 1 loamy sand 740×740×1,152 48.48 0.806 0.421

Maize 2 loamy sand 740×740×1,152 48.48 0.802 0.398

Maize 3 clay loam 740×740×1,152 48.48 0.786 0.418

Maize 4 clay loam 740×740×1,152 48.48 0.787 0.409

Wheat 1 loamy sand 1,400×1,400×2,200 25.00 0.574 0.416

Wheat 2 loamy sand 1,400×1,400×2,200 25.00 0.588 0.404

Wheat 3 clay loam 1,400×1,400×2,200 25.00 0.606 0.406

Wheat 4 clay loam 1,400×1,400×2,200 25.00 0.588 0.368

Tomato 1 loamy sand 1,400×1,400×1,800 25.00 0.393 0.399

Tomato 2 loamy sand 1,400×1,400×1,800 25.00 0.386 0.383

Tomato 3 clay loam 1,400×1,400×1,800 25.00 0.419 0.397

Tomato 4 clay loam 1,400×1,400×1,800 25.00 0.364 0.388

Table 3.2: Image data properties and parameters used in the extraction
process of plant root systems

method to respond to changes between images, but also to treat a target

as an individual and therefore to choose object-speci�c characteristics for

identi�cation and segmentation. The proposed technique is based on the

level set method, guided by the Jensen-Shannon divergence. The level set

method evolves towards object boundaries and, due to its ability to handle

complex topological changes in geometry, also able to successfully identify

branching root structures. The Jensen-Shannon divergence was found to

be a reliable measure for comparing greyscale intensities and can easily be

integrated into the evolving level set equation, providing a powerful tool for

extracting root systems from their surrounding soil environment in X-ray

µCT images.

The proposed tracking method was applied to X-ray µCT image data of

di�erent plant species; maize, wheat and tomato. The plants were grown

in loamy sand and clay loam, two soil textural types widely found in the

United Kingdom. The extracted root systems are from both monocot and

dicot plants. This demonstrates that the developed approach is independent

of the root system architecture. For better interpretation of results, the
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extracted data was rendered in three dimensions, showing the architectural

structure of the recovered root system.

Detailed analysis of the ability of the method to recover root system

architecture traits is presented in chapter 6. In the following chapter (chapter

4) we discuss a mechanism that allows recovery of plagiotropic roots, for a

more complete root system extraction.
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Chapter 4

Extraction of plagiotropic root

systems

In the previous chapter we provided the ideas and concepts needed to bring

forth a technique for separating plant root systems from their growth en-

vironment in X-ray µCT image data. While the method presented has the

advantage of adapting to local changes in the greyscale intensity values of

root objects and so allowing a clear distinction between root and non-root

material, it poses additional di�culties that can prevent the extraction of the

complete root system. This limitation arises from the way data is processed

and is found in particular in samples of plant root systems that show a strong

plagiotropic response, developing roots that grow upwards or horizontally.

In section 4.1 we explain why the recovery of plagiotropic root systems can

be challenging using the tracking based approach of chapter 3. A partial ex-

traction of the root system can conceal important structural characteristics

and lead to misleading conclusions being drawn. In this chapter we outline

the impact that an incomplete root system has on the measurement accuracy

of some global root system traits. An extension to the proposed technique

which addresses this problem is then presented in section 4.2 and applied to

X-ray µCT image data of plants in section 4.3.
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4.1 Plant roots and plagiotropism

Plagiotropism in plant biology refers to the slanted growth of a plant. With

regard to the root system this describes the tendency of roots to grow lat-

erally or at any angle away from the vertical [Leitner et al., 2010]. Many

root systems contain some roots that grow plagiotropically [Nakamoto and

Oyanagi, 1994], mostly driven by external stimuli or in the course of explor-

ing the soil environment for additional resources. Roots that do not follow a

straight vertical path are not necessarily di�cult to recover using a tracking

approach, the technique described in the previous chapter allows root objects

identi�ed as targets to move across the image in any direction. Splitting tar-

gets are dealt with by the level set method, so root branching does not cause

any di�culties either. The problem arises from the method's �xed traversal

of the image stack (from top to bottom). Plagiotropic roots with an angle

greater than 90 degrees, those which are `upward' oriented, will be missed

due to this limited search of reduced dimension. Examples of two lateral

roots, one with a `downward' and the other one with an `upward' oriented

growth direction, are shown in �gure 4.1 and highlight the limitation of the

proposed technique. In both cases the image sequence corresponds to the

direction of search (from top to bottom) of the image stack. Figure 4.1(a-

e) shows a scenario in which an identi�ed target divides into two separate

objects, which are both successfully followed by the tracker after branching.

Figure 4.1(f-j) describes a scenario in which the method, as presented in

chapter 3, fails to recover the lateral root. This is because the object comes

into view before it connects to the primary root and therefore is unknown

to the tracker at the moment of its appearance. When the tracker arrives at

the image in which the branching occurs, the images containing the lateral

root have long been processed without including it in the extraction data.

The point of issue is once more illustrated in �gure 4.4.

This limitation is to be expected. Kaestner et al. [2006], for instance,

considered a top to bottom tracking approach to clearing the thresholded

image data of unwanted speckles. However, the authors pointed out that this

approach would miss upward oriented roots (�gure 4.2) and therefore decided

to apply a dilation by reconstruction operation [Vincent, 1993] instead, which

avoids the problem. This solution, however, is not applicable in our context,

where we use tracking to identify objects in an unknown and unprocessed
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(a) frame: 350 (b) 360 (c) 370 (d) 380 (e) 390

(f) frame: 310 (g) 320 (h) 330 (i) 340 (j) 350

Figure 4.1: Sequence of images showing the emergence of a lateral root and
the targets followed by the tracker; (a-e) downward oriented and (f-j) upward
oriented lateral root (highlighted by the arrow)

domain. In Kaestner et al.'s method, the extraction was already performed

and the morphological operation only used to re�ne the outcome.

The method developed by Flasque et al. [2001] is based on a three-

dimensional tracing approach to the extraction of cerebral vascular networks.

In the presented work there was no additional mechanism that focused on re-

covering vessels that were upward oriented, even though vessel objects were

followed in a stepwise manner, similar to a tracking approach. This does

not mean that upward oriented vessels were missed or were not present in

the image data, but their approach did not su�er from the same limitation.

A fundamental di�erence is the domain in which the search for target ob-

jects is performed. While in our approach the search domain is reduced

to a two dimensional image plane, following a �xed direction (from top to

Figure 4.2: Kaestner et al. pointing out that a top-down tracking approach
would miss upward oriented roots - image taken from [Kaestner et al., 2006]
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bottom), the extraction method of Flasque et al. narrows the space to a

three-dimensional parallelepiped which can be oriented at any angle without

decreasing the search dimension (�gure 4.3). Their method resembles more

closely the tracing method used by SmartRoot [Lobet et al., 2011], which

was developed for the extraction of roots in two-dimensional images. Since

the tracing mechanism is free to move in any direction, it requires continuous

access to the entire dataset, which for large samples requires an amount of

memory resource that in our context would exceed the capacity of ordinary

computers. It is also essential that the direction of growth is determined

during the tracking process. Both are elements that the method presented

here was not designed for. Besides that, a tracing approach that is free to

move in any direction, su�ers from other weaknesses, such as a signi�cant

risk of the tracker becoming trapped in loops [Collorec and Coatrieux, 1988].

(a) (b)

Figure 4.3: Flasque et al. using a parallelepiped to trace vessel segments,
which can be oriented at any angle - images taken from [Flasque et al., 2001]

None of these methods o�er any concrete solution or strategy that can

be adopted to overcome the present limitation. Yet, there are other ways to

deal with upward oriented roots.

4.2 Recovering upwards oriented roots

The method presented in chapter 3 provides the means for following iden-

ti�ed root objects through subsequent image slices and separates them into

individual targets when root branching occurs. The moment of branching

can be easily recorded. Connected component analysis allows every object

to be labelled with a unique integer. As discussed in chapter 3 this is neces-
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sary if objects are to be treated as individuals. When the root model is not

updated but inherited, it is also necessary to identify its parent object in the

previous image. Note that objects are not guaranteed to get the same label

every time and thus the same label number does not imply lineage. The

labelling depends on the object's location as well as the number of objects

preceding the object in question. Therefore, in order to associate a child ob-

ject to its parent, the root objects identi�ed in the previous step are used as

references; child objects are associated with a parent if the two object regions

overlap. While making associations, it is also possible to count how many

children a parent object has and, when there is more than one, note that

a split has occurred. This is a key component of the process of recovering

upward oriented roots.

Processing begins as described in chapter 3, with the stack being tra-

versed from top to bottom. Because the images in a stack are processed

one by one, the order in which they are processed can, however, easily be

changed. If the stack is analysed in reverse order, upward oriented lateral

roots appear no di�erent from downward oriented roots traversed top to bot-

tom and, given two adjacent images, it is possible to detect a split in the

target object. The only additional step that needs to be performed to iden-

tify upward growing branches is to identify which of the two child objects has

already been recovered in the previous, downwards processing step. This can

be achieved by referring to the extracted data and asking whether there is a

new object not connected to any of the previously recovered roots. The pres-

ence of such an object indicates that there might be a root which is upward

oriented. In the extended method, after a given image has been processed

in the usual, top to bottom direction, a further analysis is performed in the

opposite direction; as if moving from that image to its predecessor. Any new

objects detected while looking back up the stack signal the beginning of an

upward growing branch and so are temporarily stored as markers. Process-

ing then continues downwards until the entire stack has been traversed. The

result at this point, following a single completed traversal of the image stack,

is as produced by the technique described in chapter 3, but with markers

indicating possible backward growing roots. It should be noted that the ex-

tension does not only apply to branching roots, but to any root segment that

switches between upwards and downwards growth, such as a root segment

in an upright position making a `U-turn'.
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To complete the root system extraction, the method then tracks upwards

from each marker. Markers are examined in �xed order, from the lowest in

the stack to the highest. These tracking operations may generate further

markers, identifying possible downward growing roots that are connected

to the primary root not directly, but via an upward growing root segment.

When all upward growing markers have been processed, the tracker again

moves down the stack, tracking from newly reported downward markers.

This process is repeated, alternating directions, until all targets are lost

and no markers remain (�gure 4.4 and 4.5). Note that only the �rst pass

must examine the entire image stack. Subsequent processing focuses on

detected markers and each pass only considers images in which a previously

undetected plagiotropic root is expected to be visible.

(a) (b)

Figure 4.4: (a) When tracking roots from top to bottom of the image se-
quence, the presented tracking mechanism allows targets to split, successfully
recovering branched architectures. (b) Plagiotropic roots, however, are over-
looked. They only appear in the image sequence before they join the primary
root and therefore it requires the extension to identify and mark them for
later process - image taken from [Mairhofer et al., 2013]

The additional `backward-looking' step introduced here brings additional

computational cost; the time required to process an image stack is doubled

at best. This is because every image has to be visited at least twice; dur-

ing the normal forward traversal and while looking backward (the additional

step). The e�ort of looking for markers, however, has its advantages. Once

candidate roots are located, extraction can be continued from each marker
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and stop when no objects remain to be tracked. The tracker is not required

to go through the entire image stack again in its search for opposite-facing

roots. Figure 4.5 shows how an arti�cially generated root object is step-

wise extended by alternating the direction of analysis until the full object is

recovered.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Extraction of a simple, arti�cially generated, plagiotropic root.
(a) The primary root is extracted and one upward growing section marked
on the �rst pass through the stack. (b-f) Subsequent processing focuses on
the marked branch, extracting a complete description following �ve further
tracking stages - image taken from [Mairhofer et al., 2013]

Figure 4.6 shows the updated �owchart of the plant root extraction pro-

cess including the extended mechanism introduced in this chapter for recov-

ering plagiotropic roots. After the evolution of the level set function in the

regular operation step, a copy of the level set function is made and used on

the previous image of the CT data stack. The copy evolves the same way as

the level set function in the main routine.
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Figure 4.6: Flowchart of the tracking process for plant root extraction in-
cluding the extended mechanism for plagiotropic roots
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Extracted root systems of maize 1-4 using (a-d) unidirectional and (e-h) backward enabled tracking method (for
the reader's convenience, �gures (a-d) are repeated from �gure 3.9 in chapter 3)
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Figure 4.8: Extracted root systems of wheat 1-4 using (a-d) unidirectional and (e-h) backward enabled tracking method(for
the reader's convenience, �gures (a-d) are repeated from �gure 3.10 in chapter 3)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Extracted root systems of tomato 1-4 using (a-d) unidirectional and (e-h) backward enabled tracking method (for
the reader's convenience, �gures (a-d) are repeated from �gure 3.11 in chapter 3)
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4.3 Extraction of plant root systems with plagio-

tropic roots

In this experiment we return to the X-ray data acquired in chapter 3 for

maize, wheat and tomato grown in both loamy sand and clay loam soil

and rerun the extraction process with the same input parameters for the

curvature constraint and the Jensen-Shannon divergence, but enabling the

new mechanism for recovering plagiotropic roots. Figure 4.7-4.9 show the

rendered root systems extracted with the initial method and the extension

described above. Table 4.1 highlights the di�erences in their measured traits.

