
Shu, Jie (2014) Immunohistochemistry image analysis : 
protein, nuclei and gland. PhD thesis, University of 
Nottingham. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/27616/1/Thesis.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


IMMUNOHISTOCHEMISTRY

IMAGE ANALYSIS: PROTEIN,

NUCLEI AND GLAND

JIE SHU, BEng, MSc

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

17th October 2014



Abstract

This thesis focus on the analysis of digitized microscopic image, especially on

IHC stained colour images. The corresponding contributions focused on the

automatic detection of stain colour and glands, the segmentation and quantifi-

cation of cell nuclei, the analysis of liver cirrhosis and the development of a

semi-automatic toolbox.

Colour is the most important feature in the analysis of immunostained images.

We developed a statistical colour detection model for stain colour detection

based on the histograms of collected colour pixels. This is acting on the approa-

ch ”what you see is what you get” which outperforms the other methods on the

detection of several kinds of stain colour.

Verifying the presence of nuclei and quantifying positive nuclei is the found-

ation of cancer grading. We developed a novel seeded nuclei segmentation

method which greatly improves the segmentation accuracy and reduces both

over-segmentation and under-segmentation. This method has been demonstrated

to be robust and accurate in both segmentation and quantification against manual

labelling and counting in the evaluation process.

The analysis of gland architecture, which reflects the cancer stage, has evolved

into an important aspect of cancer detection. A novel morphology-based appro-

ach has been developed to segment gland structures in H-DAB stained images.

This method locates the gland by focusing on its morphology and intensity char-

acteristics, which covers variations in stain colours in different IHC images. The

evaluation results have demonstrated the improvements of accuracy and effi-

ciency.

For the successive development of three methods, we put them in a semi-automatic

toolbox for the aid of IHC image analysis. It can detect different kinds of stain

colour and the basic components in an IHC image. The user created models and

parameters can be saved and transferred to different users for the reproduction

of detection results in different laboratories.
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To demonstrate the flexibility of our developed stained colour detection tech-

nique, the tool has been extended to the analysis of liver cirrhosis. It is a novel

method based on our statistical colour detection model which greatly improves

the analysis accuracy and reduces the time cost.



iii

˙

List of Publications

1. Jie Shu, Guoping Qiu, Mohammad Ilyas and Philip Kaye. Biomarker Detection

in Whole Slide Imaging Based on Statistical Color Models. The MIDAS Journal-

Computational Imaging Biomarkers for Tumors (CIBT),

http://www.midasjournal.org/browse/publication/758, 2010 [Chapter 3]

2. Jie Shu Guoping Qiu, Mohammad Ilyas, G. Dolman. A Semi-Automatic Image

Analysis Tool for Biomarker Detection in Immunohistochemistry Analysis. In-

ternational Conference on Image and Graphics (ICIG). 2013 [Chapter 3]

3. Jie Shu, Guoping Qiu, Philip Kaye and Mohammad Ilyas. Segmenting Over-

lapping Cell Nuclei in Digital Histopahology Images. 35th IEEE Engineering in

Medicine and Biology Society (EMBC). 2013 [Chapter 4]

4. Jie Shu, Hao Fu, Guoping Qiu and Mohammad Ilyas. An Efficient Gland De-

tection Method Based on Texture and Morphological Transformation. Medical

Image Understanding and Analysis (MIUA). 2013 [Chapter 5]

5. Hao Fu, Guoping Qiu, Mohammad Ilyas and Jie Shu. GlandVision: A Novel

Polar Space Random Field Model for Glandular Biological Structure Detection.

In British Machine Vision Conference (BMVC), 2012 [Chapter 5]

6. Hao Fu, Guoping Qiu, Jie Shu and Mohammad Ilyas. A Novel Polar Space

Random Field Model for the Detection of Glandular Structures. IEEE TRANS-

ACTIONS ON MEDICAL IMAGING (TMI), vol 33(3): 764 – 776, 2014 [Chapter

5]

7. Dolman Grace, Jie Shu, Hawkes C, Zaitoun AM, Fallowfield JA, Irving WL,

and Guha IN. Quantification of Elastin As a Predictor of Clinical Outcomes in

Cirrhosis Caused by Chronic Hepatitis C (CHC) Infection. British Association

for The Study of The Liver (BASL). 2013 [Chapter 6]

8. Hoad Caroline, Palaniyappan Naaventhan, Kaye Philip, Chernova Yulia, Bawden

Stephen, Stephenson Mary, Dolman Grace, Jie Shu, Guoping Qiu, James Martin,



iv

Costigan Carolyn, Austin Andrew, Marciani Luca, Gowland Penny, Guha Indra

Neil, Francis Sue, Aithal Guruprasad. Multi-Modal Quantitative Magnetic Res-

onance for the Estimation of Fibrosis, Inflammation, Fat and Iron Accumulation

in the Whole Liver. ID: HEP-14-0273 Submitted to the Journal of Hepatology

on 03-Feb-2014 2014



Acknowledgements

Someone asked me why I endeavor to work on my PhD. That was a dream when

I was a child, I answered. I have been living my childhood dream in the past 31

years. Approaching the dream, I realized, it was not my own but also the dream

of those people who supported me to complete this doctoral thesis.

I would like to express the first and deepest appreciation to my supervisor: Prof.

Guoping Qiu, for his valuable guidance, patients and consistent encouragement

I received throughout the research work. Without his supervision and constant

help this thesis would not have been possible. He who teaches me for one day

is my father for life. I would also like to express my grateful to my second

supervisor: Prof. Mohammad Ilyas who provided me the microscopic images

and all the biological and medical knowledge.

Special acknowledge to doctor Philip Kaye and Grace Dolman who provide me

the microscopic images and the biological and medical knowledge as well. To

my two examiners: Prof. Jon Garibaldi and Prof. Nasir M. Rajpoot, whose

careful proofreading and insightful suggestions have led to an improvement of

the quality of this thesis. To the Prof. Peter Blanchfield and Prof. Rong Qu who

reference me for the PhD application to the University of Nottingham.

Special thanks to my colleagues: Dr. Hao Fu, Bozhi Liu, Qian Zhang, Yujie Mei,

Wenwen Bao, Orod Razeghi, Min Zhang, Mercedes Torres, Salvador Garcia

Bernal, Dr. Poay Hoon Lim, Dr. Ligang Zheng, and Nadine Holmes.

Thanks to the organiger and all the members in IMA and VIPLAB who gave

me the opportunities to present my research and share experiences with each

other. To all the friends who help me a lot in the daily life. They are Yi Ding,

Yongqing Wen, Xing Jiang, Guanshi Wang, Jinglang Huang, Cheng Zhong, Qi

Shen, Siqian Wu, Meiyi Zhu, Rui Zhou, Yusu Wang, Zhilan Xu, Shixin Wang,

Zijian Cai, Xiaokai You, Jianqiao Liu, Wentao Cui, Rong Cang, Jing Ma, Yiwei

Lv, Chang Liu, Yuquan Zhang, Lulu Zhang, Guanghui Chen, Qian Zhou, Yifei

Cheng, Yunxiao Li, Weibin Lin, Yizhen Shi, Yuanchao Peng, Ziqi Sun, Zhe Liu,

Hui Guo, Zhibao Mian, He Wang, Yunhao Lin.

v



vi

This thesis is dedicated to my parents, who support me the study of PhD, without

them this study won’t be possible. To my grandfather, grandmother, uncle and

aunt who have passed away. Wish you rest in peace in the heaven.



Contents

Abstract i

List of Publications iv

Acknowledgements v

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 Background & Motivations . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Immunohistochemistry . . . . . . . . . . . . . . . . . . 2

1.1.2 Nuclei segmentation and gland detection . . . . . . . . 4

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The challenges for stain colour detection . . . . . . . . 6

1.2.2 The challenges for nuclei segmentation and quantification 7

1.2.3 The challenges for gland detection . . . . . . . . . . . . 9

1.3 Aims & Objectives . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . 13

2 Literature and Methods 15

2.1 Techniques For Stain Colour Detection . . . . . . . . . . . . . . 16

2.1.1 Colour model transformation based colour detection . . 16

2.1.2 Clustering based colour detection . . . . . . . . . . . . 17

2.1.3 Multi-colour separation based colour detection . . . . . 18

2.1.4 Colour correction based colour detection . . . . . . . . 19

2.2 Techniques For Nuclei Segmentation . . . . . . . . . . . . . . . 20

2.2.1 Intensity thresholding and morphological filtering . . . . 20

vii



viii

2.2.2 Region accumulation with distance transforms . . . . . 22

2.2.3 Region accumulation with shape features . . . . . . . . 24

2.2.4 Deformable model fitting . . . . . . . . . . . . . . . . . 26

2.2.5 Feature detection with circle fitting and concave points

linking . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Techniques For Gland Segmentation . . . . . . . . . . . . . . . 29

2.4 Methods Used in the Thesis . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Statistical colour detection model . . . . . . . . . . . . 31

2.4.2 Region growing . . . . . . . . . . . . . . . . . . . . . . 32

2.4.3 Watershed nuclei segmentation . . . . . . . . . . . . . . 33

2.4.4 Morphological gray scale reconstruction . . . . . . . . . 34

2.4.5 PHOG feature and SVM . . . . . . . . . . . . . . . . . 35

2.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Stain Colour Detection 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Building of Statistical Colour Models . . . . . . . . . . . . 41

3.2.1 Statistical colour model construction . . . . . . . . . . . 41

3.2.2 The evaluation of statistical model with different colour

models . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 The evaluation of statistical model with different users . . . . . 46

3.4 The comparison of statistical colour detection model with other

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 The comparison of detection accuracy . . . . . . . . . . 49

3.4.2 The comparison of stain colour separation . . . . . . . . 50

3.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . 51

4 Nuclei Segmentation 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Foreground & background Classification . . . . . . . . 60

4.2.2 Seeded watershed . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Post processing . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Experimental Results for Nuclei Segmentation . . . . . . . . . . 67

4.4 DICE Coefficient Evaluation . . . . . . . . . . . . . . . . . . . 70

4.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Quantification Evaluation . . . . . . . . . . . . . . . . . . . . . 74

4.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 75

5 Gland Detection 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



ix

5.2.1 Luminal region extraction . . . . . . . . . . . . . . . . 82

5.2.2 Nuclei region detection . . . . . . . . . . . . . . . . . . 85

5.2.3 Candidate gland preparation . . . . . . . . . . . . . . . 86

5.2.4 Gland classification . . . . . . . . . . . . . . . . . . . . 90

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . 96

6 The Analysis of Liver Cirrhosis 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 Contouring of the tissue slide . . . . . . . . . . . . . . 100

6.2.2 The Quad CPA . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Evaluation of stain colour detection on liver cirrhosis

biopsies . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Evaluation of QCPA method for normal- and over- stain

separation . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Concluding Remarks 115

7.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 Colour detection . . . . . . . . . . . . . . . . . . . . . 116

7.1.2 Nuclei segmentation . . . . . . . . . . . . . . . . . . . 117

7.1.3 Gland detection . . . . . . . . . . . . . . . . . . . . . . 119

7.1.4 Semi-automatic tool . . . . . . . . . . . . . . . . . . . 120

7.1.5 CPA calculation and normal- or over- stained classification121

7.2 Limitations and Future Research . . . . . . . . . . . . . . . . . 121

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A The Interactive Tool 124

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2 The Semi-Automatic Tool . . . . . . . . . . . . . . . . . . . . 126

A.2.1 Toolbox for colour detection . . . . . . . . . . . . . . . 127

A.2.2 Toolbox for nuclei segmentation and quantification . . . 128

A.2.3 Toolbox for gland detection . . . . . . . . . . . . . . . 131

A.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 131

A.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B Instructions of Semi-Automatic Toolbox 134

B.1 User Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1.1 Colour detection . . . . . . . . . . . . . . . . . . . . . 137



x

B.1.2 Nuclei segmentation and quantification . . . . . . . . . 139

B.1.3 Gland detection . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 146



List of Figures

1.1 An example of H-DAB stained digital slide images. . . . . . . . 3

1.2 An example of SR stained digital slide image of liver cirrhosis. . 4

1.3 An example of brown stained elastin fibres image of liver cirrhosis. 4

1.4 The nuclei and gland in H-DAB stained sample. . . . . . . . . . 5

1.5 The colour distribution in different tissue samples stained with

the same immunostaining (P53) varies significantly. Top row:

image samples. Bottom row: plots of the colour distribution in

the RGB colour space. . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Examples from our data set. (a) a sample of glands that have

vacant artefact regions on the boundary; (b) a sample of glands

that have coloured luminal regions; (c) a sample of glands with

different coloured nuclei. . . . . . . . . . . . . . . . . . . . . . 9

3.1 The evaluation scheme of statistical model. . . . . . . . . . . . 41

3.2 The illustration of probability calculation. The left column is the

index of colour bin for 2D colour space with 128×128 bins. The

middle column is the number of collected colour pixels quan-

tised in each colour bin. The right column is the calculated

probability value for each colour bin (see Equation 3.4). . . . . . 43

3.3 The illustration of evaluation process. The top image is the

greyscale result image with detected stain colour pixels; back-

ground pixels are set to 255. The bottom image is the illustration

of the true positive ratio and false positive ratio calculation. The

ratios are calculated against ground truth at each intensity level

from 1 to 255 respectively; these can then be summed to calcu-

late the average ratios. . . . . . . . . . . . . . . . . . . . . . . 45

3.4 The ROC curves of statistical colour detection models with dif-

ferent colour spaces. The blue curve shows the ROC of models

created with 64 histogram bins; the brown curve shows the ROC

of models created with 128 histogram bins; and the green curves

shows the ROC of models created with 256 histogram bins. . . . 53

xi



List of Figures xii

3.5 ROC curve for different user constructed statistical models. Top

row: ROC curve for User constructed statistical models (based

on 10 whole slide images and 10 mixed images) on 50 whole

slide test images; Bottom row: ROC curve for User constructed

statistical models (based on 10 TMA images and 10 mixed images)

on 50 TMA test images. . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Standard deviation in statistical models for the evaluation of

model variation based on the intensity threshold. Top two: stan-

dard deviation in statistical models trained from whole slide

images and mixed images which were tested on 50 whole slide

images, Bottom two: standard deviation in statistical models

trained from TMA images and mixed images which were tested

on 50 TMA images. The horizontal axe is the intensity value,

and the vertical axe is the standard deviation. . . . . . . . . . . 55

3.7 ROC curves for colour deconvolution, CMYK and average value

of statistical models. The plot on the top shows the ROC curves

for colour deconvolution (red dashed line), CMYK (brown dot-

ted line) and the average value of the statistical models (smooth

green line) on 50 whole slide test images; the plot on the bottom

shows the ROC curves for colour deconvolution, CMYK and the

average value of the statistical models on 50 TMA test images. . 56

3.8 Stain colour detection on dark-stained slides. Left column is the

original image, middle column is detected brown colour, and

the right column is detected blue colours. (a) & (d) are obtained

from CD, (b) & (e) are obtained from CMYK, (c) & (f) are ob-

tained from the statistical model. . . . . . . . . . . . . . . . . . 57

4.1 Watershed on extracted foreground regions. (a) original image.

(b) watershed performed on the global thresholded images. (c)

watershed performed on the combined global and local thresh-

olded images. The falsely segmented nuclei are highlighted with

red circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Local window movement.((a) original image. (b-d) different

window sizes, 10×10, 30×30, 50×50. (e-h) different moving

distances per iteration, the shown moving distances include 1

pixel, 5 pixels, 15 pixels and 25 pixels. The missing detected

nucleus is highlighted with red circle. . . . . . . . . . . . . . . 61



List of Figures xiii

4.3 Region growing and nuclei segmentation. (a) original image,

red points in (a) are initial seeds obtained from UEP. (b) the

combined local and global thresholded results. (c) small parti-

cles in (b) are removed according to their mean nuclei size and

minimum size constraint. (d) seeds used for region growing are

highlighted in the center of each particle, and the surrounded red

pixels are the pixels that will be grown. (e) the neck pixels are

set to gray during the region growing process. (f) final segmen-

tation results of the watershed. (g) the contour of each nucleus

based on (f). (h) ellipses approximate final segmentation results. 65

4.4 Post processing. (a) & (e) original image. (b) over-segmented

nuclei in the initial segmentation. (c) merged nuclei after region

growing process. (d) final segmentation. (f) falsely identified

nuclei before post-processing. (g) false positive nuclei are elim-

inated after post-processing. The falsely splited nuclei before

region growing are highlighted with red circles. . . . . . . . . . 66

4.5 Segmentation results. In row (a) original images from 1-4. (b)

manually labeled ground truth. (c) watershed on global thresh-

old. (d) watershed on extended minima transform. (e)iterative

voting. (f) LoG. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Segmentation results. (our proposed method.) . . . . . . . . . . 69

4.7 The illustration of the Dice coefficient evaluation. The left image

is ground truth, the middle image is the segmentation result

and the right image is the evaluation result. The grey labelled

nucleus in the left and middle image is the evaluated one. The

grey labelled pixels in right image denote the overlapped pix-

els between the ground truth and the segmentation result. The

white pixels together with grey pixels in the right image denote

the union pixels. Therefore, the Dice coefficient is the grey pix-

els in the right image, divided by the union pixels. . . . . . . . . 71

4.8 The Dice coefficient evaluation results. The horizontal axis is

the Dice coefficient, and the vertical axis is the number of nuclei. 71

4.9 Plot of segmentation results with different window sizes. The

horizontal axis is the changing size, and the vertical axis is the

number of nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Plot of segmentation results with different seed sizes. The hori-

zontal axis is the changing size, and the vertical axis is the num-

ber of nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 The square size and total size of nuclei on test image. The image

on the left is fitted by a 44×44 square, and the image on the right

is fitted by a ellipse which have 908 pixels inside. . . . . . . . . 73



List of Figures xiv

4.12 The quantification evaluation results. Scatter plot of quantifica-

tion results between manually counting and automatic segmen-

tation methods, Voting [1], LoG [2] and method presented in

this chapter. The horizontal axis shows the manually counted

number of nuclei; the vertical axis is the automatically counted

number of nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Quantitative evaluation of samples and manual counting of the

ground truth. The upper image is the ground truth image which

was manually marked by two persons using the ”cell counter”

plugin in ImageJ. The lower image is the nuclei quantification

by our method. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 The candidate lumen regions detection. The left column is the

manually labelled ground truth, the middle column is the lumen

regions detected by Farjam et al. [3], and the right column is

the lumen regions detected by the proposed method. The dark

pixels in the detected images are lumen regions and the white

pixels are the background. The red arrows in the top row point

to the vacant artefact at the gland boundary, and the red arrows

in the bottom row point to the falsely removed lumen which has

a small size with closed-chain of boundary nuclei. . . . . . . . . 82

5.2 Steps in candidate luminal region extraction on H-DAB images.

(a) original sample images; (b) the 3D surface plot of (a); (c) the

Gaussian blurred image; (d) the 3D surface plot of (c); (e) the

open-by-reconstruction applied on (c); (f) the 3D surface plot

of (e); (g) variance feature space of (e); to make them visible,

pixels with non-zero variance values are enhanced; (h) binary

image after a simple threshold applied on (g); red pixels are true

luminal regions and black pixels are false luminal regions. . . . 83

5.3 Nuclei region detection. (a) is the original image with high

intensity variations in nuclei; (b) is the binary image obtained

from colour deconvolution; (c) is the binary image processed by

Laplacian of Gaussian; (d) is the binary image obtained from

K-means with K=3; (e) is the binary image obtained by our pro-

posed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Detecting the gland nuclei boundary. The large red region is the

seed luminal region, which grows to touch the red nuclei. The

green nuclei are detected after applying the extended ring-like

region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 The gland classification scheme. . . . . . . . . . . . . . . . . . 91

5.6 The comparison of experimental results obtained by different

methods. The results are plotted in a Precision-Recall graph. . . 93



List of Figures xv

5.7 The gland detection results. For each row, the image on the left

is the annotated ground truth, and the image on the right is the

detected result, each gland is fixed with a red bounding box. . . 94

5.8 The results of the first two steps in [4]. Clusters can hardly be

observed in the right image. . . . . . . . . . . . . . . . . . . . . 95

6.1 Sirius Red stained liver cirrhosis biopsies. Slides (a), (b) and (c)

are tissue slides with noises due to tissue fragments, shadowed

areas, and stain contamination, respectively. The noisy areas are

red circled, and the green lines are the manually labelled edges

of the tissue slide. (d) is an over-stained tissue slide with large

portal tracts and no fibrosis. . . . . . . . . . . . . . . . . . . . . 100

6.2 The plot of colour pixels in image Fig.6.1(b). This image is plot-

ted in 3D RGB colour space in (a), and in the histogram of each

RGB channel in (b). The red circle in (a) denotes the shadow

pixels in 3D RGB colour space. The red dashed line is the po-

sition of histogram peak in R channel; it shows the variations

between each channel of RGB colour space. . . . . . . . . . . . 102

6.3 The removal of artifact noises. (a) the original image with shad-

owed areas, (b) the detected tissue slide with colour channel

variations, (c) the final result. . . . . . . . . . . . . . . . . . . . 103

6.4 The illustration of drawing the minimum bounding box. (a) is

the input image; (b) is the centre point and the edge of the ob-

ject; (c) is the major and minor axis; (d) is the upper and lower

furthest points; (e) is the minimum bounding box. . . . . . . . . 105

6.5 The minimum bounding box for each slide in the image. The

left image is a normal stained liver sample, the middle image is a

liver sample where the whole slide shows over-staining, and the

right image is an over-stained image with large portal tracts. The

dark lines present the minimum bounding box and the divsion

of a slide into four areas with equal rectangular boxes. . . . . . 108

6.6 Experimental results shown as ROC curves on SR stained dataset

and brown stained Elastin dataset. The horizontal axis is the

false positive ratio and the vertical axis is the true positive ra-

tios. The brown curve is the ROC of SR stain colour detection

results. The blue curve is the ROC of brown stain colour detec-

tion results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 The scatter plot of CPA values from training samples. The hor-

izontal axis is the images from 1 to 10, the vertical axis is the

standard deviation value for each image from the QCPA method.

