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A B S T R A C T

This thesis explores the dynamics of optomechanical systems,

which use radiation pressure to couple together optical and me-

chanical modes. Such systems display dynamics ranging from

the quantum to the classical, with a variety of applications in-

cluding ground state cooling and precision measurements. In

this thesis two different geometries are presented for such a

system in the form of the ‘reflective’ and ‘dispersive’ systems.

Different aspects of the dynamics are investigated numerically

and analytically.

Firstly the reflective system is introduced, which consists of a

cavity formed from a fixed and a moveable mirror. The optical

frequency of the cavity couples linearly to the moveable mir-

ror’s position. This geometry is explored as the cavity is driven

by a laser, revealing a range of dynamical states in the mirror

as the drive frequency is varied.

An alternative geometry is presented in the form of the dis-

persive optomechanical system. Two fixed mirrors with a par-

tially transmitting membrane at the centre provide a cavity

supporting two optical modes, that couple approximately lin-

early or quadratically to the membrane position, depending on

where the membrane is fixed.

The system is explored in both linear and quadratic coupling

regimes. Quadratic coupling is explored for a single optical

mode by selecting a high tunnelling rate through the mem-

brane. The dynamics of the membrane are explored via a simi-

lar set of techniques to those applied to the reflective system.

Linear coupling for two optical modes is explored in the

regimes of blue and red detuning. First resolved sideband cool-

ing is explored, providing an alternative approach ground state

cooling (which has been explored for the reflective case). Fi-

nally, strongly driving the system over a range of coupling

strengths induces classical behaviour, extending from limit cy-

cle oscillations to chaotic motion.
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1
I N T R O D U C T I O N

Studies of the interaction between light and matter form the ba-

sis of an understanding of how humans observe the world. The

field of quantum optics applies quantum theory to these inter-

actions by accounting for wave-particle duality[1]. That light be-

haves as discrete particles (photons) has been a momentous dis-

covery of the 20th century[2, 3]. Optomechanical systems play

a key role in quantum optics, by coupling optical and mechan-

ical modes together. This coupling allows the behaviour of a

nanoscale object to be observed via measurements of the light

field. Furthermore, optomechanical systems offer insight into a

variety of physical phenomena occurring at the boundary be-

tween quantum and classical physics.

1.1 radiation pressure

A key feature of optomechanical systems is their use of radi-

ation pressure, an effect documented as far back as the 17th

century, when Johannes Kepler noticed that the tails of pass-

ing comets always pointed away from the sun. This led him

to postulate the existence of a ‘solar breeze’, blowing the tails

outwards from the sun[4]. This was accompanied by an appeal

that “ships and sails proper for heavenly air should be fash-

ioned” so that humans could travel the skies. Unwittingly, he

had stumbled upon the concept of solar sails - a feat of en-

gineering which has recently been achieved by the Japanese

Aerospace Exploration Agency[5].

What Kepler had actually observed was the action of radi-

ation pressure on the tails of comets. Solar photons strike the

vapourized gas particles emitted from the comet, and scatter off

them. The change in their momentum results in a force on the

gas, in the photon’s original direction of travel. The effect oc-

curs when photons strike any surface, but is more pronounced

for a reflecting body, where the change in momentum is twice

the original momentum. The force F exerted on a completely re-

flecting surface by a light beam of power P is F = 2P/c, where

c is the speed of light.

1



2 introduction

Long after Kepler, the existence of radiation pressure was

verified in laboratory conditions by Lebedev in 1901[6]. Owing

to the small momentum carried by photons, the pressure force

is typically too small to deflect a macroscopic object. However,

the effect can be magnified by selecting lightweight, reflecting

objects with large surface areas, and using high intensity light.

This is the principle behind the design of solar sails[7, 8]; these

large, reflecting sheets of metal are propelled through space

using only the radiation emitted from the sun.

1.2 optomechanical systems

In order to observe deflection of objects by light much closer to

home, optomechanical systems have been developed. A cavity

formed from two mirrors, driven by a laser, provides a practical

system in which to observe the effects of radiation pressure, as

the force is amplified by repeated reflections. The light field cir-

culating the cavity is coupled to a mechanical mode, provided

by a resonator of some description. The simplest example is

a setup where one of the cavity mirrors is mounted on a can-

tilever, which is free to move along the cavity’s axis. Figure 1.1a

shows such a system. Light striking the mirror then causes a de-

flection, altering the length of the cavity, and changing the fre-

quency of the circulating radiation. This is the reflective setup,

and provides a scenario where the optical frequency is coupled

linearly to the position of the cantilever. An example of a me-

chanical mirror is given in Figure 1.2a.

The interplay of forces within the system results in a variety

of dynamical effects, depending on how it is driven. As radia-

tion circulates the cavity, a radiation pressure force is exerted

on the mechanical element. The optical frequency changes as

the mirror moves in response to the force, altering the intensity

of radiation. However, radiation takes a finite time to leak out

of the cavity. As a result the cavity responds to the mirror’s

motion with a time lag, and an effect known as back action

arises, whereby the radiation force acts back on the resonator

as it moves[9]. This effect can be used to either put energy into

the resonator or extract it.

Varying the coupling strength allows one to observe a range

of states in the resonator, from the classical to the quantum[10,

11, 12]. Driving the cavity below resonance extracts energy from

the resonator, allowing it to be cooled to its quantum ground

state[13, 14]. When the cavity is driven above resonance, one
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Figure 1.1: Schematic diagrams of different examples of optomechan-

ical geometries: (a) the reflective system, consisting of a

cavity formed by a fixed mirror M1 and a movable mirror

M2, mounted on a cantilever, C, and free to move along

the cavity’s axis. (b) The dispersive system, where the cav-

ity is formed from two fixed mirrors, M1 and M2. The

mechanical mode is provided by a membrane, D, which

is clamped at X, free to move along the cavity’s axis. Both

are driven by laser radiation, L, with mechanical displace-

ment measured by q(t).

can observe a situation where energy is absorbed by the res-

onator, creating phonons. The motion of the resonator can be

characterised by two quantities; the damping due to back action

and the phase diffusion in the resonator’s state. Another useful

quantity to define is the Fano factor - this measures the spread

in the distribution of phonons present in the resonator, which

depends on both the damping and diffusion. One of the first

signifiers of quantum behaviour is when the Fano factor drops

below unity, indicating number squeezing in the mechanical

mode[10, 12, 15].

In recent years alternative ways of combining optical and me-

chanical modes have been explored. In this thesis, one such al-

ternative geometry is explored in detail. This is often referred to

as ‘dispersive optomechanics’[16], an example is shown in Fig-

ure 1.1b. For this geometry, both cavity mirrors are fixed, and

the mechanical element takes the form of a partially transmit-

ting membrane mounted on a cantilever at the centre of the

cavity. Figure 1.2b shows an example of a membrane made

from silicon nitride. This has the advantage of offering either
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linear or quadratic coupling between the mechanical and opti-

cal modes, depending on the positioning of the resonator[17].

Additional advantages are apparent when considering the

engineering of such systems experimentally. The reflective setup

requires the fabrication of mechanical elements with both a

high quality factor and a highly reflecting surface[18]. Practi-

cally speaking this has proven difficult. By choosing a system

with two fixed reflecting surfaces and a separate membrane

with the high quality factor, one does not require these two

properties to be combined in a single structure. For experiments

in dispersive optomechanics, membranes are generally fabri-

cated from high-stress stoichiometric silicon nitride[18]; this

provides a material with low intrinsic losses[19] and minimal

optical absorption[20] - providing high mechanical quality fac-

tors and optical finesses simultaneously. An example of such a

membrane is give in Figure 1.2b. Here the 50 nm thick Silicon

Nitride is mounted on a Silicon microchip.

20µm

(a) (b)

Figure 1.2: Experimental realisations of resonators for (a) the reflec-

tive system and (b) the dispersive system. The example

in (a) is adapted from [21], and shows a suspended mi-

croscale mirror. In (b) a silicon nitride membrane, of di-

mensions 1mm × 1mm × 50nm, is mounted on a silicon

chip, and is adapted from [22].

1.3 applications of optomechanical systems

The applications of optomechanical systems are manifold. Op-

tomechanical systems allow one to probe physical effects which

lie along the boundary between quantum and classical physics.

Whilst the scale of a mechanical resonator can be as large as

centimetres, theoretical work suggests that strong coupling to

the light field may allow quantum effects to be observed on a

relatively large scale. These include superposition[11], decohe-

rence [23], squeezing[10] and entanglement[24]. Depending on
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the type of coupling, one may also be able to make quantum

non-demolition (QND) measurements of the light field[7], as

well as precision measurements on the resonator state. In the

case of linear coupling, one can measure the position of the res-

onator by monitoring the light field leaking out of the cavity.

In the case of quadratic coupling, the energy of the mechani-

cal component can, in principle, be measured, thus providing a

possible way of observing quantization of energy[25].

Optomechanics has been at the centre of the development

of gravitational wave detectors. For a number of years, experi-

ments aimed at the detection of gravitational waves have made

use of interferometers with mechanically suspended mirrors[7,

8]. For these large scale optomechanical systems, the effects of

back action were undesirable. Since the initial experiments of

the 1970s and 1980s, however, the effects of back action have

generated much interest, with experiments emerging to study

it on a smaller scale.

There exist many variations on the optical cavity system -

all with the central feature of a resonance which is tuned by

mechanical motion, and experiences a delayed response. The

resonance can be provided by an optical mode or an electro-

magnetic resonance. Examples include the optical cavity dis-

cussed, whispering gallery modes[26], single electron transis-

tors (SETs)[15] and superconducting LC-circuits[14]. The me-

chanical element can be provided by anything from a cantilever

[27] - in the case of a cavity mirror - to a movable capacitor

plate[15] - in the case of the SET and can range in scale from

nanometres [28] (in the setup discussed) to centimetres[29] (in

the case of gravitational wave detectors).

1.4 the structure of this thesis

This thesis is organised as follows. Chapters 2 introduces the

reflective optomechanical system, providing a description of a

linearly coupled optomechanical system. The central features

of the system are presented, and some analytic techniques in-

troduced, which will be utilised in further chapters. A Wigner

transformation is presented, which allows one to model certain

aspects of the system analytically, under certain circumstances.

In addition, several features are explored numerically by solv-

ing the master equation. This allows a contrast to be drawn

between the classical and quantum regimes as the optomechan-

ical coupling is swept. In addition, the limits of the Wigner
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transformation are tested by calculating the switching rate for

a bistable state.

Chapter 3 introduces the dispersive optomechanical system.

This kind of system offers an alternative method of exploring

optomechanical coupling, without the fabrication problems pre-

sented by the reflective system. Parameters in this chapter are

selected to produce quadratic coupling between a single opti-

cal and mechanical mode. A similar analysis to Chapter 2 is

then applied to describe the system analytically. Comparing

this with a similar numerical calculation, the applicability of

the Wigner transformation can be compared for the reflective

and dispersive different systems. Additional numerical analy-

sis explores quantum features of the dispersive system in the

strong coupling regime.

Chapter 4 examines the dispersive optomechanical system, in

the regime where two optical modes are important. Here the re-

gime of red detuning is explored, with the aim of investigating

the extent to which the system can be used to cool the resonator

to its quantum ground state. Such a feat has been achieved us-

ing the reflective system[13, 14], but further advances would be

needed to achieve this using the more easily fabricated disper-

sive system.

Chapter 5 explores the dispersive system further, in the re-

gime of blue detuning. Here strong coupling drives the res-

onator into a state of self-oscillation, where dynamical multi-

stability is possible. In this regime, fluctuations are neglected

and a semi-classical approach can be taken to investigate the

dynamics. The dynamics are mapped out numerically, over a

range of couplings, before an analytic approximation is applied

to predict the amplitudes of limit cycle oscillations.

The results of Chapter 2, Sections 2.3 and 2.4 comprise prior

work on the truncated Wigner approach to optomechanical sys-

tems, by Denzil Rodrigues and Andrew Armour. These results

have been published in [15, 30, 31]. The results of Chapter 2,

Section 2.5 and Chapters 3 to 5 contain original research under-

taken in collaboration with Andrew Armour.



2
E X P L O R I N G T H E R E F L E C T I V E

O P T O M E C H A N I C A L S Y S T E M

2.1 introduction

This chapter presents an in depth analysis of the reflective op-

tomechanical system. This couples the optical resonance of a

cavity to the mechanical motion of a suspended mirror, pro-

viding an example of linear coupling between position and fre-

quency. The cavity mode is driven by radiation from a laser

source. The circulation of radiation within the cavity results in

an energy exchange between the optical and mechanical modes.

The driving frequency determines the type of exchange; driv-

ing above resonance (blue detuning) causes energy to be trans-

ferred to the resonator whilst driving below resonance (red de-

tuning) results in energy being extracted from the resonator.

Since the optical frequency couples linearly to the mechani-

cal displacement, an accurate measurement of the resonator’s

position is possible via measurement of the cavity frequency.

This opens up the possibility of precision measurements of such

objects to within their ground state uncertainty[32]. For such

measurements, the effects of ‘back action’ can be undesirable

due to photon shot noise[33] which causes fluctuations in the

mechanical position. Increasingly, research into optomechanical

systems has utilised the effects of back action for the purposes

of ground state cooling of resonators[34, 35, 36, 13]. This has

led to the achievement of quantum ground state cooling in the

reflective optomechanical system[14].

Recently, however, research has also begun to explore the re-

gime of blue detuning[37, 38, 39]. In this regime the mechani-

cal mode can be driven into a regime of self-oscillations where

losses are balanced by radiation forces[9, 40]. Effects such as

dynamical multistability[41] and chaos[42] result from strong

driving. More recently, the regime of strong coupling has been

explored in both theory[10, 43] and experiment[44], with the

aim of generating non-classical states in the resonator, includ-

ing squeezed states[45] and entangled states[24].

This chapter explores linear coupling in both the blue and red

detuned regimes, by introducing the reflective optomechanical

7



8 the reflective optomechanical system

system in Section 2.2. The optical mode is assumed to be driven

at a range of frequencies and the response of the resonator in-

vestigated both analytically and numerically. In Section 2.3 the

dynamics are explored analytically via a semi-classical approx-

imation, which applies in the weak coupling regime. In Sec-

tion 2.4 a numerical approach is taken, by solving the master

equation. The resonator dynamics are investigated by tuning

the drive frequency. The average phonon number and Fano

factor are plotted, revealing transitions between stable states,

observed in the Wigner function. Numerical results are then

compared to plots generated using the analytic approximation

of Section 2.3. Finally, a bistable regime is explored in Section

2.5 and a semi-classical calculation of the switching rate is com-

pared to a fully quantum one.

2.2 the system

L

q(t)

cavity mode, ω0

i

r Frad
laser

q = 0

(a)

ω′0 ωd

n
a

(i) (ii)

(b)

Figure 2.1: Reflective setup for an optomechanical system (a)

schematic diagram showing a cavity formed from two

mirrors spaced by distance L, one of which is mounted

on a mechanical cantilever at position q = 0. As the cav-

ity mode, ω0, is driven by a laser, radiation circulates in

the cavity and produces a pressure force Frad on the can-

tilever as an incident wave (i) which is reflected (r). This

results in a displacement q(t), which alters the optical cav-

ity frequency, from ω0 to ω′0. The number of photons, na,

responds to the driving frequency, ωd, as shown in (b).

Points [i] and [ii] indicate regions where the drive fre-

quency results in damping and driving, respectively.
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Consider the system shown in Figure 2.1a. A cavity is formed

from two mirrors. One mirror is mounted on a mechanical

resonator (eg a cantilever), allowing it to move along the axis

shown by the dotted line. The position of the resonator is given

by q(t). With q = 0 the cavity supports optical modes, of fre-

quency ω0, determined by the cavity length, L:

ω0 =
2kπc

L
, (2.1)

where c is the speed of light and k is an integer denoting which

order of resonance is being probed. A laser drives the cavity

near its resonant frequency, radiation circulates within the cav-

ity, exerting a radiation pressure on the movable mirror[46, 6].

This causes a deflection in the mirror, altering the cavity length

and thus the frequency as

ω′0(t) =
2kπc

L + q(t)
(2.2)

≈ ω0 −
ω0

L
q(t). (2.3)

In this way the optical frequency couples linearly to the posi-

tion of the mechanical mode[30, 17]. The coupling strength is

denoted λ0,

λ0 = −ω0

L
. (2.4)

This is known as the ‘reflective’ setup, as the radiation is re-

flected by the mechanical element.

2.2.1 Dynamical back-action

The mechanical element is displaced via a radiation pressure

force, caused by photons striking it. The total force is thus di-

rectly proportional to the number of photons in the cavity at a

given time, na(t). A classical equation of motion can be written

for a resonator of mass m and natural frequency ωm:

mq̈ + γq̇ + mω2
mq = F0na(t), (2.5)

where γ is the intrinsic damping of the resonator and F0 is the

force exerted by each photon. The displacement of the mirror

alters the frequency of the optical mode, whilst the drive fre-

quency remains constant. As a result the number of photons in

the cavity changes,

na(t) ≈ n0(t) +
dna

dq
q(t), (2.6)
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where n0(t) is the number of photons circulating when q(t) = 0.

The damping constant for the cavity is given by κ, and this de-

termines the timescale over which photons leak out. As a result

there is a finite ‘ring down’ time[9], resulting in a delayed re-

sponse to the mechanical motion, causing a time lag between

the resonator being displaced and the photon intensity chang-

ing. This means that na(t) actually depends on q(t− τ), where

τ = κ−1.

na(t) ≈ n0(t) +
dna

dq
q(t− τ) (2.7)

≈ n0(t) +
dna

dq
(q(t)− τq̇) (2.8)

Since the photon intensity affects the radiation pressure, the

force on the mechanical mode also responds with a time lag,

and Equation 2.5 becomes

mq̈ +

(

γ + F0τ
dna

dq

)

q̇ + m

(

ω2
m −

F0

m

dna

dq

)

q = F0n0(t). (2.9)

From Equation 2.9, the effect of the optomechanical coupling to

na has three identifiable results, a static shift in the equilibrium

position of q, determined by n0, a modification to the damping

and a frequency shift, both proportional to dna/dq. Since the

position modulates the optical frequency, this can be written

dna

dq
=

dω′0
dq

dna

dω′0
. (2.10)

Figure 2.1b illustrates the cavity response to the drive frequency,

in terms of the photon number. The graph takes the form of a

Lorentzian curve[9], peaked around ω′0 (which changes with q).

The quantity dω′0/dq is determined by the geometry of the

system. For the system shown in Figure 2.1a, dω′0/dq < 0. Fig-

ure 2.1b illustrates the cavity’s response to the optical drive pro-

vided by the laser source. As ωd approaches ω0, the number of

photons circulating in the cavity increases rapidly, so that a res-

onance occurs at ωd = ω0. Two different scenarios of detuning

are labelled (i) and (ii) in Figure 2.1b:

[i ]When the system is driven below resonance (red detun-

ing), a decrease in ω′0 brings the system closer to reso-

nance, such that dna/dω′0 < 0. As a result, dna/dq > 0,

so that the system is more heavily damped. In addition,

the effective mechanical frequency is reduced.
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[ii ]When the system is driven above resonance (blue detun-

ing), an increase in ω′0 brings the system closer to reso-

nance, such that dna/dω′0 > 0. As a result, dna/dq < 0,

so that the total damping in the system is reduced and

the mechanical frequency increased.

The resulting forces on the resonator in response to its mo-

tion are referred to as dynamical ‘back action’. This effect can

be used to cool or drive a resonator[36, 31]. This thesis will ad-

dress both of these cases, in various optomechanical systems.

The present chapter focuses largely on the case of blue detun-

ing, with the case of red detuning briefly addressed in Section

2.3.6.

2.2.2 The Hamiltonian

The system of Figure 2.1a is now analysed in detail. Consider

an optical mode with frequency ω0, driven by a laser with fre-

quency ωd, which is coupled by radiation pressure to a mechan-

ical mode of frequency ωm. Provided ω0 ≫ ωm, the Hamilto-

nian of the system can be written in the form[35]

H = ω0a†a + ωmb†b + λ
(

b + b†
)

a†a

+Ω
(

ae−iωdt + a†eiωdt
)

, (2.11)

where a and b are annihilation operators for the optical and me-

chanical modes, respectively and Ω is the strength of the laser

drive. The mechanical mode has natural frequency ωm and is

coupled with strength λ to the optical mode, which relates to

λ0 by

λ =
λ0√
2mω

. (2.12)

The units are chosen so that h̄ = 1, this will be the case for

the entire thesis. The term in λ is the coupling between the

two harmonic oscillators, and is the source of the non-linear

behaviour in the system.

To remove the explicit time dependence in the Hamiltonian,

one can transform into a frame rotating at the drive frequency.

A unitary transformation, U = eiH0t is performed on H, giving

H̃ = UHU† with H0 = ωda†a. This results in a transformed

Hamiltonian of the form

H̃ = ω0a†a + ωmb†b + λ
(

b + b†
)

a†a + Ω
(

a + a†
)

. (2.13)
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To obtain the effective Hamiltonian, which acts on the trans-

formed wavefunction, |ψ′〉 = U|ψ〉, consider the Schrödinger

equation acting on the wavefunction, |ψ〉:

i
∂|ψ〉

∂t
= H|ψ〉. (2.14)

The transformed wavefunction, |ψ′〉 must obey the same equa-

tion, with H = He f f . This leads to an effective Hamiltonian

He f f = H̃ − H0, thus

He f f = ∆a†a + ωmb†b + λ
(

b + b†
)

a†a + Ω
(

a + a†
)

, (2.15)

where ∆ = ω0 −ωd is the detuning of the laser drive.

2.2.3 Master equation

The Hamiltonian of Equation 2.15 captures the dynamics of an

isolated optomechanical system, however this is not a realistic

scenario. In practice any systems fabricated experience dissipa-

tion, reducing the cavity finesse, F , and mechanical quality fac-

tor, Q. The master equation includes losses in the system which

lead to damping and decoherence in the cavity and resonator

modes, by modelling the effects of coupling the system to its

environment.

One can model the losses in the cavity by coupling the opti-

cal mode to a spectrum of modes outside of the cavity, which

describe its environment. The origin of losses in the resonator

is less well understood. Prior investigations propose dissipa-

tion due to clamping losses via the cantilever supports[47] as

well as defects in the resonator’s structure[48]. For the follow-

ing analysis, a simple model for the dissipation in the optical

and mechanical modes will be used. This is often applied in

the field of optomechanics[49]. Both modes are coupled to heat

baths describing their environments, which consist of a series of

harmonic oscillators - optical modes for the cavity and phonon

modes for the resonator, which describe the bulk material the

cantilever is clamped to.

With these assumptions an effective master equation can be

written down[1], describing the evolution of the reduced den-

sity matrix for the system:

ρ̇ = −i [H, ρ] + L̂aρ + L̂bρ, (2.16)
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where L̂a and L̂b are operators describing the dissipation from

the cavity and resonator, respectively, they are given by

L̂aρ = −κ

2
(na + 1)

(

a†aρ + ρa†a− 2a†ρa
)

−κ

2
na

(

aa†ρ + ρaa†−2aρa†
)

, (2.17)

L̂bρ = −γ

2
(n + 1)

(

b†bρ + ρb†b− 2b†ρb
)

−γ

2
n
(

bb†ρ + ρbb† − 2bρb†
)

, (2.18)

where na and n describe the thermal occupation of the cavity

and resonator, respectively and are determined by their temper-

ature T:

na =
[

eω0/kBT − 1
]−1

, (2.19)

n =
[

eωm/kBT − 1
]−1

, (2.20)

where kB is Boltzmann’s constant. The dissipation terms of

Equations 2.17 and 2.18 do not account for the coupling be-

tween the mechanical and optical modes, but this is a higher

order effect[49], and is ignored when considering the weak cou-

pling modelled in this system.

The transformation detailed in Equations 2.13 to 2.15 does

not affect the dissipation terms. As a result Equation 2.16 can be

transformed to describe the density matrix in the frame rotating

at the drive frequency. This matrix is denoted ρ̃ and obeys a

master equation of the form

˙̃ρ = −i
[

He f f , ρ̃
]

+ L̂aρ̃ + L̂bρ̃. (2.21)

The cavity is assumed to have na = 0. Because of the high

optical frequency, its thermal occupation remains negligible up

to Ta ∼ 300K.

At this point two approaches can be taken. The aim is to in-

vestigate the mechanical mode, and determine the behaviour

of the resonator within the coupled system. It is possible to do

this both analytically and numerically. A numerical approach

entails solving the master equation directly to get ρ, the den-

sity matrix (as described in Section 2.4). This encodes the prop-

erties of the resonator, which allows one to calculate its average

properties, given

〈Ô〉 = Tr
[

ρ̃Ô
]

, (2.22)
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for any observable operator, Ô. An alternative route (described

in Section 2.3) involves a semi-classical approximation, which

describes the approximate behaviour of the system within a

certain range of parameters.

2.3 semi-classical approximation

An analytic approach describes the dynamics of the system in

the weak coupling regime, using a semi-classical approxima-

tion [30, 1]. The calculation proceeds via a Wigner transforma-

tion, whereby complex numbers α and β are introduced to de-

scribe the phase space of the cavity and resonator, respectively[1].

The Wigner function is a quasi probability distribution used

in quantum mechanics[1, 50]. For a given wave function, it is

a generating function for all spatial auto-correlation functions,

encoding all the quantum expectation values for a given density

matrix[51]. For the cavity-resonator system it is written as the

Fourier transform of the characteristic function of the density

operator,

W(α, β) =
1

π2

∫

d2ηa

∫

d2ηb eη∗a α−ηaα∗eη∗b β−ηbβ∗χ (η1, η2) ,(2.23)

where the characteristic function, χ(η1, η2) uniquely defines the

density operator, and is given by[1]

χ (η1, η2) = Tr
[

ρeηaa†−η∗a aeηbb†−η∗b b
]

. (2.24)

The phase space variables α and β replace the quantum op-

erators, a and b. The two sets of variables are related by their

averages, thus for example

〈α∗α〉 ⇐⇒ 1

2
〈a†a + aa†〉 (2.25)

〈β∗β〉 ⇐⇒ 1

2
〈b†b + bb†〉, (2.26)

where averages are taken over the distribution of states in the

system.

In quantum mechanics the Wigner function plays an analo-

gous role to the classical probability distribution. However, it

also accounts for the uncertainty principle and includes quan-

tum features, thereby failing to satisfy certain criteria which

apply to probability distributions[52]. For instance, it may take

on negative values[10, 12].
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A Wigner transformation on the master equation (Equation

2.21) gives

∂W

∂t
=

∂

∂β∗

(

−iωmβ∗ − iλ

(

α∗α− 1

2

)

+
γ

2
β∗
)

W

+
∂

∂β

(

iωmβ + iλ

(

α∗α− 1

2

)

+
γ

2
β

)

W

+
∂

∂α∗

(

−i∆α∗ − iλ(β + β∗)
(

α∗α− 1

2

)

+
κ

2
α∗
)

W

+
∂

∂α

(

i∆α + iλ(β + β∗)
(

α∗α− 1

2

)

+
κ

2
α

)

W

+
κ

2

∂2W

∂α∂α∗
+

γ

2
(n + 1)

∂2W

∂β∂β∗

+i
λ

8

(

∂3W

∂β∂α∂α∗
− ∂3W

∂β∗∂α∂α∗

)

, (2.27)

where the shorthand W = W(α, β) is used for the Wigner func-

tion. Details for the calculation are supplied in Appendix A.

This transformation is exact and describes the full quantum be-

haviour of the system.

The third order derivatives present a problem, however. If it

weren’t for their presence the equation would be in the form of

a Fokker-Planck equation. This would allow equations of mo-

tion to be written as a set of coupled Langevin equations[1, 50].

