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ABSTRACT

NAP is an octapeptide that has demonstrated a neuroprotective/therapeutic efficacy at very

low concentrations in preclinical studies and in a number of clinical trials. Yet little is known about

its structural organization at low concentrations. Here, we have employed atomic force microscopy

to investigate NAP peptide assembly on graphite in aqueous media at nanomolar concentration.

High spatial resolution scans of NAP assemblies reveal their fine structure with clearly resolved

single NAP units. This observation leads us to conclude that NAP molecules do not form complex

self-assembled structures at nanomolar concentration when adsorbed on graphite surface.
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Introduction

NAP is an octapeptide with the amino acid sequence H2N-L-Asn-L-Ala-L-Pro-L-Val-L-Ser-L-

Ile-L-Pro-L-Gln-COOH [8, 17]. It is a peptide snippet from the activity-dependent neuroprotective

protein (ADNP), [1], a protein essential for brain formation [20, 24] recently found to be mutated in

autism [10], deregulated in schizophrenia [5, 21] and in patients with Alzheimer's disease [29]. In this

respect, multiple preclinical evaluations, as well as clinical trials with NAP (davunetide) showed efficacy

of the peptide [18, 19]. In particular, protection of cognitive scores in patients with mild cognitive

impairment and daily living activities in schizophrenia patients were attributed to brain protection [12,

13].

There are two proline residues in the structure of NAP. The presence of these residues with their

exceptional conformational rigidity prevents the NAP molecule from having a linear configuration

(Figure 1). Thus unlike linear peptides, NAP should form neither a typical g-helix nor the less common く-

sheet structure, as a primary step in molecular self-assembly. Surprisingly, little is known about the initial

steps of NAP assembly and what structures they embrace, although it has been shown to form random

structures when studied with circular dichroism in various solvents [9]. Interest in the early steps of NAP

self-assembly in aqueous media is largely due to its bioactivity at very low (sub-nanomolar)

concentrations. A hypothesis to explain this activity is the formation of self-assembled structures that

interact further with target molecules, either losing activity at high concentrations, or having to

concentrate at the binding point [3]. This report investigates, using atomic force microscopy (AFM),

whether NAP self-assembles into such macromolecular nanostructures at low concentrations at a well-

characterized liquid-solid interface. For the purpose of this work, we define macromolecular

nanostructure as periodical structure assembled of single NAP peptides as opposed to random assembly.

AFM has been used widely in investigations of self-assembled peptide structures [6, 27].

Experimental details

Samples were imaged with an AFM (Multimode 8 scanning probe microscope equipped with NanoScope

V controller, BrukerNano, Coventry, UK) in tapping mode in ambient conditions. Standard silicon

Multi75Al tips (Budget Sensors, Sofia, Bulgaria) with resonance frequencies and spring constants of

about 75 kHz and 2.84 N/m respectively were used for imaging in ambient conditions. We have also

utilized super-sharp diamond-like carbon (DLC) tips NSG01_DLC (NT-MDT, Zelenograd, Russia) with

a nominal tip radius of ~1 nm and a spring constant of about 5.5 N/m.
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Highly ordered pyrolytic graphite (NT-MDT, Zelenograd, Russia) was selected as a substrate to study

peptide association in pure water. The surface of HOPG is made of layers of carbon atoms and thus is

hydrophobic and provides no specific binding sites.

NAP (obtained from Allon Therapeutics Inc.) was dissolved in deionised water to a certain concentration.

Freshly cleaved (top layers of graphite were mechanically removed with adhesive tape) HOPG surface

was further exposed to solution. The HOPG surface was washed with 400 microL of fresh deionised

water after adsorption to remove loosely bonded material. All samples were extensively dried in a N2-

stream before imaging. We typically performed imaging straight after the preparation.

All images were processed and analysed with WsXM software [11].

Results and Discussion

In the first instance we estimated the molecular dimensions of possible NAP conformations as

this is important for the understanding of results obtained with AFM. Suitable low energy conformations

of NAP were used to estimate the molecule’s dimensions from a molecular structure built in ChemBio3D

(Perkin Elmer, CambridgeSoft, UK). We carried out a standard optimization for a single molecule in

vacuum at a semi-empirical level with the AM1 method as implemented in GAMESS [26]. We chose a

conformation with a maximum number of intramolecular hydrogen bonds as a starting point. Although

the NAP molecule will inevitably exhibit different conformations in solution, especially in aqueous

media, we believe that when adsorbed on a hydrophobic graphite surface the model in vacuum could well

approximate its conformation. The corresponding dimensions for the optimized conformation are shown

in Figure 1 which represents a molecular model of NAP together with a Connolly molecular surface as

estimated using ChemBio3D software package. The Connolly molecular surface represents the van der

Waals surface as drawn by a test solvent sphere of 1.4Å (mimicking a water molecule) radius as it

touches the van der Waals spheres of individual atoms. This optimization result suggests that there is

potentially a system of multiple hydrogen bonds that twist the molecule into a pincer-like conformation

with the following dimensions: 1.7 nm x 1.1 nm x 0.8 nm. Hence all hydrophobic alkyl groups form an

exterior, with hydrophilic groups creating an interior part of the octapeptide molecule. The above

considerations hold only when NAP molecules exist in solution and adsorb on a graphite surface as single

molecules, i.e. at low concentrations.