(a) shows the standard deviation of four partial CPA values, (b)

shows the standard deviation of the thresholded whole CPA ,

resulting in binary values (true=1, false =0) together with four

partial CPA values. . . . . . . . . . . . . . . . . . . . . . . . . 111



List of Figures xvi

6.8 The experimental results. (a) is the distribution of the mea-

sured standard deviation for each single slide in the image, (b)

is the tested results with different threshold T and threshold Ts

T1=threshold T, which changes from 0.06-0.1, and threshold Ts

changes from 0.04 to 0.05, 0.06, 0.08 and 0.1. . . . . . . . . . . 113

A.1 The workflow of interactive tool and the integrated functions in

the tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Stain colour detection in the toolbox. This is an illustration of

the training phase in colour detection. The left image is the orig-

inal image. The right image is the resulting image. The colour

pixels in the resulting image are colours similar to the colours in

the selected ROI in the original image. The background pixels

are removed by using the scrolling bar and are set to be 255 in

the resulting image. . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3 Examples of detected H-DAB stained colour image. . . . . . . . 129

A.4 Examples of detected SR stained colour image. . . . . . . . . . 129

A.5 Nuclei segmentation and quantification in tool box. This is an

illustration of the nuclei segmentation and quantification results

on H-DAB stained images. The quantification mode can gen-

erate quantification result and ellipse fitted result image. The

segmentation mode can generate segmentation results. . . . . . 130

B.1 Unzip the RAR and copy to plugin folder. . . . . . . . . . . . . 135

B.2 The command on the plugin list. . . . . . . . . . . . . . . . . . 135

B.3 The interface of toolbox. . . . . . . . . . . . . . . . . . . . . . 136

B.4 Visually determine the reserved colour pixels. . . . . . . . . . . 138

B.5 Saved models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.6 Example for DAB colour detection. . . . . . . . . . . . . . . . 139

B.7 Example for nuclei segmentation and quantification. . . . . . . . 140

B.8 Example for parameter determination. . . . . . . . . . . . . . . 141

B.9 Example for gland detection on H-DAB sample. . . . . . . . . . 142

B.10 Example for gland detection result performance. . . . . . . . . . 143

B.11 Example for parameter determination. . . . . . . . . . . . . . . 144

B.12 Example for gland detection on H&E sample. . . . . . . . . . . 144

B.13 Example for gland detection result performance. . . . . . . . . . 145



List of Tables

3.1 THE EXPERIMENTAL RESULTS WITH DIFFERENT COLOUR

MODELS. The number of bins occupied by positively stain-

ing pixels (S), background pixels (S) and overlapping (OL) bins

in colour histograms of 4096, 16384, or 65536 bins (rg/by and

Cb/Cr) and 262144, 2097152 or 16777216 bins (RGB and YCbCr) 44

3.2 THE AUC VALUES OF ROC CURVES. WS = whole slide

test images; TMA = TMA test images; ST(WS) = statistical

model constructed on 10 whole slide training images; ST(TMA)

= statistical model constructed on 10 TMA training images; Mix

= statistical model constructed on 10 mixed training images (5

WS images and 5 TMA images); AVG = average values of four

user-detected results; CD = Colour Deconvolution. . . . . . . . 49

4.1 MEASUREMENT OF SEGMENTATION RESULTS AGAINST

MANUALLY LABELED GROUND TRUTH. AS=Auto Seg-

mentation, the number of segmented nuclei result. CD=Correct

Detection. OS=Over Segmentation. US=Under Segmentation.

Miss=Miss segmented nuclei. FP=False Positive. AR=Average

accuracy Rate, the average correct detection rate. OR=Overall

accuracy Rate, OR=CD/Ground truth. . . . . . . . . . . . . . . 67

6.1 THE STAIN CLASSIFICATION RESULTS. FP = False Posi-

tive with respect to Over stain, FN = False Negative with respect

to Normal stain, Over = Over-stained, Normal = Normal-stained. 112

A.1 COLOUR DETECTION RESULTS.Total=Total image pixels,

TP=True Positive ratios, FP=False Positive ratios, CORL=Correlation

which is against the manually labeled ground truth . . . . . . . 132

xvii



To my family. . .

xviii



Chapter 1

Introduction

Pathologists routinely explore tissue slides through a microscope and produce

diagnostic and prognostic results based on the observations. The increasing

number of tissue slides, and the importance of this type of examination in both

clinical medicine and biological research, make this visual work tedious and

ineffective.

With the introduction of Digital Pathology [5], tissue slides can be converted

into digital files, and pathologists can use a variety of image analysis techniques

to explore the digital slides in order to aid the diagnosis of disease.

Computerised pathology slides may help doctors make faster and more accurate

diagnoses, and have the potential to revolutionise current pathology practices of

diagnosis and prognosis. However, compared to other medical imaging modal-

ities, such as X-ray, magnetic resonance imaging (MRI) and compute topology

(CT), digital pathology [6] is a relatively new area of medical imaging. Al-

though there have been efforts to develop dedicated image analysis techniques

for the analysis of digital slides, many challenges still exist.

1
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This thesis investigates image analysis techniques for the processing of digital

slides, and has developed new methods and solutions that may aid pathologists

in the examination of digitised tissue slides.

1.1 Background & Motivations

In this section, there is a brief description on the background of digitized IHC

images. This includes a description of the IHC stains that are concerned with in

this thesis and a description of the components detected in IHC images.

1.1.1 Immunohistochemistry

Immunohistochemistry (IHC) is a process of detecting targeted antigens (pro-

teins) in tissue sections by the use of labelled antibodies through antigen-antibody

interactions [7]. It was discovered by Coons and Jones [8], who used this tech-

nique for the detection of bacteria, and has since become a standard tool in

diagnostic pathology [9]. The target antigens or proteins, called biomarkers,

can be coloured by different chromogens and visualised through microscopes

by pathologists. The effect of staining is to highlight the region of interest and

provide contrast against the background.

Tissue slides are normally prepared with one or more stains. For example,

Diaminobenzidine (DAB) is one of the most commonly used stains in IHC stain-

ing and gives a dark-brown colouration to biomarkers (see Fig. 1.1). A counter-

stain, the heamatoxylin (H), which stains the background tissue blue, normally

follows. In this thesis, the stained protein contained in the cell nuclei subjected

to DAB staining is Protein 53 (P53). P53 is a tumour suppressor protein that is

expressed predominantly in the nucleus of the cell. Inspecting the distribution of

P53, which has been demonstrated to be over-expressed in malignant tumours,
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FIGURE 1.1: An example of H-DAB stained digital slide images.

aids the diagnosis of colorectal cancer [10], for example, the grading of colon

cancer. A typical H-DAB stained digital slide image is shown in Fig. 1.1.

Sirius Red (SR) is another commonly used stain in the diagnosis of liver cirr-

hosis (see Fig. 1.2). It colours the biomarker (collagen) pink and is followed

by a counter-stain that stains the background pale yellow. This stain is used to

detect the distribution of collagen fibrils in liver cirrhosis biopsies. The quantifi-

cation of collagen fibril expression in the tissue section has been demonstrated

to correlate with the stages of liver cirrhosis [11].

Another type of stained tissue sample used in this thesis is brown-coloured

elastin in liver biopsies (see Fig. 1.3). Elastin is the main component of elastic

fibres. These elastic fibres are produced by the fibroblasts and smooth muscle

cells in arteries and have been linked to the maturation of liver fibrosis. These

fibres can also be used as a signal of liver cirrhosis for they increase in number

in liver fibrosis and cirrhosis [12].

Ever since the cell was recognised as the fundamental building unit of the human

body, pathologists have sought to exploit the underlying principles of diseases,

especially for cancer. The use of computers to analyse cells can be dated back
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FIGURE 1.2: An example of SR stained digital slide image of liver cirrhosis.

FIGURE 1.3: An example of brown stained elastin fibres image of liver cirrho-

sis.

to the mid-1950s. However, automated segmentation and analysis of cell nuclei

is generally a difficult problem due to the great variability in cell nuclei and the

complexity of the data.

1.1.2 Nuclei segmentation and gland detection

The diagnosis of disease in IHC images requires identifying the nuclei that con-

tain positively stained biomarkers. In H-DAB stained images (see Fig. 1.1), the

P53 biomarker will react to the DAB stain and appear brown, and will be termed



Chapter 1. Introduction 5

positively stained. In contrast, other biomarkers will react to the haematoxylin

(H) stain and appear blue, and will be termed negatively stained. In DAB stained

IHC images, the cancerous nuclei, which will appear in a brown colour, can be

observed and quantified to determine the stage of cancer [13].

FIGURE 1.4: The nuclei and gland in H-DAB stained sample.

As illustrated in Fig. 1.4, a gland is a more complicated structure than a colle-

ction of nuclei in an IHC image. It is formed by a group of nuclei that are in

a closed or partially closed chain. There are four components in a glandular

structure, including the chain of boundary nuclei, the cytoplasm, the lumen and

the stroma. The lumen is the centre of the gland and the chain of nuclei is the

boundary. The nuclei that form the boundary are in a round shape and spaced

more closely than the other nuclei. The cytoplasm is contained between the

boundary nuclei and the lumen, while the stroma is outside the boundary nuclei.

The presence of glands, their extent, size, shape and other morphological traits,

are all regarded as important indicators for identifying the severity of disease [14].

From benign to malignant, the glands in the biopsy sample may change from

well-differentiated with similar shapes to fused and mixed with irregular shapes.

Thus, the diagnosis of the specimen is important mainly to explore changes
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in gland architecture and the distribution of cancerous nuclei within the gland

structure.

Therefore, to make a diagnosis with digital slide images, it is necessary to be

able to identify positively stained and negatively stained biomarkers, and to

recognise nuclei and glands. To automatically accomplish these tasks using

computer algorithms is difficult and presents many challenges.

1.2 Challenges

In this section, the challenges of achieving the goal of the research pipeline, such

as stain colour detection, nuclei segmentation and gland detection, are stated and

discussed.

1.2.1 The challenges for stain colour detection

FIGURE 1.5: The colour distribution in different tissue samples stained with

the same immunostaining (P53) varies significantly. Top row: image samples.

Bottom row: plots of the colour distribution in the RGB colour space.
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Fig. 1.5 shows three biopsy samples stained with P53 immunostaining. Visually,

it can be seen that there are a range of different shades of brown pixels even

within a slide, and that they vary hugely across different samples. Thus, the

challenges of detecting colour pixels in stained images can be summarised as

follows.

Firstly, there may be variations in staining across different samples or in a sin-

gle sample caused by problems in tissue slide preparation. These may include

variations in stain concentration, the duration of staining, and the thickness of

the cut tissue sections.

Secondly, the stain colours may have overlapping spectra, and these coloured

pixels are hard to classify as a specific colour. For example, black and dark

brown are hard to distinguish even by eye.

Thirdly, the colours in a digitised slide image may not be linear due to varia-

tions in the stain’s absorption characteristics, i.e., the brown reactive colour after

staining with DAB is scatter distributed and does not follow a linear absorption

algorithm [15].

Another problem associated with digitised IHC image diagnosis is the huge ima-

ge size. A single slide can be as large as 50,000 × 50,000 pixels. Sieving though

such an enormous number of pixels manually is a huge task. What is desired is

an automatic solution that will guide pathologists to inspect region of potential

interest rather than having to go through every pixel of the image.

1.2.2 The challenges for nuclei segmentation and quantifica-

tion

Nuclei segmentation is the first step in nuclei quantification. Nuclei may be

either isolated or clumped, as presented in microscopic images. Segmenting or



Chapter 1. Introduction 8

separating them is difficult, especially when dealing with overlapping or densely

clustered nuclei against a complex background. For example in Fig. 1.5, the

nuclei have different shapes, sizes and illumination. Such variations among

nuclei are not only present across samples, but also within a single sample.

These variations may easily lead to over- or under-segmentation problems. Over-

segmentation arises from the false segmentation of a singular nucleus into mul-

tiple fragments. Under-segmentation means the reverse, segmenting multiple

nuclei into a single nucleus. To resolve these problems is an extremely chal-

lenging task, for the following reasons.

Firstly, the tissue sections and colour stains are usually unevenly prepared.

Different coloured nuclei in an IHC image, both the positively and negatively

stained, have large variations in illumination. Pixels from the background may

also be stained with similar colours as nuclear pixels, resulting in low contrast

and weak borders. The non-uniform inter-illumination also makes it difficult to

extract the nuclei from the grey-scaled image.

Secondly, a large intra-intensity variation in nuclei is always present. Gaps or

high gradient values may occur inside nuclei and be difficult to classify, as com-

pared to real edges. The strong variations may form apparent holes in nuclei

when converting to a binary image, or make the nuclear pixels sparser and un-

evenly distributed. The noise inside a nucleus may easily lead to an over seg-

mentation problem.

Thirdly, images of histological sections represent a 2-dimensional view of a

3-dimensional entity. Thus, individual nuclei, although in different planes of

the section, may appear to be aligned and overlapping when viewed from one

perspective. The overlapping areas of aligned nuclei and the number of aligned

nuclei also vary across samples, which increases the difficulties of separation

and may cause an under-segmentation problem.
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1.2.3 The challenges for gland detection

A gland is a complicated structure in a tissue slide. The segmentation of glands

is a challenging problem, for the structure is a combination of several compo-

nents rather than a single object in a tissue slide. The increasing complexity of

the background may also tremendously increase the segmentation difficulty. Al-

though a gland seems like a closed chain of nuclei, the chain may in fact be either

closed or partially closed. The thickness of the boundary, as well as the shape

and size of different glands may have large variations. In Hematoxylin-Eosin

(H&E) stained samples, the components of a gland are stained with different

colours that transform gland detection from a binary to a colour image, thus

reducing the difficulty of segmentation. Unfortunately, this colourisation adds

another challenge, the variation in stain colour, to the segmentation process. In

H-DAB stained IHC images, more problems arise in gland segmentation, and

are summarised in the following three aspects.

FIGURE 1.6: Examples from our data set. (a) a sample of glands that have va-

cant artefact regions on the boundary; (b) a sample of glands that have coloured

luminal regions; (c) a sample of glands with different coloured nuclei.
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Firstly, the vacant artefact regions may appear in the boundaries of glands and

the nuclei may be loosely distributed within the gland boundary. The gland

nuclei boundary may not be closed due to these vacant artefact regions and large

gaps between loose nuclei. Stromal nuclei may be densely distributed around

the gland and be hard to classify.

Secondly, the colour information in H-DAB stained IHC images may be useless

for gland detection. It is hard to detect the components of a gland depending

solely on colour (see Fig. 1.4 and Fig. 1.6).

Thirdly, the image may include large variations in intensity between blue coloured

nuclei and brown coloured nuclei. The intensity of blue stained nuclei is much

greater than that of brown stained nuclei, which may result in overlooking the

lighter ones. These challenges are illustrated in Fig. 1.6.

1.3 Aims & Objectives

This project aims to develop digital slide processing and analysis techniques

to tackle the challenges of digital slide image analysis outlined in Section 1.2.

The aim of this thesis is to develop new and better techniques for detecting

stain colour, and segmenting nuclei and glands in H-DAB stained samples, and

then expand to other IHC image analysis. Specifically, it aims to achieve the

following objectives.

• Stain colour detection

The aim of developing the stain colour detection method is to extract the posi-

tive stain from the background and provide quantitative data on stained positive

colour for pathologists and researchers. Previous methods have regarded the

stain colour as a single colour, or assumed that light was absorbed linearly by
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the stains. However, the stains are prepared in a multi-step process on tissue

slides, which makes the positive colour a mixed colour, and the light crossing

the stain may be scatter absorbed. The aim is to develop flexible techniques that

can cope with these variations.

• Nuclei segmentation and quantification

The aim of developing automated nuclei segmentation is to isolate the nuclei

in a tissue slide and provide quantitative data for pathologists and researchers.

The segmented nuclei, either isolated or separated from clusters, can be quan-

titatively analysed with regard to counting positive or negative nuclei, measur-

ing the distribution of nuclei in an area and measuring characteristics of each

nucleus such as size, shape and intensity.

Previous work in this research area failed to separate clustered or overlapping

nuclei in areas with severe clustering, which can lead to inaccurate quantifi-

cation results. Over-segmentation and under-segmentation always occur in the

segmentation process, due to the huge variations in background situations and

nuclei characteristics across samples. The aim is to develop methods that can

segment the nuclei accurately and thus avoiding over- and under-segmentation.

• Gland detection

The aim of developing automated gland segmentation is to detect the location

and boundaries of glands in a tissue slide and provide quantitative data for

pathologists and researchers. As compared to pixels and nuclei, the gland is

a higher-level structure constructed from both of them, and contains more in-

formation. Despite unique characteristics of its own, such as its size, shape and

intensity distributions, a gland can be quantitatively analysed further in several

respects. These include the density of the nuclei boundary, the thickness of the
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boundary, the distribution of tumour and normal nuclei and the separation of

tumour and stromal nuclei.

In previous methods, the segmenting of glands has usually depended on the de-

tection of differences in colour staining in each component of a gland’s structure

(see Fig. 1.4). However, these methods are hard to transfer to DAB-stained sam-

ples, which do not have contrasting colours in these components. The aim is to

develop gland segmentation techniques based on the intensity changes and mor-

phology characteristics of gland structure, rather than the colour information.

1.4 Contributions

There have made several contributions to the field of digital slide image analysis,

which are summarised as follows.

• A novel stain colour detection technique

Colour is the most important feature in the analysis of immunostained images. A

statistical colour detection model has been developed for stain colour detection

based on the histograms of collected colour pixels. This, in turn, is based on the

approach ”what you see is what you get”, which outperforms the other methods

on the detection of several kinds of stain colour. To demonstrate the flexibility of

the developed stain colour detection technique, the method has been extended to

the analysis of liver cirrhosis. Results show that this statistical colour detection

model greatly improves the analysis accuracy and reduces the time cost.

• A novel nuclei segmentation technique
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Verifying the presence of nuclei and quantifying positive nuclei is the foundation

of cancer grading. A novel seeded nuclei segmentation method has been pro-

posed which greatly improves the segmentation accuracy and reduces both over-

segmentation and under-segmentation. This method has been demonstrated to

be robust and accurate in both segmentation and quantification against manual

labelling and counting in the evaluation process.

• A novel morphology-based technique for gland segmentation

The analysis of gland architecture, which reflects the cancer stage, has evolved

into an important aspect of cancer detection. A novel morphology-based ap-

proach to segmenting gland structures in H-DAB stained images has been pro-

posed. This method locates the gland by focusing on its morphology and intensity

characteristics, which covers variations in stain colours in different IHC images.

Results show that this new method improves accuracy and efficiency.

• A digital slide analysis toolbox.

These newly developed colour detection, nuclei segmentation and gland seg-

mentation techniques have been put in a semi-automatic software toolbox that

analyses IHC images. The toolbox, implemented in an open source platform,

ImageJ, has been made publicly available to researchers.

(http://rsb.info.nih.gov/ij/plugins/ihc-toolbox/index.html)

1.5 Organization of the Thesis

• In Chapter 2, previously proposed detection and segmentation techniques

for the analysis of IHC images in stain colour detection, nuclei segmenta-

tion and gland detection are reviewed.
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• In Chapter 3, the newly developed statistical stain colour detection method

for the detection of stain colours in immunostained images is introduced.

This statistical colour detection model has been compared with two pop-

ular methods used in recent studies on different kinds of IHC stained

images, against the manually labelled ground truth.

• In Chapter 4, a new nuclei segmentation and quantification approach is in-

troduced. This approach has been compared with several previous meth-

ods against manually labelled ground truth.

• In Chapter 5, a novel morphology-based gland segmentation approach

in H-DAB stained images is introduced. It is then been compared with

several previous methods against manually labelled ground truth.

• In Chapter 6, an extension of the proposed research pipeline is intro-

duced for the calculation of the Collagen Proportionate Area (CPA) in

liver cirrhosis and for the classification of normal stained samples and

over-stained liver samples.

• In Chapter 7, the contributions in this thesis and the suggestions for future

works are discussed.

• In Appendix A, a digital slide analysis tool-box incorporating the newly

developed analysis techniques and implemented in the open source plat-

form ImageJ is presented.

• In Appendix B, the user manual for the developed IHC analysis tool-box

is introduced.



Chapter 2

Literature and Methods

The analysis of IHC stained colour images involves the detection and extraction

of the basic components contained in digitised slides. These components include

pixel level objects, such as the stain colour and its cellular or nuclear location,

and the higher-level object that is constructed from these pixel level objects,

for example, the structure of a gland. Variations in these components and the

complexity of the background in the IHC image make it a challenge to detect or

segment them.

This thesis reviewed previously proposed detection and segmentation techniques

for the analysis of IHC images in three specific domains: stain colour detection,

nuclei segmentation and gland detection. The studied methods with their con-

tributions and weaknesses in these different domains were presented according

to the research hypothesis.

This chapter is organised as follows. Stain colour detection methods are re-

viewed in single colour detection, multi-colour separation and colour correc-

tion, and presented in Section 2.1. Nuclei segmentation methods are reviewed

in Section 2.2 under the nuclei extraction and splitting scheme. A review of

15
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gland segmentation methods either with or without colour information is pre-

sented in Section 2.3. Finally, the techniques that have been used in this thesis

are presented in Section 2.4, and the discussion in Section 2.5.

2.1 Techniques For Stain Colour Detection

In this section, literature on techniques that have been used in immunohisto-

chemistry image analysis for stain colour detection and separation are reviewed.

These can be divided into four main categories: colour model transformation,

colour clustering, different colour separation and colour correction.

2.1.1 Colour model transformation based colour detection

Methods based on colour model transformation and colour spectrum separa-

tion have been the most widely used colour detection methods in the analysis of

colour stained histological images. This is because the stained tissue slides were

usually digitised through conventional light microscopy and RGB digital cam-

eras [6]. Normally, pixels were classified as a specific colour by thresholding

the single colour channel of Hue Saturation Intensity (HSI) space [16], the blue

channel of RGB colour space [17], CMYK colour space [18] or the normalised

RGB colour space [19]. Therefore, the colour stained samples, for example, the

DAB stained brown colour samples, can be converted into grey scale images

by using the single channel of the transformed colour model. By applying an

appropriate threshold to this grey scale image, background pixels can be elimi-

nated. The remaining pixels, which have higher values, may either be analysed

quantitatively or recognised as cell pixels for further analysis [20].
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The aspect that may affect the detection accuracy of colour transformation meth-

ods is the selected threshold. The threshold values for some of these meth-

ods were determined by examining the stain colour on a set of stain-controlled

tissue images [16, 21]. The rule for manually selecting the threshold is to max-

imise the positively stained colour pixels and minimise background colour pix-

els at the same time. Another way to select the threshold is to use the average

intensity value on a set of stain-controlled tissue images [17, 22]. However,

obtaining a threshold based on manual selection or the average intensity from

stain-controlled tissue sample may result in low accuracy due to the stain vari-

ations among different samples. In addition, the transformation based method

regarding the stain as a specific colour may result in the failure of stain colour

detection, because the tissue slides are always multi-stained.

2.1.2 Clustering based colour detection

Rather than using a manually set threshold, it is better to classify the desired

colour following training from labelling experts [23]. Colour pixels in a stained

image can be classified into different clusters in different colour spaces. They

can be classified by classical computer vision classifiers such as SVM, C4.5

and Naive Bayes [24], trained by the neural network classifier [25] or assigned

scores based on the distance of the shades in HSI colour space [26].

As there was no standard colour space suitable for all kinds of stain colour detec-

tion methodology on different stains, the developed methods were usually eval-

uated on different colour models to determine the best performance [24]. Since

the classification based methods were reliant on the training samples, the detec-

tion accuracy may vary with the manual labelling discrepancy and the colour

model used. As a result, it is hard to select a fixed combination of an algorithm

and a colour space that will perform well on all kinds of samples.
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2.1.3 Multi-colour separation based colour detection

Despite the prevalence of colour model-based methods, the colour deconvolu-

tion method [27] was developed based on the light absorption spectra of different

colour stains. It is a separation method based on the absorption characteristics

of the individual stain. For each stain, the light is differently absorbed by its red,

green and blue channels through a transmit function, shown as follows:

Iout = Iin × es×f (2.1)

The intensity of incident light Iin is absorbed by the amount of stain s with

its absorption factor f . The output intensity of light Iout is detected after the

light pass the stain. The relation between the input light and the output light is

described by the Lambert-Beer law. To make it linear, the formulation is then

transferred and defined as the optical density (OD) for each RGB channel in a

following way:

OD = − ln(
Iout
Iin

) = s× f (2.2)

Each pure stain with its optical density can be set into a 3 by 1 OD vector matrix

of three RGB channels. The OD matrix has been normalised and orthogonally

transformed to get the independent information of each stain. The colour decon-

volution matrix is then obtained by the inverse of normalizsd OD matrix. As a

result, the OD intensity levels for each stain can be obtained by the sum of OD

values in its Red, Green and Blue channels, calculated from corresponding stain

vectors [27].

This method performs colour stain separation much better than colour space-

based methods on H&E stain [28], H-DAB stain [29] and other commonly used

colour stains [30]. However, this method is based on a linear light absorption
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algorithm, which may reduce the detection accuracy if the light is not linearly

absorbed by the stain, as is the case with DAB stain [15].