There are two possible solutions to this conundrum. Firstly, a

different transformation is possible using the Positive-P distri-

bution [1, 53]. This does not involve third order terms and so

a Fokker-Planck type equation is obtained. Unfortunately the

transformation is much more complicated, and the phase space

required is twice as large[1]. In this instance, the truncated Wig-

ner approximation (TWA) is applied. This involves simply drop-

ping the third order derivatives in Equation 2.27. The equation

then accounts for the zero point noise in the system, but does

not treat the non-linearity exactly[54]. This approximation is

known to work in the case of systems close to a steady state,

with linear fluctuations[1]. This requires λ to be kept small so

that interactions between the cavity and resonator are relatively

weak. Quantitatively, it is required that λ≪ 2ωm[31].
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The approximated Fokker-Planck equation takes the form

dW(α, β)

dt
=

∂

∂α
[Fα(α, β)W(α, β)] +

∂

∂α∗
[Fα∗(α, β)W(α, β)]

+
∂

∂β

[

Fβ(α, β)W(α, β)
]

+
∂

∂β∗
[

Fβ∗(α, β)W(α, β)
]

+
1

2

∂2

∂β∂β∗
[

Dβ(α, β)W(α, β)
]

+
1

2

∂2

∂α∂α∗
[Dα(α, β)W(α, β)] , (2.28)

where the following functions are defined:

Fα = i∆α + iλ(β + β∗)
(

α∗α− 1

2

)

+
κ

2
α + iΩ (2.29)

Fα∗ = (Fα)
∗ (2.30)

Fβ = iωmβ + iλ

(

α∗α− 1

2

)

+
γ

2
β (2.31)

Fβ∗ =
(

Fβ

)∗
(2.32)

Dα = κ (2.33)

Dβ = γ(n + 1), (2.34)

where Fα,β describe the forces acting on the system, and Dα,β

describe the diffusion in the system. This can be written in the

equivalent form of a set of Langevin equations for variables α,

α∗, β and β∗[1],

α̇ = −i

(

∆ +
λ

2
(β + β∗)

)

α− κ

2
α− iΩ + ηα (2.35)

α̇∗ = i

(

∆ +
λ

2
(β + β∗)

)

α∗ − κ

2
α∗ + iΩ + ηα∗ (2.36)

β̇ = − iλ

2

(

α∗α− 1

2

)

− iωmβ− γ

2
β + ηβ, (2.37)

β̇∗ =
iλ

2

(

α∗α− 1

2

)

+ iωmβ− γ

2
β + ηβ∗ , (2.38)

where fluctuations in the cavity and resonator are described by

Gaussian white noise variables ηα and ηβ, respectively. These

noise terms are governed by the following correlators:

〈ηα(t)ηα∗(t
′)〉 =

κ

2
δ(t− t′), (2.39)

〈ηβ(t)ηβ∗(t
′)〉 =

γ

2
(2n + 1)δ(t− t′). (2.40)

All other correlators are zero. Equations 2.35 to 2.38 are cou-

pled, non-linear equations, which cannot be solved exactly. In
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the following, solutions are derived via a series of approxima-

tions, consistent with a weakly coupled system, where λ ≪
2ωm.

2.3.1 Analysis of Langevin equations

Analysis of the resonator dynamics requires a decoupled equa-

tion for β. In order to proceed, additional approximations are

required. Equations 2.35 to 2.38 are analysed by exploiting the

separation of time-scales in the cavity and resonator dynam-

ics. The damping in the cavity determines the time-scale over

which oscillations in the optical mode relax, and is significantly

higher than both the mechanical damping and the coupling be-

tween the modes: κ ≫ γ, λ. The cavity therefore loses energy

via dissipation on a much faster timescale than energy is trans-

ferred to or lost from the resonator, and over the timescale of

cavity relaxation, any variations in the mechanical amplitude

are small. One can therefore describe the cavity dynamics with

respect to a mechanical mode which oscillates at a fixed fre-

quency with a constant amplitude[41]. This amounts to the

ansatz β = βc + Be−iφe−iωmt, where φ and B are treated as con-

stants, and βc is a constant shift in the origin of the resonator,

which is yet to be evaluated. Equation 2.35 then reads

α̇ = −i
(

∆′ + λB cos (φ + ωmt)
)

α− iΩ− κ

2
α + ηα,(2.41)

where ∆′ = ∆ + λℜ[βc] is the detuning including a frequency

shift brought about by the fixed point displacement of the res-

onator, βc. By making a further substitution, α̃ = αeiz sin (φ+ωmt),

where z = λB
ωm

, one can isolate the oscillating terms in the rotat-

ing frame of α̃,

dα̃

dt
= −i∆′α̃− iΩeiz sin (φ+ωmt) − κ

2
α̃ + η̃α, (2.42)

where η̃α = ηαeiz sin (φ+ωmt).

After a Fourier Transform and some rearranging, a solution

for α̃(ω) takes the form

α̃(ω) =
−iΩ

i(ω + ∆′) + κ
2

∫ ∞

−∞
dt′e−i(ωt′−z sin (ωmt′)−ωφ/ωm)

+
η̃α(ω)

i(ω + ∆′) + κ
2

. (2.43)
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By applying the Jacobi-Anger expansion[55], the integral is eval-

uated,

α̃(ω) =
−iΩ ∑n Jn(z)eiφn

κ
2 + i(ω + ∆′)

δ(ω + ωmn) +
η̃α(ω)

κ
2 + i(ω + ∆′)

, (2.44)

where ∑n Jn(z) denotes a sum over bessel functions of the first

kind, Jn(z), over the limits n = −∞ to n = ∞. The first term in

Equation 2.44 can be identified as an average, 〈α̃〉, and the sec-

ond as the fluctuating part, δα̃. A similar expression is derived

for α̃∗, where α̃∗(ω) = α∗(ω)e−iz sin (φ+ωmt):

α̃∗(ω) =
iΩ ∑n Jn(z)e−iφn

κ
2 + i(ω− ∆′)

δ(ω + ωmn) +
η̃∗α(ω)

κ
2 + i(ω− ∆′)

. (2.45)

Note that, after a Fourier transform, α̃∗(ω) and α̃(ω) are no

longer complex conjugates of one another.

2.3.2 Damping due to back action

Turning now to Equation 2.37, analysis of the mechanical mode

requires one to evaluate the term α∗α − 1/2. In order to so,

recall the assumptions made when applying the TWA. In drop-

ping the third order differentials, an accurate picture of the

zero-point noise in the system is acquired, at the cost of describ-

ing the non-linearity exactly. This works well when fluctuations

are weak, and so one can write α = 〈α〉+ δα, and approximate

δαδα∗ by its average, 〈δαδα∗〉 = 1
2 . Doing this (as described in

Appendix B), one finds

α∗α− 1

2
= 〈α∗〉〈α〉+ 〈α〉δα∗ + 〈α∗〉δα, (2.46)

This term describes the resonator dynamics arising from the

coupling to the cavity mode. It is composed of an average and

fluctuating dynamics, which can be treated separately. Turn-

ing attention to the average dynamics, the resonator amplitude

evolves according to

〈β̇〉 = −
(

iωm +
γ

2

)

〈β〉 − i
λ

2
〈α∗〉〈α〉. (2.47)

The last term in Equation 2.47 can be evaluated via a Fourier

transform,

〈α∗〉〈α〉(ω) = Ω2 ∑
n,n′

Jn(z)Jn′(z)δ ( fn,n′(ω)) e−iφ(n−n′)

h∗n(hn + iω)
, (2.48)
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where it has been noted that 〈α∗〉〈α〉(ω) = 〈α̃∗〉〈α̃〉(ω), and the

quantities hn and f (ω) have been defined:

hn =
κ

2
+ i(ωmn + ∆′) (2.49)

fn,n′(ω) = ω + ωm(n− n′). (2.50)

Analysis of the centre of the limit cycle, βc is immediately pos-

sible, by isolating the non rotating terms in Equation 2.47,

βc = −i
λ

2

〈α∗〉〈α〉(ω = 0)

iωm + γ
2

, (2.51)

where 〈α∗〉〈α〉(ω = 0) denotes the non rotating term in the

sum of Equation 2.48. When ω = 0 the delta function isolates

the term n′ = n in the sum over n′ to give

βc = − λΩ2

2ωm − iγ ∑
n

J2
n(z)

κ2

4 + (ωmn + ∆′)2
. (2.52)

Switching attention, now, to the oscillating parts of Equation

2.47, a rotating wave approximation[56] (RWA) is applied. This

isolates terms in the sum of Equation 2.48 that oscillate near

the mechanical frequency, since higher frequency oscillations

at nωm (where n > 1) will produce negligible contributions

when the average is taken over a long enough timescale. These

terms are therefore discarded so that Equation 2.53 can then be

written

〈β̇〉 = −i (ωm + δω) 〈β〉 − 1

2
(γ + γBA) 〈β〉, (2.53)

where the damping due to the cavity back action, γBA, and

frequency shift, δω, are identified as the real and imaginary

parts of the truncated sum in Equation 2.48. The discarding of

higher order oscillations in ωm amounts to picking out terms

in the sum where n′ − n = 1, giving

γBA

2
+ iδω = − iλΩ2

2B

∑n Jn(z)Jn+1(z)

h∗nhn+1
. (2.54)

Taking the real and imaginary parts, the damping and fre-

quency shift are then expressed in terms of z,

γBA(z) = −∑
n

λ2Ω2κ

2z

Jn(z)Jn+1(z)

|hn|2|hn+1|2
(2.55)

δω(z) = ∑
n

λ2Ω2

2ωmz

Jn(z)Jn+1(z)

|hn|2|hn+1|2
. (2.56)
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These two expressions are thus amplitude dependent, a prop-

erty which will be investigated in later sections. It should be

noted that the approximation in making the ansatz β = βc +
Be−i(ωmt+φ) neglects variations in frequency, which are then cal-

culated in the form of δω(z). The calculation is not done self

consistently as δω(z) is found to be several orders of magnitude

smaller than ωm for the parameters of interest. This results in

relative errors of around 10−5 when calculating γBA(z), and so

the correction is ignored.

2.3.3 Classical dynamics of limit cycles

Equation 2.53 describes the average dynamics of the resonator,

leading to a classical equation of motion for the amplitude B:

〈Ḃ〉 = −γT(B)

2
〈B〉, (2.57)

where the total damping is written γT(B) = γ + γBA(B). Two

types of steady state solution, B0, are possible to satisfy Equa-

tion 2.57:

(i) B0 = 0: a ‘fixed point’ state, where the resonator fluctuates

around a central point, βc.

(ii) B0 6= 0: a ‘limit cycle’ state, where the resonator oscillates

with a constant amplitude about βc.

Both of these obey the condition

(γ + γBA(B0)) B0 = 0. (2.58)

Note that B0 = 0, the state corresponding to a fixed point, is al-

ways a solution (though not necessarily a stable one). One can

obtain solutions for limit cycles, B0 6= 0, for a given set of pa-

rameters by finding the intersections between curves of γ and

γBA(B). Figure 2.2 shows such an intersection. The stability of

a solution is determined by analysing the effect of small devi-

ations from B0. For example, consider a solution to Equation

2.58, where B = B0. Taking a point B = B0 + δB, arbitrarily

close to B0, the rate of change is given by expanding Equation

2.57 about B0, for small changes δB:

Ḃ = −1

2
(γ + γBA(B0 + δB)) (B0 + δB) (2.59)

˙δB = −1

2
(γ + γBA(B0)) δB− dγBA

dB

∣

∣

∣

∣

B0

B0δB, (2.60)
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where the first term on the left hand side determines the fixed

point stability and the final term determines the limit cycle sta-

bility. In order for a small change to bring the system back to

the solution at B0, it is required that ˙δB have opposite sign to

δB. This provides the following stability conditions:

[i ]For a fixed point, require γ + γBA(0) > 0.

[ii ]For a limit cycle, require dγBA/dB > 0.

For the case shown in Figure 2.2, there is a stable solution at

B = 7.4. For this set of parameters it is the only stable solution

for the amplitude.

γ

γ
B

A

B
0 2520155 10

−10

−8

−2

−4

−6

2

0

×10−5

Figure 2.2: Estimation of limit cycles by plotting γBA(B) (solid line)

and finding intersects with −γ (dotted line), for ∆/ωm =

−1. Since the intersection occurs where dγBA/dB > 0, the

limit cycle is stable. In this case the value of γBA(0) is neg-

ative, hence the fixed point state is not stable. Parameters

are ωm = 1, λ = 0.4, Ω = 0.05, κ = 1 and γ = 5× 10−5,

and are discussed in Section 2.4.

2.3.4 Diffusion

Analysis so far has concentrated largely on the average dynam-

ics of the system, which describe the effect of the forces on the

resonator. Whilst this offers insight into stabilities in the res-

onator dynamics, it is not the full picture. Fluctuations in the

system arise from the finite temperature of the the resonator, as

well as fluctuations in the cavity. These become important when
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calculating statistical averages. Given that |β|2 = B2, Equation

2.37 can be expressed in terms of the energy, E = B2:

Ė = −γTE + 2
√

EηT, (2.61)

where the fluctuations are expressed as a single term, ηT, given

by

ηT =
(

ηβei(ωmt+φ) + ηβ∗e
−i(ωmt+φ)

)

+ ηBA(t), (2.62)

and

ηBA(t) =
(

ηe f f + η∗e f f

)

sin (ωmt + φ), (2.63)

where ηe f f are the fluctuations arising from coupling to the

cavity, given by

ηe f f =
λ

2
〈α∗〉δα, (2.64)

which is a function of the cavity noise, ηα. Using Equation 2.44

and 2.45, expressions for the ηe f f (ω) and η∗e f f (ω) are found

using the convolution theorem:

〈α∗〉δα(ω) = iΩ ∑
n

Jn(z)e−iφnη̃α∗(ω + ωmn)

h∗n(hn + iω)
, (2.65)

〈α〉δα∗(ω) = −iΩ ∑
n

Jn(z)eiφnη̃α∗(ω−ωmn)

hn(h∗n + iω)
. (2.66)

The diffusion coefficient, DT = Dth + DBA contains a con-

tribution from thermal fluctuations and cavity fluctuations, re-

spectively. An effective diffusion constant, valid on time-scales

much longer than ωm and κ, is obtained from the zero fre-

quency component of the noise correlation function, averaged

over a mechanical period. It can be expressed as

DT = lim
ω→0

ωm

2π

∫ 2π
ωm

0
dt
∫ ∞

−∞
dω′ei(ω+ω′)t〈ηT(ω)ηT(ω

′)〉. (2.67)

The separate terms Dth and DBA arise because ηe f f and η∗e f f do

not correlate with ηβ and ηβ∗ . The correlator can therefore be

split into the two separate terms. The result is

Dth =
γ

2

(

n +
1

2

)

, (2.68)

DBA = lim
ω→0

ωm

π

∫ ωm
π

0
dt
∫ ∞

−∞
dω′〈ηBA(ω)ηBA(ω

′)〉ei(ω+ω′)t.(2.69)



2.3 semi-classical approximation 23

Evaluation of the right hand side of Equation 2.69 leads to the

final result,

DBA(z) =
Ω2λ2γ

8 ∑
n

1

|hn|2
∣

∣

∣

∣

Jn+1(z)

hn+1
− Jn−1(z)

hn−1

∣

∣

∣

∣

2

, (2.70)

where z = λ
√

E/ωm.

2.3.5 Probability distribution of resonator energy

A comparison to numerical calculations can be provided by cal-

culating the probability distribution for the resonator energies.

Equation 2.61 takes the form of a Langevin equation allowing

an equivalent Fokker-Planck equation to be deduced in terms

of the probability P(E, t) of the resonator being found in a state

with energy E.

∂

∂t
P(E, t) = − ∂

∂E

(

1

2
γT(E)EP(E, t)

)

+
1

2

∂2

∂E2
(EDT(E)P(E, t)) . (2.71)

The steady state probability distribution can be found by set-

ting the time differential to zero. The solution takes the form

P(E) ∝ e−U(E), (2.72)

where the potential U(E) is defined1

U(E) =
∫ E

0
dE′

γT(E′)
DT(E′)

(2.73)

Equations 2.72 and 2.73 give some insight into the form of

the probability distribution. One expects to observe peaks in

P(E) at E0 = B2
0, if B0 satisfies the energy balance condition,

Equation 2.58. These solutions correspond to minima in the po-

tential, U(E). In the following, 〈E〉 is investigated, which relates

to the average phonon number, 〈n〉 = 〈b†b〉, by Equation 2.26,

〈E〉 = 〈n〉+ 1

2
. (2.74)

1 Note that a small correction to the numerator arising from noise terms is
neglected here[31].
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2.3.6 Cooling regime

The probability distribution of Equation 2.72 is complicated

and contains an integral which is not easily evaluated. How-

ever, under certain circumstances, one can make further approx-

imations which allow Equation 2.72 to be explored analytically,

before a numerical approach is necessary. The regime of cool-

ing has been investigated extensively in recent years[57, 34, 45].

When the cavity is driven below its resonant frequency, it is

possible to enter a regime where energy is extracted from the

resonator. This is of interest when one wishes to cool a res-

onator to its quantum mechanical ground state, a feat achieved

in recent years[13, 14]. In this regime the damping is positive

and the resonator is known to remain in a state where it fluc-

tuates about the fixed point. This allows the assumption that

z ≪ 1, which leads to the approximate expansion of the Bessel

functions[58]:

Jn(z) ≈
1

n!

( z

2

)n
. (2.75)

From this, approximate expressions for the damping and diffu-

sion can be deduced, by taking γBA ≈ γBA(0), DBA ≈ DBA(0)
and isolating terms in the sum which give the highest contribu-

tion:

γBA(0) ≈
λ2Ω2ωm∆′κ

[

κ2

4 + ∆′2
][

κ2

4 + (ωm + ∆′)2
][

κ2

4 + (ωm − ∆′)2
] (2.76)

DBA(0) ≈
4λ2Ω2κ

[

κ2

4 + ω2
m + ∆′2

]

[

κ2

4 + ∆′2
][

κ2

4 + (ωm + ∆′)2
][

κ2

4 + (ωm − ∆′)2
] .(2.77)

The thermal diffusion is written in terms of the intrinsic damp-

ing and thermal phonon number, Dth = γ(n + 1
2). The back

action contribution to the diffusion can be written in a similar

way:

DBA(0) = γBA(0)

(

nBA +
1

2

)

, (2.78)

where nBA is the back action contribution to the phonon num-

ber in the resonator. In the case of cooling, this takes the form

nBA =
κ2

4 + (ωm − ∆′)2

4ωm∆′
. (2.79)
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The probability distribution is then

P(E) ∝ e
− (γ+γBA(0))E

γBA(0)(nBA+ 1
2)+γ(n+ 1

2) , (2.80)

which decays exponentially in E. Equation 2.80 takes the form

of a Wigner distribution for a harmonic oscillator in a thermal

state (after integrating out the phase)[31, 1], with thermal occu-

pation number

ne f f =
γBA(0)nBA + γn

γBA(0) + γ
. (2.81)

Figure 2.3 compares the probability distributions obtained

via the full analytic calculation (Equation 2.72) and the small z

approximation (Equation 2.80). Parameters chosen are ωm = 10,

∆ = 20, λ = 1, Ω = 0.05, γ = 5× 10−5, n = 0.001, κ = 1 so

that the resonator is well into the regime of cooling and z ≪ 1

over the range of the peak. The approximation works very well,

with minor discrepancies highlighted via the logarithmic plot

in the inset.
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Figure 2.3: Small z approximation for P(E), relevant in the regime

of cooling (dashed). This is compared with Equation 2.72

(solid), for parameters ωm = 10, ∆ = 20, λ = 1, Ω = 0.05,

γ = 5 × 10−5, n = 0.001, κ = 1. Inset shows the same

comparison on a logarithmic scale.

Note that, in the case of sideband cooling, ∆ = ωm, one can

deduce a limit on the minimum effective phonon number:

ne f f =

(

κ

4ωm

)2

, (2.82)
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where one requires heavy damping such that γBA ≫ γ, so that

ne f f ≈ nBA. This will be discussed in more detail in Chapter 4.

2.3.7 Gaussian approximation in the limit cycle regime

In addition to the regime of low energies, the semi-classical an-

alytic approach can be used to model the dynamics well within

the limit cycle regime, where fixed amplitude oscillations dom-

inate the resonator motion, and fluctuations are small. In this

regime, the probability distribution forms a peak, with a very

small spread around the point E0, which satisfies Equation 2.58.

With this in mind, the potential U(E) can be approximated by

an expansion, up to second order, about that energy:

U(E) ≃ U(E0) +
1

2
(E− E0)

2
dγBA

dE |E0

DBA(E0) + Dth
. (2.83)

This gives a Gaussian probability distribution of the form

P(E) =
e−(E−E0)

2/2σ2

2σ2
√

2π
, (2.84)

where

σ2 =
DBA(E0) + Dth

dγBA
dE |E0

. (2.85)

2.4 numerical analysis

In this section Equation 2.21 is solved directly, for a fixed num-

ber of cavity and resonator states. Details of how the numerical

calculations are performed are given in Appendix C. Analy-

sis to follow will characterise the resonator dynamics by cal-

culating four different quantities: the probability distribution,

P(n) = 〈n|ρ̂|n〉, for the number of phonons in the resonator;

the average phonon number 〈n〉; the Fano factor, F, defined by

F = (〈n2〉 − 〈n〉2)/〈n〉, which measures the spread in the prob-

ability distribution; the Wigner function, W(β). Each of these

follows from the numerically calculated steady state density

matrix, ρ.

The behaviour of these quantities will be described as the

laser detuning, ∆, and optomechanical coupling, λ, are varied.

These two parameters control the energy exchange between the

cavity and resonator. When ∆ = 0, the laser is in resonance with
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the cavity mode and photons build up the cavity[13]. Here no

significant exchange of energy occurs with the resonator. As the

detuning is increased above(below) resonance, it is expected

that phonons would be created(extracted) as the resonator is

driven (damped). As the detuning is swept, transitions are ex-

pected between different dynamical states of the resonator. The

optomechanical coupling determines the strength of this inter-

action.

Numerics are produced for the following sets of parameters:

[i ]ωm = 1, λ = 0.4, γ = 5× 10−5,

[ii ]ωm = 5, λ = 1.5, γ = 3× 10−5,

[iii ]ωm = 5, λ = 2, γ = 3× 10−5,

and units are adopted such that κ = 1 is set throughout the

calculation. The first two sets of parameters involve the good

(ωm/κ ≫ 1) and bad (ωm/κ ≈ 1) cavity regimes. In the good

cavity regime the resonances which occur for ∆ = lωm, with l

an integer, lead to separate peaks which can be distinguished

from one another and the main cavity resonance at ∆ = 0. In the

bad cavity regime the resonances overlap and energy transfer

occurs over a broad range of ∆ values. The third set of parame-

ters explores the regime of stronger optomechanical coupling.

The parameters are selected to give a distribution of states

where higher energy modes are unoccupied, so that a small,

finite number of cavity and resonator modes are modelled. For

this reason, a weak driving strength and low temperature are

required. For each set of parameters Ω = 0.05 and n = 0 are

used.

2.4.1 Results in ‘Bad cavity’ limit

Figure 2.4 shows the average phonon number and Fano factor

as the detuning is swept for the bad cavity case, [i]. A single

resonance peak occurs, where the l = 0,−1,−2 peaks merge

due to the broadening. The broadening has the effect of adding

uncertainty to the energy transfer condition, ∆ = lωm, so that

a wider spread of ∆ values satisfy the condition, and 〈n〉 is

finite over a broader range. The merging of the peaks allows

multiple photons to be absorbed in certain regions of the curve,

creating a skewed peak, with a sudden decrease in 〈n〉 near

∆ ≈ −2ωm. The shape of the curve is understood by examining

the Wigner function at various points along the curve. There



28 the reflective optomechanical system

are three distinct dynamical states seen in the resonator, given

in Figure 2.5. Sweeping through ∆ and λ reveals transitions

between these states.

〈n
〉 F

0
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Figure 2.4: Average phonon number (solid) and Fano factor (dotted)

with respect to detuning for the parameters of case [i]. La-

bels A, B and C refer to the three distinct states in the

resonator, shown by Wigner functions in Figure 2.5.

Figure 2.5a shows the Wigner function at point A in Figure

2.4, where the resonator is in a fixed point state. This is char-

acterised by a probability distribution concentrated on a cen-

tral point. The slight spread indicates small fluctuations, which

grow as the detuning is made more negative, causing the proba-

bility density to spread out, thinning at the centre, to eventually

form a limit cycle. At point B, The Wigner function takes the

form of a ring of probability density, illustrated in Figure 2.5b.

The limit cycle state involves stable oscillations at a fixed am-

plitude about a central point[15, 31]. The transition from fixed

point to limit cycle is smooth, so that the amplitude increases

continuously from zero. This results in a small peak in F. Here

the fluctuations cause a slight broadening in the distribution,

without any discontinuities as 〈n〉 increases smoothly.

The transition at C is clearly marked by a large peak in the

Fano factor and a sharp fall in 〈n〉. This indicates a sudden in-

crease in the spread of the distribution. Here the resonator has

a finite probability of being in either a fixed point or limit cycle

state, with the Wigner function shown in Figure 2.5c. Fluctua-

tions cause the resonator to switch between the two states with
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Figure 2.5: Wigner functions for the resonator, in terms of variables

q = (β + β∗)/
√

2 and p = (β− β∗)/
√

2i, for (a) point A,

(b) point B and (c) point C, as labelled in Figure 2.4. Three

distinct states are observed in the resonator’s motion.

widely separated energies, giving a large peak in F and a sharp

drop in 〈n〉, as two very different amplitudes are averaged over.

In classical terms, one can think of this type of state as bistable,

with both a low and a high energy state accessible to it.

A similar set of transitions are observed in the resonator

when the coupling is swept. Figure 2.6 shows 〈n〉 and F with

respect to λ for ∆ = −ωm, with the remaining variables identi-

cal to those in case [i]. The resonator makes a smooth transition

between a fixed point at X and limit cycle state at Y, marked by

a sharp peak in F. The phonon number peaks before gradually

decreasing as the limit cycle gradually collapses. This happens

over a much broader range in λ compared to the collapse of

the limit cycle in Figure 2.4, where the fixed point emerges. In

Figure 2.6 the increase in λ past point Y induces the emergence

of an additional limit cycle, resulting in an increase in F around

λ = 0.7.

2.4.2 Results for resolved sideband (‘good cavity’) limit

When the mechanical frequency is increased, one finds a situ-

ation where ωm > κ, and the system approaches the resolved

sideband limit, where resonances in the mechanical energy spec-

trum are resolved and a strong transfer of energy between the

resonator and cavity occurs in regions focused on the reso-

nances, |∆| = lωm. Figure 2.7 shows the average phonon num-

ber and Fano factor as the detuning is swept for the parameters

of case [ii]. In contrast to Figure 2.4, the main resonance peak

is sharp, and separated from the secondary peak at l = 0 by a

region where 〈n〉 ≈ 0.

The l = 0 peak is accompanied by a peak in F, though no

bistability occurs in this region of the graph. The large fluctu-

ations are due to noise in the cavity. In this region the cavity
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Figure 2.6: Average phonon number (solid) and Fano factor (dotted)

with respect to coupling, λ, for parameters in set [i] with

∆ = −1. Points X and Y mark the fixed point and limit

cycle states, respectively.
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Figure 2.7: Average phonon number (solid) and Fano factor (dotted)

with respect to detuning, ∆, approaching the resolved side-

band limit, ωm = 5.

mode is strongly driven, and the occupation is large. Since the

diffusion in the resonator is proportional to 〈α〉 (via Equation

2.70) this causes a peak in F.
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A notable difference between the parameters of set [ii], com-

pared to set [i], is the absence of a bistability. The Fano factor

peaks at ∆ = −0.8ωm and ∆ = −1.1ωm, where the large fluctu-

ations mark the transition between a limit cycle and fixed point.

The transition is smooth, however. At ∆ ≈ 0.8 the limit cycle

emerges, with increasing energy as ∆ increases, up to where

〈n〉 peaks, before gradually decreasing in energy until the fixed

point state is recovered. This results in the symmetric resonance

peak in Figure 2.7.

Figure 2.8 shows the result of an increased coupling strength

(case [iii]). With increased coupling a further resonance at l = 2

is observable, and produces the strongest peak in 〈n〉. Within

the region of this resonance, the transitions between fixed point

and limit cycle states occur with bistabilities. This is evident

from the order of magnitude increase in the Fano factor peaks,

compared with the transitions near l = 0 and l = 1.
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Figure 2.8: Average phonon number (solid) and Fano factor (dotted)

with respect to detuning, ∆ for ωm = 5 and λ = 2.

2.4.3 Results for strong coupling regime

As the coupling is increased, non-linear effects become stronger

and non classical behaviour emerges[10, 12, 43, 59]. A good in-

dicator of this is seen in the Fano factor, which drops below

unity[10, 30, 31]. Figure 2.9 shows the Fano factor as λ is swept

for ωm = 3.33, ∆ = 0, λ = 2.8, Ω = 0.333, γ = 3.33× 10−4,
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κ = 1, n = 0. Near point A the resonator falls into a limit

cycle and Fano factor drops to a minimum (see Figure 2.10a).

The limit cycle state is marked by small amplitude fluctua-

tions. Values of F ≤ 1 indicate sub-Poissonian states (number

squeezing)[12].
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Figure 2.9: The Fano factor in the strong coupling regime, with points

of interest labelled A, B and C. Parameters used are ωm =

3.33, ∆ = 0, Ω = 0.333, γ = 3.33× 10−4, κ = 1, n = 0.