More details on root system traits and how they are measured is described

later, in chapter 5.

The number of roots that have an initiation angle greater than 90 de-

grees account for a substantial part of the overall root system and therefore

play a signi�cant role in the quanti�cation of root system traits. The aver-

age increase in surface area and volume, using the extended mechanism, is

81.4 percent and 60.5 percent for maize, 27.3 percent and 18.5 percent for

wheat and 22.2 percent and 15.4 percent for tomato. The Pearson's product

moment correlation coe�cient between the unidirectional and the extended

mechanism are rarea = −0.1592 and rvolume = 0.8184 with a p-value of

0.8407 and 0.1815 for maize, rarea = 0.9351 and rvolume = 0.9387 with a p-

value of 0.0648 and 0.0612 for wheat, and rarea = 0.9711 and rvolume = 0.973

with a p-value of 0.0288 and 0.0269 for tomato. The p-values were calcu-

lated based on Fisher's Z transform. A clear di�erence between the two root

representations is visually observable in many of the root systems shown in

�gure 4.7-4.9. For those samples in which the di�erence is less apparent,

there is still a notable variation in the measured traits. This is especially

the case for those traits measured in higher spatial dimensions, such as the

volume enclosed by the convex hull. In contrast, one-dimensional character-

istics, such as root system depth, only show a di�erence in a small number of

samples. This also indicates the general sensitivity of measured root system

traits to the absence of roots missed during the extraction process. Care

should therefore be taken when interpreting measured traits, in particular

when two or more sample groups are compared with each other during the

course of an experiment.
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Sample
Area

(mm2)

Volume

(mm3)

CX Hull

(mm3)

Depth

(mm)

Width

(mm)

Centroid (z)

(mm)

unidirectional

Maize 1 997.8 312.8 10,394.7 49.9 28.8 20.9

Maize 2 1,572.5 457.6 17,585.5 48.5 30.4 17.4

Maize 3 1,180.1 239.3 18,664.0 48.5 30.8 17.0

Maize 4 912.4 470.6 1,323.7 17.2 18.7 10.8

Wheat 1 1,602.5 168.9 22,399.7 48.5 30.9 27.2

Wheat 2 1,420.8 154.7 24,496.8 48.0 31.2 24.1

Wheat 3 900.0 100.5 22,316.0 55.0 31.1 18.5

Wheat 4 766.0 90.5 19,649.9 55.0 31.0 17.3

Tomato 1 181.2 19.9 2,075.7 34.2 24.2 9.9

Tomato 2 213.2 22.2 2,639.0 38.0 24.6 16.9

Tomato 3 130.5 17.3 752.9 17.8 15.4 7.4

Tomato 4 113.3 14.6 714.0 20.8 16.0 7.6

extended mechanism

Maize 1 1,849.7 464.4 18,472.6 49.9 31.0 21.0

Maize 2 2,087.7 589.8 22,429.2 48.5 30.8 18.0

Maize 3 1,724.4 504.5 20,201.3 48.5 31.0 13.1

Maize 4 2,386.0 725.6 28,888.8 52.4 30.6 15.7

Wheat 1 1,831.2 184.0 23,728.3 48.5 30.9 26.7

Wheat 2 1,827.4 198.9 30,439.7 54.5 31.2 21.3

Wheat 3 1,003.5 106.4 24,145.0 55.0 31.1 18.7

Wheat 4 1,188.3 118.3 29,699.2 55.0 31.2 16.6

Tomato 1 242.3 24.2 4,952.5 34.2 30.4 9.9

Tomato 2 257.4 26.5 3,178.5 39.1 24.6 15.7

Tomato 3 143.0 18.3 933.2 17.8 15.4 7.3

Tomato 4 141.7 16.8 1,576.9 20.8 24.7 7.4

Table 4.1: Measured root system traits from the extraction of the unidirec-
tional technique and its upward oriented extension
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Although di�cult to see in �gure 4.7-4.9, it is worth mentioning that in

a few extracted root systems, lateral roots were missed at their emergence,

but have been partially recovered by the extension mechanism, after having

touched another root further down the image stack.

4.4 Summary

Given that the majority of plant root systems show some degree of pla-

giotropic response, though the proportion and angle of plagiotropic branches

varies widely between di�erent plant species, the presence of upward oriented

roots cannot be neglected. These roots account for a substantial portion of

the overall root system and have a noticeable impact on quantitative mea-

surements of global root system traits. It is therefore important that they

are included in the extracted data, which otherwise might conceal important

structural information.

The method introduced in chapter 3 lacks the ability to detect upward

oriented root segments. That is, roots that grow at an angle greater than

90 degrees to the vertical axis. The bene�t of being more adaptable to local

changes in the image data comes with the cost of an additional weakness

which as such is not present in conventional three-dimensional segmentation

techniques. To compensate this drawback we introduced a mechanism to

overcome the limitation, by adding an additional step of `backward-looking'.

This allows us to detect upward oriented roots, which are marked for subse-

quent processing, and thus to recover more complete root system descriptions

that lead to a more accurate computation of architectural traits.

The extraction of plant root systems showed how important it is to search

for upward oriented roots and the di�erence they can make to measured root

system traits. A large portion of the root system would have been remained

undetected if not for the extended mechanism presented in this chapter. In

certain situations it could be observed that lateral roots which were missed

at their emergence during the normal downward oriented process, have been

partially recovered because they were touching another root segment further

down the image stack, from where the extended mechanism picked up the

lateral root and followed it back to where it branched.
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Further evaluation of the method on the ability of recovering plant root

systems from soil is presented in chapter 6. In the following chapter (chapter

5) we discuss the three-dimensional visualisation of extracted root architec-

tures and the measurement of common root system traits.
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Chapter 5

Visualisation and

characterisation of root system

architectures

Separating root material from soil in X-ray µCT images is a key step towards

the recovery of descriptions of plant root systems. The segmented image

stacks alone, however, do not reveal much information on below-ground pro-

cesses to any plant or soil scientist working with such instruments. Improved

understanding of root systems requires visualisation of the three-dimensional

root structure, and meaningful and quantitative data for further analysis.

Both elements are brie�y introduced in this chapter, giving the user the pos-

sibility of obtaining additional information relevant to experimental studies.

In section 5.1 we brie�y describe how three-dimensional data can be visu-

alised, following with section 5.2 in which we discuss methods to quantify

and express root system traits, given the results of the segmentation methods

described in chapters 3 and 4.

5.1 Three-dimensional volume rendering

Volume rendering is the mapping of three-dimensional scalar data onto a

two-dimensional image plane, and includes a wide range of techniques. These

can be divided into two categories; indirect and direct. The di�erence is that

indirect volume rendering requires an intermediate step which generates a

model of the volume data, usually a mesh of polygons, that can be e�ciently
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rendered using a graphics API (such as OpenGL). Visualisation of the vol-

ume data is thus limited only to its isosurface, and is therefore often referred

to as surface rendering. Indirect volume rendering techniques include, among

others, contour tracing [Keppel, 1975], cuberille (opaque cubes) [Herman and

Liu, 1979], marching cubes [Lorensen and Cline, 1987] and marching tetra-

hedra [Shirley and Tuchman, 1990]. The latter two methods have gained

particularly wide popularity due to their simplicity. Direct volume render-

ing methods, on the other hand, visualise three-dimensional data without

extracting intermediate geometries; they map volumetric data directly onto

the two-dimensional plane. This allows better control of each voxel's contri-

bution to the �nal colour and opacity of the corresponding image pixel. The

development of direct volume rendering techniques has been driven by the ar-

eas of medical imaging and scienti�c visualisation. Unlike surface rendering,

direct volume rendering has the ability to render semi-transparent internal

structures. Texture slicing [Cabral et al., 1994], shear warp [Cameron and

Undrill, 1992; Lacroute and Levoy, 1994], splatting [Westover, 1990] and

volume ray-casting [Levoy, 1988] are among the better known direct volume

rendering methods. In this section we brie�y introduce two of the techniques

mentioned above (marching cubes and volume ray-casting), since both have

been implemented in the context of this work and are used here to render the

extracted volumetric data. For a comprehensive introduction to the most im-

portant concepts of volume rendering, the reader may refer to [Drebin et al.,

1988; Kajiya, 1986; Elvins, 1992; Hadwiger et al., 2009].

5.1.1 Marching cubes

Marching cubes is an indirect rendering technique and as such aims to extract

the isosurface of an object given a volumetric dataset. Since the introduction

of the technique by Lorensen and Cline [1987], many variants have been de-

veloped [Newman and Yi, 2006]. Marching cubes subdivides the volume into

small cubes, each composed of eight vertices, which can either reside inside

or outside the object. The cubes are then traversed and tested for intersec-

tion with the object's surface, intersection is detected if a cube has vertices

both inside and outside the object. The triangles making up the isosurface

are generated using a prede�ned look-up table that stores all possible states.

Since each cube has eight vertices, with each vertex having only two possible

conditions of either being inside or outside, there are a total of 28 = 256
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di�erent states and so triangle combinations. However, by taking re�ection

and rotation into consideration, this set can be reduced to 15 di�erent states

as shown in �gure 5.1.

Figure 5.1: Marching cubes table for triangle generation [Lorensen and Cline,
1987]

For continuous data, the intersection point on a cube's edge, and with

that the vertices of the generated triangle, are usually calculated using linear

interpolation. This results in a smoothed isosurface. For binary data, such

as the data obtained from the extraction of the root system, the intersection

point is usually chosen at half the distance between the two vertices of the

cube. This, however, often gives the object a blocky appearance, which can

be reduced by applying either mesh smoothing methods or various shading

techniques within the rendering process.
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Figure 5.2: Volume ray-casting - ray starting from the eye position going
through the pixel into the volume data

5.1.2 Volume ray-casting

Volume ray-casting is a popular method used for three-dimensional visualisa-

tion of volumetric data and belongs to the group of direct volume rendering

techniques. The idea of volume ray-casting, as the name implies, is to cast a

ray from the viewer's eye position through the image pixel into the volume

data as illustrated in �gure 5.2. The pixel value is determined by accumu-

lating colour and opacity values of each voxel along its viewing ray. An

important component of any direct volume rendering technique is an optical

model of light emission, absorption and scattering. A simpli�ed model of the

light emission-absorption model is described by the volume rendering inte-

gral. Here we refer to the notation outlined in [Hadwiger et al., 2009] where

x(t) denotes the viewing ray passing through the volume with distance t

from the eye, and s(x(t)) its scalar value at the corresponding position. The

absorption k(s) and emission c(s) coe�cients along the ray are de�ned for

simplicity as a function of the distance t

k(t) = k(s(x(t))) (5.1)

c(t) = c(s(x(t))) (5.2)

The light emitted at distance t is continuously absorbed along the ray until

it reaches the eye. Since the absorption is not constant but depends on the

path of the ray, the complete absorption can be obtained by integration.
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The emission of light is similar. Since light is not emitted from a single

position, but composed of all the light emitted along the path of the ray,

the total energy of light is accumulated. By taking these two aspects into

consideration, the simple volume rendering integral can be written as follows

C =

∫ D

0
c(d) · e

(

−
∫ d

0
k(t)dt

)

dd (5.3)

Volume ray-casting is a simple approximation to the solution of the volume

rendering integral. Data points are re-sampled along the ray at equally

spaced intervals as in general the volume is not necessarily aligned with the

viewing ray. The pixel value at the two-dimensional plane, corresponding

to the received light energy emitted and absorbed along the ray path, can

be evaluated either through back-to-front or front-to-back composition. The

latter approach can bene�t from the so called `early ray termination', which

allows the evaluation of the light energy to stop as soon as the alpha blending

has reached full opaqueness [Hadwiger et al., 2009]. The alpha blending

(opacity) stands in direct relation to the absorption of light [Max, 1995] and

is de�ned as

A = 1− e

(

−
∫ d

0
k(t)dt

)

(5.4)

Using the Riemann sum to evaluate the integral,

Ci = c(i ·∆t)∆t (5.5)

1−Ai = e(−k(i·∆t)∆t) (5.6)

equation 5.3 can be approximated as follows

C ′ =
n
∑

i=0

Ci

i−1
∏

j=0

(1−Aj) (5.7)

which can be solved iteratively in front-to-back order

C ′
i = C ′

i−1 + (1−A′
i−1)Ci (5.8)

A′
i = A′

i−1 + 1−A′
i−1Ai (5.9)

where Ci is the colour of the voxel (or the interpolated colour of its neigh-

bouring voxels) at position i along the ray and Ai its opacity, starting with
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C ′
0 = 0 and A′

0 = 0. The calculation of the pixel value is terminated when

A′
i reaches a value of 1.