2.1.4 Colour correction based colour detection

Despite the fact that these general methods mentioned above can achieve good

results in the quantitative analysis of IHC images, the existing variations of stain

colour may lead to the reduction of colour detection accuracy. Possible solutions

of reducing colour variations are colour normalisation or colour correction [31].

In general, colour can be normalised and corrected through colour transfer and

colour deconvolution methods. Colour transfer converts the input image into a

colour space which has low or no correlations between each channel, for exam-

ple the ζαβ [32]. Considering about the mean and standard deviations between

the input image and the target image on each channel, the input image can be

corrected,

ζout =
ζinput − ζ̄input

ζ̃input
× ζ̃target + ζ̄target (2.3)

αout =
αinput − ᾱinput

α̃input

× α̃target + ᾱtarget (2.4)

βout =
βinput − β̄input

β̃input

× β̃target + β̄target (2.5)

whereζ̄ , ᾱ, and β̄ are the channel means andζ̃ , α̃, and β̃ are the channel stan-

dard deviations. This method has been used in the colour corrections of H&E

stained samples [33]. Although this method has been demonstrated reasonable

constancy in the stain area, unsatisfactory results have been shown regarding the

background, due to the largely covered Eosin stain area [4]. This stain dominates

the statistics that change the white background to pink in result image.
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The alternative correction method has been shown in Magee et al. [34] was

based on the colour deconvolution. Within colour deconvolution based method,

the input image has been decomposed into three greyscale images with different

stains. Then the correction can then be made by using singular value decom-

position (SVD) [35] and non-linear mapping method [36]. Other methods that

have been used in colour correction are: gradient in LUV colour space [37],

polynomial surfaces based method [38], automatic stain vector estimation based

method [39] and the combination of non-negative matrix factorization (NMF)

and a colour transfer based method [40]. However, the current normalisation

or correction methods have been generally limited on the correcting of H&E

stain samples [31]. The reasons for the correction failure in DAB stained sam-

ples may be due to the saturated nuclei, non-uniform colouring DAB areas, and

significant staining of the background [34].

2.2 Techniques For Nuclei Segmentation

Looking into the literature published in this domain, it is very difficult to sort

it into one or two specific techniques. Nevertheless, the majority of works are

based on a few basic approaches such as intensity thresholding, feature detec-

tion, morphological filtering, region accumulation and deformable model fit-

ting [41]. Thus, the techniques of nuclei segmentation are classed based on a

combination of these approaches to separate nuclei in this section.

2.2.1 Intensity thresholding and morphological filtering

Computer-aided nuclei segmentation has been studied for over 50 years. How-

ever, automated segmentation and analysis of cells is generally a difficult prob-

lem, due to the great variability in cells and the complexity of the data [41].
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Intensity thresholding, the conceptually simplest method and computationally

cheapest method, was applied first in nuclei segmentation and is still in use even

in recent studies. Auto-threshold methods such as the Otsu [42], Isodata [43],

etc. were developed to calculate threshold values on image histograms to help

threshold nuclei. Further segmentation processes can be conducted in the thresh-

olded nuclei area [13, 44–47].

Although the nuclei areas have higher or lower intensity values than the back-

ground, the intensity has huge variations across the sample. Because the single

threshold-based method might not always produce satisfactory results, clustering-

based methods were considered that can also achieve the same purpose for

nuclei region extraction: for example, the k-means [48], the graph cut [49, 50]

and the Bayes classifier [13]. For those images that have a low contrast be-

tween nuclei and background, differential features, for example, the edge, have

been realised as another way to segment nuclei efficiently and may provide

useful information, such as the segmentation based on the gradient change in

Luv colour space [37], the gradient change in original image [51], the com-

bination of mean gradient value and gradient change [52], and the linking of

pixels that have high gradient changes in a log polar transformed image [53].

However, the gradient values still suffer from a problem with intensity vari-

ations, being that the obtained nuclei area may contain lots of noise due to

the complexity of the background and non-uniform stains. The morphologi-

cal transform and mathematical processes were considered to refine the thresh-

olded results or reduce the noise before thresholding, by means such as filling

holes [54], open-by-reconstruction and close-by-reconstruction [55], and his-

togram enhancement [56]. These methods are always regarded as pre-processing

in the nuclei segmentation.
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2.2.2 Region accumulation with distance transforms

Many of the nuclei are clustered or overlapping in digitised images; therefore,

thresholding-based segmentation may not satisfy the requirements of quantified

analysis. Separating these clustered or overlapping nuclear areas has become

a challenging problem in recent studies. A region growing based watershed

transform has been used to solve this problem [57]. However, as this transform

frequently lead to over-segmentation, a marker-controlled watershed was em-

ployed to reduce the likelihood of this happening [58]. The marker for each

nucleus refers to the regional minimum or regional maximum only at the spe-

cific location of the nucleus. The classical watershed (topographical relief) has

then been transferred to the growing of such specific points (centre).

Many methods discuss the methodology of extracting singular markers. The

simplest way to obtain the markers is by extracting the regional minimum from

a greyscale image [59] or the Ultimate Erosion Points (UEP) from a Euclidian

distance transformed binary image [56]. The regional minimum, based on the

original image, may suffer from the intensity variations. To improve the detec-

tion accuracy and reduce the intensity variations, Rogojanu et al. [47] obtained

the markers by extracting the regional minima in the extended-minima trans-

formed image, and formed the splitting line of touching nuclei based on a tem-

plate matching method. Orti et al. [49] obtained seed markers from a distance

transformed image and then considered a graph-cut based method with which

to from the splitting line, by calculating the distance values between voxels and

forming the minima cut. Combining the intensity with the distance map, Baek

et al. [60] obtained the seed markers from cell region.

Locating the UEP in a Euclidean distance map can only split those overlapped

or clustered nuclei that have narrow waists, the small overlapping area, in the

overlapping or clustered area. Instead of using the traditional Euclidean distance

transformation, many modified transformations have been studied to obtain seed
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markers where the connected nuclei have general waists. Malpica et al. [61]

obtained the seed markers from the h-dome processed Euclidean distance trans-

formed image by subtracting an appropriate h value of the transformed image,

in order to reduce the noise peaks and improve the detection accuracy. The ac-

curacy is controlled by the selection of h value. Based on the h-dome extracted

seed markers, Cheng et al. [62] used the outer distance transform to draw the

splitting line between overlapping nuclei by finding the least distance between

the pixels in the nucleus and the centre. Yang et al. [63] used the conditional

erosion to extract the seed markers by considering two cell-like masks and find-

ing the last eroding points. The results may be sensitive to the size of erosion

structures.

The distance, modified distance transform and intensity regional minima based

marker-controlled watershed have all largely improved the nuclei segmentation

accuracy, but they may still fail to split the overlapped or clustered nuclei that

have a largely overlapping or clustering area. The combinations of distance

transform and other methods have been proposed in recent studies to solve this

problem. Zhang et al. [64] have used the expanded concave curve map and the

distance transform to split the overlapping nuclei. The curve at the edge of the

nucleus was expanded along the line of the direction of curvature, and converged

at a centre point of a limited circular area. Markers were then obtained from

the distance transformed separated particles. Based on the gradient direction

and distance transform, Surut et al. [65] assume that the directions should be

constrained to lead the pixels in a single nucleus to the centre, or direct the

pixels in clustered nuclei to their destination. These methods can deal with the

separation of overlapped nuclei which have a large overlapping area, but may be

sensitive to the smoothness of nuclei edges, and the results may vary with the

complexity of the background.
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2.2.3 Region accumulation with shape features

The segmenting of clamped nuclei in a severely clustering area from a complex

background is quite a challenge. Lin et al. [55] have used a radial symmetry

method by searching the centre of the round like object to segment nuclei from

the morphological filtered complex background. They combined this method

with a morphological pre-processing and watershed in their four-step frame-

work. An image with a complex environment and unevenly prepared stain was

filtered with open-by-reconstruction and close-by-reconstruction to smooth the

nuclear regions, which have a darker intensity. Next, a radial-dependent symme-

try transform processed the image to generate nuclear markers with maximum

values in a disc plate. In the disc plate, the pixels inside the nucleus have val-

ues being increased accordingly with the increasing of the disc range, while the

pixels outside the nucleus have values being decreased at the same time. The

watershed then segmented the nuclei based on the detected markers. A num-

ber of texture and shape features were considered in the post-processing step to

eliminate noise particles.

This four-step method was improved in a later publication [28] by transform-

ing the single scale with a single marker to a multi-scale with different markers.

To determine a disc size for morphological pre-processing across entire images

seems difficult; thus, Veta et al. [28] determined multiple values for the mor-

phological transform. At each scale, the nuclei in the images have a marker

that could be used for nuclei segmentation. During the post-processing, the seg-

mented nuclei were assessed under different scales in order to classify the seg-

mented nuclei as correctly segmented or over-segmented. The over-segmented

nuclei were then selectively merged based on some criteria. Although this mor-

phological filtering based method yields good results, the transformed image has

removed many characteristics for the splitting of overlapped or clustered nuclei
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and, by smoothing, has also overlooked the nuclei that have lower background

contrast.

Another method used to solve this problem is Laplacian-of-Gaussian (LoG) op-

eration, which used a blob detection filter to extract the seed markers [2]. This

filter is given by:

LoG(x, y; σ) =
∂2G(x, y; σ)

∂x2
+

∂2G(x, y; σ)

∂y2
(2.6)

where σ is the scale value, and G(x, y; σ) is a Gaussian with 0 mean and scale

σ. It generates a peak response at the centre of each nucleus and is robust to the

chromatin texture, which has smaller value than the nucleus. The LoG method

is often used to detect candidate nuclear seeds [66], and has shown to be an ac-

curate method of seeding the image [67]. For a better detection of nuclear seeds

using the LoG method, an Eigenvalues-of Hesssian blob detection and distance

transform have been combined to reduce the non-uniformity in the nuclear chan-

nel [68]. The seeds were then detected by LoG from the pre-processed binary

image and constrained by a distance-map-based scale selection. However, this

method may lead to high over-segmentation problem due to the highly textured

intra-chromatin of the nucleus and variations in nuclear structures. Further clas-

sification [66] or regional accumulation methods, for example, watershed [67],

can then be applied based on the detected seed points, or in consideration of the

angular information between nucleus normals and the pixel in the proximity of

detected seed points [69].

Instead of marker extraction to improve the segmentation accuracy, watershed

has been regarded as the initial separation of severely clustered nuclear areas fol-

lowed by different kinds of merging strategies, such as the h-minimal [70], the

feature and compactness score [71], morphology and intensity [72], the mea-

surement of homogeneity colour pixels [73], optimisation strategy [74], and
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shape and size constraints [75]. The criteria used in these methods are aimed

at the segmentation of nuclei from the specific sample, which may be varied

across different samples.

This region accumulation based method can obtain much better segmentation

results than the thresholding based methods for quantitative analysis. However,

the watershed method only deals with the splitting of overlapping or clustered

nuclei instead of considering about the contour of segmented nuclei. Thus, the

segmented nuclei may have inaccurately labelled contour, and it is often com-

bined with other methods to refine the segmented results, for example, the com-

bination of active contour [76] and [77].

2.2.4 Deformable model fitting

Despite the region accumulation nuclei segmentation method and the deformable

model fitting method, for example, the active contour has been used to more ac-

curately delineate nuclear contours [44]. It is a powerful segmentation algorithm

but suffers from high computation costs and the initialisation problem. The im-

provement in contour accuracy may come at the cost of increased computation

time [78]. To cover these two problems, many methods have been proposed. Hu

et al. [45] improved the traditional active contour by adding growth energy to

cover the initialisation problem of conventional ”snake” method, by restricting

the contour movements along radial directions to reduce the computation cost.

Dzyubachyk et al. [76] proposed a new approach by locating the initial position

of the level-set function depending on the final position in the previous frame

for the initialisation, in order to reduce the time cost. Based on a seeding pro-

cess from a distance map, Pise et al. [79] obtained the active contour without

user interaction, by using the obtained seed markers from distance transform as

the initial contour; they have demonstrated that this achieves better segmenta-

tion results than the watershed method. Nevertheless, the initialization and time
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cost remain quite challenging problems, and it is hard to balance the cost of

computation against the contour accuracy.

2.2.5 Feature detection with circle fitting and concave points

linking

Given the prior knowledge that nuclei show circle-like shapes, many studies

have used circle-like masks, for example the ellipse, to match the objects in the

image [80]. The goal of this matching is to identify the best-fitting ellipse, deter-

mined by the segmentation angle, area moment and circumference. Nuclei may

also be detected by using a blob detector, such as the Gaussian based method

presented in [81], which converted the overlapped separation into a cluster anal-

ysis problem. These shape descriptors can be better used when the shapes of

nuclei are invariant. Otherwise, it is better to use edge detection followed by

concave points linking.

The methods for obtaining of concave points may differ from the linking pro-

tocol. Saeger et al. [52] have computed the convex hull and regard the concave

points as the pixels at the nuclei contour and between two convex points; the

pair of points was linked when they have least distance and are perpendicular

to the convex hull. Cong et al. [46] recognised the concave points by using a

polygonal approximation on the original contour, and fitted the crease bound-

ary with a closed curve function. Also using the polygonal approximation, Ra-

man et al. [82] combined it with a measuring of angular change to compute

the curvature values, the points being linked when they have maxima positive

curvature values and least cost. The concave points were found by computing

the maximum curvature along the contour, and they were used as the vertices

of Delaunay triangulation to form the splitting line under three geometric con-

straints [83]. Based on the detected concave points, Plissiti et al. [51] have

calculated the least squares fitting to find all the possible ellipses that fit to the
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candidate separated nuclei, in order to reduce the false concave points caused

by noise. Considering the concave points for clustered nuclei separation may

have better results for the nuclei area, which have explicit difference between

the normal curve and the concave points at the connected area.

Rather than classifying the curve and the concave at the edge of nuclei, an itera-

tive spatial voting method has been proposed based on the moving of a filtering

function along all edge pixels to detect the cell nuclei seeds in severely clustered

or overlapped nuclei area [1]. It uses an oriented Gaussian kernel on the gradient

magnitude image to infer saliency. The orientation of the kernel is relocated and

reoriented to the gradient direction of each maximal voting pixel iteratively. For

each iteration, the centre of the kernel moves toward the centre of the nucleus

along the radial line of nuclear shape as it relates to symmetry. Using this geo-

metric method, Jung et al. [81] proposed to segment nuclei by growing the voted

centres to reach the detected edges that are thresholded from the gradient image.

Similar to Bai et al. [84], Wienert et al. [52] used the voting method to extract

nuclear seed points, and Voronoi tessellation to decompose the nuclear region.

Further actual segmentation is performed with an active contour model based on

additional intensity and geometric constraints.

However, use of the voting method in [84] created false nuclear centres in over-

lapping areas, due to the edges existed in these areas. To solve this problem, two

modifications have been made in Filipczuk et al. [85]. They intend to move the

convolution Gaussian kernel centre to the centre of the voting area rather than

the edge pixels, and to use mean-shift instead of voting in the final iteration to

capture the centre points. The detected nuclear centres are regarded as the initial

position of the level-set to contour the nuclei. The method presented in [49]

improved the voting speed of [85] by using single-pass voting for accurate and

faster seed detection. This voting method is based on the detected edge of the

nucleus, which has a very high accuracy in the locating of centre point, but may
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fail in the detection of nuclei that have weak borders in a complex background

with uneven stains.

2.3 Techniques For Gland Segmentation

The segmentation of gland structures is quite a challenge because glands have

variable appearances and are embedded in complex backgrounds. From the

shape, it seems easy to detect candidate glands by detecting closed regions of

nuclei from controlled iterative morphological closing and region growing [86].

However, this is only suitable for detecting glands in tissue samples with fewer

stroma nuclei, because when dealing with a complex sample it will miss small

glands and incur false positives.

The colours of objects, such as the nuclei, stroma, cytoplasm and lumen, af-

ford possibilities for segmenting glands in a reasonable combination scheme. In

colour H&E stained prostate cancer images, gland structures were segmented

based on the colour information in [13]. Each image consists of four compo-

nents with different colour stains, such as the blue stained nuclei, pink stroma,

purple stained cytoplasm and white lumen. Using a trained Bayes classifier in

RGB colour space, these colours can be recognized separately. Gland structures

were then segmented depending on the detected components and the level-set

evolution function. With H&E stain, Naik et al. [87] applied the same gland

segmentation approach as in [13] on breast cancer images as well. Also, using

the level-set, Maqlin et al. [88] combined it with grid analysis of the surrounding

nuclei to differentiate true and false lumen areas. Based on the detected lumen-

like area through colour pixels clustering, Xu et al. [89] proposed a geodesic

active contour to segment gland structures. The energy function of this active

contour was dependant on the colour gradient and curve evolutions. Nguyen et

al. [90] proposed a gland segmentation method in prostate cancer images based
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on the colour information similar to that used in [87] and [13]. In this method,

the boundaries of gland structures were extracted by connecting detected cy-

toplasm and nuclei that were sufficiently close. Next, the lumen areas were

iteratively grown until the constraints were met. The same gland detection work

has been done in [91] and tested in classifying grading levels with different fea-

ture extraction methods. By using the k-means clustering method, the pixels

in the image have been classified into four different clusters and employed to

construct the circle-like object graphs for gland detection in [4]. The features

between objects can then be used to construct graph-based gland segmentation.

These colour characteristics used in H&E stained samples may not be trans-

ferred to H-DAB stained samples for the gland detection, due to the different

prepared stains on tissue slides. The stain in the H-DAB sample consists of only

two different colours, blue and brown. It is hard to classify those four compo-

nents mentioned above based solely on colour or cluster characteristics. There-

fore, the features used in this kind of sample have been replaced by the shape

features and intensity changes. Farjam et al. [3] have proposed a gland segmen-

tation method based on shape and texture information. They used the Gaussian

function as a feature extractor on a greyscale image, and variance filtered the

image separately. Pixels in these two processed images were then clustered into

lumen, stroma and nuclei through k-means. The exclusion of nuclear pixels

from images that containing lumen and stroma was used to obtain the glandu-

lar regions. Fu et al. [92] transformed the original image into polar space, and

then a pair-wise algorithm was applied to link adjacent nuclear pixels to find

the boundary of the gland. However, these shape and intensity features based

methods suffer the problem of high computation costs, and may be sensitive to

the intensity change due to the processing on low-level information.
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2.4 Methods Used in the Thesis

In this section, the methods have been used in this thesis are introduced. It in-

cludes the statistical colour detection model, region growing, watershed nuclei

segmentation, morphological gray scale reconstruction, PHOG feature and SVM.

2.4.1 Statistical colour detection model

A statistical model is a collection of probability distribution or density func-

tions that describes the relationships between the variables. A histogram-based

Bayes statistical classifier is a popular non-parametric modelling approach that

is widely used in skin colour detection [93]. It treats the pixels as either skin

or non-skin and represents them in histograms. The experiment in [94] demon-

strates a Bayes statistical classifier with a histogram technique outperforms other

tested classifiers for human face detection. In recent studies, Region-based

statistical skin detection has been applied in [95], where the colour models used

were similar to those in [93].

As described in [93], statistical colour models can be constructed using the histo-

grams of the colour images. The probability of a colour, represented in a colour

space RGB, can be obtained by first quantising the colour into colour bins [rgb]

and then counting the number of pixels that fall into each bin, i.e.

Prob(rgb) =
#[rgb]

#TotalP ixels
(2.7)

To construct a statistical model for positively and negatively staining pixels, the

labelled positive and negative pixels will be used, respectively, i.e.

Prob(rgb|S) =
#S[rgb]

Ns

, P rob(rgb|S) =
#S[rgb]

Ns

(2.8)
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where S represents the number of positive pixels in a colour bin (rgb) and S

represents negative staining, respectively, and Ns is the total number of positive

and Ns the total number of negative pixels.

Based on the statistical models of positively and negatively stained pixels, it is

possible to use the likelihood ratio approach to build the classifier. A pixel is

classified as positively stained if

Prob(rgb|S)

Prob(rgb|S)
≥ Θ (2.9)

where 0 ≤ θ ≤ 1 is the threshold. The value of θ trades off correction detection

and false positives, which is the most important property of the classifier. One

possible way to determine the threshold value can be determined as follows

Θ =
cpProb(S)

cnProb(S)
(2.10)

where cp and cn are the application-dependent costs associated with false posi-

tives and false negatives. One possible way to compute Prob(S) is

Prob(S) =
Ns

Ns +Ns

(2.11)

2.4.2 Region growing

Region growing, which is based on a region or pixel, is one of the basic segmen-

tation methods in image processing. The process starts with the selection of a

set of initial seed points. It grows the regions by adding neighbouring pixels to

the initial seeds. The neighbourhood pixels are examined to determine whether

they satisfy the predefined criteria. Pixels are iteratively added into the seed

regions until no neighbouring pixels are valid.
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Seed points are selected by a criteria defined by users, such as the intensity of

pixels or gradient values. More than one seed may be selected in an image for

region partition or region accumulation. Each region should have at least one

seed point in order to accumulate similar pixels in the neighbourhood.

For the growing phase, pixels in the 4- or 8-connected neighbourhood are ex-

amined in each iteration. The neighbouring pixels are marked if they are similar

to the seed pixels based on the criteria. These marked pixels are then added into

the region grown from the seed pixels and regarded as the new seeds for the next

iteration. Growth stops if there are no pixels added into the region or the edge

or boundary has been reached.

2.4.3 Watershed nuclei segmentation

Watershed is a region growing based segmentation algorithm derived from topo-

graphic and hydrological concepts [58]. The goal of this algorithm is to detect

the watershed lines in an image. The greyscale image is considered as a topo-

graphic surface, with water flooding the surface from the catchment basin that

corresponds to the regional minimum. The flooding water from different sources

meets at crest lines that form watershed lines.

Normally, the topographic surface is formed from a grayscale image, a gradi-

ent image, or a morphological transformed distance map. To reduce noise and

over-segmentation, the original image is often pre-processed with morphologi-

cal filtering and Gaussian filtering. Extracting the correct markers corresponding

to the regional minimum is considered to be the most efficient way to improve

segmentation accuracy.
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The watershed markers in a greyscale image or distance map can be deter-

mined by a threshold-based method; for example, extended minimum [47], h-

dome [64], etc. In gradient image, the regional minimum theoretically corre-

sponds to the homogeneous grey level regions.

Over- or under-segmentation often occurs after the original watershed segmen-

tation or marker-controlled watershed segmentation. A post-processing step is

required to resolve these problems. In general, merging or splitting methods in

post-processing have been developed based on characteristics of intensity, shape

information and a priori knowledge.

2.4.4 Morphological gray scale reconstruction

Morphological reconstruction is a mathematically-based operator that extracts

marked components connected in a binary image. It can also be applied to

a greyscale image for the tasks of filtering, segmentation and feature extrac-

tion [96]. Open-by-reconstruction and close-by-reconstruction first erodes and

then dilates, or first dilates and then erodes, respectively.

For open-by-reconstruction, two greyscale images should be prepared. Image I

is the original grey scale image, and image J is the marker image obtained from

finding the minimum value in a pre-defined disc D.

ϕ(J) = (J
⊕

D)
∧

I (2.12)

where ”
⊕

” is the dilation and ”
∧

” is the minimum, which means the pixels

in the dilated region were assigned the minimum value in the same region in

I . Thus, the pixel values in J in the same domain were less than the pixel

values in I . This assumes that the pixels that have intensity values larger than
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the threshold are white and the rest of the pixels are dark. This simulates the

opening of the white region in disc D.

The reconstruction of I from J occurs in these changed regions by finding the

maximum value in a pre-defined disc D.

ϕ(J) = (J
⊙

D)
∨

I (2.13)

where ”
⊙

is the erosion and ”
∨

” is the maximum, which means that the pixels

in the eroded region were assigned the maximum value in the same region within

J . This simulates the closing of the white region in disc D.