As the coupling is increased, two competing effects occur, shown

in plots of P(n) (Figure 2.10). Whilst the limit cycle becomes

narrower, the emergence of an additional limit cycle at higher n,

causes F to increase (point B). As this merges with the original

limit cycle, the Fano factor drops (point C). Though F appears

to increase due to the additional peaks, number squeezing still

occurs in the original peak, which can manifest itself as nega-

tive Wigner densities[12]. Figure 2.11a shows the point labelled

n

P
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Figure 2.10: Strong coupling regime explored via P(n) distributions

in at points A, B and C of Figure 2.9.
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B in Figure 2.9, where bright circles just below the limit cycle

amplitude mark negative Wigner densities.
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Figure 2.11: Wigner functions, showing non-classicality: (a) For the

resonator, with ωm = 3.33, ∆ = 0, λ = 2.8, Ω = 0.333,

γ = 3.33 × 10−4, κ = 1, n = 0, where bright rings at

amplitudes below the limit cycle indicate negativity. (b)

n = 4 Fock state, for comparison.

The presence of negative regions and a low Fano factor is

reminiscent of the Fock state, or number state. An example

of the Wigner function of such a state is illustrated in Figure

2.11b. This shows a resonator number state in the n = 4 Fock

state. The negative regions lie in rings, between rings of positive

peaks.

2.4.4 Comparison between numerical and analytic calculations

Attention is now turned to investigating how well the truncated

Wigner approach described in Section 2.3.5 works by compar-

ing the results from the probability distribution P(E) to those

obtained by solving the master equation numerically. Figure

2.12 shows the average phonon number and Fano factor, as

calculated analytically (in blue) alongside numerical results (in

black). There is very good agreement between the two curves,

apart from a small shift in ∆. This shift is corrected, by manu-

ally adding in a frequency shift ∆̃ = ∆− λ2/(4ωm). The shifted

result is shown by the dashed line, resulting in two very closely

matched curves. This correction does not follow from the ana-

lytic model and suggests a limitation due to the inexact treat-

ment of the non-linearity[31].

The probability distribution from Equation 2.72 can be com-

pared to the numerical calculation, for a limited range of param-

eters. A probability distribution for the phonon number, P(n),
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Figure 2.12: Comparison of analytic (blue) and numerical (solid black)

calculations, along side a shifted analytic calculation

(dashed). Parameters are those of case [i], shown in Fig-

ure 2.4.

is obtained from the density operator, P(n) = 〈n|ρ̂|n〉. The two

quantities are not equivalent; P(E) is a continuous distribution

on resonator energies whilst P(n) describes the discrete dis-

tribution of phonon numbers. A simple comparison of these

quantities is only appropriate when n ≫ 1, as the distinction

between the two becomes less important. The case of limit cycle

oscillations provides such a regime.

Figure 2.13 compares P(E) with P(n) for the limit cycle state

corresponding to the Wigner function in Figure 2.5b, at point B

on the curve in Figure 2.12. The distribution is roughly Gaus-

sian, with a peak at E ≈ 40. The two curves closely match in

this regime, as expected. Additionally the Gaussian approxima-

tion of Section 2.3.7 (shown in blue) provides an accurate de-

scription of the limit cycle. At point B, the Fano factor is close

to a minimum, with F ≈ 1, indicating small fluctuations. The

average phonon number curves overlap at this point, and the

truncated Wigner approximation captures the dynamics of the

system with a high accuracy.

The resolved sideband limit is considered in Figure 2.14, where

results are compared for the parameters of cases [ii] and [iii]. In

the case of strong coupling (Figure 2.14b), the frequency shift

is more obvious.
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Figure 2.13: Comparison of probability distributions in P(E) (dotted)

and P(n) (solid) for ∆ = −ωm, where the resonator per-

forms limit cycle oscillations. The distribution forms a

Gaussian peak at a high energy, resulting in two curve

which closely match. Also shown is the Gaussian limit

cycle approximation (red) from Section 2.3.7.
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Figure 2.14: A comparison of numerics and analytics in the resolved

sideband limit for (a) parameters [ii], where λ = 1 and

(b) parameters [iii], where λ = 2. Numerics are in black,

with analytics in blue. The shifted analytics are shown by

dashed lines. The main plots show 〈n〉 with F in the inset.

It is apparent that the larger coupling in (b) produces

more noticeable discrepancies, particularly regarding the

∆ shift.

2.5 exploring the bistability

The truncated Wigner approximation has proved successful in

capturing the dynamics of the system, for the case of weak

coupling[30]. Prior work using this approximation suggests lim-

itations on the description of quantum tunnelling rates, when
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describing switching between stable states of an oscillator[1, 54].

In dropping the third order differentials in Equation 2.27, a de-

scription of the system is obtained which only treats the zero

point fluctuations exactly[31]. The objective of this section is to

determine whether this description is sufficient to capture the

dynamics of the system in the bistable state - in particular, to

predict the rate of switching between the fixed point and limit

cycle. This section deals with a system with parameters given

by case [i] of Section 2.4.

In the bistable state the resonator has a finite probability of

being found in a fixed point or limit cycle state[41], and fluctu-

ations cause it to switch between the two (this can be seen by

large spikes in the Fano factor around bistabilities in Figures

2.4 and 2.8). The probability distribution is described analyti-

cally by Equation 2.72 and consists of two peaks, which coin-

cide with minima in the potential, given by the integral

U(E) =
∫ E

0
dE′

γ + γBA(E′)
Dth + DBA(E′)

. (2.86)

These minima are separated by a potential barrier. The potential

is shown in Figure 2.15, with stationary points a and c (the

minima) and b (the maximum) labelled.

The numerical calculation provides a solution to the master

equation, giving the density matrix for the system. Analysis up

to this point has addressed only the steady state part of the

density matrix, which describes the system after transient be-

haviour has died out. In the shorter time limit however, the den-

sity matrix contains time dependent contributions which de-

cay over different timescales. These different timescales encode

the dynamical behaviour of the system, including the switching

rate in the bistable regime. In Liouville space[60] (see Appendix

C) Equation 2.21 can be written

|ρ̇〉〉 = L|ρ〉〉. (2.87)

The matrix L is constructed to act on the vector |ρ〉〉 to pro-

duce the same result as the action of operator L̂ on the density

matrix, |ρ〉. The matrix L is non-Hermitian and therefore has

a separate set of left and right eigenvectors[61], labelled 〈〈Ln|
and |Rn〉〉, respectively. Equation 2.87 has a solution of the form

|ρ〉〉 = |ρSS〉〉+ ∑
n=1

〈〈Ln|ρ(0)eΛnt | Rn〉〉, (2.88)

where Λn are the eigenvalues of both eigenvectors 〈〈Ln| and

|Rn〉〉. The general solution is a sum of terms evolving on dif-
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Figure 2.15: The potential barrier for the bistability shown in Figure

2.5c. Points a and c mark minima in the potential, pos-

sible stable states, while b marks the maximum of the

potential barrier. The arrows show diffusion around the

minima which facilitates switching.

ferent timescales[54], which decay at different rates to leave a

steady state solution, |ρSS〉〉, with eigenvalue Λ0 = 0.

In the case of a bistable system the longest timescale corre-

sponds to the switching rate. In terms of Figure 2.15, the switch-

ing rate describes the rate at which fluctuations cause the sys-

tem to cross point b, the potential barrier, starting at either a or

c. The relaxation rate which describes the rate the system takes

to diffuse to the minimum points a and c, having crossed point

b will typically be much larger. The switching rate can be iden-

tified by the eigenvalue with the smallest magnitude non-zero

real part[54].

2.5.1 Calculating the switching rate in the bistable regime

The semi-classical approximation of Section 2.3 does not in-

clude a description of the switching mechanism, but a classical

treatment of the switching problem follows from the calculation

of the probability distribution. The problem is modelled analyt-

ically, using statistical mechanics, and treated as a first passage

time (FPT) problem for a particle moving between two potential
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wells[50]. Results are then compared to numerics which solve

the eigenvalue equation, as described below.

The analytic calculation employs a classical description of the

problem within the truncated Wigner formalism described in

Section 2.3. The objective is to calculate the average time for a

particle in one potential well to overcome the energy barrier (by

energy fluctuations) and reach the other well. This assumes the

dynamics are governed by a Fokker-Planck equation. Turning

points in the potential are found in order to calculate the FPT

for a system initially in either potential well. The switching rate

is then given by the sum of their inverses.

The calculation proceeds as follows. The points of interest in

a sample potential are shown in Figure 2.15; a is an extremum at

E = 0, treated as a well, with b the barrier and c the other well.

Starting at an energy Ea near point a, the FPT is the average

time the system takes takes to pass over the potential barrier

of energy Eb at point b. Due to the separation of timescales

for switching between and relaxation into the wells, the exact

choices of starting/finishing points are not important[50] - so

long as E f inal ≥ Emax and Estart ≈ Emin, where Emax(min) is the

maximum(minimum) in the potential.

The potential in question is defined for E > 0, so that Ea is an

extremum, and diffusion from a can only occur in one direction.

Point a is therefore identified as a reflecting barrier, since it

cannot be crossed. Conversely, point b is an absorbing barrier,

so that switching is defined as the system passing through b. To

calculate the FPT, first G(E, t) is defined - this is the probability

that the system has not overcome the potential barrier at a time

t, given that it starts at an energy E in the range Ea < E < Eb:

∫ Eb

Ea

dE′P(E′, t|E, 0) ≡ G(E, t). (2.89)

The Fokker-Planck equation given in Equation 2.71 describes

the evolution of the probability distribution P(E′, t) for t > 0,

given that the system starts at an energy E at t = 0. A calcula-

tion of the FPT requires the evolution of P(E′, t) for t < t′, given

a final condition at t = t′. This is achieved by writing a back-

ward Fokker-Planck equation for the probability distribution[50].

In contrast to the forward equation, this is defined over a range

of times prior to a ‘target’ state at time t′, where the particle

overcomes the potential barrier.

In terms of P(E′, t|E, 0) - the conditional probability of find-

ing the system with an energy E′, where 0 < E′ < Eb at a
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time t, given the system starts at an energy E at t = 0 (where

0 < E < Eb) - the backward Fokker-Planck equation is

∂tP(E′, t|E, 0) = (γ + γBA(E)) E∂EP(E′, t|E, 0)

+
1

2
(Dth + DBA(E)) ∂2

EP(E′, t|E, 0), (2.90)

from which an equation for G(E, t) is deduced:

∂tG(E, t)) = (γ + γBA(E)) E∂EG(E, t)

+
1

2
(Dth + DBA(E)) ∂2

EG(E, t), (2.91)

The average time to reach Eb, given the starting point Ea, is

given by

〈T(Ea → Eb)〉 =
∫ ∞

0
dtG(Ea, t), (2.92)

which allows an equation of motion for the FPT to be deduced

from Equation 2.91, and solved for T. The average time for the

system to reach Eb as a function of starting point Ea is then

T(Ea → Eb) = 2
∫ Eb2

Ea

dEeU(E)
∫ E

0
dE′

e−U(E′)

D(E′)
, (2.93)

where Eb2 is a point along the potential curve where E > Eb,

to ensure integration includes the point Eb. The FPT from Ec to

Eb(< Ec) where Eb is absorbing, is found in a similar way:

T(Ec → Eb) = 2
∫ Ec

Eb1

dEeU(E)
∫ ∞

E
dE′

e−U(E′)

D(E′)
, (2.94)

where Eb1 is a point along the potential curve where E < Eb.

The diffusion constant, D(E) = Dth + DBA(E), is a function

of E, so must also be integrated in the first integral (which has

variable limits). The switching rate between potential wells, Γsw,

is then given by

Γsw = [T(Ea → Eb)]
−1 + [T(Ec → Eb)]

−1 . (2.95)

2.5.1.1 Comparing switch rate with lowest eigenvalue

The eigenvalues Λn that describe the relaxation of the system

(Equation 2.88) can also be calculated numerically. Figure 2.16

shows the lowest five eigenvalues from the expansion in Equa-

tion 2.88. On a logarithmic scale, the lowest eigenvalue Λ1 is

isolated from the others. The presence of an eigenvalue much
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Figure 2.16: Eigenvalues, Λn, for 1 ≤ n ≤ 5 on a log scale, shown

over the bistable range. The lowest value Λ1 is isolated

and much smaller than the others. This is thought to be

a characteristic of quantum tunnelling.

closer to zero than the others is often considered a characteristic

of quantum tunnelling[54].

The eigenvalue with the smallest non-zero real part, Λ1, is

compared to the switching rate Γsw in Figure 2.17, for the bistable

range. The analytic switching rate differs by up to an order of

magnitude from the lowest eigenvalue. The two rates are plot-

ted on a logarithmic scale.

The analytically calculated Γsw underestimates the switching

rate for the range −2.5 ≤ ∆ ≤ −1.7. In the range ∆ ≤ −1.7,

however, it the rapidly increases by several orders of magni-

tude. In contrast the eigenvalue forms a roughly symmetric

well shape over a much smaller range of values. These discrep-

ancies are not unique to this particular calculation, and have

been observed as a consistent failing in the truncated Wigner

approximation[54].

Figure 2.18a shows the rates T(a → b) and T(c → b) sepa-

rately for comparison. It is apparent that the rate from a to b

reaches a much higher value than from c to b. As ∆ is swept,

the potential evolves so that the barrier moves from the vicinity

of point a to the vicinity of point c (see Figure 2.18b). As a result

T(a → b) increases with |∆| while T(c → b) decreases. How-

ever, T(a → b) undergoes a rapid increase around |∆| > 2.4

compared to the increase in T(c→ b) at |∆| < 2.
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Figure 2.17: Comparison between the switching rates of the system,

deduced from a numerical calculation of the eigenvalues

(solid) and the classical FPT calculation (dashed). Results

are plotted on a log scale as there is a large difference in

the results.
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Figure 2.18: The separate switching times calculated, shown in (a)

T(a → b) (solid) and T(c → b) (dashed) show maxi-

mum values at either end of the bistable regime which

differ by an order of magnitude. Over this range the po-

tential shown in (b) evolves such that the barrier height

increases(decreases) relative to the point a(c).

The asymmetry is likely caused by the way the potential is

defined. The energy can only take on positive values, and point

a lies at the extremum E = 0. It is used as a minimum in the

calculation, but it does not satisfy U′(E) = 0, nor is the system

free to diffuse in the opposite direction when placed at E = Ea.

The system is more confined about a, and therefore more likely
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to diffuse up the slope towards b, as shown by the grey arrow

in Figure 2.15. At point c, the system is free to diffuse up the

slope in either direction. As a result the switching rate in the

direction a→ b is much larger than for c→ b.

The analytic calculation is clearly unable to describe the dy-

namics of the bistable state. The FPT calculation models the

switching mechanism classically, as fluctuation in the system’s

energy causing it to overcome the potential barrier[50]. This

does not account for the quantum tunnelling suggested by Fig-

ure 2.16. In systems where tunnelling occurs, the truncated Wig-

ner approximation is known to fail at capturing the switching

rate[1, 54]. The quantum fluctuations, which induce switching

on a much faster timescale, are only partly included because

the third order derivatives are dropped. This supports the fact

that analytics predict a much slower switching rate.

2.5.2 Relaxation rate calculation

If the switching rate is given by the lowest non-zero eigenvalue,

the next lowest should give the relaxation rate of the system

within each potential well. Once a particle has overcome the

barrier, this rate describes how long the system takes to relax

into the potential well. These rates can be calculated analyti-

cally by looking at the dynamics of the average energy (eg by

averaging Equation 2.61),

〈Ė〉 = −[γ + γBA(E)]〈E〉. (2.96)

Equation 2.96 is expanded in terms of small fluctuations, δE′

about the limit cycle at E0:

˙δE = − [γ + γBA(E0)] δE + E0
dγBA

dE

∣

∣

∣

E0

δE, (2.97)

where second order fluctuations are discarded.

One can consider the case of a fixed point (where E0 = 0),

giving a relaxation rate Γr of

Γr(E0 = 0) = γ + γBA(0). (2.98)

For a limit cycle the first term in Equation 2.97 will vanish giv-

ing the relaxation rate,

Γr(E0 6= 0) = E0
dγBA

dE
|E0

. (2.99)
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2.5.2.1 Comparing relaxation rate with eigenvalues

Figure 2.19 shows the relaxation rates given by Equations 2.98

and 2.99, plotted alongside the eigenvalues, Λn, for 1 ≤ n ≤ 3.

Far from the bistable regime, in regions |∆| ≤ 1.5 and |∆| ≥
3.25, the analytic calculation closely matches the lowest non-

zero eigenvalue. In particular, the relaxation into the limit cy-

cle state is captured well. Within the bistable regime, however,

the calculation fails. Equations 2.98 and 2.99 are deduced by

ignoring second order fluctuations in the energy, under the as-

sumption that these are small. This does not hold in the bistable

regime, so expressions 2.98 and 2.99 fail here.
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Figure 2.19: Comparison between analytic and numerical calculations

of relaxation rates in the system. Thicker black lines

show the relaxation rates Γr calculated analytically, for

the fixed point and limit cycle state. The lowest three non

zero eigenvalues Λn are also shown, the lowest of which

matches Γr closely far from the bistable range.

From the analysis of this section, it is apparent that the bistable

regime cannot be described by semi-classical analysis. The FPT

calculation fails to describe the true quantum nature of the

switching mechanism[54], whilst the simple linearized descrip-

tion of fluctuations misses the mark once the system enters

the bistable regime. Whilst the truncated Wigner function suc-

cessfully describes the steady-state properties of the resonator

discussed in Section 2.4.4 - even in the bistable state - it falls
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short of a more detailed analysis of the switching and relax-

ation rates.

2.6 conclusion

This chapter has explored the dynamics of a linearly coupled

optomechanical system, using the reflective setup. When a drive

is applied to the cavity, the resonator transitions between three

distinct states as the laser is tuned to different frequencies. These

include a state where the system fluctuates about a fixed point,

limit cycle oscillations and a bistability. The evolution of the

resonator state looks very different depending on whether the

system is in the resolved sideband regime. In the strong cou-

pling limit, non-classical states can be generated[10, 43]. In the

weak coupling limit, the system can be modelled analytically.

The truncated Wigner function approach provides a way of

calculating the dynamics of the system analytically provided

the optomechanical coupling is weak (i.e. λ ≪ 2ωm). In partic-

ular this approach describes the dynamics accurately when the

resonator is in a well defined limit cycle and the fluctuations

are small, but fails to fully capture the bistable regime where

fluctuations are large. An especially serious limitation of the

truncated Wigner function is the switching time for a resonator

in a bistable state. The quantum value of the switching time has

been found to differ by more than an order of magnitude from

that obtained using the truncated Wigner approximation.
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Q U A D R AT I C C O U P L I N G I N A D I S P E R S I V E

O P T O M E C H A N I C A L S E T U P

3.1 introduction

Chapter 2 addressed the case of a system in which optical and

mechanical modes are coupled via reflection of the light. This

produces an interaction which depends linearly on the posi-

tion of the mechanical oscillator. In this chapter, an alterna-

tive approach is considered in the form of a ‘dispersive system’

which uses the ‘membrane-in-the-middle’ geometry[25, 16]. A

mechanical element placed at the centre of an optical field par-

tially reflects radiation from both sides, so as to couple the op-

tical frequency linearly or quadratically to position, depending

on whether the element is placed at a node or anti-node of

the optical field[25]. This ability to switch between linear and

quadratic interactions, by altering only the membrane position,

is an attractive feature of such a system. It allows precision mea-

surements of both the position[62, 63] (in the linear case) and

energy[22] (in the quadratic case) of the mechanical element,

depending on the coupling chosen[17].

In Chapter 2 the non-linear dynamics of the reflective system

were analysed using a numerical approach, as well as a semi-

classical approximation. Analytics were generated using a trun-

cated Wigner approximation. In this chapter a similar toolbox

of mathematical techniques is applied to the quadratic system.

The aim is to calculate a probability distribution for the state of

the mechanical resonator, allowing its behaviour to be investi-

gated under different conditions.

Using a Wigner transformation, Langevin type equations are

found to describe the optical and mechanical modes. Solutions

to these equations lead to an expression for the damping due to

back action, which can be used to determine the presence of sta-

ble limit cycles in the resonator. In addition, the diffusion in the

system is calculated. Together with the damping this allows a

probability distribution of states of the resonator to be obtained.

The analytic results are compared with numerical calculations

and good agreement is found under certain circumstances. The

regime of strong coupling is also investigated, and a number of

45
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signatures of non-classical behaviour are found to occur in the

mechanical resonator.

This chapter is organised as follows. In Section 3.2 the ‘mem-

brane in the middle’ approach is introduced, detailing its for-

mulation in terms of a Hamiltonian and master equation. Sec-

tion 3.3 outlines a semi-classical analysis of the system via a

similar set of approximations to those used in Chapter 2. Nu-

merical calculations are described and analysed in Section 3.4.

The numerics are compared to analytics in Section 3.5. Section

3.6 draws conclusions.

3.2 membrane in the middle system

The system under consideration consists of two fixed mirrors

with a membrane placed in between, as shown schematically in

Figure 3.1a. The membrane divides the cavity into two cham-

bers. Consider a pair of modes (one in each chamber) with

almost identical frequencies, ωL and ωR. The membrane sup-

ports mechanical modes as it vibrates. The vibrations alter the

lengths of each chamber, coupling the membrane displacement

to the optical frequencies. A perfectly reflecting membrane dis-

placed by an amount q(t) would shift the two mode frequencies

as follows,

ωL(q) ≈ ω0 − λq(t), (3.1)

ωR(q) ≈ ω0 + λq(t), (3.2)

where ω0 is the cavity frequency in both chambers when the

membrane is fixed at the centre and λ is the coupling between

the optical and mechanical modes. This relates to the length

of each chamber, L, by λ = ω0/L. In fact the membrane is

partially transmitting, coupling the optical modes together into

two new harmonic modes with frequencies ω1 and ω2 respec-

tively (shown by the blue lines in Figure 3.1b). The strength

of the coupling is parametrised by g, which relates to the rate

at which photons tunnel through the membrane. This coupling

creates an anti crossing in their dispersion diagram[16] as shown

in Figure 3.1b. The dotted lines represent mode frequencies for

a perfectly reflecting membrane. When radiation is allowed to

pass through the membrane, the two modes become coupled,

illustrated by the two solid blue curves. The energy gap 2g

(which will be addressed in a later section) arises due to the

coupling.
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Figure 3.1: (a) Schematic of the system: two fixed mirrors form a cav-

ity divided into two chambers of length L, by a membrane

displaced by an amount q(t) from the cavity centre. Each

chamber supports an optical mode, aL (left) or aR (right).

(b) Dispersion diagram for the optical modes showing two

uncoupled modes when the membrane is perfectly reflect-

ing (dashed lines) with frequencies ωL,R; when radiation

is allowed through the membrane (g 6= 0) the modes cou-

ple together to create the solid blue dispersion curves with

frequencies ω1,2. Close to q = 0 (labelled) the dispersion

of these modes is approximately quadratic.

3.2.1 Experimental considerations

The ‘membrane in the middle’ geometry offers advantages in

the fabrication of high Q-factor mechanical elements[19]. For

the reflective approach this is not as easily achievable, as it can

be difficult to manufacture mirrors with both a high Q-factor

and high reflectivity[18]. Whilst various solutions are available,

the dispersive approach eliminates this problem, as radiation is

allowed to pass through the membrane[22]. High mechanical

quality factors are possible when high-finesse SiN membranes

are used, due to their low intrinsic losses[19, 18]. A high fi-

nesse is possible for the cavity when highly reflective mirrors

are combined with low absorption in the membrane. This has

been achieved via use of stoichiometric SiN in a thin mem-

brane - typically ∼ 50 nm in thickness, compared to the cavity

length of the order 10 cm. Typically a finesse of up to 50, 000 is

achievable[22, 25].

An example of a dispersive optomechanical system is pre-

sented in Figure 3.2[22, 25, 16, 64]. The SiN membrane is sup-
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ported by a frame and positioned between two mirrors, M1

and M2, mounted on a cavity spacer, inside a vacuum cham-

ber. An Nd:YAG laser provides the drive1[65]. The beam is

passed through an optical isolator (OFR) and into the cavity,

via two steering mirrors, SM1 and SM2. The output from the

cavity is fed through a photodiode (PD) which measures the

optical power transmitted and feeds it into a digital storage os-

cilloscope. This way one can measure the optical frequency of

modes in the cavity, from which the mechanical position can be

deduced.

Figure 3.2: Schematic of a typical membrane in the middle experi-

mental setup[64]. See text of Subsection 3.2.1 for further

details.

3.2.2 The Hamiltonian and master equation

In this chapter, quadratic optomechanical coupling is explored.

This can arise for the membrane in the middle geometry, illus-

trated in Figure 3.1a. The Hamiltonian can be derived by consid-

ering the modes of the whole cavity[18, 19]. Here the quadratic

Hamiltonian is motivated using a simple model, which starts

from a description in terms of the modes of the left and right

sub-cavities (see Figure 3.1a) and allows for partial transmis-

1 neodymium-doped yttrium aluminium garnet is a crystal, widely used as
a lasing medium for solid-state lasers. The neodymium ions provide a four-
level system.
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sion. In terms of these two modes (shown as dashed lines in

Figure 3.1b) the Hamiltonian takes the form

H = ωL(q)a†
LaL + ωR(q)a†

RaR + g(a†
LaR + a†

RaL)

+
1

2
ωm(p2 + q2) + Ω(aLeiωdt + a†

Le−iωdt), (3.3)

where aL(aR) is the annihilation operator for the left(right) mode

and the left mode is assumed to be driven with strength Ω,

at frequency ωd. The membrane’s displacement is taken as q,

with momentum p, and frequency ωm. The optical frequen-

cies are functions of q, given by Equations 3.1 and 3.2. Note

that in terms of resonator raising(lowering) operators b†(b), q =
(

b + b†
)

/
√

2 and p =
(

b− b†
)

/(
√

2i).
Since the cavity modes couple together, it can be more intu-

itive to write the Hamiltonian in terms of the upper and lower

dispersion bands (solid blue lines in Figure 3.1b), represented

by annihilation operators a1 and a2. The transformation is linear

and of the form (for details, see Appendix D):

a1 = uaL + vaR, (3.4)

a2 = xaL + yaR, (3.5)

with coefficients

u =
g

√

g2 + (ω1 −ωL)2
(3.6)

v =
ω1 −ωL

√

g2 + (ω1 −ωL)2
(3.7)

x =
ω2 −ωR

√

g2 + (ω2 −ωR)2
(3.8)

y =
g

√

g2 + (ω2 −ωR)2
, (3.9)

where ω1 and ω2 are given by

ω1 = ω0 +
√

g2 + (λq)2 (3.10)

ω2 = ω0 −
√

g2 + (λq)2. (3.11)

This then allows the Hamiltonian to be written in the following

form:

H = ω1a†
1a1 + ω2a†

2a2 +
1

2
ωm(p2 + q2)

+Ω[(Xa1 −Ya2)e
iωdt + (Xa†

1 −Ya†
2)e
−iωdt], (3.12)
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where X and Y are given by

X =
g
√

g2 + (ω1 −ωL)2

g2 − (ω1 −ωL)(ω2 −ωR)
, (3.13)

Y =
(ω1 −ωL)

√

g2 + (ω2 −ωR)2

g2 − (ω1 −ωL)(ω2 −ωR)
. (3.14)

The coupled frequencies ω1,2 have a dependence on q which

is approximately quadratic when g≫ λq

ω1 ≈ ω0 +
[

g +
λ2

2g
q2
]

, (3.15)

ω2 ≈ ω0 −
[

g +
λ2

2g
q2
]

. (3.16)

Thus by probing the dynamics around q ≈ 0, the case of quad-

ratic optomechanical coupling is explored.

The minimum frequency gap is 2g, as shown in Figure 3.1b.

For g ≫ ωm, the upper and lower modes are separated by a

large enough frequency that there is little chance of transitions

between them. This allows a single mode to be considered by

selecting a drive frequency close to its resonance. This chapter

focuses on a single optical mode with frequency ω1, and the

corresponding annihilation operator is labelled simply a. The

effects of quadratic coupling to the mechanical resonator can

then be analysed.

In Chapter 2, Equations 2.11 to 2.15 detail a unitary transfor-

mation on the Hamiltonian. An identical transformation gives

the effective Hamiltonian for the quadratically coupled system,

in the rotating frame of the drive frequency:

He f f = ∆a†a + Gq2a†a +
1

2
ωm(p2 + q2) + ǫ(a + a†), (3.17)

where ∆ = ω0 + g− ωd, ǫ = ΩX, G = λ2/(2g). Note that the

implicit q dependence in the drive term that arises through X

is neglected in the following. The master equation is written in

terms of ρ̃, the density operator in this rotating frame:

˙̃ρ = −i
[

He f f , ρ̃
]

+ L̂aρ̃ + L̂bρ̃. (3.18)

The same model as that introduced in Chapter 2 is applied to

describe dissipation in the cavity and resonator in terms of two

separate environments of harmonic oscillators which couple to

each set of modes separately. This results in operators L̂a and
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L̂b identical to the linear case (where again it is assumed that

na = 0):

L̂aρ̃ = −κ

2

(

a†aρ̃ + ρ̃a†a− 2a†ρ̃a
)

, (3.19)

L̂bρ = −γ

2
(n + 1)

(

b†bρ + ρb†b− 2b†ρb
)

−γ

2
n
(

bb†ρ + ρbb† − 2bρb†
)

. (3.20)

The analysis that follows employs a very similar combina-

tion of analytical and numerical methods to those used for the

linearly coupled system. The next section details an analytic

approach via a semi-classical approximation, before further sec-

tions discuss numerical results.