(a) (b) (c)

Figure 5.3: Front-face cube (left), back-face cube (centre) and its subtraction
giving the ray direction vector (right)

Volume ray-casting can be e�ciently implemented with the aid of a GPU,

as presented in [Krüger and Westermann, 2003]. The volumetric data is

loaded and passed into the GPU memory as a 3D texture. For each pixel,

the fragment shader evaluates colour and opacity from the ray starting at

the pixel's location and passing through the volume, using equations 5.8 and

5.9. To determine the direction of the ray passing through the volume, the

front and back faces of a unit cube, which de�ne the volume's bounding

box, are rendered with colours representing the coordinates along each axis.

Subtracting the back faces from the front faces of the cube, gives the ray

direction vector and length (�gure 5.3). Figure 5.4 shows an example of

the rendered volume using both the marching cubes and volume ray-casting

techniques as implemented in the presented work.

5.2 Quanti�cation of root system traits

A fundamental requirement in plant root studies is the ability to describe

characteristics that distinguish a particular root system from others, or to

�nd similarities that plants of a certain variety have in common. This is

particularly relevant when searching for di�erences in plant root systems

that arise as a result of the in�uences received from their environment. It

is not only important to highlight what these traits are, but also to �nd a

way to measure them accurately. In this section we brie�y introduce the

subject of root system traits and describe the way in which some of the

measurements have been implemented in the context of this work.
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(a) (b)

(c) (d)

Figure 5.4: Volume rendering of the Stanford bunny dataset [Levoy, 2000]
using (a) marching cubes with �at shading, (b) marching cubes with gouraud
shading, (c) volume ray-casting with phong shading and (d) volume ray-
casting with phong shading and semi-transparency

5.2.1 Traits de�ning root system characteristics

Root system traits are observable and inheritable physical characteristics

that are used for the classi�cation of a plant's root system into phenotypes.

With a wide range of plant species and varieties and due to the structural

complexity of their root systems, it is di�cult to �nd a single trait that by

itself provides su�cient information for a unique classi�cation. However, by

de�ning a number of traits and using them in combination, we can form a

meaningful description of the root system and reveal valuable insights about

its structural development. Root system volume is a commonly used trait

that could be su�cient if, for example, plants of the same variety are com-

pared against each other, since the roots' basic characteristics are expected
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to be similar. If, however, plants of di�erent species are being examined, root

volume does not necessarily distinguish between a root system with many

long and thin roots compared to a root system with short and thick roots.

Here, a ratio of volume and total root length would make the classi�cation

more meaningful. Numerous measurements have been used in the literature

to de�ne plant root characteristics. These can be categorised as either static

or dynamic and local or global traits [Clark et al., 2011]. Dynamic traits

require the consideration of time, such as the emergence time or growth rate

of roots. Static traits are �xed, including, for instance, the number of lateral

roots. Local traits are derived from a portion of the root system, and com-

prise for example the angle formed between a lateral root and its primary

root, while global traits, on the other hand, include the entire system as in

the case of root system volume and surface area. A fairly comprehensive list

of di�erent root phenotypes can be found in [Iyer-Pascuzzi et al., 2010] and

[Clark et al., 2011].

Trait Description

Length (L) Length along the skeleton of the whole root

system

Maximum width

(MaxW)

Maximum horizontal width of the whole root

system

Minimum width

(MinW)

Minimum horizontal width of the whole root

system

Maximum depth

(MaxD)

Maximum vertical depth of the whole root

system

MinW/MaxW ratio Ratio of minimum width to maximum width

MaxW/MaxD ratio Ratio of maximum width to maximum depth

Centroid Vertical position of the center of mass of the

entire root system

Exploitation volume Volume surrounding the root system at a spec-

i�ed radius minus the root system volume

Exploitation index Ratio of the exploitation volume to root sys-

tem length

Table continues on following page
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Median number of

roots (MedR)

Median number of roots from root counts

taken from all horizontal cross-sectional slices

through the entire root system

Maximum number of

roots (MaxR)

Number of roots at the 84th percentile of a

sorted list (smallest to largest) of root counts

from all horizontal cross-sections through the

entire root system

MaxR/MedR ratio

(bushiness)

Ratio of the maximum number of roots to the

median number of roots

Surface area (SA) Summed surface area of the whole root system

SA/V ratio Ratio of surface area to volume

SA/L ratio Ratio of surface area to length

Volume distribution Ratio of the volume of the root system con-

tained above one-third depth of the root sys-

tem to the volume of the root system con-

tained below one-third depth of the root sys-

tem
Convex hull volume

(CHV)

Volume of the convex hull that encompasses

the whole root system

V/CHV (solidity) Ratio of volume to convex hull volume

Emergence time Average root emergence time for a given root

type in relation to the planting date

Initiation angle Average horizontal root initiation angle for a

given root type

Gravitropic response Di�erence in the horizontal root angle divided

by the length of the root

Circumnutation Di�erence in the root turn angle divided by

the length of the root

Narrowness index Average ratio of minimum width to maximum

width for each horizontal cross-sectional slice

through the whole root system

Table continues on following page
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Volume (V) Volume of the whole root system

Count Number of roots of a particular type

Tip count Number of root tips in the whole root system

L/V (speci�c root

length)

Ratio of length to volume of the whole root

system

Table 5.1: Summary of various root traits - taken from [Clark et al., 2011]

5.2.2 Measuring root system traits

Because of their relevance to plant root studies, some of the measurements

for plant root traits presented in the literature have been implemented in

the course of this work. However, since the main focus lies on the extraction

of the root system, we have limited them to some of the static and global

traits only, which we believe are of signi�cant value. These measurements

are listed in table 5.2 and described in detail in the following paragraphs.

Trait Description

Volume Number of voxels multiplied by voxel-size
cubed

Surface area Approximation of the isosurface with a mesh
of triangles, calculating the sum of all their
areas multiplied by voxel-size squared

Maximum Depth Number of slices between �rst and last voxel
in the image stack multiplied by voxel-height

Maximum width Diameter of the computed minimum enclosed
circle multiplied by voxel-size

Centroid Mean of x, y and z coordinates over all voxels
in relation to voxel-size

Convex hull volume Estimation of the volume within the convex
hull multiplied by voxel-size cubed

Table 5.2: Measurements for the estimation of root system parameters

Probably the most straightforward measurement to perform is root vol-

ume, which can be estimated by counting the number of voxels making up

the extracted root system. Knowing the dimensions of a voxel, and hence
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its volume, the total root system volume can be estimated. From this, as-

suming a constant density within the root system, it is possible to derive its

biomass. Biomass is a useful and popular parameter, partly because it is

relevant to many studies but probably also due to the ease with which it can

be measured.

Another frequently used measurement is root surface area. Consider

an object in two-dimensional space; if we want to calculate the length of

its boundary, then a simple approximation would be obtained by counting

the number of object pixels of which at least one neighbour is part of the

background. This however, leads to a substantial overestimation. A better

solution was presented by Freeman [1961], who distinguished between pixels

lying either on a straight or diagonal line, multiplying the latter by a fac-

tor of
√
2. In three-dimensional space, using voxel counting to estimate the

surface area would lead to an even larger error and a simple generalisation

of straight and diagonal planes is not applicable. Because of that we use a

solution similar to that presented in [Lindblad, 2005], where the isosurface

is presented as a mesh of triangles and the surface area estimated by sum-

ming their areas. Triangle mesh data is obtained via the marching cubes

[Lorensen and Cline, 1987] algorithm. This is also used for surface rendering

as described in section 5.1.

A further measurement that is easy to calculate from the extracted data

is the root system depth, which is obtained by counting the number of slices

along the vertical axis of the image stack that lie between the �rst and the

last appearance of a voxel. Knowing the voxels' height it is easy to determine

the root system's total depth.

The maximum width along the horizontal plane is also calculated. This

is computed by projecting all voxels onto the two dimensional x-y plane and

then using Welzl's [1991] algorithm for the minimum enclosing circle. The

diameter of the circle corresponds to the maximum width of the extracted

root system.

Interesting in relation to the root system's depth and maximum width,

is its centroid, which is the geometric centre of an object and corresponds to

its centre of mass, if it is assumed that the mass per unit volume is constant

throughout. The centroid is obtained by calculating the mean coordinates

of all voxels for each of the three axes x, y and z.
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The convex hull of the root system is also calculated. This is obtained

using the QuickHull algorithm [Barber et al., 1996]. The convex hull itself

is not of great interest, but the volume enclosed by it is. Therefore, using

Monte Carlo integration, an estimation of the volume within the convex hull

[Rubinstein and Kroese, 2008] is calculated.

Figure 5.5 shows some of the measurable traits mentioned above, along

with the extracted and rendered root system of a maize plant.

(a) (b) (c) (d)

Figure 5.5: Root system traits (a) depth, (b) maximum width, (c) centroid
and (d) convex hull

5.3 Summary

The extraction of root material from X-ray CT data produces a volume

data structure in which root material is labelled. If researchers are to draw

conclusions from these large, complex, three-dimensional data objects they

must be able to render them in a meaningful way, viewing the root system

from di�erent angles. Being able to measure quantities of the extracted data

is essential for characterising root system traits, making it further possible

to compare and distinguish between di�erent plant root systems. For the

sake of completeness, we discussed two di�erent techniques, a direct and

an indirect volume rendering algorithm, that were implemented to allow

researchers to visualise the three-dimensional structure of the extracted root

system. In addition, we discussed various root system traits of which some

are measured within the context of this work.

The visualisation and measurement of root characteristics has been used

extensively throughout this work, for demonstrating and highlighting dif-

ferences between results obtained. In the following chapter (chapter 6) we

perform a detailed analysis of the ability of the presented methods to recover

root system architecture traits.
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Chapter 6

Evaluation of the root

extraction technique

In chapter 3 we introduced a technique that was designed for identifying

and tracking root objects in X-ray µCT images, which was extended by an

additional mechanism in chapter 4 to allow recovery of the upward oriented

root segments found in plagiotropic root systems. Together, both elements

allow the extraction of plant root systems grown in soil and imaged with

X-ray µCT. So far however, we have not demonstrated how well the method

performs, what detail of structural information can be obtained from the

extraction process and what the capabilities and limitations of the described

technique are. In this chapter we focus on answering these questions.

We divide the experiments into four parts, each re�ecting a particular

perspective. We adopted this approach for two reasons. First, we aim to

cover a wide range of scenarios in order to eliminate bias in the analysis.

Second, each experiment gives rise to uncertainty, since ground truth data

is either not available or is not entirely representative of real data samples.

In section 6.1 we assess the performance and accuracy of the method by ex-

tracting an idealised test object from arti�cially generated data with varying

noise and contrast. In section 6.2 we investigate the ability of the proposed

techniques to detect root segments, in soil, that are of measured size and

located at known positions within the sample. In section 6.3 we run the

method on real CT image data showing di�erent plant species and soil tex-

tures and compare the results to the actual root systems after removing and
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washing them free of soil. The extracted data is further compared in sec-

tion 6.4 against segmentation data obtained by other techniques previously

introduced in the literature.

6.1 Arti�cially generated data

One way to test the proposed extraction technique is to run it on arti�cially

generated data. The bene�t of this approach is that we have full control of

the target object and so can test the method against a particular applica-

tion. When wishing to test a certain scenario, it is di�cult to grow a real

plant whose root system exhibits the desired behaviour at the required level

of detail. A further advantage is that arti�cially generated objects provide

accurate ground truth that can be used to determine the error in the ex-

tracted data, since the sampled object is completely known. If the target

object is arti�cially generated, then it is also possible to use the same object

under changing conditions. Input parameters can be varied to see how the

method performs under di�erent circumstances, exploring its limitations.

However, it is important that the test data resembles to a certain degree

the characteristics of real image data, otherwise the �ndings would be less

meaningful. Details of the generation of arti�cial data used in the testing

process, are described in section 6.1.1. In section 6.1.2 we specify the details

of the experiment and discuss the results in section 6.1.3.

6.1.1 Generating arti�cial test images

In order to generate arti�cial image data that re�ects characteristics similar

to those found in real CT data, it is necessary to quantify its noise and

quality. To perform this task we pick up from chapter 2, where we described

the process of measuring image noise. As a reference for the analysis we use a

cross-section from a column that was �lled with an agar solution and imaged

with a Nanotom (Phoenix X-ray / GE Measurement & Control Systems) X-

ray µCT scanner (�gure 6.1). From this the point spread function (PSF),

modulation transfer function (MTF) and noise power spectrum (NPS) are

determined and shown in �gure 6.2. To generate realistic arti�cial data, we

�rst take the two-dimensional cross-sections from the image stack of our test

object and then apply the Radon transform [Kak and Slaney, 1988] to obtain

its sinogram. From chapter 2 we know that the X-ray photon noise follows
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(a)

(b)

Figure 6.1: Cross-sectional X-ray µCT image of a column �lled with agar
solution (top) and an arti�cially generated image (bottom). Areas selected
for the calculation of the NPS and MTF are highlighted by red squares. The
extracted and aligned signals used in the calculation of the MFT are shown
in the top-left corner of each image. Note that the original image has slight
ring artefacts. In this context we do not simulate any CT scanning artefacts
in the arti�cially generated data.
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a Poisson distribution and therefore the sinogram is degraded with Poisson

noise and blurred with a Gaussian kernel. The Gaussian blur re�ects the

inaccuracy of the detector panel when measuring the signal (for more details

on the physical aspects of X-ray CT see [Herman, 2009]). The sinogram is

then reconstructed using �ltered back-projection reconstruction as described

in chapter 2. The arti�cially generated image is shown in �gure 6.1 and its

noise and quality characteristics plotted in �gure 6.2 alongside the original

data.