From the minimum filtered marker J , the image I is reconstructed as follows:

ρI(J)(p) = max{k ∈ [0, N − 1]|p ∈ ρTk(I)
(Tk(J))}, ∀p ∈ DI(r) (2.14)

where p is the pixel in domain D of image I , ρ is the reconstruction process, and

k is the threshold value from 0 to N − 1.

2.4.5 PHOG feature and SVM

Pyramid histogram of Oriented Gradient (PHOG) is a feature descriptor that is

combined with a support vector machine (SVM) in computer vision for object

recognition. Histogram of Oriented Gradients (HOG) has been demonstrated to

outperform other features in human detection [97]. It has been extended for use

in a spatial pyramid to describe objects [98]. This has then been used in medical

image analysis in [92] for gland segmentation.
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The image is divided into small connected patches called cells, using the same

sized square or radius. Gradient directions or edge orientations are computed

for each cell. The histograms are compiled from the gridded image cells and the

cells are constructed into larger regions known as blocks. These histograms are

normalised to reduce variations in illuminations and shadows. The normalised

histograms are then fed to the SVM classifier based on supervised learning for

objects classification.

The blocks used in [97] are rectangular blocks and circular blocks. Rectangular

blocks are square grids and circular blocks are log-polar grids with two kinds of

central cells, a single central cell and central cells that are divided into angular

parts. With the appropriate parameters set for both, these two blocks can yield

good results.

2.5 Discussions

• Stain colour detection

Colour is the important feature in the IHC image analysis for the classification of

positive and negative samples. The previous methods studied the colour detec-

tion or separation by using the colour model transform [18], the pixels cluster-

ing [24], the colour correction [33] and the lights absorption characteristics [27].

The colour model transform is based on the assumption that each stain presents

as a specific colour that can be obviously detected in a single colour channel, for

example, the DAB stain in Y channel of CMYK model [18]. Although the DAB

stain normally reacts as brown colour in digital image, the dark stained areas

may appear as different. The colour correction is based on the matching of the

input image according to the selected target sample to reduce the colour varia-

tions across different samples. However, this method is currently only available
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for H&E stained samples [40], due to the unevenly prepared stains for H-DAB

samples [34]. Meanwhile, the linear light absorption function based colour de-

convolution, which was the most popular method in the colour detection domain,

may still lead to the inaccurate detection of DAB colour due to the fact that the

light is not linearly absorbed by the DAB stain [15]. Since the project presented

in this thesis begins with the detection of brown colour in H-DAB stained sam-

ples, the clustering based method may be the optimal choice. Therefore, the

statistical model has been considered. It is easy to implement and the accuracy

can be controlled by the pixels accumulation.

• Nuclei segmentation and quantification

From the pipeline of research, the colour represents the pixel level informa-

tion, and the next step is to detect the pixel-constructed nuclei and the nuclei-

constructed gland structures that contain more information for the analysis. For

the nuclei segmentation, the simplest way of detecting the nuclei region is the

threshold, but using solely the threshold may not satisfy the quantitatively anal-

ysis. It is necessary to consider a separation method for splitting the overlapped

or clustered nuclei. Therefore, the classical method, watershed algorithm has

been proposed and considered as a possible solution, with its low computation

cost and efficient segmentation scheme. Instead of considering the active con-

tour [44], concave points linking [46] and circle fitting [80], watershed method

is ideal because the stained images have complex background and a large num-

ber of nuclei, and most of them vary from each other in shape, size and gra-

dient changes, etc. The active contour is better at delineating the contour of

singular nucleus or a small number of overlapped or clustered nuclei, due to

the high computation cost and the initialisation problems [78]. The searching

for concave points is quite challenge in such a complex background, due to the

severely clustered nuclei and the unsmooth nuclei edge caused by the uneven

stain. Circle fitting is better to segment those nuclei that have invariant shapes in
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a non-complex background. In addition, watershed is a flexible region growing

based method, which can be combined with various marker extraction methods

or fragments merging methods to achieve the segmentation and quantification

goals in different kinds of stained samples.

• Gland detection

The gland structure detection in H-DAB stained samples contains less colour

information than H&E stained samples. Therefore, the colour characteristics

based methods were not considered. The morphology based methods have been

regarded as a possible solution for gland detection [3, 92]. Lumen extraction

has been demonstrated as an efficient detection of gland structures in the first

step in the previous studies. It is easy to be observed that, in H-DAB stained

samples, the lumen and the stroma are hard to differentiate based on colour,

intensity, size or shape, due to the large variations of glands and complex back-

ground. The morphological transform has been used to enhance the differences

between lumen and stroma areas by computing against the inner or outer side

of gland boundary respectively. The stroma areas with explicit differences from

lumen can be easily ignored from the transformed image. However, the can-

didate lumen obtained after transform still contain the stroma areas due to the

large number of stroma nuclei may form like closed structures. Thus, the SVM

classifier can be used to further classify glands as true or false.
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Stain Colour Detection

Colour is the most important feature in the analysis of immunostained images.

The starting of the whole project is to detect the positive stain colours in IHC

images. This chapter introduces the newly developed statistical stain colour

detection method for the detection of stain colours in immunostained images. In

the evaluation, this statistical colour detection model has been compared with

two popular methods used in recent studies on different kinds of IHC stained

images. The detection results are assessed against the manually labelled ground

truth.

3.1 Introduction

Different observers may quantify the same slide differently due to the subjective

nature of the process, thus causing inter-observer discrepancies. In order to

minimize these inter-observer discrepancies, a semi-quantitative method based

on visual scores has been proposed. Although the semi-quantitative method

can reduce the discrepancies, these subjective scores have been demonstrated to

have low reproducibility and low consistency [99]. Therefore, a computer based

39
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objective quantification method is required to improve the detection accuracy

and reduce the variations introduced by different observers. In interpreting an

IHC image, it can regard the detection of stained pixels as colour detection in

computer vision. Thus, the positively stained colour pixels can be extracted

from the background by applying a colour detection method.

The method proposed here for stain colour detection in digital IHC images is a

statistical colour detection model. This model was created from a huge collec-

tion of colour pixels that contain both positively and negatively stained colour

pixels in the image. Based on statistical models of the positive and negative

pixels, a maximum likelihood classifier is used to automatically classify pixels

in digital slides into positively and negatively staining pixels. This statistical

colour detection model was tested in the following schemes, shown in Fig. 3.1.

First, to select the appropriate colour space, the created models from different

colour spaces were assessed, such as RGB colour space, YCbCr colour space,

and colour spaces without luminance like opponent colour space (rg-by) and

CbCr colour space on the same dataset. Second, the models with appropriate

colour space created by different users were tested to assess their robustness.

Third, the detection accuracy of the proposed method was evaluated on differ-

ent kinds of IHC stained images. For example, H-DAB stained oesophageal and

colorectal biopsies, SR stained collagen and DAB stained elastin in liver cirrho-

sis samples. Finally, this stain colour detection model was compared with sev-

eral previously proposed colour detection methods on the stain colour detection.

The results obtained from these experiments have demonstrated the robustness

and effectiveness of this statistical colour detection method.
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FIGURE 3.1: The evaluation scheme of statistical model.

3.2 The Building of Statistical Colour Models

Colour has been extensively used in computer vision for object detection. In

order to detect the stain colour, a very large number of labelled pixels are col-

lected through a semi-automatic tool (see Appendix A). Statistical models for

positively and negatively stained pixels are constructed separately, and a maxi-

mum likelihood classifier is used to classify these colour stained pixels. Since

colour plays the most significant role in biomarker identification, a model was

built which only used the chromaticity signals. It has been shown that using

chromaticity signals not only reduces the model’s complexity but also is a more

effective way of characterizing and modelling the immunostaining colours.

As when building any automatic machine classification algorithm, the first thing

needed is training samples. The positively stained pixels and background pixels

were collected separately and used to create the colour statistical models.

3.2.1 Statistical colour model construction

The statistical model presented in [93] has been used for the detection of posi-

tive immunostain colour. Generally, it is known that Red, Green and Blue (RGB)
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colour space is not suited for image analysis. One reason is that chromaticity

information and brightness (luminance) information are mixed together in this

colour space, and it is often desirable to be able to process the chromatic and lu-

minance signals separately. Therefore, separating the chromaticity signal from

the luminance signal is commonly used in practice. In immunostaining detec-

tion, it is the chromaticity signal or the colour spectrum that is of interest rather

than the absolute brightness. The chromaticity signals encode the spectral in-

formation of the immunochemical and therefore can be used to detect positive

staining. From a computational perspective, using a 2D chromaticity space will

make it easier to model the probability density function.

Four colour models have been tested in this chapter, including RGB, opponent

colour model, YCbCr and a model without luminance, CbCr. The red-green (rg)

and blue-yellow (by) chromaticity signals were derived from the original RGB

input as follows

r =
R

R +G+B
, g =

G

R +G+B
, b =

B

R +G+B
, rg = r−g, by =

r + g

2
−b

(3.1)

The Cb and Cr chromaticity signals were derived from the original RGB space

as follows

Cb = −0.1687×R−0.3313×G+0.5×B,Cr = 0.5×R−0.4187×G−0.0813×B

(3.2)

The colour statistical models in the chromaticity space can now be constructed

as

Prob((rg, by)|S) =
S[rg, by]

Ns

, P rob((rg, by)|S) =
S[rg, by]

Ns

(3.3)

Prob((Cb, Cr)|S) =
S[Cb, Cr]

Ns

, P rob((Cb, Cr)|S) =
S[Cb, Cr]

Ns

(3.4)

where S represents the number of positive pixels in a colour bin and S represents
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negative staining, respectively, and Ns is the total number of positive and Ns

the total number of negative pixels. The model in other colour spaces can be

similarly constructed.

The calculation of probability for each colour bin has been illustrated in Fig. 3.2.

FIGURE 3.2: The illustration of probability calculation. The left column is

the index of colour bin for 2D colour space with 128×128 bins. The middle

column is the number of collected colour pixels quantised in each colour bin.

The right column is the calculated probability value for each colour bin (see

Equation 3.4).

3.2.2 The evaluation of statistical model with different colour

models

The technique was tested on two sets of digital slides from oesophageal and

colorectal biopsies. The slides were scanned using a Hamamatsu scanner. A

semi-automatic tool was first used to manually label positively stained pixels,
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as described in Appendix A. The data for building the statistical colour models

included 20 images with resolution 6720×4200. The models were then tested

on another set of 75 images with resolution 6720×4200. Both the training and

testing images were captured under 20× magnitude. I manually prepared the

ground truth of the test dataset. The purely brown images were obtained after

eliminating the background pixels.

The obtained results were plotted with Receiver Operating Characteristic (ROC)

curves with a true positive ratio and false positive ratio. These ratios were cal-

culated as follows:

TP =
Correct

Total
, FP =

Detected− Correct

Background
(3.5)

where TP is the True Positive ratio, and FP is the False Positive ratio. Only

positively stained colour pixels were shown in the detected result images and

converted to greyscale. These two ratios were calculated at each intensity value

on these result images (see Fig. 3.3).

64 bins in each axis 128 bins in each axis 254 bins in each axis

S S OL S S OL S S OL

rg-by 449 588 202 1296 1368 403 3149 3099 496

Cb-Cr 56 155 18 181 516 49 514 1308 129

RGB 6553 13735 2082 35915 79150 9001 61372 139005 14354

YCbCr 1991 4122 698 11038 23182 2972 44033 97609 10549

TABLE 3.1: THE EXPERIMENTAL RESULTS WITH DIFFERENT

COLOUR MODELS. The number of bins occupied by positively staining pix-

els (S), background pixels (S) and overlapping (OL) bins in colour histograms

of 4096, 16384, or 65536 bins (rg/by and Cb/Cr) and 262144, 2097152 or

16777216 bins (RGB and YCbCr)

As expected, the colour distribution occupied a relatively small part of the colour

space. Table 3.1 shows the number of non-empty bins for different sized colour

histograms in 4 different colour spaces. Two spaces with only chromaticity

channels are included, the opponent colour space and CbCr space. Also shown
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FIGURE 3.3: The illustration of evaluation process. The top image is the

greyscale result image with detected stain colour pixels; background pixels are

set to 255. The bottom image is the illustration of the true positive ratio and

false positive ratio calculation. The ratios are calculated against ground truth

at each intensity level from 1 to 255 respectively; these can then be summed to

calculate the average ratios.

are the number of overlapping bins, i.e., bins that are occupied by both posi-

tive and negative pixels. It is interesting to observe that the CbCr chromaticity

space has the smallest number of overlapping bins and the experimental results

confirm that this space gave the best performance.
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Fig. 3.4 shows the ROC curves of models of different colour spaces with dif-

ferent number of histograms bins. The plotted true positive ratios and false

positive ratios were obtained at the intensity level from 1 to 255 (see Fig. 3.3).

ROC curve compares the two criterion changes, true positive ratio (TP) and false

positive ratio (FP), at each intensity level as the operating characteristics. The

result with highest TP and lowest FP would be the optimal model. Each colour

model was evaluated with three different numbers of colour bins.

It can be seen that although all models achieved very good results, the CbCr

chromaticity model achieved better results than models that included both chro-

maticity and luminance. This indicates that chromaticity is sufficient and lu-

minance is a distraction in terms of building the model. As mentioned before,

2D chromaticity signals simplify the model, make it faster to compute, and de-

mand less memory. The optimal choice for the number of histogram bins is 128,

obtaining better results than 256 bins with a smaller computation cost.

3.3 The evaluation of statistical model with differ-

ent users

Since the construction of a statistical model is based on collecting colour pix-

els, variations in the detection results may occur between models that are con-

structed by different peoples. Thus, it is necessary to evaluate the robustness

of the created statistical colour detection models. The robustness of the statis-

tical colour models created by different people was evaluated by measuring its

detection accuracy and variations.

Four people were asked to join in this experiment to detect the brown colour

from DAB stained IHC images. Only one - myself - possessed a pathology

background; the other three had non-pathology backgrounds. The evaluation
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was treated as the detection of all brown colour pixels. Therefore, the partici-

pants were not required to have any pathology background. They were asked to

use the same training dataset to create models. These models were then tested on

the same test datasets, which were distinct from the training sets. Since different

people may regard different colours as brown, the standard deviations in their

detected true positive ratio and false positive ratio were calculated separately.

The comparison is against the manual ground truth.

The prepared training dataset was captured from two kinds of DAB stained

images, 10 Whole Slide (WS) images with resolution 6720×4200 and 10 Tissue

Microarrays (TMA) images with resolution 5120×4096. These two kinds of

images were re-sorted into three types of training samples. Each type of train-

ing sample consisted of 10 images, such as 10 WS images, 10 TMA images or

10 mixed images (5 WS images and 5 TMA images). Each people were required

to build three statistical models for the detection of brown colour. The colour

pixels used were collected separately from these three types of DAB stained

training samples. As a result, four peoples were required to create 12 models

with the collected colour pixels.

For the test datasets, these included two datasets of DAB stained images from

WS images and TMA images. Both DAB stained datasets contain 50 images that

were captured under 40× magnitude with resolution 1680×1050. The models

based on TMA training samples were tested on TMA test samples and the mod-

els constructed from whole slide training samples were tested on whole slide test

samples. The models created from mixed images, which covered a wider range

of colours than the previous two groups, were then tested on both test samples.

The results obtained from the test dataset by the 12 models are shown as ROC

curves in Fig. 3.5. The true positive and false positive ratios were calculated in

the histogram bins from 0-255. All 12 models obtained good results with high

accuracy and low false positive ratios, and the 4 user-created models performed
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better in the whole slide image dataset than in TMA images. The curves with a

true positive ratio of less than 0.8 are nearly the same, for the models obtained

detection accuracy is very high at each intensity level.

Although most of the models achieved similar results, there were still variations

between them requiring examination in further detail. The average values of

the detected results corresponding to the three training datasets were calculated

separately. The deviations in each model were then calculated against the cor-

responding averages in different histogram bins. The formulations are shown as

follows

Ravg(i) =

∑

4

u=1
R(i)

4
, i = [0, 200], STD =

2

√

∑

4

u=1
[R(i)−Ravg(i)]2

4
(3.6)

where R(i) is the average true positive or false positive ratio obtained from

each user at threshold i, n is the number of involved users, and the intensity

threshold has a range from 0 to 200. Ravg(i) is the average true positive or

false positive value of 4 users at threshold i. This calculation is based on the

average true positive and false positive rates at each threshold. From the result

shown in Fig. 3.6 it is obvious that each model, constructed by different users,

had small variations in its true positive and false positive ratios on both whole

slide and TMA test images when the corresponding training images were used.

For example, at a threshold of 150, the four user-constructed models all had the

same true positive ratios (92.1%) and the false positive ratios varied between

1.1% and 1.2%.

As a result, the models created by different people from the same dataset may

all provide the satisfactory results with similar level of detection accuracy. Also,

the models based on the accumulated histograms may be able to reduce the

subjective discrepancies between people.
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3.4 The comparison of statistical colour detection

model with other methods

In this section, two popular colour detection methods proposed in previous stud-

ies were compared with the statistical stain colour detection model. They were

trained and tested on the same datasets. The methods were assessed and com-

pared in terms of detection accuracy, and the separation of stain colours.

3.4.1 The comparison of detection accuracy

The dataset used in the comparison experiment was the same as that used in the

robustness evaluation in Section 3.3. The previously obtained average results

from 4 users were compared with colour deconvolution and CMYK.

WholeSlide TMA

model(WS) model(Mix) model(TMA) model(Mix)

User1 98.6% 94.8% 97.0% 95.4%

User2 98.6% 98.6% 97.0% 97.0%

User3 94.5% 96.1% 98.0% 98.3%

User4 98.4% 94.5% 96.3% 96.3%

AVG 98.5% 97.9% 97.6% 97.6%

CD 88.7% 90.2%

CMYK 90.8% 84.0%

TABLE 3.2: THE AUC VALUES OF ROC CURVES. WS = whole slide test

images; TMA = TMA test images; ST(WS) = statistical model constructed

on 10 whole slide training images; ST(TMA) = statistical model constructed

on 10 TMA training images; Mix = statistical model constructed on 10 mixed

training images (5 WS images and 5 TMA images); AVG = average values of

four user-detected results; CD = Colour Deconvolution.

The experiment was applied on ImageJ. Colour deconvolution was programmed

by Landini as a plugin of imageJ [100] based on the National Institutes of

Health Image macro. The built-in vector H DAB (red = 0.26814753, green

= 0.57031375, blue = 0.77642715) was used to discriminate the brown colour
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from the background, for there is no single dyed samples prepared to obtain the

vectors on these two datasets. The CMYK model was also developed in ImageJ

based on the functions mentioned in [101].

As shown in Fig. 3.7, all runs achieved a very high accuracy, with close to 100

percent correct detection compared to the ground truth. Using the 50 whole slide

test images, the average value of the statistical models obtained the best result

with a false positive ratio of 5.3% as compared to CD, which had a false positive

ratio of 7.7%. The CMYK model attained the lowest correct detection ratio of

95.4%. With the test on 50 TMA images, the best result was also attained by

the average value of the statistical models, i.e. a 5.9% false positive ratio as

compared to CD, which had an 11.6% false positive ratio. The CMYK model

still had the lowest correct detection ratio of 91.4%.

To clarify the results, the calculation of AUC (area under ROC curve) through

integral calculus was applied in the evaluation process. Table 3.2 represents the

percentage of calculated area values under each curve against the whole area.

The statistical colour models obtained the best results, occupying the largest

sized space under the curve.

Colour deconvolution obtained better results than CMYK on TMA test images

but was not as good on whole slide test images. From this table, it can also be

seen that the user-created models had small variations in terms of their detec-

tion accuracy. For example, for brown colour detection, the lowest AUC was

94.5% and the maximum was 98.6%. As a consequence, models constructed by

different users can achieve the desired accuracy and are sufficiently robust.

3.4.2 The comparison of stain colour separation

In the experiment, the normal brown colour could be easily detected and sep-

arated from the background by all three methods. However, the detection of
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brown colours in a dark-stained slide is quite challenging. For example, dark

brown colour pixels were under-counted in the results obtained from CMYK,

as shown in Fig. 3.8(b) & (e). The dark-brown pixels in dark-stained regions

are missing in the CMYK detected result image, the yellow image. Meanwhile,

CD also detected dark brown as the colour blue, as shown in Fig. 3.8(a) & (d).

The evaluation of CMYK has proven that a colour space-based method performs

less accurately in stain colour detection [102]. Classifying colours in the colour

space may suffer an overlap problem. The CD method also suffers from this

problem due to the overlapping light spectrum and non-linear transform. The

statistically-based colour detection models detected dark brown and blue accu-

rately, i.e. ”what you see is what you get”. The wider the range covered by the

collected pixels, the more colour can be detected by the statistical model.

3.5 Discussion and conclusion

The IHC stains have been regarded as the important indicators, which have ob-

viously characteristics, for the quantitative analysis of many biopsies, for exam-

ple, colon cancer and liver cirrhosis. Stain colour detection has been studied by

many previous papers of using image analysis techniques to give objective and

accurate results. In this chapter, the statistical colour detection model has been

applied for stain colour detection.

Instead of detecting a specific colour, the detection of stain, as has been demon-

strated, is based on the approach ”what you see is what you get”. To create the

model, colour pixels were visually determined and collected. This was the vi-

sual determination of the positive colour and negative colour in one slide. How-

ever, the accuracy of the model might have been affected by the selected colour

space. Four colour spaces were compared in the DAB colour detection experi-

ment, which demonstrated the detection accuracy for each colour space. RGB
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colour space and the absolute luminance channel was discarded to reduce both

computation costs and the requirement for computer memory. Therefore, this

model was created based on the 2D chromaticity signals, CbCr colour space,

which have a higher accuracy than the rg-by opponent colour space and other

3D spaces (see Section 3.2.2).

Although the visually determined colour pixel collection process can improve

the detection accuracy, human variations may still result in different detection

accuracies. To evaluate the variations between different people, 12 models were

tested on the same test dataset. Models were created by four peoples from dif-

ferent training images. The obtained detection accuracy only showed tiny varia-

tions between peoples, and inter-observer discrepancies were not obvious. This

means that the accumulated histograms from multiple training samples can pro-

vide stable results with small variations (see Section 3.3). It offers the ability to

reduce the subjective human discrepancies.

Since the samples are prepared with multi-stains which may have overlapping

bins in the colour space, using the statistical model to differentiate the brown

colour and blue colour in H-DAB stained samples has clearly shown the colour

separation (see Section 3.4.2).

It is clear that stain colour detection is similar to normal colour detection in

computer vision. A statistical model can also generate good results in the med-

ical image analysis domain. With the DAB stained tissue samples in particular,

the statistical model combined with an interactive human training process can

obtain better results than either the CD or CMYK methods (see Section 3.4.1).

It is recommended to collect sufficient colour pixels to improve the detection

accuracy. The pixels that are collected should cover the whole range of colour

shades as much as possible.
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FIGURE 3.4: The ROC curves of statistical colour detection models with dif-

ferent colour spaces. The blue curve shows the ROC of models created with 64

histogram bins; the brown curve shows the ROC of models created with 128

histogram bins; and the green curves shows the ROC of models created with

256 histogram bins.
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FIGURE 3.5: ROC curve for different user constructed statistical models. Top

row: ROC curve for User constructed statistical models (based on 10 whole

slide images and 10 mixed images) on 50 whole slide test images; Bottom

row: ROC curve for User constructed statistical models (based on 10 TMA

images and 10 mixed images) on 50 TMA test images.
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FIGURE 3.6: Standard deviation in statistical models for the evaluation of

model variation based on the intensity threshold. Top two: standard devia-

tion in statistical models trained from whole slide images and mixed images

which were tested on 50 whole slide images, Bottom two: standard deviation

in statistical models trained from TMA images and mixed images which were

tested on 50 TMA images. The horizontal axe is the intensity value, and the

vertical axe is the standard deviation.
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FIGURE 3.7: ROC curves for colour deconvolution, CMYK and average value

of statistical models. The plot on the top shows the ROC curves for colour

deconvolution (red dashed line), CMYK (brown dotted line) and the aver-

age value of the statistical models (smooth green line) on 50 whole slide test

images; the plot on the bottom shows the ROC curves for colour deconvolu-

tion, CMYK and the average value of the statistical models on 50 TMA test

images.
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FIGURE 3.8: Stain colour detection on dark-stained slides. Left column is the

original image, middle column is detected brown colour, and the right column

is detected blue colours. (a) & (d) are obtained from CD, (b) & (e) are obtained

from CMYK, (c) & (f) are obtained from the statistical model.