3.3 semi-classical approximation

3.3.0.1 Wigner transformation

The semi-classical approach follows an analogous procedure to

Chapter 2. Once again, the truncated Wigner approximation is

employed to obtain a Fokker-Planck equation describing the

evolution of the quasi-probability distribution for the coupled

system. Previously this proved effective in describing the lin-

early coupled system, with the only notable discrepancies be-

ing a shift in ∆[30] and a failure to predict quantum tunnelling

rates[54].

The transformation is detailed in Appendix A. Here the re-

sults are presented in a similar framework to Chapter 2. The

truncated equation is

∂W

∂t
=

∂

∂β∗

(

− iωmβ∗ +
γ

2
β∗ − 2iG(β∗ + β)(α∗α− 1

2
)
)

W

+
∂

∂β

(

iωmβ +
γ

2
β + 2iG(β∗ + β)(α∗α− 1

2
)
)

W

+
∂

∂α∗

(

− i∆α∗ +
κ

2
α∗ − iGα∗(β∗ + β)2 − iǫ∗

)

W

+
∂

∂α

(

i∆α +
κ

2
α + iGα(β∗ + β)2 + iǫ

)

W

+
γ

2
(2n + 1)

∂2W

∂β∂β∗
+

κ

2

∂2W

∂α∂α∗
, (3.21)

where once again the phase space variables α and β replace the

quantum operators a and b, and the shorthand W = W(α, β) is
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used for the Wigner function. Langevin equations for α, α∗, β

and β∗ follow from Equation 3.21[1]:

α̇ = −i∆α− iGα(β + β∗)2 − κ

2
α− iǫ + ηα, (3.22)

α̇∗ = i∆α∗ + iGα∗(β + β∗)2 − κ

2
α∗ + iǫ + ηα∗ , (3.23)

β̇ = −iωmβ− 2iG(β + β∗)
(

α∗α− 1

2

)

− γ

2
β + ηβ(3.24)

β̇∗ = iωmβ∗ + 2iG(β + β∗)
(

α∗α− 1

2

)

− γ

2
β∗+ηβ∗ ,(3.25)

where, as previously, ηα and ηβ are Gaussian white noise vari-

ables, describing fluctuations in variables α and β.

3.3.1 Analysis of the Langevin equations

As in Chapter 2, an analytic calculation considers the regime

where optical timescales are much faster than mechanical ones.

In particular, it is assumed that κ ≫ γ, G, so the rate at which

the energy of the mechanical resonator changes is much slower

than that of the optical mode. This allows β = Be−i(ω′mt+φ) to

be substituted into Equation 3.22, where φ is a phase variable

and ω′m = ωm + δω. The shifted mechanical frequency, ω′m, will

be determined self-consistently. Since the coupling is quadratic

with position, oscillations occur around the centre of the cavity,

so that βc = 0. With the quantities B, δω and φ treated as con-

stants (See Chapter 2, Section 2.3.1 for details), Equation 3.22 is

written

α̇ = −
[

i∆′ +
κ

2
+ 2iB2G cos (2(ω′mt + φ))

]

α− iǫ

+ηα, (3.26)

where ∆′ = ∆ + 2B2G. The calculation proceeds almost identi-

cally to Chapter 2. A substitution, α̃ = αeiz sin (2(ω′mt+φ)), is made,

where z = B2G/ωm:

˙̃α = −
[

i∆′ +
κ

2

]

α̃− iǫ

2π
eiz sin (2(ω′mt+φ)) + η̃α. (3.27)

The equation is Fourier transformed, separated into average

and fluctuating parts, and the Jacobi-Anger expansion[55] ap-

plied to express α̃(ω) in terms of a Bessel series:

α̃(ω) = 〈α̃(ω)〉+ δα̃(ω), (3.28)
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where

〈α̃(ω)〉 =
−iǫ ∑n δ(ω− 2nω′m)Jn(z)ei2nφ

i(ω + ∆′) + κ
2

, (3.29)

δα̃(ω) =
η̃α(ω)

i(ω + ∆′) + κ
2

. (3.30)

Similar analysis, with the transformation α̃∗ = α∗e−iz sin (2(ω′mt+φ)),

yields the expression α̃ = 〈α̃∗〉+ δα̃∗, where

〈α̃∗(ω)〉 =
iǫ ∑n δ(ω + 2nω′m)Jn(z)e−i2nφ

i(ω− ∆′) + κ
2

, (3.31)

δα̃∗(ω) =
η̃α∗(ω)

i(ω− ∆′) + κ
2

, (3.32)

3.3.2 Damping due to back action

Turning to Equation 3.24, analysis of the damping requires a

calculation of the coupling term arising from the average dy-

namics of the cavity, this is given by

〈α∗〉〈α〉(ω) = ǫ2 ∑n,n′ Jn(z)Jn′(z)e
i2(n−n′)φδ( fn,n′(ω))

h∗n(hn + iω)
, (3.33)

where the following have been defined:

hn =
κ

2
+ i
(

2nω′m + ∆′
)

(3.34)

fn,n′(ω) = ω + 2ωm(n− n′). (3.35)

Equation 3.24 is then

β̇ = −
(

iω′m +
γ

2

)

β− 2iG〈α∗〉〈α〉
(

1 + e2i(ω′mt+φ)
)

β

−2iG (〈α∗〉δα + 〈α〉δα∗)
(

1 + e2i(ω′mt+φ)
)

β + ηβ, (3.36)

where the first two terms describe average dynamics and the fi-

nal two describe fluctuations. Focusing on the average dynam-

ics allows the damping due to back action and the frequency

shift to be deduced. With the ansatz of Section 3.3.1, Equation

3.36 is written in terms of amplitude B,

Ḃ = −
(γ

2
+ 2iG〈α∗〉〈α〉

(

1 + e2i(ω′mt+φ)
))

B. (3.37)

To proceed, a rotating wave approximation is applied, as de-

scribed in Chapter 2. This isolates contributions to the sum over
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n′ that produce terms oscillating at ω′m, whilst other terms ro-

tate rapidly and can be discarded[56]. The resulting equation

is

Ḃ = −
(γ

2
+ Γ

)

B, (3.38)

where

Γ = 2iGǫ2 ∑
n

(

J2
n(z)

|hn|2
+

Jn(z)Jn+1(z)

hn+1h∗n

)

, (3.39)

and

hn =
κ

2
+ i(2nω′m + ∆′). (3.40)

Note that the φ dependence is lost and so the resulting damp-

ing expression will only depend on B and ω′m. The damping

and frequency shift are identified as the real and imaginary

components of the coupled term, respectively:

γBA(z) = −4Gκω′mǫ2 ∑
n

Jn(z)Jn+1(z)

| hn |2| hn+1 |2
, (3.41)

δω(z) = 2Gǫ2 ∑
n

[

Jn(z)2

| hn |2
− Jn(z)Jn+1(z)χn

| hn |2| hn+1 |2
]

, (3.42)

where

χn = κ2/4 +
(

2(n + 1)ω′m + ∆′
)

(2nω′m + ∆′). (3.43)

In Chapter 2 the correction ω′ = ωm + δω results in negligible

errors in γBA, so it was ignored and ωm used throughout. For

the quadratic case, the errors are slightly higher (around 10−2

for the parameters considered) and the correction is added in.

The shift δω(z) is calculated using the un-shifted frequency ωm,

before using the shifted frequency ω′m to calculate γBA(z) and

δω(z).
Figure 3.3 shows the damping due to back-action on a colour

plot for different energies as ∆ is varied. The white contour

shows solutions to the energy balance condition for limit cycles:

γ + γBA(E0) = 0, (3.44)

where γBA(E0) is the damping due to back action as a function

of energy, at point E0 = B2
0. For each value of ∆ either two

solutions occur, or there is no limit cycle. The stability condition

for a limit cycle requires γ′BA(E0) > 0, which results in stable

limit cycles at the higher energy end of the contour.
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Figure 3.3: The damping due to back action, with respect to energy

E and detuning ∆. White regions signify heavy damping

whilst darker regions show strong driving. The white con-

tour marks solutions to the energy balance condition, for

limit cycles. For each value of ∆, there is either no limit cy-

cle or two solutions occur at different energies. The higher

energy solutions are found to be stable. Parameters used

are G = 0.03, ǫ = 0.4, γ = 1.4× 10−3 and κ = 1.

It is worth noting the behaviour of γBA at E = 0. Taking

z≪ 1, the asymptotic Bessel function behaviour is considered:

Jn(z) ≈
1

n!

( z

2

)n
. (3.45)

The damping is then approximated by the leading terms in the

sum, n = 0 and n = −1,

γBA ≈
16Gκω2

mǫ2∆′z

[ κ2

4 + ∆′][ κ2

4 + (2ωm + ∆′)2][ κ2

4 + (2ωm − ∆′)2]
. (3.46)

The back action damping is thus proportional to E as E→ 0, so

that γBA(0) = 0. This results in a total damping which is always

positive in the low energy limit, so that the stability condition

on the fixed point at the origin (E = 0), γ + γBA(0) > 0, is

always satisfied. The fixed point is therefore always a stable

solution for the case of quadratic coupling.
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3.3.3 Diffusion due to back action

With the intention of including fluctuations in the analysis, Equa-

tion 3.24 is written in terms of energy:

Ė = −γTE + ηT

√
E, (3.47)

where γT = γ + γBA(E), and γBA(E) is given by Equation 3.41,

noting that z = GE/ωm. The fluctuating terms are given by

ηT(ω, E) =
(

ηβeiωmt+φ + η∗βe−(iωmt+φ) + ηBA(ω, E)
)

,(3.48)

where

ηBA(ω, E) = 2
√

E
(

ηe f f + η∗e f f

)

sin (2ω′mt + 2φ), (3.49)

ηe f f = 2G〈α∗〉δα. (3.50)

Note that, once again second order fluctuations have been ap-

proximated by their averages, and do not contribute towards

the diffusion. Using the same approach as Chapter 2, Section

2.3.4, the diffusion is described by the expression

DBA(z) = lim
ω′→0

ω′

2π

∫ 2π/ω′

0
dt
∫ ∞

−∞
dωei(ωt+ω′t′)ζ(ω, ω′)(3.51)

where

ζ(ω, ω′) = 〈ηBA(ω)ηBA(ω
′)〉. (3.52)

Following a similar series of steps to the linear case, the diffu-

sion constant due to back action is given by

DBA(z) = 2Gǫ2ω2
mκz ∑

n

[

J2
n(z)

| hn |2
(

1

| hn+1 |2
+

1

| hn−1 |2
)

− Jn(z)Jn+2(z)

| hn+1 |2
(

1

h∗nhn+2
+

1

hnh∗n+2

)

]

. (3.53)

In the small energy limit, z ≪ 1, one can apply a similar ap-

proximation to that applied to the damping in Section 3.3.2.

The resulting expression for DBA then contains a contribution

from the n = 0 term only:

DBA ≈
2Gκωmǫ2

(

κ2

4 + ∆′2 + 4ω2
m

)

z
[

κ2

4 + ∆′2
] [

κ2

4 + (2ωm + ∆′)2
] [

κ2

4 + (2ωm − ∆′)2
] .(3.54)

It is interesting to note that both the diffusion and damping

due to back action are approximately linear at small energies,

in contrast to the linearly coupled system, where both tend to-

wards constants as E → 0. This will be important when ad-

dressing the cooling regime.
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3.3.4 Probability distribution for the resonator

Equation 3.47 takes the form of a Langevin equation in E, which

is converted into a Fokker-Planck equation for the probability

distribution for the energy, P(E, t). This is achieved via an iden-

tical analysis to that applied in the linear case (see Section 2.3.5,

Chapter 2). Solving for the steady state, Ṗ(E, t) = 0, gives a

probability distribution that takes the same form:

P(E) ∝ e−U(E), (3.55)

with

U(E) =
∫ E

0
dE′

γ + γBA(E′)
Dth + DBA(E′)

, (3.56)

where γBA(E) and DBA(E) are given by Equations 3.41 and

3.53, respectively. Semi-classical expressions for observables in

the resonator dynamics then follow.

3.3.5 Cooling Regime

When the system is in the red-detuned regime, energy is ex-

tracted from the resonator, and cooling is possible. This allows

a series of approximations to further simplify the expressions

of this section. In contrast to the linear coupling case, the back

action contributions to both damping and diffusion are propor-

tional to z, when z ≪ 1. This results in a probability distri-

bution that is slightly more complicated than that obtained in

Chapter 2, Section 2.3.6. Quadratic coupling does not allow a

thermal distribution to be reached at low resonator energies.

Analysis of the distribution in the case of cooling therefore re-

quires additional approximations; this section looks at the re-

solved sideband limit.

Sideband cooling in the resolved sideband limit puts the sys-

tem in the regime of low resonator energies. The anti-Stokes

process dominates and the system can be cooled close to its

ground state, z≪ 1[9].

In the resolved sideband limit κ ≪ ωm and energy exchange

is concentrated strongly at the resonance at ∆ = 2ωm. Since the

cooling regime takes the system towards lower energies, one

can further assume that z≪ 1, provided the initial temperature
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is not too high. With these assumptions, Equations 3.46 and 3.54

gives

γBA(z) ≈
2Gǫ2z

κωm
(3.57)

DBA(z) ≈
Gǫ2z

κωm
(3.58)

A simple expression for the probability distribution can be

found when thermal fluctuations dominate, DBA/Dth ≪ 1. Equa-

tion 3.55 then approximates to

P(E) ∝ e
− ǫ2G2E2

κγω2
mn e−

E
n , (3.59)

In the limit ǫ2G2/κγω2
m ≪ n the distribution behaves as a de-

caying exponential. This limit is depicted in Figure 3.4, which

shows the damping and probability distribution. Here the in-

trinsic damping dominates so the approximated probability dis-

tribution is accurate, whilst the approximation in Equation 3.57

begins to diverge for E > 1.
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Figure 3.4: Analytics for ωm = 5, γ = 0.1, ǫ = 0.4, n = 5, G =

0.03. Solid lines represent the small energy approximation,

whilst dashed lines give the semi-classical approximation.

Figures show (a) damping due to back action and (b) prob-

ability distribution.

It should be noted that the results presented in this limit

match those in recent work by Nunnenkamp et al.[45]. In con-

trast to the analysis of this section, Nunnenkamp et al. derive

their expression for the probability distribution by deriving an

effective classical master equation directly from the full quan-

tum master equation.
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3.4 numerical analysis

In this section the numerical solution to the master equation

is explored, focusing especially on the blue-detuned regime

where limit cycles occur. The analysis addresses the cases of

strong and weak optomechanical coupling.

The coupling determines the strength of the non-linearity,

which affects the type of behaviour seen in the resonator[66].

Analysis deals with the weak and strong coupling limits sep-

arately. At weak coupling, G ≪ κ, the analytic calculations

are expected to capture the behaviour of the resonator. In the

strong coupling regime, G ≫ κ, the fundamental assumption

of the semi-classical approximation is expected to break down,

since the third order differentials are proportional to G. This

regime can therefore only be explored numerically. Since the

two Hamiltonians differ only by a coupling term, the quadratic

system is expected to show similar features to the linear system

as G → 0. Plots are presented which examine the average be-

haviour of the phonon number, 〈n〉, Fano factor, F and Wigner

function of the resonator.

3.4.1 Weak coupling

For the case of weak coupling, the parameters of Table 3.1 are

investigated.

Table 3.1: Table of parameters.

Parameter Value (units κ = 1)

ωm 1

κ 1

γ 1.4× 10−3

G 0.03

ǫ 0.4

n 0.1

In the case of a quadratic interaction, sweeping through ∆

would be expected to reveal a series of resonance peaks at in-

tervals of 2ωm in the good cavity regime. This is due to interac-

tions occurring where pairs of phonons are transferred to the

resonator, a characteristic of the quadratic interaction. Analysis

focuses on the ‘bad cavity’ limit, where the resonance peaks

are not resolved, and the energy exchange occurs over a broad

range of frequencies.
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Figure 3.5 shows the average phonon number for the param-

eters of Table 3.1, as the detuning is swept. There are noticeable

parallels to the behaviour observed in the case of linear cou-

pling. Again, a broad resonance peak is observed, where sev-

eral orders of resonance merge. The maximum in 〈n〉 at point

D results from large numbers of phonons building up in the

resonator, as multiple photons are absorbed. As previously the

resonator evolves between three dynamical states, labelled A, C

and D, representing a fixed point, limit cycle and bistability, re-

spectively. These are illustrated via Wigner functions in Figure

3.6.
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Figure 3.5: Average phonon number (solid line) alongside Fano factor

(dot-dashed line) plotted as a function of the detuning, for

parameters of Table 3.1.

Comparing the cases of linear and quadratic coupling, a no-

table difference is the transition between the fixed point and the

limit cycle. Figure 3.6a shows the Wigner function in the regime

where only the fixed point is stable, at low ∆. As ∆ increases

the limit cycle emerges whilst the fixed point remains stable,

so that a bistability occurs at point B. This is predicted by the

small amplitude approximation for γBA, which indicates that

the stability condition for the fixed point is met over the entire

range of ∆ (see Chapter 2, Section 2.3.3). Although the fixed

point solution remains stable as ∆ increases, the probability of

finding the resonator in this state is negligible at point C. This

results in a state with an energy distribution which resembles
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a Gaussian peak. The Wigner function here is shown in Figure

3.6b.

Near point D there is a large peak in F, as the probability

density at the fixed point grows. The large separation of ener-

gies between the limit cycle and fixed point states causes a vast

increase in the variance. Figure 3.6c shows the Wigner function.

The peak in F is accompanied by a sharp drop in 〈n〉, as the

limit cycle collapses.
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Figure 3.6: Evolution of the resonator Wigner density function as blue

detuning is increased, corresponding to points in Figure

3.5, (a) Fixed point at A, (b) Limit cycle at C, (c) Bistability

at D.

Figure 3.7 shows the evolution of the resonator state over the

range of weak coupling, as G is varied and ∆ = −2.5. In this

regime the resonator behaves in much the same way as for the

case of linear coupling. Points A ,D and C mark the fixed point,

bistability and limit cycle state, respectively. The inset shows

a close up of the region where F drops to a minimum F ≈
0.83. The presence of sub-Poissonian states (F < 1) indicates a

degree of number squeezing[10, 30] in the resonator. This will

be explored further in the strong coupling regime.

3.4.2 Behaviour at strong coupling

Analysis of the resonator state where G ∼ κ reveals the emer-

gence of multiple limit cycles, and a loss of the smooth Gaus-

sian appearance to their probability peaks. Here, it is evident

that the semi-classical description of the fluctuations will not

be sufficient to describe the dynamics, and the non-linearity

is strong (note that analytical and numerical results are com-

pared in Section 3.5). Far into the strong coupling regime non-

classical behaviour develops. The inset of Figure 3.7 illustrates

the presence of sub-Poissonian states at low coupling. As with

the linear case, the coupling strength must be increased further

in order to see significant squeezing in the limit cycle, at the ex-
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Figure 3.7: Average phonon number (solid) and Fano Factor (dot-

dash) with respect to the mechanical coupling, G. The in-

set shows where the Fano factor passes below unity.

pense of encountering dynamical multistability, which causes

F ≥ 1. The dynamics in this regime are reminiscent of the lin-

ear coupling case, but some key differences are highlighted in

the analysis to follow. As the coupling is increased negative

regions occur in the Wigner function. These are explored sepa-

rately below. The parameters used are the same as in Table 3.1,

except n = 0, whilst G is varied.

3.4.2.1 Negative regions in the Wigner function

Whilst Figure 3.7 displays the presence of sub-Poissonian states,

non-classical features are stronger when n = 0[12]. Figure 3.8

shows the Fano factor over a broad range of coupling values,

with n = 0. At G = 0.04 (labelled X) the Fano factor drops to a

minimum F ≈ 0.6. The corresponding probability distribution

at this point is shown in the inset (red). These states are num-

ber squeezed[10, 12]. As the coupling is increased, the peak

grows narrower as seen at point Y (green). With increasing cou-

pling the peak grows narrower, but an additional peak emerges

(shown by the blue distribution at point Y). This causes the

Fano factor to increase, rising above above unity as the separa-

tion between the peaks increases.
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Figure 3.8: The Fano factor on a logarithmic scale, with respect to cou-

pling. Inset shows the probability distribution for marked

values of G.

As the coupling increases further, states emerge with nega-

tive regions in the associated Wigner functions. An example is

given in Figure 3.9a, which shows the Wigner function along-

side the corresponding probability distribution for G = 1.35.

The probability peaks have lost their smooth Gaussian appear-

ance and the Wigner function contains a ring of negative den-

sity.
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Figure 3.9: Non classical states of the resonator, indicated by the pres-

ence of negative densities in the Wigner function. (a) The

Wigner function for G = 1.35, (b) the corresponding prob-

ability distribution in n, where multiple peaks appear.
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For states in the strong coupling regime, the extent of neg-

ativity in the Wigner functions can be measured by the ‘non-

classical ratio’[12], η. This is defined as the ratio between the

sums of the negative and positive elements in the Wigner func-

tion:

η =
∑i,j |W(−)

ij |

∑k,l W
(+)
kl

, (3.60)

where W(+) and W(−) are the amplitudes of positive and neg-

ative Wigner elements, respectively. The sums are over all ele-

ments in the Wigner density matrix, labelled by indices i, j and

k, l.

Figure 3.10 shows numerical results in the strong coupling re-

gime, as G and ∆ are varied. The non-classical ratio is shown in

Figure 3.10a, and displays a series of peaks. Looking at lines of

constant coupling, at G < 1, the non-classical behaviour is con-

centrated towards higher order sidebands. As G is increased,

the peaks in η shift towards lower |∆|, so that for G = 3, non-

classical states are generated well below where two phonon res-

onance would be expected. It has been established in Chapter

2 that the effective value of ∆ is shifted at strong coupling for

the linear system, it seems likely that something similar is oc-

curring here.

Over the strong coupling range, F remains above unity (Fig-

ure 3.10b), whilst highly non-classical states occur. This is due

to the emergence of additional limit cycles at stronger cou-

plings. As extra peaks in P(n) emerge, F increases. As the peaks

move inwards and merge with each other, this causes drops in

F.

For highly non-classical states, the Wigner function is a se-

ries of concentric rings of densities alternating in sign, reminis-

cent of a Fock state (shown in Figure 2.11 of Chapter 2). The

corresponding probability distribution consists of a number of

sharp peaks, the separation of which results in an overall super-

Poissonian state, F > 1, whilst displaying non-classicality[12].

This behaviour has been examined extensively for the case of

linear coupling[10, 12], and is summarised in Chapter 2, Section

2.4.3.
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Figure 3.10: System dynamics in the strong coupling regime, as G

and ∆ are swept. (a) Non-classical ratio, as defined in

Equation 3.60, and (b) Fano factor, with ǫ = 0.4, ωm = 1,

n = 0, γ = 0.0014. In (b) the white contour indicates

the region where F < 1 - generally the strong coupling

regime produces state with F > 1, in spite of the high

non-classical ratios.



66 quadratic coupling in the dispersive system

3.5 comparison between analytics and numerics

The regime of weak coupling allows for a comparison between

analytic and numerical calculations. For the parameters of Ta-

ble 3.1, 〈n〉 and F are compared in Figures 3.11a and 3.11b for

n = 0.1, n = 1, and n = 5. Increasing the thermal phonon

number results in a broadening of the curves in 〈n〉 and F. The

off-resonance value of 〈n〉 increases and larger fluctuations al-

low phonons to build up over a wider range of ∆.

An increase in n results in greater thermal diffusion. Since

the diffusion due to back action is independent of the thermal

phonon number, at n = 5, one approaches a regime where ther-

mal fluctuations dominate2. Increasing n improves the accuracy

of the analytic solution. Figure 3.11a shows some significant dis-

crepancies, particularly at n = 0.1. These include a frequency

shift and an underestimate in the peak value of 〈n〉. As n in-

creases the shift reduces, as does the discrepancy in the peak

height. This suggests that inaccuracies in the semi-classical ap-

proximation arise largely from inaccuracies when calculating

the diffusion due to back action, which plays a more prominent

role in the dynamics as n→ 0.

The ∆ shift observed reduces as the thermal phonon number

increases, but is also found to increase with G, indicating that it

is a result of the approximate treatment of the non-linearity. In

the thermal regime, the behaviour is dominated by thermal fluc-

tuations which are described well by the semi-classical approxi-

mation. As the coupling is increased however, non-linear effects

become more prominent, and the fluctuations not treated ex-

actly by the truncated Wigner approximation cause a problem.

Figure 3.12 compares the limit cycle amplitudes deduced from

numerical and analytic calculations. The solid line represents

limit cycle energies found analytically by applying the energy

balance condition. The crosses represent the position of numer-

ical peaks in n. The data matches reasonably well, particularly

over the region where the system strongly favours the limit

cycle state, and Gaussian peaks are observed in P(n). Discrep-

ancies appear when the fixed point amplitude becomes much

larger in comparison to the limit cycle amplitude.

Overall the analytic approximation provides an accurate pic-

ture of the limit cycle dynamics, suggesting again that the an-

alytics of Figures 3.11a are limited by inaccuracies in the dif-

2 Over the range of energies considered, for parameters of case [i], DBA(E0)
is of the order 10−2, compared to Dth ≈ 2.5.
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Figure 3.11: A comparison of (a) average phonon number and (b)

Fano factor, for n = 0.1 (red), n = 1 (green) and n = 5

(blue). Analytics are given by dashed lines and numer-

ics in solid, remaining parameters are as in case [i]. Inset

shows the minimum in the Fano factor for n = 0.1, where

sub-Poissonian statistics occur.

fusion calculation. Outside of the regions where the system

favours the limit cycle state, large discrepancies are found in
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〈n〉 and F. The bistable state is marked by large fluctuations

(peaks in F), resulting in greater inaccuracies in the calcula-

tion. It is apparent that the semi-classical approximation has

difficulty capturing the large fluctuations of the quadratically

coupled system.
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Figure 3.12: A comparison of the limit cycle dynamics for the param-

eters of the red curve in Figure 3.11a. Analytics (solid

line) are generated via the energy balance and stability

conditions, whilst numerical points (crosses) are peaks

in P(n).

For each value of n, the agreement of the results depends

on the state of the resonator. The analytics and numerics over-

lap quite closely in the region where the system favours a sin-

gle limit cycle state. In this region, where higher energy states

are occupied, the probability distributions can be usefully com-

pared. This comparison is provided for each value of n, in

Figure 3.13. The analytic distribution P(E) (blue) is plotted

alongside numerical distribution P(n) (black). The distribution

is roughly Gaussian (the Gaussian approximation is shown in

red) and fluctuations in this region are small. The increased ac-

curacy of the semi-classical approximation is evident for n = 5.

Figure 3.14 provides a comparison between the two calcula-

tions as G is varied. At low G (see inset), the fixed point is stable

and low energies result in higher accuracy for the calculation.

As G increases, and the bistability emerges, the curves begin to
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Figure 3.13: Probability distributions for the resonator in the limit cy-

cle state for (a) n = 0.1, (b) n = 1 and (c) n = 5, with

numerics in black and analytics in blue. The Gaussian

approximation is also shown in red.

diverge slightly. Larger discrepancies occur at the peak in 〈n〉.
The large energies are accompanied by large fluctuations (the

inset depicts this via a sharp peak in F). These fluctuations are

not captured exactly and the analytics underestimate the peak.

Once the resonator settles into a limit cycle at high G, the fluc-

tuations reduce and the accuracy improves. The curves remain

in agreement until G ≈ 0.3, where they begin to diverge. Over-

all, the discrepancies in the curve are more pronounced as G

increases, but are also dependent on the state of the resonator.

The bistable state is generally the least accurately described by

the semi-classical approximation. In contrast, the limit cycle is

generally well described for G ≤ 0.3.



70 quadratic coupling in the dispersive system

0

5

10

15

20

25

30

35

40

45

50

〈n
〉

〈n
〉

G

0 0.05 0.15 0.25 0.35 0.450.1 0.2 0.3 0.4 0.5

0.050.040.01 0.02 0.03
∆/ωm

F

20

40

20

40

Figure 3.14: The average phonon number with respect to G, for ∆ =

−2.5, for numerical (solid) and analytic (dashed) calcu-

lations. Inset shows 〈n〉 and F in the region of low G,

where the calculation is approximately accurate.