The NPS of the image data is calculated using equation 2.17 on a man-

ually selected and approximately uniform area of 128x128 pixels near the

centre of the image. To calculate the MTF, it is �rst necessary to determine

the PSF, which is given by the �rst-derivative of the edge spread function

(ESF). Because of image noise, it is di�cult to select a signal that allows

calculation of the MTF without a�ecting the outcome of the result too much.

Therefore, to reduce noise while preserving edge information, we selected and

averaged 128 di�erent signals. These signals, however, have to be aligned

along their edges, so that the edge information is not blurred, but keeps its

original sharpness. Edges are found by segmenting the data in a selected area

into two regions using the k-means++ algorithm [Arthur and Vassilvitskii,

2007]. Signal information, normal to the edge, is extracted by resampling the

image using a bi-linear interpolation for a length of 128 pixel points. With

the aligned and averaged ESF we can use equation 2.15 to obtain an estimate

of the MTF. It should be noted that due to these steps, but also because of

the presence of noise, the analytical MTF is likely to be underestimated.

The noise characteristics are similar, yet there are observable di�erences.

This is to a large extent because of the simplicity of the noise simulation

model, but also due to the simpli�cation of the reconstruction process. How-

ever, compared to ordinary Gaussian noise, which usually has a �at NPS, the

noise applied here re�ects the properties of X-ray CT data more closely and

therefore is more suitable for the generation of arti�cial test data. It should

be noted that both the original and the arti�cially generated image have

the same NPS curve, showing a higher concentration of low frequency noise

that decreases as the signal frequency becomes higher. The MTF function

shows a similar decrease of contrast at increasing spatial resolution. This,
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(a)

(b)

Figure 6.2: MTF (top) and NPS (bottom) from the original (red) and the
arti�cially generated (blue) image data as shown in �gure 6.1

however, can be easily adjusted by varying the blur before reconstructing

the sinogram. In the arti�cial data generated here we do not simulate any

CT scanning artefacts, such as ring artefacts, beam hardening or others that

are sometimes present in original CT image data.

6.1.2 Extracting arti�cial root objects

In this experiment we arti�cially generate a set of image stacks with di�ering

degradation levels and apply the proposed root extraction method with the

aim of assessing the e�ciency of the extraction compared to the actual test
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object. For that purpose we use a simple cone, which viewed from a cross-

sectional perspective looks like a circle that gradually shrinks in radius. The

object is placed in the centre of the image stack at a straight vertical angle.

The image stack is 512x512x512 voxels in size. The radius of the cone is 23

pixels in the �rst image slice, reducing until it reaches a radius of 1 pixel in

the last image .The layout of the test image stack is illustrated in �gure 6.3.

Figure 6.3: Illustration of arti�cially generated test image stack

Test objects are generated under varying contrast (2, 4, 8, 16, 32, 64)

and noise levels (0, 2, 4, 6, 8, 16, 32, 64), resulting in a total of 42 di�erent

image stacks. Contrast values represent the di�erence in greyscale inten-

sities between back- and fore-ground. The noise is modelled by a Poisson

distribution with a parameter equal to the signal intensity in the sinogram

and multiplied by a factor of noise level intensity. Together all these samples

cover a range of scenarios, from low to high contrasts and from no noise at

all to very noisy images. The Gaussian blur in all generated samples is kept

constant at σ = 1 for a radius of 3σ. Each image stack under di�erent con-

ditions has been simulated only once. A wide range of di�erent contrast and

noise levels were chosen, since it is di�cult to generalise these parameters

to typical real situations, as image quality varies between CT scanners but

also depend on the scan settings and the physical composition of the imaged

samples.

We initially planned to keep the two parameters of the extraction method

constant, to better show the e�ect of the evolution of the level set function



6.1. Arti�cially generated data 113

under changing image conditions. However, this would be highly unrealis-

tic, since the parameter controlling the Jensen-Shannon divergence, which

determines the acceptable distance between root model and image data, is

strongly dependant on the contrast between target and background. A pa-

rameter suitable for detecting low contrast objects in low noise images cannot

deal with objects in a noisy environment even when contrast is high. It is

therefore necessary to vary those parameters across the arti�cial data set.

The parameter controlling the curvature constraint is less restricted by

the lack of contrast between target and background but plays an important

role in keeping the level set function within the target object at high levels

of noise. By smoothing the level set front, it prevents the level set function

from spreading through gaps and so beyond the objects' boundaries. While a

high value for the curvature parameter has its bene�ts in noisy environments,

it also exerts a resilient force against forward expansion and thus causes

small objects to collapse until they vanish. An increased curvature value,

therefore, disallows the extraction of very thin objects. By slightly adapting

the input parameters to the di�erent testing scenarios, it is possible to adapt

to the di�erent circumstances in order to extract meaningful data from the

images. This however, does not imply that the parameters chosen for each

image stack re�ects the optimal choice for the best possible result, but can

be considered as a `good guess' for the extraction process. Table 6.1 shows

the input parameters for the curvature constraint and the Jensen-Shannon

divergence.

Sample Curvature (α) Jensen-Shannon (β)

Contrast 2 / Noise 0-64 0.400 0.028

Contrast 4 / Noise 0-64 0.400 0.068

Contrast 8 / Noise 0-64 0.400 0.128

Contrast 16 / Noise 0-64 0.400 0.208

Contrast 32 / Noise 0-64 0.400 0.288

Contrast 64 / Noise 0-64 0.400 0.368

Table 6.1: Parameters used in the extraction process of arti�cially generated
data
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All analyses were initialised with a single seed point placed at the centre

of the object (x = 256, y = 256). The target is then extracted and followed

through the image stack. In the course of the extraction the target can be

lost, either because the level set function shrinks until there is no inside

area left or because it grows past the object boundary, including both the

target and the background. To deal with the latter case we have to de�ne

a threshold value which, if exceeded, will be considered to signal loss of

the target. In this experiment we set the maximum acceptable area to 125

percent of the actual target object.

6.1.3 Results and discussions

Figures 6.4-6.9 show how far down the image stack the target object was

successfully tracked, as well as the number of enclosed pixels extracted for

each image slice, together with false positives (type I error - the number

of voxels extracted as root material but belonging to the background) and

false negatives (type II error - the number of voxels belonging to roots not

extracted). To be able to distinguish low contrast objects, it is necessary to

choose a sensitive distance value for the Jensen-Shannon divergence param-

eter. While this allows the detection and tracking of low contrast objects, it

can also be observed that the addition of even low level noise soon makes it

impossible to extract any data at all (�gure 6.4). At high noise levels only

high contrast target objects can be successfully extracted (�gures 6.4-6.9).

This however, is only possible if the input parameters are adjusted as well.

An increased level of noise makes the greyscale intensity distribution vary

much more than with the absence of noise, and therefore a low parameter

value for the Jensen-Shannon divergence would not be able to deal with the

large variation, resulting in the target being lost. Even though the curvature

constraint was kept constant, it played an important role in the extraction

process. Especially when dealing with low contrast and high noise content,

the level set function can easily �nd its way around pixels into the back-

ground, shifting the root model slowly away from the target representation

to a representation of the background. Figure 6.10 shows the percentage of

the object recovered for all changing contrast and noise intensity levels. The

plotted curve clearly demonstrates the di�culty of extracting data from low

contrast and high noise images. If, however, only one of the two factors is

high, the parameters can be adjusted to allow the recovery of the sought ob-
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Figure 6.4: Extraction from arti�cially generated images with contrast = [2] and noise = [0,2,4,8,16,32,64]
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Figure 6.5: Extraction from arti�cially generated images with contrast = [4] and noise = [0,2,4,8,16,32,64]
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(a) (b)

(c) (d) (e)
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Figure 6.6: Extraction from arti�cially generated images with contrast = [8] and noise = [0,2,4,8,16,32,64]
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Figure 6.7: Extraction from arti�cially generated images with contrast = [16] and noise = [0,2,4,8,16,32,64]
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Figure 6.8: Extraction from arti�cially generated images with contrast = [32] and noise = [0,2,4,8,16,32,64]
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Figure 6.9: Extraction from arti�cially generated images with contrast = [64] and noise = [0,2,4,8,16,32,64]
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ject. Images of high contrast and low noise can be successfully analysed using

a wider range of parameters and thus are less restrictive, allowing the user

to adjust and compensate for other sources of interference, such as scanning

artefacts.

Another observation that can be made from �gures 6.4-6.9, is that in the

majority of cases, the extraction method tends to slightly underestimate the

real object. A reason for that might be the presence of blur, since pixels that

have been missed are only located at the object boundary. The interior of

the extracted object is completely �lled. The blur, as well as the curvature

constraint used in the experiment, which causes small areas of the level set

function to collapse, explain the loss of the target towards the end of the

image stack.

Figure 6.10: Extraction e�ciency under varying contrast and noise levels

It should be noted that in the arti�cially generated data, even though

the image characteristics have been designed to resemble real CT data, the

object and its background have been highly simpli�ed. They do not re�ect

the complexity and heterogeneity that is found in real images of plant roots

embedded in soil. While in this experiment a cone shaped object was used

as a test sample, we would ideally want to move from simple shapes to more
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complicated structures that resemble the shape of complete root systems.

This could be achieved with root simulation tools, such as SimRoot [Lynch,

2007], but at the time of writing such data was not available. A soil simu-

lation tool could add the complexity to the background and as such making

the arti�cial test data complete and, if made publically available, could serve

as reference data to the community for future development of root recovery

methods.

6.2 Root segments buried in soil

Arti�cially generated data allows veri�able interpretation of the extracted

outcome, since the exact object is known. However, the data is often gener-

ally simpli�ed and does not always re�ect the full complexity of real data. To

compensate for the simpli�cation, in this experiment we assess the method

on segments of the roots of real plants, which are placed in soil before imag-

ing and image analysis. In the following sections we present the details of

the experiment (6.2.1) and discuss the results obtained (6.2.2).

Sample
Voltage

(keV)

Current

(µA)

Projections Exposure

(ms)

Voxel

(µm)

Segments 1-6 120 140 1,440 500 16.80

Segments 7-12 120 140 1,440 500 16.80

Plastic wire 120 140 1,440 500 16.80

Sample
Time

(min)

Filter

(mm)

Signal

Average/Skip

Binning

Mode

Distance

(mm)

Segments 1-6 64 0.1 Cu 4x1 1x1 84.00

Segments 7-12 64 0.1 Cu 4x1 1x1 84.00

Plastic wire 64 0.1 Cu 4x1 1x1 84.00

Table 6.2: Scan parameters used for imaging root segments and plastic wire

6.2.1 Extracting root segments

Winter wheat Cordiale (Triticumaestivum L.) was grown in loamy sand for

10 days after germination before the plant was removed from the column.
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Segments approximately 10mm long were cut from 12 randomly selected

root branches and measured with a digital high-precision calliper that has

an accuracy of approximately 10µm. The root segments were viewed under

a dissecting microscope and their diameter measured by line counting on a

Haemocytometer slide. The root segments were then buried in loamy sand,

which had been air-dried and sieved to <2mm. Samples were watered from

beneath with tap water, before being scanned under X-ray µCT (Nanotom

(Phoenix X-ray / GE Measurement & Control Systems)). After the scan,

all root segments were recovered from the soil and analysed again under

the dissecting microscope, to check for deformation or breakage. Alongside

the 12 root segments used in the experiment, a plastic wire was also buried

in loamy sand, providing a non-root reference object. The samples were

scanned with parameters listed in table 6.2 and extracted with the input

parameters for the curvature constraint and the Jensen-Shannon divergence

listed in table 6.3.

Sample Curvature (α) Jensen-Shannon (β)

Segments 1-6 0.392 0.368

Segments 7-12 0.392 0.368

Plastic wire 0.392 0.368

Table 6.3: Parameters used in the extraction process of root segments and
plastic wire

6.2.2 Results and discussions

The root segments of the wheat plant were measured in length and diameter,

from which the surface area and volume were estimated. For this calculation

it was assumed that the roots were perfectly cylindrical. This might not

always be the case in reality. Root measurement [Iyer-Pascuzzi et al., 2010]

or modelling [Lynch et al., 1997] tools, however, often make the assumption

that root systems are composed of multiple conical frustums, and hence that

their cross-section is always circular with a given radius. For a short segment,

that radius can be assumed to be constant, resulting in a cylinder. Table

6.4 shows the measured and calculated parameters of the test objects before

and after the scan.