Chapter 4

Nuclei Segmentation

Verifying the presence of nuclei and quantifying positive nuclei is the foun-

dation of cancer grading. Studies on nuclei analysis can be dated back to the

1950s [41]. It has been studied in a vast array of papers covering several re-

search domains such as cell counting, the identification of cell types or phases,

cell migration and interaction quantification, and intracellular structures [103].

In this chapter, a new nuclei segmentation and quantification approach is intro-

duced.

4.1 Introduction

A multistage watershed-based approach for segmenting severely clustered and

overlapping cell nuclei has been proposed, which can reduce the problems men-

tioned in Section 1.2.2. The severely clustered nuclei are those nuclei that are

clumped and difficult to be split by most of the previous methods. The proposed

approach can also simultaneously reduce both over-segmentation and under-

segmentation and improve detection accuracy. The first process proposed was to

detect initial seeds by utilising morphological features. Based on these detected

58
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seeds, a region growing-based method was developed to obtain the correct seeds.

It was then followed by a watershed algorithm to yield the final nuclei segmen-

tation. This approach is easy to implement, relatively lightweight, and very

efficient for nuclei segmentation and quantification. Experiments on a newly

proposed dataset have shown that this approach outperformed several popular

methods in previous studies of nuclei segmentation. After the segmentation ac-

curacy had been evaluated, the quantification results were measured on another

dataset with large-scale images and vast numbers of positively stained nuclei.

4.2 Materials and Methods

All experimental studies were performed on images of human colorectal can-

cers. These images were IHC stained images prepared using Diaminobenzidine

(DAB) as the chromogen. They were digitized from both Whole Slide Images

(WS) and Tissue Micro Array (TMA) images with complex background and

areas of severely clustered nuclei.

The first step in this work was developing the nuclei segmentation approach

and evaluating its accuracy. The segmentation process was first evaluated on

a set of small-scale test images. An example of these test images is shown in

Fig. 4.1. The nuclei are severely clustered and there is great variation in shape

among different nuclei. The ground truth of this test dataset consisted of man-

ually contoured nuclei samples that I prepared by myself (see Fig. 4.5). Next,

the segmentation approach was applied on another set of DAB stained images.

These images, which were of a larger scale and contained severely clustered

nuclei, were used to evaluate the accuracy of the quantification. An example of

test images for nuclei quantification is shown in Fig. 4.13; it includes vast num-

bers of nuclei and a complex background. A ground truth for the quantification
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evaluation was also prepared manually by a pathologist and me, based on the

”cell counter” plugin in ImageJ (see Fig. 4.13).

The proposed approach consists of the following three steps. First, the fore-

ground regions that may contain nuclei are extracted. Second, a new seeded

watershed algorithm combined with a region growing step is applied to the fore-

ground regions for nuclei separation and segmentation. Third, redundant pixels

are eliminated and an ellipse is fit to each segmented nucleus. This whole pro-

cess is outlined in three parts, Algorithm 1, Algorithm 2 and Algorithm 3.

4.2.1 Foreground & background Classification

In general, the intensity of the foreground, i.e., the pixels belonging to the nuclei,

can be easily distinguished from the background by a global threshold method

such as Isodata [43]. However, in DAB stained TMA images, the nuclei bound-

aries could easily be misclassified using a global threshold method, as the mean

intensity levels vary across the background of the entire image. The global

threshold method obtains the threshold value based on the intensity or histogram

of the whole image. Therefore, a global threshold method cannot provide satis-

factory results, as shown in Fig. 4.1(b).

Instead, a combination of global threshold and local threshold can be used to

tackle this problem. Local thresholding allows an adaptive threshold value to be

applied in a local region and can efficiently counter the issue of intensity varia-

tions across the background [86]. The local threshold is applied to pixels that are

classified as foreground by the global threshold method. This same automatic

thresholding method [43] has been used for both global and local threshold-

ing. The size of the local thresholding regions (window) and the step-size of

the moving window will affect the accuracy of the local thresholding results.

In order to classify the foreground from the background in a local window, the
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FIGURE 4.1: Watershed on extracted foreground regions. (a) original image.

(b) watershed performed on the global thresholded images. (c) watershed per-

formed on the combined global and local thresholded images. The falsely

segmented nuclei are highlighted with red circle.

size of this window should be larger than the size of the nuclei in the image.

Smaller windows would falsely eliminate pixels belonging to the nuclei and lead

to over-segmentation, while larger windows would cause under-segmentation.

Therefore, it is important to set an appropriate size for the local window. Re-

sults obtained with different window sizes are shown in Fig. 4.2(b)-(d). The

determination of window size is also discussed in Section 4.5. The horizontal

FIGURE 4.2: Local window movement.((a) original image. (b-d) different

window sizes, 10×10, 30×30, 50×50. (e-h) different moving distances per

iteration, the shown moving distances include 1 pixel, 5 pixels, 15 pixels and

25 pixels. The missing detected nucleus is highlighted with red circle.

distance that the window moves is determined by the size of the window, which

means 1 ≤ d ≤ s, where d is the horizontal moving distance and s is the size of

the moving window. As shown in Fig. 4.2, nuclear pixels are largely eliminated

when the moving distance is small, especially when d = 1. Although smaller

moving distances (from 1 pixel to 20 pixels) outline the boundaries of clustered

nuclei very well, a weakly stained object (circled area) is missed. The moving
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distance is set to be 25 pixels, which can reduce the computation cost and obtain

the best result.

4.2.2 Seeded watershed

Although the combination of local threshold and global threshold can clearly de-

tect the boundaries of clustered nuclei, the largely eliminated intra-pixels may

lead to over-segmentation. Filling in the holes offers the potential to minimize

the over-segmentation effect. Meanwhile, it may also fill the inter-nuclei gaps

that may lead to under-segmentation. Thus, the normal watershed may not pro-

duce the desired results. Therefore, it is better to use a seed-controlled watershed

to segment clustered nuclei.

Algorithm 1 The process of the proposed seeded watershed. α is a threshold

value, which is the larger value between the average size of particles (Avg) and

the minimum size constraint (Cs). Sn is the size of nuclei, and Cn is the centre

of nuclei.

Require: RGB image I
Require: Detected brown colour image Ibrown

Convert I to grey scale image Igrey
Obtain mask1 by Auto-threshold Igrey
Obtain mask2 by Local-threshold mask1
Apply EDM watershed on mask2
α = Max(Avg, C)
for i = 1 to n do

if Sn < α then

Remove Sn

else

Calculate Cn

end if

end for

Conditional region growing outlined in Algorithm 2

Seeded watershed on mask2
Post-processing outlined in Algorithm 3

Distinct from previous seed-controlled watersheds, the seeds used in this ap-

proach were obtained through the following two steps. First, two binary masks,
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mask1 and mask2, were prepared, see Algorithm 1. Binary mask1 is ob-

tained by the global threshold [43] and prepared as the foreground mask. Bi-

nary mask2 is obtained using the combined global and local threshold method

described in Section 4.2.1 that is used for nuclear seed extraction. mask2 is

then transformed to a Euclidian distance map (EDM) [104]. The initial seeds

are obtained by finding the Ultimate Eroded Points (UEP) in this transformed

mask, as shown in Fig. 4.3(a). The watershed splits the areas with overlapping

nuclei into smaller particles. Instead of focusing on segmentation accuracy, the

overlapping or clustered nuclei are over-segmented, which can split the clustered

area as much as possible.

Larger sized particles are more likely to belong to nuclear objects, while smaller

particles may belong to noise. The removal of noisy particles depends on the

mean size range of the nuclei. However, the sizes of nuclei vary across different

images, even within a single image. And severely clustered areas may result in

inseparable particles that have a large size. The average size of nuclear particles

may be larger than the size of correctly segmented small nuclei. Therefore, a

minimum size constraint should be added to prevent over-elimination. This can

be formulated as follows:

N = P |f(Pi) ≥ Min(Avg, C), N ∈ P (4.1)

Where N are the nuclear particles after removal, P are the nuclear particles be-

fore removal, f(Pi) is the size of particle i in P , Avg is the average size of all

particles in P , and C is the minimum constraint value. During the removal pro-

cess, particles whose sizes are smaller than the mean size or the minimum size

constraint are regarded as noise, as shown in Fig. 4.3(c). For the size variation

in nuclei, an image that has a large number of small particles may result in a

smaller average value than the constraint. And an image that has a large number

of large particles may result in a larger average value than the constraint. This
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constraint value is a balance critierion, for these variations may occur in test

images.

Algorithm 2 Conditional region growing. In mask1 and mask2, the intensity

value of pixels that belong to objects is 0, and the value of background pixels

is 255. Ni is the ith growing nuclei particle. Pi are the pixels belong to nuclei

Ni. Intensityi and IntensityG are the average intensity value of pixels belong

to Ni, and the intensity value of growing pixels G. Gmask1 and Gmask2 are the

intensity value of growing pixels G in mask1 and mask2. Intensitymask2 is

the intensity value of pixels in mask2.

Require: mask1 and mask2
Pi ∈ Ni

for i = 1 to n do

if Gmask2 = 255 AND Gmask1 = 0 then

Add G to Pi

Calculate Intensityi
else

if Gmask2 = 0 AND IntensityG < Intensityi then

Set IntensityG = 100

end if

end if

end for

Require: mask2
if Intensitymask2 = 100 then

Set Intensitymask2 = 255

end if

Second, the remaining particles in filtered mask2 are regarded as seeds for re-

gion growing as shown in Fig. 4.3(d). These particles are candidate seeds for

nuclei segmentation that need to be further classified by the following process,

see Algorithm 2. This region growing process that is based on mask1 aims

to retrieve missing nuclei that are falsely eliminated by local thresholding from

mask2 due to their weakly stained colour intensity. This is similar to a water-

shed algorithm, which floods water from catchment basins (the seeds) to the

dams (the separation lines) where the waters coming from different basins meet

each other. Unlike a classical watershed, cutting ”necks” between nuclei are

added instead of creating separation dams due to previous over-segmentation.

The ”necks” are generated in favour of measuring the intensity of dam pixels,
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FIGURE 4.3: Region growing and nuclei segmentation. (a) original image, red

points in (a) are initial seeds obtained from UEP. (b) the combined local and

global thresholded results. (c) small particles in (b) are removed according to

their mean nuclei size and minimum size constraint. (d) seeds used for region

growing are highlighted in the center of each particle, and the surrounded red

pixels are the pixels that will be grown. (e) the neck pixels are set to gray dur-

ing the region growing process. (f) final segmentation results of the watershed.

(g) the contour of each nucleus based on (f). (h) ellipses approximate final

segmentation results.

whose intensity is larger than the mean intensity of the touched nuclei. Each

growing nuclear particle is recorded and the ”necks” are formed by the gray

pixels, see Fig. 4.3(e). Adding the ”necks” offers the watershed the ability

to separate clusters and the potential to merge over-segmented nuclei as well.

Falsely separated nuclei can be merged if the dam pixels have an intensity less

than or equal to the average intensity of the growing nuclei that flooded from

different catchment basins, see Fig. 4.4(a)-(d). The pixels belonging to ”necks”

have a high potential to be background and should be eliminated after the grow-

ing process. Based on this neck-eliminated binary mask2, the final seeds can

be extracted by finding regional minimal points in the EDM transformed image.

The final segmentation results are then generated by the seed-controlled water-

shed, as illustrated in Fig. 4.3(f) & (g).

4.2.3 Post processing
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FIGURE 4.4: Post processing. (a) & (e) original image. (b) over-segmented

nuclei in the initial segmentation. (c) merged nuclei after region growing

process. (d) final segmentation. (f) falsely identified nuclei before post-

processing. (g) false positive nuclei are eliminated after post-processing. The

falsely splited nuclei before region growing are highlighted with red circles.

Algorithm 3 Post-processing. Sn is the size of nth nuclei after auto-threshold.

Require: mask2
Pi ∈ Ni

for i = 1 to n do

if Gmask2 = 255 AND Gmask1 = 0 then

Auto-threshold Pi

Calculate Si

if Si < β then

Fitting ellipse on Ni

end if

end if

end for

As shown in Fig. 4.4(f), the segmentation results contain noise pixels inside

some particles. These noise pixels are usually stained cytoplasm pixels sur-

rounding the nuclei. Therefore, a post-processing step to eliminate the noise is

needed, see Algorithm 3. To achieve this, each particle is examined separately

and an intensity histogram is generated for those pixels inside the particle. An

auto threshold method [43] is performed on the local intensity histogram. Pixels

in each particle are considered to be nuclear pixels when their intensity is less

than the local threshold. Particles are recorded with location and size informa-

tion. The size of the particle is renewed after noise pixels are wiped off. Smaller

particles are thresholded and removed as noise. Finally, an ellipse is fitted to the
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remaining nuclei particles.

AS CD OS US Miss FP AR OR

Global [43] 904 664 13 207 381 20 51.5% 52.5%

E-min [105] 925 787 30 78 370 30 61.6% 62.2%

Voting [1] 810 439 74 214 538 83 38.4% 34.9%

LoG [2] 1641 837 338 44 46 422 64.4% 66.2%

Ours 1213 1015 53 75 122 71 81.3% 80.3%

TABLE 4.1: MEASUREMENT OF SEGMENTATION RESULTS AGAINST

MANUALLY LABELED GROUND TRUTH. AS=Auto Segmentation, the

number of segmented nuclei result. CD=Correct Detection. OS=Over Seg-

mentation. US=Under Segmentation. Miss=Miss segmented nuclei. FP=False

Positive. AR=Average accuracy Rate, the average correct detection rate.

OR=Overall accuracy Rate, OR=CD/Ground truth.

4.3 Experimental Results for Nuclei Segmentation

The DAB stained sample dataset included 52 images of 200×200 pixels. These

images contained areas of heavily clustered nuclei cut from 14 TMA images and

4 WS of colorectal cancer. I manually labelled 1265 nuclei in this dataset. The

parameters used in this thesis are: the window size is 50×50 pixels, the mov-

ing distance is 25 pixels, and the minimum size constraint is 200 pixels. These

parameters are empirically decided; although a systemic method to obtain these

would be highly desirable, it is still a very challenging task (all data and the

ImageJ plugin of our method are available at at the plugin website of ImageJ,

http://rsb.info.nih.gov/ij/plugins/ihc-toolbox/index.html). This approach has

been compared with a classical watershed performed on global thresholded [43]

images and extended minima transformed images (E-min) [106]. In addition,

the iterative voting method presented in [1] was also tested on the same dataset

using their publicly available software. The method developed by Al-Kofahi

et. al. [2], which has been applied as a toolkit in FARSIGHT [107], has also

been compared. To measure performance, similar evaluation criteria to Al-

Kofahi et al. [2], were adopted in the experiment including correct detection,
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FIGURE 4.5: Segmentation results. In row (a) original images from 1-4. (b)

manually labeled ground truth. (c) watershed on global threshold. (d) water-

shed on extended minima transform. (e)iterative voting. (f) LoG.

over-segmentation, under-segmentation, missing nuclei and false positives. Cor-

rect detection means the number of correctly segmented nuclei. The number of

missed nuclei is calculated as the number of nuclei included in both the under-

segmented areas and the foreground areas. The number of false positive nuclei

is calculated as the number of false positive nuclei in over-segmented areas. The
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FIGURE 4.6: Segmentation results. (our proposed method.)

results generated by the proposed approach together with those obtained by the

previous methods are compared in Table 4.1.

From Table 4.1 it can be seen that using a global threshold generates more

under-segmentation and less correct detection. The extended minima transform

reduced the under segmentation; however, many unevenly stained nuclear parti-

cles were falsely eliminated and the correct detection number was still low. The

iterative voting method locates the centres of nuclei based on the border and gra-

dient values of each nucleus. The weak borders between nuclei in the clustered

areas made this method susceptible to under-segmentation. The method used

in [2] led to a higher over-segmentation rate than the others due to the highly

textured intra-chromatin of the nucleus and variations in nuclear structures. The

method introduced here, which balanced over- and under-segmentation, signifi-

cantly increased correct detection and reduced missed detection. Some segmen-

tation results are shown in Fig. 4.5and Fig. 4.6.
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4.4 DICE Coefficient Evaluation

Another evaluation applied was the Dice coefficient. This measures the over-

lapped region between segmented and ground truth against their union. It is

commonly used for evaluation of segmentation techniques. It is defined as:

D(X, Y ) = 2×
|X ∩ Y |

|X|+ |Y |
(4.2)

Where X and Y are the two segmented regions; one is generated by method

and the other one is ground truth (see the illustration in Fig. 4.7). The same

dataset as presented in Section 4.3 has been used. In the evaluation, each test

image includes a single labelled nucleus and is accompanied by the correspond-

ing ground truth images (see Fig. 4.7). Therefore, I have evaluated 1,335 test-

ing images against the same number of ground truth images. Two segmented

and labelled nuclei should be compared depending on the size of overlapped

regions. The segmentation results are obtained before the post-processing (see

Fig. 4.3(g)). The post-processing is used to remove noise pixels, which may also

remove the pixels that belong to the nucleus. A broken nucleus is not suitable

for segmentation evaluation.

The Dice coefficient evaluation results are shown in Fig. 7. The number of

segmented nuclei with a Dice coefficient higher than 0.5 is 718, and their mean

value is 0.73. The number of nuclei with a Dice coefficient higher than 0.8 is

198, and their mean value is 0.84. Although the Dice coefficient is not good

enough, the accurate contouring of the nuclei in such a complex background

and clustered area is quite a challenge.
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FIGURE 4.7: The illustration of the Dice coefficient evaluation. The left image

is ground truth, the middle image is the segmentation result and the right image

is the evaluation result. The grey labelled nucleus in the left and middle image

is the evaluated one. The grey labelled pixels in right image denote the over-

lapped pixels between the ground truth and the segmentation result. The white

pixels together with grey pixels in the right image denote the union pixels.

Therefore, the Dice coefficient is the grey pixels in the right image, divided by

the union pixels.

FIGURE 4.8: The Dice coefficient evaluation results. The horizontal axis is

the Dice coefficient, and the vertical axis is the number of nuclei.

4.5 Parameter Estimation

Three parameters were engaged in the developed watershed-based nuclei seg-

mentation approach, including the size of the local thresholding window, the

moving distance of the window, and the minimum constraint on seed size. The

moving distance of the local thresholding window, which only affects the time

cost to some extent, was not evaluated in this estimation process and set to be a
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constant value per movement. In this section, the other two parameters are dis-

cussed and tested with different values on the same dataset used in Section 4.3.

FIGURE 4.9: Plot of segmentation results with different window sizes. The

horizontal axis is the changing size, and the vertical axis is the number of

nuclei.

FIGURE 4.10: Plot of segmentation results with different seed sizes. The

horizontal axis is the changing size, and the vertical axis is the number of

nuclei.

In estimating a parameter, the other two parameters were set to constant values.

For example, the local thresholding window size was the first estimated param-

eter and the seed size constraint was set to 200 pixels. The tested half window

sizes included 10 values from 5 to 50 pixels. Then the best performing window

size was obtained and set to be constant for the estimation of seed size con-

straint. The tested seed size constraints ranged from 0 to 500 pixels. Each tested
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value yielded a segmentation result that includes all the criteria used in the eval-

uation process in Section 4.3. The results are separately plotted in Fig. 4.9and

Fig. 4.10.

Exploring these two plots, it can be seen that the generated results have small

variations in correct segmentation. The increasing of size, either window size

or seed size, may lead to an increase in the number of under-segmented nuclei

and a decrease in the number of over-segmented nuclei. For the window size

parameter, the best result was obtained at 25 pixels (half size of the window),

which is the mean size of nuclei (see example in Fig. 4.11). The results showed

little variation when the values were larger than or close to the size of the nuclei,

such as greater than 25 pixels but less than 40 pixels. However, the correct

segmentation number decreased when the window size was larger than the size

of two nuclei, for example 40 pixels, due to the intensity variations between two

nuclei.

FIGURE 4.11: The square size and total size of nuclei on test image. The

image on the left is fitted by a 44×44 square, and the image on the right is

fitted by a ellipse which have 908 pixels inside.

The parameter of seed size constraint gave the best result at 150 pixels as com-

pared to the size of the nuclei, which varied from 300 pixels to 1000 pixels (see

example in Fig. 4.11). Sizes larger or smaller than this value around 100 pixels

had similar correct segmentation results. This constraint value is used to prevent

over-elimination of small particles that are generated by the initial separation.

Thus, the values should be less than a fifth the size of the nuclei. Both these
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tests indicated it is possible to select a value around close to the optimal value

in order to obtain satisfactory results.

4.6 Quantification Evaluation

The developed nuclei segmentation approach, which can clearly detect individ-

ual nuclei in areas of clustered or overlapping nuclei, is the a priori step in nuclei

quantification. In nuclei segmentation, the over- and under-segmentation prob-

lems are significantly controlled and the background noises are greatly reduced.

Quantification can then be applied once accuracy in automatically segmenting

nucleus is achieved.

Nuclei are quantified and proportionately measured in IHC stained images, which

offers the potential of applying a growing number of biomedical applications [108].

Positively stained nuclei that have high potential disease association are quanti-

fied in this evaluation process. To evaluate the accuracy of positive nuclei quan-

tification, the quantification process was divided into the following two steps.

First, the positive stain colour, for example the brown colour should be detected.

A statistical colour detection model (see Chapter 3) was applied to detect all

positively stained pixels in the image. Each pixel in the image was classified

and recorded as either positive or negative. Second, the nuclei were segmented

and the positively stained nuclei were classified and quantified. The segmen-

tation process was performed by using the above-mentioned seeded-based ap-

proach. Positive nuclei were then classified by measuring the brown pixels in

each nucleus that had a proportion larger than 20%, as a proportionate value

larger than 20% could largely minimise the counting of blue nuclei. Each posi-

tive nucleus was fitted by a red ellipse (see Fig. 4.13).

One potential use of the quantification of positive nuclei is the grading of cores

in TMA images. Instead of manually counting, the automatic quantification
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can reduce the time cost and generate objective results. Rather than consider-

ing about the F1-score evaluation, it is better to evaluate the correspondence

between the automatically generated results and manual counting results. This

is because the annotated ground truth for this dataset contains only the counted

number of positive nuclei in each image (see Fig. 4.13), and it is impossible to

annotated such a huge number of nuclei in such a complex background.

The datasets was used to evaluate nuclei quantification was also the DAB stained

colon tissue samples. The proposed new dataset contained 11,826 manually

counted positive nuclei in 33 images with resolution 1280×1024. These images

had a complex background and areas of severely clustered nuclei similar to

the dataset used in the segmentation evaluation (see Fig. 4.13). The evaluation

was performed by measuring correlations between the tool-generated results and

manual counting results. The ground truth of positive nuclei quantification was

manually counted by two persons (myself and a pathologist) who had experience

in histopathology. The correspondence between the human evaluators and the

computer is presented in Fig. 4.12. The parameters used for this quantification

evaluation were those that obtained the best results in Section 4.5. Compared to

the previous methods [1, 2], the proposed method here performed much better,

with higher correspondence.