3.6 conclusion

This chapter has investigated an optomechanical system with

rather different geometry compared to the previous chapter. By

placing a mechanical element at the centre of a cavity and al-

lowing partial transmission of radiation, quadratic coupling is

achieved. In the blue detuned limit this system offers a range

of dynamical behaviours, similar in many aspects to the linear

case. One can observe transition between the same three res-

onator states: fixed point, limit cycle and bistability. However,

differences are observed in the transitions. The resonator passes

through two bistable regimes as the laser is tuned around the

mechanical resonance, resulting in a more symmetric looking

resonance peak in the phonon number.

The strong coupling regime offers some interesting behaviour.

As in the linearly coupled system, negative regions are observed

in the Wigner function for values of G close to unity. In addi-

tion, there are regions where number squeezing occurs (F < 1)

but these occur at much weaker couplings. It is worth noting

that, for the quadratic case, a lower value of F = 0.6 is reached,

outside of the resolved sideband limit.
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As in Chapter 2, the truncated Wigner approximation has

been applied to the quadratic system. The result is a similar set

of Langevin equations for the cavity and resonator. These have

been solved by separating the timescales of the cavity and res-

onator, in order to obtain a probability distribution for the res-

onator. Unfortunately the third order derivatives, which were

ignored in the approximation, turn out to have more signifi-

cance in the quadratic system. The non-linearities are stronger,

so that approximations which are valid for linear coupling lead

to inaccuracies in calculating diffusion in the quadratic case,

particularly when large fluctuations dominate the dynamics.

This results in difficulty describing the bistable regime, and the

weighting of peaks in the probability distribution are not accu-

rately captured, which results in inaccuracies in 〈n〉. However, a

certain amount of success is found in describing regions where

fluctuations are small - for example limit cycles with Gaussian

peaks. Additionally regimes such as cooling and large thermal

fluctuations are described accurately.





4
S TA B I L I T Y, D A M P I N G A N D C O O L I N G I N A

T W O - M O D E S Y S T E M

4.1 introduction

The previous chapter introduced the dispersive optomechanical

system, where a membrane at the centre of the cavity provides

the mechanical mode. The coupling between the resonator and

cavity was found to range between approximately quadratic

[45] and approximately linear[67], depending on the position

of the mechanical element[17, 25]. Increasing the rate at which

photons tunnelled through the membrane increased the separa-

tion between the frequencies of the two optical modes[16], pro-

hibiting transitions and allowing a single mode to be probed

with careful selection of the drive frequency.

In this chapter the focus is shifted towards a regime where

energy exchange occurs between photonic modes as well as

with the mechanical mode. A reduced tunnelling rate through

the membrane brings the system into a regime where the fre-

quency separation between optical modes is similar to the me-

chanical frequency. In this case, the absorption or emission of

a phonon in the resonator induces transitions between photon

modes[16, 68]. As a result, one must now account for energy ex-

change between different photon modes as well as between the

cavity and resonator. The system is thus formulated in terms of

the mechanical mode and photonic modes for the left and right

chambers of the cavity.

This chapter explores the effect of damping and cooling, when

ωm ∼ g. The case of linear coupling to a single optical mode

was addressed briefly in Chapter 2, where an approximate ana-

lytical expression was obtained for the effective temperature in

the regime of sideband cooling. It has been shown theoretically

[13, 35] and experimentally[14] that a resonator can be cooled

to the quantum ground state, by coupling it to a single optical

mode.

This chapter investigates whether ground state cooling is pos-

sible for the dispersive system, in the regime where both optical

modes interact with the membrane. Since radiation is allowed

to tunnel through the mechanical element, realisation of such

73
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systems is possible without the problem of fabricating highly

reflecting mirrors with large mechanical quality factors [18, 19].

Such a feat is desirable, as it would lend itself to less challeng-

ing experimental systems.

The chapter is organised as follows: The system is introduced

in Section 4.2, and the equations of motion presented. Section

4.3 explores the static bistability, a phenomenon which arises

in strongly driven systems[69]. This allows one to determine

the regime in which the resonator reaches a stable state, a pre-

requisite for cooling. Section 4.4 explores the fluctuations and

presents a linearized calculation of the mechanical noise spec-

trum. Section 4.4.1 uses the noise spectrum to determine the

damping due to back action in the red detuned regime. This al-

lows a comparison between the single mode and double mode

systems by varying the tunnelling through the membrane. The

linearized calculation then allows an effective phonon number

to be deduced in Section 4.4.2, which also explores back action

induced cooling and compares results to the single mode case.

4.2 the system

The system under consideration takes the same basic form as

that introduced in Chapter 3 (and illustrated schematically in

Figure 3.1a), but here a rather different set of parameters are

explored. The membrane is mounted at a position q0, and has

a tunnelling rate g. In contrast to the previous Chapter, here a

regime is explored where g ∼ ωm, so that radiation is partially

reflected and partially transmitted through the membrane. The

dispersion diagram in Figure 4.1 illustrates the optical modes

in the system. For the case ωm > 2g (as is the case in Figure 4.1),

the minimum mode spacing is small enough that there exists a

displacement q′ such that the upper and lower dispersion bands

are separated by a factor of the mechanical frequency. Transi-

tions between the optical modes then occur with the absorp-

tion or emission of a phonon[16], when the system is driven

near one of the cavity frequencies.

Equation 3.3 of Chapter 3 introduces the Hamiltonian for the

dispersive system. The effective Hamiltonian is obtained, this

time, via a unitary transformation U = eiH0t with

H0 = ωd

(

a†
LaL + a†

RaR

)

, (4.1)
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Figure 4.1: Dispersion diagram showing how the frequencies optical

modes in the cavity vary with membrane displacement,

q. Uncoupled modes of frequency ωL and ωR are illus-

trated by black dashed lines, whilst the coupled modes,

ω1 and ω2, are shown in blue solid lines. The dotted grey

line marks the cavity frequency when the membrane is

at q = 0. For this example ωm > 2g and there exists a

displacement q′ for which the upper and lower dispersion

bands are separated by the mechanical frequency - this

is illustrated by the sideband (dashed curve), which are

displaced by ωm from the curves.

giving

He f f = ∆(a†
LaL + a†

RaR) + g(a†
LaR + a†

RaL) + λq(a†
RaR − a†

LaL)

+
1

2
ωm(p2 + q2) + Ω(aL + a†

L), (4.2)

where the laser is detuned by ∆ = ω0 −ωd, and λ is a constant

parametrising the coupling strength.

Equations of motion can be deduced for the resonator vari-

ables q and p, as well as the cavity operators, using the input-

output formalism for optical cavities[1]. This approach takes

into account the fact that the left and right cavities are weakly

coupled to the large number of electromagnetic modes outside

the fixed mirrors[1]. The Heisenberg equations of motion of the

closed system are modified to include damping terms and fluc-

tuations described by the operators ζ (for the resonator), aIN
L
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(for the left cavity) and aIN
R (for the right cavity). The Heisen-

berg equations deduced take the form

ȧL = −i∆aL + iλqaL − igaR − iΩ− κ

2
aL +

√
κaIN

L (4.3)

ȧR = −i∆aR − iλqaR − igaR −
κ

2
aR +

√
κaIN

R (4.4)

q̇ = ωm p + ζ (4.5)

ṗ = −ωmq− γp + λ(a†
LaL − a†

RaR). (4.6)

Here the mechanical mode is subject to a viscous force, result-

ing in a damping rate γ and a Brownian stochastic force ζ[35].

This force has 〈ζ(t)〉 = 0 and is described by the correlator

〈ζ(t)ζ(t′)〉 =
γ

ωm

∫

dω

2π
e−iω(t−t′)ω

[

coth

(

ω

2kBT

)

+ 1

]

,(4.7)

at temperature T. The cavity, meanwhile is damped at rate κ

and subject to vacuum radiation input noise, described by the

following correlators:

〈aIN
L (t)aIN†

L (t′)〉 = δ(t− t′) (4.8)

〈aIN
R (t)aIN†

R (t′)〉 = δ(t− t′) (4.9)

where it is assumed that ωL ≫ kBT, so thermal fluctuations can

be neglected. With the intention of investigating cooling in the

two mode system, Equations 4.3 to 4.6 are expressed in terms

of small fluctuations about the mean field values: v = 〈v〉 +
δv, where v = q, p, aL, aR. Separating fluctuating and average

dynamics, one then has two sets of equations to deal with:

P =
γ

ωm
Q (4.10)

Q =
λ

ωm
(|αL| − |αR|) (4.11)

αL =
−iΩ

[

κ
2 + i(∆R + λQ)

]

[

κ
2 + i(∆R + λQ)

] [

κ
2 + i(∆L − λQ)

]

+ g2
(4.12)

αR =
−gΩ

[

κ
2 + i(∆R + λQ)

] [

κ
2 + i(∆L − λQ)

]

+ g2
, (4.13)

for the mean fields Q = 〈q〉, P = 〈p〉, αL = 〈aL〉 and αR = 〈aR〉.
In Equations 4.12 and 4.13, the cavity equilibrium detunings ∆L

and ∆R have been introduced:

∆L = ∆− ∆ω (4.14)

∆R = ∆ + ∆ω, (4.15)
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with ∆ω = λq0, which parametrises the detuning between the

two cavity modes when the resonator is in the equilibrium po-

sition, q0.

The fluctuations are found to obey

δ̇q = ωmδp (4.16)

˙δp = −ωmδq− γδp + ζ

λ(αLδa†
L + α∗LδaL − αRδa†

R − α∗RδaR), (4.17)

˙δaL = −
[

i∆′L +
κ

2

]

δaL + iλαLδq− igδaR +
√

κaIN
L (4.18)

˙δaR = −
[

i∆′R +
κ

2

]

δaR − iλαRδq− igδaL+
√

κaIN
R , (4.19)

These equations have been linearized, so that squared fluctua-

tion terms are discarded. This requires fluctuations to be small

compared to mean field values associated with the cavity (αL

and αR) which is an appropriate assumption to make when ex-

ploring the regime of cooling. The coupling λ should also be

small. An additional frequency shift arises from the fixed point

Q, so ∆′L and ∆′R are defined:

∆′L = ∆L − λQ (4.20)

∆′R = ∆R + λQ. (4.21)

The next section deals with the fixed point analysis, before fluc-

tuations are addressed in Section 4.4.

4.3 fixed point analysis and the static bistability

This section investigates stable equilibrium positions of the res-

onator, and addresses the phenomenon of the static bistability.

This occurs when multiple fixed point solutions emerge, so that

the resonator can reach a stable state where it fluctuates about

one of two different positions. Recent publications[35, 69] have

addressed this issue, and its impact on cooling for the case of

a single optical mode. This is now extended to the two mode

case.

One can gain useful insight by considering a potential func-

tion for the mechanical resonator, deduced from the Hamilto-

nian [49]. This analysis does not account for dissipation[47, 48]

and so will not serve only as a rough guide to the fixed point

dynamics, but provides an intuitive picture of how bistability

arises. More detailed analysis follows, accounting for dissipa-

tion in the cavity and resonator modes.
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Assuming that the ring down time for the cavity modes is

short compared to the mechanical period κ > ωm, one can

adopt a simple effective potential description1. This effective po-

tential, V(q), contains a harmonic contribution, Vh = 1
2 ωmQ2, as

well as a contribution from the radiation pressure force acting

on the membrane, Vrad. The radiation pressure arises when the

cavity is driven, causing photons to build up in each chamber.

Collisions with the membrane exert a net force, proportional to

the difference in occupation between the left and right modes:

Frad = λ(|αL|2 − |αR|2). (4.22)

The assumption that κ > ωm allows one to calculate αL and αR

from Equations 4.12 and 4.13, assuming a fixed Q value. The

force Frad can be written as the derivative of a potential, Vrad:

Frad = −∂Vrad

∂Q
(4.23)

The potential for the mechanical mode is the sum of contribu-

tions from Vrad and the harmonic restoring force,

V(Q) = Vrad +
1

2
ωmQ2 (4.24)

Examples of the effective potential are shown in Figure 4.2.

The red and blue curves are single well potentials, signifying

a single stability in the fixed point dynamics. As the drive

strength passes through Ω = 35.35 (green curve) a double

well emerges, indicating the presence of a static bistability. This

phenomenon has been investigated in the case of a resonator

coupled to a single cavity mode[69, 35]. As a rough estimate,

bistabilities appear where the correction to the mechanical fre-

quency is negative and of the same order as the mechanical

frequency, δω ∼ −ωm[49]. For this to occur, both cavity modes

must be red detuned (∆L, ∆R > 0) and the drive strength must

be large (Ω≫ κ).

A more general (and more formal) approach is to analyse

the stability of the fixed points in the system. The fixed points

are found by solving Equations 4.10 to 4.13 simultaneously. The

result is a fifth order polynomial in Q,

a5Q5 + a4Q4 + a3Q3 + a2Q2 + a1Q + a0 = 0, (4.25)

1 This means the cavity can be assumed to react instantaneously to the res-
onator’s motion. This may not always be the case, but a more detailed anal-
ysis in Section 4.3.1 accounts for κ . ωm.
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Figure 4.2: The mechanical potential, V(Q) = Vrad +
1
2 ωmQ2, shown

for three different drive strengths: Ω = 34 (red), Ω = 35

(green) and Ω = 35.35 (blue). Stabilities (minima in the

curve) are marked by circles, with a bistability occurring

for Ω = 35. Parameters are ωm = 0.5, κ = 1, γ = 1× 10−4,

g = 0.1, λ = 0.01, ∆ω = 0 and ∆ = 2ωm.

with coefficients

a5 = λ4 (4.26)

a4 = 4∆ωλ3 (4.27)

a3 =

[

2

(

κ2

4
− ∆R∆L + g2

)

+ 4∆ω2

]

λ2 (4.28)

a2 = 4λ∆ω

(

κ2

4
− ∆R∆L + g2

)

− Ω2λ3

ωm
(4.29)

a1 =

(

κ2

4
− ∆R∆L + g2

)2

+ κ2∆2 − 2
Ω2λ2∆R

ωm
(4.30)

a0 = − λ

ωm
Ω2

(

κ2

4
+ ∆2

R − g2

)

, (4.31)

The polynomial in Equation 4.25 yields five possible solu-

tions for Q, not all of which are real. Since complex solutions

always appear in conjugate pairs, one finds that only one, three

or five real solutions can be found. The potential Vrad is pro-

portional to the difference in photon numbers in each chamber.

Since this is proportional to Ω2, the driving strength can be

varied to explore the emergence of bistabilities.

Figure 4.3a maps the presence of real solutions to Equation

4.25 as a function of Ω for the parameters of Figure 4.2. Over

this range of driving strengths, three solutions emerge, corre-
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sponding to the three branches of the curve. These are identi-

fied as extrema in the potential. Coloured vertical dotted lines

identify the specific parameters which produce the potentials

in Figure 4.2. Note the presence of three solutions for Ω2 = 35.

The central branch of the curve (dotted line) represents the un-

stable solution, or the maximum in the potential. The stable

branches coincide with minima in V(q).
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Figure 4.3: Illustration of the static bistability shown through (a) real

solutions to Equation 4.25 and (b) the resonator frequency

shift, δω (calculated later in Section 4.4.1). Stable branches

of the curves are in solid and unstable branches are dot-

ted. In (a) the three coloured vertical lines correspond

to the potentials shown in Figure 4.2, where intersec-

tions with the stable(unstable) branches correspond to

minima(maxima) in the potential. The black vertical line

is drawn at Ω0, where the instability occurs. In (b) the

coloured lines mark the region of bistability. Parameters

are the same as for Figure 4.2.
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Figure 4.4: The detuning of the left cavity mode, as the drive strength

(as thus the fixed point displacement) is varied, causing a

cavity shift. At a point close to Ω0, the detuning becomes

negative, so that the left mode is driven above resonance.
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Figure 4.3a shows the presence of fixed point solutions up to

Ω = Ω0. At this point, the fixed points all become unstable and

the mechanical mode settles into a state of stable oscillations[69,

39]. Equation 4.20 describes how the red detuning in the left

cavity reduces as the fixed point position Q increases. At the

point where λQ = ∆L (marked by the horizontal dashed line),

∆′L changes sign, such that the left optical mode is driven above

resonance, and energy is no longer extracted from the resonator

to drive the cavity. It is close to this point that the instability

occurs (at Ω0) and the resonator settles into a state of fixed

amplitude oscillations. Figure 4.4 shows the detuning of the

left cavity, ∆′L, as Ω is varied, with the onset of instability Ω0

marked by a vertical black line. The three Ω values that produce

the potentials in Figure 4.2 are also shown.

Figure 4.3b indicates the behaviour of the frequency shift

over the range of Figure 4.3a. Towards the bistable region, the

frequency shift drops to a minimum, satisfying the condition

δω ∼ −ωm. Far from the bistable range, |δω| ≪ ωm, providing

a rough estimate of where static bistabilities are likely to occur.

4.3.1 Routh Hurwitz analysis

Up to this point, solving Equation 4.25 has indicated possible

fixed point solutions, with no explicit indication of their stabil-

ity. Plotting the potential at a given Ω value (Figure 4.2) indi-

cates which of the solutions occurring at that point are stable, in

the limit where κ > ωm and losses are small. A more accurate

form of stability analysis is possible by applying the Routh Hur-

witz criterion to the solutions of Equations 4.3 to 4.6. This will

provide a method of analysis which accounts for the dissipa-

tion in optomechanical systems. This criterion takes the form

of two conditions which, if met, determine that a fixed point

solution is stable[70]. When the fixed point solutions are sta-

ble, one expects the system undergo decaying oscillations[69].

Routh-Hurwitz analysis will determine whether or not fluctu-

ations in the system decay with time, for a given fixed point

solution - thus indicating its stability. A full detailed descrip-

tion of the analysis is given in Appendix E.

4.3.1.1 Single mode case

The analysis has previously been applied to the reflective sys-

tem (with a single optical mode), where analysis produces some



82 cooling in a two-mode system

simple analytic expressions [35, 69]. Analysis for the single

mode system is briefly reviewed [69] before the two mode case

is considered. The equations of motion for the fluctuations in

this case an be written as

−̇→v (t) = M−→v (t), (4.32)

with −→v =
(

δq δp X Y
)T

, where X and Y defined as

X =
δa + δa†

√
2

(4.33)

Y =
δa− δa†

i
√

2
, (4.34)

for the single optical mode, a. The noise terms have been dropped

to write Equation 4.32, and will be ignored for the remainder

of this section, since they do not affect the fixed point analysis.

The matrix M is given by

M =









−0 ωm 0 0

−ωm −γ G 0

0 0 − κ
2 ∆′

G 0 −∆′ − κ
2









, (4.35)

where ∆′ = ∆− λQ and G =
√

2λα, for fixed points Q and α.

The fixed point values follow from the relations

λ2Q3 − 2∆λQ2 +

(

κ2

4
+ ∆2

)

Q− λΩ2

ωm
= 0, (4.36)

and

α =
−iΩ

κ
2 + i(∆− λQ)

. (4.37)

Since a single optical mode is present, up to three real solutions

can exist for Q. Stability is expected when the eigenvalues, Λ, of

matrix, M, satisfy ℜ[Λ] < 0. Whether this condition is met can

be determined by Routh Hurwitz analysis on the polynomial

equations for the eigenvalues (outlined in Appendix E). This

gives a method of determining whether roots of a polynomial

have negative real coefficients and are therefore stable.

Analysis of the solutions for Q reveals stabilities are deter-

mined by a quantity ηs, given by

ηs = 1− G2∆

ωm(
κ2

4 + ∆2)
. (4.38)
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When this quantity lies in the range 0 < ηs < 1, the solution Q

is stable[35, 69]. Figure 4.5 details the results of stability analy-

sis in the single mode case. When a static bistability arises, the

curve forms three branches, with the upper and lower branches

representing stable solutions and the central branch represent-

ing unstable solutions. This is illustrated by the solutions, Q,

together with their corresponding ηs values.
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Figure 4.5: Stability analysis for the single mode case: (a) Real solu-

tions to Q and (b) the bistability parameter ηs for the so-

lutions. In regions of bistability, solutions for Q lie on one

of three branches of a curve. The stable solutions lie along

the upper and lower branches (where 0 < η < 1), with

the central branch being unstable - this corresponds to

the negative branch of ηs. Parameters used are ωm = 0.5,

∆ = 2ωm, λ = 0.01, κ = 1 and γ = 10−4.

4.3.1.2 Double mode case

Returning to the case of two optical modes, a more detailed

account of the Routh Hurwitz analysis for solutions to Equation

4.25 follows. Defining the following variables,

XL(R) =
δaL(R) + δa†

L(R)√
2

(4.39)

YL(R) =
δaL(R) − δa†

L(R)√
2

(4.40)

(4.41)

a similar matrix equation for Equations 4.16 to 4.19 is written:

~̇v(t) = M~v(t), (4.42)
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for vector~v(t)T =
(

XL(t) YL(t) XR(t) YR(t) δq δp
)

, where

the matrix M is given by

M =

















− κ
2 ∆′L 0 g G′L 0

−∆′L − κ
2 −g 0 GL 0

0 g − κ
2 ∆′R −G′R 0

−g 0 −∆′R − κ
2 −GR 0

0 0 0 0 0 ωm

GL −G′L −GR G′R −ωm −γ

















, (4.43)

and the following are defined by the fixed point values,

G+
L(R)

= λ
αL(R) + α∗

L(R)√
2

(4.44)

G−
L(R)

= iλ
αL(R) − α∗

L(R)√
2

(4.45)

Note that the fixed point variables have an implicit Q depen-

dence. Stability is again determined by the eigenvalues, Λ, of

the matrix M. Solving for these gives

|M−Λ| = 0. (4.46)

Recall that ∆′L and ∆′R are functions of Q, so that there exists

a different matrix for each branch of the curve in Figure 4.3a.

Solving the eigenvalue problem, a sixth order polynomial is

obtained to determine Λ:

a6Λ6 + a5Λ5 + a4Λ4 + a3Λ3 + a2Λ2 + a1Λ + a0 = 0, (4.47)

where the coefficients are given by

a6 = 1 (4.48)

a5 = 2κ +
γ

2
(4.49)

a4 = a + κ(κ + 2γ) (4.50)

a3 = κa + γb + κ
(

ω2
m + κγ

)

(4.51)

a2 = κγb + κ2ω2
m + β + ǫ (4.52)

a1 = κβ + γǫ (4.53)

a0 = ω2
mǫ− 2λ2ωm|αL|2χL − 2λ2ωm|αR|2χr

+ωmgλ2 (α∗RαL + α∗LαR) χ1, (4.54)
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with

a = 2g2 + ω2
m +

κ2

2
+ (∆′L)

2 + (∆′R)
2, (4.55)

b = a−ω2
m (4.56)

β = 2ωmλ2
[

g (α∗LαR + α∗RαL)− ∆′L|αL|2 − ∆′R|αR|2
]

+ω2
m, (4.57)

ǫ =
κ4

16
+

κ2

4

(

(∆′L)
2 + (∆′R)

2
)

+ (∆′L∆′R − g2)2

+
κ2

2
g2, (4.58)

χL = ∆′L(∆
′
R)

2 + 4γ2∆′L − g2∆′R (4.59)

χR = ∆′R(∆
′
L)

2 + 4γ2∆′R − g2∆′L (4.60)

χ1 = 2g(g2 − ∆′L∆′R + γ2). (4.61)

With a different polynomial in Equation 4.47 for each set of

fixed points, one must apply the Routh-Hurwitz analysis to

each set in turn (or each branch of the curve). For a stable set

of fixed points, the polynomial in Equation 4.47 has 6 solutions,

each with a negative real part, so that ~v(t) decays with time.

The first condition of the Routh-Hurwitz criterion requires

the coefficients an (where 0 ≤ n ≤ 6) be the same sign. This is

satisfied when ηd > 0, where ηd is defined

ηd=1− λ2
(

2χL|αL|2 + 2χR|αR|2 − χ1g (α∗LαR + α∗RαL)
)

ωmǫ
. (4.62)

This is the bistability parameter for the system, which falls in

the range 0 < ηd < 1, for the red detuned regime (∆′L, ∆′R > 0),

when the fixed point solution is stable.

The second condition requires that the first column of the

Routh Array (see Appendix E) contains no sign changes be-

tween elements. Whereas in the single mode case it is found

that 0 < ηs < 1 is sufficient to ensure the first and second

criteria are satisfied, the two mode case is more complicated.

When moving from an eigenvalue equation for a 4× 4 matrix

to a 6× 6 matrix, the eigenvalue analysis rapidly becomes more

complicated.

This second condition is examined in Table E.2 of Appendix

E. The first column contains six elements, labelled a6, a5, b1, c1,

d1, e1 and f1. Equation 4.48 shows a6 > 0, and it is simple to

show that f1 = a0. Full expressions for elements b1, c1, d1 and e1

are cumbersome, and not very illuminating, thus will be omit-

ted from this thesis. Suffice to say, whilst b1 > 0 for the red
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detuned regime, it cannot be guaranteed via analytic expres-

sions that the rest are positive when 0 < ηd < 1, ∆′L, ∆′R > 0.

That said, numerical evaluation of these elements over a range

of parameters suggests they are indeed positive for the condi-

tions mentioned, suggesting 0 < ηd < 1 as the sole condition

on stability. However, a full analytic proof of this remains to be

found.

Figure 4.6a shows the bistability parameter, ηd, for the fixed

point solutions plotted in Figure 4.3a. The graph comprises

three branches, where ηd < 0 corresponds to the unstable branch,

shown by a dashed line. Applying the remainder of the Routh

Hurwitz criteria confirms that the two branches where ηd > 0

satisfy the stability criteria, up until ηd = 1, where the system

transitions to a limit cycle. These results are consistent with the

results deduced from the potential V(q). As Figure 4.2 shows,

the positions of minima in the potential correspond to cases

where 0 < ηd < 1, whilst the maximum corresponds to ηd < 0.

The Routh Hurwitz analysis, however, is more systematic and

allows the behaviour of the fixed points to be observed more

clearly as parameters are varied.
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Figure 4.6: For solutions shown in Figure 4.3a, stability is demon-

strated via (a) the stability parameter, ηd, defined in Equa-

tion 4.62, and (b) a hysteresis curve, showing the fixed

points reached as the driving strength is swept up and

down, as indicated by arrows along the separate branches.

The vertical dotted lines in (a) mark Ω values which pro-

duce the potentials in corresponding colours in Figure 4.2,

as well as the onset of instability at Ω0 (in black). In (b),

the instability is marked alongside Ωa (cyan) and Ωb (ma-

genta) which mark the points where the systems switches

between fixed points as the drive strength is reduced and

increased, respectively.
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With varying laser power, hysteresis is observed in the bistable

system. This is illustrated in Figure 4.6b, which shows the fixed

points reached via numerically plotted trajectories in q(t). As

the driving strength increases, the system moves along the lower

branch of the curve in Figure 4.3a, right up until this branch be-

comes unstable at Ωb. At this point, the fluctuations become

large and the fixed point ceases to be stable. One then observes

a discontinuous transition (vertical line in Figure 4.6b) to the

upper branch. Sweeping the driving strength down, however,

causes the system to follow the upper branch until this solu-

tion becomes unstable at Ωa.

The switching between branches of the curve is expected to

be accompanied by large fluctuations in the resonator[35, 69], as

such the presence of the bistability interferes with the process

of cooling the resonator. One must therefore be sure to confine

the system to a regime where a single fixed point is present.

In this example, the mechanical potential provides an accu-

rate picture of the fixed point dynamics. The two stable branches

of Figure 4.3a are identified as minima in the potentials plot-

ted in Figure 4.2. This may not, in general, be the case. Pa-

rameters selected in this section put the system in a regime

where losses are small, yet since ωm < κ, the time delay in the

cavity’s response is also small, so that the picture offered via

the effective Hamiltonian is sufficient to determine the stability

of fixed points. In general, however one needs to account for

the full dynamics of the system in order to obtain an accurate

picture[47, 49].

In addition to the effective potential description, Figure 4.3b

shows that the effective frequency shift δω provides a useful

tool in determining that the system is in a regime where static

bistabilities are absent. When |δω| ≪ ωm, one can be confident

that the fixed point state will remain stable with small varia-

tions in Ω[49]. A calculation of δω is presented in Section 4.4.1

below.

4.4 linearized calculation

Having explored the presence of static bistabilities in the sys-

tem, analysis now focuses on the regime where there is a sin-

gle stable fixed point. The fluctuations in the system about the

fixed point are analysed in order to determine the extent to

which the cavity can be said to cool the resonator. The starting

point is Equations 4.16 to 4.19, which describe the linearized



88 cooling in a two-mode system

dynamics[16] of the system with small fluctuations about its

mean field values.