The root segments and plastic wire were extracted from the X-ray µCT

images after the scan. The rendered data is shown in �gure 6.11. To this
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Sample
Radius

(mm)

Surface area

(mm2)

Volume

(mm3)

before scanning

Segment 1 0.3000 19.4150 2.8274

Segment 2 0.3062 19.8315 2.9465

Segment 3 0.3125 20.2485 3.0680

Segment 4 0.3312 21.5025 3.4472

Segment 5 0.3000 19.4150 2.8274

Segment 6 0.3187 20.6660 3.1919

Segment 7 0.3000 19.4150 2.8274

Segment 8 0.2937 18.9990 2.7109

Segment 9 0.2750 17.7539 2.3758

Segment 10 0.3000 19.4150 2.8274

Segment 11 0.2812 18.1685 2.4850

Segment 12 0.2500 16.1007 1.9635

after scanning

Segment 1 0.3125 20.2485 3.0680

Segment 2 0.3125 20.2485 3.0680

Segment 3 0.3062 19.8315 2.9465

Segment 4 0.3187 20.6660 3.1919

Segment 5 0.3125 20.2485 3.0680

Segment 6 0.3062 19.8315 2.9465

Segment 7 0.2875 18.5835 2.5967

Segment 8 0.3062 19.8315 2.9465

Segment 9 0.2875 18.5835 2.5967

Segment 10 0.2875 18.5835 2.5967

Segment 11 0.2875 18.5835 2.5967

Segment 12 0.2625 16.9263 2.1648

non-root reference object

Plastic wire 0.6650 44.5618 13.8929

Table 6.4: Measured parameters of root segments before and after the scan
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data we applied the measurement tool, presented in chapter 5, to determine

their surface area and volume, which are shown in table 6.5.

(a) (b) (c)

(d) (e) (f)

Figure 6.11: (a) Root segments on a Petri dish, (b-c) root segments 1-6, (e-f)
root segments 7-12 and (d) plastic wire extracted from the CT data

The measured values obtained with the microscope, before and after the

scan, are used to calculate the average surface area and volume for each

root segment. Based on these numbers, we obtain a mean error in surface

area of 12.9 percent and volume of 10.4 percent. Figure 6.12 shows the

measured results in comparison. Because roots are easily deformable they

might respond to the pressure that they experience while being buried in

soil, whereas no force is applied when they are exposed to the air. Roots

are able to store a large amount of water but at the same time dry out

very quickly if kept in the air for too long. To prevent the root segments

drying out, they were covered with a thin layer of water in the time between

being measured under the microscope and buried in the soil (�gure 6.11).

However, while the root segments were viewed under the microscope, they

had to be removed from the water. It would have made the measurement

di�cult if the roots were kept in water due to the many root hairs becoming

visible and blurring the edges of the root in the image. It is not known

whether the water content in the root segments remained constant while

segments were viewed under the microscope and imaged with X-ray µCT.

These circumstances might have caused variations in the physical shape of

the root during the experiment and led to errors in measurements. Roots

under the microscope were measured only at their ends. The entire root
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Sample Surface area (mm2) Volume(mm3)

Segment 1 22.6147 2.6144

Segment 2 23.5022 2.8229

Segment 3 21.7491 2.7134

Segment 4 30.8885 3.3708

Segment 5 22.3320 2.6858

Segment 6 23.9120 2.6929

Segment 7 20.0776 2.4189

Segment 8 23.2115 2.9229

Segment 9 21.6120 2.6531

Segment 10 21.4292 2.4713

Segment 11 19.7598 2.1212

Segment 12 15.5715 1.4493

Plastic wire 50.8871 13.9404

Table 6.5: Measured parameters of root segments from the extracted data

segment would not �t within the �eld of view without sacri�cing the high

magni�cation which is crucial in determining the root diameter.

(a) (b)

Figure 6.12: Measured root segments before and after the scan compared to
the objects extracted from the image data: (a) Surface area and (b) Volume

The acceptability of the error in measurement under the di�erent circum-

stances in which the analysis was performed is debateable. However, there

is a strong correlation between the two groups, which means that the results

obtained under the same conditions are representative of the samples. The

Pearson's product moment correlation coe�cient between the measured and
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extracted data are rarea = 0.8683 and rvolume = 0.8909 for the measurements

of surface area and volume respectively, with a p-value of 0.0002 and 0.0001

based on Fisher's Z transform. The paired Wilcoxon signed rank test gives

a p-value of 0.0009 and 0.0068 for the two datasets.

6.3 Plant root systems washed free from soil

In this section we move from the extraction of root segments to description

of complete plant root systems and apply the method to the type of datasets

for which it was designed. Root segments, while representing real material

within a real environment, have very simpli�ed geometrical and topological

structures. There is no branching, change in size or direction present, which

makes tracking them through a few cross-sectional image slices a compar-

atively simple task. Complete root systems are far more complex and in

order to assess the ability of the presented method to recover them from X-

ray µCT image data, we conducted an experiment in which di�erent plant

species grown in two di�erent soil textural types were prepared for analysis.

After X-ray CT analysis the plants are root-washed free of soil, imaged on

a �atbed scanner and root descriptions extracted from the grey level images

using standard commercial software (WinRhizo, version 2002c). The results

of this traditional analysis method are used to determine the e�ciency of

the proposed X-ray segmentation method in extracting plant root systems.

In the following sections we describe in detail the condition and steps of

the experiment (6.3.1) and discuss the correlation between the root systems

extracted from the X-ray µCT image data to the actual plant root systems

recovered from the soil cores (6.3.2).

6.3.1 Extracting plant root systems

The image data used in this experiment is the data acquired from the root

systems of maize, wheat and tomato as described in chapter 3. The samples

were scanned with the parameter settings listed in table 6.6. The image

stacks were processed using the proposed tracking method with the extension

mechanism for plagiotropic roots enabled using the same parameters for

controlling the curvature constraint and the Jensen-Shannon divergence as
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in the previous chapters 3 and 4.

Sample
Voltage

(keV)

Current

(µA)

Projections Exposure

(ms)

Voxel

(µm)

Maize 1-4 120 120 1,200 750 48.48

Wheat 1-4 120 250 1,200 750 25.00

Tomato 1-4 120 250 1,200 750 25.00

Sample
Time

(min)

Filter

(mm)

Signal

Average/Skip

Binning

Mode

Distance

(mm)

Maize 1-4 75 0.1 Cu 4x1 2x2 160

Wheat 1-4 67 0.1 Cu 3x1 1x1 200

Tomato 1-4 67 0.1 Cu 3x1 1x1 200

Table 6.6: Scan parameters used for imaging plant root systems

After the plants were scanned with X-ray µCT, they were removed from

the columns and washed free of soil. In doing so, the three-dimensional struc-

ture of the root system is lost, but soil removal allows two-dimensional anal-

ysis of the root system with other tools such as WinRhizo (version 2002c).

WinRhizo is a popular and widely used tool in plant root studies, a de facto

standard [Bouma et al., 2000; Himmelbauer et al., 2004], which is why it is

used here. The roots were placed on a water tray and scanned with a �atbed

scanner at 400dpi. The images were analysed using WinRhizo's automatic

thresholding for normal roots, ignoring speckles that had an area less than

2mm2.

6.3.2 Results and discussions

The root systems extracted from the X-ray µCT image data are compared

to the root-washed images quanti�ed using the WinRhizo tool. Both set of

images are shown in �gure 6.13-6.15, with the thresholded and skeletonised

architecture of the root system highlighted in colour. The measured surface

area and volume reported by each method are listed in table 6.7.

Figures 6.16-6.18 show the plotted surface area and volume for each sam-

ple. The average error in surface area and volume are 19.6 percent and 39.1
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.13: Root systems of maize 1-4 (a-d) analysed with WinRhizo and (e-h) extracted from X-ray µCT data
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Figure 6.14: Root systems of wheat 1-4 (a-d) analysed with WinRhizo and (e-h) extracted from X-ray µCT data
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.15: Root systems of tomato 1-4 (a-d) analysed with WinRhizo and (e-h) extracted from X-ray µCT data
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WinRhizo X-ray µCT

Sample
Area

(mm2)

Volume

(mm3)

Area

(mm2)

Volume

(mm3)

Maize 1 1,528.8 389.0 1,849.7 464.4

Maize 2 3,850.0 558.0 2,087.7 589.8

Maize 3 1,653.3 279.0 1,724.4 504.5

Maize 4 2,575.3 481.0 2,386.0 725.6

Wheat 1 3,524.4 411.0 1,831.2 184.0

Wheat 2 3,726.6 405.0 1,827.4 198.9

Wheat 3 2,459.1 281.0 1,003.5 106.4

Wheat 4 2,865.3 280.0 1,188.3 118.3

Tomato 1 254.7 28.0 242.3 24.2

Tomato 2 284.5 33.0 257.4 26.5

Tomato 3 126.1 18.0 143.0 18.3

Tomato 4 155.0 22.0 141.7 16.8

Table 6.7: Measured root system traits from WinRhizo images and X-ray
µCT extracted data

percent for maize, 54.1 percent and 56.5 percent for wheat and 9.0 percent

and 14.0 percent for tomato. The Pearson's product moment correlation co-

e�cient between WinRhizo and the data extracted from X-ray µCT images

are rarea = 0.5670 and rvolume = 0.5924 with a p-value of 0.433 and 0.4076

for maize, rarea = 0.9831 and rvolume = 0.9802 with a p-value of 0.0168

and 0.0197 for wheat, and rarea = 0.9847 and rvolume = 0.9209 with a p-

value of 0.0152 and 0.079 for tomato. The p-values were calculated based on

Fisher's Z transform. Care should be taken in drawing conclusions from the

signi�cance of the statistical test, due to the small sample size.

The best results were obtained from the tomato samples, which yielded

the smallest error and a high correlation. The root system of the tomato

is the least complex among all the samples, with only a few lateral roots.

Relatively good data was also obtained from the maize samples, although

the mean error is slightly increased and the results are not as well correlated

as the measured traits from the other samples. Maize 2 showed a large

error in surface area, which is very likely due to the high number of �ne
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(a) (b)

Figure 6.16: (a) Surface area and (b) Volume of maize 1-4 obtained with
WinRhizo and X-ray µCT

(a) (b)

Figure 6.17: (a) Surface area and (b) Volume of wheat 1-4 obtained with
WinRhizo and X-ray µCT

(a) (b)

Figure 6.18: (a) Surface area and (b) Volume of tomato 1-4 obtained with
WinRhizo and X-ray µCT
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lateral roots that were not present in the other maize plants, and have been

missed during the extraction process. It should be noted that the maize

plants have been scanned at a lower resolution than the tomato and wheat

samples. Roots can only be extracted from the data if they are large enough

to be visible in the cross-sectional images that are processed. The main

root architecture, however, has been fully recovered as shown in �gure 6.13.

Surface area and volume measurements recovered from the wheat samples

are largely underestimated. The extraction of the many �ne later roots

proved to be problematic, though the primary roots have been successfully

recovered. This is clearly shown in �gure 6.14. However, it should be noted

that the exact surface area and volume of the root systems are unknown.

WinRhizo estimates the parameter from two-dimensional image data and

might overestimate traits, especially if roots cross and overlap. From �gure

6.14(a-d) it can be observed that some roots, located close to each other, are

treated as a single thick root instead of separate roots. Therefore the true

value might be somewhere in between. No di�erence in extraction e�ciency

was observed between the two soil textural types; loamy sand and clay loam.

6.4 Comparison to other extraction techniques

In the previous section we demonstrated the presented techniques' ability

to recover the structure of plant root systems from X-ray µCT data. In

this section we revisit the X-ray µCT image data collected from the plant

samples in the previous experiment and extract the root system using al-

ternative techniques similar to methods presented in the literature. Because

none of the tools are publically available, and published descriptions lack the

detail needed for a complete re-implementation, several assumptions had to

be made, but the methods were implemented to our best knowledge and

ability. The results are used to evaluate how the proposed extraction tech-

nique performs in comparison to other extraction strategies and to identify

potential weaknesses and strengths. In section 6.4.1 we describe the details

of the techniques used for comparison and discuss the outcome in section

6.4.2.
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6.4.1 Details of the extraction techniques

The �rst method used in this experiment is similar to the method described

in [Heeraman et al., 1997], which takes a statistical classi�cation approach.

The method is initialised by manually selecting 20 points for each group

of components. Here we choose three di�erent groups representing air, soil

and root material, as in [Heeraman et al., 1997]. These groups are tested

for normality using the Kolmogorov-Smirnov Goodness-of-Fit test. For each

of the components the mean and standard deviation are calculated and its

95 percent con�dence interval determined. The volumetric dataset is then

examined. Each voxel is compared to Gaussian distributions formed using

each of the groups' calculated mean and standard deviations as parameters.