4.7 Discussion and Conclusion

Quantification of positive nuclei is routinely used in diagnostic pathology to de-

termine individual therapeutic strategies. In order to reduce the subjective bias in

quantification, an objective method is of the utmost importance. Nuclei segmen-

tation is regarded to be the prerequisite for nuclei quantification. The problems

that arise in segmentation are under- and over-segmentation problem. In this

chapter, an automated method for segmenting overlapping or clustered nuclei
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in colorectal cancer has been proposed, which reduces both of these two prob-

lems. Experiments on a large dataset show that the new approach works very

well and outperforms several popular techniques in the splitting of overlapping

and clustered nuclei.

The first step of nuclei segmentation is the nuclei area extraction, the separating

of nuclei pixels from the background. Several approaches have been presented

in the literature in Section 2.2. Since the threshold-based method is the sim-

plest and cheapest one, the auto-threshold algorithm has been used to obtain the

threshold value automatically and reduce the time cost. To cover the intensity

variations, the nuclei pixels were extracted from the complex background based

on the histograms both from the whole image and from a moving sub window.

The variations of segmentation accuracy according to the sizes of this sub win-

dow have been evaluated. The selection of an appropriate size is depending on

the size of the nuclei, which has been shown in Section 4.5.

Accurate seed detection is the key to accurate nuclei segmentation, especially

for the splitting of overlapping or clustered nuclei. The proposed novel seed de-

tection method involves the nuclear characteristics of shape, size and intensity.

It is intended to reduce the watershed algorithm over-segmentation problem in

nuclei segmentation. The seeds were obtained after the removal of false initial

seeds with size filtering and the refinement with intensity based region grow-

ing. The size filtering is controlled by two parameters: one is the automatically

calculated mean nuclei size, and the other one is determined manually. This

human-determined parameter is regarded as a complement to cover the nuclei

size variations and reduce the over-segmentation. Region growing with intensity

measurement is also intended to reduce this problem, by merging the over-

segmented nuclei. In addition, the seeds were obtained from EDM, which may

be sensitive to the neck size between nuclei; thus, the region growing method

can also reduce the under-segmentation problem by shrinking the neck size.
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However, while this method was proposed for splitting the overlapping or clus-

tered nuclei and produce quantification results based on the novel seed detection

method, it may not provide satisfactory contour of split nuclei due to the com-

plex background and the large shape variations of nuclei. Thus, the Dice coef-

ficient evaluation is not good enough. In addition, the contouring results used

were not post-processed, which also gives raise to the low Dice coefficient.

As with similar techniques, there are several parameters that need to be deter-

mined empirically. However, these parameters can be determined according to

the size of the nuclei in an image with specific magnification and resolution.

It was shown that using the best performing parameters on this dataset yielded

much better results on another dataset with the image captured under the same

magnification. The dataset used for the evaluation of quantification was quite

complex and difficult to label visually. The preparation of the ground truth with

visually labelling was time-intensive and lasted for two weeks. As a result, the

image analysis approach, which only takes several minutes, can attain highly

correlated results as compared to this ground truth.
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FIGURE 4.12: The quantification evaluation results. Scatter plot of quantifica-

tion results between manually counting and automatic segmentation methods,

Voting [1], LoG [2] and method presented in this chapter. The horizontal axis

shows the manually counted number of nuclei; the vertical axis is the automat-

ically counted number of nuclei.
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FIGURE 4.13: Quantitative evaluation of samples and manual counting of the

ground truth. The upper image is the ground truth image which was manually

marked by two persons using the ”cell counter” plugin in ImageJ. The lower

image is the nuclei quantification by our method.
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Gland Detection

Biopsies are prepared for further examination when cancer is suspected. The

stained samples are explored and interpreted by the pathologist to verify the

malignancy. The analysis of gland architecture, which reflects the cancer stage,

has evolved into an important aspect of cancer detection [3]. Computerized

gland detection is a recently developed area of study that has been researched for

no more than 10 years. These recent studies have encouraged pathologists to use

computer-aided methods in the cancer examination process. In addition, these

objective methods may reduce visual interpretation problems. In this chapter, a

new gland segmentation method is introduced.

5.1 Introduction

Most previous papers have segmented glands in Hematoxylin and Eosin (H&E)

colour stained images. In H&E stained images, the components of a gland are

coloured with distinguishable colours; for example, nuclei are blue, stroma is

pink, cytoplasm is purple and the lumen is white [90]. Therefore, colour is con-

sidered as an important feature in gland segmentation and is normally detected

80
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or classified into different clusters at the start of the segmentation. Unfortu-

nately, this is not suitable with Hematoxylin-Diaminobenzidine H-DAB stained

tissue images, as it only colours nuclei into two classes, cancerous and normal.

No differentiable stain applied on cytoplasm and stroma. Therefore, the previ-

ous colour dependent gland detection methods might not work on this kind of

stained image, see Fig. 5.1.

Accordingly, texture or feature-based methods are more flexible and can be ap-

plied on different kinds of colour stained tissue images. A novel morphology-

based approach has been developed to segment gland structures in H-DAB stained

images that can tackle the challenges mentioned above. This approach can be

performed on grey scale images; thus, it is also applicable to H&E stained

images. Novel methods are proposed to extract potential luminal regions and

their enclosing chain of nuclei. Complete glands are then formed by growing

each luminal region until it reaches its relative nuclear boundary. Finally, a sup-

port vector regressor is utilized to judge whether the proposed gland is true or

not. Applying this methodology on a publicly available dataset has shown that

this approach outperforms the state-of-the-art.

5.2 Method

The lumen is the central region of a gland, and has been demonstrated to be

useful in locating glands in many previous papers [3, 4, 109]. Thus, the gland

detection in H-DAB stained images is performed via the following three steps.

First, the lumen-like regions are extracted. Second, each nucleus is assigned to

its correlated luminal region and bounding boxes are fitted. Third, each of these

predicted candidate glands is classified as a gland or non-gland by a Support

Vector Regressor [92].
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FIGURE 5.1: The candidate lumen regions detection. The left column is the

manually labelled ground truth, the middle column is the lumen regions de-

tected by Farjam et al. [3], and the right column is the lumen regions detected

by the proposed method. The dark pixels in the detected images are lumen

regions and the white pixels are the background. The red arrows in the top

row point to the vacant artefact at the gland boundary, and the red arrows in

the bottom row point to the falsely removed lumen which has a small size with

closed-chain of boundary nuclei.

5.2.1 Luminal region extraction

Just as mentioned before, one of the challenges in gland detection is the incon-

sistent luminal colour. Thus, it is better to consider morphological information

rather than colour information to detect the luminal regions. Morphologically,

the nuclei are distributed like a closed chain and the lumen is the region inside

this chain. The detection of the lumen is then equivalent to detecting the closed

chain of nuclei. However, many glands may have unclosed nuclei chains due

to artifacts, such as vacant areas at the boundary of a gland or aggregates that

challenge gland detection. Thus, the luminal regions should be extracted from a

new feature space instead of closing unclosed chains of nuclei.

As shown in Fig. 5.2(b) & (d), visually, the intensity of pixels inside the gland
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FIGURE 5.2: Steps in candidate luminal region extraction on H-DAB images.

(a) original sample images; (b) the 3D surface plot of (a); (c) the Gaussian

blurred image; (d) the 3D surface plot of (c); (e) the open-by-reconstruction

applied on (c); (f) the 3D surface plot of (e); (g) variance feature space of (e);

to make them visible, pixels with non-zero variance values are enhanced; (h)

binary image after a simple threshold applied on (g); red pixels are true luminal

regions and black pixels are false luminal regions.
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is much higher than in the surrounding nuclei and appears like a hill or peak,

while the boundary pixels surrounding the gland appear like a valley and the

pixels in the stroma appear like ridges. The valley occurs between the hill and

the ridges and exhibits a sharp edge. This change in acute intensity is a distinct

feature of glands. Utilizing the higher intensity in the lumen and this sharp edge

feature, Farjam et al. [3] detected the lumen and nuclei boundary separately.

They applied a feature extractor on these two areas to enhance the sharp edge

and close the nuclei chain. The enhanced the sharp edge in the extracted nuclei

boundary and then used the closed nuclei chain to detect the lumen. However, it

is hard to close the boundary in the presence of large vacant artifacts and small

glands may be missed, see Fig. 5.1.

From another point of view, the sharp edge pixels at the boundaries of glands

have larger variations than the other structures. Based on this phenomenon, it

can be assumed that the luminal region is surrounded by pixels having a larger

variation. This means the gland boundary, whether a closed or partially closed

chain of nuclei, would form a closed sharp edge chain. Accordingly, variance

filter was adopted to highlight the edges and transform the original grey scale

image into a variance based texture space.

V ar(I) = δ2 =
1

n
(

n
∑

i=1

(I2i ))− (
1

n

n
∑

i=1

Ii)
2, {I|I ∈ C(r) = 1 · · ·N} (5.1)

where I is the image intensity at location (xi; yi), C is the size of filtering win-

dow with radius r, and N is the number of pixels in this filtering window. A

pixel that has a rapid intensity change in its neighbourhood will have a higher

variance value. However, such rapid intensity changes occur across the whole

image, even in colour-polluted lumenal regions. This makes it hard to distin-

guish genuine luminal regions. Instead of extracting the sharp edges from such

a complex environment, a morphological process that combines a Gaussian blur
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followed by an open-by-reconstruction method [96] to highlight the luminal re-

gions was proposed. This process reduces the variations in luminal regions and

makes the pixels in these regions significantly different from the others.

Morphological reconstruction can be conceptually regarded as repeated dila-

tions of the seed image to fit the mask image. Open-by-reconstruction is a

procedure of erosion followed by a morphological reconstruction that aims to

preserve the shape of the remaining image components after erosion. In a bi-

nary image, it can erode the components with a pre-defined disk to filter out

undesired objects. This can then be transferred to a grey scale image to smooth

the regions with intensity changes based on a round disk. Using this morpholog-

ical process, it can reduce the intensity of regional maximum pixels and smooth

the intensity changes (see Fig. 5.2(d)). After this process, the variance of lighter

pixels, which usually correspond to the luminal region, are smoothed to zero

and the between the valley and the peak are reserved. The luminal regions can

then be detected through a simple threshold operator. The detected luminal like

regions are shown in Fig. 5.2(g) and the details for the whole gland detection

process are shown in Algorithm 4, Algorithm 5, Algorithm 6.

5.2.2 Nuclei region detection

The result obtained from the previous section consisted of candidate luminal re-

gions that might correspond to true glands or not. To differentiate true glands

from the false ones, it is better to utilise the information in the surrounding nuclei

chain. In H-DAB colour images, nuclei are coloured blue or brown; the brown

nuclei have a much lower intensity than the blue ones. This makes it difficult

to detect all the nuclei regions in such an image, as can be seen in Fig. 5.3(a).

The extraction of nuclei regions, the pixels that belong to nuclei, by applying a

colour-based method [27], K-means clustering method or Laplacian of Gaussian

(LoG) method may all fail to detect blue nuclei due to their weak intensity (see
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Algorithm 4 Candidate lumen extraction for gland detection. Ipixel is the

intensity value of pixels in image I . Particles with size Sparticle smaller than

the threshold α are removed. The reserved particles are recorded as candidate

lumen Li.

Require: DAB stained RGB image I
Pre-processing of image I with Gaussian blur

Apply Open-by-Reconstruction on pre-processed image I
Apply Variance filter on reconstructed image I
Ipixel ∈ I
if Ipixel > 0 then

Set Ipixel = 255

end if

Si ∈ I
for i = 1 to n do

if Si < α then

Remove Si

else

Record as Li

end if

end for

Fig. 5.3(b) & (c) & (d)). It can be found that using a combination of histogram

equalisation and Laplacian followed by the autothreshold method [43] can ob-

tain surprisingly good results, as shown in Fig. 5.3(e). The detail of this process

is shown in Algorithm 5. Although the LoG method obtained good result, the

characteristics between nuclei are difficult to use in differentiating between the

gland nuclei chains and the stroma nuclei chains. Thus, the pixels that belong

to nuclei should be detected completely, which can benefit the differentiation.

This method may also offer the ability to accurately locate the bounding box for

each gland.

5.2.3 Candidate gland preparation

Overlapping or clustered nuclei are largely assembled at the gland boundary.

However, stroma nuclei are clustered as well. Relying on clustered or assem-

bled nuclei particles may result in falsely locating the gland and misidentifying
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Algorithm 5 Nuclei particles detection for gland detection. Nuclei particles

with size Sparticle smaller than threshold β are removed. The reserved nuclei

particles are recorded as Nj .

Require: DAB stained RGB image I
Convert RGB to gray scale image Ig
Enhance Ig with histogram equalization

Filter Ig with laplacian

Auto-threshold processed Ig
if Ipixel > β then

Ipixel = 255

end if

Watershed segmentation on I
for j = 1 to n do

if Sj < γ then

Remove Sj

else

Record as Nj

end if

end for

the gland boundary. After the nuclei regions were extracted, the watershed al-

gorithm was applied to separate the connected regions into a set of small par-

ticles. This splitting operation can beneficial to locating the bounding box for

each gland. Each nucleus was assigned a label and implemented iterative re-

gion growing process to connect most of them. The grown pixels from each

nucleus were assigned the same label as the original nucleus. The number of

growing iterations can be determined by the largest gap sizes between nuclei

at the gland boundary, except in the case of large artifacts. This step connects

each nucleus with its neighbours, which can then be used as a barrier to stop the

lumen growing.

Next, the image with connected nuclei was treated as the mask image, and per-

formed another seeded region growing for each previously detected luminal re-

gion. Two processes were included in this region growing, including the cor-

responding nuclei boundary detection and the merging of falsely split luminal

regions. Following the region growing, the grown seeds, the luminal regions and



Chapter 5. Gland Detection 88

FIGURE 5.3: Nuclei region detection. (a) is the original image with high

intensity variations in nuclei; (b) is the binary image obtained from colour

deconvolution; (c) is the binary image processed by Laplacian of Gaussian;

(d) is the binary image obtained from K-means with K=3; (e) is the binary

image obtained by our proposed approach.
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the correlated nuclei were jointly considered to be candidate glands. A bounding

box was then fitted for each candidate gland, see the Algorithm 6.

Algorithm 6 Candidate gland preparation for gland detection. The grown pixels

Gpixel of Li are those pixels that not belong to any nuclei particles Nj . Lp are

lumen that touched by the current grown lumen Li. The nuclei particles Nj ,

covered by the enlarged Li and Lp with size r, are recorded as belonging to a

gland with lumen Li.

Require: Seeds Li

Require: Mask Nj

Require: Radius r
for j = 1 to n do

Grow Nj

Calculate the centre Cj of Nj

end for

for i = 1 to m do

while Gpixel /∈ Nj , j ∈ [1, n] do

Grow Li with Gpixel

Record touched Nj by Li

Connect Li with Lp, p ∈ i
end while

Calculate Di between Li and touched Cj

Enlarge Li and Lp with size r
if Any Cj in r then

Record Nj as touched by Li

end if

Fitting bounding box for Li ∪Nj

end for

In region growing, the nuclei touched by each luminal region were recorded sep-

arately. These nuclei are regarded as the gland boundary nuclei for the touched

luminal region. The size of the gland can also initially be obtained from the

distance between the luminal region and the recorded nuclei. After this process,

similar to [4], a ring-like outer domain was defined, aiming to simulate the chain

of epithelial nuclei. The nuclei on the inner side of the gland may close and halt

the growth of the seed lumen to touch the nuclei on the outer side (see Fig. 5.4).

Therefore, the luminal region can only touch some of the nuclei at the boundary.

To obtain the missing nuclei a ring-like region is proposed. The ring is fitted to

the boundary of touched nuclei and extended to a pre-defined range according
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FIGURE 5.4: Detecting the gland nuclei boundary. The large red region is the

seed luminal region, which grows to touch the red nuclei. The green nuclei are

detected after applying the extended ring-like region.

to the thickness of the gland boundary. In addition to the nuclei reached by

this grown seed, nuclei whose centres were located inside this domain were also

allocated to this seed.

The luminal regions may be falsely split into several small regions during the

lumen extraction step due to variations in gland shapes and the inner distances

of boundary nuclei. Separate luminal regions may also be merged when they

touch each other during region growing. The nuclei touched by each seed lumen

region are then combined to form the boundary of the merged lumen.

5.2.4 Gland classification

The possible glands were contoured by minimum bounding boxes. The bound-

ing boxes we fitted to the candidate glands were depending on the distance be-

tween the centre of boundary nuclei and the edge of detected lumen. To verify

whether these proposed candidate glands are true glands or not, following [92],
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we designed another visual feature-based verification module to decide if the

boxes detected correspond to the true glands or not. This classification process

is illustrated in Fig. 5.5.

FIGURE 5.5: The gland classification scheme.

For each of these bounding boxes, the Pyramid of Histograms of Orientation

Gradients (PHOG) visual feature [98] was extracted from the smallest bound-

ing box enclosing it. The PHOG feature was chosen owing to its efficiency in

capturing the shape structure, which is considered to be the most discriminative

feature of the gland [92]. A score was calculated to measure the quality of the

contour. This score is Dice coefficient, which is defined as the maximum overlap

between the detected contour S and any ground-truth glands Si:

score = maxi

|S ∩ Si|

|S ∪ Si|
(5.2)

Then a regressor was trained to regress this score using the PHOG features and

utilize the popular LIBSVM toolbox [110] to learn a nonlinear Support Vector

Regression (SVR). The output of this SVR is considered to be a probability

representing how likely it is a bounding box contains true gland. It is then used

to rank all the bounding boxes.
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5.3 Experimental Results

The experiments were conducted on the proposed dataset containing 20 high res-

olution 1280×1024 pixel H-DAB stained microscopic images of human colon

tissues. The dataset consists of tissues with preinvasive (i.e. adenomatous)

tumours and well or moderately differentiated invasive tumours. In these situa-

tions, the glandular architecture is preserved to varying degrees and thus hetero-

geneous morphologies can be interrogated. The poorly differentiated tumours,

and these - by their very definition - have lost their glandular architecture were

not involved in the test. The images we used come from different tumours (i.e.

different patients). They were captured on a scanner (Hamamatsu nanozoomer)

with 10× standard mode and on a digital camera attached to a microscope

(Olympus). The staining was done at a variety of different times.

All the cases selected for this project have been reviewed by a fully trained di-

agnostic pathologist whose task is to confirm the presence of the glands in every

tissue section. Then all the glands are annotated and further confirmed by the

pathologist. In total the dataset contains 1,072 glands, all of which have been

manually annotated by me with pixel accuracy. Fig. 5.7 shows some images

in this dataset, where the glands are manually labeled by the ”cell counter” plu-

gin in ImageJ. The whole dataset and the ground-truth data have now been made

publicly available at http://www.viplab.cs.nott.ac.uk/download/Nott-Gland.html.

In the experiments, these 20 images contained in the dataset were split into two

disjoint sets. Each image was assigned a number ranging from 1 to 20. While

the odd-numbered images were used for training, the even-numbered images

constituted the testing set. The training set was used to train the SVR model.

Next, the testing set was then tested by the trained SVR model.

This task was considered as a gland detection problem. A predicted bounding

box was treated as a true positive if its overlap with any ground truth gland
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FIGURE 5.6: The comparison of experimental results obtained by different

methods. The results are plotted in a Precision-Recall graph.

exceeded 0.5. For the assessing of experimental results, the ROC curve was not

considered due to the ground truth contains only the annotated true glands. Thus,

it is impossible to calculate the false positive ratio without the annotated false

glands in ground truth. Mean Average Precision (MAP) [92], which is a widely

adopted criterion in object detection literature, was utilized as the performance

measure (see Equation 5.3).

Precision =
TP

TD
,Recall =

TP

GP
,MAP =

∑Q

q=1
AveP (q)

Q
(5.3)

where TP is the number of detected true positive glands, TD is the total number

of detected glands, GP is the number of labeled glands in ground truth, Q is the

number of tested images, and P (q) is the precision of Qth image. The proposed

method generated results together with those previously reported, such as Tex-

ture based method [3], Random Field model [92], and Part-based Detector [92]

are shown in Fig. 5.6.
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FIGURE 5.7: The gland detection results. For each row, the image on the left

is the annotated ground truth, and the image on the right is the detected result,

each gland is fixed with a red bounding box.
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FIGURE 5.8: The results of the first two steps in [4]. Clusters can hardly be

observed in the right image.

According to the plot, the texture-based method can only detect 62% of anno-

tated glands with very low precision. Although the random field model achieved

better results, it obtained a lower precision than this new feature-based method

when they detected the same number of glands. That means that the random

field model have higher false positive number of glands. The mean results of the

random field model attained more accurately contoured glands than others; for

example 16% glands were above an overlap value of 0.83. However, the newly

proposed approach detected many more true glands and a higher MAP, greatly

outperforming all previous approaches. Some qualitative results are shown in

Fig. 5.7.

The object-graph algorithm introduced in [4] was also implemented on this

dataset. Taking one of the testing images for example, the first step of [4] is

to decompose the image into a set of circular objects: nuclei, stroma and lumen.

The result is shown in Fig. 5.8 (left), where the nuclei are colored in green,

stroma and lumen are colored in red. These stroma and lumen circles are then

clustered into two classes based on some geometric features. These features are

specifically designed in the hope that the two clusters may correspond to the

inner gland part and outer gland part. Although this clustering step works fine

in [4], it does not work on our dataset. As can be seen in Fig. 5.8 (right), it is
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hard to observe any structures of these two clusters (colored in red and blue).

Therefore, the applying of this approach could not be continued..

5.4 Discussion and Conclusions

In this chapter, an efficient gland detection method for H-DAB images was pre-

sented, which can also be applied on H&E stained images (see Appendix B).

This colour-free method was proposed based on the characteristics of glands. It

covers variations in level of staining, gland shape and size. Rather than miss-

ing the small glands or the glands which have vacant artefacts at the bound-

ary, as has been the case in previous methods, the proposed method can effec-

tively extract the luminal regions. It can detect the glands with closed-chain or

partial closed-chain, and the glands with large size or small size lumen. This

colour-free method can also boost the detection speed. For example, the test on

the dataset used in this experiment required only several minutes, including the

SVM classification process.

In addition, nuclei regions can also be detected, assisting the accuracy of lo-

cating each gland. The combination of intensity enhancement and Laplacian

algorithm works quite well for nuclei extraction. The previous methods, which

used colour-based or k-means based nuclei pixels extraction, all failed in the

H-DAB samples due to the large intensity variation. Although the LoG method

can produce good results without missing weak stained nuclei pixels, it still re-

duced the differences between boundary nuclei and stroma nuclei. The proposed

method covers the large intensity variations and preserves the differences.

Using the different ring-like region from [4], this ring is the enlarged lumen

edge, which produces more accurate contour of a gland than when simply using

a polygon shape. This proposed ring-like region can be automatically adjusted
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by the detected distance between the boundary nuclei and the lumen edge, in

order to detect the glands with thin or thick boundary.

Thus, the accurate positioning of bounding boxes on the detected candidate

glands improves the accuracy of later classification. The subsequent auto-threshold

method makes it possible to detect nuclei automatically. By incorporating an-

other PHOG based SVM, the proposed method outperformed all previous ap-

proaches on a publicly available gland dataset.



Chapter 6

The Analysis of Liver Cirrhosis

This chapter introduces the method developed for the analysis of liver cirrhosis

by calculating the Collagen Proportionate Area (CPA). The proposed statistical

stain colour detection model in Chapter 3 is used in this analysis.