The calculation proceeds by solving the system of Equations

(4.16 to 4.19) to obtain the spectrum of the resonator’s posi-

tion fluctuations. By comparing this spectrum with that of a

damped harmonic oscillator in thermal equilibrium, with a bath

at a given temperature T, an effective frequency, damping rate

and temperature can be deduced for a resonator coupled to a

two mode cavity system. The following analysis focuses on the

back action of the cavity on the resonator, as such the effects of

the thermal bath are ignored, and the damping, γ, and thermal

fluctuations, ζ, are dropped in Equations 4.16 and 4.17.

The symmetrised spectrum of position fluctuations is defined

as

Sq(ω) =
1

2π

∫ ∞

−∞
dte−iωt [〈δq(t)δq(0)〉+ 〈δq(0)δq(t)〉] . (4.63)

For an oscillator with frequency ω0, damped at a rate γ which

is in contact with a bath at temperature T, it is known that[71]

Sq(ω) =
1

2π

(2n + 1)ωωmγ

(ω2 −ω2
m)

2 + γ2ω2
, (4.64)

where n = [e
ω

kBT − 1]−1. For a weakly damped system (γ ≪
ωm) Sq(ω) is strongly peaked about ω = ωm and the thermal

occupation can be approximated as n = [eωm/kBT− 1]−1. Noting

that 〈δq2〉 = n + 1
2 , the spectrum can be written

Sq(ω) ≈ 1

2π

2ω2
m〈δq2〉γ

(ω2 −ω2
m)

2 + γ2ω2
. (4.65)

The denominator in Equation 4.65 can be written as

|dwq|2 = |ω2 −ω2
m + iγω|2. (4.66)
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4.4.1 Effective damping of the mechanical mode

Analysis of the mechanical fluctuations proceeds by Fourier

transforming Equations 4.16 to 4.19

δq(ω) =
ωmλ

ω2 −ω2
m

[

α∗RδaR(ω) + αRδa†
R(ω)− α∗LδaL(ω)

−αLδa†
R(ω)

]

(4.67)

δp(ω) =
iω

ωm
δq(ω) (4.68)

δaL(ω) = [hL(ω)]−1
[

iλαLδq(ω)− igδaR(ω) +
√

κaIN
L

]

(4.69)

δaR(ω) = [hR(ω)]−1
[

−iλαRδq(ω)− igδaL(ω) +
√

κaIN
R

]

(4.70)

where

hL(R) =
κ

2
+ i
(

ω + ∆′L(R)

)

. (4.71)

Some rearranging decouples equations 4.67 to 4.70, giving an

expression for δq(ω) of the form

δq(ω) =
ωmλ

A′(ω)

[

D1(ω)B2(ω)aIN
L + D2(ω)B1(ω)aIN†

L

+E1(ω)B2(ω)aIN
R + E2(ω)B1(ω)aIN†

R

]

, (4.72)

where the following are defined:

B1(ω) = hL(ω)hR(ω) + g2 (4.73)

B2(ω) = kL(ω)kR(ω) + g2 (4.74)

C1(ω) = −iλ
[

|αL|2hR(ω) + |αR|2hL(ω)
]

+gλ (α∗LαR + α∗RαL) (4.75)

C2(ω) = iλ
[

|αR|2kL(ω) + |αL|2kR(ω)
]

+gλ (αRα∗L + αLα∗R) (4.76)

D1(ω) = [igα∗R + α∗LhR(ω)]
√

κ (4.77)

D2(ω) = [−igαR + αLkR(ω)]
√

κ (4.78)

E1(ω) = − [α∗RhL(ω) + igα∗L]
√

κ (4.79)

E2(ω) = − [αRkL(ω)− igαL]
√

κ (4.80)

A(ω) =
(

ω2 −ω2
m

)

H(ω)K(ω) (4.81)

A′(ω) =
ωmλ

−ωmλ [C1(ω)B2(ω) + C2(ω)B1(ω)]+A(ω)
(4.82)
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where

kL(R) =
κ

2
+ i
(

ω− ∆′L(R)

)

. (4.83)

The two point correlator 〈δq(ω)δq(ω′)〉 is then a sum of combi-

nations of aIN
L(R) and aIN†

L(R), of which Equations 4.8 and 4.9 give

the only non-zero contributions. The only non-zero correlators

follow from Equations 4.8 and 4.9:

〈aIN
L(R)(ω)aIN†

L(R)(ω
′)〉 =

1

2π
δ(ω + ω′). (4.84)

Picking out the two non-zero contributions, the 2 point corre-

lator, 〈δq(ω)δq(ω′)〉 is given by

〈δq(ω)δq(ω′)〉 = A′(ω)A′(ω′)
2π

[

D1(ω)D2(ω
′)B2(ω)B1(ω

′)

+E1(ω)E2(ω
′)B2(ω)B1(ω

′)
]

δ(ω + ω′).(4.85)

The spectrum is then found via Equation 4.63, where integrat-

ing over the delta functions amounts to setting ω′ = −ω. Anal-

ysis of the expressions given in Equations 4.73 to 4.82 reveals

B1(−ω) = B∗1(ω), and so on for each expression. This allows

the spectrum to be written as

Sq(ω)=
(ωmλ)2

2π|dw(ω)|2 [F1(ω) + F2(ω)] , (4.86)

where the following are defined:

F1(2) =
|D1(2)(ω)|2+|E1(2)(ω)|2

|B1(2)(ω)|2 (4.87)

dw(ω) = ω2 −ω2
m + χ(ω), (4.88)

and

χ(ω) = ωmλ

[

C1(ω)

B1(ω)
+

C2(ω)

B2(ω)

]

. (4.89)

A direct comparison can be made between dw(ω) and the de-

nominator in Equation 4.65. This allows an ‘effective’ damping

and frequency shift to be deduced, in analogy with the case of

the standard damped oscillator by identification

|dw(ω)|2 = |ω2 −ω2
m + iγe f f ω|2. (4.90)
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The effective damping is therefore identified by extracting the

imaginary component of χ(ω),

γe f f (ω) =
ωmλ

ω
ℑ
[

C2

B2
+

C1

B1

]

. (4.91)

With this expression in terms of ω, the approximation of a

weakly damped system is applied. Equation 4.65 was written

with the assumption that the spectrum is strongly peaked around

ωm. This same assumption allows the approximation ω = ωm

to be used to calculate a fixed value of γe f f :

γe f f (ω) = λℑ
[

C2(ωm)

B2(ωm)
+

C1(ωm)

B1(ωm)

]

. (4.92)

In general, however, there is a small frequency shift, so that the

spectrum is actually peaked about a value ωe f f , which relates

to the mechanical frequency by ωe f f = ωm + δω, where δω is

a small frequency shift. The frequency ωe f f can be identified

as the square root of the real component of χ(ωm) - taking the

frequency as ωm to make an initial calculation, which provides

a reasonable approximation when the shift is small, δω ≪ ωm:

ω2
e f f = ω2

m + λℜ
[

C2(ωm)

B2(ωm)
+

C1(ωm)

B1(ωm)

]

. (4.93)

Given that δω ≪ ωm, the frequency shift can be approximated

ωe f f (ω) ≈ ωm +
λ

2
ℜ
[

C1

B1
+

C2

B2

]

, (4.94)

δω(ω) ≈ λ

2
ℜ
[

C1

B1
+

C2

B2

]

. (4.95)

With regards to Equations 4.92 and 4.95, recall the assump-

tion of small fluctuations, which is required to linearize the

equations. The result is expressions for γe f f and δω which ap-

ply in the regime where the fixed point is stable. This allows

the regime of cooling to be investigated with these expressions.

One might also expect these expressions to accurately predict

the onset of instability. This will be addressed in the next chap-

ter. In the regime of limit cycles, amplitude dependent expres-

sions are expected, as in Chapters 2 and 3.

In the limit g→ 0, Equation 4.92 matches the case of a single

linearly coupled mode, for small energy (see Equation 2.76 of

Chapter 2). This is the linearized single mode result achieved

via a similar process by Genes et. al.[35].
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4.4.1.1 Numerical analysis

The effective damping is investigated by varying two param-

eters: the laser detuning, ∆, and the frequency shift arising

from the equilibrium displacement of the resonator, ∆ω. These

two parameters navigate the dispersion diagram of Figure 4.1,

bringing the system into resonance with the various modes

shown. This determines the interplay between optical and me-

chanical modes. Colour plots in figures 4.7a and 4.7c show the

behaviour of γe f f under different circumstances of note. There

are two distinct scenarios to consider, in terms of parameters

chosen:

• ωm < 2g - interactions between quadratic modes are weak

and the energy gap is too large for transitions between

modes. The behaviour of the system is similar to that of

the single mode case.

• ωm > 2g - interactions between quadratic modes are strong

and there exists a value of ∆ω where the energy gap be-

tween modes matches the mechanical frequency, so that

transitions between upper and lower bands are stimulated

by the absorption or emission of a phonon.

The optical modes are displayed as white dashed lines along-

side the damping, to illustrate how the proximity to optical

resonances affects the resonator motion. Also shown are the

modes shifted by the mechanical frequency.

The effective damping for the case where ωm < 2g is shown

in Figure 4.7a. The resonator is most strongly driven and damped

when the cavity is driven close to the quadratic mode frequen-

cies, resulting in features along the quadratic dispersion curves.

Strong anti-damping (negative values for the effective damp-

ing) occurs when the cavity is driven just above an optical fre-

quency, whilst strong damping occurs just below. Since the left

mode is driven directly by radiation, the features are stronger

when the dispersion curve (frequencies ω1,2) approaches the

driven mode (frequency ωL). This occurs along lines where the

mode frequencies coincide with −∆ = ∆ω.

Figure 4.7c shows the damping for a small energy gap, ωm >

2g. The dispersion curves and sidebands, shown in white, illus-

trate where the Stokes and anti-Stokes resonances occur[49, 16].

The form of the graph is distinctly different to Figure 4.7a; fea-

tures do not lie along the entirety of the dispersion curves

but are confined to regions where the curves cross. Here the
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system moves between optical modes by exchanging mechan-

ical quanta: ωm = ω1 − ω2. The energy exchange is stronger

near the driven mode. The result is a graph with features at

A - where emission from the cavity causes driving (γe f f < 0)

- and B - where the cavity absorbs energy, causing damping

(γe f f > 0).
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Figure 4.7: Effective damping and frequency shift in the resonator,

with respect to ∆ and ∆ω, for two different regimes: (a)

and (b) show γe f f and δω for g = 10 and ωm = 0.5, where

the energy gap between the photon modes is large, and so

driving and damping occur when the cavity is driven just

above or below the quadratic modes. Figures (c) and (d)

show γe f f and δω for g = 1, ωm = 4, where a small en-

ergy gap results strong interactions at ωm = 2
√

g2 + ∆ω2,

allowing transitions between photon modes. The remain-

ing parameters are Ω = 1 and λ = 10−2 in both cases.

Figures 4.7d and 4.7b show the frequency shift in the res-

onator, deduced in Equation 4.95. Since the shift doesn’t be-

come any larger than ∆ω ∼ 10−4, the resonator dynamics lies

well within the range ∆ω ≪ ωm, so that the static bistability is

unlikely to cause an issue.
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4.4.2 Thermal phonon number

In Chapter 2, sideband cooling was investigated for a single

linear mode. In the regime of low energies, the phonon number

was deduced via the probability distribution. It was found to

take the form[13, 31]

ne f f =
γn + γBAnBA

γ + γBA
, (4.96)

where nBA was deduced from the diffusion, DBA = γBA(nBA +
1
2). Something similar happens in the two mode case consid-

ered here. However, as the focus of this section is on the ulti-

mate limit of cooling, which is set by nBA in the limit γ≪ γe f f ,

the quantity nBA is explored, rather than ne f f .

Once the effective damping has been defined (given in Equa-

tion 4.92), the comparison of Sq(ω) (given by Equation 4.86)

with the thermal result (given in Equation 4.65) can be com-

pleted by identifying

ne f f = 2πSq(ω)
|ω2

m −ω2 − iγe f f ω|2
2ω2

mγe f f
− 1

2
. (4.97)

Given Equations 4.86 and 4.92, the resulting expression is

ne f f =
λ

2

|B1|2|B2|2(F1 + F2)

|B2|2ℑ[C1B∗1 ] + |B1|2ℑ[C2B∗2 ]
− 1

2
. (4.98)

In the limit that g → 0, at small energy, the expression from

Equation 2.79 of Chapter 2 is recovered:

nBA =
κ2

4 + (ωm − ∆L)
2

4ωm∆L
, (4.99)

which matches the known result for a single cavity mode, with

linear coupling[13]. Equations 4.99 and 4.92 offer a basis of com-

parison between the lowest achievable phonon numbers when

considering cooling for the single and double mode systems.

For the single mode system, nBA is minimised when ∆L =
√

ω2
m + κ2/4. Recall from Chapter 2 Section 2.3.6, one can de-

duce a limit in the case of resolved sideband cooling (∆ ≈ ωm,

in the limit κ ≪ ωm):

nBA =

(

κ

4ωm

)2

. (4.100)

For the two mode case, analysis is not so simple, as energy is

exchanged between optical modes as well as with the resonator.

The complicated expression of Equation 4.98 is therefore anal-

ysed numerically.
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4.4.2.1 Numerical analysis

In the interest of obtaining as low a phonon number as possi-

ble, analysis focuses on cooling in the resolved sideband limit,

where the anti-Stokes process[49] is dominant. This occurs when

the following condition is met:

∆ = ωm −
√

g2 + ∆ω2. (4.101)

This means that the drive frequency is offset from the upper

optical mode by a factor of the mechanical frequency, so that

the absorption of a phonon puts photons in resonance with the

cavity. Figures 4.7c and 4.7a show heavy damping occurring

along such sidebands. It is found numerically that the mini-

mum phonon number, nmin, does indeed occur when this con-

dition is approximately met. Figure 4.8 verifies this result; as g

is varied, the values of ∆ and ∆ω which produce a minimum in

nBA are recorded. With the left and right hand side of equation

4.101 plotted for varying g, a straight line with a gradient of

unity is obtained.
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Figure 4.8: Plot verifying that the minimum phonon number is

achieved when cooling at the sidebands, such that Equa-

tion 4.101 is satisfied. The coupling g is varied, and the

values of ∆ and ∆ω which produce a minimum if nBA are

recorded and plotted such that a straight line is obtained.

Having established where to seek the lowest values of nBA, it

is interesting to make a comparison between the case of single

mode (g = 0) and double mode (g 6= 0) coupling. This essen-

tially gives a comparison between the minimum temperature

achievable via the reflective and dispersive setups in an optome-

chanical system. The central question posed by this chapter is
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whether or not it is possible to achieve temperatures as low as

in the reflective case by using the dispersive system, which of-

fers a much simpler method of fabrication. The parameter Nmin

is therefore defined, for use within this section:

Nmin(g) =
nmin(g)

nmin(g = 0)
. (4.102)

The minimum achievable phonon number is investigated for

varying tunnelling rate, g. Equation 4.100 suggests that increas-

ing ωm will reduce the minimum phonon number for the single

mode case, so that cooling is more effective in the resolved side-

band limit[13]. Figure 4.9 verifies this, showing that nBA ≪ 1 as

the resolved sideband limit is approached, for Ω = 1, λ = 10−2,

κ = 1.
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Figure 4.9: Minimum effective phonon number for the single mode

case (solid) for varying ωm, plotted alongside Equation

4.100 (dashed). The inset shows where the curves begin

to diverge in the bad cavity limit. At each value of ωm,

nBA is calculated for ∆ =
√

ω2
m + κ2/4. The remaining

parameters are Ω = 1, λ = 10−2, κ = 1.

Turning to the case where g 6= 0, Figure 4.10 shows the quan-

tity Nm for the resolved sideband regime, as g is varied. The

ratio generally remains close to 1, with the exception of a peak

which occurs in the vicinity of ωm = g, increasing in magnitude

as ωm and g increase.
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As g is increased along lines of constant ωm, the value of

Nm tends to peak before decreasing rapidly (see Figure 4.11,

which shows cross sections through Figure 4.10). The height of

the peaks in the ratio Nm increase as ωm is increased, though

as in the single mode case (Figure 4.9), the value of nBA gen-

erally decreases with ωm far from the peak. The white con-

tours in Figure 4.10 mark regions where Nm < 1.001. Whilst

the larger of these regions occurs as g → 0, the region marked

X shows where tunnelling rates close to the mechanical fre-

quency produce Nm < 1.001. This implies that, by choosing the

tunnelling rate and mechanical frequency carefully, one may

observe phonon numbers as small as in the single mode case.
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Figure 4.10: Analysis of the ratio Nm as ωm and g are varied. Contours

of Nm = 10−3 are shown in white. For the majority of

parameters the ratio is close to unity, but a large peak in

sees cooling significantly reduced for g 6= 0.

It is worth noting that this analysis applies in the case where

the system is weakly coupled, such that γe f f ≪ κ. Increasingly,

experiments in optomechanics have made the strong coupling

regime accessible[44, 66, 72]. Analysis on the single mode sys-

tem, in the strong coupling regime, finds cooling to be less effi-

cient than in the weak coupling case[13, 34].

4.5 conclusions

This chapter has explored interactions between the mechani-

cal element and two optical modes, with the interest of draw-
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Figure 4.11: Cross sections through Figure 4.10, at constant ωm for

ωm = 10, ωm = 12 and ωm = 14.5. The line for ωm = 12

passes through the contour at X in Figure 4.10, so that a

minimum is reached where Nm < 1.001.

ing comparison to the case where a single optical mode was

present. In particular, this chapter focused on the feat of cool-

ing a system to its quantum ground state, and whether such an

achievement would be possible for the dispersive optomechan-

ical system.

By decreasing the tunnelling rate through the membrane, a

different scenario was observed where the optical modes in-

teracted with one another[16]. The system was described by

a similar Hamiltonian to the previous chapter, and equations

of motion formulated from input-output theory. Since only the

cooling regime was considered, analytical expressions were pro-

duced by linearizing the equations of motion. This allowed an

effective optomechanical damping and frequency shift to be de-

duced by calculating the noise spectrum[71].

As the laser detuning was varied, the regions of strongest

driving and damping were found at sidebands, where phonons

were transferred between optical and mechanical modes. This

identified a regime where cooling was expected to be most ef-

ficient. In order to ensure the lowest phonon number could be

achieved, care was taken to avoid the static bistability - the pres-

ence of which was indicated by sudden drops in the effective

frequency of the mechanical mode.
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Cooling was investigated by deducing the effective phonon

number via the mechanical noise spectrum. By varying the tun-

nelling rate, the efficiency of cooling was compared between

single and double mode systems. It was found that there ex-

isted combinations of g 6= 0 and ωm which produce effective

phonon numbers within 0.1% of the lowest achievable phonon

number, in the single mode case. The conclusion drawn is that

allowing radiation to pass through the membrane can produce

cooling effects as efficient in the red detuned regime. This pro-

vides a possible method of cooling an oscillator to its quantum

ground state, whilst overcoming the issue of fabricating highly

reflective elements with a high mechanical quality factor[17].





5
T W O M O D E D Y N A M I C S : F R O M L I M I T C Y C L E S

T O C H A O S

5.1 introduction

Previously, the driven non-linear regime has been explored for

systems where single optical modes are coupled linearly and

quadratically to the mechanical mode. In these cases, the non-

linear dynamics and quantum fluctuations have been explored

with a combination of numerical and analytic calculations. Fur-

ther to this, Chapter 4 explored the linear dynamics of the sys-

tem when two optical modes were present, in the red detuned

regime. This chapter progresses by exploring the two optical

mode system for the case of blue detuning. However, the pres-

ence of three harmonic oscillators results in a more complex

system, and analysis for this system is more difficult than for

those studied in Chapters 2 and 3.

Owing to the complexity of the two optical mode system,

analysis of this chapter focuses on the average dynamics of the

system. This is made possible by exploring the regime of strong

driving, where the system is driven to large amplitude oscilla-

tions, and fluctuations become less important. The dynamics of

the resulting limit cycles will be explored, as well as the tran-

sition to chaos. Numerical analysis explores the trajectory of

variables characterising the system, comparing the long time

behaviour as the mechanical coupling is swept. An analytical

calculation is presented in the form of a rotating wave approx-

imation on the photon mode equations, allowing a description

of the limit cycle dynamics.

This chapter is organised as follows. In section 5.2 the two

mode driven system is introduced, and the equations of mo-

tion deduced. Section 5.3 presents a numerical analysis of the

equations, first addressing the case where the drive is provided

by a thermal bath, before exploring the case where the system

is driven by a laser source. The dynamics are mapped out over

the blue detuned range. Section 5.4 presents an analytical cal-

culation of the limit cycle amplitudes in the regime where pe-

riodic oscillations occur, for weaker coupling strengths. This is

achieved via a rotating wave approximation. The predictions

101
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of the calculation are compared to numerical results in Section

5.4.6, and conclusions drawn in Section 5.5.

5.2 the system

This chapter deals with the dispersive system introduced in

Chapter 3, where optical modes aL and aR are coupled to the

mechanical membrane at position q(t)[17, 18]. A schematic di-

agram of the system is shown in Figure 5.1a. As in Chapter

4, the tunnelling rate through the membrane, g, is assumed to

be small enough in comparison to the mechanical frequency to

allow phonon mediated transitions between optical modes[16].

This is illustrated by the grey arrow in the dispersion diagram

of Figure 5.1b, indicating where a displacement q0 creates a sit-

uation where ω1 −ω2 = nωm.

The regime of blue detuning is investigated, over a range

of parameters which induce limit cycles in the resonator. Fig-

ure 5.1a shows a resonator mounted at an equilibrium posi-

tion, q′, with respect to the cavity centre. This causes an equi-

librium detuning 2∆ω between the cavity modes, where the

quantity ∆ω = λq′ is shown in green in Figure 5.1b. As the

cavity is driven by laser radiation, the resonator is driven into

oscillations about point q0 (measured from the centre, where

q0 = q′ + Q and marked in red). These oscillations result in a

time dependence for the optical modes,

ωL = ω0 − λq(t) (5.1)

ωR = ω0 + λq(t). (5.2)

A drive of frequency ωd is applied to the left mode, aL, such

that the detuning ∆ = ω0−ωd is negative. The effective Hamil-

tonian takes the same form as in Chapter 4:

He f f =
1

2
ωm

(

p2 + q2
)

+ ∆′L(q)a†
LaL + ∆′R(q)a†

RaR

+g
(

a†
LaR + a†

RaL

)

+ Ω
(

aL + a†
L

)

, (5.3)

where λ is the optomechanical coupling strength, ωm the me-

chanical frequency and the strength of the drive is parametrised

by Ω. The detunings of the cavity modes are given by

∆′L(q) = ∆− λq(t) (5.4)

∆′R(q) = ∆ + λq(t). (5.5)
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Figure 5.1: The system, represented by (a) schematic and (b) the dis-

persion diagram. The displacement q(t) of the membrane

is measured relative to the centre of the cavity. The equi-

librium position of the resonator is set by the position at

which it is clamped, at q = q′. When the cavity is driven at

frequency ωd the membrane is made to oscillate around

a point q0 = q′ + Q, where Q is the fixed point. When

2g < ωm there exists a value of q0 such that the optical

modes are separated by an integer multiple of the mechan-

ical frequency, so that transitions between the modes occur

with exchange of phonons in the resonator.

The master equation for the system takes the same form as in

previous chapters:

dρ

dt
= −i

[

He f f , ρ
]

+ L̂tot, (5.6)

where the dissipation is described by Ltot = L̂b + L̂L + L̂R:

L̂b = −γ

2

(

b†bρ + ρb†b− 2bρb†
)

(5.7)

L̂L(R) =−
κ

2

(

a†
L(R)aL(R)ρ + ρa†

L(R)aL(R) − 2a†
L(R)ρaL(R)

)

, (5.8)

where it is assumed that the entire system is at T = 0, and the

damping constant κ describes dissipation of the cavity modes,

whilst the damping constant γ applies to the mechanical mode.

5.2.1 Equations of motion for the system

The semi classical dynamics of the system can be determined

from equations of motion for the expectation values of cav-

ity amplitudes and mechanical coordinates by tracing over the
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master equation (Equation 5.6)[1] - For example, the average oc-

cupation of the left cavity mode, 〈aL〉 = αL obeys the equation

α̇L = Tr [aLρ̇] (5.9)

= −
[

i∆′L(q) +
κ

2

]

αL − igαR − iΩ. (5.10)

Similarly, equations of motion are obtained for the average dy-

namics of the right cavity, αR, and membrane co-ordinates:

α̇∗L =
[

i∆′L(q)−
κ

2

]

α∗L + igα∗R + iΩ (5.11)

α̇R = −
[

i∆′R(q) +
κ

2

]

αR − igαL (5.12)

α̇∗R =
[

i∆′R(q)−
κ

2

]

α∗R + igα∗L. (5.13)

q̇ = ωm p (5.14)

ṗ = −ωmq− γp + λ(α∗LαL − α∗RαR), (5.15)

where the semi classical approximation a†
LaL = α∗LαL and a†

RaR =
α∗RαR is made in the last line.

5.3 numerical analysis

When the laser drive is blue detuned so that the system is

driven, Equations 5.10 to 5.15 lead to a complex non-linear

dynamics. Aspects of this dynamics have been described pre-

viously in the literature[39, 40, 41, 42], and these approaches

are extended in the analysis to follow, starting with a straight

forward numerical calculation.

This chapter aims to explore this varied behaviour in the sys-

tem, in the regime of blue detuning. Equations 5.10 to 5.15 can-

not be solved exactly. Instead a numerical approach is taken, us-

ing a range of carefully selected parameters that allow one to ex-

plore the different behaviours that arise. The coupled equations

are solved directly, by numerical integration. The integration is

performed using the Adams-Bashforth-Moulton method [73].

This method lends itself well to the system of interest, given the

chaotic nature of the dynamics at high coupling. In contrast to

single step methods, every data point calculated is dependent

on four prior data points. This method allows one to calculate

the local truncation error and correct it, improving the accuracy.

This is a desirable property for a method dealing with chaotic

motion, where small deviations from the initial trajectory grow

exponentially with time[9, 49].
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The analysis in the rest of this section explores the evolution

of the mean field variables as λ is increased in an attempt to

map out the full dynamics of the driven system. For varying

parameters the system follows a complicated path, before set-

tling into one of 3 different long time behaviours; these are

1. Fixed point - decaying fluctuations,

2. Stable oscillations - limit cycles,

3. Chaos.

Numerical plots are made of the trajectory x(t), where q has

been shifted by the equilibrium displacement, so that x = q−
q′.

5.3.1 Dynamics in the presence of a thermal bath

A recent publication investigated this same system numerically

[40], in the absence of a laser drive: Ω = 0. Instead a drive is

supplied in the form of a heat bath, by assuming the cavity is at

a finite temperature. This is described by a finite thermal occu-

pation number nth, which is assumed for the optical cavity. The

advantage of this is that the resulting Hamiltonian contains a

symmetry which can be exploited, by defining a photon deple-

tion number, y, and photon inversion number, z, in terms of the

initial photon number N0:

y =
a†

LaL + a†
RaR

N0
(5.16)

z =
a†

LaL − a†
RaR

N0
, (5.17)

and the phase, φ, determined by φ = arg(a†
LaR). Formulating

the system in terms of these operators reduces the number of

equations required to describe the corresponding semi-classical

dynamics. The equations for the average values now take the

form

q̇ = ωm p (5.18)

ẋ = −ωmx− γp + λN0z (5.19)

ż = 2g
√

x2 − z2 sin φ− κ

2
z (5.20)

φ̇ = 2λx− 2gz
√

y2 − z2
cos φ (5.21)

ẏ = −κ

2
y +

2κnth

N0
, (5.22)
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instead of Equations 5.10 to 5.15. The first two equations de-

scribe a damped harmonic oscillator, driven by the term λN0z,

whilst the next two describe the motion of a pendulum of vary-

ing length, with a drive of 2λx. With numerical analysis of the

trajectories, one finds oscillations can only be sustained for the

case κ = γ = 0, where the dynamics are chaotic[40].

The presence of a non-zero cavity mode thermal occupation

(nth 6= 0) acts as an effective drive (instead of the Ω term in

Equations 5.10 to 5.15) but this is an unphysical scenario; as

explained in Chapter 2, the cavity occupation at room tempera-

ture is negligible. In order to generate nth = 100, as is used in

[40], the cavity would need to be at a significantly higher tem-

perature, whilst maintaining the resonator at zero temperature,

which is impractical.

5.3.2 Driven oscillations

Here the laser drive is included, and it is assumed that the cav-

ity thermal occupation can be neglected. The drive provides an

energy source, allowing for a variety of long time behaviours as

the optomechanical coupling is swept. These behaviours will be

mapped out, showing how they evolve as a function of the op-

tomechanical coupling, λ. The coupling determines the energy

exchange between the optical and mechanical modes, which de-

termines how strongly the resonator is driven. Table 5.1 details

the parameters selected to explore the system.