The probability of a given voxel being generated by each Gaussian is deter-

mined and the voxel assigned to the component with highest probability. If

a voxel does not fall within any of the determined con�dence intervals, then

the value is ignored and not assigned to any component. In this experiment

we are interested in the root material component and hence we use that

group for comparison to our presented method.

The second method that we use in this experiment is a region growing

based technique similar to that presented by [Perret et al., 2007], who used

thresholding along with a 26-neighbour connectivity constraint, starting from

the plant seed, to achieve the same goal. Related to this technique is the

method in [Lontoc-Roy et al., 2005, 2006], in which manual thresholding is

used to extract the large root fragments before an iterative region growing

technique, based on a second threshold boundary, is applied to extract �ner

root fractions. It is not clear whether root regions are hand selected prior

to applying the region growing technique or whether any region after the

�rst step is used for further processing. The former approach would lead to

a similar result to the techniques developed here, in that the region grow-

ing process is started from selected seed points. In this experiment we use

20 seed points that are manually selected throughout the volumetric data,

placed within regions that belong to the root system. These seed points

de�ne the initial location from which the process starts, but are also used to

de�ne the overall threshold boundaries. Seed points are therefore selected to

include a range of di�erent values that are taken from bright as well as dark

root segments. For the region growing segmentation method a 6-neighbour
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connectivity is used, which is di�erent from that in [Perret et al., 2007], where

a 26-neighbour connectivity was applied. However, the image data that we

use has a much higher resolution and therefore we believe that small roots

are still detectable even though a lower connectivity is used. The advantage

on the other hand is that less non-root material is included in the extracted

data.

6.4.2 Results and discussions

The image stacks obtained from maize, wheat and tomato grown in the

two soil textures loamy sand and clay loam, have been used as samples to

evaluate alternative strategies. The results are shown in �gure 6.19-6.21.

Due to the weak performance of the alternative methods, measured surface

area and volume are not analysed, since no data were obtained that would

allow a meaningful comparison.

Though region growing ensures connectivity, the rendered images shown

in �gure 6.19-6.21(e-h) appear to contain particles �oating in the air, and

not connected to the root system. This visual appearance is an artefact

of the low resolution of the volume rendering process. In reality, all the

marked voxels are connected. From the rendered extractions it can be ob-

served that in general region growing performed better than the voxel clas-

si�cation strategy, for which the best results were obtained from the maize

samples. One reason for this might be the lower resolution of the imaging

process. It should be noted that in both studies, where similar approaches

have been applied [Heeraman et al., 1997; Lontoc-Roy et al., 2006; Perret

et al., 2007], the resolution of the scans were much coarser at a voxel size

of 0.16×0.16×0.20mm, 0.12×0.12×0.1mm and 0.275×0.275×1.0mm respec-

tively, compared to the maize (0.04848×0.4848×0.04848mm), and wheat and

tomato (0.025×0.025×0.025mm) used in this study. Apart from root objects,

the other objects included in the segmented data were outlines along cracks,

as shown in �gure 6.22. For image data with lower resolution, this might

become a minor issue. When looking at the extraction of the root system,

such as in �gure 6.19 showing the maize plants, the number of roots recov-

ered is still relatively low compared to the root system extracted with the

method proposed here. The reason is the sti�ness and static behaviour of

these methods, which have di�culties coping with the dynamic change of

greyscale intensities in root objects.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.19: Root systems of maize 1-4 extracted from X-ray µCT data using (a-d) statistical classi�cation, (e-h) region
growing and (i-l) tracking based strategy
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Figure 6.20: Root systems of wheat 1-4 extracted from X-ray µCT data using (a-d) statistical classi�cation, (e-h) region
growing and (i-l) tracking based strategy
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.21: Root systems of tomato 1-4 extracted from X-ray µCT data using (a-d) statistical classi�cation, (e-h) region
growing and (i-l) tracking based strategy
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(a) (b) (c) (d)

Figure 6.22: Cross-sectional slice (wheat 3) of extracted data obtained with
(a) classi�cation, (b) region growing and (c) tracking method, alongside (d)
the X-ray µCT cross-section

While the region growing strategy extracted less non-root material, the

voxel classi�cation approach was more successful in recovering root material

(�gure 6.22). One reason for that was that the voxel classi�cation method is

not limited to keeping the root system connected and therefore found more

partial root segments. This is useful if only the root system mass is of in-

terest, but at the same time makes it di�cult to derive any architectural

and structural traits. Both methods require a number of seed points to be

selected, which determine the overall process, de�ning the threshold bound-

ary or �nding sample distributions that are used for further classi�cation.

Especially for the latter it is di�cult to select seed points for each component

which form a Gaussian distribution. Non-parametric tests that do not make

an assumption about the distribution of sample points, might be more suit-

able. Also, in this experiment, only three distinguishing components were

used, as in [Heeraman et al., 1997]; air, soil and root material. Including ad-

ditional components, such as water and minerals, might have improved the

outcome. However, it is not aim of this study to modify and improve other

strategies, but to implement their methods as accurately as possible. Only a

few simple and reasonable changes have been made, such as the neighbour-

hood connectivity, which was changed from 26 used in [Perret et al., 2007]

to 6, since both selected neighbourhood values lead to a similar amount of

extracted roots, but noticeably less non-root material was included when

only a 6-neighbourhood constraint was applied.

The extraction technique proposed in this thesis has not been compared

to methods developed outside the �eld of soil-root studies. It is not clear,

for instance, if applications designed for medical images are suitable for the

extraction of plant root systems in soil. Even though medical images taken
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with X-ray CT might have similar characteristics and artefacts, the scanned

object, image resolution, as well as the scanner device, however, di�er from

those used in plant sciences. We therefore focused on techniques that have

been designed speci�cally for the purpose of extracting roots from soil.

6.5 Summary

The presented method was tested and evaluated in a number of experiments,

which range from arti�cially generated data to root segments buried in soil

up to the extraction of complete root systems of real plants. The experiment

with arti�cially generated data showed that small objects can be extracted

from qualitatively good images, but becomes more di�cult as the image

quality decreases. The ability to extract information from the image data

depends on the tracker parameters, which dictate the behaviour of the pro-

cess and can be critical under poor image conditions. Qualitatively good

image data allows roots to be successfully extracted using a wider range of

initial parameters.

The arti�cially generated test object, however, was fairly simple and thus

easier to extract than real roots embedded in soil, where the image data is

much more heterogeneous and complex. That the presented technique can

also deal with real plant roots was shown in the experiments that followed.

Both root segments and complete root systems were extracted successfully.

The method was tested on root system architectures of monocot and dicot

plants growing in two di�erent soil textural types that represent a large

portion of United Kingdom's soil. This shows that the technique can not only

be applied to a speci�c plant or root architecture, but is able to cope with

di�erent situations. Di�culty arises when there are many �ne lateral roots,

which might remain undetected, especially when imaged at lower resolutions.

Increasing the resolution implies also scaling down the size of the sample,

which then limits the space available for the root system to explore.

Evaluation of the extraction accuracy is a di�cult task, since ground

truth data is either not available or is not entirely representative of real data

samples. Data can be arti�cially generated to allow a precise determination

of missed or incorrectly classi�ed voxels, but are less representative of real

plants grown in soil. Extracted root systems can be compared to excavated

plants, by measuring characteristics such as volume or surface area, which



142 Chapter 6. Evaluation of the root extraction technique

are often estimated from other parameters and fail to completely describe

the structural complexity. Application of a number of di�erent evaluation

procedures both reduces bias and increases the reliability of the conclusions

drawn.

In the following chapter (chapter 7) we discuss the extraction of multiple

interacting root systems, extending the method with multiple trackers and a

collision detection mechanism to keep track of which root belongs to which

plant.
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Chapter 7

Extraction of multiple

interacting root systems

Plants use their root systems to explore the environment for water and nu-

trient sources which, in the open �eld, are shared with other neighbouring

plants. Especially situations where these resources are scarce, plants will

have to compete for their survival. Researchers have strived for decades to

understand the degree of belowground competition among plants [Casper

and Jackson, 1997; Rubio et al., 2001; Maina et al., 2002] and to discover

if there exists any form of communication between root systems that allows

them to grow in harmony and make the best use of limited amount of re-

sources [Mahall and Callaway, 1992; Fang et al., 2013]. This is of particular

interest for intercrop cultivation, to �nd the optimal combination of plants

for a certain �eld environment, which in turn can have a large e�ect on crop

yield [Mead and Willey, 1980; Willey, 1985; Anil et al., 1998].

In the present context, this means that if multiple plants are grown within

the same soil column, their roots need to be distinguished from each other

while at the same time being separated from the background. While it is

straightforward to apply separate tracking processes to individual plant root

systems, di�culty arises when two or more tracked root sections collide,

which is the case when roots come into contact with each other. That such

an event is possible has been demonstrated by the experiment described in

chapter 4, where roots from the same plant were seen to touch each other.

For a single plant, this is not really an issue, since it does not a�ect the

extraction of the root system as such. However, when multiple root systems



144 Chapter 7. Extraction of multiple interacting root systems

are present it is important to keep track of which root belongs to which

plant so that correct conclusions can be drawn from the measured data.

The extraction method introduced in the previous chapters looks for root

material only, and does not make any distinction among di�erent plants. In

this chapter we seek a solution to the extraction of multiple root systems.

The problem of interacting targets is a widespread feature of multiple

target tracking and an actively discussed topic in computer vision [Khan

et al., 2005]. The task is complicated with targets of identical appearance.

Whatever the form of model is, similar targets will always be tracked with

the same model. If targets interact, each tracker will tend to lock on the

target that best �ts the model. This can result in trackers swapping targets

or trackers following the same target while losing track of others.

In section 7.1 we brie�y describe how a single tracker is expanded to

multiple trackers for a number of di�erent targets. As the roots of di�erent

plants may have identical density and so grey level distributions, particularly

if they are of the same species, our proposed solution relies on measures

of the shape of root sections. We therefore describe a method for shape

registration in section 7.2. In section 7.3 we address the issue of object

collision and present a method which keeps two or more individual targets

separated. The proposed solution is applied to a number of plant samples

and the results obtained presented and discussed in section 7.4.

7.1 Multiple level sets

Given the approach adopted here, extraction of multiple root systems re-

quires tracking of multiple targets (which may of course split as roots branch).

This in turn requires multiple instantiations of the proposed level set tech-

nique to be active together. The level set method was initially developed

to evolve the interface of a single front, based solely on its velocity along

surface normals [Osher and Sethian, 1988; Sethian, 1999]. This has been

extended by simulating the �ow of two-phase �uids [Sussman et al., 1994,

1999]. Here the interface is a�ected by the physics on both sides, but the

area remained divided into two regions; inside and outside. Other variations

of the level set methods have been developed that overcame that limitation,

allowing the simulation of the complex interaction of more than two �uids

[Merriman et al., 1994; Sethian, 1994; Losasso et al., 2006].
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In this work we adapt the solution de�ned in [Sethian, 1994], where multi-

ple level set functions are evolved simultaneously. This or similar approaches

have been established as a popular technique in computer vision, such as the

segmentation of greyscale and colour images into multiple distinguishable re-

gions [Vese and Chan, 2002]. The method enjoys the advantages of simplicity

and e�ciency, but lacks the high precision required in many physics-based

application [Losasso et al., 2006].

Let Φt
A and Φt

B be two level set functions occupying two di�erent regions

at time step n. The level set functions are evolved based on a de�ned speed

function, resulting in a temporary state of Φ∗
A and Φ∗

B. Φ
∗
A and Φ∗

B are then

combined to obtain the level set function Φt+1
A and Φt+1

B at time step t+ 1.

The combination of the temporary level set functions depends on whether

or not the interface of A can penetrate the interface of B, or vice versa.

Assuming that A can penetrate B, but B cannot penetrate A, then the new

level set function at time step t+ 1 will be updated accordingly

Φt+1
A = Φ∗

A

Φt+1
B = max (Φ∗

B,−Φ∗
A)

(7.1)

Rules can also be de�ned such that during an encounter of two level set fronts,

neither is allowed to penetrate the other. This will stop them from advancing

further and give an exact partition of the two regions at the front of collision.

The mechanism of multiple fronts can be easily extended to any number of

level set functions using the same principles of combination. In that case,

each evolving front in the set must be compared to all other level set function

of the same set. Figure 7.1 shows three di�erent scenarios where two level

set functions (front A (red) and front B (orange)) are evolved until their

fronts interact with each other, at which point di�erent combination rules

are applied. This is a key element in the extraction of multiple interacting

root systems, but not su�cient enough. While the combination rules of

di�erent level set function allows individual trackers to be separated, the

true boundary between touching root sections remains unknown. Therefore,

although level set functions can penetrate each other's interface, there is no

de�nition given yet, when these are to be applied. For this, shape information

is used in estimating the boundary of root objects and thus to �nd the

intersecting front in between.
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Figure 7.1: Two level set function A (red) and B (orange) interacting with each other, where (a) front A penetrates front B,
(b) front B penetrates front A and (c) neither A or B is penetrated
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7.2 Iterative closest point

The iterative closest point (ICP) algorithm is a technique that allows the

registration of two point clouds [Besl and McKay, 1992]. Given a set of

points, the aim is to �nd the rotation and translation matrix that aligns

the data to a prede�ned model, which also takes the form of a point cloud.