6.1 Introduction

In the past, the liver biopsy scoring system depends on the description of changes

in the architecture without being concerning about the assessment of collagen,

fibrosis, or the distribution of the changes in tissue slides. However, liver fi-

brosis contains important information for the diagnosis and prognosis of liver

cirrhosis [111]. The extent of fibrosis marked with Sirius red stain has been

assessed using a quantitative analytical approach [112]. The quantification was

then converted by a simple calculation to the proportion of collagen in a sin-

gle tissue section [104]. This collagen proportionate area (CPA) calculation has

been demonstrated to be a representative approach to cirrhosis staging [113].

The CPA can also be represented as the percentage of target stain colour pixels

occupying a prepared tissue slide. In other words, this is a quantification of

98
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the pixels with the desired colour as well as all the pixels that constructed the

tissue slide. The noise made during slide preparation, which derives from two

aspects, also needs to be removed from the quantification process. The first

source of noise is tissue fragments and shadowed areas close to or connected

to the digitized tissue slide (see Fig. 6.1(a) & (b)). The second source of noise

is the edge of the tissue slide; alternatively, the background may contaminated

by the stain colour (see Fig. 6.1(c)). These artefact noises may be present in

many tissue samples and affect the CPA calculation. In addition, over staining

problems always occur at one end of an elongated tissue slide that contains a

large number of stained colour pixels.

As a consequence, developing an automatic calculation of CPA for liver cirrho-

sis samples should resolve these problems. The developed method requires three

steps;. The stain colour is detected by the statistical colour model first, and then

the slide is contoured automatically together with its colour and morphology

characteristics; finally, the CPA is calculated and the normal stained samples

and over-stained samples are classified using a simple and efficient method.

6.2 Method

The statistical colour detection is described in Chapter 3. The detection of

coloured collagen pixels or coloured elastin pixels is similar to the detection

of brown colour in DAB stained colon samples. The CbCr colour spaces are

used for the model construction, see Equation 3.4. In this section, the main

tasks introduced are the contouring of the tissue slide, which removes the noise

and is described in Section 6.2.1, and the calculation of Quad CPA, which uses

the minimum bounding box method as presented in Section 6.2.2.
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FIGURE 6.1: Sirius Red stained liver cirrhosis biopsies. Slides (a), (b) and (c)

are tissue slides with noises due to tissue fragments, shadowed areas, and stain

contamination, respectively. The noisy areas are red circled, and the green

lines are the manually labelled edges of the tissue slide. (d) is an over-stained

tissue slide with large portal tracts and no fibrosis.

6.2.1 Contouring of the tissue slide

The tissue slide contour serves to identify those pixels that belong to valid tissues

in the CPA calculation. Visually, the whole tissue slide is stained a pale yellow,

which is different from the grey-appearing background in the samples. It is easy
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to discriminate objects and background based on colour or intensity information,

such as global threshold. The problem here is objects that have similar intensity

or colour may represent artefact noise and need to be removed before tissue

slide contouring. According to the colour and morphological characteristics of

the tissue slide and the artefact noise, different methods have been proposed as

follows.

Since shadow pixels have a darker intensity than the background, using a global

threshold may not achieve the goal. The original image of Fig. 6.1 (b) is plot-

ted into 3D RGB colour space. The pixels from shadow and the pixels from

tissue can then be easily separated by eye (see Fig. 6.2 (a)). The shadow pix-

els are clumped in a small and different area from the tissue pixels. Thus, the

colour information is considered to be a possible solution to distinguish shad-

ows from the coloured tissue slide. Using a colour detection method such as a

statistical model or colour model transform can obtain good results. However,

the images that are used for CPA calculation contain a huge number of pixels,

so these methods may result in high computation costs and consume a great deal

of memory .

A histogram of pixels from the background, shadowed area, and tissue area are

plotted separately in the Red, Green and Blue channels in Fig. 6.2(b). From the

histogram plots, it can be seen that the background pixels and shadow pixels

have tiny variations in each RGB channel, very different from tissue pixels. The

large variations in the Red and Blue channels make the tissue pixels easy to

distinguish from the others. This is computed as follows:

(Vc(r)− Vc(b))× (Vc(r)− Vc(b)) > T (6.1)

Where Vc(r) and Vc(b) are the values for a pixel on the red and blue channels,

respectively, and T is a constant threshold. This process can effectively discrim-

inate between a shadow and the tissue slide. Then the artefact fragments are
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FIGURE 6.2: The plot of colour pixels in image Fig.6.1(b). This image is plot-

ted in 3D RGB colour space in (a), and in the histogram of each RGB channel

in (b). The red circle in (a) denotes the shadow pixels in 3D RGB colour space.

The red dashed line is the position of histogram peak in R channel; it shows

the variations between each channel of RGB colour space.

removed by particle size analysis. The processing result is shown in Fig. 6.3 (b)

and the final result is shown in Fig. 6.3 (c) after filling holes and filtering out

small particles.
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FIGURE 6.3: The removal of artifact noises. (a) the original image with shad-

owed areas, (b) the detected tissue slide with colour channel variations, (c) the

final result.

6.2.2 The Quad CPA

Large portal tracts may cause the pixels around them be over-stained. These

areas have no fibrosis, which may lead to inaccurate calculation of CPA. De-

tecting these over-stained samples is difficult, for they may have an appearance

similar to correctly stained samples with large fibrosis bridges. A simple method

was considered, the QCPA, to filter out these over-stained samples by comput-

ing the standard deviation in CPA values in four areas of the tissue slide. This

method can result in two findings, samples where large portal tracts caused over-

staining, and samples where the whole slide is over-stained. The whole process

is illustrated in Algorithm 7.

Where T is a threshold for CPA, and Ts is a threshold for standard deviation

Std. This means a large CPA from a whole image may reflect a greater potential

for over-staining on the entire slide. And a small CPA may be regarded as a

normal stained slide or indicate large stained areas with no fibrosis.

There are two problems with dividing slides into four areas. One is an image

may contain multiple slides; the other is the tissue slide present in the image

may not be laid horizontally. We calculated the minimum bounding rectangle

for each slide and then divided it equally into four rectangles. The minimum
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Algorithm 7 The QCPA calculation algorithm.

Require: Sirius red stained RGB image I
Require: Detected pink colour pixels Npink

Require: Detected tissue pixels Ntissue

Calculate CPA = Npink / Ntissue

Draw minimum bounding box for each slide in the image

Divide each slid into 4 pieces along horizontal

if CPA ≥ T then

Mark the image as Over-stained

else

for i = 1 to 4 do

Calculate CPA value Vi for each piece

end for

Calculate standard deviation Std
for i = 1 to 4 do

if Vi ≥ Ts then

Mark the slide as large portal tracts

else

Mark the slide as normal

end if

end for

end if

bounding rectangle is drawn using the method proposed in [114]. This method

uses the edge and boundary points of a segmented image to draw the bounding

rectangle, which is simpler and faster than most other methods. The fitting of a

bounding rectangle is presented as follows, see Fig. 6.4.

The process starts by finding the centroid point of an object, which is the in-

tersection of the diagonals of the bounding rectangle. Suppose the segmented

object has boundary points (xi, yi), where i=1, 2, n. Then the centre of the

object (Cx, Cy) is calculated by:

Cx =
1

n

n
∑

i=1

xi, Cy =
1

n

n
∑

i=1

yi (6.2)

Crossing the centroid point, the major axis and the minor axis each have an

angle with the horizontal line. Let θ be the angle between the major axis and the
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FIGURE 6.4: The illustration of drawing the minimum bounding box. (a) is

the input image; (b) is the centre point and the edge of the object; (c) is the

major and minor axis; (d) is the upper and lower furthest points; (e) is the

minimum bounding box.

horizontal line; then the major axis can be described by the function:

y − Cy = tan θ(x− Cx) (6.3)

It is known that the sum of the square of the perpendicular distance from the

boundary points to the major axis is the minimum. The distance from boundary

points i=1, 2, n to the line in Equation 6.3 is:

di = (xi − Cx) sin θ − (yi − Cy) cos θ (6.4)
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The sum of the square of the distance in Equation 6.4 is

D =
n

∑

i=1

[(xi − Cx) sin θ − (yi − Cy) cos θ]
2 (6.5)

In order to obtain the minimum value of D, Equation 6.5 becomes the angle of

the major axis. Therefore, D can be minimized with respect to angle θ, ϑD
ϑθ

,

which gives

tan 2θ =
2
∑n

i=1
(xi − Cx)(yi − Cy)

∑n

i=1
[(xj − Cx)2 − (yi − Cy)2]

(6.6)

Calculating Equation 6.6 yields the value of θ. Then the major axis described

in Equation 6.3 is the best fitting line to this object, which is invariant under the

scaling. The minor axis crossing the centroid and perpendicular to the major

axis can also be obtained. The major axis and the minor axis determine the

orientation of the object and the bounding rectangle as well.

To form the bounding rectangle, we should find the four vertices that are at the

furthest distance from the major or minor axis. The intersections of the boundary

of the object and the major or minor axis may not be the furthest points. The

furthest points include the upper left, the upper right, the lower left, and the

lower right with respect to the major axis. Therefore, the edge points should

be first determined to be above or below the major axis and the minor axis,

separately. These can be calculated through major and minor line equations as

follows:

Vmajor = (yi−Cy)−tan θ(xi−Cx), Vminor = (yi−Cy)+cot θ(xi−Cx) (6.7)

where (xi, yi) is the edge point where i=1,2,n, and θ is the angle between the

major axis and the horizontal line. If the value of Vmajor or Vminor is larger than

0, this point is above or to the left of the major or minor axis. If the value of V

is smaller than 0, this point is below or to the right of the major or minor axis. If

the value of V equals 0, it is on the axes. Then the furthest points above, below,
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on the left side and on the right side can be obtained.

Assume the furthest four points are obtained as (xup, yup), (xlow, ylow), (xleft, yleft)

and (xright, yright) with respect to the major and minor axes. Then the line cross-

ing the upper point (xup, yup) and lower point (xlow, ylow) which are parallel to

the major axis can be described as :

(y − yup)− tan θ(x− xup) = 0, (y − ylow)− tan θ(x− xlow) = 0, (6.8)

Similarly, the left point (xleft, yleft) and right point (xright, yright) parallel to the

minor axis can be described as :

(y − yleft)− tan θ(x− xleft) = 0, (y − yright)− tan θ(x− xright) = 0, (6.9)

The lines given in Equation 6.8 are parallel to the major axis, and the lines given

in Equation 6.9 are parallel to the minor axis. Thus, the intersections of these

four lines can yield the vertices of the rectangle, such as the top left point is the

intersection of the upper line and the left line, which is:

tlx =
xup tan θ + xleft cot θ + yleft − yup

tan θ + cot θ
, tly =

yup cot θ + yleft tan θ + xleft − xup

tan θ + cot θ
(6.10)

And the top right point is the intersection of the upper line and the right line,

which is:

trx =
xup tan θ + xright cot θ + yright − yup

tan θ + cot θ
, try =

yup cot θ + yright tan θ + xright − xup

tan θ + cot θ
(6.11)

And the bottom left point is the intersection of the bottom line and the left line,

which is:

blx =
xlow tan θ + xleft cot θ + yleft − ylow

tan θ + cot θ
, bly =

ylow cot θ + yleft tan θ + xleft − xlow

tan θ + cot θ
(6.12)
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And the bottom right point is the intersection of the bottom line and the right

line, which is:

brx =
xlow tan θ + xright cot θ + yright − ylow

tan θ + cot θ
, bry =

ylow cot θ + yright tan θ + xright − xlow

tan θ + cot θ
(6.13)

Now, we obtain the bounding rectangle of this object. In order to calculate the

QCPA, we still have to divide the rectangle into four equal parts with respect

to the major axis. The drawing of the minimum bounding rectangle and the

four divided parts are shown in Fig. 6.5. The pixels in each part are examined

separately and the QCPA is calculated. As a result, five CPA values are obtained,

including the whole CPA and four partial CPA values according to the QCPA

method. The measurement of these five CPA values calculates the standard

deviation among four QCPA values and the binary value, true or false (true for

1, and false for 0), obtained after thresholding the whole CPA. The total CPA

is thresholded by a threshold T, which can determine whether the whole slide is

over-stained. Then the true or false Boolean value can be obtained. Combining

the Boolean value and the four QCPA values, the calculated standard deviation

is then thresholded by a threshold Ts to determine whether the sample is over-

stained due to large portal tracts or not. The threshold T and the threshold Ts

are obtained from a set of training samples.

FIGURE 6.5: The minimum bounding box for each slide in the image. The

left image is a normal stained liver sample, the middle image is a liver sample

where the whole slide shows over-staining, and the right image is an over-

stained image with large portal tracts. The dark lines present the minimum

bounding box and the divsion of a slide into four areas with equal rectangular

boxes.
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6.3 Experimental Results

There consists of two experimental results. The detection results of SR stained

collagen and the brown stained elastin of using statistical colour detection model

are presented at first. Then, the QCPA method has been evaluated.

6.3.1 Evaluation of stain colour detection on liver cirrhosis

biopsies

Collagen stained with Sirius red appears pink in colour. The detection of pink

colour in liver biopsies was evaluated using the statistical colour detection model.

The training dataset for the statistical colour model included 5 SR stained images

with resolution 3360×2100, and the test dataset included 20 SR stained images

that were captured under 5× magnitude with resolution 3360×2100.

This colour detection model was also applied to the detection of brown colour in

stained Elastic fibres in liver cirrhosis biopsies. The training samples used to cre-

ate the model comprised 10 images with resolution 5600×4200. The model was

then tested on a large dataset that include 38 images with resolution 5600×4200.

I have labelled the ground truth.

It is clearly seen that both of the detection results, on the SR stained dataset and

the brown stained elastin dataset, have a high true positive ratio together with a

low false positive ratio (see Fig. 6.7).

6.3.2 Evaluation of QCPA method for normal- and over- stain

separation

In order to determine these two thresholds, T and Ts in Algorithm 7, the QCPA

method has been trained on 20 Siruis Red stained liver cirrhosis samples which
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FIGURE 6.6: Experimental results shown as ROC curves on SR stained dataset

and brown stained Elastin dataset. The horizontal axis is the false positive ratio

and the vertical axis is the true positive ratios. The brown curve is the ROC of

SR stain colour detection results. The blue curve is the ROC of brown stain

colour detection results.

include 10 over stained samples and 10 normal stained samples. These training

images which have different resolutions captured under 5× magnification and

only have single slide in the image are randomly selected. The generated results

from training samples are plotted in Fig. 6.7. It is obvious that, calculating

the standard deviation based only on the four partial CPA may not distinguish

the normally stained samples from the over-stained samples. However, another

plot clearly identified the normally stained and the over-stained. This plot wass

obtained by first thresholding the whole measured CPA value into true or false

with respect to over-staining and normal stain. Considering true=1 and false=0,

the standard deviation was calculated based on this binary value and four partial

CPA values. The combination of the whole CPA and four partial CPA clearly

identified two kinds of images. For whole CPA, the threshold is T ∈ (0.06 0.1),

and the standard deviation, the Ts ∈ (0.04 0.24). This means, if the whole CPA

is larger than the value in the range from 0.06 to 0.1, the image is over-stained.
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FIGURE 6.7: The scatter plot of CPA values from training samples. The hori-

zontal axis is the images from 1 to 10, the vertical axis is the standard deviation

value for each image from the QCPA method. (a) shows the standard deviation

of four partial CPA values, (b) shows the standard deviation of the thresholded

whole CPA , resulting in binary values (true=1, false =0) together with four

partial CPA values.
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And if the standard deviation is larger than the value in the range 0.04 to 0.24

then large portal tracts exist, resulting in over-staining. The obtained threshold

range was determined by the CPA or QCPA maximum value in normally stained

images and by the minimum value in over-stained images. This is due to the

small number of training samples.

The testing dataset was Sirius Red stained liver cirrhosis samples. It included 50

images from 5× magnification with resolution 5600×4200, which I manually

classified into normally stained samples and over-stained samples. The over-

stained samples include slides that are coloured pink everywhere and slides that

are over-stained just on one side. The used model for stain colour detection is

the statistical model presented in Section 3.2.1. The generated results contained

the whole slide CPA calculation and the QCPA calculation together. For images

that had multiple tissue slides and fragments, the slides larger than 10,000 pixels

were measured one by one. The number of slides measured in the experiment

was 123.

First threshold applied on whole slide

Manual Detected Correctly Detected Correct Ratio FPorFN

Over 46 32 26 81.2% 7.8%

Normal 77 91 71 76.9% 43.5%

Second threshold applied on each partial slide

Manual Detected Correctly Detected Correct Ratio FPorFN

Over 46 50 41 89.1% 11.7%

Normal 77 73 68 88.3% 10.9%

Total 123 109 88.6%

TABLE 6.1: THE STAIN CLASSIFICATION RESULTS. FP = False Positive

with respect to Over stain, FN = False Negative with respect to Normal stain,

Over = Over-stained, Normal = Normal-stained.

The standard deviation values of all tissue slides are presented in Fig. 6.8. The

tested results were measured with different threshold values in the range of those

obtained in the training step. Fig. 6.8 shows the obtained QCPA values can

be clearly divided into two types by setting the line from 0.04 to 0.1. This
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FIGURE 6.8: The experimental results. (a) is the distribution of the measured

standard deviation for each single slide in the image, (b) is the tested results

with different threshold T and threshold Ts T1=threshold T, which changes

from 0.06-0.1, and threshold Ts changes from 0.04 to 0.05, 0.06, 0.08 and 0.1.

range is contained in the training obtained range. Therefore, in the evaluation

process, T was set in the range from 0.06 to 0.1 and Ts was set in the range

from 0.04 to 0.1. For example, T = 0.06, Ts = (0.04, 0.05, 0.06, 0.08, 0.1) and
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T = 0.07, Ts = (0.04, 0.05, 0.06, 0.08, 0.1), etc. The evaluation results are also

presented in Fig. 6.8 as a ROC curve. The true positive ratio decreases tremen-

dously at T values greater than 0.09, and for Ts greater than 0.05. The best

results were obtained when T=0.09 and Ts=0.04, with the highest true positive

ratio and the lowest false positive ratio.

Using the best two threshold values obtained, the results are shown in Table 6.1.

Supposing the Over-stained sample is positive and the Normal stained sample

is negative, then the true positives, true negatives, false positives and false neg-

atives can be calculated. The ratios after the first threshold and after the second

threshold are calculated separately using these criteria. It is apparent that ap-

plying the second threshold increases the correct ratio and decreases the false

positive ratio.

6.4 Conclusions

Using the applied semi-automatic statistical colour detection model, it is easy

to calculate CPA in liver cirrhosis. The method for tissue contouring is simple,

highly efficient and easy to implement. To deal with normal staining vs. over-

staining, QCPA method was applied, instead of the normal CPA calculation for

the determination. This classification was used to divide the images into two

types: images with normal CPA and images requiring visual re-examination.

From the images with normal CPA, the calculated values can be used directly

for diagnosis. In contrast, the images classified as over-stained need to be re-

examined by the pathologist. This classification process works to reduce the

cost of human labour and improve the detection accuracy. More images will be

tested in the future.



Chapter 7

Concluding Remarks

The main contributions are highlighted in this chapter. The effectiveness, ro-

bustness and improvements that these contributions represent are presented and

discussed. Further analysis and development of future research directions re-

lated to these studies are presented as well.

7.1 Main Contributions

This thesis focus on the analysis of digitised microscopic images, especially as it

applied to IHC stained colour images. The corresponding studies focused on the

automatic detection of stain colour and glands, the segmentation and quantifica-

tion of cell nuclei, the analysis of CPA in liver cirrhosis and the development of

a semi-automatic toolbox. The main contributions are related to:

• Stain colour detection on different kinds of IHC stained images;

• Cell nuclei segmentation and quantification in complex backgrounds and

severely clustered areas;

• Gland detection on H-DAB stained IHC images;
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• CPA calculation of collagen fibrils and elastin fibrils on liver cirrhosis

samples;

• Over-stained and normally stained classification of liver cirrhosis samples;

• Development of semi-automatic toolbox for the analysis of IHC stained

images;

These contributions are summarized as follows.

7.1.1 Colour detection

A semi-automatic statistical colour detection model has been proposed for the

stain colour detection. This model is visually trained for stain colour detection.

Then it has been compared with two popular methods, such as colour decon-

volution and the CMYK model. The detection results have shown this method

outperforms them.

This semi-automatic colour detection model contains three main advantages as

compared to other stain colour detection methods. In the detection of brown

colour from H-DAB stained samples, the unevenly prepared stain, the saturated

stained nuclei, and the mixed staining of background all create challenges. The

DAB stain is not a single stain colour. It is always mixed with haemotoxylin,

which stains the background. Thus, it is inappropriate to regard it as a single

colour. Moreover, the colour correction methods used in H&E stained samples

may also fail in the correction of DAB stain.

The first advantage of using the statistical colour detection model is the effec-

tive colour detection based on the histograms of colour pixels used for training.

Instead of considering the other machine learning methods, this model is the

simplest, with the lowest cost of processing the high-resolution digital medical

images. The selected 2D CbCr colour space, instead of 3D space, also shows
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the reduction of computation costs. The model is semi-automatic in that the de-

sired colour pixels for training can be visually selected rather than determined

by a channel of the selected colour space. Human intervention is considered to

complement the selection of the desired colour pixels. The detection accuracy

has been demonstrated by the experimental results in Section 3.2.2. The accu-

mulated histograms from multiple training samples can provide stable results

with small variations (see Section 3.3). The model offers the ability to reduce

the subjective human discrepancies.

The second advantage lies in the detection approach of ”what you see is what

you get”, which can be used to detect linearly absorbed as well as scattered

absorbed (DAB stain) stain colour. The lights are not linearly absorbed in H-

DAB staining, which nullifies the use of the linear absorption function to detect

the brown colour. This is apparently shown in the detection evaluation in Sec-

tion 3.4, and in the colour separation in dark stained samples in Section 3.4.2.

The human involved training process is a possible solution to this problem. The

variations between human-selected training pixels were assessed in this thesis.

The experimental results have demonstrated their detection accuracy was higher

in all cases than the lights-absorption based method.

The third advantage is that the detection process is automatic and the saved

model can be sent to other people for reproduction of results. These advantages,

and the results of the evaluation have shown the robustness and efficiency of

this proposed method, which also resolves the problem of detecting non-linear

absorbed stain colour.

7.1.2 Nuclei segmentation

A novel nuclei segmentation and quantification method was conducted on IHC

images with complex backgrounds and areas of severely clustered nuclei. The
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segmentation method is similar to other methods that include three steps: nuclei

area extraction, clustered or overlapped nuclei separation, and post-processing.

The quantification element consists of counting the segmented nuclei that have

positively stained biomarkers.

In this segmentation method, the nuclei area is accurately extracted from a com-

plex background through a local thresholding method. Clustered or overlapped

nuclei are split using a novel seed detection method based on the commonly

used watershed. The clustered and overlapping nuclei are separated and over-

segmented nuclei are merged under a set of rules. This is a successful com-

bination of watershed, region growing and a priori knowledge of intensity and

morphological features.

The evaluations of segmentation and quantification are processed separately. For

the segmentation evaluation, this method and several previous popular methods,

including the classic watershed and the seeded watershed (regional minimum,

LoG method and iterative voting method), were compared on the same test-

ing dataset with severely clustered and overlapping nuclei. The results demon-

strated that this segmentation method outperforms the others. The evaluation

of the quantification was further tested on another dataset that had a huge num-

ber of clustered and overlapping nuclei. This method generated results that are

comparable with manual counting. Previous seeded watershed methods (LoG

method and iterative voting method) were tested on this dataset as well. The re-

sults showed that this method achieved much higher correspondence with human

counting. Although the shown Dice coefficient evaluation may not provide satis-

factory result, the high correspondence of quantification result has demonstrated

the possibility of future improvement.