Here we have used a 1 nM solution of NAP in deionised water (ddH2O) to study its adsorption

and possible subsequent assembly on HOPG. This was chosen as a test substrate as it provides an

atomically flat, clean hydrophobic surface with minimal specific interactions, such as hydrogen bonding.
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The absence of specific substrate-substance interactions helps to minimize any surface induced disruption

of peptide assembly or undesired chemical bonding. We followed the assembly process with AFM at the

HOPG interface over periods of up to 24 hours. At 24 hours the system was judged to have reached

equilibrium by consideration of the layer growth. Example results are presented in Figure 2. We detected

structures within the first hour of HOPG surface exposure to NAP solution in water: AFM revealed that

NAP molecules form a fairly uniform layer with an average thickness of ~1.5 nm. We found that the layer

consists of assembled nanostructures. We have further observed no major differences in the layer

structure within 24 hour of its growth. This indicates that NAP molecules do not assemble into any

specific macromolecular architecture at the given concentration or below. In fact, even at higher

concentrations (up to 1mM) we have not observed the formation of any well-defined macromolecular

structures.

We have carried out further detailed inspection of the NAP species after 1 hour adsorption to

address their higher-ordered assembly (Figure 3). After 1 hour exposure to a NAP solution, the surface is

predominately covered with small assemblies, reaching ~60nm in diameter and up to ~1.5 nm in height.

Close inspection of these flat nanoassemblies reveals that they are composed of small nearly-round

shaped units. We have not observed any periodicity in the way that these are assembled. The average

height for a single unit is about ~1nm which given the expected surface-molecule separation of ~0.3-0.5

nm typically observed on HOPG [16] gives an estimated unit thickness of ~0.5-0.7 nm. This strongly

suggests that the observed single unit is a single NAP molecule, if judged by its thickness. The observed

size of units is in the range of 4-6 nm in diameter which is significantly larger than an estimated

dimension for a pincer-like conformation of NAP molecule, which is about ~1.7 nm. These dimensions

might therefore suggest lateral association of a number of NAP molecules. Another possible reason for

increased dimensions is broadening of observed features caused by the geometry of tip apex as discussed

at length in the literature [2, 28]. We have further investigated this possibility and the extent of

broadening through the use of ultrasharp diamond probes. These probes have a nominal tip radius of

<1nm and hence should provide improved spatial resolution. Such tips have previously been reported to

produce true molecular resolution on polydiacetylene crystals whilst imaging in tapping mode in air [15].

The size of individual units observed using these tips was in the range of ~2 - 3 nm (Figure 3C-E).

Therefore we clearly observe units close to the estimated dimensions of a single NAP molecule rather

than several laterally associated molecules. Given some inevitable broadening of the features during AFM

imaging [28], which we cannot unambiguously determine at such a small scale, we can conclude that we

observe single NAP molecules. Slightly larger dimensions of some units are likely to be due to their

hydration, as one would expect for a peptide molecule in an ambient environment. We have presented the
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possible model of the NAP assembly based on the AFM findings (inset, Figure 3C). The model shows

single NAP molecules in pincers-like conformation forming a nanoscale lateral assembly.

Providing our assumption is correct and that we observe assemblies of single NAP molecules,

then due to the hydrophobic nature of the exterior, as discussed above, they should have weak

intermolecular interactions. This assumption is supported by the ease of moving single NAP units while

scanning as demonstrated on Figure 3E. The unit is highlighted with an arrow. It is worth noting that

single units retain their dimensions during imaging and while being moved by the AFM tip. This indicates

much stronger interactions within the single unit as compared to intermolecular forces.

These findings are consistent with the observed high potency for the activity of NAP in vitro.

Original pharmacological studies [1], which were confirmed in versatile systems of neuroprotection [e.g.

[30]], indicated activity at a broad concentration range, with the curious results of potency at femtomolar -

nanomolar concentrations [7]. Together, our findings suggest that NAP molecules do not assemble to

form large architectures; rather, there appears a low level of assembly (small clusters) of the peptide on

graphite. Thus, NAP molecules may associate with neuroprotective targets either in a single molecular

form or as a small molecular cluster, to fortify, for example, microtubules in nerve cells [22] and protect

axonal transport [14, 25]. At the microtubule level, single NAP molecules may amplify protein interaction

at the level of the growing tip of the microtubule[23]. Furthermore, small NAP clusters may be associated

with membrane pore formation, which may enhance NAP cellular uptake [4].
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Figure 1. Optimized NAP structure and corresponding dimensions for the

most stable conformation (pincer-like conformation). a – a model showing

aminoacids sequence in NAP; b and c two projections of the stable

conformation with Connolly molecular surfaces overlaid.

Figure 2. A set of AFM images showing NAP adsorption on HOPG surface at:

a - 1h, b – 3h, c – 24h.

Figure 3.

High resolution images of NAP assemblies on a HOPG surface. Images a and

b were acquired with Multi75Al Si-probe, c-e with an ultrasharp

NSG01_DLC probe. The inset on image c shows a putative model for the NAP

assembly on HOPG in pincer-like conformation; the blackened area

represents a single unit observed in AFM images. The arrow on image e

points at one of the units being detached during scanning from the same

assembly shown on the image d, f – a crossection for the image e.
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Figure 3. High resolution images of NAP assemblies on a HOPG surface.

Images a and b were acquired with Multi75Al Si-probe, c-e with an

ultrasharp NSG01_DLC probe. The inset on image c shows a putative
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blackened area represents a single unit observed in AFM images. The

arrow on image e points at one of the units being detached during scanning
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image e.