Registration techniques aim at overlaying images often taken at di�erent

times or camera perspectives, for the purpose of change detection or time-

series analysis, but also for target matching in which the shape of a known

target is sought to be matched to an object in an image [Zitová and Flusser,

2003]. Here, we use registration for aligning the shape of a root section

to a targeted object within the tracking process, to be precise, in dealing

with object collisions. Detailed information is given in the following section

(section 7.3). In this section we describe the ICP algorithm, following the

notation presented in [Besl and McKay, 1992].

Let U = {~ui = (xi yi zi 1)|i = 1..Nu} be a set of data points and

V = {~vi = (xi yi zi 1)|i = 1..Nv} be the points of a given model. For

simplicity, let Nu be equal to Nv. The rotation matrix R and the translation

matrix T are sought, to minimise the root mean square distance between

model and data
1

Nu

Nu
∑

i=1

‖~vi −TR~ui‖ (7.2)

This is achieved using a quaternion-based least square method [Horn, 1987].

First, the centres of mass ~µu and ~µv of the two point clouds are calculated

~µu =
1

Nu

Nu
∑

i=1

~ui

~µv =
1

Nv

Nv
∑

i=1

~vi

(7.3)

and used to determine the cross-covariance matrix covuv for U and V .

covuv =
1

Nu

Nu
∑

i=1

[(~ui − ~µu)(~vi − ~µv)
⊺] (7.4)
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This results in a matrix A = covuv−cov⊺uv from which the cyclic components

are taken to form the vector ~a = (A23, A31, A12) that is used to generate the

matrix

Q4×4 =





tr(covuv) ~a⊺

~a covuv + cov⊺uv − tr(covuv)I3



 (7.5)

The eigenvector ~r = (q1 q2 q3 q4) of the matrix Q with the maximum

eigenvalue is used to de�ne the rotation matrix R

R =



















q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3) 0

2(q2q3 + q1q4) q21 + q23 − q22 − q24 2(q3q4 − q1q2) 0

2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 + q24 − q22 − q23 0

0 0 0 1



















(7.6)

The vector ~t = ( ~µv −R ~µu) is used to de�ne the translation matrix T

T =



















1 0 0 t1

0 1 0 t2

0 0 1 t3

0 0 0 1



















(7.7)

The ICP algorithm for registering two sets of point clouds is an iterative pro-

cess seeking a good alignment by converging to the nearest local minimum.

To �nd the distance of a point in U to its closest neighbour point in V the

following metric d(~u, V ) is used

d(~u, V ) = min~v∈V ‖~v − ~u‖ (7.8)

The algorithm is initialised by setting the rotation and translation matrices

equal to the identity matrix R = T = I and begins by identifying for each

point ~u ∈ U the best match with the shortest distance d(~u, V ). This step

can be e�ciently performed using a k-d tree [Rusinkiewicz and Levoy, 2001].

With the set of matching pairs as input, the best registration is calculated

using the quaternion-based least square method, determiningR and T which
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are then applied to U . The whole process is repeated iteratively, �nding new

matching points and their transformation, until the change in mean square

error falls below a given threshold.

In the context of this work we limit our discussion to the basic principles

of the ICP algorithm. For alternative strategies and further information on

shape registration, the interested reader is referred to [Brown, 1992; Zitová

and Flusser, 2003; van Kaick et al., 2011].

7.3 Collision of target objects

When extracting roots from image data of samples that contain more than

one plant, individual level set functions are associated with each root system

and evolved according to the principles presented in chapters 3 and 4. Since

the computation of the level set function is limited to a band around the

interface (narrow band), they are in general not in�uenced by each other.

This, however, is not true when two or more root objects make contact.

Assuming all the target objects have similar greyscale characteristics, contact

between two roots will cause the image regions representing their sections to

combine to form a single, larger region with the same grey level distribution.

Each level set, as per de�nition, would then expand into that region, although

certain areas are already occupied by others. This can be easily prevented by

setting combination rules as described in section 7.1, to make the inside area

of any level set function impenetrable. This, however, has as a consequence;

the generation of race conditions. Here, one level set function can block the

way for others and as a result take over tracking their target. Such a scenario

is illustrated in �gure 7.2.

If more reliable extraction of multiple root systems is to be provided, it

is necessary to re�ne the combination rules to take into account the location

and current state of the root objects. At this point, the reader is reminded

that throughout the tracking process, the shape of a target object is cap-

tured and used to decide whether or not the root model distribution is to be

updated (chapter 3). This knowledge of the shape of root sections can also

help in making decisions when it comes to object collisions. We assume that

the shape of a root cross-section is approximately constant during the period

of contact. This assumption may not always hold, but we believe it will be

true in the majority of cases, since the number of cross-sections at which a
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Figure 7.2: Two colliding target objects; (a) raw data, (b) extracted using the conventional level set tracking approach and
(c) combined with the ICP algorithm during the period of contact (5-9)
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root bends is low in comparison to the number of slices through which the

root follows a steady direction. When a bend occurs, it is also likely that

the root will lose contact with any neighbouring roots, and hence leave the

critical collision area of the corresponding image.

The occurrence of a collision between two or more root objects can be

easily identi�ed by checking which of the level set functions Φ∗
N have a neg-

ative value. This can be determined while testing for the condition given

in equation 7.1. When no collision is detected, so the boundary of the root

sections can be assumed to be clearly visible, their shape is recorded. These

stored shape descriptions are then used to guide the evolution of the level

set functions during interactions; when a collision is detected. The ICP al-

gorithm, as described in section 7.2, is used to �nd the best alignment of the

prestored shape to the moving interface. This leaves the level set function

in one of two possible states: the interface is either outside or inside of its

aligned region. If the interface is located outside, then the level set function

is not protected from penetration and at the same time cannot penetrate

others. If the interface is inside its aligned area, then it is protected from

any other level set function and therefore cannot be penetrated, but at the

same time can penetrate others. The di�erent states and their combination

rules are illustrated in �gure 7.3. The e�ect of applying this mechanism is

illustrated in �gure 7.2.

(a)

→

(b)

Figure 7.3: Combination rules of overlapping level set functions A and B
(a) before and (b) after evolution. (1) A and B are both protected from
penetration, (2) A penetrates B, (3) B penetrates A, (4) A and B cannot
penetrate other interfaces, but continue evolving in unoccupied areas

More formally, let L = {Φ1..Φn} be the set of level set functions and

L∗ = {Φ∗
1..Φ

∗
n} the set of their temporary states. The shape of each object

tracked with the level set function, is stored and associated with its root
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Figure 7.4: Flowchart of the tracking process for the extraction of multiple
and interacting plant root systems
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object. On the detection of a collision between objects belonging to di�erent

level set functions, the stored object shape is aligned to the points along the

evolving interface using the ICP algorithm and its enclosed area denoted as

set S = {S1..Sn}. The �nal value of the level set function Φi at time step

t+ 1 and position p is then calculated as follows

Φt+1
i =



















Φ∗
i if (p ∈ Si) ∧ (p /∈ {S\Si})

max (Φ∗
i ,−{Lj |p ∈ Sj}) if (p ∈ Si) ∧ (p ∩ {S\Si} 6= ∅)

max (Φ∗
i ,−L∗) if (p ∩ S = ∅)

(7.9)

A particular bene�t of this solution is that, although it constrains the move-

ment of the front, the selected root object is not required to maintain the

registered shape. This allows the detection of lateral roots, since a level set

function can still evolve beyond the aligned region. At the same time it pre-

vents the path of a level set function being blocked by faster evolving level

sets and allows their interface to be penetrated so that control over its target

is maintained.

Figure 7.4 shows the updated �owchart of the process for the extraction

of multiple and interacting root systems introduced in this chapter. Multiple

level set functions are evolved in parallel and the ICP algorithm applied when

triggered by a collision of di�erent level set fronts.

7.4 Extracting data with colliding objects

The technique proposed here has been applied to a number of image stacks,

both arti�cially generated and acquired via X-ray µCT. The extraction is

performed twice for each dataset, with the collision mechanism enabled and

disabled, to determine the di�erences that the additional integrated method

brings. In the following subsections we will describe in detail both experi-

ments and discuss the results obtained. Arti�cial data is used here as access

to real X-ray data on interacting root systems is currently limited. The Nan-

otom (Phoenix X-ray / GE Measurement & Control Systems) X-ray µCT

scanner used throughout this project has a restricted sample size which re-

duces the number of di�erent plant con�gurations that can be considered.

Although, there is the chance of root sections from di�erent plants to inter-

act, this behaviour cannot be controlled. Arti�cially generated data allows
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(g) (h) (i)

(j) (k) (l)

Figure 7.5: Extraction of arti�cially generated data with collision mechanism disabled (left) and enabled (right)
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simulating the interaction of root objects and therefore facilitates the testing

of the presented method. Arti�cial data is commonly used in the broader

computer vision community and brings a number of advantages, as discussed

in chapter 6.

7.4.1 Arti�cially generated data

Arti�cial image data was generated by moving two white circles across a

black background at a speed of 6 pixels per time step, changing direction

through a randomly selected angle ∠ = [−16◦, 16◦] to obtain a random path.

The circles bounce o� the image boundaries to keep them within the scene

and ensure they are trackable throughout the entire image stack. The circle

radius is set to a constant value of 20 pixels, moving within a �eld of 320×320

pixels for a total of 500 images. 12 di�erent image stacks were generated

and used to test the extraction of colliding objects. The obtained results are

rendered in �gure 7.5.

The focus of this trial lies in observing the behaviour of the extraction

technique when the di�erent target objects interact with each other. The

initial formulation of the method did not consider the possibility of di�erent

root objects interacting and therefore nothing prevented the targets being

confused with each other. Although the aim of separating target from back-

ground was successfully achieved, it can be observed how easily targets were

passed between trackers, making it impossible to tell whether the �nal target

really belongs to the object its tracker was initialised to. With the collision

mechanism activated, the method performed much better in keeping track of

the correct target and as such increases con�dence in its ability to distinguish

objects with similar appearance.

7.4.2 X-ray µCT acquired data of plants

To assess the bene�t of the proposed approach in practice, the collision mech-

anism was applied to multiple plants grown within the same soil environment.

That environment was restricted in size, increasing the likelihood of inter-

actions between root systems. Five samples were prepared, using columns

30mm in diameter. In each column two winter wheat Cordiale (Triticum

aestivum L.) were grown, 10 to 15mm apart, for 10 days after germination

in a Newport series loamy sand (brown soil). They were then scanned using
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Figure 7.6: Extraction of X-ray µCT acquired data with collision mechanism disabled (left) and enabled (right)
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a Nanotom (Phoenix X-ray / GE Measurement & Control Systems) X-ray

µCT scanner. The plants were kept in an environmentally controlled growth

room with a 16/8 hours light cycle at a temperature of 23/18 degree Celsius.

The scan was performed at 120 keV and 110 µA, taking 1440 projections

at an exposure time of 750ms, using a signal averaging of 3 and 1 skipping

per projection. The samples were placed 134mm away from the X-ray gun,

resulting in a volume with resolution of 22.33µm voxel size. The X-rays were

�ltered through a 0.1mm copper plate. Note that using a single plant species

means that all the root material present in the experiment will generate in-

tensity values drawn from the same distribution.

Figure 7.6 shows the reported root system architectures of the two in-

teracting plants, extracted with the collision mechanism both disabled and

enabled. Figure 7.7 shows a close-up of selected regions, to better illustrate

the di�erence and the bene�t the proposed collision detection mechanism

brings. Although the additional mechanism clearly increases the method's

ability to keep di�erent root systems apart, from �gure 7.7e, for instance, it

is apparent that it does not guarantee perfect separation of interacting root

systems. In the section shown in the �gure, both trackers picked up the same

root fragment at di�erent locations in the image data. The collision occurred

after the root has already been targeted by the trackers and followed across

a number of image slices, until they eventually met.

7.5 Summary

The proposed mechanism was tested in an experiment involving two inter-

acting wheat plants grown in the same soil environment. The results clearly

show an improvement in the extraction of multiple root systems in compar-

ison to the extraction process in which no collision detection was applied.

While no guarantee can be given that root objects are associated to the

correct plant, the additional operation adds a higher degree of certainty.

Only by explicit reasoning about the structure of particular species' root

system architectures would it be possible to increase con�dence in assigning

root objects to the right plant. This however, is a very challenging task, as

root system architectures vary considerably with species and environment.