Table 5.1: Parameters for numerical analysis

Parameter value (units κ = 1)

ωm 2

Ω 10

g 0.1

∆ -1

∆ω 1

γ 0.01

n 0

Varying the coupling takes the system through a series of

transitions. Broadly speaking, four different regimes of behaviour

can be identified in the resonator, as the coupling is swept. The

weak coupling regime is dominated by the fixed point solution.

For the parameters of Table 5.1, a single stable fixed point is
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present and oscillations about it decay (see Chapter 4 for an

analysis of the fixed point solution). At the onset of instability,

λ = λc, lies a regime of stable limit cycles, where oscillations

prevail in the long time limit. These two regimes display long

time behaviour that is independent of initial conditions.

The third regime is encountered as λ is increased past a value,

λDM, where dynamical multistability emerges. In this region

the long time behaviour is strongly dependent on the initial

conditions. There exist a number of attractors for each value of

λ, which the system may reach in the long time limit. These in-

clude multiple limit cycles, at varying amplitudes, and chaotic

trajectories[40, 42]. In addition, one might observe period dou-

bling, where the resonator switches from a series of single pe-

riod regular oscillations to a pattern of motion which repeats

every second oscillation - effectively halving the frequency [42].

Different types of trajectory can be identified by stroboscopic

plots of their dynamics, in which points are plotted once per

mechanical time period1. For a single-period limit cycle, one

observes a single dot as a period’s oscillation brings the system

back to the same point. For period doubling a pair of dots is

seen. Figure 5.2 together with Figure 5.3 gives examples of each

of each of the behaviours seen in the resonator. In this example,

all three types of motion are observed for λ = 0.88, by varying

only the initial conditions x(0) and p(0).
The process of period doubling may occur repeatedly as ini-

tial conditions and coupling are altered, so that the frequency

halves several times. A final transition at high λ takes the res-

onator into a regime where oscillations appear chaotic. An ex-

ample of such a trajectory is given in Figure 5.3.

5.3.2.1 Fixed point regime

The radiation pressure force is directly proportional to the op-

tomechanical coupling, therefore at low coupling the energy

transferred to the membrane from the external drive via the

optical modes is insufficient to overcome losses. Oscillations in

the resonator’s position therefore decay and it reaches a fixed

point state in the long time limit. This range is shown in Fig-

ure 5.4a, which compares the Q values deduced from numerics

with those found by solving for the fixed point in the weak

1 In the stroboscopic plots the shifted mechanical frequency is used - this is
the frequency at which the mechanical mode is observed to oscillate, and is
within 0.5% of ωm for both of the diagrams shown.



108 two mode driven dynamics

p
(t
)

−22

−21

−20

68.4

68.2

68

p
(t
)

x(t)

61 62 63 64 −20 −19 −18 −17

x(t)

(b)(a)

Figure 5.2: Stroboscopic plots for λ = 0.88, with remaining parame-

ters given in Table 5.1. By specifying different initial con-

ditions, the system reaches different attractors in the long

time limit, two examples are shown: (a) a limit cycle, with

initial conditions q(0) = 15, p(0) = 65, (b) period dou-

bling when x(0) = 5 and p(0) = 75. For both cases, initial

values of aL(0) and aR(0) are selected by solving for the

fixed points, αL and αR when Q = 0 (see Equations 4.12

and 4.13 of Chapter 4). Each diagram shows the position

and momentum plotted every period for 20 periods.
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Figure 5.3: Trajectory of x(t) for λ = 0.88, with initial conditions

x(0) = 5, p(0) = 45. The motion appears to be chaotic

and does not settle into periodic oscillations in the long

time limit.

coupling regime (see below). The quantity Q is the centre of

oscillations measured from the equilibrium displacement, such

that Q = q0 − q′.
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At weak coupling, Q increases approximately linearly with

λ:

Q =
λ

ωm

(

|αL|2 − |αR|2
)

, (5.23)

where αL and αR can be approximated by

αL ≈
−iΩ

[

κ
2 + i∆R

]

[

κ
2 + i∆R

] [

κ
2 + i∆L

]

+ g2
(5.24)

αR ≈ −gΩ
[

κ
2 + i∆R

] [

κ
2 + i∆L

]

+ g2
. (5.25)

where ∆L and ∆R are taken as Q independent:

∆L = ∆− ∆ω (5.26)

∆R = ∆ + ∆ω. (5.27)

Throughout this regime, the short time oscillations occur at ap-

proximately the mechanical frequency.

numerical data

0.1

0.2

0.05

0.15

0.25

Q

0.005 0.01 0.015 0.02
λ

linear approx

λc

(a)

λ/λc

γ
e

f
f

0 0.2 0.4 0.6 0.8 1 1.2

×10−3

−5

0

5

10

(b)

Figure 5.4: Fixed point dynamics (a) in stable regime, where oscilla-

tions decay - showing how Q varies with λ and (b) predic-

tion of the instability at λc = 0.0148, using the linearised

calculation of Chapter 4. The instability is predicted to oc-

cur when γe f f = γ + γBA = 0.

5.3.2.2 Limit cycle regime

As the coupling is increased, a value λc is approached, where

the work done via the radiation pressure force balances the dis-

sipation, and an instability occurs. In terms of the linearized

analysis of Chapter 4 this is where the (negative) back action

damping matches the intrinsic damping. Here oscillations are

sustained, and a limit cycle state becomes stable. At this point
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the approximation in Equation 5.23 breaks down (as shown in

Figure 5.4a); Q is no longer linear with λ, and represents the

centre of stable oscillations. The linearized calculation of Chap-

ter 4 provides an accurate estimate of the onset of limit cycles.

This calculation is shown in Figure 5.4b.

Figure 5.5 shows how the limit cycle solutions evolve as λ is

increased. The dotted line marks λc = 0.0148, where a smooth

transition from fixed point to increasing amplitude oscillations

(at approximately ωm) occurs. The transition is continuous, in

that the amplitude, A, increases smoothly from A = 0. The

curve peaks around λ = 0.024, showing a smooth, steep in-

cline, before falling asymptotically towards A = 0. At λ = 0.12,

dynamical multistability occurs and multiple attractors begin

to emerge. Throughout this regime the oscillation frequency re-

mains close to the mechanical frequency.

As the coupling increases, the number of attractors increases.

The limit cycle amplitudes follow smooth curves at increasingly

higher amplitudes, which fall off asymptotically, never crossing

each other. As λ increases, the long time behaviour becomes

more sensitive to initial conditions. For a given limit cycle, the

range of initial conditions which produce the corresponding

trajectory then becomes very narrow.

For λ ≥ 0.87, period doubling and chaos are observed for

certain initial conditions. As λ increases, these behaviours occur

for a wider range of initial conditions, up to a point where

chaos appears to dominate the long time behaviour. The exact

value of λ at which the transition to chaotic behaviour occurs

has not been found. In order to determine it with any certainty,

one would need to map out a series of trajectories with varying

initial conditions in the six dimensional parameter space. This

is time consuming and it is not possible to ensure all possible

limit cycles have been eliminated, as some attractors may only

be approached from arbitrarily close to the trajectory.

Numerical analysis allows one to map out the dynamics of

the system over a range of optomechanical couplings ranging

from very weak (λ ≪ ωm) through to the strong coupling re-

gime (λ ∼ ωm). There are limitations to this method, however,

owing to the presence of dynamical multistability in the sys-

tem. With the presence of multiple trajectories, which can be

very sensitive to initial conditions, it is necessary to search for

different types of motion by shear brute force; sweeping initial

parameters through a range of values with the aim of picking

up all possible long time behaviours.
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Figure 5.5: Amplitude of stable limit cycles, showing the onset of in-

stabilities (λc) and dynamical multistability (λDM) as ver-

tical dotted lines. Limit cycles are shown for a range of λ

values, and occur along a series of branches. Inset shows

a closeup of the weak coupling regime, where limit cycles

appear at λc = 0.0148.

Since the limit cycles lie along several smooth curves, a limit

cycle can usually be found at λ by selecting initial conditions

which lie along the trajectory of a limit cycle at λ− δλ, where

δλ≪ λ. This allows most curves to be completed once a couple

of points along the curve have been found. This method does

not, however, offer any certainty that all possible limit cycles

and chaotic or period-doubled trajectories have been identified.

In particular, the limit cycle curves have a start and end point,

towards which the limit cycle attractor becomes more difficult

to approach, unless an initial condition can be guessed close to,

or along, the trajectory of interest.

To offer a more systematic method of mapping out the dy-

namics, an analytic description of the system is sought. The

next section presents a calculation of the limit cycle amplitudes.

This will require a series of approximations, which limit analy-

sis to small λ values, such that λQ ≪ ∆ω. Whilst this approx-

imation is not valid for the entire range of Figure 5.5, it will

provide a systematic method of searching for limit cycles over

the weak coupling range.
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5.4 analytic modelling of the limit cycle regimes

In this section the membrane motion is modelled by driven

oscillations about the fixed position q0 (as labelled in red in

figure 5.1a), at a fixed amplitude, A, and fixed frequency, ωm:

q(t) = q0 + A cos (ωmt), (5.28)

This ansatz is supported by the numerical analysis of Section

5.3, where the limit cycle regime sees regular oscillations at ap-

proximately the mechanical frequency. Prior studies also sup-

port this ansatz[13, 67]. By selecting fixed parameters q0, A and

ωm, one can search for periodic motion, seeking out parameters

which fit this ansatz. The approach taken in this section utilises

a similar method to that employed by Heinrich et. al.[67], ex-

tending the analysis to generalise the results.

Stable limit cycles occur when losses in the system are bal-

anced by the radiation pressure forces[37, 41]. This is the case

when the total damping in the system is zero. Applying this

condition gives an estimate of where limit cycles occur. This

requires an amplitude dependent expression for the damping

due to back action, which is expressed in terms of the cav-

ity mode operators. These will be deduced by writing down

a Schrödinger equation and applying a rotating wave approxi-

mation.

5.4.1 Damping due to Back Action

In the regime where limit cycles are observed, the resonator be-

haves as a harmonic oscillator, undergoing periodic oscillations

(see Figure 5.2a). With this in mind, the membrane motion is

modelled via Equation 5.28. The classical equation of motion

takes the form[9, 67]

q̈ + γq̇ + ω2
mq = Frad, (5.29)

where Frad is the radiation pressure force, introduced in Chap-

ter 4, Section 4.3:

Frad = λ (α∗LαL − α∗RαR) . (5.30)

The average mechanical power produced by the radiation pres-

sure force is 〈Fradq̇〉 with the average taken over one oscillation

cycle. An amplitude dependent damping due to back action

can then defined in terms of this average power[49, 74],

γBA〈q̇2〉 = −λ〈
(

|αL|2 − |αR|2
)

q̇〉. (5.31)
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An expression for q̇ follows when Equation 5.28 is differenti-

ated,

q̇ = −Aωm sin (ωmt), (5.32)

with its average given by

〈q̇2〉 =
2π

ωm

∫ 2π/ωm

0
dt q̇2 (5.33)

=
A2ω2

m

2
. (5.34)

Stable limit cycles of amplitude A0 are sought, by applying

the energy balance condition:

〈q̇Frad〉 = −γ〈q̇2〉, (5.35)

hence using Equation 5.31,

γBA(A0) = −γ. (5.36)

The displacement q is assumed to obey Equation 5.28 - this

ansatz is then used to solve Equations 5.10 to 5.15. The expres-

sion for γBA in equation 5.31 is then given in terms of αL, αR

and q, which are all functions of A. In multiplying by q̇ and

averaging, Equation 5.31 isolates the terms, in the expression

|αL|2− |αR|2, which oscillate at the driven mechanical frequency.

This essentially picks out oscillations occurring at the correct

frequency to become stable.

5.4.2 Expressions for cavity variables

Expressions for the cavity amplitudes are sought for fixed val-

ues of A and q0, in order to obtain γBA using Equation 5.31.

The equations of motion for the cavity variables, 5.12 and 5.10,

are represented in matrix form,
(

α̇R

α̇L

)

=
1

i

(

∆′R(q)− i κ
2 g

g ∆′L(q)− i κ
2

)(

αR

αL

)

+ Bin(t), (5.37)

where the input power, Bin(t) is given by

Bin(t) =

(

0

−iΩ

)

. (5.38)

To proceed, Equation 5.37 is transformed into a non-uniformly

rotating frame, and expressed in terms of vectors
(

ãR ãL

)T
,

which relate to the cavity variables
(

αR αL

)T
by[67]

αj(t) = −iΩe±iφ(t)
∫ 0

−∞
dt′
[

α̃j(t, t′)e−iφ(t′)
]

e−
κ
2 (t−t′)ei∆t′ , (5.39)
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for j = L, R, where the phase factor is given by

φ(t) =
Aλ

ωm
sin (ωmt), (5.40)

and initial conditions are α̃L(t
′, t′) = 1 and α̃R(t

′, t′) = 0. This

represents a single photon in the left chamber and an empty

right chamber.

The variables α̃i(t) obey the equation

d

dt

(

α̃R

α̃L

)

=
1

i

(

λq0 ge2iφ(t)

ge−2iφ(t) −λq0

)(

α̃R

α̃L

)

. (5.41)

Recall that q0 is a constant representing the centre of mechan-

ical oscillations. The time dependence then comes from the

phase factor φ(t). This term is re-written using the Jacobi-Anger

expansion[55],

ge2iφ(t) =
∞

∑
ν=−∞

gνeiνωmt, (5.42)

where the variable gν is defined

gν = gJν

(

2A

ωm

)

, (5.43)

with A = λA. Equation 5.41 can then be written as a time

dependent Schrödinger equation (TDSE),

i
d

dt
|ψ〉 = H1|ψ〉, (5.44)

where the wave vector takes the form

|ψ〉 =
(

α̃R α̃L

)T
(5.45)

and Hamiltonian is given by

H1 =

(

λq0 ∑
∞
ν=−∞ gνeiνωmt

∑
∞
ν=−∞ gνe−iνωmt −λq0

)

, (5.46)

which can be separated into time dependent and time indepen-

dent parts:

H1 = H0 + V(t), (5.47)
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where

H0 =

(

λq0 g0

g0 −λq0

)

, (5.48)

V(t) =
∞

∑
ν=−∞

ν 6=0

gν

(

0 eiνωmt

e−iνωmt 0

)

. (5.49)

Defining the following,

fν(t) = eiνωmt + (−1)νe−iνωmt, (5.50)

The matrix V(t) is then written

V(t) =
∞

∑
ν=1

gν

(

0 fν

(−1)ν fν 0

)

, (5.51)

where the relation J−ν(x) = (−1)ν Jν(x) is used to change the

limits of the sum[55].

5.4.3 Solution to the Schrödinger equation and bases of the system

States of the system, described by wave vectors |ψ(t, t′)〉 (de-

fined in Equation 5.45) obey the TDSE given in Equation 5.44.

Figure 5.1b shows the cavity frequencies for the case where

g = 0 (dashed black lines) and when g 6= 0 (solid blue curves).

The transformed cavity modes can be expressed in terms of two

different bases. These are the eigenmodes of H0, when g = 0

and g 6= 0.

When g = 0, the system evolves under the Hamiltonian

H0(g = 0) =

(

λq0 0

0 −λq0

)

. (5.52)

The basis of this matrix is described by eigenvectors |R〉 =
(

1 0
)

, for a photon in the right chamber, and |L〉 =
(

0 1
)

,

for a photon in the left chamber. Initially, the left chamber is oc-

cupied, so that |ψ(t′, t′)〉 =
(

0 1
)T

. The corresponding eigen-

values to |R, L〉 are frequencies ±λq0.

For the general case g 6= 0, the system evolves under the

Hamiltonian H1. Treating V(t) as a perturbation, the basis can

be approximately described using eigenvectors of H0, labelled

|±〉. These have eigenvalues, ω±,

H0|±〉 = ω±|±〉, (5.53)
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where ω± = ±
√

g2
0 + (λq0)

2. The initial condition is given in

terms of the basis |R, L〉, so a transformation between the two

bases must be defined. This takes the form
(

α+
α−

)

=

(

u v

x y

)(

α̃R

α̃L

)

, (5.54)

where u, v, x, y are time independent constants2. The basis vec-

tors |+〉 and |−〉, describe photons in the upper and lower dis-

persion bands, respectively.

The state vector |ψ(t, t′)〉 expanded in terms of the basis |±〉
is

|ψ(t, t′)〉 = ∑
p=±

e−iωp(t−t′)cp(t)|p〉, (5.55)

where cp(t) are time dependent coefficients, yet to be deter-

mined.

Expressions for α̃L and α̃R are obtained by projecting |ψ〉 onto

|R〉 and |L〉:
α̃R = 〈1|ψ〉 (5.56)

= ∑
p=±

e−iωp(t−t′)cp〈1|p〉 (5.57)

= e−iω+(t−t′)c+〈1|+〉+ e−iω−(t−t′)c−〈1|−〉, (5.58)

α̃L = e−iω+(t−t′)c+〈2|+〉+ e−iω−(t−t′)c−〈2|−〉. (5.59)

The time dependent coefficients are determined by

i
d

dt
cp(t) = ∑

q=±
Vpqei(ωp−ωq)(t−t′)cq. (5.60)

where

Vpq = 〈p|V|q〉. (5.61)

In order to determine the coefficients cp, Equation 5.55 is dif-

ferentiated:

d

dt
|ψ〉 = ∑

p=±

(

−iωpcp + ċp

)

e−iωp(t−t′)|p〉. (5.62)

Using Equation 5.55, the first term in the sum can be identified

as the right hand side of equation 5.53, and substituting results

into Equation 5.44 gives

V(t)|ψ〉 = iċ+e−iω+(t−t′)|+〉+ iċ−e−iω−(t−t′)|−〉. (5.63)

2 This transformation follows a similar process to that used in Chapter 3,
detailed in Appendix D.
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Splitting V(t) into components allows for separate equations to

be written for ċp(t). Given Equation 5.61, V(t) can be written

V(t) = ∑
p,q

Vpq|p〉〈q|, (5.64)

which, combined with Equation 5.55, gives

V(t)|ψ〉=V++|+〉c+e−iω+(t−t′) + V+−|+〉c−e−iω−(t−t′)

+V−+|−〉c+e−iω+(t−t′) + V−−|−〉c−e−iω−(t−t′).(5.65)

By equating equations 5.63 and 5.65, coefficients in |+〉 and

|−〉 can be matched up.

iċ+ = V++c+ + V+−c−ei∆E(t−t′), (5.66)

iċ− = V−−c− + V−+c+e−i∆E(t−t′), (5.67)

where ∆E = ω+ −ω−.

In order to calculate c±(t), expressions for Vpq(t) are required

in the basis of |±〉. Consider the transformation in equation

5.54, which allows states |±〉 to be expressed as

|+〉 = u|R〉+ v|L〉 (5.68)

|−〉 = x|R〉+ y|L〉. (5.69)

where the coefficients are

u =
g0

√

(

∆E
2 − λq0

)2
+ g2

0

, (5.70)

v =
∆E
2 − λq0

√

(

∆E
2 − λq0

)2
+ g2

0

, (5.71)

x =
g0

√

(

∆E
2 + λq0

)2
+ g2

0

, (5.72)

y =
−
(

∆E
2 + λq0

)

√

(

∆E
2 + λq0

)2
+ g2

0

. (5.73)

This transformation allows elements of V(t) to be expressed in

the basis |±〉:

V++ = 〈+|V|+〉 (5.74)

= ∑
ν

gν fν (1 + (−1)ν) ux (5.75)
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By similar analysis,

V+− = ∑
ν

gν fν (uy + (−1)νvx) (5.76)

V−+ = ∑
ν

gν fν (vx + (−1)νuy) (5.77)

V−− = ∑
ν

gν fν (1 + (−1)ν) vy. (5.78)

5.4.4 The Rabi problem

This section has described an effective two level system, where

the two levels can be identified as states in the cavity where

a photon is in either the left or right chamber of the cavity.

The presence of coupling, g 6= 0, causes the two modes to hy-

bridise forming an upper and lower dispersion band with an

anti-crossing (see Figure 5.1b). One can draw an analogy be-

tween this and the Rabi problem[1, 68], where a two level atom

interacts with a laser field close to its transition frequency, cre-

ating hybridised upper and lower modes in the system.

ω0

|g〉

|e〉

ωL

Figure 5.6: The Rabi problem: a two level atom with energy levels |g〉
and |e〉, separated by frequency ω0 (red), driven close to

resonance by a laser of frequency ωL (blue), resulting in

transitions between the two levels.

Consider the two level atom shown in Figure 5.6, with ground

state |g〉 and excited state |e〉 separated by a frequency ω0. The

atom is initially in the ground state and driven close to reso-

nance, by a laser of frequency ωL. The laser is tuned such that

|ω0 −ωL| ≪ |ω0 + ωL|. The Hamiltonian can be expressed

HR =
1

2
ω0σz −Λ cos (ωLt)σx, (5.79)
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where Λ is a constant and σx and σz are the Pauli matrices[75],

given by

σz = |e〉〈e| − |g〉〈g| (5.80)

σx = |e〉〈g|+ |g〉〈e|. (5.81)

This problem has been examined extensively[76], by implement-

ing a rotating wave approximation (RWA). This allows a simple

analytic description of the transition probabilities, by solving

the TDSE, to express the wave vector |ψ〉 in terms of the basis

|g, e〉:

i
d|ψ〉

dt
= HR|ψ〉. (5.82)

Writing

|ψ〉 = cg(t)e
−iωgt|g〉+ ce(t)e

−iωet|e〉, (5.83)

one can then deduce equations of motion for cg and ce from the

TDSE:

ċg = iΛ cos ωLte−iω0tce (5.84)

ċe = iΛ cos ωLteiω0tcg. (5.85)

Expanding the cosine term results in a pair of rotating terms in

each equation:

ċg = iΛce
1

2

(

e−i(ωL+ω0)t + ei(ωL−ω0)t
)

(5.86)

ċe = iΛcg
1

2

(

ei(ωL+ω0)t + e−i(ωL−ω0)t
)

. (5.87)

The RWA is applied by noting that, since |ωL −ω0| ≪ |ωL +
ω0|, the first term in each equation is fast oscillating in com-

parison to the second term. Provided then, that the coupling

Λ is also small, when an average is taken over any apprecia-

ble timescale, the contribution from the first term is negligible

in comparison to that of the second term[56, 76]. As a result,

the fast oscillating first term in each equation can be dropped,

leaving two equations of motion which are analytically soluble.

This allows for a relatively straight forward calculation of the

transition probability, |ce|2.

Given the analogy that can be drawn between the Rabi prob-

lem and the two mode system of this chapter, the next sec-

tion explores the case where the separation between the opti-

cal modes is close to an integer multiple of the mechanical fre-

quency: ∆E ≈ nωm. In this case the mechanical mode acts like
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the near-resonant laser, whilst the optical bands (at frequencies

ω±) provide an effective two-level system. Here, however, the

initial state is excited to the upper level so that energy is ex-

tracted to drive the resonator[16, 67]. By applying a RWA, the

next section seeks to model the energy exchange analytically in

order to describe limit cycle oscillations.

5.4.5 Rotating Wave Approximation

In order to deduce expressions for αL and αR, one must solve

Equations 5.66 and 5.67 for c±. Each element of V in the equa-

tions contains an infinite sum over ν. In this section the RWA

allows these sums to be truncated, simplifying the calculation.

To motivate this approximation, consider the case where 2g ∼
ωm. As discussed in Chapter 4, analysis of the damping due to

back action reveals the strongest driving and damping in the

resonator when ω+ − ω− = ωm. As a result, when the cav-

ity is driven close to the upper dispersion band (∆ = −ω+),

transitions to the lower dispersion band (at frequency ω−) are

possible, where a single phonon is created, driving oscillations

in the resonator. One can generalise this effect to n phonons,

when ω+ −ω− = nωm.

Equations describing the constants c± contain sums over dif-

ferent exponents, ±νωmt and ±(∆E ± νωm)(t− t′):

iċ+ = ∑
ν

[

Hνux
[

eiνωmt + (−1)νe−iνωmt
]

c+

+Gν

[

eiνωmt + (−1)νe−iνωmt
]

ei∆E(t−t′)c−

]

(5.88)

iċ− = ∑
ν

[

(−1)νGν

[

eiνωmt + (−1)νe−iνωmt
]

e−i∆E(t−t′)c+

+Hνvy
[

eiνωmt + (−1)νe−iνωmt
]

c−

]

, (5.89)

where Equations 5.75 to 5.78 have been substituted into Equa-

tion 5.66 and 5.67, and

Gν = gν (uy + (−1)νvx) (5.90)

Hν = gν (1 + (−1)ν) . (5.91)

Applying the RWA allows one to discard all terms except those

with exponents ±(∆E − nωm). This allows the sums over ν to
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be truncated so that only a single term, n, in the sum remains.

For this to work, the system must be driven close to resonance

(∆ ≈ ω+) - in order to excite the upper cavity mode - and the

energy gap between the optical modes must be close to an in-

teger multiple, n, of the mechanical frequency. Specifically, one

requires |∆E − nωm| ≪ |∆E + nωm|. In addition, it is required

that the coupling is small, gn ≪ ∆E, so that the averages of the

fast rotating terms remain small. As stated in Section 5.4.2, this

is assumed to be the case.

The calculation is generalized for an integer number, n, but

results are shown for n = 1. With n odd, the only non-zero

matrix elements are

V+− = gn fn, (5.92)

V−+ = −gn fn. (5.93)

Given Equations 5.66 and 5.67, equations of motion for the co-

efficients c± are written:

ċ+(t) = igne−inωmt′ei(∆E−nωm)(t−t′)c− (5.94)

ċ−(t) = igneinωmt′e−i(∆E−nωm)(t−t′)c+, (5.95)

where the RWA allows the term of frequency ∆E + nωm to

be discarded. Note that whilst the above analysis assumed n

is odd, for the case of even n, a similar set of equations are

reached, with the addition of a factor 2λq0/∆E on the right

hand side of each equation. The elements V++ and V−− are

non-zero, but their contributions can also be discarded in the

RWA, owing to the weak coupling and exponents ±ωmt, which

result in rapidly rotating terms. Details are given in Appendix

F.