This new seed detection method is controlled by a priori knowledge regarding

the size of the nuclei, which makes the segmentation and quantification stable

and robust. The sizes of used sub-window in the local thresholding process
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and the selection of initial seed size have been evaluated in Section 4.5. The

selection of the size is depending on the size of nuclei. Thus, this method can

be applied to the images with different resolutions.

The proposed novel seeds detection method for the nuclei in a complex back-

ground stimulates the abilities of splitting those nuclei in severely overlapping

and clustered area. It reduces the over- and under-segmentation problems caused

by the normal watershed method. The improved splitting results demonstrate

a higher correspondence with the manually counting results (see Section 4.6).

Therefore, this method can also be applied for quantification or complementary

analysis to other medical images that have cell nuclei shapes similar to those

examined in this thesis.

Its local threshold, which can cover intensity variations among nuclei, may fail

to cover strong intensity variations in nuclei. However, this is a challenging

problem similar to those mentioned in Section 1.2.1, which makes it difficult to

develop a solution suitable for all situations.

7.1.3 Gland detection

Since the detection of the gland is based on the detection of the lumen, a novel

lumen detection method was proposed through a morphological transformation

that can detect potential lumens quickly and efficiently. It covers the problem of

detecting the lumen regions that have different colours in H-DAB samples. Us-

ing this novel method, the partially closed glands and glands with small lumen

regions can both be detected with accuracy (see Section 5.2.1).

The boundary for each gland is detected by a newly proposed boundary detec-

tion method. Instead of segmenting the nuclei, this method was proposed based

on the roughly separated nuclei particles, which highly increased the detection

speed. The combination of intensity enhancement and Laplacian followed by
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auto-threshold filtering extracted the pixels belong to nuclei efficiently. This

extraction preserves the differences between stroma nuclei and gland boundary

nuclei. It also has the potential to accurately locate the bounding box for each

gland. The proposed ring-like region is the enlarging of the detected lumen edge

in order to find the gland boundary. It is used to cover the differences of thick-

ness of gland boundary, which also have the potential to accurately locate the

bounding boxes for different glands.

The detected potential glands with fitted bounding boxes were then classified as

either true glands or false glands by a support vector machine. In the evalua-

tion process, several previous gland detection methods, such as the object graph

method, texture based method, and polar space based method, were compared.

In order to show the significant improvement of this method, the part-based

method in computer vision was applied as well. The results have shown that

this method outperforms the others, and have also demonstrated its robustness

and effectiveness. This method was proposed on greyscale images, meaning

it can be used for other immunostaining images as well, such as H&E stained

images (see Section B).

7.1.4 Semi-automatic tool

This tool was developed using a semi-automatic scheme that is suitable for dif-

ferent kinds of IHC image analysis. It can detect the basic components in an IHC

image and is useful in conducting further analysis. The user created models and

parameters can be saved and transferred to different users for the reproduction

of detection results in different laboratories. This tool has been arranged for free

download online.
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7.1.5 CPA calculation and normal- or over- stained classifica-

tion

This was a novel CPA calculation method based on the proposed statistical

colour detection model. The detection of the contour of tissue slide is based on

the morphological and colour features such as size, the density of pixels and the

intensity values in each colour channel. This method is proposed to calculate

the CPA efficiently and accurately. Experimental findings have demonstrated

that the detection results have a high true positive ratio and a low false positive

ratio against the manually prepared ground truth. Also, the comparison with

diagnosis results, evaluated by a pathologist, has shown a high level of corre-

spondence. This method has been used for CPA calculation in detecting elastin

as well. Also, it has been demonstrated that the detection results have a high

level of correspondence against the diagnosis results.

In order to classify liver stained samples as either normal- or over-stained, the

QCPA method was developed. The standard deviation was calculated among the

CPAs between a quartered tissue slide and the whole slide for an accurate and

effective classification. The semi-automatic tool has been extended to include

this CPA calculation, in order to assist pathologists with diagnosis.

7.2 Limitations and Future Research

The studies and the obtained results represented in this thesis indicate some in-

teresting research domains that are capable of further improvement and analysis.

The developed statistical colour detection model can detect stain colours that

have different chromogens, but may fail in separating stain colours that only

have differences in luminance; for example, pink and purple. In addition, the

separation of colours in multi-stained samples was not evaluated: for example,
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samples with three or more stain colours. It is possible to improve this model for

multi-colour separation and make it more useful. For the colour detection eval-

uation, the colour deconvolution has been compared with the vectors obtained

from their laboratory, which may cause the detection variations on the examined

dataset in this thesis. It is also needed to prepare a single DAB stained samples

in our laboratory, to calculate the corresponding vectors and re-evaluate its de-

tection accuracy.

For nuclei segmentation and gland detection, the parameters are set with a pri-

ori knowledge that may vary across different users. One possible solution, and

a challenge for future work, may be the development of automatic parameter

setting solutions from training samples. The developed nuclei segmentation

method is dependent on the round shape of nuclei, and may fail to detect more

elongated ones. A possible solution is to consider shape features like concavity

values in the separation process. The contour of the segmented nuclei can also

be improved by adding some post-processing steps, such as assessing the curve

of edge, the removing inner holes, and locating the accurate edge according to

gradient changes. The gland classification is based on a support vector machine,

which is hard to apply as a plugin in imageJ. In order to make it simple and more

effective in practical application, more classification methods can be considered.

This research pipeline is a basic framework for IHC image analysis. From colour

pixels, to the nuclei and gland, this pipeline has covered the detection and seg-

mentation of these components that can be observed. The varied combination

of the methods discussed can achieve different goals of analysis. Furthermore,

these methods are not limited on the datasets used in this thesis. They can be

adapted to other similar datasets as well.

The semi-automatic toolbox is the realising of this research pipeline. It can be

extended to satisfy many practical applications that could aid pathologists in
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diagnosis and prognosis; for example, the CPA calculation presented in Chap-

ter 6. Improvements to this toolbox will include integrating more applications

and making it available to users who can then develop their own tools based on

this toolbox.

7.3 Conclusions

In conclusion, a research pipeline has been successfully created based on the

aims and objectives presented in Section 1.3. The colour pixels detection method

has been proposed with high detection accuracy and low computation cost in

Chapter 3. In Chapter 4, the nuclei segmentation method has been demonstrated

low under- and over-segmentation results. The nuclei quantification results have

also shown the robustness of this segmentation method, which has a high level

of correspondence with manual counting results. The gland detection method

presented in Chapter 5 has high efficiency and high accuracy in the detection of

glands in DAB samples.

The detection and segmentation of the basic components of IHC images offers

the ability to thoroughly understanding them. Although, the development of

these detection and segmentation methods may be complex and difficult than

using a machine learning based method, it may provide more explicit and obvi-

ous information to aid the pathologists in diagnosis, for example, the size, shape,

and number of detected basic components in IHC images. Lastly, this research

pipeline has been applied in liver cirrhosis analysis and obtained amazing re-

sults, which also have a high correspondence with diagnosis results shown in

Chapter 6.



Appendix A

The Interactive Tool

Computer aided diagnosis systems are becoming increasingly importance in

cancer detection. They provide instant results in an objective way and greatly re-

duce the time cost for quantified analysis. We developed a semi-automatic tool-

box for the complete analysis of immunostained images by detecting the stained

proteins (colour pixels), nuclei and gland structures. The scheme of detection

and segmentation processes is considered a crucial step in various computational

pathology frameworks [115].

A.1 Introduction

The interpretation of protein expression is a standard procedure for the diagno-

sis and prognosis of cancer and other diseases [116]. Increasingly, monitoring

changes in targeted proteins has been used to measure cancer treatment response

and disease progression. Routine diagnosis is predominantly performed by vi-

sual inspection and scoring. Many factors affect the accuracy and reliability

of diagnosing from stained slides. These factors are the problems inevitably

associated with visual diagnosis, which is subjective and relies heavily on the
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experience of the observers. Large discrepancies between observers may occur

due to these problems. The inter- and intra-observer variations generated in the

results can be as high as 30% - 40% in cancer grading [117]. Thus, it is highly

desirable to design an objective analysis method to aid diagnosis and prognosis.

Currently, the goal of exploring tissue samples quantitatively is to visually iden-

tify and count the markers that spread out in the images. Although this may

generate more accurate results than qualitative analysis, the huge time cost and

much lower efficiency have blocked its development. In order to cope with these

problems, computer image analysis techniques have been considered.

IHC stained images contain three basic components, including coloured anti-

gens, cell nuclei and gland structures, which are often used in the diagnosis and

prognosis of different diseases. The detection of these basic components of-

fers a way of automatically analysing an image according to the needs of the

pathologist.

Although automated image analysis through computer-aided techniques is con-

sidered to be a possible solution toward standardization, fully automated tech-

niques are still under development due to the immaturity of the technology at

its current level. The results generated by automatic computerized methods may

vary with morphological and stain colour characteristics in different tissue sam-

ples [7]. On the other hand, human examination is still regarded as the golden

standard and is far from being replaced. Thus, human intervention in the analy-

sis process is highly valued, rather than fully automated solutions [117].

Those developed methods, presented in this thesis, are all put in a semi-automatic

toolbox for the aid of IHC image analysis and present them in this chapter. The

processes in this tool have been developed to follow the examination scheme

from protein to gland. The tool consists of three functions and is available for

human intervention. The first is the colour detection function, which follows the

”what you see is what you get” approach and uses an interactive tool to offer
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the users the capability to visually and intuitively train the statistical colour de-

tection model. Users are allowed to detect colours using one of several pre-built

colour models or to build different ones for different stains. The second func-

tion is the nuclei segmentation function, which offers two ways of analysing

nuclei, quantification and segmentation. Users can select different modes of

nuclei analysis to meet different goals. The third function is the gland detection

function, which can generate the coordinates of bounding boxes of candidate

glands for further classification, such as by a support vector regressor. Both the

nuclei segmentation and gland detection features can be adapted for the detec-

tion of different sized nuclei and glands and also be applied to detect similar

structures on other types of stained images. Three applications of these methods

have been conducted. The evaluation of these applications consisted of compar-

ing the computer-generated results against the manual ground truth and clinical

outcomes.

A.2 The Semi-Automatic Tool

Three previously developed methods have been integrated in a semi-automatic

toolbox. This toolbox is coded as a plugin in ImageJ. The workflow is shown

in Fig. A.1. It starts from the detection of coloured antigen and can be used

to detect positively stained nuclei as well as the positive nuclei forming a gland

structure. The goal of understanding the IHC image is to detect each of its com-

ponents separately and then group two or more detection results for further anal-

ysis, for example, grading. The toolbox contains three functions, including stain

colour detection, nuclei segmentation, and gland detection that are described in

the following three sub-sections.
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FIGURE A.1: The workflow of interactive tool and the integrated functions in

the tool.

A.2.1 Toolbox for colour detection

The colour detection function is based on the statistical model presented in Sec-

tion 3.2.1, which allows rapid colour detection from arbitrary IHC stained slides.

It contains two phases, the training phase and a detection phase. Users can start

training by selecting a Region of Interest (ROI) through a rectangular tool in

imageJ. There are two components to this visual selection; one is the selection

of the user’s desired colour, and the other is the initial placing of a sliding bar in

the scrolling panel, shown in Fig. A.2. Background pixels can be filtered out us-

ing the sliding bar and appear as 255 in the resulting image. A statistical model

is constructed based on the histogram of the remaining colour pixels, which are

quantified and collected. The training phase requires re-selecting the ROI on

multiple training samples in order to obtain a wide range of shades of the target

colour. When a new training sample is added, the model is then re-calculated

automatically based on the accumulated histograms. At the end of collecting
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FIGURE A.2: Stain colour detection in the toolbox. This is an illustration of

the training phase in colour detection. The left image is the original image. The

right image is the resulting image. The colour pixels in the resulting image are

colours similar to the colours in the selected ROI in the original image. The

background pixels are removed by using the scrolling bar and are set to be 255

in the resulting image.

training samples, the created statistical model can be saved and reused for sub-

sequent detection. For detection, the tool flexibly allows the user to either use

the default DAB detection model that was obtained from our experiment, or the

user-customized and saved model. Then similar staining colour in IHC images

can be automatically detected (see Fig. A.3 & Fig. A.4).

A.2.2 Toolbox for nuclei segmentation and quantification

We implemented the nuclei and gland segmentation functions in a customized

mode. The segmentation and quantification functions process the image depend-

ing on the parameters set up by the user. In nuclei segmentation, the function

can generate two outcomes, a quantification result and a nuclei contour result,
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FIGURE A.3: Examples of detected H-DAB stained colour image.

FIGURE A.4: Examples of detected SR stained colour image.
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shown in Fig. A.5. The quantification consists of counting the positive nuclei

and oval fitted nuclei segmentation. Instead, the contour is drawn at the edge of

the detected positive nuclei. Unless customized parameters are set, this nuclei

segmentation and quantification functions are automatically processed. Users

FIGURE A.5: Nuclei segmentation and quantification in tool box. This is

an illustration of the nuclei segmentation and quantification results on H-DAB

stained images. The quantification mode can generate quantification result and

ellipse fitted result image. The segmentation mode can generate segmentation

results.

can set parameters according to the particulars of the IHC stained image that is

being interpreted. The parameter of window size refers to the size of the local

threshold window, where a local threshold can be applied to remove the interval

pixels between severely clustered nuclei. It also covers the intensity variations

across the whole image for better nuclei region extraction than using a global

threshold. The seed size parameter refers to the selection of initial seeds and

filtering out noise particles for a region growing process. These noise particles

may decrease the average value due to variations in the size of the nuclei. The

final size parameter refers to the size filtering process, which can remove the
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detected noise nuclei after the final watershed has been applied. For details of

parameters determination please see Section 4.5.

A.2.3 Toolbox for gland detection

For gland detection, we can locate each potential gland in a bounding box and

then export the coordinates of this bounding box, such as the coordinates at the

top left and bottom right. Then these bounding boxes can be classified by other

classification methods such as SVM.

A Gaussian blur parameter is used in pre-processing to smooth the image in

order to reduce the intensity variations. A parameter for open-by-reconstruction

can also be used as a morphological transform to reduce intensity changes in a

region that has a higher intensity value than its surroundings. This is performed

as an erosion of white regions larger than a set threshold in the binary image

with a parameter-defined disk followed by dilation. Thus, this parameter is the

diameter of a disk that should be larger than the thickness of the nuclei but

smaller than the average diameter of the lumen. The variance filter parameter

is determined by the thickness of the nuclei and is used to perform transform

operations.

A.3 Experimental Results

This tool-box has been evaluated by analyzing three different kinds of stained

IHC images, including 100 DAB stained images for the detection of P53 in

colon cancer, 20 SR stained images for the detection of collagen relate to liver

cirrhosis, and another set of DAB stained images for the detection of elastin

in liver cirrhosis biopsies. The 100 DAB stained images for P53 detection in-

cluded 50 Tissue Microarray Images (TMA) and 50 Whole Slide Images (WSI).
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The evaluation process compared the automated detection results with the man-

ual ground truth. The calculated criterions include the true positive ratio, false

positive ratio and the correlations between tool generated results and manual

labelling results for each colour stain detection. The results of this colour detec-

tion are presented in Table A.1. It shows the statistical model detected more true

positive pixels than the rest of two methods. The ROC curve for colour detection

on the dataset of 100 DAB stained slides is shown in Section 3.3. And the ROC

curves for colour detection on pink stained collagen samples and brown stained

elastin samples are shown in Fig. 6.7. The nuclei segmentation and quantifica-

tion results are shown in Section 4.6 & Section 4.3. The gland detection results

are shown in Section 5.3. All these evaluation results have demonstrated the

accuracy of this developed tool-box.

Dataset Total TP FP CORL

DAB(WSI) 88,200,000 99.9% 4.2% 0.960

DAB(TMA) 88,200,000 96.9% 3.9% 0.946

SR 225,792,000 95.9% 0.4% 0.998

Elastin 978,880,000 98.9% 0.1% 0.964

TABLE A.1: COLOUR DETECTION RESULTS.Total=Total image pixels,

TP=True Positive ratios, FP=False Positive ratios, CORL=Correlation which

is against the manually labeled ground truth

A.4 Conclusions

The main advantage of this tool is its semi-automated scheme, which integrates

human knowledge to improve the accuracy of colour detection, nuclei segmenta-

tion and quantification, and gland detection. The tool is easy to use, and allows

users to interactively and visually select the stain colours and the parameters.

Rather than building a statistical model based on the selected ROI, the tool can

be manually controlled to filter out pixels that are dissimilar to those in the

selected ROI, at an interactive speed. The quantification and segmentation of
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nuclei is selectable to achieve different interpretative purposes. The generated

gland bounding box coordinates aid further classification and can be used on

different kinds of stained images. This tool can also be extended to satisfy many

other applications.



Appendix B

Instructions of Semi-Automatic

Toolbox

• Requires

ImageJ 1.31p or later, downloaded from http://imagej.nih.gov/ij/

• Source

Contained in Immunostaining toolbox.rar, which can be opened using

RAR and ZIP

• Dataset

Nuclei Dataset: Include 52 images of 200×200 pixels. They are captured

from Diaminobenzidine (DAB) stained Tissue Microarray (TMA) images

and Whole Slide (WS) images. These images contain severely clustered

nuclei.

Gland Dataset: Include 20 images of 1280×1024 pixels. They are cap-

tured from DAB stained TMA images and WS images. These images

contain normal glands and tumor glands.

• Installation

134
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FIGURE B.1: Unzip the RAR and copy to plugin folder.

FIGURE B.2: The command on the plugin list.

Unzip Immuonstaining toolbox.rar to the ImageJ plugins folder, or sub-

folder (see Fig. B.1). Then restart ImageJ, and there will be a new Plugin-

s/Immunostaining toolbox/Immunostaining toolbox command (see Fig. B.2).

Note: This plugin will only be shown on the Plugins list after you restart
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FIGURE B.3: The interface of toolbox.

ImageJ.

• Descriptions

We developed this toolbox using a semi-automatic scheme that is suitable

for different kinds of IHC image analysis. It can detect the basic compo-

nents in an IHC image and is useful for researchers wishing to conduct

further analysis (see Fig. B.3). The user created models and parame-

ters can be saved and transferred to different users for the reproduction

of detection results in different laboratories. The functions contained in

this tool are semi-automatic colour selection, automatic statistical colour

detection, automatic nuclei segmentation and automatic gland detection

(locating bounding boxes to the candidate glands and requiring further

classification, such as Support Vector Regression (SVR)).
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B.1 User Manual

B.1.1 Colour detection

For the colour detection, the functions of semi-automatic colour selection and

automatic statistical colour detection model are combined. Colour selection is

used to select and reserve the positive colour pixels while the background colour

pixels are eliminated (set to be 255). Then, the statistical colour model is created

based on the histogram of these reserved positive colour pixels.

• Training

This training process aims to train the statistical colour detection model

based on visual selected colour pixels. You can start training by selecting a

Region of Interest (ROI) through a rectangular tool in imageJ and pressing

”Training” button on main panel (see Fig. B.4). The left image is original

DAB stained colour image and the right image is the result image. Using

the sliding bar presented in the sub-panel (Colour Chooser), you can vi-

sually determine the reserved colour pixels in the result image. Once all

the desired colour pixels of an image are reserved, you can record them

by pressing ”Collection” button in the Colour Chooser panel. The model

is then automatically calculated and created.

In general, the training phase requires re-selecting the ROI in multiple

training samples in order to obtain a wide range of shades of the target

colour. You can close the collected image and re-open a new one. When a

new training image is added, the model is then automatically re-calculated

based on the accumulated histograms.

At the end of collecting training samples, the created statistical model can

be saved (Using the ”Save Model” button in the Colour Chooser panel)

and reused for subsequent detection. It is recommended to save the model
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FIGURE B.4: Visually determine the reserved colour pixels.

FIGURE B.5: Saved models.

as the ”.txt” format. Please see the models we have created in the ”Model”

folder (see Fig. B.5).

These model files are pre-defined colour models for the detection of DAB

stained brown colour, brown colour in elastin contained liver samples, and

Sirius Read (SR) stained pink colour. Users can define their own models

through the ”Training” step and put them in the ”User Model” folder.

By selecting these models or changing a new one, you can press the button

”Read User Model” on the main panel to read them one by one. The
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FIGURE B.6: Example for DAB colour detection.

”Read Model” button is set to read the default model ”H-DAB.txt” for

brown colour detection (see Fig. B.6).

• Testing

Once you have read one colour detection model (for example, the H-

DAB.txt), simply press the ”Colour” button on the main panel. The tool

will then generate the detected result in a new window.

B.1.2 Nuclei segmentation and quantification

The automatic nuclei segmentation is implemented in the detection of positive

stained nuclei in DAB stained images, especially for the separating of severely

clustered nuclei. The pre-defined parameters include a window size of 25×25

(half size of nuclei) pixels; the minimum size constraint is 150 pixels and the

final size constraint is 150 pixels. These parameters are set for the segmentation
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FIGURE B.7: Example for nuclei segmentation and quantification.

of clustered nuclei in our created dataset, the Nuclei Dataset. You can customise

these parameters according to your datasets.

• Nuclei Segmentation and Quantification

For nuclei segmentation and quantification, you can set those parameters

before you press the ”Nuclei” button (see Fig. B.7). The quantification

consists of counting the positive nuclei and oval fitted nuclei segmen-

tation, while the contour is drawn at the edge of the detected positive

nuclei. Unless customised parameters are set, these nuclei segmentation

and quantification functions are automatically processed. You can select

the order from the drop-down menu to change between the processes of

quantification and segmentation.

• Parameter

In order to estimate the parameters for nuclei segmentation, you can use

the square tool and ellipse tool in imageJ (see Fig. B.8). The image on
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FIGURE B.8: Example for parameter determination.

the left is fitted by a 44×44 square, and the image on the right is fitted

by an ellipse that has 908 pixels inside. For the window size parameter, it

is better to set it as 25 pixels (half size of the window), which may cover

the sizes of all nuclei. The seed size, corresponding to the minimum size

constraint in the thesis, should be the half of smallest nucleus. In our

dataset, the size of nuclei changes from 300 to 900 pixels, where we set

150 pixels as the seed size.

B.1.3 Gland detection

For gland detection, we can locate each potential gland in a bounding box and

then export the coordinates of this bounding box, such as the coordinates at

the top left and bottom right. These bounding boxes can then be classified by

other classification methods, such as SVM. The pre-defined parameters include

a Gaussian blur of 2 pixels; the open-by-reconstruction radius is 40 pixels and

the variance radius is 5 pixels. These parameters are set for the detection of

glands in our created dataset, the Gland Dataset. You can customise these pa-

rameters according to your datasets.

• Gland detection
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FIGURE B.9: Example for gland detection on H-DAB sample.

You can save the generated file in ”.txt” format and name it as you wish,

for example, ”sample1.txt”. This file contains the top left and bottom

right coordinates of detected bounding boxes (see Fig. B.9). The final re-

sult image contains these bounding boxes and can be combined with the

original image through ImageJ Process → Image Calculator → Opera-

tion: AND or XOR (see Fig. B.10). See the result image created by the

operation AND as follows:

• Parameter

In order to estimate the parameters for gland detection, you can use the

square tool in imageJ. The square fitted in this gland is 108×94. The open-

by-reconstruction radius depends on the size of the inner gland area. We

set an average radius 40 pixels for our dataset. The radiuses of Gaussian

blur and variance can be changed according to the specific environment.

In addition, this gland detection method can be applied to H&E stained

images as well, for example, see Fig. B.12 & B.13
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FIGURE B.10: Example for gland detection result performance.
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FIGURE B.11: Example for parameter determination.

FIGURE B.12: Example for gland detection on H&E sample.
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FIGURE B.13: Example for gland detection result performance.
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