Nonetheless, we believe that the extracted data allows obtaining a good indi-

cation of the overall interaction between multiple root systems and provides

meaningful information for the study of interacting and competing plant root

systems.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.7: Extraction of X-ray µCT acquired data with collision mechanism
disabled (left) and enabled (right)
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Chapter 8

Conclusions and future work

Understanding of the development of plant roots and their interaction with

the soil environment is fundamental if global yield production is to be in-

creased and food security ensured. X-ray micro computed tomography (µCT)

provides a valuable tool when studying the complex soil-root relationship,

by allowing non-destructive visualisation of the `hidden half' of plants. By

measuring the attenuation of ionising radiation passing through the scanned

plant sample and taking multiple projections at di�erent angles, it is possible

to reconstruct a volumetric density representation of the sample's interior.

To make sense of the acquired X-ray CT data, root system information must

be recovered from the raw images. The aim of this work was the development

of a technique to facilitate plant root system extraction.

In the course of this research we contributed by presenting a novel tech-

nique for the extraction of plant root systems from X-ray µCT images. Unlike

previous methods applied to CT data of plant roots, which segment the data

�rst into regions that are then used for identifying and building the struc-

ture of the root system (bottom-up fashion), we start from a distribution

model that we believe represents root material and match it to the image

data to �nd objects that belong to the root system (top-down fashion). This

was realised by adapting a visual tracking framework, which is applied to a

sequence of images obtained by traversing the stack of cross-sectional slices.

The detection of root objects is accomplished by introducing a modi�ed for-

mulation of the level set method, using a function for the evolving front that

is driven by the greyscale intensity values of the image data via the Jensen-

Shannon divergence. Root representation models are used as indicators for
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target objects and updated along the way. This allows the tracker to adapt

and so cope with variations inside target root objects. Instability in root

models, caused by drifting away from actual root material, was countered

by representing the targets' object shapes, which are used when deciding

whether or not to update the model. The proposed extraction technique was

extended by two mechanisms; a method sensitive to plagiotropic responses

in root systems, and a strategy that allows the extraction of multiple root

systems sharing the same space and growth environment while interacting

with each other.

8.1 Summary

In chapter 2 we provided an overview of di�erent root study methodologies

and reviewed extraction methods of plant roots in two- and three-dimensional

image data as well as methods developed in the �eld of medical imaging.

Background information was provided on the physical principles of X-ray

CT imaging, to promote better understanding of the characteristic nature of

the image data it produces.

In chapter 3 we presented a novel technique for the extraction of three-

dimensional root systems from X-ray µCT image data realised through a

visual tracking based strategy using a modi�ed, Jensen-Shannon divergence-

based, level set formulation. The proposed method was applied to root

systems of monocot and dicot plants grown in di�erent soil textural types,

commonly found in the United Kingdom.

In chapter 4 we introduced a mechanism for the extraction of pla-

giotropic roots that allows more complete recovery of plant root systems

by considering roots that are upward oriented, and thus missed by the ini-

tial technique. The extended method was applied to the same raw image

data used in the experiment of chapter 3. Results obtained from the initial

and extended method were compared.

In chapter 5 we provided the means to visualise extracted data and to

perform measurements of global root system traits. This was undertaken

to promote better understanding of the complexity of plant root systems

grown in natural environment. Measuring root system traits is essential for

the evaluation of the presented extraction method.



8.2. Alternative applications 161

In chapter 6 the proposed extraction technique was thoroughly tested

and compared to results obtained through alternative procedures, both by

arti�cially generating data as well as using other tools developed for similar

purposes. The evaluation of the presented method was divided into separate

steps, each addressing particular aspects.

In chapter 7 we extended the proposed extraction method by adding the

ability to recover multiple root systems grown in the same soil environment.

The di�erent plants are distinguished during the segmentation process by a

novel collision detection and handling process. The method for multiple root

system extraction was tested on a number of samples with collision detection

mechanism both enabled and disabled.

The proposed methods form the basis of an open source software tool,

RooTrak, which allows the extraction of root systems from X-ray µCT image

data, as well as their visualisation and trait recovery. At time of writing,

RooTrak has been downloaded approximately 260 times by September 23rd

2013.

8.2 Alternative applications

Although the methods presented here were developed for the purpose of ex-

tracting the root systems of plants grown in soil from X-ray µCT images, the

design of the various techniques was kept general. No explicit models of root

system architectures are involved. This raises the possibility of extracting

any kind of root architecture without being limited to speci�c plant species,

and of applying the proposed methods to data of a di�erent nature. During

the course of this work, we had the chance to apply our method to data sets

of di�erent origin. Thanks are due to Dr. Randy T. Clark, the lead devel-

oper of RootReader2D and RootReader3D [Clark et al., 2011, 2013], who

generously shared a data set of a rice root system acquired with their gellan

gum system and silhouette-based back-projection algorithm, to be used as

test data for our extraction method. His PhD research was conducted in the

Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell

University, lead by the director and research leader Prof. Leon V. Kochian.

Figure 8.1 shows the root system published in [Clark et al., 2011] in com-

parison to results obtained by applying the methods described here to the
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same data.

(a) (b)

Figure 8.1: Root system of rice showing the image presented in [Clark et al.,
2011] (left) and extracted data using the proposed method (right) - raw data
is courtesy of Dr. Randy T. Clark

A very di�erent area of application, but one requiring a tracking algo-

rithm with similar properties, is the tracking of cell nuclei and the chrono-

logical detection of mitosis. A slight modi�cation of an earlier version of our

method, incorporating elements presented in chapter 4 for the detection of

splitting objects, and using additional concepts for preventing already sepa-

rated nuclei to merge, was applied to a sequence of images. Selected image

frames showing the lineage of cells and the detection of mitosis is shown in

�gure 8.2. The image data was provided by a research team lead by Prof.

Pierre Hilson, to whom we express our gratitude for providing the image

data.

The proposed methods may �nd application in medical image analysis.

Another set of image data, acquired using a medical X-ray CT scanner and

showing a human body, was segmented to extract bladder, prostate and

the seminal vesicles, using the technique presented for extracting multiple

objects. The result is shown in �gure 8.3. Our deep appreciation goes

to Dr. Keith Langmack from the Clinical Radiotherapy Physics centre at

the Nottingham University Hospitals NHS Trust, who provided the medical

image data.
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(a) (b)

Figure 8.2: Nuclei extraction and chronological detection of mitosis showing
their linage (dark blue, red, light blue, yellow, ...) in image 12 (left) and 162
(right) - raw data is courtesy of Prof. Pierre Hilson

8.3 Future work and perspectives

X-ray µCT allows the non-destructive observation of plant root systems em-

bedded in soil. The addition of image analysis techniques for the extraction

of root architecture information provides plant biologists with a valuable tool

that will assist them in bringing forth new scienti�c �ndings about the com-

plex development of roots and their interaction with the soil environment.

We predict that in the following years, the number of experiments and break-

through discoveries made using X-ray CT imaging, will greatly increase, as

the technology rapidly improves while at the same time becoming lower in

cost and so more accessible. While scanners of very high resolution will re-

main of importance, since they allow the study of very �ne details, it seems

likely that the number of mid-resolution scanners in use will increase as they

take centre stage. The resolution dictates and often limits the maximum

possible sample size. The higher the resolution, the �ner the details that

are observable, but the smaller the sample size needs to be. Small samples

allow only the growth of very young plants, due to the limited space. Some

of the plants used in the experiments described here reached the boundary

wall less than ten days after germination, which alters the natural growth.

Many aspects of plant root studies require plants to be analysed in a ma-

ture stage, which in turn implies the use of larger samples. By lowering the

resolution, root object will appear smaller and therefore be more di�cult

to identify and hence extract. This brings new challenges to computational
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(a) (b)

Figure 8.3: Extraction of bladder (red), prostate (orange) and seminal vesi-
cles (yellow) visualised from the front (left) and below (right) - raw data is
courtesy of Dr. Keith Langmack

methods for recovering root systems. Root objects between two consecutive

images might not overlap anymore, and thus a motion model for tracking

might become necessary.

Living roots that are part of the root system, although are physically con-

nected, might appear invisible for a number of image slices, due to blending

into the background or because of the presence of scanning artefacts. The

proposed methods expect to �nd the target in every image, and if its target

is lost assume it has reached the end of the root. Even though we mentioned

that proper occlusion can never occur in the volumetric image data, this

situation can be considered a similar issue. Introducing a mechanism that

guesses the location of the root object through a number of images with the

hope of picking up lost targets, might be a signi�cant improvement to the

extraction method, since it would allow more complete recovery of the plant

root system.

Interesting in root development studies is not only the architectural struc-

ture of the root system at a particular point in time, but also the observable

variation of growth over a longer period. Non-destructive imaging is key

to acquire time series data. Four-dimensional data needs to be aligned and

registered in order to obtain information about root systems' growth rate.

To increase throughput of time series analysis, we anticipate that initial

scans can be performed quicker at the cost of lower image quality, �nishing
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with a single high quality scan that allows a detailed extraction of the root

system's architecture. The result obtained can be used in the analysis of

previous scans, using the �nal root system structure in the decision making

process of identifying root material in less qualitative image data.

Plant root systems, especially if analysed at a mature stage, can become

highly complex in structure, which might prove to be a high challenging task.

Mathematical models of developing root systems can be used to predict and

estimate the formation of lateral roots. Great care needs to be taken not to

include root sections that are to be expected but in reality are not existent;

a danger for many knowledge-based extraction techniques. However, we be-

lieve that if applied to a moderate extent, root system models can contribute

to extraction accuracy and form an interesting mechanism.

With increased sample size, while not sacri�cing too much resolution,

the size of the image data will drastically increase. Dealing with large data

decreases computational performance, which can be compensated by using

targeted devices such as the graphics processing unit (GPU). Although the

nature of tracking is a sequential process, the evolution of the level set func-

tion and thus the extraction of object boundaries, can be parallelised, which

for a large number of root objects might save tremendous computation time

and thus increase throughput.

Important is the testing of developed methods. Evaluating the accuracy

of root recovery methods is a di�cult task and requires further attention.

While we tried to test the presented extraction methods in a wide range

of di�erent test scenarios, a detailed sensitivity test is still missing, but is

essential to improve reliability.
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(a) Root segment 1

(b) Root segment 2

(c) Root segment 3

Figure A.1: Root segments used in the experiment of chapter 6 viewed under
the microscope (left) before and (right) after scanned using X-ray µCT
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(d) Root segment 4

(e) Root segment 5

(f) Root segment 6

Figure A.1: Root segments used in the experiment of chapter 6 viewed under
the microscope (left) before and (right) after scanned using X-ray µCT
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(g) Root segment 7

(h) Root segment 8

(i) Root segment 9

Figure A.1: Root segments used in the experiment of chapter 6 viewed under
the microscope (left) before and (right) after scanned using X-ray µCT
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(j) Root segment 10

(k) Root segment 11

(l) Root segment 12

Figure A.1: Root segments used in the experiment of chapter 6 viewed under
the microscope (left) before and (right) after scanned using X-ray µCT
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Figure B.1: Maize 1 datasheet
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Figure B.2: Maize 2 datasheet
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Figure B.3: Maize 3 datasheet
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Figure B.4: Maize 4 datasheet
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(a) Maize 1 (b) Maize 2

(c) Maize 3 (d) Maize 4

Figure B.5: Root-washed images of maize used for two-dimensional analysis
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(a) Maize 1 (b) Maize 2

(c) Maize 3 (d) Maize 4

Figure B.6: Maize root systems rendered with volume ray-casting
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(a) Maize 1 (b) Maize 2

(c) Maize 3 (d) Maize 4

Figure B.7: Maize root systems in soil rendered with volume ray-casting
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Figure B.8: Wheat 1 datasheet
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Figure B.9: Wheat 2 datasheet
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Figure B.10: Wheat 3 datasheet
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Figure B.11: Wheat 4 datasheet
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(a) Wheat 1 (b) Wheat 2

(c) Wheat 3 (d) Wheat 4

Figure B.12: Root-washed images of wheat used for two-dimensional analysis
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(a) Wheat 1 (b) Wheat 2

(c) Wheat 3 (d) Wheat 4

Figure B.13: Wheat root systems rendered with volume ray-casting
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(a) Wheat 1 (b) Wheat 2

(c) Wheat 3 (d) Wheat 4

Figure B.14: Wheat root systems in soil rendered with volume ray-casting
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Figure B.15: Tomato 1 datasheet
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Figure B.16: Tomato 2 datasheet
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Figure B.17: Tomato 3 datasheet
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Figure B.18: Tomato 4 datasheet
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(a) Tomato 1 (b) Tomato 2

(c) Tomato 3 (d) Tomato 4

Figure B.19: Root-washed images of tomato used for two-dimensional anal-
ysis
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(a) Tomato 1 (b) Tomato 2

(c) Tomato 3 (d) Tomato 4

Figure B.20: Tomato root systems rendered with volume ray-casting
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(a) Tomato 1 (b) Tomato 2

(c) Tomato 3 (d) Tomato 4

Figure B.21: Tomato root systems in soil rendered with volume ray-casting
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