Equation 5.39 expresses
(

αR αL

)T
in terms of

(

ãR ãL

)T
,

which are expressed in terms of coefficients c± in equations 5.58

and 5.59. The coefficients are found by solving Equations 5.94

and 5.95 simultaneously. An ansatz, c+(t) = C0eθ(t−t′), is made,

with constants c0 and θ. Initial conditions are c+(t′, t′) = 〈+|2〉
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and c−(t′, t′) = 〈−|2〉. Defining Ωn = ∆E − nωm, the resulting

expressions are

c+(t, t′) =
1

2

[

(

An〈L|+〉+
gn

2ωR
e−inωmt′〈L|−〉

)

eiωR(t−t′) (5.96)

+

(

Bn〈L|+〉−
gn

2ωR
e−inωmt′〈L|−〉

)

e−iωR(t−t′)

]

eiΩn(t−t′),

c−(t, t′) =
1

2

[

(

Bn〈L|−〉+
gn

2ωR
einωmt′〈L|+〉

)

eiωR(t−t′) (5.97)

+

(

An〈L|−〉−
gn

2ωR
einωmt′〈L|+〉

)

e−iωR(t−t′)

]

e−iΩn(t−t′),

where

An =
ωR − (∆E − nωm)/2

ωR
(5.98)

Bn =
ωR + (∆E − nωm)/2

ωR
, (5.99)

and ωR is the Rabi frequency, defined by

ωR =
√

g2
n + (∆E − nωm)2/4. (5.100)

Expressions for the average light field operators follow, from

equations 5.58 and 5.59,

αL(t) =
−iΩ

2 ∑
m

Jme−i(∆+mωm)tH
(L)
n,m (5.101)

αR(t) =
−iΩ

2 ∑
m

Jme−i(∆+mωm)tH
(R)
n,m (5.102)

where the shorthand Jm = Jm(A/ωm) is introduced and

H
L(R)
n,m = C

(L(R))
n,m + D

(L(R))
n,m e−inωmt + E

(L(R))
n,m einωmt, (5.103)

where the following are defined:

C
(R,L)
n,m = 〈L|+〉〈+|R, L〉

(

An

W+
n,m

+
Bn

X−n,m

)

+〈L|−〉〈−|R, L〉
(

Bn

X+
n,m

+
An

W−n,m

)

(5.104)

D
(R,L)
n,m = 〈L|−〉〈+|R, L〉 gn

ωR

(

1

W−n,m
− 1

X+
n,m

)

(5.105)

E
(R,L)
n,m = 〈L|+〉〈−|R, L〉 gn

ωR

(

1

X−n,m
− 1

W+
n,m

)

, (5.106)
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and

W±n,m =
κ

2
∓ i
[

ωR ±
(

m− n

2

)

ωm ± ∆
]

(5.107)

X±n,m =
κ

2
∓ i
[

ωR ±
(

m +
n

2

)

ωm ± ∆
]

. (5.108)

When the average 〈
(

|aL|2 − |aR|2
)

q̇〉 is taken, only terms of

frequency ±ωm give a non zero contribution to the sum over

|αL|2 − |αR|2, the result is

γBA(A) =
λΩ2

4Ai ∑
m

Jm

[

χn,m,m+1
1 Jm+1 − χn,m,m−1

1 Jm−1

+χn,m,m−n+1
2 Jm−n+1 − χn,m,m−n−1

2 Jm−n−1

+χn,m,m+n+1
3 Jm+n+1 − χn,m,m+n−1

3 Jm+n−1

+χn,m,m+2n+1
4 Jm+2n+1 − χn,m,m+2n−1

4 Jm+2n−1

+χn,m,m−2n+1
5 Jm−2n+1 − χn,m,m−2n−1

5 Jm−2n−1

]

(5.109)

where the following are defined:

χn,m,m′
1 = C

(L)∗
n,m C

(L)
n,m′ − C

(R)∗
n,m C

(R)
n,m′ + D

(L)∗
n,m D

(L)
n,m′

−D
(R)∗
n,m D

(R)
n,m′ + E

(L)∗
n,m E

(L)
n,m′ − E

(R)∗
n,m E

(R)
n,m′(5.110)

χn,m,m′
2 = C

(L)∗
n,m D

(L)
n,m′ − C

(R)∗
n,m D

(R)
n,m′ + C

(L)∗
n,m E

(L)
n,m′

−C
(R)∗
n,m E

(R)
n,m′ (5.111)

χn,m,m′
3 = C

(L)∗
n,m E

(L)
n,m′ − C

(R)∗
n,m E

(R)
n,m′ + C

(L)∗
n,m D

(L)
n,m′

−C
(R)∗
n,m D

(R)
n,m′ (5.112)

χn,m,m′
4 = D

(L)∗
n,m E

(L)
n,m′ − D

(R)∗
n,m E

(R)
n,m′ (5.113)

χn,m,m′
5 = D

(L)
n,m′E

(L)∗
n,m − D

(R)
n,m′E

(R)∗
n,m . (5.114)

Note that there is now a single sum, over multiple Bessel

functions, comprised of many complex terms. In practice, the

sum is performed numerically, so that limits extend from −M

to M, where M is a real integer. As M → ∞, the imaginary

components cancel, producing a purely real value γBA, as is

required. This value converges for large M, such that one can

take M = 30. As m increases, the coefficients χn,m,m′
i in Equation

5.109 converge towards zero, as the denominators W±n,m and

X±n,m increase. In fact, increasing value at which the sum is trun-

cated does not appear to alter the value of ℜ[γBA] past M = 5,
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however one requires M = 30 to ensure that ℑ[γBA]≪ ℜ[γBA],
whilst offering a quantity which can be computed fairly rapidly.

One can compare the results of the calculation to the lin-

earized result of Chapter 4, in the regime where the fixed point

state is stable. Taking the limit A → 0 in Equation 5.109 leaves

only the amplitude-independent zeroth order term. The result-

ing value of γBA closely matches the linearized result. The agree-

ment between the two calculations is illustrated in Figure 5.7,

which shows the relative error between the two:

δγ =
γBA(A = 0)− γLIN

γBA
, (5.115)

where γLIN represents the linearized value of the damping due

to back action, given in Equation 4.92 of Chapter 4. The curve

increases rapidly with λ, but remains small for the range plot-

ted. As λ increases, the linearization of Equations 4.16 to 4.19

in Chapter 4 becomes less accurate and so the two calculations

begin to deviate.

The RWA requires nωm ≈ ∆E, in order that the optical modes

are separated by an integer number of mechanical quanta. The

minimum separation between the optical modes is 2
√

g2 + λ2q2
0,

where the cavity shift λq0 = ∆ω + λQ. Contributions to the

cavity shift come from the equilibrium displacement and the

fixed point displacement of the resonator. The calculation of

Equation 5.109 is simplified by ignoring the cavity shift from

the displacement Q (shown in green in Figure 5.1a). For the

regime where oscillations decay (Figure 5.4a) it is evident that

this contribution is small. There is, however, a change in be-

haviour as λc is approached. As a starting point, it is assumed

that λQ≪ ∆ω, so that λq0 ≈ ∆ω.

In addition, there is a small frequency shift in the mechani-

cal oscillations. Over the vast range of limit cycles the shift is

negligible - remaining within 1% of ωm, but around λ ≈ 0.4

the shift reaches 5% of ωm and continues to grow. Ideally, one

would need to account for the mechanical frequency shift, but

since it is negligible over the majority of the range of parame-

ters addressed here, it is neglected.

5.4.6 Limit cycle dynamics

For λ > λc, the system reaches stable limit cycles in the long

time limit. The analysis from Chapter 2, Section 2.3.3 is applied

to Equation 5.109 to determine the amplitude of stable limit
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Figure 5.7: Relative error when comparing the damping due to back

action, as given in Equation 5.109 (solid) and compared

with the linearized calculation of Chapter 4. The error is

very small over the range where the fixed point state is

stable, and increases with λ, as expected.

cycles. Recall the stability condition (quoted in Equation 5.36),

indicating the size of limit cycles, A0. If the gradient of γBA is

positive at A0, the limit cycle is stable. In this manner, the limit

cycle dynamics of the system are mapped out for a range of λ

values. Figure 5.8 offers a comparison between the numerically

and analytically generated amplitudes, for λ ≤ 0.41.

The analytic calculation appears to capture the limit cycle dy-

namics remarkably well, particularly at smaller λ values, λc ≤
λ ≤ 0.05. Small discrepancies can be noted, both along each

curve as λ increases, and between curves as limit cycles appear

further out. The most notable discrepancy is the failure of ana-

lytics to detect limit cycles towards the end of certain branches.

Considering the approximation λq0 ≈ ∆ω, it is not surprising

that the calculation would become less accurate at stronger cou-

pling; Figure 5.4a indicates a rapid increase in λQ with λ as the

limit cycle regime is reached.

Turning, now, to the approximations applied in the analyt-

ical calculation, Figure 5.9 addresses two of the assumptions

made. The additional cavity shift, λQ, occurs due to the im-

balance between occupations of the left and right cavities, such

that λq0 = ∆ω + λQ. In taking λq0 = ∆ω, errors are introduced

in the calculation, affecting the values of ∆E and ωR as well as

the accuracy of the RWA. Figure 5.9a shows the ratio between

the assumed cavity shift, ∆ω, and the shift from the fixed point
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Figure 5.8: Analytic calculation of limit cycle sizes (solid lines), us-

ing Equation 5.109 and the analysis outlined in Chapter 2.

This is compared to the numerical data generated in Sec-

tion 5.3 (crosses). As seen in Figure 5.5, the stable cycles

lie along smooth curves separated into different branches.

The two sets of results prove to match closely, with the

main discrepancies arising towards the end of each branch,

where analytics fail to predict limit cycles seen in numer-

ical calculations. The vertical dotted line at λc indicates

where the instability arises and limit cycles emerge.

displacement, λQ (calculated numerically). Qualitatively, there

is a clear increase with λ along each curve, as well as sharp

increases between curves that is consistent with the decreases

in accuracy noted along and between branches in Figure 5.8.

However, quantitatively the λQ values plotted are very high,

compared with ∆ω. In light of such large cavity shifts, the ac-

curacy of the analytic calculation is perplexing.

Also shown, in Figure 5.9b, is the relative error between the

frequency of oscillations in q(t) and the mechanical frequency,

δωm = (ωe f f − ωm)/ωm. For the range plotted, δωm < 0.1,

so that the shift remains small - however there is a noticeable

increase in δωm for the first branch as λ → 0.4, where the an-

alytics begin to fail. These values appear consistent with the

success of the analytic approach.
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Figure 5.9: Analysis of quantities ignored in calculating γBA: (a) the

ratio between the cavity shift from the fixed point displace-

ment and the , λQ/∆ω, and (b) the relative error in the

shifted mechanical frequency. In (a), the fixed point ap-

pears to cause a significant shift in the cavity frequency,

in comparison to the equilibrium shift. Whilst in (b) the

correction remains small, there is an increase as λ → 0.4

and the discrepancies appear in the analytics.

(a) (b)
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Figure 5.10: Conditions of the RWA: (a) the coupling term, g1/∆E and

(b) ζ = |∆E − nωm|/|∆E + nωm|. In order to apply the

RWA, these two quantities must be far below unity. It is

evident that the coupling is small for the range consid-

ered. The quantity ζ grows significantly with λ; in par-

ticular, there is a rapid increase near λ = 0.4, where the

analytics fail to capture limit cycles on the first branch of

the curve.

The success of the RWA can be understood by re-addressing

the assumptions with the cavity mode separation defined to

include the additional shift:

∆E = 2
√

g2
0 + (∆ω + λQ)2. (5.116)

To that end, the ratio ζ is defined,

ζ =
|∆E − nωm|
|∆E + nωm|

, (5.117)
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and examined alongside the coupling term g1/ωm in Figure

5.10. It is immediately apparent that g1/ωm ≪ 1 for the range

of λ in question so that the weak coupling condition of the

RWA is satisfied. It is also required that ζ ≪ 1, in order for the

system to be close to resonance. For λ < 0.3, the ratio ζ remains

below 0.2. This suggests that the system is indeed close to reso-

nance, and the RWA is relatively accurate. For λ > 0.3 the ratio

increases rapidly, and bigger discrepancies occur between the

results in Figure 5.8 - this is where the analytics start to fail at

predicting the presence of certain limit cycles.

5.5 conclusion

In conclusion, this chapter has mapped out the dynamics of the

driven regime for a multimode optomechanical system. A va-

riety of behaviours have been investigated numerically, includ-

ing the emergence of multiple limit cycles and chaos. Whilst

the presence of multiple attractors prohibits a truly systematic

analysis of the system, a fairly detailed picture of the limit cy-

cle dynamics has been obtained for weaker coupling values.

Furthermore, this aspect of the dynamics has been explored an-

alytically. A rotating wave approximation allows an incredibly

accurate prediction of the limit cycle amplitudes in the weak

coupling regime. The success of the calculation seems surpris-

ing, considering the significant contribution to the cavity shift

which is ignored, however closer inspection reveals that the as-

sumptions of the rotating wave approximation are met suffi-

ciently to allow for an accurate calculation.
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A
D E TA I L S O F W I G N E R T R A N S F O R M AT I O N

Given a master equation,

ρ̇ = −i
[

He f f , ρ̃
]

+ L̂mρ̃ + L̂cρ̃, (A.1)

it is possible to perform a transformation which results in a

c-number equation for the system - a semi-classical equation

in terms of complex numbers[50]. The benefit of this is that, in

certain cases, a Fokker-Planck type equation can obtained, from

which Langevin equations of motion can be deduced. For this

particular system, a further approximation will be required in

order to obtain a Fokker-Planck equation[1, 31].

This type of transformation is possible using a number of dif-

ferent representations[1] including the P and Q-representations.

In this instance, the Wigner representation is chosen, as it of-

fers the most simple transformation for evaluating averages

of symmetrically ordered products of creation and annihila-

tion operators. The system is then described in terms of a set

of semi-classical variables whose moments correspond to av-

erages of symmetrically ordered operators (as demonstrated

in Equations 2.25 and 2.26). The Wigner function is defined

in Equation 2.23, and can be thought of as the quantum me-

chanical analogue of the classical probability distribution. The

transformation is performed by first defining the Wigner trans-

formations on individual operators, then deducing the action

on multiple operators.

The Wigner transformations on operators a and a∗ are de-

fined [1]

W(a) = α (A.2)

W(a†) = α∗, (A.3)

where α and α∗ are semi-classical variables which replace the

quantum operators a and a†. The Wigner function of the density

operator W(ρ) is unknown, as ρ cannot be specified, so equa-

tions are written in terms of W(ρ). The Wigner transformation

proceeds by writing Wigner functions for each term in the mas-

ter equation 2.21. Each term consists of products of operators a,

a†, b, b† and ρ. With Wigner functions for each of these opera-

tors defined, a transformation is applied, which allows Wigner
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functions of products of operators, W(AB), to be expressed as

functions of the Wigner functions for the individual operators,

W(A) and W(B):

W(AB) = W(A)e
1
2

(←−
∂ α
−→
∂ α∗−

←−
∂ α∗
−→
∂ α

)

W(B), (A.4)

where
←−
∂ α denotes a differential acting to the left, and

−→
∂ α de-

notes a differential acting to the right.

Equation A.4 can be applied to transform the expanded terms

of Equation 2.21, the term i∆a†aρ transforms as

W(i∆a†aρ) = i∆W(a†a)e
1
2

(←−
∂ α
−→
∂ ∗α−

←−
∂ ∗α
−→
∂ α

)

W(ρ) (A.5)

= i∆

[

W(a†)e
1
2

(←−
∂ α
−→
∂ ∗α−

←−
∂ ∗α
−→
∂ α

)

W(a)

]

×

e
1
2

(←−
∂ α
−→
∂ ∗α−

←−
∂ ∗α
−→
∂ α

)

W(ρ) (A.6)

= i∆(α∗ − 1

2
∂α)(α +

1

2
∂α∗)W(ρ) (A.7)

= i∆

[

α∗α− 1

2
+

1

2
(α∗∂α∗ − α∂α)−

1

4
∂α∗∂α

]

W(ρ) (A.8)

Treating further terms in the same way as this leads to the final

form of the c-number equation, given in Equation 2.27.



B
T W O P O I N T C O R R E L AT O R F O R C AV I T Y

F L U C T U AT I O N S

The solution to Equation 2.35 yields expressions for the fluctu-

ations in α and α∗:

δα̃(ω) =
η̃α(ω)

κ
2 + i(ω + ∆′)

, (B.1)

δα̃∗(ω) =
η̃α∗(ω)

κ
2 + i(ω− ∆′)

. (B.2)

Given

η̃α(ω) = ηα(ω)eiz sin (ω′mt+φ) (B.3)

η̃α∗(ω) = ηα∗(ω)e−iz sin (ω′mt+φ), (B.4)

when calculating the two point correlation function, exponents

cancel and

〈η̃α(ω)η̃α∗(ω
′)〉 = 〈ηα(ω)ηα∗(ω

′)〉. (B.5)

The two point correlation function is calculated by perform-

ing a Fourier transform, given that 〈ηα(ω)ηα∗(ω′)〉 = κ
2 δ(ω +

ω′),

〈δα(t)δα∗(t′)〉 =
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

〈η̃α(ω)η̃α∗(ω′)〉
[ κ

2 + i(ω + ∆′)][ κ
2 + i(ω′ − ∆′)]

=
1

2π

∫ ∞

−∞
dω

κ
2

(

κ
2

)2
+ (ω + ∆′)2

. (B.6)

The integral over ω is performed using the substitution

ω + ∆′ =
κ

2
tan (θ) (B.7)

dω =
κ

2
sec2 (θ)dθ. (B.8)

The integral to be evaluated is then

〈δα(t)δα∗(t′)〉 =
1

2π

∫ π
2

−π
2

dθ
sec2 (θ)

1 + tan2 (θ)
, (B.9)

=
1

2π

∫ π
2

−π
2

dθ, (B.10)

=
1

2
. (B.11)
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With this in mind, the term α∗α − 1
2 can be evaluated, by

averaging the second order fluctuations:

α∗α− 1

2
= 〈α∗〉〈α〉+ 〈α∗〉δα + 〈α〉δα∗ + 〈δα∗δα〉

−1

2
(B.12)

= 〈α∗〉〈α〉+ 〈α∗〉δα + 〈α〉δα∗, (B.13)

which gives the expression in Equation 2.46.



C
D E TA I L S O F N U M E R I C A L C A L C U L AT I O N

In Chapters 2 and 3 a master equation is written for the system.

The numerical approach involves analysing the dynamics of the

resonator by solving the master equation directly, giving ρ. The

equation takes the form

ρ̇(t) = L̂ρ(t), (C.1)

where ρ(t) is the density matrix and L̂ the Liouvillian, a super-

operator. In order to solve this as an eigenvalue equation, it is

written in Liouville space representation [60, 77]; matrices are

transformed to vectors by writing out columns consecutively as

a single column, then L̂ can be written as a matrix, which acts

on the vector ρ in the same way as the super operator on the

matrix ρ. This is denoted in the following way:

|ρ̇〉〉 = L|ρ〉〉 (C.2)

The matrix L is non-Hermitian, and has a separate set of right

and left eigenvectors:

L|Rn〉〉 = Λn|Rn〉〉 (C.3)

〈〈Ln|L = Λn〈〈Ln|, (C.4)

where in the absence of degeneracy, the eigenvectors can be

assumed to form a complete orthonormal set[60]. A solution

to Equation C.2 can be found, then expanded in terms of the

eigenvalues, Λn:

|ρ(t)〉〉 = eLt|ρ(0)〉〉 (C.5)

= |ρSS〉〉+
N−1

∑
n=0

〈〈Ln|ρ(0)eΛnt|Rn〉〉, (C.6)

where ρ(0) is an initial density matrix and the matrix L has

N eigenvalues Λn. The eigenvector with zero eigenvalue λ = 0

and right eigenvector, |R0〉〉, is the steady state density operator,

|ρSS〉〉 and normalised to give 〈〈L0| = 〈〈 Î|. All further eigen-

values satisfy ℜ[Λn] < 0[78] and describe different timescales

in the evolution of the system. Solutions for ρ(t) can then be

expressed using an eigendecomposition of the matrix L. The
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result is a sum of the steady state density matrix together with

a series of transient terms.

The eigenvector |ρSS〉〉 is found by solving Equation C.2 nu-

merically. In general, in infinite number of states are available

to the cavity and resonator. In order to perform numerical anal-

ysis, however, the spaces of cavity and resonator state must be

truncated to a finite number of states. This produces accurate

results, provided parameters are chosen such that there is a

negligible probability of the cavity(resonator) occupying states

with energies higher than Na(Nb). The matrix L therefore con-

tains
(

N2
a × N2

b

)2
elements. In this thesis, parameters of interest

generally require an order of Nb ∼ 100 resonator states, which

generates matrices too large to deal with. This is tackled by ob-

serving that most of the off diagonal elements are negligible

in size, and can be discarded. The calculation proceeds by con-

sidering only a finite number of off-diagonal elements. Checks

are included in the calculation so that when the matrix is re-

duced, the elements discarded are below a certain value, or the

number included will be increased.



D
T R A N S F O R M AT I O N O F H A M I LT O N I A N F R O M

U N C O U P L E D T O C O U P L E D C AV I T Y M O D E S

Here the transformation from equation 3.3 to 3.12 is detailed.

This describes the transformation between operators aL, aR with

frequencies ωL and ωR, and operators a1 and a2 with frequen-

cies ω1 and ω2. A Bogoliubov transformation is applied to the

vector
(

aL aR

)T
, this takes the form

(

a1

a2

)

=

(

u v

x y

)(

aL

aR

)

. (D.1)

Operators aL and aR represent the left and right modes, with

frequencies ωL and ωR, while the upper and lower branches of

the dispersion curve (Figure 3.1b) are described by operators a1

and a2 with frequencies ω1 and ω2 respectively. Coefficients u,

v, x and y are found by imposing commutation relations to a1

and a2:

[a1(2), a†
1(2)] = 1 (D.2)

[a1(2), a1(2)] = 0 (D.3)

[a†
1(2), a†

1(2)] = 0 (D.4)

[a1(2), a†
2(1)] = 0 (D.5)

Relations between u, v, x, y follow:

u2 + v2 = x2 + y2 = 1 (D.6)

ux + vy = 0 (D.7)

The cavity modes are governed by the Hamiltonian

Hcav = ωLa†
LaL + ωRa†

RaR + g
(

a†
LaR + a†

RaL

)

, (D.8)

so that equations of motion are given by
(

ȧL

ȧR

)

=

( −iωL − ig

−ig− iωR

)(

aL

aR

)

(D.9)

Differentiating equations D.1 and substituting in equation D.9

gives
(

ȧ1

ȧ2

)

= −i

(

uωL + vg ug + vωR

xωL + yg xg + yωR

)(

al

aR

)

.(D.10)
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Upper and lower branch modes are expected to evolve as

(

ȧ1

ȧ2

)

= −i

(

ω1

ω2

)(

a1

a2

)

. (D.11)

Coefficients are solved for by applying condition D.6:

v =
ω1 −ωL

√

g2 + (ω1 −ωL)2
(D.12)

u =
g

√

g2 + (ω1 −ωL)2
(D.13)

x =
ω2 −ωR

√

g2 + (ω2 −ωR)2
(D.14)

y =
g

√

g2 + (ω2 −ωR)2
(D.15)

Frequencies ω1,2 are the eigenvectors, ω, of the matrix in D.9

−i

∣

∣

∣

∣

ωL −ω g

g ωR −ω

∣

∣

∣

∣

= 0 (D.16)

(ωL −ω)(ωR −ω)− g2 = 0 (D.17)

ω =
ωL + ωR

2
±
√

(ωL −ωR)2

4
+ g2 (D.18)

ω = ω0 ±
√

(λq)2 + g2, (D.19)

where the frequencies ω1,2 are then identified as the positive

and negative roots in Equation D.19:

ω1 = ω0 +
√

(λq)2 + g2, (D.20)

ω2 = ω0 −
√

(λq)2 + g2. (D.21)

The Hamiltonian is then written in terms of the upper and

lower branches:

H = ω1a†
1a1 + ω2a†

2a2 +
1

2
ωm(q

2 + q2)

+Ω(aLeiωdt + a†
Leiωdt). (D.22)

The drive term can be written in terms of a1,2,

Hd = Ω(aLeiωdt + a†
Le−iωdt) (D.23)

= Ω(Xa†
1e−iωdt −Ya†

2e−iωdt + Xa1eiωdt

−Ya2eiωdt), (D.24)
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where X and Y are given by

X =
y

uy− vx
(D.25)

Y =
v

uy− vx
(D.26)

A unitary transformation eliminates time dependence,

H0 = ωd(a†
1a1 + a†

2a2) (D.27)

U = eiH0t/h̄, (D.28)

giving a drive term

Hd = Ωd

[

X(a1 + a†
1)−Y(a2 + a†

2)
]

, (D.29)

and an effective Hamiltonian of

He f f = Hint − H0, (D.30)

(D.31)

where Hint = UHU†.





E
R O U T H H U RW I T Z S TA B I L I T Y C R I T E R I O N

Consider a system with n degrees of freedom. In a linearized

problem, coupled differential equations can be written for the

fluctuations, in matrix form as follows:











ẋn

˙xn−1
...

ẋ0











= M











xn

xn−1
...

x0











, (E.1)

where M describes the time evolution of the vector ~x. If oscilla-

tory solutions are sought in the form ~x(t) = ~x0eΛt, the problem

becomes an eigenvalue equation:

∣

∣

∣

∣

∣

∣

∣

∣

∣

M1,1 −Λ M1,2 · · · M1,n

M2,1 M2,2 −Λ · · · M2,n
...

. . .

Mn,1 Mn,n −Λ

∣

∣

∣

∣

∣

∣

∣

∣

∣











xn

xn−1
...

x0











= 0, (E.2)

where non trivial solutions are sought by setting det{M−Λ} =
0. The variable Λ is then the solution to a polynomial of root n:

anΛn + an−1Λn−1 + . . . + a1Λ + a0 = 0 (E.3)

There are n roots to the polynomial, which, in general are com-

plex. In order for ~x(t) to be a stable fluctuation, the real part of

each solution, Λ must be negative. Without explicitly solving

for Λ, the stability of solutions can be determined by the Routh

Hurwitz Criterion, which analyses the coefficients a0 through

an. There are two criteria to be met:

1. All coefficients must be real, non zero and have the same

sign.

2. The elements in the first column of the Routh Array must

all have the same sign.

The last condition is based on an object called a Routh array,

which is constructed from combinations of the coefficients as

described in table E.1. The elements in the first two rows are
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142 routh hurwitz stability criterion

given by alternating coefficients from the polynomial in ques-

tion. Further elements in each row are given by determinants

of two by two matrices formed from adjacent elements in the

array, with the bottom left corner lying directly above the ele-

ment in question. For a polynomial of order n, the Routh array

has n + 1 rows. To clarify, an example is given below:

an an−2 . . .

an−1 an−3 . . .

b1 b2 b3 . . .

c1 c2 c3 . . .
... . . .

Table E.1: The Routh array, with elements defined in terms of the co-

efficients of the polynomial in question. Elements of the

left column must be positive in order to satisfy the second

condition.

b1 =

∣

∣

∣

∣

an an−2

an−1 an−3

∣

∣

∣

∣

, (E.4)

=
anan−3 − an−2an−1

an−1
. (E.5)

e.1 routh array for the static bistability

The Routh array for Equation 4.47 is shown in Table E.2, and

consists of seven rows. With the proviso that elements a6 to a0

are positive (see Section 4.3.1), one requires elements b1 to f1 to

be positive. For element b1 this is possible to show:

b1 =
a5a4 − a6a3

a5
(E.6)

=
κ
(

4g2 + 5κ2 + 4κγ + γ2 + 2(∆2
L + ∆2

R) + γω2
m

)

4κ + γ
, (E.7)

which is always positive, since κ and γ are positive. The element

f1 is given by a0, which is positive in the case ηd > 0.

For further elements in the array, however, expressions are

long and cumbersome. It is not possible to deduce their positiv-

ity analytically - however, plots of the elements for the range of

parameters considered are shown in Figure E.1, and are indeed

positive. Whilst this doesn’t prove definitively that the second

condition is always met, it is at least met for this example, in

the range where ∆L, ∆R > 0.
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a6 a4 a2 a0

a5 a3 a1 0

b1 = a5a4−a6a3
a5

b2 = a5a2−a6a1
a5

b3 = a0 0

c1 = b1a3−a5b2
b1

c2 = b1a1−a5b3
b1

c3 = 0 0

d1 = c1b2−b5c2
c1

d2 = a0 d1 = 0 0

e1 = d1c2−c5d2
d1

e2 = 0 0 0

f1 = a0 f2 = 0 f1 = 0 0

Table E.2: A table detailing elements of the Routh Array, in terms of

coefficients as described in equation E.3.

Ω

c 1 d
1

Ω Ω

e 1

(a) (b) (c)

Ω0

3433 35 36
−0.4

0

0.4

0.8

1.2

3433 35 363433 35 36
−0.1

0
0.1

0.2

0.3

0.9
1

1.1
1.2
1.3

Figure E.1: Plots of c1, d1 and e1 for the parameters explored in Sec-

tion 4.3.1 of Chapter 4. Each is positive over the range

where 0 < ηd < 1. In (c), Ω0 indicates where the fixed

point solution becomes unstable and oscillations occur.





F
R O TAT I N G WAV E A P P R O X I M AT I O N F O R

E V E N N

In Chapter 5 the RWA is applied to give expression for the

coefficients c±, which can be solved analytically. The analysis

is presented for the case of odd n (with results presented for

n = 1), but can be generalised for all n. Below the calculation

is explicitly shown for the case where n is even, to show how a

similar result is reached.

Equations 5.75 to 5.78 give the matrix elements for V, for

even n these are

V++ = 2 ∑
ν

gν fνux (F.1)

V−− = 2 ∑
ν

gν fνvy (F.2)

V+− = ∑
ν

gν fν(uy + vx) (F.3)

V−+ = V+−. (F.4)

Substituting equations 5.70 to 5.73 gives

V++ =
2g0

∆E
(F.5)

V−− = −V++ (F.6)

V+− =
−2λq0

∆E
. (F.7)

(F.8)

Note that the matrix elements V++ and V−− do not vanish in

this case.

The coefficients then obey the following equations of motion:

iċ+ = ∑
ν

[

2g0

∆E
gν

[

eiνωmt + e−iνωmt
]

c+

−2λq0

∆E
gν

[

eiνωmt + e−iνωmt
]

ei∆E(t−t′)c−

]

(F.9)

iċ− = ∑
ν

[

− 2λq0

∆E
gν

[

eiνωmt + e−iνωmt
]

e−i∆E(t−t′)c+

−2g0

∆E
gν

[

eiνωmt + e−iνωmt
]

c−

]

. (F.10)
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146 rotating wave approximation for even n

Applying the RWA, only terms with exponents ±|∆E− nωm|
are retained, giving

ċ+ = i ∑
ν

2λq0

∆E
gnei(∆E−νωm)(t−t′)e−iνωmt′c− (F.11)

ċ− = i ∑
ν

2λq0

∆E
gne−i(∆E−νωm)(t−t′)eiνωmt′c+, (F.12)

which are almost identical to Equations 5.94 and 5.95, for the

odd n case, save for a factor of 2λq0/∆E. The remaining analysis

then proceeds by redefining gn as g′n:

g′n =
2λq0g

∆E
Jn

(

2λA

ωm

)

. (F.13)
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